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Introduction

A long-standing open conceptual problem has been the fol-
lowing: How does information "interact with control of a sys-
tem, in particular feedback control, and what is the value of
information" in achieving performance objectives for the sys-
tem through the exercise of control? In answering this ques-
tion we have to remember that in contrast to a variety of
communications settings, the issue of time-delay is of pri-
mary importance for control problems, especially control of
systems which are unstable.

The theoretical basis for modern digital communications is
undoubtedly Information Theory as developed by Shannon.

*This research has been supported by the NSF-KDI Grant ECS-9873451
and by the Army Research Office under Grant DAAD 19-00-1-0466.

The founder of Information
Theory Claude Elwood
Shannon passed away

on February 24th 2001

at the age of 84

An obituary will appear in the next
newslefter and there will be a
commemorative session on Sunday
June 24th at ISIT 2001 in Washington.

This theory tells us in a precise way the
fundamental limitation to reliable
communication over a noisy channel.
The crowning achievement of this the-
ory is the Noisy Channel Coding Theo-
rem, which identifies the channel in
terms of the invariant quantity, called
capacity of the channel, and reliable
communication can take place if trans-
mission occurs at a rate below capacity
and cannot if it occurs at a rate above
capacity. This theorem links the input side of the communi-
cations problem via the notion of capacity with the output
side, namely, the ability to decode with arbitrarily small
probability of error. This theorem can be extended to the rate
of distortion context as Shannon himself did! One can do no
better than quote Shannon to illuminate this situation:

Son;oy K Mlﬂer

Duality of a Source and a Channel. There isa curious and
provacative duality between the properties of a source
with a distortion measure and those of a channel. This du-
ality is enhanced if we consider channels in which there is
a "cost" associated with the difference input letters, and it
is desired to find the capacity subject to the constraint that
the expected cost not exceed a certain quantity. Thus in-
put letter i might have cost 4, and we wish to find the ca-
pacity with the side conditionX ;P;a; <a;, say, whereP; is
the probability of using input letter i. This problem
amounts, mathematically, to maximizing a mutual infor-
mation under variation of the P; with a linear inequality as
constraint. The solution of this problem leads to a capacity
cost function C(a) for the channel. It can be shown readily
that this function is concave downward. Solving this prob-

Continued on page 3
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lem corresponds, in a sense, to finding a source that is just
right for the channel and the desired cost.

In a somewhat dual way, evaluating the rate distortion
function R(d) for source amounts, mathematically, to mini-
mizing a mutual information under variation of the g;(}),
again with a linear inequality as constraint. The solution
leads to a function R(d) which is convex downward.
Solving this problem corresponds to finding a channel
that is just right for the source and allowed distortion
level. This duality can be pursued further and is related to
a duality between past and future and the notions of con-
trol and knowledge. Thus we may have knowledge of the
past but cannot control it; we may control the future but
have no knowledge of it.

One of the many fundamental contributions which Shannon
made which in fact renders the enunciation of the Noisy
Channel Coding Theorem possible, is to think “digitally” (to
use the word of a modern sage of Media technology), that is,
to reduce everything to bits, a common currency in which ev-
erything can be evaluated. As we shall see later whether all
bits are identical is an issue that we will have to face when
dealing with the development of an Information Theory for
sources which are decidedly nonstationary and non-ergodic.

A corresponding all embracing theory for control in the pres-
ence of uncertainty does not exist. The issue of fundamental
limitations is far more complicated here since it is unclear
that the dynamical systems which we wish to modify to be-
have in prescribed ways through control can be character-
ized through a simple invariant quantity like capacity. Even
the invariants of a linear multivariable time-invariant sys-
tem are the Kronecker invariants which tells us what Jordan
forms we can reach through coordinate changes and linear
constant feedback [1].The nearest thing to fundamental limi-
tations of control systems analogous to Shannon theory are
the Bode inequalities, the irreducible error in the Linear Qua-
dratic Gaussian problem and characterization of perfor-
mance limitations of control of linear time-invariant systems
where the performance measure is sensitivity and this can be
characterized through an H™-norm.

Nevertheless, control systems, even complex systems are be-
ing built where sensors, actuators, and controllers are being
linked through noisy communications channels and a the-
ory which unifies systems theory and a theory of informa-
tion is badly needed. A caricature of such a system is shown
in Fig. 1. The parts that are missing in the figure are estima-
tors and coders between sensors and the channel, decoders
between the channel and the controller. An analogous situa-
tion exists between the controller and the communication
channel and between the channel and the actuator. The de-
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sign problem now is to design the estimator, the coders and
decoders and the controller to meet specified closed-loop de-
sign objectives. We immediately see that this is a far more
complex problem than point to point communications. It is
totally unclear whether the control part of the problem can
be “separated” from the communications part of the prob-
lem. This problem is distributed and the issue of information
structure, namely, what information is available when and
where, is actually a design issue and must be understood.

The issues that I am raising are actually present in Communi-
cations problems where feedback and side information are
present. In a conversation I had with Jim Massey at ETH in
1995, he pointed out that Shannon in the first Shannon lecture
in 1973 had remarked that real time (time delay) issues and
feedback in communication problems were questions which
had received inadequate attention in Information Theory.

Inlight of the above discussion, I wish to raise two questions:

L. Is there a role for Information Theory in a unified theory of
Control and Communications?

II. Can Systems Theory contribute to Communications and
Information Theory in some non-trivial way? In my view,
the answers to both questions are a Qualified Yes.

This is not the first time that these two questions have been
posed. A successful interaction between Systems Theory
and Coding Theory is through the work of Willems on the
behavioral view of systems [2] and Forney, Massey, Trott,
Loeliger, Mittelholzer on codes on Finite Groups (see e.g.
[3]). There are also attempts at using rate distortion theory to
obtain lower bounds on estimation error for non-linear fil-
tering (see [4],[5]). Nevertheless we must proceed with cau-
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tion. This is best captured by quoting from Hans
Witsenhausen [6] who thought deeply about these issues:

“The infimum expected cost achievable in a problem de-
pends upon the prevailing information pattern. Changes
in information produce changes in optimal cost. This sug-
gests the idea of measuring information by its effect upon
the optimal cost...”

“Such a measure of information is entirely dependent on
the problem at hand and is clearly not additive. The only
general property that it is known to possess is that addi-
tional information, if available free of charge can do no
harm though it may well be useless. This simple
montoncity property is in sharp contrast with the elabo-
rate results of information transmission theory. The lat-
ter deals with an essentially simpler problem, because
the transmission of information is considered independ-
ently of its use, long periods of transmission and use of
channel are assumed and delays are ignored.” H.S.
Witsenhausen : 1971

In light of the above there is a methodological and theory
formation issue which must be addressed. Simply stated,
we must pose control questions in an appropriate informa-
tional sense and we must situate information theory in a
dynamical framework. An elaboration of this viewpoint
has been undertaken in the recently completed doctoral
theses of Sekhar Tatikonda [7], Anant Sahai [8] and several
papers, ([8],[9],[10],[11],[12]).

Control in an Information Setting

To make the above ideas more concrete let me consider the
following question:

What is the minimal information about the current state
of a single-input, discrete time, linear time-invariant un-
stable system needed in order to stabilize it?

The question we are asking is really about the optimal cod-
ing of the state, that is, coarsest vector quantization, to
achieve stability. This problem is mathematically formu-
lated in terms of the construction of Controlled Quadratic
Lyapunov Functions (Quadratic for explicit computations).
That is given

x(t+1)= Ax(t)+bu(t),t=0,1,... (1)

where x(t) e X =R" is the state of the system and u(t)e U =R
is the control, A is an X nmatrix, b is an n-vector and we as-
sume that (A, b) is a reachable pair, we are required to find the
coarsest quantized feedback control which stabilizes the sys-
tem. The idea of coarseness (minimal information) is cap-
tured as follows:

Given a controlled Lyapunov function

V(x)=(x;Px) ,P>0 (2)
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find a set
U={u; eRlieZ} (3)
and a quantizer
f:X — U, with
f(x)=~f(-x)and (3a)

AV(x)=V(Ax +bf(x))V(x)< 0 (3b)

VxeX,x#0.

fnaturally induces a partition on the state space X and we as-
sume that the values of f in U are ordered in the sense that
up<uj,i>ji,jeZ. Let Q(V) = set of all quantizers which
solves the stabilization problem. For geQ(V)and 0 <e <1,
let N(g[€])denote the number of levels that g assumes in the
interval [e, 1]

Define the quantization density

N( ¢
N, =limSup (3[8])’ and
£ es0 7 —Ing (4)
)
fr=Arg.Inf, oMy (6)

f. is defined to be the coarsest, quantizer corresponding to
V(x).

[t turns out that the quantization problem can be confined to
one preferred direction (one-dimensional), and the optimal
quantization is logarithmic with the optimal scaling law p
being given by

nlsiékP‘I:I_l

nlsiskP“; | +1
(7)
and A",1 <i < k < nare the strictly unstable eigenvalues of A.
i y g

In the above formulation, we have allowed quantizers with a
countable number of levels. An equivalent formulation of
the problem leads to a method for designing finite
quantizers leading to practical stability. For continuous-time
systems there is a relation between the optimal sampling
time T* and the optimal quatization scaling law p*:

k
T*Y A{(F)=In(1++2)and
i=1 ®)

p*(T*)=~2-1 )

Continued on page 18

December 2000




Peter Sweeney, invited speaker, intfroduced by Han Vinck.

Kees A. S. Immink, (IEM, Essen ) Jin Ming, and B.
Farhang-Boroujeny, (NUS Singapore): Design technique of
weakly constraint codes

Abstract:

A general method of constructing variable length (d k)
constrained codes from arbitrary sequences is introduced.
This method is then used for constructing a class of weakly
constrained codes. The proposed codes are analyzed for
the case of d=0 and shown to give results which are better
or comparable to those of the best available codes, how-
ever at the cost of failure with some very low probability.
Variable length codes can be very susceptible for error
propagation. Brief results of decoding error propagation
will be shown.

Hendrik Ferreira (RAU, Johannesburg): On The Correction
Of Insertion Deletion Errors

Abstract:

We review some of our previously published results and
consider the application of these results to the correction of
burst errors and the use of convolutional codes

E.G.T. Jaspers and Peter de With ( Philips research, Univer-
sity of Eindhoven, the Netherlands): Synchronization of
Base-Band Video for Multimedia systems

Abstract:

A multimedia system is usually based on distributed comput-
ing, so that it consists of source, processing units and presenta-
tion devices in each component operates autonomously. This
independency can be exploited for optimization of individual
component performance, using e.g. dedicated block domains.
This paper presents a Video I/O model for such a multimedia
system enabling multiple video signal processing and display.
This model provides an asynchronous communication inter-
face for independent clock domains with the ability to synchro-
nize a video display to one of the video sources. The
communication model has been successfully implemented in
/O modules of an experimental multimedia system.

Samwel Martirossian, Sosina Martirossian and A.]. Han
Vinck (Essen): Optical Orthogonal Code Construction with Cor-
relation 2

Abstract:

Optical Orthogonal Codes (OOC) with low correlation between
code words are used to allow multi user optical communication.
We give a new construction for a class of (n,4,2)-codes We give
the cardinality of our class of codes compared with the Johnson
upper bound and conclude with computer search results.

[1] S. Bitan and T. Etzion, “Construction for Optimal Con-
stant Weight Cyclically Permutable Codes and Difference
Families,” IEEE Trans. on Information Theory, vol. 41, pp.
77-87, Jan 1995.

Control with Limited Information: ..
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where A (F) are the unstable eigenvalues of the continu-
ous-time system matrix F.

Note thatp*-T*is an invariant of the class of single-input, con-
tinuous-time linear time-invariant systems. We may think of
the quantized, stabilized feedback system as a symbolic de-
scription of the stabilized linear feedback system. It is also an
example of source-coding problem with a non-standard crite-
rion function. For details of above see [14].

The stochastic version of this problem where the quantized
stabilization problem is posed for

X(t+1)= Ax(t)+bu(t)+w(t),t=0,1,...
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and w(t) is white Gaussian noise is even more interesting. Here
one can exhibit the non-linear effects of quantization as a desir-
able effect as opposed to a source of noise which is undesirable
and should be guarded against. A little bit later we shall see the
desirable effects of quantization in a different context.

LQG and its Variants

The Linear Quadratic Gaussian problem is to control what
the additive white Gaussian channel is to Information The-
ory. The problem is to control a linear stochastic system (sin-
gle-input for simplicity)

X(t+1)= AX(t)+bu(t)+ W(t) (10)
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where W(t) is white Gaussian noise in the presence of noisy
measurements.

Y(t)=(c, X() s +V (1) (11)

where V(t)is white Gaussian noise and it is assumed that V(t)
and W(t) are independent. The choice of control which is al-
lowed to be a function of the past of the observations

u(t)=(Y(0),---, Y(t-1))

has to be made so that we minimize a positive definite qua-
dratic cost function

J(u;x0)=E Z(X(t) QX(t))+(u(t)

t=0

), Ru(t))+(X(t), SX(t))

Infinite-time versions of this problem (average-cost, dis-
counted cost) can be considered. Note that causality is built
in here and the notion of information available at time ¢,
namely, the o-field generated by (Y{;,---,Y,_; )isan important
quantity.

The solution to this problem is well-known and leads to the
so-called separation theorem, where the optimal choice of
control and the optimal choice of the state-estimator can be
separated. The most important notion in here is that of the
information state
P"(X(t) Y(0),---, Y(t-1))

which depends on the choice of control. This dependence
can be suppressed by using the innovations process. It is
not hard to see that P* is conditionally Gaussian and hence
can be dynamically described by describing the evolution
of the conditional mean and the conditional covariance.
This leads to the Kalman filter. The control turns out tobe a
function of the information state (in this case only the con-
ditional mean, since the conditional covariance is deter-
ministic). This idea of separation between control and
estimation is quite general.

A number of variants of this problem is possible. In [10] I
have considered the effects of source coding delay where
the source is the state of a stable system. It turns out that if
instead of transmitting the coded source, if one transmits
the coded “innovations” even over a noisy channel, the
problem of optimized coding separates from that of opti-
mal control. This model captures in a precise way that
shorter codes correspond to low resolution and low-delays,
while longer codes mean higher resolution but longer de-
lays. We have also suggested here how the notion of succes-
sive refinement of partitions leading to tree codes is a
natural one to consider here.

Amore sophisticated version of the infinte-time average cost
LQG problem where a communication channel is inserted
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between the sensor and the controller has been considered in
[7],[11]. The channels that can be accomodated are digital
hard rate R noiseless channel, digital average R noiseless
channel, digital erasure channel and the additive white
Gaussian channel with a power constraint; where the rate is
R =Jlog,(1 +P)where P is the input power limit.

The goal is to understand the relationship between control
objectives, plant dynamics and the use of the communica-
tion channel. In general, the encoder and decoder will both
have internal states. Under the assumption of equi-memory,
the encoder computes the next channel input symbol based
only on the current state observation and the decoder’s state.
Equi-memory requires either:

1. Noiseless forward channel.

2. Explicit and noiseless feedback from the decoder to the
encoder.

3. Encoder has access to the control signal and is able to
“invert” that signal to recover decoder state.

Given equi-memory, the control problem separates into an
optimal state-estimator (encoder/decoder) and the certainty
equivalent controller. This holds regardless of the nature of
the communication channel. This control problem can be
solved using standard Dynamic Programming arguments.
So, the key to the problem is encoder/decoder design.

Sequential rate distribution theory (see [15],[16] and the ref-
erences cited there) has a key role to play in this problem. In
our situation, we consider the process

X(k+1)= AX(k)+W(k)

with (W(k)) white Gaussian noise, the sequential rate distri-
bution problem is defined as follows:

D.\:,St‘tiA(R’M)=[”./ ,7(\ \])

N

ENCICE X(k), MX(k) =X (k)]

where M is positive definite, subject to the rate constraint
] 5N J
— IX{;xN)<R

N
where the minimization is carried out over all l’(X fX )
which are causal (in the obvious sense).

The rate distortion function is

Dseq (R, M)= lim Dy soq (R, M)
For simplicity, consider the scalar case. A surprising result is
thatthereisa minimumrate,R > log, A, required to stabilize

the system. In this case
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whereX,, is the variance of W. For special channels, including
the AWGN with equi-memory, Dgeq (R, M) can be achieved.
The structure of the minimizing conditional law suggests that
the optimal structure of the encoder is predictive.

It turns out that here also the optimal average cost separates
into a sum of two costs, precisely as in the partially observed
LQG problem: a cost due to control and a cost which comes
from the estimation error. This second cost can be explicitly
computed using sequential rate distortion theory in the sca-
lar case. In the general case a lower bound is obtained for the
average cost (see [7]).

Equi-memory is a strong condition and generally requires at
least one noiseles link. One needs a way for the decoder to
communicate to the encoder. Now, in a general way, we can
consider the plant as a channel. Consider the scalar case and
change the quadratic cost on U,to a hard constraint:
E(U}) < P,. Assume that the encoder has noisy observations
of U;. Let R, =1 log,(1 +%) A necessary condition for

well-posedness is that R, > log, A.

Returning to the original average cost problem, if there is no
cost on control, then the equi-memory assumption can be
dispensed with. Otherwise, there is a fundamental tradeoff
between control energy and capacity required from the en-
coder to the decoder. Sub-optimal schemes which are opti-
mal in the high rate regime can be designed when the
equi-memory assumption cannot be justified.

A more general view of this problem where the state process
is a controlled Markov Chain has been considered in [13]. In
other work, we have shown how the optimal sequential
quantization of Markov sources can be viewed as a partially
observed stochastic control problem [12].

Toward a Dynamical View of
Information Theory

The discussion in the previous section raises a new problem
in Information Theory:

How can one reliably transmit an unstable source over a
noisy channel through appropriate source and channel
coding and decoding at the receiving end?

More precisely, given a scalar discrete-time finite-state
Markov source (X(t)) given by

X(t+1)=aX(t)+ W(t),

a>1,t=0,1,...

and (W(t)),, is additive white Gaussian noise or bounded noise
with finite support and a memoryless channel (or additive white
Gaussian noise channel) is it possible to design encoders and de-
coders within a specified finite end to end delay constraint so
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that the output of the decoder (X(t)) achieves a desired
mean-squared performance Sup,., E(X(t)—)A( (t)? <D?

Asimilar question was posed by Berger [15] for the Wiener pro-
cess and an information transmission theorem for this case has
been an open problem for many years. In Anant Sahai’s thesis
[8] asolution to this problem is presented. The solution requires
a dynamical view of Information Theory, since the message,
the Markov Source, is not given at time -1, but unfolds in time
and a little thought will make it clear that block coding of any
kind will not work in this situation. Indeed, all coding and de-
coding operations must be causal, causality suitably defined.
In this problem, the separation of source and channel coding is
no longer obvious and separation has to be inposed by a new
definition of channel capacity

Cnny!inu' (0.) =
Sup.{RI3(K >0, Rate(e, D")=R)
vd > 0P, (e,D%,d)<K-27%")

error

In the above & denotes the encoder, D the anytime decoder
and d the prescribed delay. It has been argued by Sahai thata
should be thought of as a quality of service parameter.

This definition should be contrasted with the classical opera-
tional definition of capacity. The exponent a.is related to the
error exponents corresponding to block coding and
convolutional coding. Appropriate source and channel cod-
ing theorems for this problem with the above definition of
capacity are proved in [8]. I want to emphasize that the total
end to end distortion problem has to be considered for this
situation and the dynamical view which I have referred to is
an essential element in the solution to this problem.

The discussions in the previous section and this section
provides evidence as to why the sequential (zero delay) rate
distortion problem is an important problem. Although it
would be too much to expect thata Shannon like rate distor-
tion theorem would be true in this causal situation (see [16],
for example), it is still important to characterize in a precise
way the gap betwen the non-causal rate distortion function
and the causal rate distortion function. This has been car-
ried out in [17].

On Information Structures: Witsenhausen
Revisited

In several important papers Witsenhausen (see [6],[18]) elu-
cidated the role of information structures, namely what in-
formation is available when and where, on performance of
stochastic control problems and the complexity of the opti-
mal solution. In a centralized totally synchronous system
where the global state is available to the controller, the opti-
mal stochastic control problem leads to a dynamic program-
ming equation in an abstract form (see [19]):
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{g,(x,u)+jx V(i+1, é)P,(x,d«";]u)}
here x € X is the state space, u € U is the control space. When
the global state is not available to a centralized controller but
control is distributed, one can still do Dynamic Pro-
gramming but an a priori convex problem may become

nonconvex (for an elucidation of this point, see thesis of
Sekhar Tatikonda [7]).

To understand the difficulty, let us consider the following
problem after Witsenhausen:

LetX; and X, be discrete random variables. Assume that the
first agent observes

Yy (w)=X,(w) =y, (2)
and takes as an action
Y, (X (w))=u,. (3)
The second agent observes
Yy (uy, Xo(w)) =, (4)
and takes an action
Y2(Yo(w)=Y,)=u, )
The problem is to choose y, or y, to minimize
E,{\IV:](XI,UZ) (6)

Let | denote the minimum. Witsenhausen clearly recog-
nized the communication aspects of this problem, namely,
Agent 2 requires information about X; but can only get it
through u, via the channel

(x5,up ) P(Ys|x 5,1y ).

This is a highly non-convex problem but it is natural to try to
obtain a lower bound for |  using an idea, apparently due to
Shannon (see [20]).

Step 1

Compute the channel capacity
Mnxpu] I(U;;Y,)=C-

Step 2 Embedding
Minimize

Epy ' Epy '3 J(Xy;U5)
subject to the constraints
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I(X,;U,)<C
Pu.lx, 20, JP(UZ‘;XI iy =1.

It is important to note that both these problems are convex
programming problems. If D* is the solution to the above
minimization problem then

J* > D,
This result follows from the fact that
Xy =2U =7X))-=Y,=U, =v,U,;,X,)

forms a Markov Chain.

Unfortunately, this bound is ineffective unless the minimiz-
ing channel factors in such a way that the original channel is
one of the factors. One can exhibit examples to demonstrate
that this problem falls into the class of NP-complete prob-
lems. Furthermore in specific situations the two convex
programming problems can be explicitly solved and it
turns out that the lower bound is totally ineffective. Ob-
taining good performance lower bounds for problems of
distributed control and distributed communications is an
open problem.

Towards a Theory of Feedback for
Communication and Control

In recent work of Willems [2] he has outlined a theory of con-
trol where control is viewed as the interconnection of two be-
havioural systems . I want to suggest a stochastic analogue
of this. The idea of interconnecting a message to a source and
interconnecting two random variables goes back to
Dobrushin [21]. In unpublished work [22], I have described
the notion of a stochastic system and interconnection of sto-
chastic systems which is similar in spirit to the ideas of
Dobrushin. A more detailed investigation of these ideas
have been undertaken in the doctoral thesis of Tatikonda re-
ferred to before.

The basic mathematical model of a system is a family of
probability measures

.'\/’ QP(Z1 /'-~/Z2)

where P(Z,,..., Z,)is the space of all probability measures
on the variables of interest(Z,,..., Z, ). M represents a com-
plete specification of the system. Plants, coders, channels,
decoders are given by stochastic kernels which represent
partial specifications of the joint measure. The choice of con-
trollers, coders, decoders allow us to “complete” the joint
measure. Note that controllers, coders, decoders are them-
selves stochastic kernels.

In a typical control situation we are given stochastic kernels
P(Xy4lx;,u; )., 1 representing state transition maps cor-
responding to controls (i, )t =1,..., T-. The complete specifi-
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cation is the joint measure factored according to the causal ~ Specifiying the controllers P(dU, |x',u'™ ) chosen according
ordering to some criterion allows us to “complete” the measure so

X] =x1,ul =U1,X2 =x2,...,XT =XT,
as

T
P@x",du”) =TT P@u,fx',u'™)

=1
®P(dx,[x'-‘ atY,

that the joint measure is an element of M. The nature of the
dependence of the control on the past data specifies the in-
formation structure. This viewpoint, coupled with Shan-
non’s idea of code functions (as opposed to code words) and
Massey's idea of Directed Mutual Information [23] allows
one to obtain the analogue of the Noisy Channel Coding
Theorem for Feedback Channels.

GOLOMB’S PUZZLE COLUMN™ CYCLES OF PERMUTATIONS SOLUTIONS

“How many of the n! permutations on 7 symbols have a
longest cycle of length k, when 4 < k < n?”

Since k > %, acycle of length k, if it occurs, is unique. There
are (Z ) ways to select k symbols to be on the cycle of
length k, (k - 1)! different cyclic orders for these k symbols
tobeonacycle of length k, and (1 - k)! ways to permute the
remaining n — k symbols. Thus, the number of permuta-
tions whose longest cycle has length k>4 is

(3 Jk=1)Y(n—k)t=2

Ly . A ;
2.“Show that the sequence A, = —"—is monotonically in-
n+

creasing for n>2, where L, is the expected length of the
longest cycle in a random permutation on n symbols.”

Proof. When an (1+1)* symbol is added to the set, which is

then “shuffled” and “dealt”, the probability that the new

symbol lands in the longest cycle exceeds —* for n>1, be-
n

cause sometimes two or more cycles are tied for longest.

Thus L,,,>L, +1 Lo < (H—H} Bromewhich 2L o Ln:
n n n+1 n

for all n>2.

Ly ) .
3. “Show that — is a monotonically decreasing sequence,
for n=L" i

Proof. If we remove a symbol “at random” from a random

permutation on n symbols, it had probability > Ly of hav-
n
ing been on the longest cycle. ThuslL

<L, _L, - L"(n—_1> and Lia < Ly for all n>1
n n n—1 n

n-1

4. Since A, = "1 is monotonically increasing and it is
n+

clearly bounded from above. by 1, by a theorem of
Weierstrass it must have a limit A. Since

2 =i=”+1. Ly :(n+l)k,,,andsince limﬂ=l,
n n n+l n n—see
. .o Nl
we have lim [, = llm(—)l,, =1-A=A.
H—o0 n—yeo n

Note: A=0.62432965...has been named “Golomb’s con-
stant” by Donald Knuth.

5. “Among the n - n! symbols in the set of all n! permuta-
tions on n distinct symbols, how many are found in cycles
of length k?”

Answer: For each k, 1<k<n, the answer is “n! symbols." By

|
problem 1, for k > g there are % permutations with cycles

f
of length k, and therefore k - (%) = n!symbols (among the n

- n! symbols altogether) on cycles of length k. But the re-
striction to k > g is removable, as follows: To form a cycle

of length k (forany k, 1<k<n), there are ( e )ways to pick the

k symbols to be on the cycle, (k- 1)! ways to arrange these k
symbols cyclically, and (1 - k)! ways to permute the re-
maining n - k symbols; so these choices contribute
k( ' )(k —1)(n-k)!=n!symbols altogether on cycles of

length k.

6. “Let p, be the probability that the symbol ‘1" is on the
longest cycle in a ‘random’ permutation on A, ={1, 2,
3,...,n}, Find lim p,,.
n—yo0
Answer: lim p,, = A
n—yeo

Proof: The probability that any specific symbol is on the
longest cycle in a random permutation on A, is asymptot-

ically I, =—", and therefore lim p, = lim [, =A.
n n—yco n—see

For more details, more rigorous proofs, and related infor-
mation, see:
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Interestingly, for Markov Channels, determining the capac-
ity of a feedback channel leads to the maximization of Di-
rected Mutual Information which has the formulation of a
Stochastic Control Problem. For a detailed discussion of the
above see |7] and the references cited there.

Conclusions

In this lecture, I have tried to demonstrate that problems of
distributed control where plants, sensors, controllers and ac-
tuators are linked by communication channels lead to new
problems in systems theory and information theory. A dy-
namical view of information theory might well be important
in communication problems where delays cannot be ig-
nored. Feedback in communications channels is best viewed
from a Systems Theory perspective. Much work remains to
be done and I hope Information Theorists would become in-
terested in some of the questions raised here.
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The 23™ Symposium on Information Theory and its Applica-
tions (SITA2000) took place from October 10 to October 13, 2000
in Aso, Kumamoto, Japan. The symposium was sponsored by
the Society of Information Theory and its Applications (SITA)
and co-sponsored by the Fundamentals on Information and
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formation and Communication Engineers (IEICE) and the
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Prof. Kyoki Imamura, Kyushu Institute of Technology, was the
general chairman and Prof. Yasutada Oohama, Kyushu Uni-
versity, served as the chair of technical program committee.
The majority of participants was from Japan but there were also
papers from Germany, Korea, Saudi Arabia and China.

All 170 papers presented at SITA2000 are published in the 680
pages of the Proceedings of the 23™ Symposium on Information
Theory and Its Applications. The number of participants was
270. Usually SITA has been held in late November or in early De-
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