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A b s t r a c t .  We address the problem of scale selection in texture analysis. 
Two different scale parameters, feature scale and statistical scale, are de- 
fined. Statistical scale is the size of the regions used to compute averages. 
We define the class of homogeneous random functions as a model of tex- 
ture. A dishomogeneity function is defined and we prove that it has useful 
asymptotic properties in the limit of infinite statistical scale. We describe 
an algorithm for image partitioning which has performed well on piecewise 
homogeneous synthetic images. This algorithm is embedded in a redundant 
pyramid and does not require any ad-hoc information. It selects the optimal 
statistical scale at each location in the image. 

1 I n t r o d u c t i o n  

The problem of texture analysis (recognition and segmentation) has traditionally been 
approached by computing locally defined vector-valued "descriptors" of each region in 
the image. The texture recognition problem is thus reduced to a conventional classifi- 
cation problem, and boundary detection may be performed by locating areas of rapid 
change in the descriptor vectors, or, dually, by clustering regions with similar descriptors. 
Constraints on texture analysis algorithms come from the physics and the geometry of 
image formation: often one would like to ensure invariance with respect to changes in 
illumination, scaling and rotation, sometimes also to tilt and slant. 

The search for good local descriptors has been the focus of much work with two main 
classes of descriptors being favored in the more recent literature: (a) linear filters followed 
by elementary nonlinearities and smoothing (e.g. [1, 2, 3, 4]), and (b) different statistics 
of brightness computed on image patches (e.g. [5, 6, 7]). The filtering framework has 
natural characteristics for addressing the scale- and rotation-invariance issues: if each 
filter category is present at multiple scales and orientations, and if the discretization is 
fine enough, the representation of image properties given by the filter outputs is roughly 
scale and rotation-invariant. 

A number of important issues having to do with scale selection and response normal- 
ization have remained virtually unanswered: What are the basic regularity hypotheses 
that a texture has to satisfy for the local descriptor approach to work? How does one 
identify automatically the proper scale for analyzing a texture, and how does one choose 
the thresholds for declaring a boundary? 

In this paper we make explicit and formalize a general assumption about texture 
regularity. We show how this assumption can be used to find texture boundaries and we 
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discuss its relation with the scale selection problem. We observe that two independent 
scale parameters exist and must be dealt with. Finally, we show some results of an 
efficient redundant-pyramid algorithm for computing homogeneous texture regions. This 
algorithm is (approximately) translation-, scale- and illumination invariant. 

1.1 Overv iew of  the  con ten t s  

A general assumption that forms the basis of all approaches to texture analysis is that 
a texture at some level of description is homogeneous. Although this is not a new idea, 
a precise definition of what this means is still missing. The difficulty in defining texture 
homogeneity is rooted into the two conflicting natures of texture, namely, randomness 
and regularity. A specific texture may be modeled as a realization of a random function. 
We propose to define a random function as homogeneous if, with probability one, spatial 
averages of any local operator are constant with respect to space in the limit of infinite 
size of the averaging region. To quote Wilson [8, 9], when the scale of averaging is infinite 
the class-localization of the texture pattern must become infinitely accurate. Of course, 
in practical circumstances we cannot take averages over infinite regions: for practical 
purposes the averaged texture features (i.e. the averaged output of the local operators) 
must be close to space-independence for finite averaging regions. When this happens we 
say that we are near the thermodynamic limit of a given texture. Due to the trade-off 
which exists between reliably estimating texture properties (which requires large averag- 
ing windows) and localizing the textured regions (which can be done more accurately if 
the data are not too blurry) it is important to be able to estimate the smallest averaging 
scale that approaches the thermodynamic limit. 

The scale of averaging will also be called statistical scale or external scale. It must 
be distinguished from a different scale parameter: the feature scale or internal scale. The 
latter corresponds to the size of the support of a given local operator. These two scale 
parameters are unrelated (apart from the obvious fact that the external scale must be 
greater than internal scale). This is illustrated in figure 1. Note that even if the scale of 
the texture elements is the same for all images, the behavior along the statistical scale is 
quite different. A multiscale representation of a textured image should therefore contain 
two scale parameters (this observation has been independently made by Eric Saund, 
personal communication). 

In order to select the most appropriate external scale(s) for analyzing a given texture 
we need to quantify the level of variability of the descriptors at any given statistical scale. 
To this purpose we define a real positive function, the dishomogeneity function, of two 
arguments, spatial position and statistical scale. Low dishomogeneity values will indicate 
that the thermodynamical limit has been reached. In order to be useful in texture analysis 
such a dishomogeneity function must satisfy two elementary properties: 

1. The dishomogeneity of a region which contains only one type of texture is zero. 
2. The dishomogeneity of a region which contains a texture boundary is strictly positive 

if the set of local descriptors is rich enough. 

In section 2 we state two results (Theorems 1,2) which ensure that the dishomogeneity 
function satisfies these two properties in the thermodynamic limit for piecewise homoge- 
neous textures. 

Figure 2 demonstrates these concepts on a finite image. Note how the dishomogeneity 
of a given texture approaches 0 when the statistical scale is sufficiently large (left). 
However when the analyzed region goes over a texture boundary the dishomogeneity 
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F i g .  1. Averages over larger regions are required to detect the regularity of the pattern in tex- 
tures which are sparser or contain more "randomness" since the dishomogeneity of these textures 
approaches zero at larger statistical scales than dense periodic textures. At right the dishomo- 
geneity function, maximized over the image, is plotted vs. statistical scale k (i.e. max= g'(2 ~, x) 
vs. k, see section 2.5) for the three different textures. Note that  the dishomogeneity value of 
e.g. 0.3 is attained approximately at k=4, k=5 a~d k=6 for the left, center and right textures 
respectively. This suggests that  a multiscale representation of the image should treat  feature 
scale and statistical scale as independent dimensions of analysis. 
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Fig .  2. The dishomogeneity at different scales and positions. The dishomogeneity inside each 
square region shown in the upper figure is plotted below. Left: the dishomogeneity of a given 
type of texture as a function of statistical scale is shown for a constant localtion in the image. 
The x-coordinate, k, is the logarithm of the statistical scale. The linear size (length of the side in 
pixels) of each square is 2 k+l (k = 2, 3, 4, 5). The dishomogeneity at fine (k = 1,2) scales is zero 
because at the considered location only the constant backgound colour is present in the smaller 
squares. Right: the dishomogeneity at several positions in the image. The x-coordinate now 
represents position in the image; the scale is held constant at k -- 5. Note that  dishomogeneity 
is high when the region contains a texture boundary. 
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becomes suddenly larger (right). Figure 3 shows how the dishomogeneity function is 
constructed. 
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Fig. 3. Computation of the dishomogeneity function g'(L, ~). 
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Our segmentat ion algorithm selects the opt imal  statistical scale at each location in the 
image by minimizing the dishomogeneity function (plus a penalty against small scales) 
among all possible scales. 

2 Multiscale Representations for textured images. 

2.1 N o t a t i o n .  

Let us introduce some notation. An image g will be for us a real function g : R 2 ~ R.  
The set of  all images is G. For x G R 2 let Tx : G ~ G be the translation operator  defined 
as (Txg)(z ' )  = g(x' - x). Similarly, for A > 0, D~ : G ~ G is the dilation operator  defined 
by: (D~g)(z)  = g(A- lz ) .  Let Bt(z) be the "box" centered at z = (u, v) having size l: 

B, (x )  = [ , , -  ' , , ,  + 2'-] • - '- ,, + ' ] .  

D e f i n i t i o n  1. An image descriptor q : G --* R "  is a real functional which depends only 
on the image inside BI(0):  q -  g = q .  gIBl(o ) (We use the dot product notat ion to denote 
the operat ion of applying an image descriptor to an image, i . e . q ,  g = q(g) ). Iv1(0) is 
the characteristic function of BI(0):  IBl(0)(z) = 1 for x G BI(0) and IBl(0)(z) = 0 for 
x ~ BI(0). 

D e f i n i t i o n 2 .  The image description ~(z) generated by q is defined by: ~(z )  = q .  T_=g. 
For each component  we have then ~i(z) = ql �9 T-rg .  

The definitions and results below are valid for any image descriptor "regular" enough 
(see [10] for a precise definition). Most of the texture features used in the l i terature can 
be adapted to fit into this formalism. However, to give an example (and because we use 
it in our implementat ion) we discuss a particular case in more detail. Namely, given a 
set functions hi, i - 1 . . . .  , n such that  hi(z) - 0 for z ~ BI(0),  consider the following 
descriptor: 

qi . g = f, [ /  hi(z ' )g(-z ' )dz']  . (1) 
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The purpose of the function f~ : R --* R is to introduce a non-linearity. The image 
description ~(z) = q .  T_~g is then obtain from g by a convolution cascaded with the 
non-linearity fi: ~i(z) = qi " T-xg = fi [ f  hi(x')g(z - z')dx'] = fi [(hi * g)(x)]. 

2.2 H o m o g e n e o u s  R a n d o m  Images .  

Let (~2, $', 7 ~) be a probability space. A random image r is a function defined on ~2 into 
the set of images: r : O --* G. That is, if w E f2, then r E G is an image. 

Def in i t ion3 .  A random image r is homogeneous if for any image descriptor q, for all 
x0 E R 2 and for almost all w E ~2: 

1 f 
lim ] q .T_~r  = ~q (2) 

1---* ov  

B~(=0) 

where ~'q E R n is the asymptotic description of the random homogeneous image r given 
by the descriptor q. 

To clarify the meaning of (2) let us rewrite it for the convolution-plus-nonlinearity case de- 
1 fined in (1): lin~...oo ~ fBK~o) qi" T_=r = lin~_oo rx fBK~o) fl [(hi * r dx = 

lin~_oo ~ fB,(=0) ~i(x)dx = ~fq,iwhere ~q = (~q,i : i = 1 , . . . ,  n) and ~i(x) is given by: 
~i(z) = fi [(hi * r That is, homogeneity requires that averages of image descrip- 
tions exist in the thermodynamical limit and be spatial independent. 

This definition is quite general. It includes all ergodic random functions, in which 
case ~fq is the ensemble average of the image description. It is also valid for periodic 
deterministic functions such as those generated by regular repetitive texture. 

However, if illumination inhomogeneities or distorsions such as those created by 
prospective are present, then our model of texture is no longer valid at very large scales. 
A more complex model is needed in which our homogeneous random function is cou- 
pled with (perturbed by) a smooth, slowly varying function. If this perturbation is small 
enough it is still possible to approach the thermodynamic limit before the long range 
variations become important. The greatest degree of homogeneity is then attained at a 
finite statistical scale. 

2.3 Multiscale Representations. 

The image description ~(z) - q .  T-xg is obtained by applying the descriptor q to 
the translated image. However, translation is not the only natural symmetry of images. 
Another one is dilation 5. We are then led to the following definition: 

Def in i t ion4 .  The multiscale description of g E G given by the descriptor q is the func- 
tion: ~ : t t  + x R 2 --* R"  given by: 

~i(A, z) = K,()~) (qi" D~-lT_xg) .  (3) 

where Ki(~) is a normalization factor. 

~ Rotation is also a natural symmetry. However, since this paper focuses on scale issues we omit 
to deal with orientation explicitly. 
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For the convolution-plus-nonlinearity descriptor defined in (1) we have, after some simple 
calculation: ~i(A, x) = Ki(A)fi [((Dxhi) * g) (x)]. In this case, the i-th component of the 
multiscale description is obtained by convolving the image with a bank of filters generated 
by dilating the template filter hi. Wavelets representations can be expressed in this way 
by letting A = 2 k and x = (12 k, m2~), l, m, k E Z and choosing hi, fi in the appropriate 
way. 

Note that ~(A, x) depends only on the image inside Bx(x). 

2.4 Ave raged  Mul t i sca le  Represen ta t ions .  

Def in i t ionh .  The averaged multiscale description ofg  6 G given by the descriptor q is 
the function: ~ : t t  + • t t  + • I t  2 --* I t"  given by, for A < L: 

1 
-~(L, )% x) - (L - A) ~ / ~(A, x')dx'. (4) 

BL- A (Z) 

For A _> L we let g(L, 2, z) = 0. 

Note that the average is taken in such a way that g(L, A, x) depends only on the 
image inside BL(X). 

If g = r is a homogeneous random image then, by definition of homogeneity (see 
(2)), we have with probability 1 and for all x 6 R 2 (assuming Ki(A) = K(A) for clarity): 

1 K(A) f q .  Dx-lT_~:,r = ft'(A) (5) lim r A, x) = 2 i rn  (L - A) 2 
L--*oo 

BL-A (x) 

Definit ion6.  The function ft : I t  + ~ I t  n will be called multiscale asymptotic descrip- 
tion of g. 

2.5 Definit ion of  the dishomogeneity  function.  

We are going to define a dishomogeneity function g'(L, z) > 0 such that g'(L, x) depends 
only on the image inside B2L(X) and on averages of size L. We start by defining the 
maximum and minimum value of yi(L, A, x) inside B2L(Z): 

yM(L,A ,x )= m a x  "~I(L,A,x') ym(L,A,x) - -  min yi(L,A,z ' )  (6) 
Z EBL(z) z 'EBL(z)  

Now, let si(M, m) be a positive real function defined for M > m > 0 such that 
s i (M,m) "- 0 if M = m and, for each m, s i (M,m) is strictly increasing in M (the 
simplest example would be si(M, m) = M - m). 

Defin i t ion  7. The specific dishomogeneity is: g~( L, A, x) = si (yM( L, A, x ), "~i ( L , A, x ) ) . 

Definit ion8.  The dishomogeneity function is then defined by taking the most dishomo- 
geneous "channel" : 

g'(L, x) = maxg~(L, A, z) (7) 
i,), 
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2.6 Asymptot ic  properties of  the dishomogeneity function. 

A first property of the dishomogeneity function is the following (for proofs see [10]): 

Theorem 9. Lel r be a homogeneous random image and let [r z) be its dishomo- 
geneity function. Then limL...~[r = 0 for all z e I t  2 and with probability 1. 

To deal with images which contain more than one type of texture we need a model 
for them. A simple one is a piecewise homogeneous random function. Let then P = 
{Rt . . . .  ,Rn)  be a partition of R2: R~ C R2; R I N R j  = $ i f i  5s j; I.JR~ = R 2. 
We assume that boundaries are regular enough, for instance, piecewise smooth. Let 
{r : i = 1 , . . . ,  n) be a set of homogeneous random images. 

Def in i t ion  10. A piecewise homogeneous random image over the partition P is the ran- 
dom function: r = ~i~=1 IR,r 

Def in i t ion l l .  We say that r is asymptotically discriminable (by the image descriptor 
q, used to define the dishomogeneity function) if all r i = 1 , . . . , n  have different 
asymptotic descriptions, i.e. ~i r ~j for i r j .  

Then we have to define what the thermodynamic limit means for these class of images. 
For, it is no longer possible to let L go to infinity without mixing together different types 
of texture. A solution to this problem is to make the random functions r "shrink" while 
leaving the boundaries unchanged . Then, for r defined as above and 7 > 0 we define r 
as: [r = E,"=I IR,(~)[r 

Defini t ionl2 .  For each w e 12 the asymptotic dishomogeneity function off(w),  r  : 
t t  + x R 2 --* R +, is given by: [r z) = lina~_~[r , x). 

T h e o r e m  13. With the above definitions we have with probability 1: 
1) The above limit exists for all x E I t  2, L > 0 
P) I f  B2L(X) C R~ for some i then [r = 0 
3) l f r  is asymptotically discriminable, and if B2L(X) contains at least two different 

types of texture, i.e. B2L(X) f3 Ri ~ 0, B2L(X) N Rj ~ 0, i # j, then [r  x) > 0 

This theorem suggests that in finite images the dishomogeneity function can provide 
useful information wherever the thermodynamic limit is a reasonable approximation. 

3 F i n d i n g  T e x t u r e  B o u n d a r i e s .  

In real images the thermodynamic limit is at best an ideal approximation. Moreover, it 
can not be attained near boundaries with high curvature, even if all homogeneous regions 
are very large. Nonetheless, the dishomogeneity function can be very useful for detecting 
the statistical scale at which relevant events - -  namely, the presence of a homogeneous 
texture - -  occur. This can be done at each point ~ in the image by looking for minima of 
the dishomogeneity function g'(L, z) with respect to L. g'(L, x) can also be useful to find 
boundaries, since we expect abrupt increases of gl(L, z) when the corresponding window, 
B2L(Z), "invades" a nearby texture. 

A complete description of our algorithm can be found in [11]. Here we just give a 
brief sketch of it. The algorithm is embedded in an overlapped pyramid of the type 
shown in figure 4. Each node in the pyramid corresponds to a square window. A cost 
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ckij = g~ij - ark is associated with each node. tk is increasing in k. The negative term 
--cdk introduces a bias for large statistical scales. This allows to select a unique scale 
and to generate a consistent segmentation in those cases where the underlying texture 
is near the thermodynamic limit at more than one statistical scale (for instance, think 
of a checkerboard). The dishomogeneity is computed as described in section 2 by using 
filter-plus-nonlinearity descriptor of the type shown in (1). Step filters at 4 different 
orientations have been used. 

k = 5  

k = 4  

~ k = 3  

k = O  

Fig. 4. One dimensional oversampled pyramid. The vertical displacement between intervals of 
the same level has been introduced for clarity and has no other meaning. Each node of the 
pyramid has a dishomogeneity value and a cost associated with it. 

The algorithm is region based, i.e. its output is a partition of the image. Therefore it 
assumes that boundaries form closed curves and are sharp enough everywhere. It works 
in two steps: first it selects nodes in the pyramid which minimize locally the cost function 
cklj and then merges neighboring selected nodes into larger regions. In the selection phase 
each pixel of the image selects a unique node (the one having the lowest cost) among all 
those in which it is contained. 

4 E x p e r i m e n t s  

We now describe some of the experiments we have done with synthetic images. All the 
three images shown in this section are 256 • 256. The CPU time required to run one 
image is approximately 9 minutes on a Sun SparcStation II. Most of the time goes into 
the computation of ~M(L, ,~, x) and ym(L, A, x) from ~i(L, ~, z')(see section 2.5). 

Figure 5 shows the segmentation of a collage of textures which reach the thermody- 
namic limit at several statistical scales. 

Figure 6-1eft illustrates the segmentation of an "order versus disorder" image. This 
example shows that looking for the optimal statistical scale can significantly enhance 
discriminative capabilities making possible the detection of very subtle differences. 

Finally, figure 6-right shows that this scheme can also be valid for textures whose 
properties change smoothly across the image (as occurs when tilt or slant are present). 

5 Conc lus ions  

In this paper we have addressed the problem of scale selection in texture analysis. We 
have proposed to make a clear distinction between two different scale parameters: sta- 
tistical scale and feature scale. Both scale parameters should be taken into account in 
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Fig .  5. Top-right: a 256 • 256 textured image. The  black lines are the boundaries found by 
the  algorithm. Left and bot tom:  the dishomogeneity g'(L, x) for L = 2 k, k = 1 , . . . ,  5. k grows 
anti-clockwise. Homogeneous regions are black. Note tha t  the thermodynamic  limit is a t ta ined 
at different stat ist ical  scales by different textures.  

F ig .  6. Two 256 x 256 textured images: "Order versus disorder" and "tilted texture" .  
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constructing image representations but they should be dealt with in very different ways. 
In particular, we claim that it is necessary to find the optimal statistical scale(s) at 
each location in the image. In doing this there is a natural trade-off between the reliable 
estimation of image properties and the localization of texture regions. It is possible to 
extract texture boundaries reliably only if a good enough trade-off can be found. 

We have formalized the notion of homogeneity by the definition of homogeneous 
random functions. When local operators are applied to these functions and the result is 
averaged over regions of increasing size, we obtain a description of the image which is 
asymptotically deterministic and space independent. In practical circumstances, we say 
that the thermodynamic limit has been reached when this holds to a sufficient degree. 
We have defined a dishomogeneity function and proved that in the thermodynamic limit 
it is zero if and only if the analyzed region does not contain a texture boundary. 

Our algorithm has performed well on images which satisfy the piecewise-homogeneous 
assumption. However, it did not perform well on images which violate the piecewise 
homogeneous property, mainly because in such images boundaries are not sharp enough 
everywhere and are not well defined closed curves. Our node-merging phase is not robust 
with respect to this problem. We are currently designing an algorithm which is more 
edge-based and should be able to deal with boundaries which are not closed curves. Also, 
we need to use a better set of filters. 
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