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Abstract. Many edge detection techniques exhibit scale-dependent distortion 
of edges. We develop two ideas, which may also be of independent interest, to 
produce sharp edge localization at all scales. The first is approximation of the 
functional associated with the variational formulation via epi-convergence, re- 
placing the edge set with a function. We provide a fast algorithm for minimizing 
the approximate functional. The second is to scale parameters and data to focus 
the edges. The resulting edge detector is a singular perturbation of a coupled 
pair of partial differential equations, yielding an elegant structure, suitable for 
digital or analog parallel implementation on mesh-connected arrays. 
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1. Introduction 

The notion of 'scale', scale of features and scale of representation, is widely held to be 
of fundamental importance in vision. One reason for this is that hierarchical descriptions 
offer potential reductions in complexity of various visual processing problems. Coarse 
scale segmentation of an image, for example, can be used to identify regions of interest 
for further processing, thereby reducing the computational load. It is important, there- 
fore, that coarse scale descriptions retain those features of the data that are required 
for effective decision making. In the case of edge detection, T-junctions and comers 
play important roles in estimating the depth and shape of objects in a scene (Gamble & 
Poggio 1987). It is desirable, therefore, to accurately represent these features even at coarse 
scales. 

Coarse scale edges have the advantage of reduced complexity; fine scale edges are 
more convoluted but yield more accurate and detailed information. A problem many 
edge-detection algorithms exhibit is systematic distortion of high curvature edges, such 
as T-junctions and comers; this distortion is aggravated by operating on coarse scales. 
This is especially true of algorithms which smooth the data in a scale-dependent way 
prior to locating edges in the smoothed image. The Marr-Hildreth edge detector (Marr 
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& Hildreth 1980) and the Canny (1986) edge detector are examples of this type. More 
recent approaches to edge detection combat the distortion of high curvature edges by in- 
troducing interaction between image smoothing and edge placement. Examples are the 
Markov random field formulations (Geman & Geman 1984; Marroquin 1985; Bilbro et al 

1992) and the related variational formulation of edge detection (Mumford & Shah 1985, 
1989; Blake & Zisserman 1987). There is evidence (Blake & Zisserman 1987) that edge- 
detection techniques of this type do exhibit smaller localisation distortion than those of 
the first class. Problems remain, however; distortions still occur, and, as before, the degree 
of distortion depends on the scale of the edge detector. Coarse scale edges exhibit greater 
distortion. 

Edge focussing aims at improving the localization of coarse scale edges without in- 
troducing fine scale edges. In this paper, we have derived an algorithm for performing 
edge focussing by starting with a variational formulation of an edge-detection problem. 
The resulting algorithm is described by a coupled set of nonlinear second order parabolic 
partial differential equations ((5)-(9) below) with explicit parameters/3 and c which are 
appropriate-adjusted (see (10)-(12)). The adjustment induces focussing of the edges. The 
global coarse scale nature of the edges is retained by introducing scale-stabilizing feedback 
mechanisms. The adjustment process commences after the nonlinear parabolic equations 
have nearly converged to their equilibrium. The set of equations (5)-(9) and (10)-(12) 
should really be viewed as an adaptive nonlinear filter which performs edge detection via 
focussing. Indeed, the equations are the fundamental objects in this theory and, apparently, 
are far more well behaved (for example, convergence to global minima) than the original 
variational problem. 

The foundation and motivation of the adjustment of the parameters lies in certain limit 
theorems for the variational formulation proved by one of us (Richardson 1990, 1992). 
These theorems are discussed in § 3. An outline of the variational formulation appears in 
§ 2. The algorithm is developed in a continuum setting in § 4, and refined and discretized 
in § 5. Simulation results can be found in § 6. 

The work presented in this paper is similar in spirit to that of Bergholm (1987) who 
focussed edges produced by the Marr-Hildreth edge detector. Since the variational formu- 
lation has better localization than the Marr-Hildreth edge detector, our approach requires 
less drastic adjustment of the edges. 

The edge-focussing algorithm is not the only point of interest in this paper. The vari- 
ational formulation is a mathematical model, not an algorithm. The primary difficulty in 
constructing an algorithm is appropriately representing the edges. One approach is to ab- 
sorb the edges into the interaction between neighbouring pixels. This idea appears in the 
anisotropic diffusion approach (Nordstr6m 1990; Perona & Malik 1990), GNC (Graduated 
non-convexity) type algorithms (Blake & Zisserman 1987), and in mean field annealing 
(Geiger & Yuille 1989; Bilbro et al 1992). There is another approach, which we adopt in 
this paper, that has been developed within the framework of approximation (of variational 
principles) via F-convergence or epi-convergence (De Giorgi & Franzoni 1979; Attouch 
1984). This theory has been successfully applied to the variational formulation of edge 
detection by Ambrosio & Tortorelli (1990, 1992). Some computational work based on 
these results has appeared (March 1988, 1989, 1992). These approximations, and some 
further variations, are presented in § 2. (The variations we indicate allow great flexibility 
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in the approximation, which may be tailored to particular needs or taken as an indication 
of the robustness of the approach.) 

The approximation is achieved by reformulating the variational problem. The edge set 
is replaced with a function that modulates the smoothing of the image. The variational 
principle forces the function to have the appearance of a smoothed neighbourhood of the 
corresponding edge set. The degree of smoothing, i.e. the width of the effective edges, 
is controlled by a parameter. The 'convergence' of the approximation occurs by taking 
the parameter to the appropriate limit where the width of the effective edges tends to 
zero. One significant advantage of this reformulation is that the 'edge' function can be 
discretized in a straightforward way and minimization can proceed via the solution of 
discretized partial differential equations. In particular, the parabolic partial differential 
equations (5)-(9) comprise a 'gradient' descent on the approximate functional. Actually, 
in our implementation, we vary the step size of the 'gradient' descent and approximate a 
Newton-type descent (see (16)). By doing this we achieve very fast rates of convergence. 
Thus, we obtain a fast and elegant algorithm. 

Having a separate function to represent the edges, as opposed to absorbing them into 
the interactions between image pixels, has some advantages. Machine Vision researchers 
are interested in combining various low-level vision processes, intensity edge detection 
and stereo depth edge detection for example, into a single operation. Having an edge 
representation such as the one we employ may greatly facilitate this. 

It turns out that the form and the properties of the epi-convergent approximation mesh 
well with the parameter adjustment proposed for the edge-focussing algorithm. In partic- 
ular, one can argue heuristically, and demonstrate computationally, that with 'wide' edges 
some edge distortions are relaxed. The price paid for this is a drop in resolution of the edges. 
The adjustment attempts-to produce the best of both worlds, relaxing the edges initially 
and then sharpening them as the parameters associated with the variational formulation 
are adjusted for finer scales. 

2. The variational formulation 

Mumford & Shah (1985, 1989) suggested performing edge detection by minimizing func- 
tionals of the form 

fa f~ Ivfl2d#+~lFl" E(f, F) = /3  ( f  - g)2d# + - r  

where f2 is the image domain (a rectangle), # is Lebesgue measure, g is the observed grey 
level image, i.e. a real valued function, F denotes the set of edges, I FI is the length of F, 
and/3 and ot are real positive scalars. This approach is a modification of one due to Geman 
& Geman (1984) using Markov random fields, which was developed by Marroquin (1985) 
and by Blake & Zisserman (1987). 

The three terms of E 'compete' to determine the set F and the function f .  The first 
term penalizes infidelity of f to the data, while the second term forces smoothness of the 
approximation f ,  except on the edge set F. Thus, f is a piecewise smooth approximation to 
g. The third term forces some conservativeness in the use of edges by penalizing their total 
length. Roughly speaking, if g has a step discontinuity, approximating g with a smooth f 
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causes the first term to be large, tracking g more closely with a less smooth f increases 
the second term, and allowing F to approximate the support of the discontinuity reduces 
both the first and the second terms at some cost to the third. 

This formulation was motivated in part by the desire to combine the processes of edge 
placement and image smoothing. Earlier edge-detection techniques such as the Marr- 
Hildreth edge detector, the Canny edge detector, and their variants separated these pro- 
cesses; the image is first smoothed, to suppress noise and control the scale, and edges are 
detected subsequently, as gradient maxima, for example. A consequence of this two-step 
approach is pronounced distortion of the edges, especially at high curvature locations. 
Comers tend to retract and be smoothed out; the connectedness of the edges at T-junctions 
is lost. The 'finger-print' images of gradient maxima of one dimensional images in scale 
space (Witkin 1983) are wellknown; the localization of edges degrades badly as scale 
increases. Many two-dimensional examples can be found in the literature. By introducing 
interaction between the edge placement and the smoothing it was expected that this ef- 
fect could be abated. There is evidence, both theoretical, in one dimension (see, Blake & 
Zisserman 1987), and experimental, in two dimensions, that this is indeed the case. 

2.1 Approximation and computation 

To compute minimizers of E the critical question is how to represent the set F. A natural 
approach is to discretize F into "edge elements" and treat them combinatorially, adding or 
removing elements in an attempt to minimize E. Appending a stochastic component leads 
to the simulated annealing approach first suggested by Geman & Geman (1984). This tends 
to produce computationally impractical algorithms. Modifications which incorporate the 
edge elements into the interaction between image pixels have been proposed. One of these 
is based on mean field approximations of the Markov random field (Geiger & Girosi 1989; 
Bilbro et al 1992) and another, GNC (Blake & Zisserman 1987), is based on a homotopy 
of the interactions. Both these approaches have their strong points, and are in fact quite 
similar (Geiger & Yuille 1989; Bilbro et al 1992). A novel approach has appeared from 
the mathematical theory of approximation of functionals via F-convergence, also known 
as epi-convergence (De Georgi & Franzoni 1979; Attouch 1984). We will use the later 
terminology to avoid confusion. We will not give a general definition of epi-convergence 
and refer interested readers to the references cited and also to Ambrosio & Tortorelli 
(1990, 1992). The definition of epi-convergence is designed to allow approximation of 
one variational principle by another. We consider functionals of the form 

Ec = f tfl(f - g)2 + ,~(v)lVfl  2 

+ ct(c~O(v)lVvl 2 + (1 - v)2/4c)]dlz. (1) 

Here qb(v) takes the role of the F in E, i.e., it modulates the smoothness constraint on f. 
The other terms involving v force ~ (v) to simulate the effect that F has in E. Implicitly we 
have 0 < v < 1. The algorithmic intention is to minimize Ec with respect to f and v. An 
obvious advantage the approximation offers over the original formulation is that v, since 
it is a function on f2, can be discretized in a straightforward way and (local) minimizers of 
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Ec can be computed by gradient descent. Ambrosio & Tortorelli (1992) recently showed 
that if one sets 

• ( v ) = v  2, and ~ ( v ) =  1, (2) 

then Ec epi-converges to E as c --+ 0. Some computational results for this functional have 
already appeared (March 1989) (see also Shah 1991), and a scheme similar to the one 
presented here has been applied to the stereo-matching problem by March (1988). 

The choice for (I) and o2 given above may be one of the simplest possible but it is not 
unique. The first functional which was shown to be epi-convergent to E (by Ambrosio 
& Tortorelli 1990) has the form of (1) with the formal substitutions ~(v)  = cO~(v) = 

( 1  - -  ( 1  - -  V)2) 2c-(1/2~ . When one considers algorithms based on these functionals there are 
trade-offs to be made between speed and performance. For example, the choice reflected in 
(2) leads to simple equations and fast computation. However, the more complicated choice 
mentioned above produces sharper singularities in • and hence less smearing of f near 
the edges. With slight modifications, the proof of epi-convergence found by Ambrosio 
& Tortorelli (1990, 1992) can be made to go through for a large class of ko and ~.  In 
particular, one can choose qJ to be any C 1 function satisfying 

qJ(x) > 0, forx ~ (0, 1], 

/01 2 (1 - u)Ol/2(u)du = 1. 

Note that any function satisfying the first property can be made to satisfy the second 
property by suitable nonnalization. Given such a • one can choose ~b to be any C 1 
function satisfying 

• (1) = l, 

(o) = 0, 

qb(x) ~ (0, 1) forx ¢ (0, 1). 

Although the conditions given above are sufficient for the proof of epi-convergence, for 
algorithms based on 'gradient' descent one should also impose the condition that qJ be 
monotonically non-decreasing and • be monotonically increasing on (0, 1). Furthermore, 
for our implementation, which is discussed in § 5, the condition limx-.0 + ( x ) / x  = 0 
should be imposed. Even more general qJ and q~ than defined above are possible. For 
example, setting 

qJ(v) = qb(v) --- le-(1-v)2 (3) 

also produces an epi-convergent set of functionals. Examples in the class defined above 
a r e  

• (v) = v 2n and qJ(v) = (m + 1)2(m + 2) 2 vZm, (4) 
4 

where m > 0 and n > 0. Equation (2) is a special case with (n, m) = (1, 0). 
Suppose E ( f ,  F) < o~. The proof of epi-convergence involves basically two 

steps. The first is to show that for any sequence {fci, PCi} where Ci ~ 0, fcl ~ f ,  
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and Vci ~ 1 in an appropriate sense (not pointwise), that liminfi__,~ Eci(fci, Vci) > 
E(f ,  I'). The second is to construct a sequence such that lim s u P i ~  Eci(fci, Vci) < 
E(f ,  F). If ( f ,  F) minimizes E then this second step requires constructing near minimiz- 
ers of Ec. If l i m i n f i ~  Eci(fci, Vci) < ~ then, roughly speaking, if x ~ I" one has 
l i m i ~  ~(Vci(X)) = 0. (Thus at these points we do not have Vci(X) --+ 1, however, 
F is a set o f / z  measure 0.) On the other hand, the last term in (1) forces.vc(X) to con- 
verge to 1 for almost all x 6 f2 (in the sense of Lebesgue measure) and hence one has 
l imc~o ~(Vc(X)) = 1 for almost all x 6 f2. The near minimizers of  Ec are constructed by 
setting ~(vc(x)) ~- 0 on F and ~(Vc(X)) -~ 1 outside some neighbourhood of F with a 
smooth transition in between. The approximations indicated here become equalities in the 
limit as c --+ 0. The width of the transition depends on qJ and on c. We give a brief heuristic 
description of how this occurs. In the transition region we expect f to be relatively smooth 
so only the terms not involving f in Ec will have a significant effect on the form of v there. 
In the following inequality, 

cqJ(v)lVvl 2 + (1 - v) z > qjl/Z(v)lVvl(1 _ v), 
4c 

the equality holds only if IVy[ = qJ-1/Z(v)[(1 - v)/2c]. This suggests that (in one di- 
mension) if Uc(t) satisfies OUc(t)/Ot = [(1 - Uc(t))/2c]qFUZ(uc(t)) with ~(u(0) )  --~ 0 
then setting v(x) = uc(dist (x, F)), for dist (x, F)) _< rc where ~(Uc(rc)) -~ 1 (with 
uc(rc) --+ 1 as c ~ 0), will produce near optimal transitions. This is how the near optimal 
Vc are constructed by Ambrosio & Tortorelli (1990, 1992). Note that assuming that uc(O) 
does not depend on c we obtain Uc(t) = Ul (t/c). Thus the edge width is proportional to 
c. Let y(s) = f~(1 - r)~l/2(r)dr. We now compute 

OUc(t) 2 (1 - -u( t ) )2~  
fo rc Ot 4c ] CIJg(U(t)) + dt 

OUc(t) (1 u(t)))dt  =fore(qjl/2(u(t)) Ot -- 
I 

f0 rc 0 1 = -~y(u(t))dt = y(rc)  -~ 2 

with the last approximate equality becoming equality in the limit as c --~ 0. In the one- 
dimensional case we now see that the last term in (1) will contribute approximately oe times 
the number of  discontinuity points of  f .  In two dimensions one obtains approximately a 
times the length of It'[. Thus, we see that Ec approximates E. 

Our edge-focussing algorithm will be implemented as a singular perturbation of  a de- 
scent on a discrete version of Ec. We will briefly consider the continuum equivalent. 
Define 

OfEc= f l ( f  - g )  - V - ( q b ( v ) V f ) ,  (5) 

OvEc = qb(v)a -1 IV f [  2 - c V .  (qs(v)Vv) 

+ 2c~(v)lVvl 2 + (1 - v)/2c, (6) 

= (~(V)Ot - 1  IV f [  2 - 2c~(v)Av) - c~II (v)[Vv[  2 q- (1  - v)/2c. (7) 
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The Euler-Lagrange equations for f and v are, respectively, Ov Ec = 0 and Of Ec = 0 with 
Neumann boundary conditions on both v and f .  Allowing f and v to depend on t we can 
write a 'gradient' descent on Ec in the form, 

0 
-~-~ f (x, t) = -cfOf  E, (8) 

0 
-~ v(x, t )= -cvOf E, (9) 

where cf and cv control the rates of descent; they would be constant for a strict gradient 
descent, but may not be in general. In our implementation cv is not constant. Since the 
functional Ec is not jointly convex in v and f we do not expect to always reach a global 
minimum by a descent method. Thus the solution obtained will depend on the initial 
conditions and also on the parameters cf and cv. 

Equation (8) strongly resembles the anisotropic diffusion scheme of Perona & Malik 
(1990) and, even more strongly, the 'biased' anisotropic diffusion scheme of Nordstr6m 
(1990). Perona & Malik (1990) begin by considering the standard diffusion equation, 

0 
~-~f(x, t) = Axf(X,  t), f ( x ,  O) = g(x), 

which produces the 'scale-space' smoothings of g, parametrized by t. For fixed t one 
obtains f ( x ,  t) by convolving g(x) with a Gaussian kernel whose variance is linear in t. 
Perona & Malik (1990) suggested controlling the diffusion coefficient to prevent smoothing 
across edges. Thus they were led to consider equations of the form 

0 
3 t f ( x ,  t) = Vx. (h(lTxf(X, t)l)Vxf(X, t)), f ( x ,  O) = g(x). 

They experimented with h(s) = J / [ 1  -]- (s/K) 2] and h(s) = e -(s/K)2, where J and K 
are constants. Equation (8) resembles this equation in that it is a diffusion with controlled 
conductivity. The control of the conductivity depends on IV f [  indirectly through (9). The 
term f l ( f  - g) in (8) stabilizes the solution at some particular scale. Such a term also 
appears in the 'biased' anisotropic diffusion scheme studied by Nordstr6m (1990). Perona 
& Malik (1990) analyse their scheme to show that the maximum principle holds, i.e. that the 
solution's extrema never exceed those of the original image. They argue that this implies 
that no new 'features' (blobs) are introduced into the solution. Here, as in Nordstr6m 
(1990), this property is a trivial consequence of the formulation. The functionals Ec would 
increase if such new features appeared. (Truncating such a new feature would decrease 
Ec.) An advantage of the scheme presented here is that it yields an explicit representation of 
the edges (via the function q~ (v)). The resulting system of equations admits a particularly 
simple implementation in digital mesh connected parallel machines with simple processors 
or, potentially, in an analog network, such as discussed by Harris et al (1989). 

3. Scale, noise, and accuracy 

Witkin (1983) introduced the idea of a scale-space representation of an image - smoothing 
the image and identifying edges on all scales. One of the problems arising from the scale- 
space concept was the correspondence problem: Which of the fine scale edges correspond to 
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X 
bioa-miaimal C, com~ri~ ~ s  rcammiC, comcta~ Figure 1. Calculus of variations results. 

the coarse scale ones? The problem is aggravated by the fact that the distortion of the edges, 
mentioned earlier, depends on scale. Typically 'coarse scale' implies more smoothing and, 
hence, more distortion. This is undesirable in many situations because salient features, 
corners and T-junctions for example, tend to be obscured. The correspondence problem is 
therefore of great importance. The edge-focussing algorithm of Bergholm (1987) addresses 
the correspondence problem by taking small steps in scale. We address it this way too, in 
effect, but also by using a better underlying edge detection algorithm. 

Since the variational approach combats the distortion caused by smoothing one hopes 
that the correspondence problem will be alleviated by using it. Although this appears to be 
the case, problems remain; there still are distortions, depending on scale, and the model 
intrinsically restricts the geometry of possible edge sets in an unnatural way. The analysis 
of Mumford & Shah (1985) showed that edge sets produced by the variational approach 
have the following properties, which are illustrated in figure 1. 

If F is composed of C 1't arcs then 
• at the most three arcs can meet at a single point and they do so at 120 °, 

• they meet 0 ~ only at an angle of 90 °, 

• it never occurs that exactly two arcs meet at a point (other than the degenerate case of 
two arcs meeting at 180°), i.e., there are no corners. 
These results derive from the fact that the term iF I in E locally dominates the behaviour 

of singularities in F. Hence the types of singularities observed are identical to those of 
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minimal surfaces. Of course 'real' edges are not restricted to these geometries. The de- 
pendence on scale derives from the interaction between the singularities of f and those of 
I'. Roughly speaking, smaller values of/~ produce greater distortion. This becomes more 
clear in light of the theorems quoted below and the analysis presented by Mumford & Shah 
(1989). 

In view of the foregoing it is natural to ask what are the noise/accuracy/scale tradeoffs 
and, more generally, whether scale-dependent distortions are necessary. Is it necessary that 
the mechanisms used to combat noise, i.e. smoothing, be tied simultaneously to scale and 
accuracy? We propose that the accuracy of edge localization need not be limited by scale. 
The central ideas of the method we will develop can be gleaned from some asymptotic 
theorems proved by one of us (Richardson 1990, 1992) concerning minimizers of E. We 
will now present a slightly simplified statement of those theorems. 

To measure the disparity between one edge set and another we introduce the Hausdorff 
metric. For A C ~2 the E-neighbourhood of A will be denoted by [Ak and is defined by 
[A]E = {x 6 I~ 2 : infy~a I lx -- YI[ < E} where II • [I denotes the Euclidean norm. Denoted 
by dn( ' ,  "), the Hausdorff metric is evaluated by 

dH(A, B) = inf{e : A C [B]e and B C [A]~}. 

Elementary analysis shows that dH is a metric on the space of non-empty compact sets 
in R 2. 

Suppose for the moment that we have ideal data: g is a piecewise smooth function. 
To make this clear we denote it by gI. We assume that there exists a set I'g, a union 
of curves, satisfying length (1-'g) < ~ such that gl is discontinuous on Fg and smooth 
elsewhere. More precisely we require that f~ - rg  IVgll2d/x < ~ ,  that there exists a 

constant L such that gl, restricted to any straight line segment lying in f2 -  I'g, is a Lipschitz 
function with Lipschitz constant L, and that g actually has a discontinuity everywhere on 
Fg except, possibly, for a set having zero total length. Under these conditions the following 
holds. 

Theorem 1. For any fixed ~ > 0 and E > 0 there exists/3* < ~ such that if~3 > ~* and 
F ~ is minimal for E then 

dH(Fg, Fl~) < ~. 

The thrust of this theorem is that as fl --+ ~ the set F~ can assume arbitrary geometries 
and will coincide with the discontinuity set of gl. The theorem can be interpreted as 
an asymptotic fidelity result for the variational approach. It implies that the distortions 
resulting from ad hoc functions of this type are local, small-scale effects. 

From a practical point of view the result is lacking because/3 ~ ~ forces f to match gx 
exactly; noise in gl will result in the appearance of many spurious boundaries. However, 
the theorem can be extended to incorporate noise and smearing effects. Roughly speaking, 
if the admissible noise magnitude scales as 0(/3 -1/2 ) and the admissible smearing acts 
over a radius of 0(/3- l) then their presence can be tolerated and the theorem still holds. To 
give a more precise statement of this, let hr and h~ be any positive real valued functions 
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satisfying 

l i m  f lhr( f l )  = O, 
/~--,oo 

1 
lim /~h~(fl)  = O, 

/~--> oc 

and let qJ(fl) be the set of all functions g which can be written as 

g = S r ( g l )  -q- )vog, 

where 0 < X < hz(fl) is a scalar, o) ~ L°e(fa) with twl~ _< 1, Sr is any smearing operator 
satisfying 

Sr f (X)  E I min f ( y ) ,  max f ( y ) ] ,  
ly~Br(x) y~Br(x) 

where B r ( x )  is the disc of radius r centred at x with 0 _< r _< h r ( f l ) ,  and gl is the ideal 
data described earlier. We then have the following. 

Theorem 2. For any fixed t~ > 0 a n d  E > 0 there exists r* < oo such that if  ~ > ~* and 
FI~ is minimal for E for some g E qJ(~) then 

dH(Fg, F/~) < E. 

The proofs are beyond the scope of this paper (they require a lengthy function analytic 
development) and have appeared in Richardson (1990, 1992). The relevant mathemat- 
ical framework is outlined in Ambrosio (1989). This theorem indicates how noise and 
localization defects should scale with the parameter/3 to maintain fidelity. 

Remark. The requirement lim~_+~ fll/2h~.(fl) = 0 seems to be necessary in general. 
There are certain images which asymptotically produce spurious edges for the piecewise 
constant version of the variational formulation if this condition is violated (Richardson 
1990, 1992). 

Our immediate goal, fulfilled in the next section, is to describe a heuristic which mimics 
the theorems to produce accurate localization of the edges in a manner independent of 
scale. Two problems immediately suggest themselves. First, a real image has fixed noise 
which cannot be scaled since it cannot be identified, and secondly, smearing is fixed and 
cannot (in general) be removed. The intrinsic noise and smearing of an image limits the 
recoverable accuracy of the edge locations. We are not proposing a scheme to eliminate that. 
Edge detection, ostensibly, will be performed on different scales. As we have indicated, 
operating on coarse scales tends to introduce distortions above and beyond those inherent 
in the signal. Our goal is to eliminate those distortions and recover, even on coarse scales, 
the same accuracy of localization usually achieved only at fine scales. 

Since we intend to use an approximation to the variational formulation, it is prudent 
to consider whether the approximation deviates in a significant way from the original 
formulation with regard to distortion of edges. Although analysis is prohibitively difficult, 
we expect (and simulations have borne this out) that the spreading of the edges in the epi- 
convergent approximation actually ameliorates some of the geometric distortion. We recall 
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that the primary reason for the geometric distortion is that the term Irl in E determines 
the structure of the singularities. Roughly speaking, this arises because the length term is 
one-dimensional and scales linearly while the other terms are two-dimensional integrals 
and hence scale quadratically in the size of the domain. (Actually this is not precisely 
true because singularities arise in f ,  but the dominance of the length term still occurs at 
singularities in F.) When the edges are smeared and length is replaced by a two-dimensional 
integral the concentration of cost in the length term is alleviated and, hence, we expect 
the distortion to be relaxed. The price paid for this is the lack of resolution of the edges. 
The algorithm begins with thick edges, thus relaxing distortion, but ends by sharpening 
the edges while scaling the parameters in accordance with theorem 2. Thus the edges are 
focussed as resolution increases. 

4. Edge focussing via scaling 

In this section we describe in detail the modifications to the descent equations, (8) and 
(9), which we introduce to focus edges. The essential idea is to satisfy the conditions of 
theorem 2 by smoothing g in a controlled way while allowing fl ~ o~. Simultaneously we 
allow c --+ 0 to sharpen the edges. We draw an analogy between the width of the edges and 
the diameter of the smearing operators appearing in theorem 2. Thus the rates of change 
of fl and c are coupled. 

We consider introducing dynamics into quantities r ,  g, and c, which in a standard 
minimization of Ec would be held fixed. These dynamics are intended to come into effect 
only after the basic descent equations (4) and (5) have essentially converged. Thus we 
assume g(x,  0) is the initial data and f ( x ,  0) and v(x,  0) satisfy their respective Euler- 
Lagrange equations with/~ = fl(0) and g(x)  = g(x ,  0). This implies the presence of 
a nominal set of edges, i.e. a function v(x,  0). We will be guided by the heuristic that 
the subsequent focussing should only focus the edges already found and not introduce 
new ones. We make the following correspondences with the quantities which appear in 
theorem 2, 

g(x,  t) < > Sr(t)(gl)  + X( t )w(x ,  t), 

f ( x ,  t) < > Sr(t)(gl) ,  

where r( t )  = Kc( t )  for some constant K, 

I~,(t)l~ = Ig(x,t) - f ( x ,  t ) l~ ,  

and [w(x, t ) ]~  = 1. 

We will discuss the choice of K and the meaning of the correspondences shortly. Consider 
first the following equations, 

0 
-~g(x ,  y, t) = E ( f  (x, y, t) - g(x ,  y, t)), 

0 
-~ f ( t  ) = Eft(t), 

where ~ is a small positive constant included to reflect the fact that these equations are 
perturbations of (8) and (9). We observe that we obtain a solution to these equations such 
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that Of E = 0 and Ov E = 0 for all t by setting 

v(x,  t) = v(x,  0), 

f ( x ,  t) = f ( x ,  0), 
/3(t ) =/3(0) eft, 

g(x, t) = g(x, O) e -~t + f ( x ,  0)(1 -- e-Et). 

In fact, if ( f ( x ,  0), v(x, 0)) minimizes Ec with data g(x, 0) and parameter/3(0) then 
it is easy to see that ( f ( x ,  t), v(x, t)) minimizes Ec with data g(x, t) and parameter 
/3(t). These equations show that with this scaling we have/3(t) ~ oo while the minimal 
solutions v(x, t) and f ( x ,  t) remain fixed. Interpreted in view of theorem 2 this means 
that gl corresponds to f ( x ,  0) (i.e. K = 0). Note that according to our correspondences 
we have ~.(t) cx/3-1(t), so the scaling conditions of theorem 2 are satisfied. We will now 
alter these equations slightly. First, we will introduce some dynamics into c to sharpen the 
edges. Second, we suppress the smoothing of g in a neighbourhood of the edges which 
shrinks with time; this is to permit focussing of the edges. Thus we consider 

0 
-~g(x, t) = ep(v(x, t ) ) ( f  (x, t) - g(x, t)), (10) 

~/3(t)  = ~/3(t), (11) 

a 
~ c ( t )  = -¢c(t) ,  (12) 

where p (v(x, t)) should be approximately zero inside some neighbourhood of the edges 
and approximately one outside some larger neighbourhood. Furthermore, the width of 
the larger neighbourhood should shrink as/5-1 (t). A simple and reasonable choice, for 
example, is p = • since in this case the neighbourhood width is proportional to c(t), 
which in turn is proportional to/3 -1 (t). The algorithm takes the form of (8) and (9) until a 
local minima is reached, and subsequently (10)-(12) come into effect. Assuming g(x, t) 
and f ( x ,  t) converge, we interpret the limit g(x, oo) = f ( x ,  oo) as corresponding to gl 
and the set Sg = {x : e~(v(x, o~)) _~ 0} as corresponding to Fg. The quantity K does not 
appear in our equations and is meant only to facilitate the correspondences; it should be 
interpreted as being sufficiently large so that the set {x : p(v(x, t)) < 1 - 3} for some 
small positive constant 3 is contained in [Sg]r(t). We expect that f ( x ,  t) ~_ f ( x ,  0) for all 
x ~ [Sg]r(O). Given this, the correspondence of f ( x ,  t) with ¢r(t)(gl) is consistent with 
the noise scaling of theorem 2. 

In general the choice of p is a delicate issue. Ifg is noisy it may be desirable to allow more 
smoothing near the edges. The price for this is admitting potential distortion into the edges. 
In this situation a better smoothing mechanism might be a directionally controlled diffusion 
of g, suppressing diffusion across edges but enhancing diffusion parallel to the edge. This 
can easily be implemented within the framework developed here since V *  (v(x)) will be 
perpendicular to an edge in a neighbourhood of that edge. (We have not experimented with 
this alternative.) Even when noise is not an issue p must be chosen carefully. We contend 
that the ideal choice should allow for edge correction and adequate smoothing without the 
introduction of edges from finer scales. 
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An alternative scaling, which deviates from the theory but may be advantageous under 
some conditions, is to allow 3 to depend on x and to scale it only around the edges. For 
example, one could replace (11) with ( O / "O t ) fl ( x , t) = ~ ( 1 - - p ( v ( x ,  t J ) ) [3 ( x,  t) and elimi- 
nate the smoothing of g, (10). We have experimented with this variation in our simulations 
and the results are similar to those presented here. 

5. Discretization and parameter choices 

In this section we address some of the issues which arise as a consequence of dis- 
cretization and further refine the algorithm. The lattice spacing (we will consider only 
square lattices) can be absorbed, via scaling, into the other parameters, fl, c, and or. 
Appropriate step sizes for the discrete versions of the descent algorithm must be 
found, and the relative rates of the gradient descent and the scaling dynamics must be 

decided. 
For the simulations presented in this paper .f, g and t, are discretized in a manner 

described below. Discrete versions of f and g are defined on a rectangular subset of a 
square lattice while the discrete version of v is defined on a similar subset of a square 
lattice which is twice as dense and rotated by 4 5 .  This is not necessary, but it facilitates 
the discrete implementation. We define the following subset of Z ? C ~2, 

£ f  = {(i, j )  : i = 1 . . . . .  N,  j = 1 . . . . .  m} .  

We assume that g is defined on El .  The nearest neighbours o f x  c £ f  are defined by 

• = i Z2 N' f (x )  {x e " i x ' - x l = l } .  

Similarly, we define 

£t, = {(x + x ' ) /2  :x  c £.l.x' ~ A;I(.r) N£I}, 
which will support v, and the nearest neighbours 

A/'v(y) = {y' = (x + x ' ) / 2  ' x  e Cf. x'  • . \ ' )(x),  lY - Y'I = l/x/2}. 

For discretization we can take the approach of discretizing Ec and then deriving discrete 
Euler-Lagrange equations, or we can discretize the Euter-Lagrange equations directly. 
We consider the first approach first. A discrete version of Ec with lattice spacing ~ is the 

following, 

Ed = 3 .rez;.tZ 2 ( f (x)  -- g(x)) 2 + ~ .r'e.<f(x) • ((x + x ' ) / 2 ) ( f ( x ) - f ( x ' ) )  2) 

t +or ~_, ~ ( , ( y )  + q,(y'))(v(y) - v(y'))z+ ~ ( 1  - v ( y ) )  , 

v¢£, y'Ea%,(y) 

where i f x  E £ f  and x'  c d g f ( x ) \ £ f  then we impose the condition f ( x ' )  = f ( x )  (this 
defines f ( x ' )  uniquely), and if v 6 £v and v' c dgv(y ) \£v  then we impose the condition 
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v(y') = v(y"), where y" ~ iVy(y) is the unique point satisfying [y' - y"[ = 1. This is 
to ensure Neumann type boundary conditions in the descent equations given below. By 
making the substitutions 

fl ~ ~ -2f l ,  C --+ a2C, Ot -'+ S-20t,  

we find that without loss of generality we can set 6 = 1, which we do henceforth. A 
discrete form of the Euler-Lagrange equations can now be found directly by differentiating 
Ed with respect to v(y) and f ( x ) .  To simplify the notation we will write ~(y) ,  q~(y) 
instead of ~(v(y)) ,  ~(v(y)) .  For each y 6 £v the pair x, x' such that y = (x + x ') /2 
and x 6 £f ,  x' E A/'f(x) A £v is uniquely determined. Thus, for each such y we can 
set d f ( y )  = ( f ( x )  - f (x ' ) )  2. The derivatives of ~P and • will be denoted + and 
respectively. For each x E £ f  and y ~ £v we define 

OxEd = f l ( f ( x )  -- g(x)) + ~_~ ~( (x  + x ' ) / 2 ) ( f ( x )  -- f ( x ' ) )  (13) 
x'eNf(x) 

OyEd = o t - l • (v )d f (y )  1 - v(y) + c Z (v(y) - v(y')), 
" 4c 

y'ear~(y) (14) 

x ( * ( y ) + q J ( y ' ) + ~ ( P ( y ) ( v ( y ) - v ( y ' ) ) ) ,  

which are proportional to [a/Of(x)]Ed and [a/av(y)]Ed respectively. These equations 
are discrete analogs of (5) and (6) respectively. (The constants in (14) are slightly different 
from those in (6) because the lattice spacing of £v is 1/4'2.) Now we consider discretizing 
the Euler-Lagrange equations directly. A discrete version of (7) is 

OyEd = ot-ldp(y)df(y) 1 - v(y) + c y~  (v(v) - v(y')) 
4c 

y'EHv(y) (15) 

x ( 2 * ( y )  - 1" - v ( y ' ) ) )  ~* (y ) ( v (y )  

A third alternative is to average (6) and (7) and discretize, or equivalently, to average (14) 
and (15). If we do so, we obtain 

1 - v ( y )  
OyEd = ct -1 dP(y)d f (y) 

4c 
( 3 1 t 

-~*(Y ))  (v(y) - v(yt)) \-~qJ(y)_ + +c  I 

y'~Afv(y) 

From the point of view of implementation this form is much more attractive since it 
simplifies computation. Finally, one could approximate 3/2qJ(y) + 1/2qJ(J)  ~- 2~(y)  
to obtain an even simpler form. Although this deviates from the theory, we use it in our 
implementation. 

Allowing all quantities to depend on t, our basic descent equations take the form, 

f ( x ,  t + 1) - f ( x ,  t) =--CfOxEd, 

v(x, t + 1) -- v(x, t) =--CvOyEd, 
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F igu re  2. Graphsofminimal~(v(25, j+O.5))forstepedgeforc=2.0,1.O,O.5,0.2. In 
each case ~ = 0.05,/3 = 2.0, and el) and tO were chosen as in (2). 

where on the right hand side all quantities are evaluated at time t. We now address the 
question of choosing cf and cv. A standard gradient descent would have both cf and 
Cv constant. If we try to set ct, constant then it must be chosen small since ( f (x )  - 
f(ff))2/ot can be quite large and hence convergence will be slow. A computationally effi- 
cient choice that gives much faster convergence is to approximate a Newton-type descent. If 
we set 

-1  

Cv(y) = -~ \ a v ( v ) d f ( y )  + 4c + 8cqJ(y) 

,00 
Q 

Q > 
"F 

0 

Oq 

O 

C, 
0 
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Figure 3. Graphs of minimal qb(v(25, j + 0.5)) for step edge for ~ = 0.05,/3 = 2.0, 
and c = 0.5 where qb and to are given by (4) with (n, m) given by (2, 0) (2, 1/2), and 
(2, 1) respectively where increasing m increases the spread of the function. 
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where we have suppressed dependence on t, and make the approximations mentioned 
above, then we obtain 

t If 1 . 1/4c + 2cqJ(y) _~y.e_x,,(y)_v_(y') ~ (16) 
v(y, t + 1) = ~ v(y, t) + ~(y)d f (y ) / (o tv (y) )  + 1/4c + 8cqJ(y)] " 

Our implementation employs this form of update. It has particularly attractive properties. 
Note, in particular, that v(y, t + 1) is an average of v(y, t) and a well-behaved quantity 
which lies between 0 and 1. Setting cf constant is much less problematic, and for our 
simulations we have set it to (2/5 + 8) -1 since this gives a good rate of convergence 
without allowing overshoot in f .  The initialization of f and v will affect which local 
minimum is reached by the initial gradient descent. We expect this will have little effect on 
the edge-focussing part of the algorithm. In our simulations we have set f (0 )  = g(0) and 
v(0) = 1. With these choices we observe that the basic descent on f and v converges in 
about 30 iterations for the range of parameters we have experimented with. (Larger values 
of c and smaller values of/~ will reduce the rate of convergence.) 

We now consider the discrete scaling dynamics. We recall that these equations come 
into effect only after the gradient descent has nearly converged. The following are discrete 
analogs of (10)-(12), 

g(x, t + l) =g(x ,  t) + ep(x , t ) (g(x ,  t) - f ( x , t ) ) ,  

¢l(t + 1) = (1 - ~)-lbq(t), 

c(t + l) = (1 - e)c(t). 

where p and • are to be specified in each case. Approximations that save computation can 
be made here. For example one could compute this update once every n time steps instead of 
every time step and increase e appropriately.. Also, since f ( x ,  t) remains essentially fixed 
outside of some neighbourhood of the edges, one could restrict the update on/5 to some 
neighbourhood of the edges and completely drop the update on g producing essentially 
the same effect, as mentioned earlier. This would yield substantial time savings in serial 
implementations. Our implementation employs the equations given above. 

If c(t) becomes too small then the discrete approximation to Ec will break down. The 
value of c(t) can be used as a stopping criteria. For the choices of qJ and qb used in this 
paper we allow c(t) to become small enough so that the effective edge width is one pixel. 
(Effective edge width can be defined as the width of the set {qb(y) < 1/2} for example.) 

6. Simulation results 

For all of our simulation results we have scaled g so that g(x) E [0, 1 ]. In particular, solid 
white is 1 and solid black is O. In the two-dimensional plots and in the images we plotted 
* (v )  on the same mesh as f ,  i.e. the plotting mesh corresponds to £f .  For each x ~ £ f  we 
plot the minimum value of qb(v) among the four nearest neighbours. (Note that an edge 
'set' could be defined as {y E £v : 4p(v(y)) < 1/2.) 

The first two simulations illustrate basic properties of the epi-convergent approximation. 
Here g is defined on a 50 x 50 square mesh with g(i, j )  = 0 for j _< 25 and 1 otherwise. 
Figure 2 illustrates dependence of the edge smearing on c. We plot qb (v (25, j + 0.5)), j = 
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Figure 4. (a) Synthetic T-junction/comer data. (b) Minimal f with v = I with fl = 0.1. 
(e) Minimal f with/3 = 0.l,/3 - 0.1, and c = 2.0 (d) Minimal qb(v) with/3 = 0.1, ot = 0.1, 
and c = 2.0 (e) Minimal f after edge focussing with final values of/3 -- 1.0, ot = 0.1, and 
c = 0.2. (f) Minimal qb(v) after edge focussing with final values offl = 1.0, a = 0.1, and 
c = 0.2. 

1 . . . . .  50 for  c = 2.0, 1.0, 0.5, 0.2 after  convergence  o f  the descent  equat ions (without  

scaling).  In each  case a = 0 .05 , /3  = 2.0, and • and q~ were  chosen according to (2). 

Figure  3 is s imilar  except  that we  have  fixed c = 0.5 and varied q~ and ~ .  They  are given 

by  (4) with (n, m)  = (1 ,0 ) ,  (1, 1/2) ,  (1, 1) respect ively  ( increasing m tends to increase 

the width of  the edge).  This  is to illustrate how the shape o f  the edges  can be changed  by 

altering q~ and qJ. 

To demons t ra te  the behav iour  o f  the edge focussing a lgor i thm on high curvature  edges  

we  have s imula ted  the a lgor i thm on the data presented in figures 4 a- f .  The  funct ions 

and ~ are as in (2) and we set p(v) = ~ ( v ) .  We have careful ly  chosen  the paramete rs  

to m a k e  the detect ion o f  the c o m e r  marginal .  The  initial values a re /3(0)  = 0.1, o~ = 0.1, 
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Figure 5. (a-d) (Caption on facing page.) 

and c(0) = 2.0. The final values are fl(T) = 1.0 and c(T) = 0.2 (where T is the time of 
termination), and E was chosen so that 200 iterations with scaling are required. Figure 4a 
is the data set g. Figure 4b plots the optimal f when a = c~, i.e. no edges are allowed. 
This is to indicate the degree of smoothing associated with this value of ft. Figure 4c 
shows f (0) ,  i.e. the f obtained after allowing a descent to converge with the parameters 
held fixed at their initial values. Figure 4d shows qb (v(0)). We have chosen the parameters 
so that the three edges in the image are detected to different degrees. Figures 4e and 4f 
are f (T)  and C~(v(T)) respectively. Note that the two larger edges and the comer they 
form is unambiguously detected while the smallest edge has been smooth out. The slight 
smoothing visible across the second largest edge is due to slight smoothing feedback at 
that edge. The function g(T) is not distinguishable from f (T)  so we have not included it. 

Figures 5 and 6 demonstrate the algorithm on 'real' images. Figure 5 is 480 x 512 pixels 
and figure 6 is 512 x 512 pixels. In general ~ is chosen so that 200 iterations with scaling 
are required. The data are in figure (a) in each case. Each image has been processed for 
two different sets of parameters to indicate the stability of the edges under a change in 
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Figure  5. (a) Statue image (Paolina Borghese,  Canova circa 1800) 480 × 512. Prescaling 
4p(v) (b), final ¢b(v), (c), and final f (d), with initial parameters fl = 0.04,  ot = 0.01,  
c(0)  = 1.0 and final parameters fl = 0.2, c = 0.2. Prescaling (1)(v) (e) final (1)(v) ( f ) ,  and 
final f (g), with initial parameters fl = 0.1,  a = 0.01,  c(O) = 1.0 and final parameters 
fl = 0.5, c = 0.2. 

scale. The parameters ot and fl are an order of  magnitude smaller in figure 6. This admits 
much greater smoothing of  the image. Even so, edge localisation is accurate. In both cases 
the displayed images are the following. Figures (b), (c), and (d) are ~ ( v ( 0 ) ) ,  f(T), and 
• (v(T)) respectively. Figures (e), (f), and (g) reiterate (b), (c), and (d) for the second set 
of  parameters in each case. In figure 5 the first set of  parameters is given by 

fl(O) ----- 0.1, ot = 0.25, c(O) = 2.0, fl(T) = 1.0, c(T) = 0.2, 

and the second by 

f l (O)=O.1 ,  a = O . l ,  c ( 0 ) = 2 . 0 ,  fl(T)=l.O, c(T)=0.2. 

In figure 6 the first set of  parameters is given by 

/3(0) = 0.0025, o~ = 0.05, c(0) = 2.0, fl(T) = 0.025, c(T) = 0.2. 
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(a-d) (Caption on facing page.) 

and the second by 

/3(0) = 0.004, ot = 0.03, c(0) = 2.0, f l(T) = 0.04, c(T)  = 0.2. 

We observe that as scale increases the set of edges detected increase monotonically - 
virtually no scale-dependent distortion is visible. 
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Figure 6. (a) Lenna image 512 x 512. Prescaling ~5(v) (b), final f (c), and final q~(v) (d), 
with initial parameters ¢1 = 0.0025, ~ = 0.05, c(0) = 2.0 and final parameters ¢1 = 0.025, 
c = 0.2. Prescaling ~(v) (e), final f (f), and final ~(v) (g), with initial parameters ¢~ = 
0.004, ~ = 0.03, c (0 /=  2.0 and final parameter ~ -- 0.04, c = 0.2. 
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