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Stabilization of Linear Systems With Limited
Information

Nicola Elia and Sanjoy K. Mitter

Abstract—In this paper, we show that the coarsest, or least
dense, quantizer that quadratically stabilizes a single input
linear discrete time invariant system is logarithmic, and can be
computed by solving a special linear quadratic regulator (LQR)
problem. We provide a closed form for the optimal logarithmic
base exclusively in terms of the unstable eigenvalues of the system.
We show how to design quantized state-feedback controllers, and
quantized state estimators. This leads to the design of hybrid
output feedback controllers. The theory is then extended to
sampling and quantization of continuous time linear systems
sampled at constant time intervals. We generalize the definition
of density of quantization to the density of sampling and quan-
tization in a natural way, and search for the coarsest sampling
and quantization scheme that ensures stability. We show that the
resulting optimal sampling time is only function of the sum of the
unstable eigenvalues of the continuous time system, and that the
associated optimal quantizer is logarithmic with the logarithmic
base being a universal constant independent of the system. The
coarsest sampling and quantization scheme so obtained is related
to the concept of minimal attention control recently introduced by
Brockett. Finally, by relaxing the definition of quadratic stability,
we show how to construct logarithmic quantizers with only finite
number of quantization levels and still achievepractical stability
of the closed-loop system. This final result provides a way to
practically implement the theory developed in this paper.

Index Terms—Hybrid systems, minimal information, optimal
control, quantization.

I. INTRODUCTION

I N THIS PAPER, our main goal is to develop a theory of sta-
bilization of linear time-invariant (LTI) systems using only a

finite number of fixed control values and finite number of mea-
surement levels. The quantization of controls and measurements
induces a quantization, or partition, in the system state-space.

We want to point out that our view fundamentally differs from
the traditional view where the effects of quantization are seen
as undesirable, either as noise, or state uncertainty, and must be
reduced by often complex controllers [1]–[5].

In this paper instead, we seek to quantize the state of the
system as coarsely as possible while maintaining the stability
(and the performance) of the system. This problem is motivated
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by the lack of fundamental understanding of how to do system-
atic design of complex systems.

For example, many hybrid phenomena (interaction
between continuous dynamics and logic) are effects of in-
formation quantization [14], [16], [18], [22], [23]. In order
to derive systematic design methods for hybrid systems,
we need to understand how to systematically quantize
information without losing stability and/or performance.
In the hierarchical organization of systems, it is evident that
higher levels in the hierarchy manipulate only quantized
information about the dynamics at lower levels [21]. It is
important to understand what is the minimum information
needed in order to complete a given task.
Complex systems are often spatially distributed aggrega-
tions of many subsystems. The coordination and control
of such systems is achieved through communication
channels. The number of the subsystems together with
bandwidth limitations of the channels limit the informa-
tion about the state of each subsystem available at the
controller [9], [19].

In other words, we consider quantization useful, if not essential,
instead of undesirable.

It is also worth mentioning that we are interested in the design
of quantized closed-loop systems which are implicitly verified.
This is in contrast with traditional stability analysis results ob-
tained for a given quantizer already in place [6]–[8], [15], [17],
and more along the line of [10].

The paper is organized as follows. We begin our study with
discrete-time systems and quantizers with countable number of
levels. As a first step we allow for countable quantizers, which
makes the analysis and the notation simpler, captures the fun-
damental laws, and also provides important asymptotic results.
We first solve the full-state feedback problem where the con-
trol values can take a countable number of (to be determined)
fixed values. This is done in Section II which is the main sec-
tion of the paper and contains the main ideas and results for the
state-feedback case. In particular, assuming that the system is
quadratically stabilizable, we show that the quantizer is loga-
rithmic (the fixed levels follow a logarithmic law). Further, we
characterize the coarsest, or least dense, (largest spacing be-
tween levels) logarithmic quantizer over all quadratic control
Lyapunov functions in terms of the solution of a special linear
quadratic regulator (LQR) problem. Then, in Section III, we
show how the same approach and results apply to the design of
state-observers using a countable number of quantized measure-
ments. From these results we can design stabilizing output feed-
back controllers with quantized measurements and controls. In
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Section IV we consider sampled-quantized systems. We assume
that the discrete-time system of the Sections I–III are obtained
from constant sampling in time of a continuous-time system.
We extend the definition of density of quantization to the den-
sity of sampling and quantization in a natural way, and search
for the coarsest (least dense) sampling and quantization scheme.
We show that the resulting optimal sampling time is only a func-
tion of the unstable eigenvalues of the continuous time system,
and provide a formula for it. The associated optimal quantizer is
logarithmic with the logarithmic base being a universal constant
independent of the system. Finally, in Section V, we show that
the system can be stabilized by finite logarithmic quantizers ob-
tained by truncating the countable logarithmic quantizers. The
reader should review the result of Section IV in the light of the
result of Section V. In Section VI, we present an application
of the theory to an example, and construct a finitely quantized
output feedback discrete controller, which stabilizes a contin-
uous time system. Finally, in Section VII, we present some con-
clusions and discuss future directions of research.

II. QUANTIZED STATE FEEDBACK

In this section we consider the problem of stabilizing an LTI
discrete-time system with a possibly countable number of fixed
control values to be determined.

The system is assumed unstable, single input, stabilizable,
and governed by the following equation:

(1)

where , denotes the system state at the next
discrete-time, , and .

Since the system is stabilizable and linear, it is quadratically
stabilizable, i.e., there is a control input, function of , that
makes a quadratic function of the state a Lyapunov function
for the closed-loop system. Such Lyapunov functions are called
control Lyapunov functions (CLFs). For LTI systems, given a
CLF, it is always possible to find a stabilizing control in the form
of a linear static state-feedback control.

A. Approach and Problem Definition

Given a quadratic CLF with , is
always assumed to be symmetric in this paper, we propose to
select a set of fixed control values such that is still a
Lyapunov function for the system, i.e., it decreases along the
system’s trajectories. In particular, we ask that for any

More precisely, we want to solve the following problem.
Problem 2.1: For a given CLF , , we

want to find a set

and a function

such that , and such that for any ,

With a slight abuse of terminologyis called the quantizer. No-
tice that the range of induces a partition in the state-space of
the system, where equivalence classes of states correspond to
the same adopted control value, i.e., .
Also, by requiring the quantizer to be a function we are implic-
itly assuming that to eachthere corresponds only one element
in . Notice finally that we consider only quantizers that are
symmetric with respect to the origin and with an infinite count-
able number of levels. The first is not a restriction given the nat-
ural symmetry of the system and the Lyapunov function. The
second is also not a restriction since, as will see in the develop-
ment, such quantizers are required to solve Problem 2.1. By con-
sidering directly infinite countable quantizers we avoid need-
less, more elaborate, definitions that include quantizers with fi-
nite levels.

We assume that the values in the setare ordered as follows
for , .

is called the immediate successor ofand is called
the immediate predecessor of .

Definition 2.1: A quantizer taking the value ,
is such that for some .

Lemma 2.1:Let be a quantizer that solves
Problem 2.1, and let , .
Given any real number , define ,
and . Then with

for , and , also solves Problem 2.1.
Proof: If solves Problem 2.1, then, for any , is

such that for all , . Form
the linearity of (1), it follows that
for all .

The above lemma implies that there is no loss of generality
in only considering quantizers with value , and, unless
otherwise specified, value 1 will always be assumed.

We measure the coarseness of a quantizer by measuring its
density defined next.

Definition 2.2: Given , , a CLF for (1),
let denote the set of all quantizers that solve Problem 2.1.
For and , let denote the number of
levels that has in the interval . Define

is called the quantization density (of). A quantizer is
said to becoarsestfor if it has the smallest density of
quantization, i.e.,

A quantizer which iscoarsestfor need not be unique since,
different sets may satisfy the asymptotic property, and for the
same , there may be different ways to define the function
mapping into . Moreover, a quantizer which iscoarsestfor

may not be an element of . At any rate, since the
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quantizer induces a partition on, the density of quantization
induces a measure of coarseness on the partitions in the state-
space .

It is worth pointing out that the definition of density we are
adopting in this paper allows us to measure quantizers for which
the number of quantization values, although infinite, grows log-
arithmically, rather than linearly, with the length of the interval
that includes them. Under this measure, the density of any uni-
form quantizer is infinity, and the density of any finite quantizer
is zero.

The main result of this section is the characterization of
a quantizer which iscoarsestfor . As we will describe
presently, the main idea in the derivation of and is to
consider the CLF as a robust Lyapunov function where, for a
given fixed control value, we are interested in finding the set of
all states for which is negative enough.

We want to emphasize that the idea of using robust Lyapunov
functions to design nonlinear control strategies, in particular
quantizers, for linear systems is new and has great advantages
with respect to traditional approaches based on optimal control
which even in the case of a given fixed quantizer would often
lead to intractable integer programming problems.

B. Problem Solution: Logarithmic Quantizer

In this section, we derive one of the main results of this paper.
We show that, for a given CLF, there is a natural quantization of
the control values and a partition of state-space which follows a
logarithmic law. This result captures in a precise way the intu-
itive notion that, the farther from the origin the state is, the less
precise the control action and knowledge about the location of
the state in the state-space need to be.

Before we present the results, we need to introduce some no-
tation. Given a CLF, , for (1), is
given by the following expression:

denotes transpose. For a given, the control that makes
the most negative is given by

Notice that the control is given in terms of a linear static feed-
back where stands for gradient descent, since it rep-
resents the controller that makes decrease the most along
trajectories.

Let be the resulting closed-loop state-
transition matrix. The resulting is given by

For future reference, let

(2)

Note that since is a CLF.
We are now ready to state the first main result of this section.
Theorem 2.1:Let , be a CLF for system

(1). A quantizer , , which is coarsest for

, has fixed control values that follow a logarithmic law, and
it is characterized as follows:

the constant is given by the following expression:

(3)

with

and

where

and

Moreover, given any , let , and construct
as , but with instead of . Then , and therefore

solves Problem 2.1.
In proving this Theorem, we will actually prove a stronger

result. First, we need the result stated in the following Lemma.
Lemma 2.2:Let , , be a CLF for system

(1). For any , denote by the following set:

Then, is equivalently characterized by the following open
interval:

where and are the roots of the second order equation
in

and is given by the following expression:

Proof: See Appendix.
is nothing but the set of control valuesthat can be

selected (for the given) to ensure that the Lyapunov function
is still decreasing along trajectories.

Proof of Theorem 2.1: has the following important
properties whose verification is immediate:
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P1) scaling for ;
P2) symmetry for all such that

.
From Property , it follows that can be used for all

to ensure that the Lyapunov function decreases along
trajectories. This also implies that, in searching for a quantizer
which is coarsest, we can restrict our attention to the partition
induced by the quantizer in the direction as explained by
the following argument.

Let denote the subspace of generated by

Given any quantizer , , consider the
restriction of on

and the extension of given by

From Property it follows that . Note that
, therefore

for all

Thus, we only need to look for the coarsest quantizer in the
direction , or equivalently

To simplify the derivations ahead, it is more convenient to do
the following change of coordinates. Let

Note that is well defined since . In this new coordi-
nate system, the boundary points of are given by
the following expression:

Note that is the gradient descent controller
in the new coordinate system. This suggests the following nat-
ural decomposition of the state-space in the-coordinates.

The boundary points of in terms of and are
given by the following expression:

We see that the smallest, or worst-case, interval is ob-
tained by setting . In other words, the worst direction of
quantization, the one with the most restricted choice of control
values, is the one parallel to , and, for any ,
grows symmetrically around .

Note that the change of variable implies that
for some , with the

right-hand side being a more convenient representation to
handle.

We can now use the scaling property to show that the
coarsest covering in the direction follows a logarithmic
law. Consider without loss of generality the set . Define

In other words, tells us what is the maximum range of states
along the direction for which there is a common control
value that still decreases the Lyapunov function in the next step.

From Property we have that

Since the boundary points corresponding to are

and

it turns out that

or

Note that .
The relationship between and can be derived

as follows. is the common value of to
be used for all the values of . Let

for some . Then

Substituting in the last equality for we obtain

and since
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we have that

or

Now, from the previous derivation we know that guar-
antees the non increasing of for all

. Moreover, we know that
, for any which can be associated to by any

quantizer in . Thus, from Lemma 2.1, of which the scaling
Property is a consequence, we have that guar-
antees the non increasing of for all . Fur-
thermore, is the smallest value that can be an immediate
predecessor of . Fig. 1 gives a visual proof of this statement
and helps seeing that if then there is gap in the cov-
ering of , that cannot be covered by any setassociated
with any value of control which is either or .
The same argument can be repeated forand by induction for
any . in the theorem statement are derived from the cor-
responding by replacing the nonstrict inequality with a
strict one, so that is a well defined function, and is the
natural closure of the partition. Thus, we have that the sequence
for both positive and negative control values is given by

with (4)

and the resulting quantization in the state-space is given by

with (5)

From the structure of it follows that:

and from the construction we have that for any (with
value )

for all

Finally, since for any , and ,
constructed as but with instead of belongs to (left
to the reader), we have thatis coarsestfor .

Fig. 2 shows the resulting logarithmic partition in thecoor-
dinate system.

Remark 2.1:Several remarks are in order. First, this theorem
is the first to capture in very precise terms the intuitive argument
that when the system is far from the equilibrium we do not need
precise knowledge of the state and, therefore, we can use impre-
cise controls to steer the system in the right direction.

Second, the scaling property at the basis of the logarithmic
law of quantization is not only a requisite of quadratic control
Lyapunov functions but also of any seminorm, and therefore
extends to more general CLFs.

Third, requiring the Lyapunov function to be strictly de-
creasing along trajectories has the critical role of regularizing
the problem and drastically reduces the complexity of finding
the right partition. This would have been otherwise intractable
even in the single input case considered here.

Finally, we want to remind the reader that quantizercon-
structed in the theorem is in general non unique in the sense

Fig. 1. Logarithmic partition in the�, u plane.

Fig. 2. Logarithmic partition in the(�, �)-coordinate.

that other partitions could be associated to the same set of con-
trol values. For example, assume that the system dimension is

, and consider the new partition defined as follows. Let
. This is a cone in the

state space that includes as defined in Theorem 2.1. It is
left to the reader to verify that the inclusion is usually strict. Let

, where means set exclusion. Then, the re-
sulting quantizer will still be coarsest for by construction.
This new partition could be preferable to the one of Theorem
2.1 since the zero control value is used for a larger set of states.
However, it is more complex to implement than the one of the
theorem. Clearly the two quantizers are the same if and only if

. This will be the case for the coarsest quantizer
over all quadratic Lyapunov functions characterized in the next
chapter.

Corollary 2.1: If system (1) is stable, then there exists a CLF
for which .

Proof: Immediate and left to the reader.
The next corollary has important implications that will be ex-

ploited later on in this paper.
Corollary 2.2: is invariant under linear coordinate trans-

formations.
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Proof: Left to the reader.

C. Optimal Quantization Over All Quadratic CLF

In this section, we characterize the coarsest quantizer
(smallest ) by searching over all quadratic CLFs. The optimal
quantizer is related to a special LQR problem.

Define

Theorem 2.2:Assume that system (1) is unstable, and let
denote the eigenvalues of the matrix

with magnitude greater or equal than 1. Then

i) The optimal quadratic Lyapunov function corresponding
to is given by the positive–semidefinite solution of the
following Riccati equation:

(6)

which is also the solution to the special LQR problem

stable

corresponding to the minimum energy control that stabi-
lizes the system.

ii) and it is parallel to
the LQR optimal

controller.
iii) is given by the following equation:

(7)

Proof: Let

Then, (3) becomes

(8)

which is monotonically increasing for . Thus, minimizing
is equivalent to minimizing (or ) over

CLF for system (1).
Thus, we focus on the equivalent problem

However, the following implications follow immediately, given
that :

substituting for

By a simple rearrangement it follows that we have to find the
smallest such that there is a quadratic CLF, with

for which

(9)

Notice that must be strictly greater than 1, otherwise there
is no way that this last expression can be positive–semidefinite,
given that the systems is unstable, that , and
is a CLF for the system.

Now, let

Inequality (9) becomes

(10)

For a given fixed the above expression is a Riccati in-
equality. Since the inequality is not affected by positive scaling
of , we can, without loss of generality assume that . It
is well known [25] that any satisfying (10) is such that

where is the solution to the corresponding Riccati
equation

(11)

Since , this also implies that the smallest
is obtained by .
Equation (11) is the same Riccati equation associated with

the solution of the following LQR problem

stable

where is Riccati solution to the problem of minimum energy
control to stabilize the system. This provesi) with . ii )
follows from the expression of associated with , i.e.,

is parallel to

In order to prove iii), we use the invariance under transformation
of stated by Corollary 2.2. We already know that if the system
is stable, . There is no loss of generality in assuming
that all the eigenvalues of are outside the unit disc. We can
transform the system into the following block diagonal form
through a coordinate transformation
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where describes the dynamics of the unstable modes
of the system (all its eigenvalues have magnitude greater
than 1, while describes the stable dynamics. Now, the
minimal energy controller, in these coordinates, has the form

with , i.e., it will not put any
effort stabilizing . This property will become useful in the
extension of this theory to quantized estimators developed in
Section III. Thus, we can concentrate in designing the quantizer
to stabilize without affecting the stability of . Having
noticed this, we proceed by assuming for the rest of the proof
that all the eigenvalues of have magnitude greater than 1
(e.g., concentrating only on the pair , ).

We can also assume, without loss of generality, that the
system is in the controllable canonical form.

...
...

. ..
...

From the property of the expensive control case of the LQR
problem [24], we know that the optimal controller, will
place the closed-loop poles in the mirror image of the unstable
open-loop poles. This implies that the closed-loop state transi-
tion matrix has the following form:

...
...

.. .

thus, must have the following expression

(12)

From the previous derivations it follows that the optimalhas
the following value

(13)

where denotes the element of . Thus, we need
to compute in order to find an alternative expression for
based on (8).

Notice that from the expression of we have that

By equating the first element of above with the first ele-
ment in (12) we obtain the following equation in :

which when solved for gives

Substituting in the expression (13) for we obtain that

Note that is nothing but the product of the eigenvalues of.
Thus, we obtain the desired result by substituting forin the
expression for

Theorem 2.2 together with Theorem 2.1 provides a complete
characterization of the coarsest quantizer that guarantees
quadratic stability of the closed-loop system in terms of the
unstable eigenvalues of the open-loop system. Stated more
formally, we have the following.

Definition 2.3: Given with satisfying
(6), the quantizer constructed according to Theorem 2.1 with

given by (7) is denoted by , and is called thecoarsest
quantizer (for quadratic stability).

Given the structure of the coarsest quantizer, it is useful to
introduce the following.

Definition 2.4: Let be the coarsest quantizer. Then
denotes the function with the property that
.

Comment: Whenever we use nonlinear feedback, like
a quantizer, new equilibrium points may be created in the
closed-loop system, and we need to be aware of their effects on
the overall trajectory dynamics. Note however that quadratic
stability of the closed-loop system does not allow multiple
equilibrium points to exist. This also gives an alternative
characterization of as the largest value for which new
equilibria are generated by the quantizer in the closed-loop
system dynamics.

Perturbed Nonsingular Problem:Once again, we want to
stress that may not be an achieved infimum over all quadrat-
ically stabilizing quantizers. Although we can constructac-
cording to Theorem 2.1, and can be shown to be stabilizing,
we want to describe another way of constructing, which will
naturally extend to the construction of finite quantizers in Sec-
tion V.

In constructing a feasible (quadratically stabilizing) quan-
tizer the main issue is to provide a quadratic Lyapunov function

, , and to guarantee that for any ,
. A natural candidate would be , the Riccati

solution associated to the optimal logarithmic base,. Unfor-
tunately is only positive–semidefinite if the system in not
completely unstable, therefore is not a valid Lyapunov function.
Moreover, even in the case , guaranteed if the system is
completely unstable, the quadratic stability assumption is not
guaranteed by the since
. This happens because the matrix given by (2) is of rank

1. In fact, is a scalar multiple of . This is easy to
verify, and left to the reader, and implies that for
all orthogonal to .

Having noticed that, we only need to slightly perturb the
problem in order to achieve a feasible Lyapunov function. The
singularity is due to the fact that solves theexpensive control
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LQR problem, which is the limit as of the standard LQR
problem. Thus, we just back up a little bit, and solve the Riccati
equation associated with the following problem:

stable

where , and is a very small positive number.
The resulting Riccati equation is the following:

For small enough, the solution of this equation, the associated
, and the associated get arbitrarily close to those

associated with the expensive control case with the resulting
.

D. Stability With Guaranteed Decay Rate

The result of the Section II-C-I can be generalized to in-
clude rate constraints on the convergence of the trajectories to
the origin. This introduces some primitive performance measure
into the framework.

It is well known that if the Lyapunov function, is such
that

(14)

for then

We can now extend the results of the Sections II-A–C by ap-
plying the same arguments to Inequality (14). Here, we briefly
summarize the development.

Equation (14) implies that

must hold.
The analogoue of (2) is given by the following equation:

(15)

and the formula for given by (3) is unchanged although the
value of will depend on the different value of and possibly
on a different .

Finally, the derivation of Theorem 2.2 also follows in a
straightforward way. The reader, may verify that Inequality (9)
is changed into the following one:

(16)
Now dividing by , we can rewrite the above inequality as
follows:

Following the development, we see that the optimal solution
which provides the smallestand guarantees that the trajecto-

ries have a decay rategiven by the optimal which provides
the smallest for the system

(17)

It also follows that, the optimal with a decay rate for system
(1) is given by the optimal for System (17).

III. QUANTIZED STATE ESTIMATION

In Section II, we saw that the optimal quantizer is closely
related to the optimalexpensive controlLQR controller. Such
a controller has the property that, in closed loop, it places the
unstable open-loop poles at their mirror images, and leaves the
stable ones in their original location in the closed-loop control.
In this section, we show how the properties and ideas described
in Section II apply to the problem of designingquantized state
estimator. We claim that, in this framework, we need to quan-
tize the estimator error rather than the measurements. This is
also what is done in [9] for the problem of control with commu-
nication constraints.

Consider a traditional linear state estimator for a discrete-time
system.

We assume that the system is single output, so is a
scalar, and it is observable.

The estimator error follows the following dy-
namics:

The estimation error goes to zero as the discrete time progresses
only if has all the eigenvalues strictly inside the unit
disc.

This clearly resembles the situation of the state-feedback
problem with in place of , in place of , and in place
of . However, before we were given and we had to find the
coarsest quantizer, here denoted by , for the system

which turned out to have the structure , for
some . Now, we need to find, over all feasible estimator
gains , the coarsest quantizer, denoted by , for the system

(18)

with , and with given.
The following theorem describes how to solve this problem.
Theorem 3.1:Given and with

detectable. Let be thecoarsestquantizer for the system

(19)

i.e., ,
is the optimal direction of quantization, and is the

symmetric positive–semidefinite solution of
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Then, the coarsest quantizer for the system

denoted by is obtained by setting , it has the form
with in place the optimal direction of

quantization, it has the optimal given by (7), and it is con-
structed according to Definition 2.3.

Proof: We first argue that there is no loss of generality in
considering the error system completely unstable.

We can assume, without loss of generality, that System (18),
through a coordinate transformation, has the following block
diagonal form:

and

where describes the dynamics of the unstable modes of the
system (all its eigenvalues have magnitude greater than 1), while

describes the stable dynamics.
For any , such that the system is stabilizable from, the

coarsest quantizer for quadratic stability is given by Theorem
2.2, and has the form

We are using instead of for obvious reasons, and
showing its dependence on. is the minimal energy
controller, (measurement vector) for the given, and we have
already argued that must have the following structure:

with

i.e., no effort is exerted in stabilizing .
At first sight, it seems that unless the given matrixhappens

to make the stable modes unobservable, , can not be
an optimal direction of quantization. In this problem however,
we have to select . If we select as described in the theorem
statement, then

(20)

will be such that , which makes all the stable modes of
the system uncontrollable. Let

denote the optimal direction of quantization for , let
be the resulting optimal quantizer, and let

for some

The above argument implies that quantizing along the direction
, or along the direction , i.e., with

instead of

does not affect stability, for any , since the , corresponding
to the coordinates of the stable uncontrolled modes, will go to
zero.

Thus, we only need to consider the unstable part of the
system, and design so that . We claim that such
an is in (20).

To simplify the notation we set , and
.
From Theorem 2.2 applied to system (19), we have that

is the optimal direction of quantization associated with, and
moreover that is equivalently characterized as the static gain
vector that places all the eigenvalues of the closed-loop system

at the mirror images of the eigenvalues of, i.e.,
. is unique from the detectability as-

sumption, and the fact that all eigenvalues ofneed to be placed
in a new location.

However, the eigenvalues of are the same as the
eigenvalues of , which means that is the unique
static gain vector that places the closed-loop eigenvalues of

at the mirror images of the eigenvalues of. Therefore,
must be the optimal LQR controller associated with the problem

stable

and thus, from Theorem 2.2, is the optimal direction of quan-
tization with optimal logarithmic base equal to.

The above theorem suggests the following estimator structure
where the estimator dynamics are driven by the logarithmically
quantized estimator error:

A. Quantized Output Feedback

We can now construct (under the assumptions of The-
orem 3.1) a quantized output feedback controller, based on
the separation of the estimator and the state-feedback. Let

be thecoarsestquantizer for the state feed-
back problem as defined in Definition 2.3, and Theorem 2.2,
and thecoarsestquantizer for the estimator
problem as defined in Definition 2.3 and Theorem 3.1. Then
we can obtain an output feedback controller by quantizing the
state estimate by instead of the actual plant state. For the
SISO plant given by

the dynamic equations of the closed-loop system are the fol-
lowing:

We will present a practical implementation of this controller in
Section VI.
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IV. SAMPLING AND QUANTIZATION

In this section, we consider both sampling and quantization
of a finite-dimensional LTI system. In particular, we extend the
previous quantization results by studying the case of uniform
(or linear) sampling and derive a criterion for optimal sampling
and quantization.

We consider uniform sampling, i.e., a constant sampling in-
terval, since it is the only sampling strategy that retains the
time-invariance of the discrete-time system. Furthermore, it is
what is used in practice.

In this section, we go back to the state-feedback case. We
assume that the state of the linear system

is sampled with sampling time, and that the control input is
held in the intersampling interval with zero-order hold. This is
the typical situation encountered in practice. Furthermore, let

, denote the eigenvalues of the matrix
with positive real part. Let the resulting discrete LTI system

be

(21)

where and are functions of
.
In this section, it is implicitly assumed that the discretized

system is stabilizable, this is true for all but at most a countable
set of sampling times [26]. The critical sampling times where
there is a loss of stabilizability are not considered in what fol-
lows.

From the results in Section II, we have that, for each, there
is acoarsestquantizer that is logarithmic with base . Since

, must have the following expression:

(22)

This formula is saying that we need to quantize more finely
if we sample slower in order to maintain stability of a given
system. Since sampling is nothing but quantization in time, Sec-
tion III-A, we generalize the concept of density to measure the
coarseness of quantizers in spacetime, and derive a criterion
for optimality of sampling and quantization.

A. Density of Sampling and Quantization

Under the condition that in time we sample uniformly with
sampling time , the natural generalization of Definition 2.2 is
the following.

Definition 4.1: Given , , a CLF for
System (21), let denote the set of all quantizers that
solve Problem 2.1 for the given. For and

, let denote the number of levels thathas in the
interval . Define

of samples

is called the density of sampling and quantization of .
Note that the order in which the limits are taken is immate-

rial in the above definition, and that the (linear) density of sam-
pling is equal to , which is the sampling frequency, i.e., the
number of samples in the interval .

We can now define the couple of sampling time and
quantizer to be coarsest for quadratic stability if they minimize
the density of sampling and quantization over all quadratic CLF.
Formally, we have

Definition 4.2: The couple consisting of sampling time and
quantizer is coarsest for quadratic stability if

For a given , we know that the coarsest quantizer for quadratic
stability, denoted by , is logarithmic with base , where

is given by (22). Therefore, gives the smallest density
of sampling and quantization for the given, or in other words

with

Thus, in order to minimize the density of sampling and quanti-
zation we need to find the minimum of , with the optimal
sampling time given by , and the optimal
quantizer being logarithmic with base .

For a given , is nothing but the density of the grid of
discrete points in the continuumstate-space time that guar-
antees quadratic stability (of the discretized system). It provides
a measure of the complexity of the control action.

A visual interpretation is obtained by looking at
which is the number of boxes in the reference box

which guarantees quadratic stability. Therefore,
by minimizing over we are minimizing the number of
boxes in . This will be an important criterion in
the derivation of finite logarithmic quantizers from infinite ones.
A problem that will be addressed in Section V.

As a final note, we would like to suggest that the least dense
grid can be interpreted as the grid of minimum attention in the
sense of [20].

B. Optimal Density of Sampling and Quantization

The question is now the following: what is the optimal “least
dense” grid needed?

Theorem 4.1: has a unique minimum
at . The optimal sampling time satisfies the following
equation:

(23)

and the corresponding optimal quantizer is logarithmic with
base
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Fig. 3. Density versus sampling time for the caseF = 4; G = 1.

which is independent of the system.
Proof: Let , and consider the function

Clearly and are minimized at the same point.
Rewriting in terms of we have

which is minimized when is
maximized.

The derivative of with respect to is given by

We argue that this function has only one zero as follows. It is
easy to see that is positive for positive and close to 0,
while converges to 0 from the negative values as .
The second derivative of , given by

changes sign only once for . This is not difficult to show,
and left to the reader. Therefore, has only one minimum. It
cannot cross the axis more than once, because if it does then
it should also have a maximum since as ,
from the negative values.

It is easy to verify by substitution that, the derivative of
is equal to zero for

which implies that

and that the optimal density is equal to

is obtained by substituting in (22).
Note that the above theorem says that the product of the op-

timal sampling time, and the sum of the unstable poles of the
system is a constant independent of the system, and in this sense,
universal. Also note that at , is independent
of the system. This indicates that is the base of theuni-
versallogarithmic quantizer for a single input continuous time
linear system for which the density of sampling and quantiza-
tion is minimized. is then appropriately selected from (23).

Fig. 3 shows the logarithm of versus the sampling
time for the first-order system .

We would like to point out that the optimization of the density
seems also related to the optimal length of a block-code used to
code the control input levels needed for stabilizing the system.
This relationship is currently under investigation.

V. FINITE QUANTIZERS

In this section, we discuss how logarithmic quantizers with
countable levels of the Sections I–IV can be replaced by loga-
rithmic quantizers with finite number of levels and still maintain
practical stability. The results are for discrete time systems but
can be extended to sampled data systems with minor modifica-
tions.

Next, we define a finite symmetric quantizer, which with a
slight abuse of terminology we will simply call finite quantizer.
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Definition 5.1: A Finite Symmetric Quantizer (of order )
is a function which takes values in the finite set

and

A special class of finite quantizers is given by the following
definition.

Definition 5.2: A Finite -Logarithmic Quantizer (of order
) is a finite-symmetric quantizer where

where .

A. Relaxed Quadratic Stabilizability

We next define the notion of stabilizability we will use in
this section. This is a relaxed version of quadratic stabilizability
which we will callpracticalstabilizability. This concept is sim-
ilar to that used in nonlinear system literature [11]–[13], and
corresponds to what is called semiglobal practical quadratic sta-
bility.

The reason we need to abandon the notion of a trajectory
asymptotically converging to the origin, is presented in [1],
where it is shown that the set of initial conditions that give rise
to trajectories converging to the origin asymptotically have
measure zero. Instead, most of the trajectories will wander
either in limit cycles or chaotically in a neighborhood of the
origin.

Definition 5.3: System (1) is practically stabilizable, if there
exists a Lyapunov function , , such that,
for any compact set containing the origin, and any
with , there is a state-feedback
controller , function of and , such that
for all , and such that whenever .

By this definition, is an attractor of . Trajectories starting
in and outside will be attracted toward , and will even-
tually enter it after finite time, and, those starting in, never
leave it.

B. Stability With Finite Logarithmic Quantizers

We are now ready to state the main theorem of this section.
Theorem 5.1:If system (1) is stabilizable, then it isprac-

tically stabilizable by a Finite -Logarithmic Quantizer with
arbitrarily close to , and order large enough.

In particular, given , , with such that , and
such that

, the order of the quantizer, can be taken to be

where

Fig. 4. Descriptive relation among
 , 
 , E , andS . E represented in the
figure is the ellipsoid (in this case the segment) obtained for� = �.

and is the solution of a convex optimization problem (given
by (24)) which is a function of the problem data.

We devote the rest of this section to proving this theorem.
Note that, in order to prove Theorem 5.1, we need to provide a
quadratic Lyapunov function , . We use the
Lyapunov function obtained as in Section II-C-I by solving a
slightly perturbedMinimum Energy Controlproblem. We have
now a countable -logarithmic quantizer and we need to de-
scribe how to obtain a Finite-logarithmic quantizer out of it.
The construction of such quantizer is a function of the given sets

and .
1) Construction of the Finite Quantizer:Given we can al-

ways select arbitrarily among those for which

We plan to obtain a finite quantizer from the countable one as
follows: we start covering with the equivalence classes of
states induced by the countable quantizer. As shown in Fig. 4
these classes are stripes orthogonal to that get smaller and
smaller symmetrically with respect to the origin. Then, we stop
after some , essentially truncating the countable levels into a
finite number of them, while the control value zero is used in
the part of (or ) left uncovered.

In more detail, the structure of the finite quantizer is charac-
terized by

and the corresponding equivalent classes of states for which the
same control values is used.

We know from Theorem 2.1 that the class associated with
is given by

for

while the zero control value is associated to the stripe
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which cover the part of (or ) left uncovered by the other
stripes.

The two design parameters are (or the associated ) and
the order of the quantizer. is function of (or ), while
is function both and . In order for the finite quantizer to

cover , must be

From the construction, it is obvious that for any ,
we have that . Therefore,

the only set we need to be concerned about is (or its in-
tersection with ).

Now, let . By virtue of the truncation, the
control valuezerois used for any in the central stripe

It is clear however that will not be able to make
decreasing for all . Let denote the set of states in

for which the Lyapunov function is not strictly decreasing

Looking ahead, we will next show that is bounded, and its
dependence on implies that it can be made arbitrarily small.
Thus, its image under , which is the set of reachable states in
one step from with zero control, is also bounded and its size
also scales with. Therefore, both and can be included
in for any selecting small enough. This argument
implies that can be chosen arbitrarily small and within,
and therefore, it will be control invariant, since for any
either or .

2) Control Invariance of : To give an explicit characteri-
zation of it is convenient to make a coordinate transformation
so that is one of the basis elements and the others are or-
thogonal to it. Let

where the columns of form an orthonormal basis for the null
space of , and

where and . Let and
be the corresponding representation ofand in the new basis.
Let also . Finally, partition and accordingly

to

and

Then we can describe as follows.
Lemma 5.1:

and

For any the set

is an ellipsoid which degenerates to a point for .
Proof: See Appendix.

Since is a bounded ellipsoid for any , is bounded,
and, moreover, for .

We are now ready to describe how to find, i.e., so
that and .

Fig. 4 describes the relation among the various sets involved.
For clarity, is not shown in the figure, but it also must
be contained in . The result of next Lemma shows that it is
enough for to include to guarantee that .

Define the matrix to be

...
...

...
...

Lemma 5.2:Given any , the smallest such that
and is given by

where is the solution of the following LMI problem in and
:

(24)

Proof: We first describe how to compute the smallest
such that , we then show that in fact and
therefore .

We want to compute

subject to:

but is also given by

subject to:

(25)

It is easy to verify, and it is left to the reader that Problem (25)
is equivalent, having the same feasible set, to the following one:

subject to:

(26)
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Finally, given that no vector of the form , satisfies

(recall ), and the fact that the

constraint set is balanced ( belong to the set if
do), it is sufficient to search over the following constraint set:

but this set is equivalent to the set where the constraint
has been removed

This is once again due to the fact that any vector with is
not feasible, and any vector with can be re-scaled to one
with and vice-versa.

Problem (25) assumes now the following form:

subject to:

(27)

Consider the following two quadratic forms which appear in
the constraint set:

and

A well know result known as the -procedure [25] states the
following in the case of two quadratic forms:

if and only if there exists a positivesuch that

Therefore, our Problem (27) becomes

subject to:
(28)

which is an LMI problem that can be efficiently solved.
Substituting for into the constraint

for and solutions of Problem (28), we obtain

Let , note that . Then we have that the above
expression can be rewritten as follows:

which, after rearrangement becomes

(29)

Applying the -procedure again, we have that (29) holds if and
only if

which implies that . Thus .
Summarizing the development in this section, we have shown

that by selecting

with ,

While, any can be made control invariant by selecting
so that

Therefore, the Finite -Logarithmic Quantizer so constructed
practicallystabilizes system (1). This ends the proof of Theorem
5.1.

Comment: We would like to point out that Theorem 5.1
provides a practical way to implement a quantized output feed-
back controller design based upon the theory developed in this
paper.

VI. EXAMPLE

In this section, we report the results of an application of the
theory to the following second-order continuous time system:

with

We sample it at the optimal corresponding to the minimal
density grid and given by (23). in this case. We
use to perturb theexpensivecontrol Riccati solution,
and obtain .

The Riccati solutions for the state-feedback and estimator
problems are, respectively

and

and the associate directions of quantization are

and

We selected , and for both state-feedback
and estimator. With these values the resulting order of the fi-
nite quantizer is for both state-feedback and estimator.
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Fig. 5. Plant state evolution in closed loop.

Fig. 6. Quantized control values and quantized estimation error alongH .

This means that we need levels to cover both positive,
negative, and zero values, which correspond to 5 bit log-
arithmic converter.

Fig. 5 shows the continuous-time evolution of the plant states
starting from a random initial condition. We see that the state
does not go to zero asymptotically but rather stays very close
to it after the transient. This is the consequence of thepractical
stability. Fig. 6 show the quantized sequences of control input
and estimation error used in this case.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have developed the basis for a theory of
design of quantizers for SISO linear discrete-time systems. We
have shown that quadratic Lyapunov functions for the systems
induce a (countable) logarithmic quantization of controls or
measurements and of the system state-space. We went further

by looking for the best quadratic Lyapunov function that allows
for the coarsest logarithmic quantizer, to show that it is the same
as that arising in the solution of theexpensive controlLQR
problem. Based on the properties of theexpensive controlLQR
controller, we have derived a closed form expression for the
smallest logarithmic base compatible with quadratic stability
of the closed-loop system. The expression is exclusively in
terms of the unstable eigenvalues of system. Both quantized
state-feedback controller and estimator have been derived. The
results of the analysis of discrete-time systems are a basis for
the study of both sampling and quantization of continuous-time
systems. We have shown that there is a sampling time with
associated quantization that minimizes the density of both
sampling and quantization and still ensures stability. The
optimal sampling time depends exclusively on the unstable
eigenvalues of the system. Perhaps even more interestingly, the
base of the optimal logarithmic quantizer is independent of the
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system and thereforeuniversal. Finally, we have shown how
to construct logarithmic quantizers with only finite number of
quantization levels, which still achievespractical closed-loop
stability. This provided a way for a practical implementation of
the theory developed in the paper.

There are many possible directions of research that arise from
the results of this paper. Perhaps the most urgent one is the gen-
eralization to multi-variable systems. Another important issue
is to generalize the method to include performance objectives
other than just stability with decay rate. Given the tight con-
nection with LQR theory, at this point it seems natural to look
into quadratic type performance criteria. A perhaps not too re-
mote possibility is to obtain a quantized version of LQG con-
trollers. Also we have not considered the effects of noise as well
as the effects of other model uncertainties. Since the approach
proposed is essentially based on the idea of robust Lyapunov
functions, it is conceivable that it can be extended in principle
to nonlinear systems. Finally, we want to point out that the ap-
proach proposed can be applied to more general CLFs, as for
example polytopic CLF. This should lead toward smaller values
of at the expenses of increased complexity of searching over
these more general classes of CLFs.

APPENDIX

A. Proof of Lemma 2.2

Since , is characterized by the open interval
between the roots of the second order equation in

which are given by

From (2) is easy to see that the expression in the square root is
equal to . Thus, we have that

B. Proof of Lemma 5.1

is given by the intersection of with the set of such
that . In the new coor-
dinate

In order to prove the second statement, it is sufficient to recall
Property , and the fact that , since we are solving
the perturbed problem of Section II-C-I. and imply
that for any orthogonal to , is sufficient to make

. This, in the new coordinate system, implies
that and the result follows.
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