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Abstract

The problem of estimating scene contours by means of perceptual organization is

formulated in a probabilistic fashion. The goal of estimation is to compute a set of

contour descriptors which approximate every scene contour with high probability. A

hierarchy of contour descriptors designed for this purpose is proposed. Computation at

each level of the hierarchy consists of three basic ingredient: hypothesis generation by

means of grouping; hypothesis evaluation and pruning; and, where necessary, compres-

sion of equivalent multiple responses. A specific algorithm to enumerate, prune and
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compress contour-cycles in a graph is proposed. This algorithm can easily incorporate

feedback loops to prune the search which exploit global information.

1 Introduction

1.1 Previous work

Estimation of the contours of the objects in a visual image, based only on object-

independent (generic) information, is an important ingredient of many image analysis

applications. For certain classes of images, an important source of information to per-

form this task is given by the sharp variations of brightness perpendicular to the edge

which often occur in the vicinity of the boundaries between objects. However, esti-

mators based solely on this type of information are known to produce fragmented and

incomplete contour representations. To overcome this limitation, the human visual

system exploits certain geometrical relationships which typically exist between contour

fragments belonging to the same object. By detecting these relationships, human per-

ception is able to infer information about the scene not obtainable from brightness

variations alone. The Gestalt psychologists [16] have documented several of these ge-

ometrical properties: proximity, continuity, similarity, closure, symmetry. In the last

fifteen years, computer vision algorithms have been proposed to detect these geometri-

cal relationships in order to aggregate contour fragments into more complete and more

global contour representations. This grouping process, often referred to as perceptual

organization, is based on the statistical assumption that these geometric relationships

between contour fragments are much more likely to occur when these fragments indeed

belong to the same contour (non-accidentalness principle) [33, 18]. A good review and

classification scheme for perceptual organization work in computer vision can be found

in [25].

The difficulty of detecting geometric relationships for perceptual organization and

contour estimation varies greatly according to the scale at which these relationships
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manifest themselves. Proximity (by definition) occurs at a small scale and is quite

easy to incorporate into contour estimation. Smoothness is also a quite local property.

Co-linearity and co-circularity can occur both at local and a global scale depending on

the size of the gap between contour fragments. Many contour estimation algorithms

exploit this type of relationship [23, 21, 22, 13, 12, 17]. Convexity and closure are

global properties of contours [15, 9], as is symmetry [5, 6]. Still at a higher level, one

has properties involving the occlusion relationship between sets of contours [21, 22,

32, 10, 31]. Since the geometric relationships used for perceptual organization provide

a context to reduce contour uncertainty, the scale at which these relationship can be

detected will be called context scale.

The descriptors computed by perceptual organization can be organized into a hier-

archy according to context scale. At the bottom level sits the brightness image whose

measurements span one single pixel. Then, one has point-like contour descriptors ob-

tained by detecting brightness variations in small neighborhoods. These point-like

descriptors can be composed into extended contours by using proximity, co-linearity,

etc. At the next stage, these contours can be composed into ribbons by detecting sym-

metry or parallelism, and so on. Several contour hierarchies of this type, generated by

means of recursive grouping of contour fragments, have been proposed [19, 26, 8, 20, 3].

Hierarchical representations provide a means to resolve contour uncertainties with the

necessary context information by propagating these uncertainties up to the level where

the context scale is sufficiently large to resolve them reliably [8, 3].

An aspect shared by most perceptual organization algorithms is that hard decision,

if any, are taken only after a substantial amount of distributed "soft" information has

been collected and processed. For instance, the Hough transform and similar methods

collect votes in a suitable contour parameter space and then detect the most voted con-

tours [12]. Voting methods can also be used to detect sets of contour fragments with

similar attributes [26]. Some approaches estimate explicitly the probabilities of con-

tour hypotheses and use these estimates to focus the search [24, 7, 5, 11, 9]. Dynamic
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programming can be used to detect contours which minimize a cost function given by

a sum of local contributions [27, 29, 2]. Relaxation labeling is a powerful iterative

technique to propagate and accumulate soft information [23]. Convolution with suit-

able kernels is a biologically motivated approach for accumulating evidence of contours

[13, 17]. Recently, a method based on spectral graph theory has been proposed whereby

the similarity between image regions is encoded in a soft fashion into the weights of a

graph before computing a segmentation of the image [28, 17]. Approaches motivated

by statistical physics encode the geometric relationship between contour fragments into

coupling constants between interacting entities and then formulate perceptual organiza-

tion as a combinatorial optimization problem which can be solved by using techniques

borrowed from statistical mechanics [14, 10]. A combinatorial formulation by means of

integer programming has also been proposed [30, 31].

1.2 Contributions of this paper

Ideally, a contour estimation algorithm should compute a set of contour descriptors

which contains an accurate approximation to every contour in the scene. Also, it would

be desirable to have probability estimates associated to these contour descriptors. A

difficulty with perceptual organization is that these requirements can easily result in

problems of combinatorial complexity, unless appropriate assumptions or restrictions

are made. To our knowledge, very few algorithms have been designed by requiring

that all the contours in a certain class are estimated correctly with high probability

[15, 5, 4, 3].

A perceptual organization algorithm whose goal is to compute a complete repre-

sentation, namely one which approximates all contours in a certain class with high

probability, has to somehow search exhaustively the combinatorial space given by all

possible groupings of contour fragments. Thus, to control computational complexity, it

is necessary to design ways to focus the search without sacrificing completeness.

The basic method to control the complexity of the search, which is widely used, is to
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prune hypotheses with low probability. The way this is done depends on the structure

of the specific algorithm. For instance, in a tree search one can prune nodes with low

probability.

A cause of combinatorial explosion of the search which is often overlooked is given

by the presence of multiple responses to the same contour. In fact, it Is usually the case

that in order to ensure completeness of the final representation one has to allow for

the possibility that certain portions of the contours are represented locally by multiple

contour fragments. Pruning out some of these fragments based only on local information

can result in false negatives. Therefore, one has to carry these redundancies through the

grouping process up to a point where it becomes possible to compress the set of multiple

responses without disrupting the construction of a global approximating descriptor of

the contour [2, 3].

In this paper we describe the contour hierarchy which we have been studying in the

last few years and which consists of two graphs. At the lower level we have an edgel-

graph which is used to compute polygonal approximations of regular visible contours

(Section 3). These contours are then used to construct a contour-graph (Section 4)

whose arcs can represent "invisible" contour fragments, namely fragments across which

brightness variations are small. We propose an algorithm to search efficiently all closed

and maximal contours in this graph (Section 5). This algorithm allows to incorporate

rather arbitrary probabilistic information at any context scale. Any function defined on

the collection of contour-paths can be used to guide the search (compare for instance

with dynamic programming algorithms which assume that the function is a sum of local

terms). Multiple responses are detected and compressed without causing false negatives.

Under appropriate assumptions, this algorithm computes a complete representation of

the contours with high probability.
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2 The problem of contour estimation

Let us consider the problem of generating a set of contour descriptors of minimal com-

plexity such that, with high probability, every scene contour is approximated by at

least one contour descriptor in the computed representation. The set of scene contours,

namely the set of "true" planar contours between objects in the scene, is a random

variable denoted F. This random variable takes values in the collection of subsets of

some class of contours r, that is, F c r. Section 2.3 describes some contour classes

r. The set of contour fragments, denoted r, is given by the set of all sub-contours of

F. The observed image I is a random variable jointly distributed with F. The contour

estimation algorithm computes from I a set of contour descriptors ac(I) C P. Here, f

is some class of contour descriptors dense in r. That is, for every y E r and e > 0

there exists 'y E f such that d(y, ') < e, where d: r x f -X [0, oc] denotes a distance

function. Also, let d: F x I -+ [0, oo] be a distance function defined on the class of

contour descriptors.

Let P,(il I) be the conditional probability that there exists 3y E F such that d(y, a) <

c given that the image I is observed. That is, P,(y I) is the conditional probability

that the scene contains a contour fragment e-near to I. The map ('i, I) - PE(I jI) is a

characterization of the estimation system under consideration, namely it describes the

relationship between the three components of the system: the set of scene contours, the

observed image and the contour approximators.

2.1 A brute-force algorithm for contour estimation

If the map (b, I) t- P,( lI) is known then the following brute-force algorithm can be

used to compute a set of contour descripors which approximates every scene contour

with guaranteed confidence.

1. Compute an e-covering F' C r of r. That is, for every y c r there exists y c Ie,

such that d(y, 'i) < e (this step of the algorithm is independent of I).
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2. For each 5y E If evaluate the probability Pe,(lI). Let F be the set of all 5' E F

such that P,(IjI) is greater than a threshold 6.

3. Compute a minimal e-sampling F* of F. That is, i* is the smallest complexity

subset of F with the following property: for every y E C , there exists 5* E ]* such

that d( y, 5*) < e.

Let fIFE denote the cardinality of F'.

Lemma 1 The set of descriptors F computed by the second step of the brute-force

estimation algorithm is an e-covering of r with probability at least 1 - IfE5.

Proof. Let Be(i) be the set of -y c r such that d(?, a) < e. If F is not an e-covering

of F then there exists -y E r such that

y JU B,)

That is, since

C U Be() =r,

if F is not an e-covering of F, then there exists ' E I F \ F such that ?y E Be(a) and

therefore F n Bs,() : 0. Thus, the event "F is not an e-covering of Pr is contained in

the union over all 5y E IF of the events "r n Be (I) ) 0 and ' V F'". The conditional

probability given I of each of these events is at most S. Thus, by using the union bound,

the probability given I that F is not an e-covering of r is at most Ifl6. E]

Theorem 1 If for any y E r and 1, 52 E F,

d(y, '2) < d(y, ¢1) + d(¢l, 2), (1)

then the set of descriptors F* computed by the brute-force estimation algorithm is a

2e-covering of r with probability at least 1- -Ifrl.
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Proof. Lemma 1 ensures that, with probability at least 1 - r, 16, for every y E r there

exists I E f such that d(y, a) < e. Since /* is an e-sampling of F, there exists A* E r*

such that d(Q, y*) < e. Then, from assumption (1), d(a, a*) < 2e. [

It should be noted that Lemma 1 and Theorem 1 still hold if the set of scene contours

F is replaced with r. That is, the brute force algorithm computes a 2e-covering of the

set of all contour fragments in the scene with probability at least 1 - lIE15. Notice

also that the distance function d is not required to be symmetric. For instance, one

can define d in such a way that whenever i1 is a sub-contour of 12, then d(,l, 12) = 0.

For instance, one can let d(Ol, 12) be the directed Hausdorff distance from 1l to 12 (see

Section 3.3). This property, together with assumption (1), guarantees that a contour

descriptor 1 which is an accurate approximation of a scene contour, is also a good

approximation of any fragment of this scene contour.

The three steps of the brute-force algorithm represent three important components

of estimation, namely hypothesis generation, hypothesis evaluation and compression.

These are the basic ingredients of the contour estimation algorithms described in the

rest of the paper.

2.2 The hierarchical approach

Thanks to certain properties of the estimation system, there exist more efficient meth-

ods to solve the problem than the brute force algorithm just described. Hierarchical

representations and perceptual organization provide one such methodology. Roughly

speaking, the basic idea is to construct a nested sequence of contour descriptor classes of

increasing complexity: F 1 C f2 C ... C f,. The hierarchy which we have been devel-

oping during the last few years consists of the following contour descriptors: [brightness

data] -+ gradient vectors -+ edgels -+ edgel-arcs -4 edgel-paths -+ contour primitives -+

contour-arcs -+ contour-paths. Fig. 1 illustrates the layers of this hierarchy computed

from a 16 x 16 image fragment of a telephone keyboard. A coarser characterization of

this hierarchy is obtained by viewing these layers as different stages of the computation
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of two graphs, the edgel-graph (gradient vectors, edgels, edgel-arcs, edgel-paths), and

the contour-graph (contour primitives, contour-arcs, contour-paths). The first graph

feeds into the second, since contour primitives, which are the vertices of the contour-

graph, are polygonal contours obtained by splitting the edgel-paths computed in the

edgel-graph.

Each "dictionary" Fi yields a contour estimation problem and this hierarchy of

problems is solved in a bottom-up fashion. At each level, the same basic ingredients

are used to solve the estimation problem. These ingredients correspond to the three

steps of the brute force algorithm described earlier: hypothesis generation, hypothesis

evaluation and, if applicable, "metric" compression. In the proposed contour hierar-

chy, metric compression is applied to the edgel-path and contour-path levels due to

the arbitrary cardinality of these composite descriptors which leads to a combinatorial

explosion of the number of hypotheses due to the presence of multiple responses to the

same contour. In most layers, hypothesis generation (enumeration) is performed by

composing/grouping the descriptors of the previous levels. Contour primitives are an

exception since they are obtained by means of splitting. The descriptors of the bottom

level F1 (gradient vectors) are simple enough that they can be explicitly enumerated

efficiently. As for hypothesis evaluation, since the map (', I) X- P,(/I) is usually

not available in practice, these probabilities are estimated by constructing probabilistic

models of the composed descriptors in terms of the geometric and photometric relation-

ships of their constituents. The reason for having so many layers in the hierarchy is to

have as many entry points as possible for complexity-controlling feedback loops, such

as hypothesis evaluation via probability estimates and "safe" elimination of redundant

hypothesis (metric compression).

2.3 Classes of contours

The projection on the image plane of a scene contour -y can be represented by a planar

curve. The image of this curve is a subset of the real plane and will be called the trace
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(a) Brightness (b) Gradient vectors (c) Gradient vectors (d) Edgels
data (pruned)

(e) Edgels (pruned) (f) Edgel-arcs (g) Edgel-arcs (h) Edgel-paths
(pruned)

(i) Emission points (j) Contour primi- (k) Contour-arcs (1) Contour-cycles
(i) Emission points (j) Contour primi- (k) Contour-arcs (1) Contour-cycles

tives

Figure 1: Hierarchy of contour descriptors. The edgel-graph from which edgel-paths are
computed is shown in Fig. 1(f). The contour-graph from which contour-cycles are computed
is shown in Fig. 1(k).
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of 7y and denoted T(y). The simplest model for a scene contour, called flat contour, is

given by a contour with zero curvature, infinite length and brightness model constant

along the contour. The set of flat contours is denoted Fo.

For simplicity, we focus on contour brightness models given by a blurred step dis-

continuity. Such contours are characterized by the following attributes: the orientation

of the contour with respect to the x-axis; the distance of the contour from the origin;

the brightness intensities on the left and right sides of the contour, denoted y.bl and

y.b 2; the blur scale of the one dimensional discontinuity profile across the contour, -y.s;

the intensity of the noise (e.g. its variance), denoted -y.v. The blurred step brightness

model for a flat contour is given by:

I(i, j) = (i, J3') + r(i,j), (i, j) C D(y) (2)

where

3(i,jKy) - .b1 + (3y.b2 - y.bl) . erf ((-i)); (3)

((i, j) is the signed distance from T(ty) to the the pixel (i, j); 'r is a noise field assumed

to be i.i.d. and gaussian with variance -y.v; erf(.) is the error function given by

1 e 2du;

erf(x)= 2S_w e2du;

D(ay) C Z x Z is the domain of 3y, namely the set of image measurement affected by

the presence of the contour 3y in the scene. The signal-to-noise ratio of y is given by

1-.bl - y.b2 1/'y.u. If this is large enough then the contour is said to be visible.

A more general class of contours, denoted rCl and called quasi-flat contours, is given

by contours with bounded curvature and with bl, b2 , s, v slowly varying along the

contour. Notice that the precise definition of rl depends on the upper bound on

curvature and the upper bounds on the rate of variation of b1, b2 , s, v. Finally we denote

by r2 the contours obtained by composing a sequence of quasi-flat visible contours.

Contours in r2, which are called composite, can contain discontinuities such as corners

and invisible portions (see Fig. 2).
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Figure 2: The contour of the illusory square floating on top of the four black disks is

composed of eight flat visible contours. Notice that the domains of these contours are

pairwise disjoint.

3 The edgel-graph

This section briefly describes the computation involving the edgel-graph which results

in a representation of the quasi-flat visible contours in the scene by means of polygonal

lines. This includes the lowest four levels of the hierarchy: gradient vectors, edgels,

edgel-arcs and edgel-paths. A more complete description of this work can be found in

[2, 3, 4].

3.1 Gradient vectors

Gradient vectors are obtained by estimating the gradient of the brightness intensity

in square blocks of pixels. A gradient vector g is characterized by six parameters

(attributes): g = (i, j, n, 0, p, v). The integers i, j, n specify the square block of pixels

used to estimate the gradient vector. The pair (i, j) specifies the location of the center

of the block and n its size. 0 denotes the perpendicular direction to the estimated

brightness gradient and p its magnitude. Finally, v is the L 2-norm of the residual of

the linear fit. The attributes of a gradient vector g will also be denoted g.i, g.j, etc.

A collection of gradient vectors is computed by least-square fitting a linear function

to the brightness data in each block of pixels of size n, where n varies in some set. In

the current implementation only one size, n = 3, is used. Fig. 1(c) shows the gradient
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vectors computed from the data in Fig. 1 (a). If the center i, j of the block is sufficiently

close to a visible scene contour and if the blurred step model (2), (3) is assumed to be

valid, then, by expanding (3) into its Taylor expansion, the data inside the block can

be modeled as a linear function plus gaussian noise. If the signal-to-noise ratio (SNR)

of the scene contour is sufficiently high then, with high probability, the SNR of the

estimated gradient vector g, given by g , will also be high. By using the above model

for the data, one can convert the SNR of g into an estimate of the error of the edge

orientation. A threshold is then applied to the estimated orientation error obtained in

this way. In Fig. 1(c) the gradient vectors with estimated orientation error less than

30 ° are shown.

3.2 Edgels

For each gradient vector g, a set of edgels is estimated by fitting a cubic polynomial

constant in the direction of g to the brightness data in a rectangular region of size /il in

the direction of g and 21l in the direction perpendicular to g. In general, several edgels

can be obtained from the same gradient vector by using different values of l± and ll.

In the current implementation, only one value is used, 1l = 2.0, ill = 3.0. As in the

estimation of gradient vectors, it is assumed that within the fitting region the blurred

step model (3) can be approximated by its Taylor expansion of the appropriate order

(third order for edgels).

From the four estimated parameters of the least-square fitted cubic polynomial

one can compute estimates of the position p of the contour; the blur scale s and the

brightness values on the two sides of the contour, b1 and b2. Thus, an edgel e is specified

by the following attributes: e = (i, j, n, 11, I, 0, s, b1, b2, v). The parameter p E R2 is

the estimated projection of (i, j) onto the contour and v is the L 2-norm of the residual

of the cubic fit. Similarly to gradient vectors, the set of edgels is pruned by computing

the expected error of some of its attributes and by thresholding out edgels with large

errors. This guarantees that the edgels computed from regions near to a scene contour
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which is quasi-flat and visible are retained with high probability.

3.3 Edgel-arcs and edgel-paths

An edgel-are is a pair of edgels (el, e 2) such that (el.i, el.j) and (e 2.i, e2.j) are nearest

neighbors. For any edgel-arc a = (el, e 2), let u(a) denote the straight line segment with

end-points el.p, e2, p. The set of all segments o(a) computed from Fig. l(a) is shown in

Fig. 1(f).

Pruning is more complicated for edgel-arcs than it is for the previous levels. In fact,

the purpose of pruning edgel-arcs is not just to reduce the number of hypotheses but

also to ensure that a complete set of paths can be computed efficiently in the associated

edgel-graph. To see why computing a complete set of edgel-paths is not an easy task,

notice that an edgel-path is a composite descriptor containing an arbitrary number of

edgel-arcs. Thus, the total number of edgel-paths in the graph is combinatorially large

(see Fig. 1(f)).

An approach to deal with this difficulty is to remove some edgel-arcs so that the

remaining subgraph does not contain divergent bifurcations [2] or, similarly, so that

it is stable [3] or compressible [4]. Roughly speaking, an edgel-graph is said to be

compressible if any two paths between any two vertices are close to each other. In

a compressible graph it is possible to compute efficiently a small set of paths which

approximate every other path. Fig. l(g) shows the compressible graph computed from

Fig. 1(f).

Clearly, the hard part of this approach is to prune the edgel-graph into a compress-

ible graph in such a way that there remains at least one approximating path for every

scene contour satisfying certain sufficient conditions. A class of scene contours which

satisfies these sufficient conditions are quasi-flat visible contours, that is, contours with

no singularities (corners or junctions) and with sufficiently large signal to noise ratio.

It can be proved that a set of edgel-paths Fed*p can be computed which approximates

each quasi-flat visible scene contour with high probability [4]. More precisely, if ?y is
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U2

Figure 3: The directed Hausdorff distance from U1 to U2, denoted d(U1 -5 U2), is the

maximum distance from a point in the set U1 to the set U2 . If U1 and U2 are two polygonal

lines and d(U1 -+ U2) is small but d(U2 -* U1) is large, then U2 is a covering approximation

of U1 which is in general "longer" than U1.

a scene contour, then with high probability (which depends on the total length of the

contours and their signal-to-noise ratio) there exists r E fed.p* such that

d(T(-y) -< T(f)) < ,

where e is a small constant and d(T(y/) -X T(f)) is the directed (asymmetric) Hausdorff

distance from T(y) to T(j) defined by (see Fig. 3):

d(Ul - U2 ) = maxd(p1 -X U2)= max min I P1- P2l. (4)
plEU1 piEU1p 2 CU2

It should be noted that the distance in the other direction, d(T(Q) -5 T(y)) is arbitrary,

which implies that, roughly speaking, the computed contour descriptor can continue

beyond the end-points of the scene contour.

4 The contour-graph

The set of edgel-paths fedp computed from the edgel-graph is used to construct a

contour-graph whose vertices are given by contour primitives obtained by splitting

edgel-graph at points where local characteristics of the contour (such as orientation

and brightness) vary rapidly. Ultimately, scene contours will be represented by a set of

loops computed from the contour-graph.
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(a) Lamp image (b) Left side of lamp (c) Polygonal descriptors
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(d) Emission points (e) Contour-arcs

Figure 4: The highlighted polygonal line in (c) needs to be split and composed with other

contour primitives in order to reconstruct the whole contour of the lamp.
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3 C^

Figure 5: An edgel-path polygonal descriptor CE Fed.p' which generates four contour

primitives. Three adjacent emission points are present on a and ' is cut in correspondence

of the middle one.

4.1 Contour primitives

Quasi-flat visible contours can be used to compose more general contours models con-

taining corners, junctions and invisible portions [1] (see Fig. 2). However, since the

polygonal approximator o E Ped p of a regular visible contour -y computed from the

edgel-graph might be "longer" than y (see Fig. 3), it is necessary to consider each

point on y as a candidate end-point of 'y. For instance, consider the marked T-junction

in Fig. 4(b). This junction sits at the intersection between the left side of the lamp

and the top edge of the white strip in the background (which is partly occluded by

the lamp). Notice that a portion of lamp contour and a portion of the strip contour

have been merged into the same polygonal contour descriptor (highlighted in Fig. 4(c))

and that the junction corresponds to a high curvature section of this polygonal line.

Clearly, the portion which approximates the lamp contour needs to be detached from

the other contour fragment and composed with pieces of other polygonal descriptor in

order to reconstruct the whole contour of the lamp. In order to do this it is necessary

to hypothesize an end-point in the neighborhood of the marked corner of the polygonal

descriptor.

Fig. 4(d) shows all the points which have been hypothesized as candidate end-points

of regular visible contours by the current implementation of the algorithm. These points

are called emission points since the following stage of the algorithm searches for good

contour continuations by "emitting" lines from these points. Notice that two emission
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T(C /ly CC)
T T~~~~~~~~~~~~~~cl) ~~~~T(c2 )

Figure 6: A contour-arc a = (Cl, c2). Its trace T(a) is given by T(cl) U (cl, c2) U T(c2 ).

The estimated probability PE(a) depends on 11, 12, Cl, ca2, and the brightness values b(cl)

and b(c2).

points exist in correspondence of the marked T-junction. In order to be considered as an

emission point, a point on a polygonal descriptor must exhibit rapid change in some local

attributes of the contour such as orientation or brightness values. Most of the emission

points in Fig. 4(d) correspond to high curvature points of the contour. Emission points

are also hypothesized where the brightness contrast of the contour descriptor varies

rapidly. In fact, this contrast change is an indication that the descriptor might continue

beyond a scene contour and into a homogeneous region (because of noise) or that the

brightness on one of the two sides of the contour has changed.

Small sets of adjacent emission points on a polygonal descriptor are clustered to-

gether and the descriptor is cut at the center of the cluster (see Fig. 5). Two contour

primitives are created for every fragment of a polygonal descriptor, one primitive for

each side of the descriptor. Thus a contour which separates two regions in the image

is represented by two contour primitives, one for each region. The set of all contour

primitives obtained in this way is denoted C.
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4.2 Contour-arcs and the contour-graph

A contour-arc is a pair a = (c1, c2) E C x C representing the hypothesis that the scene

contains a contour near the descriptor obtained by concatenating c1 with c2. If, for the

sake of simplicity, only linear interpolation between cl and c2 is considered, then the

polygonal line associated with the contour-arc a is given by T(cl) U U(cl, c 2) U T(C2)

where T(cl), T(c2) are the polygonal lines associated with cl and c2 and uC(cl, c2) is the

straight-line segment connecting the head point of T(ci) to the tail point of T(c2) (see

Fig. 6). Similarly, the polygonal line T(ir) associated with a contour-path r, that is a

path in the contour-graph (C, C x C), is given by T(cl) U u(cl, c2 ) U T(c 2) ... U T(cn),

where cl,.. ., cn are the vertices of 7r.

For any y E r and contour-arc a, let d(-y, a) be the distance between y and a given

by:

d(y, a)= min max lip - p(p) 1,
pEH(y,a) pET(y)

where H(y, a) is the set of all homeomorphisms between T(y) and T(a). Notice that

d(y, a) is greater or equal to the Hausdorff distance between T(y) and T(a). Similarly,

for any path 7r, let

d(y,7)= min max lip-/(p)IH, (5)
EcLH(y,,-) pET(,)

where H(y, 7r) is the set of all homeomorphisms between T(y) and T(ir).

For every contour-arc a E C x C, let PE(a) := P(a I) be the probability that there

exists a contour fragment in the scene, ?y E r, such that d(y, a) < e. Similarly,

P,(wr) := P,(7rlI) is the probability that there exists y E F such that d(y, 7r) < e.

Lemma 2 Let 'y E F, and let 7r be a path such that d(-y, 7) < e. If a is an arc of wr,

then there exists Iy' E r such that d(y', a) < e. Similarly, if 7r' is a sub-path of wr, then

there exists .y' E r such that d(y', wr') < e.

Proof. Let , E H(y, 7r) be the homeomorphism which acheives the distance d(?y, r)

and let ?y' be the sub-contour of y defined by T(a) = /u(T(-y')). Clearly, d(y', a) <

d(y, 7r) < e. Similarly for the other part. O
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A crucial component of the proposed approach to contour estimation consists in

finding approximations to the probabilities P6 (a) and P,(-r). In principle, these prob-

abilities depend on the whole image I but, presumably, one can construct an approx-

imation P6 (Tr) to P,(wr) which depends on a small set of localized "features". These

features might include geometric relationships between the vertices of 7r; (recall that

each such vertex is a contour primitive); brightness measurement in the neighborhood

of T(wr); other contour paths having a vertex in common with 7r and their geomet-

ric relationship with 7r itself; etc. Clearly, the accuracy by which P/(7r) approximates

P, (wr) increases if more features are included in the model. Note that the problem of

constructing approximations of P6,(r) can be subdivided into two parts: selecting an

appropriate set of features {fl,..., f } and estimate the function Pc(fi, ... , f,) which

"best" approximates P,(r). It is conceivable that the latter task might be carried out

by means of training.

It should be noted that the contour descriptors computed at the various level of

the hierarchy serve a dual purpose. In fact, besides the obvious role of approximators

of scene contours, they also provide a means to parameterize the probabilities P6 (7r).

Thus, descriptors with large spatial extent can effectively be used to incorporate global

information efficiently. For instance, two co-linear contour fragments can effectively

instantiate an hypothesis of an invisible contour fragment interpolating between them.

The probability of this hypothesis can be expressed in terms of the geometric relation-

ship between the two visible fragments.

We now describe a simple model to approximate P6 (a), which is used in the current

implementation of the algorithm. This model is similar to the one proposed in [9],

except that in our model the sum of the probabilities of the arcs incident from a vertex

is not normalized to one. The reason for this is that these probability estimates will

be used for pruning rather than detection of maximum likelihood cycles. Therefore,

as explained later, it will be assumed that our probability estimates /P(a) are upper

bounds to the true probabilities P6 (a).
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The probability estimate P,(a) depends on the following features (see Fig. 6):

* The lengths 11 and 12 of the longest straight line segments which can be fitted to

the polygonal lines T(cl) and T(c 2) with a given upper bound on of the fitting

error (see Fig. 6).

* The length of the straight-line interpolant u(cl, c 2).

* The two orientation changes a, and ac2 induced by the interpolation.

* The difference Ib(ci) - b(c 2)l in the estimated image brightness on the region side

of the two polygonal descriptors c1 and c2.

The estimated probability P/ (a) is computed by considering three possible rules for

composing contour primitives into a composite contour. These rules correspond to three

possible reasons for which a contour is not represented by a single contour primitive

(compare again with the model proposed in [9]).

* The contour was originally connected at the edgel-path stage and was split during

the computation of the contour primitives. In this case the length of U(cl, c2) is

zero. The probability estimate PE(a) is set to a very high value (1 in the current

implementation).

* The contour is split because of a sharp orientation change (corner). We expect

potentially large values of al, and &2 but small values of Ib(cl) - b(c 2)l and of the

length of cr(c1 , c2).

* The contour is split because of a loss of contrast. The length of a(cl, c 2) can be

large but the angles a 1 and a 2 should be small.

A probability estimate is computed for each of the hypotheses and PE(a) is set to the

largest of these values.
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Every contour-arc whose probability estimate is less than a threshold 3 c.a. is pruned

out. Let A be the set of remaining contour-arcs. The main property of the contour-

graph (C, A) is described by the theorem below. It is assumed that the probability

estimates P/(a) are upper bounds to the true probabilities Pe(a). Recall that a contour-

graph is said to be an e-covering of r if for every y E r there exists a path 7r in the

contour-graph such that d(7, w) < c. Let I - 6,(C) be the probability that (C, C x C)

is an e-covering of F.

Theorem 2 Let us assume that PE(a) > PF(a) for all a C C x C. Then, with probability

at least

1 - j(C) - C c.a.,

(C, A) is an e-covering of r.

Proof. Let P(C, C x C) denote the set of paths in (C, C x C). For any 7r E P(C, C x C),

let BE(7r) be the set of y E r such that d(7, r) < E. Let Fo C r be the set of contour

fragments in the scene which are e-covered by the graph (C, C x C):

r = rn U B,(T).
7rEP(C,CxC)

First, let us prove that the probability that (C, A) is not an e-covering of Fo is at most

ICU2 c.a.. The proof is similar to the proof of Lemma 1. If (C, A) is not an e-covering of

F0 , then there exists y E F0 such that

at U ronBe(W),
'rEP(C,A)

where P(C, A) C P(C, C x C) denotes the set of paths in (C, A). Therefore, since

' E ro: U ro n B(Tr),
7rEP(C,CxC)

if (C, A) is not an e-covering of F0 , then there exists a path 7r E P(C, C x C) \ P(C, A)

for which F0 n r E B,(wr) and therefore F0 n BE,(r) : 0. Since 7r ¢ P(C, A), there exists
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an arc a of Xr such that a ¢ A. From r 0 n BE,(r) z{ 0 and Lemma 2, it follows that

0ro Bs(a) f 0. Thus, the event "P(C, A) is not an e-covering of Fo" is contained in the

union over all a E C x C of the events Toa n Be(a) :{ 0 and a ¢ A". Since Pe(a) > P (a),

the conditional probability given I of each of these events is at most 5c.a.. Thus, by

using the union bound, the probability given I that (C, A) is not an e-covering of Fo

is at most C 25c.a.. The probability that ro0 : r is at most 6,(C) so that, by using

the union bound again, the probability that (C, A) is not an e-covering of r is at most

de(C) + |C |2 c.a.. [

Fig. 7 illustrates the covering properties of the contour-graph (C, A) guaranteed by

Theorem 2. Fig. 7(c) shows the contour-graph (C, A) obtained by setting 6c.a. equal to

0.005. The bottom part of the figure shows a cycle (selected by hand) in (C, A) which

approximates the contour of the lamp in Fig. 7(a). All the contour-arcs incident from

the vertices of this loop are also shown to illustrate the local ambiguity of this contour

representation (i.e., notice the high degree of the vertices). Observe that large portions

of this contour are invisible and that the local ambiguity of the contour representation

is mostly caused by the presence of nearby parallel contours belonging to the two holes

in the lamp. Notice also the presence of multiple nearby sub-paths along the lamp

contour which illustrates the redundancy of the local contour-arc representation. Many

more multiple responses to the lamp contour are present in the whole graph (C, A)

(Fig. 7(c)).

5 Computing the cycles of a contour-graph

The last level of the hierarchy approximates scene contours by means of cycles in the

contour-graph (C,A). A cycle represents a complete contour of an object or of a

surface patch. It should be noted that by adding one special vertex c, to the graph

and connecting it to every other vertex in both directions, it is possible to represent

every path as a cycle. An arbitrary path (co,... , cl) in the original contour-graph A is

represented in the extended contour-graph by the cycle (co, o,..., c, c,). Notice that
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(a) Brightness data (b) Edgel-paths (c) Contour-graph

/_: '. :

Figure 7: Contour-arcs near the lamp contour (see the text). The gray level of each
contour-arc is proportional to the estimated probability P](a).
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in the extended contour-graph a subtle difference exists between the paths (co, ... , cl)

and (coo, o, ... , C1, coo). In fact, the former represents the assertion that the scene

contains a contour fragment which is close to the polygonal line associated with the

path, whereas the second one represents the assertion that the scene contains a complete

contour close to the same polygonal line. A contour is complete if it is maximal, that is,

if it is not a fragment of a larger contour. An open contour is complete if, for instance,

it belongs to an object whose projection on the image plane is not wholly contained

inside the image. The probabilities P,(.) in the extended graph are defined accordingly.

Thus, for instance, if a = (c, co), then P6 (a) is the probability that c is the last contour

primitive of a maximal contour-path.

The proposed approach to computing the cycles in a graph is motivated by two

reasons. Firstly, the difficulty encountered by local approaches to contour estimation

suggests that, in order to construct good approximations of the probabilities Pe(Tr), it

is necessary to include global features of the path 7r in the parameterization of Pe(wT).

In other words, it does not seem the case that the contour estimation problem can

be modeled accurately by decomposing P(T7r) into the product of local independent

contributions, such as the probabilities Pe(a) of the arcs of 7r. Accurate estimation

of P(7r) is important to prune out a sufficiently large number of hypotheses and at

the same time have high confidence that all scene contours are detected. If hypothesis

evaluation has to be based on global features of the path, then the hypothesized path

must be represented explicitly in their entirety, which rules out standard methods such

as dynamic programming.

Secondly, our experimental work indicates that contour-graphs computed by using

the method explained in Section 4 exhibit the same multiple-response phenomenon

which occurs in the edgel-graph representation. That is, there exist bifurcations in the

graph which do not lead to substantially different contour-paths. For long paths, this

causes a combinatorial explosion of the number of similar paths which approximate the

same scene contour. Thus, the cycle detection algorithm must allow for the compression
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of similar equivalent paths in order to avoid this unnecessary complexity. Again, this

calls for an explicit representation of each path which is being hypothesized.

5.1 Regular paths

Let (C, A) be a contour-graph. A path 7r - (co,..., cl) in this graph is said be a walk

if co 4 cl and a loop if co = cl. A walk is said to be simple if all its vertices are distinct;

a loop (co,..., c1-l, Co) is simple if the path (co,... , cl-) is a simple walk. The set of

all walks and of all loops are denoted W and L respectively. The set of all paths is

P = W U L. Simple walks and loops are denoted Ws and Ls and the set of simple paths

is Ps = WsU Ls.

Two loops 7r - (cO,... , cl), 7r' - (c, ... , cl), are equivalent, 7r _ r', if they have the

same set of arcs or, equivalently, if there exists an integer j such that ci -= C(ij)mod ' A

cycle is an equivalence class of loops. Thus, the set of all cycles is given by the quotient

of L by the equivalence relation, L/--.

Notice that all the loops in the same equivalence class represent the same scene

contour. Thus, to avoid having the same contour being represented more than once, we

need to select a representative loop in each equivalence class. To do this, let us assign

an arbitrary linear order to the set of contour-primitives C and let p C -+ {1,... , N}

be the bijective map which assigns to every c c C its order rank.

The end-points co and cl of a non-zero length path 7r = (co,..., cl) are called the

external vertices of 7r. The other ones are called internal vertices.

Definition 1 A path wr = (co,... , cl) is said to be p-regular or simply regular, if it is

simple and if the ranks of its external vertices are both larger than the ranks of all its

internal vertices,

p(co) > p(Ci), p(Cl) > p(Ci), i = 1,... , I-1.

Note that all paths of length one are regular. Let pfi(fr) and Pla(W) denote the rank of

the first and the last vertices of a path ir = (co,..., cl) and let Pint(Wr) be the maximum
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rank of its internal vertices:

pfi (7) = p(co), (6)

Pla(7) = p(c), (7)

max p(cj) if 1>2
Pint (ir) =1<j<-1 (8)

0 if- =1.

The set of all regular paths, denoted Q, is then

Q = {7 C Ps : pfi(Ti) > Pint(T(), Pla(71) > Pint (7i)}.

Two paths 7r, 7r' such that the last vertex of one path coincides with the first vertex

of the other can be concatenated (composed). The composition of 7r with 7r' is denoted

7r o 7r'. Thus, if cl = c' then we have:

(Co, . . . , C l) O (C, . .. , CI) = (Co, . . . ), Cl, C1 , .. . , C l, .

A fundamental property of regular paths is that they can be uniquely decomposed

into regular paths. In fact, let 7r = (co, .. , cl), 1 > 1 and let ci* be the internal vertex

of 7r with highest rank: p(ci*) = Pint(ir). Then it is easy to prove that the unique pair

of regular paths 71r, 7r2 such that i71 O i-2 -= 7 is 71- = (Co, ... , Ci*), 7r2 = (Ci*,... , CI).

5.2 Enumeration of regular paths

The algorithm described below enumerates all regular paths uniquely. That is, the

algorithm generates a list of regular paths in which each regular path occurs exactly

once. As a byproduct, all regular loops are uniquely enumerated and therefore every

cycle is also uniquely enumerated.

Let us introduce the following operators defined on the collection of all sets of paths

and which project a set of paths S onto a subset of it.

~s = SnPs,

CS = {r : Pfi() = n < pla()}, (9)

TnS = { S : pla(r) = n < pfi(7r)},

AS = { E S pfi(7T) = Pla(-)}
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Notice the paths in aS start from the vertex with rank n and that the paths in TnS

terminate at the vertex with rank n. Thus, for any set of paths S, the last vertex of any

path in TnS is the same as the first vertex of any path in aS and therefore any path

in Tn-S can be composed with any path in anS. The resulting set of paths is denoted

TnS o anS.

Consider the following iterative equations:

X[0] = A; (10)

Z[k] =- (7k+lX[k] o0 rk+lX[k]), k > 0; (11)

X[k + 1] = X[k] U Z[k], k > 0. (12)

Theorem 3 Let X[k], Z[k], k > 0 be given by (10)-(12). Then,

X[k] = {7r E Q : Pint(7r) < k}, (13)

Z[k] = {r C Q Pint() = k-+-1}, (14)

X[N-2] = Q. (15)

Proof. Equations (13) and (14) can be proved by induction. For k = 0, (13) holds

because of (10). Let (13) be true for some k > 0. Then (14) is obtained by substituting

(13) in (11). Let now (13) and (14) be both true for k = ko > 0. Then, (13) at k + 1

follows by using (12). Finally, (15) is obtained by substituting k N - 2 in (13). O[

As a corollary it follows that the set of all regular loops is given by AX[N - 2].

Moreover, from (14) it follows that Z[k] n Z[k'] = 0 if k :7 k'. Therefore, each regular

path is composed only once by the algorithm.

5.3 Compression

Because of the redundancy in the contour-primitive and contour-arc representations,

needed to ensure that at least one contour-path exists for every scene contour with

high probability, there might be multiple paths near to the same scene contour. These

paths are close to each other so that one can eliminate redundant paths by computing
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Figure 8: Six paths organized into two clusters.

the distance between them. To maximize computational efficiency, this compression

operation should be carried out as early as possible during the enumeration of regular

paths, rather than waiting until all paths have been enumerated. A way to do this is

to consider the collections of paths between two vertices and then eliminate redundant

paths in these collections at every stage k of the iterative algorithm given by (10)-(12).

This guarantees that compression is carried out only within a class of equivalent paths.

Let /n,n, be the operator defined by:

/nn'S = {7 C S : pfi(Tr) = n, Pla(Tr) = n'}. (16)

For any two sets of paths S, T, let S U=, T denote the set of paths obtained by adding

incrementally to S elements of T whose distance from every path in S is at least c. Thus,

S U=, T is an e-separated e-covering of S U T if S is e-separated (a set is c-separated if

the distance between any two elements is greater than c). The modified algorithm which

includes incremental compression is described by the following iterative equations:

X[O] = A; (17)

Z[k] = E (Tk+lX[k] o ok+lX[k]), k > 0; (18)

X[k + 1] = U (3,n,,X[k] U=e ,3n,nZ[k]), k > 0. (19)
n,n'

This algorithm produces the desired result only if the following condition is satisfied.

Definition 2 The graph (C, A) is e-quantized if for any three paths 7r, w72, 7r3 with the

same initial vertex and final vertex, d(7r1, 7 2) < e and d(w2, r3) < e imply d(ir, 7 3) < E.
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This condition requires that multiple responses to the same contour be organized into

clusters. It is related to the c-compressibility condition mentioned in Section 3 and

defined in [4]. Fig. 8 shows an example of a set of paths between two vertices organized

into clusters.

Theorem 4 Let (C, A) be an c-quantized graph; let X[k], Z[k], k > 0 be the solution

of the non-compressed iterative system (10)-(12); and let XC[k], ZC[k], k > 0 be the

solution of the compressed iterative system (17)-(19). Let us assume that in (18) we

have

i (Tk+xX[k] o ok+lX[k]) = T7k+lX[k] o Uk+lX[k]. (20)

Then ZC[k] is an e-covering of Z[k] and XC[k] is an e-covering of X[k].

Proof. Let us prove by induction on k that for every n, n', /n,n,,ZC[k] is an e-covering of

/3n,,'Z[k] and 3,,,,,Xc[k] is an e-covering of /3,n'X[k]. For k = 0, we have that /3n,n,XC[0]

is an e-covering of 3n,~,X[O] because XC[0] = X[0] = A and therefore ,/3,n,XC[O] =

3n,nX[0]. Now, let us assume that /3,n,XC[k] is an e-covering of n/3,~,X[k] and let us

prove that 13n,n,Zc[k] is an c-covering of /n,n,Z[k]. From (11) and assumption (20) we

have

O3n,n/Z[k] = ,3n,k+lX[k] o /Qk+l,',X[k].

Thus, for every 7 C 3i,,,,Z[k] there exist wr1 E /n,k+lX[k] and 7 2 E /k+l,,,X[k] such

that wr = 7r o 1r2. Since 3n,k+lXC[k] and 3k+l,n'XC[k] are e-coverings of /3n,k+lX[k] and

O/k+l,n'X[k] respectively, there exist 7r C E /n,k+lXC[k] and 7r C /3k+l,n,XC[k] such that

d(wrl, -7r) < e and d(7r2, 7rC) < e. Then, from the definition (5) of the distance function d,

it follows that d(wr, 7rc) = d(rl o0 r2, 1C o0 7rC) < e and therefore 3,,,,ZC[k] is an e-covering

of /3n,nZ[k] because w7 o 7rC E /n,n,ZC[k]. It remains to be proved that /3n,,XC[k + 1]

is an e-covering of /3,n,,X[k + 1] if /3n,n,XC[k] e-covers /3P,~,X[k] and /3n,,ZC[k] e-covers

/n,n'ZC[k]. From (12) and (19) we have

3n,n'X[k + 1] = 3n,n/X[k] U n,n/Z[k], (21)

Pn,nXc[k + 11 (In,n1XCIk] U: 3n,n1ZC[k]). (22)
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From (21), since ,,,fXC[k] U n,,,,ZC[k] e-covers fn,,,X[k] U ,,,,Z[k] by inductive as-

sumption, it follows that for every F E 3,,,I,X[k + 1] there exists 7r~ E P3,,,XC[k] U

3n,,n,ZC[k] such that d(7r, 7c) < c. From the definition of U=,, we have that n,nXC[k] U=e

/3n,nZC[k] = 3n,n,Xc[k + 1] e-covers 3nn,,XC[k] U Pn,n,ZC[k] = Pn,nXC[Fk + 1] so that,

there exists 7r C E n,n,XC[k + 1] such that d(7rc, -c) < e. Since the graph is e-quantized,

d(er,i r ) < e. °l

The assumption (20) in this theorem is needed because paths which are simple but

are e-close to a non-simple path are missed by the algorithm. This suggests the following

definition of a strongly simple path.

Definition 3 A simple path wr in a contour-graph is strongly simple if there exists no

polygonal line U C T(wr) and loop 7r' such that d(U, T(ir')) < e.

We conjecture that the algorithm (17)-(19) computes an approximation to all strongly

simple paths. As a consequence, it follows that for every strongly simple loop wr in (C, A)

there exists a loop r E AXC[N - 2] such that d(7r, -r) < e.

5.4 Pruning paths with low probability

The last component of the algorithm consists in pruning paths for which the probability

of representing a fragment of a scene contour is below a threshold. Recall that P/(7r)

denotes an estimate of the conditional probability that the scene contains a contour

fragment in the e-neighborhood of T(7r). Let us assume that such an estimate is available

and that it is an upper bound of the true conditional probability P,(wr). For any e, 5 >

0, let We,, denote the thresholding operator which filters out paths whose probability

estimate P/(7r) is less than the threshold 5. That is, for any set of paths S,

aegis = {I E S: Pe(T) > d}

The thresholding operator is applied at every iteration of the algorithm with a given

probability threshold 6c.p. and with distance tolerance 2e. Thus, the iterative equations
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are:

X[0] = A; (23)

Z[k] = t9 2e,Sc.p ('Tk+lX[k] 0 JOk+lX[k]), k > 0; (24)

X[k + 1] U (3',,,X[k] U=e, n,,Z[k]), k > 0. (25)

Theorem 5 Let (C, A) be an e-quantized graph and let X[k], Z[k], k > 0 be given by

(23)-(25). Let us assume that Pl,(r) > P,(w) for all paths wr in C x C. Let X be a

strongly simple loop in (C, A) and let 1Irl be its length. Then, with probability at least

1 - r · 5c.p., if there exists a scene contour y E r such that d(y, r) < e then there exists

a loop #r E AX[N - 2] such that d(y, at) < 2e.

Proof. It will be assumed that the conjecture postulated in 5.3 holds, namely, that the

algorithm described by equations (17)-(19) computes an approximation to all strongly

simple paths. Without loss of generality, let us assume that 7 is a regular strongly

simple loop and let c 0 ,... , cl, I = 17 , be its vertices. Let r °
= p(ci), i = 0,... ,1.

For any k > O, let r k ... rkk be the sub-sequence of r°O,... r° obtained by removing

entries less or equal than k. Notice that in the original algorithm (10)-(12), the set

X[k] contains a representation of 7r consisting of 1k sub-paths cl,... ,c k, where c?,

1 < i < lk, is the sub-path of X containing the vertices between the vertex with rank

r/id and the vertex with rank r/k. Let us sort the integers r,... ., rl and let k < ... < kl

be the resulting sorted sequence. Notice that for k = ki - 1, equation (11) executes

the composition ci o ck+1 = Ck +l, where ik is defined by rik+l ki . Thus a total of I

compositions are necessary to reconstruct the path 7r.

When compression is introduced (equations (17)-(19)) each sub-path ck, i = 1, ... .. ,

is in general replaced by a sub-path ik such that d(cik, ci ) < C. If there exists a scene con-

tour ?y E r such that d(y, 7r) < e then, from Lemma 2 for each k > 0 and i = 1,..., Ik

there exists a scene contour fragment 7 / r such that d(7i, c/) < e and therefore,

d(7ik, <i) < 2e. At the iterations k = ki - 1, i = 1,... , 1 of equation (24), the composed

path ̂ ~ o i+ = i+l is subjected to the pruning operator td2 E6,P ... If the the composed
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path k+l is pruned out, then the probability that there exists a contour fragment 7 E r

such that d(y, .k+l) < 2e is less than 6c.p. Therefore, the probability that there exists

a scene contour -y E F such that d(y, T ) < e and that c+ is pruned out, is less than

6c.p.. Hence, by using the union bound, the probability that at least one of the 5.k+i

k = 1,... ,1 is prune out is at most 16,.p. = Ir 16,.p.. Thus, with probability at least

1 - Ir I .p . , none of the paths jk+1, k - 1,... , I is prune out so that the final set

X[N - 2] contains a loop -i such that d(y, v) < 2e. D

5.5 Experimental results

The proposed algorithm for cycle estimation has been tested on the lamp image shown

in Fig. 9(a). The probability estimator P/E(ir) used in these experiment is simply given

by the product of the probability estimates of the arcs of wr. Some of the computed cycles

are shown in Fig. 9(b) and Fig. 10. Fig. 9(c) shows three open contours computed by

the algorithm. The algorithm failed to compute explicitly a cycle corresponding to the

whole contour of the lamp because the probability estimates P (7r) of these cycles are

smaller than the threshold &c.p.. Clearly, one has to improve the probability estimator

in order to recover the lamp contour in its entirety. To do this one needs to construct a

more global model for PE(lr) which includes dependences on global features of the path.

6 Conclusions and future work

A probabilistic formulation of contour estimation via perceptual organization has been

proposed where the goal is to compute efficiently a set of contour descriptors which

approximates every scene contour with high probability. A hierarchy of contour de-

scriptors has been proposed which allows to use information at several context scales to

control the combinatorial explosion of the number of hypotheses. For the same purpose,

the importance of compression of redundant equivalent hypotheses has been motivated

to counteract the problem of multiple responses.
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(a) Lamp image (b) Some contour-cycles

(c) Three open contour-paths (d) Some spurious contour-cycles

Figure 9: Contours computed by the current implementation of the algorithm
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35Figure 10: Some computed cycles
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