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1 Introduction

In a recent paper [1], it was shown that the optimization problem over ¢ € W&*(D),

where D C R? is a nice domain with smooth boundaries,
1

inf( [ 18gPdz + [ poy(z) -3 [ |9l 1.1

inf( [ [A¢dz + [ $oie) ~ ;5 [ 16Pde) (1)

possesses a solution and can be interpreted as the Maximum a-Posteriori estimator for

the solution of the stochastic differential equation

Az=wninD, 2. =40 (1.2b)
aD
observed in the presence of corrupted noise
y=z+n (1.2a)

where n,7 are independent white noise processes. For precise definitions of the terms

involved, c.f. section 2.

On the other hand, in the context of image segmentation problems, some attention

has been generated (cf. [2,5,6]) by the following variational problem:

inf [ alVfidz + [ (6 9)* +5UT) (1.3)



where £(I') denotes the length of I' and (1.3) is a free boundary optimization problem.
Various existence and convergence results have been obtained for (1.3) ([2,6]), although
no probabilistic interpretation of (1.3) is known to us.

When comparing (1.3) to (1.1), three differences come to mind, i.e.:

(a) Jp(¢ — g)? has been replaced by [ ¢poy — 3 [p |¢|*dx

(b) The gradient term in (1.3) has been replaced by the Laplacian in (1.1).

(c) No segmentation term appears at all in (1.1).

While dealing with (a) is easily understood via the usual Girsanov like transformation,
and the reason for (b) has been made explicit in [4], it is not clear how to add segmentation
to (1.1) in order to relate it to the framework of (1.3).

In this note, we propose, following [3], a way to do that. Specifically, we construct
an appropriate notion of ”density” over closed polygons and random fields inside the
polygons such that, if n denotes the number of straight lines components, one has that

maximizing this "density” is equivalent to minimizing
1 n
AgPdz + [ oy [ |gfdz+23 €T + f(n 1.4
fonie. g 1880w+ [ oi—5 [ IgFde+23 6T+ 5 (1)

for an appropriate f(n), over ¢ € WZ*(D\ U™, T:), n and set of straight lines I'; which
form (together with dD) a polygonal partition of D, ¢ =1,---,n.

The organization of this note is as follows: in Section 2 we recall some results from
(3] where a measure on close polygonal partitions of D is constructed. By appropriately
defining ”densities” for such partitions, and using the density definition of [4], we show
that (1.4) is related to density for a random fields, and the random partition of [3]. An

auxiliary computation is deferred to the appendix.

2 Random Field Construction

Let D be a closed convex subset of R? with smooth boundary. In R?, choose coor-
dinates (t,z) such that, for all y € D, t(y),z(y) > 0. Let Lp denote the lines which
intersect D, each line ¢ € Lp is parameterized by it’s distance from the origin p, and the

angle it forms with the ¢t = 0 axis, ay.



Figure 1: random polygonal partition

Let p(d€) be a uniform measure on the set -:'-5;,05!/3 € Lp}. The Poisson point process
with intensity u(d¢) will be denoted u?, and the measure it induces on the boundary 8D
by the hitting points {(xg,t[)‘tg = inf{t'f € D}} is again a Poisson point process on the
triple (z,¢,v) with intensity p?P. Here and in the sequel, v denotes the velocity of the
particle, i.e. the tangent of the angle formed by the trajectory and the ¢ axis.

For any line £ € Lp, let v, denote the slope of £. Clearly, u(d€) can be considered as
a measure on v¢ and z,, the intersection of £ with the z axis. In the sequel, we consider

the measure p(dv, dz) obtained from the uniform measure p(d¢) on «, p, i.e.

dv
Inside D, construct a point process on the quadruple (¢,y, v, v”’) with intensity
’ ' "
pf(dt, dy, dv', dv") = |v' — v"'|dydt- s L (2.2)

(14 (¥)?)%2 (1 + (v")?)3/?
Finally, construct a random partition of D as follows:

Pick up on 8D, ng triples (¢, z,v) according to the law 2P| and inside D, n; quadruples
(t,y,v',v") according to the Poisson process with intensity u”. At each of those points,

start a line of slope v (two lines of slopes v/, v” in the case of interior points) and evolve



v according to the Markov transition law

dudt

TEEE (2.3)

P(viyar € du’ut =v)=|u—v|

Finally, at each intersection of lines (when viewing it in the direction of growing t) kill the
intersected lines. Clearly, such dynamics describe a random partition of D by polygons,
cf. fig. 1.

The basic result of [3] is:

Lemma 2.1
Pln, tedldz= Lsnim)= %;L(dﬂl)- - pu(de,) exp(—=2> " L(¢:)) (2.4)
: 1=1

where L(¢;) denotes the length of the i-th segment.

Note that due to the presence of n in (2.4), one can’t consider (2.4) directly as a
candidate for a density: indeed, if one were to consider P(n, ¢; € ¢; + €), the required
normalization constant (as ¢ — 0) would have depended on n and therefore, a path with
no jumps will be infinitely more likely than a path with one jump.

One way out of this problem is by using an appropriate definition: Let
n A .
z» & / / P(n,t; € dli,i=1,---, n)
Lp Lp

2.7

n=0

1>

Z

(Zzl) is the probability of having n lines in a specific partition. Now, one may define:

Definition The prior density of a partition (n,¢;) is given by

Zr... Pn,l;elite, i=1,---,n)
p(n,t;) = (‘Z_)E’i‘% Sein

(2.5)

We turn now to the random field part of the definition: given a partition T'y,---,T,, let

z be the solution to the SPDE



Figure 2: domain smoothing

Note that since the I'; define disjoint domains with Lipschit: boundaries, (2.6) define a set
of disjoint, independent SPDE’s which, in each domain, possess a unique weak solution,
which is continuous up to the boundary (cf. [4] for details).

Let Q7(4;,,-,%;.), 7 < n+4 denote the boundaries of one component of the partition
(n,£;) where we allow for the boundaries of D to be counted as £; segments. Note that
since, when changing partition boundaries, the set of candidates ¢ changes, we have to
introduce a smoothing procedure on such candidates. Let therefore

Qj's(ejn”"(jk) = m Qj(fl""7£k)

t€B(¢;,.5)
cf. fig. 2. Let ¢ be given in the interior of Q’(¢;, ---¢;,) with ¢ = 0 on £,---,¢;,.
Let Qj's(ejxa e )ejk) = {2: € Qj'a(fin 2inix ,ejk) B(z’é) € Qj’é(lin ot ’ij)} denote a sub
domain of Q7*(¢;,,---,¢;,). Note that for small enough &,

d(QAj’é(lJa e ’Ejk):Qj(Zl) TR ;lk)) S kl‘S (2'7)

where d( A, B) denotes the Hausdorff distance between two sets and k, is a constant which

depends only on the geometry of Q7(£;,-- -, £&).



Finally, let j%(z) = Csexp(—1/(|z|* — (%)2)) be a smooth mollifier of support g, let
# denote the restriction of ¢ to Q7¥(¢;,,---,¢;,), and let ¢° £ 4« j5. Note that ¢* = 0
on the boundary of Q7(¢;,,---,¢;, ) (and therefore, necessarily, on the boundary of Q7).

The main technical lemma needed in the sequel is:

Lemma 2.2 Let ({j,,---,¢;,) be given, and let ¢ be given. Assume z satisfies
Az = n
= (2.8)

z

o
where d(¢;,,¢;,) < §.
Then there exists a choice §(¢) <=3 0 such that

lOg P(“Z — ¢||2 < 6) 6_—*_0) _1 |A¢|2 (29)

P(”Z”z < 6) 2 Q(‘J:""'tu)
for all ¢ € W' (Q(¢s,,- -, ¢j.)), where || || denotes the norm in LX(Q(; ,---,¢;,)).

Proof The proof uses the machinery of [4]. We will emphasize here the new elements
required to adapt it to our situation.
First, note that since ¢ € Wy'*(Q(¢;,,---,¢j,)), one obtains immediately that for any

choice §(¢) €28 0, one has that

/- , |A¢>“|2‘—1°»/ |AG? (2.10)
Q(ljl""'tjk) Q(lh‘""(]k)

Next, note that for § small enough, ||¢° — ¢||> < k(&) where k() 6—-—(;0. Therefore, one

obtains
P(||z = ¢°|l2 < e = k(8)) < P(||z — ¢ll2 < €) < P(||z — ¢°l]> < € + Kk(8)) (2.11)

Asin [4 , eq. 3.3, 3.4], one has that
P(llz = ¢%lls <) _ -3 Jou, i I8P
= € 1 Tk
P(||z]]2 < p)

Note however that

.E(exp—-/ ) )(A¢5)on| [lz]]2 < p) (2.12)

Q(ijl’“"tjh

1 < E(exp—/ A¢6on| [lz||2 < p)

Q& ik5,)
= Elexp— [ A%zl < )
Qv d5,)

< exp(ul|A?¢°|2) — 1 (2.13)



where we have used in the first equality the fact that ¢® has compact support in
Q(fjl,---,(?jk). Substituting (2.13) in (2.12) and using (2.10) yields therefore, for any

i(€) =20, 8(e) =2 0:

P(|]z = ¢°ll2 < 1(€)) ue)z0 1 2
(0 BN - 2.14
PRl <A@ 00 P02 Jog i 129 (2.14)

;From (2.11) and (2.14) one concludes that, if one may show that there exist é(¢) such

that
P(ldla<e) o

P(||z]|2 < € + k(8(¢)))

then the lemma holds. Note however that, if ); denotes the set of eigenvalues of (2.8),

(2.15)

one has that
(=<} :l‘?
llzll2 £ (2 352 (2.16)
=1 1

where z; are independent standard normal random variables, and the sum in (2.16) is
a.s. finite due to the fact that )\; ~ i as i — oo (c.f. [1]) and that Ao > 0. Therefore,
by choosing 8(e) 290 fast enough, (2.15) holds. In the appendix, it is shown that taking
6(e) = € yields the required convergence.

O

Remark As in [4], ¢ € Wi?[Q(4y, -+ ,0;)] will not be quite enough for our needs for it
will turn out that the optimizing path ¢ does not satisfy this condition. However, exactly
as in [4], one may modify the proof above to include the solution to appropriate ¥ driven
SPDE’s.

Combining lemmas 2.1 and 2.2, we are ready to state our

Theorem 2.1 Let (n,Ty,---,T,) denote a partition of D as described in the beginning
of this section and let ¢y,--+,¢; denote functions on the appropriate sub domains of L'
which are zero on the partition segments D and I';. Assume that ¢; € Wo3(D;) where

D; denotes the obvious subdomain associated with ¢;. Then

lim Z_ P("‘) (r' S Fi E €, llz T ¢H2 < 6) . Z_e—zt(l‘)e“%fu\(ruap)

< Z P(I=1lz < )26 Z

lae?

(2.17)

Remarks It seems appropriate, at this point, to compare (2.17) and (1.3) with a,3 — o

and a/B8 = 1. The differences are apparent: first, in (2.17) there is a penalty on the total



number of partition lines in terms of Z™. This is reminiscent of Richardson’s [6] constraint
on the “number of components”, although it arises here from entirely different reason and
has a completely different interpretation. By a choice of different neighborhoods in (2.5)
(in particular, n dependent neighborhoods), one can get rid of this term.

Next, (2.17) is defined only over straight line boundaries, thus restricting significantly
the scope of the optimization over (1.3).

Finally, note that in (2.17) the [V¢|* term has been replaced by a [A¢[* term. The
reason for that can be traced to the model (2.8): indeed, had we tried to write instead
of Az = n an equation of the form A!/22 = n, only distributional solutions would have
existed for 2. One could try then to use, instead of L, neighborhoods, distributional
neighborhoods of 2. We do not follow that approach here, since it seems unnatural in this
context.

We may obtain, using [4, lemma 4.1], the following conditional form of theorem 2.1:
Corollary 2.1 Let (n,Ty,---,T,) and (¢1,- -+, ¢,) be as in theorem 2.1, and let F, denote

the sigma field generated by the observations y.. Then,

nPl; eT; te ||z — n 1 2 ;
Z (6 € te |l ¢H2 = elfy) = k(y)_Z_Z__e-ZC(I‘)e“ifn\“\UBD’IAél e(fquoy—%fDrﬁ’)

7 Bl < e

(2.18)
where k(y) denotes a F, measurable random variable which does not depend on the
specific ¢ chosen.

It is worthwhile to remark that we do not have at this point a satisfying existence
theorem for (2.18): indeed, unlike the situation in [4], the fact that the boundaries change
on a minimizing sequence may prevent the existence of a minimizing function in WE2(D;).
On the other hand, working in W22(D;) isn’t helpful because, unlike in the gradient case
treated in [6], the Laplacian isn’t coercive over W22(D;).

Appendix

In this appendix, we give a way to compute explicitly the exact é(¢) needed in the

proof of lemma 2.2. Indeed, from (2.12) finding the appropriate 6(¢) entails finding the

. PaN 2 .
asymptotics of P(y < €) as ¢ — 0, where y = 372, ;5 , x; are a sequence of independent,

L
A2
1

identically distributed Normal random variables, and Y{°, 35 < oo. We note that the

bounds we obtain, namely (3.2) and (3.6) below, are tighter than the respective (more



general) bounds in (7], equations (4.5.1) and (4.5.2).
To compute the required asymptotics, we make use of large deviations techniques.
Since y doesn’t possess exponential moments, a direct attack via Cramer’s theorem seems

impossible. On the other hand, note that, by Chebycheft’s inequality, using the fact that

y =0,
) _s(¥— 1
P(Z <1)< E(e*i- 1) =¢* - 3.1
(E < )— (e ) € 21(1+§£)1/2 (3 )
for all s > 0. In particular, one obtains that
log P( <1) <s——Zlog %) (3.2)
On the other hand, let
“**du(ez
dv’(z) 8 = lez) s§>0 (3.3)

I e‘"d;t.(ez)’ -

where j denotes the measure defined by the random variable y. Let s, be defined by the

relation
] = /zdu"‘(z) (3.4)
which leads to the equation
= 1/)\2
= 3.5

By the standard change of measure argument, noting that v*<(B(1, 77)) — 1 for any 7 > 0

by the law of large numbers, one obtains that, for € small enough,

bgﬂ%< ) > e = zy%(y+i) o(1) (3.6)

Since, as ¢ — o0, \; ~ 1, one obtains that s, ~ ¢ for small enough ¢ and therefore,

comparing (3.6) and (3.2), one obtains that

2 ¢
bgP( <1'~——}dbg ;”

which implies
logp(%<:l)~(k%62k"1

To find an appropriate §(¢), it is therefore enough to have

(€ + &(€)) " log(e + 6(¢)) — e log(e) — 0

e—0



which is clearly satisfied with 6(¢) = €.

3

a
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