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ABSTRACT 
Linguistic theory views a phoneme as a shorthand notation for a 

bundle of binary features related to the operation of the speaker's 
articulators. In this paper, a representation of the speech wave- 
form in terms of these underlying distinctive features is described. 
The estimation of the probability of each of fourteen linguistic 
features being encoded locally in the waveform is performed on a 
frame-by-frame basis. In going from the abstract to the physical 
level, we recognize that the features are encoded in the waveform 
hierarchically and that time-varying manifestations of a feature 
within a phonemic segment are possible. These issues are ad- 
dressed simultaneously through a two-stage procedure. In the 
lirst pass, the time portion and broad class of sound being rep- 
resented by each frame is estimated. On the second pass. for 
each distinctive linguistic feature, models built explicitly for the 
estimated broad class portion are evaluated to arrive at the prob- 
ability that each frame is part of a realization of a phoneme in 
which the feature is present. The distinctive feature representa- 
tion is applied to the tasks of phoneme recognition and secondary 
classification in keyword spotting. The wordspotting algorithm 
compares estimated linguistic feature vectors to idealized target 
configurations. 

1. LINGUISTIC FEATURE REPRESENTATION 
The goal of this work is to adapt an abstract, linguistic feature 

representation of speech to a representation at the waveform level. 
Tables 1 through 4 depict the binary linguistic f eme  represen- 
tation of each of the vowels and the consonants distinguished in 
this study. 

Table 1. Feature representation of each of the vowels considered. 

Acoustic manifestations of a feature for a given phoneme are 
dependent on the broad class of speech sounds to which that 
phoneme belongs. This is equivalent to stating that features are 
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encoded hierarchically, as the broad class may be determined 
from a subset of the features. Because of this hierarchical struc- 
ture, we perform a two-stage analysis, wherein the goal of the 
6rst stage is to provide an estimate of the broad class of sounds 
represented by each frame. Processing in the second stage re- 
lies upon this estimate. In addition. because the fact that each 
phoneme is characterized by a single vector of features does not 
imply that all  frames of a given phone share roughly the same 
spectra, we model separately the onset, middle, and end of each 
broad class. 

Feature analysis of a waveform results in the parameterization 
of each frame by the probabilities that each of the distinctive 
features is encoded locally in the waveform. 
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Table 2. Feature representation of each of the glides, liquids, 
nasals, and affricates considered. 

The estimation of the broad class portion represented by each 
frame relies upon a set of Gaussian models whose parameters are 
derived from a TIMlT training set. We have used the data from 
all male speakers in the northem and north midland dialects, as 
well as speakers ADD through PAB of the westem dialect for 
training. Westem male speakers PAR through WRP form our 
TJMIT testing set, Waveforms have a bandwidth of 0-8 kHz, 
a frame rate of 5ms, and an analysis window of 15ms. Each 
frame in the training set is assigned a truth label indicating that 
it represents either the beginning, middle or final third of a frica- 
tive, nasal, vowel, liquid, glide, quiet/closure, or instant release 
segment. The mean and covariance of all attribute vectors in 
the training set representing a given broad class portion are com- 
puted, where the attribute vectors consist of normalized cepstra 
NCO - NCli and derivative cepstra DCo - DCn. 

In order to find the most-likely sequence of broad classes in an 
unerance, the probabilities of each broad class occumng at each 
time frame are treated as observations from a Markov source, 
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Table 3.  Feature representation of each of the plosives considered, 
and of silence. 

with each state in the Markov model corresponding to a portion 
of a broad speech class. The number of transitions on a frame- 
by-frame basis between the broad class truth labels in the training 
data are counted to estimate state transition probabilities. Finally, 
dynamic programming is used to find the most-likely broad class 
sequence in each sentence. 

. .  

Table 4. Feature representation of each of the fricatives consid- 
ered. 

After the broad class portion represented by each frame is es- 
timated, the probabilities of each of the linguistic features being 
represented are evaluated from Gaussian models built explicitly 
from training data estimated to have been representatives of that 
broad class portion. 

In order to evaluate the parameters of the Gaussians, for each 
time frame in the training set, the TIMlT phoneme label is 
mapped to a set of fourteen binary truth values representing the 
linguistic feature configuration of the underlying phoneme. The 
clustering of the training data provided by the broad class esti- 
mation stage is used to build twenty-four sets of linguistic feature 
models. All frames in the TIMlT training set estimated to belong 
to a given broad class portion are divided into feature-present 
and feature-absent sets for each of the features and the mean and 
covariance of the waveform attribute vectors for each of these 
sets are calculated. In testing, the broad class portion estimate of 
each frame keys the choice of Gaussian models from which to 
evaluate the probabilities of each of the features being present. 

In order to evaluate performance of the algorithm, a dynamic 
programming stage to decide the presence or absence of each 
feature is included. A measure of the algorithm's performance 
on an individual phoneme basis is given in figure 1. For each 
of the phonemes listed in the left-hand column, the relative fre- 
quency of the frames corresponding to that phoneme which were 

estimated to represent the presence of the features listed horizon- 
tally is given. The "+" or "-" following each entry indicates the 
theoretical presence or absence of the feature. 

2. PHONEME IDENTIFICATION FROM FEATURE 
PROBABILITIES 

Given a set of phonemic boundaries, the task at hand is to 
identify the phone occurring between the boundary points. The 
training and testing waveforms for this experiment are those de- 
scribed above. In deriving the broad class estimates, however, 
we make use of the known boundaries by forcing the estimated 
state sequence to change from the end of one broad class to the 
beginning of another only at the boundaries. Broad class portion 
estimates are allowed to change anywhere between boundaries. 

Assuming a segment has duration T, we choose the estimate 
tobe 

where ft is the vector of linguistic feature probabilities at time t. 
0 = argmaxg(4 Ifit..  .. fT, T) 

To begin, we define qt : W14 Z' U ( 0 )  as: 

Thus, qt serves as a quantizer for the real-valued feature prob- 
ability vector ft. so that p(4lf) x p(dlq)  where the latter term 
may be estimated as the number of occurrences of phoneme 9 
and index q relative to the total number of occurrences of index 
q. Assuming that the duration and observed features are indepen- 
dent, 

The first term on the right-hand si& of the above is approxi- 
mated by: 

Also, we model duration as a third order Erlang, so that: 

where 
N+ U+ = - 3 + N +  

and N+ is the number of times a frame representing phoneme 4 
follows a frame representing the same phoneme in the training 
set. 

A recognition rate of 70% has been achieved using the 
linguistic feature representation to estimate the phonemes in 
hand-marked segments of the "IMIT testing waveforms for the 
phonemes listed in tables 1 through 4. A rate of 63.5% was 
achieved within the submatrix of vowels listed in table 1. 
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Figure 1. Performance of estimating features for individual phonemes when phonemic boundaries are unknown. 

3. KEYWORD SPOTTING 

In keyword spotting, no constraints on the speaker's vocab- 
ulary are imposed. The open set of allowable utterances poses a 
difficulty in modeling viable alternatives to the keywords. Repre- 
sentation of the speech waveform in terms of linguistic features, 
however, introduces a closed set of allowable feature configura- 
tions. The trajectory of the 14-dimensional feature vector traces a 
path through the feature space [0, 1]14, with a binary-valued target 
vector 4 E 8 existing for each phoneme in the keyword, where 
@ is the set of phonemes in the language. A keyword represents 
an ordered set of targets (dj}& E K c 8, or equivalently, an 
ordered set of comers in [0, l]14. 

The linguistic feature representation has been applied in the 
context of secondary classification. A list of putative occurrence 
locations and a score reflecting the likelihood that the keyword 
actually occurred is provided by BBN's hidden Markov model 
(HMM) [2]. The goal of the secondary processing is to improve 
the receiver operating characteristic (ROC) over that based upon 
the HMM score alone. 

The set of putative occurrences of each keyword is used to 
extract from the conversation a small set of events to be scored. 
For each event, 14 normalized cepstral coefficients and 14 first 
derivatives are calculated at each time frame. TIMlT models as 
described in section 1, but trained on narrowband (300-3300 Hz) 
data, are used to provide an estimate of the probability of each 
linguistic feature being present at each time frame. 

The normalized L1 distance at frame t ,  d(4,ft), between a 
target, 4, and the vector of feature estimates, ft, is computed for 
each frame in a putative occurrence of a given keyword 

14 

Table 5. Figures of merit for each of the keywords subjected to 
secondary processing. 

Each phoneme 4 present in the phonetic spelling of a given 
keyword is represented by a collection X, of three states in a 
left-to-right Markov chain. The state of the process at time t ,  zt, 
is the state of the Markov chain with which observation t will be 
aligned. Self-transition probabilities ai i are derived from TIMlT 
phoneme labels; interstate transition probabilities ai i+l are taken 
as 1 - aii. 

The control ut E (0,l) keys the transition between adjacent 
states in the Markov chain; i.e. zt+l = zt +ut. Distances d ( 4 ,  ft), 
E K, t E (1,. . . , T}. along with the transition probabilities a; j 

define an incremental cost 

of setting zt = j E X, given that zt-l = i. p is a constant which 
controls the relative contributions of each of the terms to the cost 
function. Dynamic programming is used to find the controls {ut}, 
or equivalently the state sequence P', which maximize the cost 
function, subject to the endpoint constraints zo = 1 and ZT = 35. 

Maximization of this cost function is equivalent to finding the 
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most-likely alignment of the data to the Markov chain when we 
model the L1 distance of a phoneme to its ideal target as having 
an exponential distribution in [0, I] with decay rate f3: 

The accumulated average cost of P’ through the target se- 
quence is taken as the score w for the putative event: 

where N+j is the total number of frames aligned with target dj. 
We use the Stonehenge database for training; the putative events 

from the HMM for speakers sm03c-sml6c provide a set of hits 
and false alarms from which we perform hand tuning of the pa- 
rameter f3 for each keyword, as well as determine the phonetic 
spelling by which to represent the word 

The putative events from the HMM for the Stonehenge speak- 
ers sm33c-sm43c form the set of testing data. We combine the 
linguistic feature score with the HMM score for each event lin- 
early, using weights hand-tuned from the training set, to pro- 
vide an overall score for each putative event. The set of overall 
scores, when ordered, provide a means of secondary classifica- 
tion. Shown in table 5 are the figures of merit (FOM), defined 
as the average probability of detection from 0 to 10 false alarms 
per keyword per hour. for each keyword submitted to secondary 
processing. To arrive at the score in the right hand column, a 
combination of the HMM score and the linguistic feature 
score of the form: 

ClVLP 4. c 2 w  OHMM 4. onl4lm 

was used, with the weights c1 and c2 determined from hand- 
tuning on the training set. As shown in the table, a significant 
increase in performance results from the secondary processing. 
indicating that the linguistic features extract information in the 
waveform differently from the HMM. 

4. SUMMARY 
We have devised a representation of the speech waveform in 

terms of a set of abstract linguistic features which pertain to the 
mode of operation of the articulators in producing a sound. The 
representation has been applied to the tasks of phoneme identifi- 
cation and secondary classification in wordspotting. 
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