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Abstract

This paper is dedicated to the memory of Professor Rudolf E. Kalman.

Professor Rudolf Kalman was a friend and mentor to both of us whose profound insights deeply
influenced our research. His contributions to Systems Theory are far too numerous to describe in
detail in such a short note, so we will be content with outlining some of the key highlights.

The field of Mathematical Systems Theory was essentially created by Professor Rudolf Kalman,
and has had a huge impact on the way all modern systems and control is being carried out today.
Indeed, the contribution to science and technology is so great that we feel it should be put into the
context of the history of science. In his book, The Structure of Scientific Revolutions, Thomas Kuhn
made a distinction between normal science, the science where incremental progress is made, and
revolutionary science. Part of the distinction is based on comparing puzzle solving (which normal
science usually does), and the concept of a paradigm shift. Examples of such paradigm shifts include
the Copernican revolution, the Newtonian revolution, general relativity, and quantum mechanics,
each of which changed the universe of discourse. Kuhn argues that such revolutions occur when
there are “anomalies” (i.e., crises) when explanations based on current science break down.

We believe that in the field of systems and control, there was such a crisis in the 1950’s. There
were several indicators of these anomalies:

1. Internal Stability: Feedback control systems designed from an external (input/output) point
of view failed to recognize the presence of internal instabilities.

2. The approach to design of multi-input/multi-output systems was essentially a reduction to a
sequence of single-input/single-output systems through a decoupling technique.

3. The attempts to deal with the Wiener filtering problem in the nonstationary situation (Zadeh-
Ragazzini) leading to some analogue of the Wiener-Hopf equation was not very successful since
no procedure analogous to spectral factorization was available.

The resulting scientific revolution, in the way theories of systems and control developed, was almost
single-handedly carried out by Rudolf Kalman. There are several key points to be sketched. Firstly,
there was the reconciliation of the external and internal point of view of systems; namely, the
introduction of the fundamental problem of realization (representation) theory of input/output
maps and the concomitant fact that the input/output map captures the reachable and observable
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part of the underlying dynamical system. The dynamical viewpoint is made explicit, and Kalman
employs the mathematics of algebra and differential equations; complex function theory (transfer
functions) plays a secondary role in the Kalman approach. The adoption of a new language,
namely algebra and differential equations, immediately puts the multi-input/ multi-output systems
in the same footing as single-input/ single-output systems. Further, since most of the problems
in Kalman’s set-up could be reduced to those involving matrices (Kalman’s famous notation was
(F,G,H)), and the computer was just becoming a very powerful computational tool widely available
to the general control community, this approach was perfect for taking advantage of the computer
revolution. In a similar way, the Wiener filtering problem is reformulated as a problem in the theory
of conditional Markov (Gaussian) processes by realizing a finite-dimensional Gaussian process as a
linear function of a Gauss-Markov process. In the stationary situation, the spectral density of the
output process is now restricted to rational spectral densities but the nonstationary situation can
be handled effortlessly. Moreover, the equilibrium properties of the filter, namely the map from the
observations to the conditional distribution of the “state” given the observations can be related to
the intrinsic structural properties of the Gauss-Markov process, namely, reachability, observability,
and their relation to stability. There has been no greater contribution to signals and systems than
the ubiquitous Kalman filter. Further, the external view of stability, leading to the positive real
lemma can be reconciled with the internal view of stability theory, namely Lyapunov theory.

This change in viewpoint, the shift to algebra, differential equations and Markov processes (the
concept of Markovianity is intimately related to the concept of state) makes it natural to connect
to the calculus of variations (especially the Caratheodory viewpoint: Hamilton-Jacobi Theory and
dynamic programming) and leads to the formulation of the Linear Quadratic, Gaussian (LQG)
problem both over a finite and infinite time. Its solution leading to the separation theorem for
Stochastic Control where there is a separation between filtering and optimal control is surely one
of the crowning achievements of this new radical approach for control and systems.

The Kalman revolution also brought in concepts of geometric invariant theory when looking at
families of systems and their global properties. More precisely, Kalman described systems in an
invariant (coordinate free) manner, which led him to consider the symmetries and invariants of
linear time invariant systems. When when considers n× n matrices, it is not very fruitful to treat
them simply as an array of n2 numbers, but instead in terms of the action of GL(n) acting on
M(n), the linear space of n × n matrices. In algebraic terms this leads to canonical forms (i.e.,
Jordan forms), and to the decomposition of Rn(Cn) into a direct sum of invariant subspaces. The
dimensions of the invariant subspaces are the invariants of the systems. A deeper question is
whether the structure of a variety can be induced on the quotient space via the equivalence relation
induced by the group action. The famous work of Mumford shows that, in order to do this, the
nilpotent part of the decomposition of the matrix into a semi-simple plus nilpotent matrix needs to
be thrown out. A more difficult question is to carry through this geometric invariant theory when
we have pairs of matrices, (F,G) under the action of an algebraic group. It turns out that the space
of reachable pairs is precisely the set of stable points (in the sense of geometric invariant theory)
under the action of GL(n) (change of basis in the state space), and thus the quotient has the nice
structure of algebraic variety in the single-input case, and quasi-projective in the multi-input case.
This work rules out the existence of global continuous canonical forms in the multi-input setting, in
contrast to the single-input case in which one has, for example, the control canonical form. Finally,
the Kalman quotient space has the property of being a moduli space, i.e., a universal parameter
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space of linear time invariant systems.

A somewhat different question, again raised by Kalman, is to understand the invariants of the
system (F,G) under the action of the semidirect product of GL(n), GL(m) and the feedback group
which leads to the Kronecker invariants. The algebro-geometric interpretation relates the Kronecker
invariants to the decomposition of a vector bundle over complex projective line into a direct sum
of line bundles. These issues are at the heart of problems of control (feedback, modeling and
identification). The structural questions and the question of trying to unify automata theory and
linear systems theory led Kalman to the definition of a linear system as aK[z]-module, and the study
of linear systems is reduced to the study of modules (for example, over principal ideal of domains).
Kalman had also proposed at about the same time the study of systems over rings, which became
a rich area of research. One of the underlying motivations was to reduce computations for systems
to computer algebra, as well as getting a deeper view of digital signal processing, and algebraic
coding theory. It also revealed how far one could push the algebraic point of view. So for example,
one could do pole placement for systems over a principal ideal domain (e.g., modeling systems with
one delay), but note over systems over polynomial rings in two or more variables (modeling systems
with multiple non-commensurate delays).

There are of course numerous other aspects of Rudolf Kalman’s work that deserve mention. For ex-
ample, Kalman’s work on regression led to the study of the decomposition structure of a covariance
matrix into a positive semidefinite matrix plus a diagonal matrix. There is the important message
here. One needs to identify the noise. This work has had a profound impact on econometrics, one
of Kalman’s greatest interests.

The fruits of the Kalman Revolution continue. Researchers and practitioners do systems

theory the Kalman way. We conclude by listing some of the issues that arise from the Kalman
point of view several of which arise in the study of complex networks.

1. What should systems theory for systems which have both a temporal and spatial structure,
namely, Systems on graphs with Markov structure look like?

2. What is the invariant way of thinking about systems evolving on networks modeled as
weighted graphs?

3. What are the “proper” notions of robustness of networks (weighted graphs)?

4. Can one formulate a natural geometric structure on families of graphs, and develop some
universal parameter (moduli) space?

One can only look in awe at the remarkable career of the greatest systems scientist of our time.
Rest in peace Rudy. Your work continues.
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