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Abstract. The problem of edge detection is viewed as a hierarchy of detection problems where the geometric
objects to be detected (e.g., edge points, curves, regions) have increasing complexity and spatial extent. An early
stage of the proposed hierarchy consists in detecting the regular portions of the visible edges. The input to this stage
is given by a graph whose vertices are tangent vectors representing local and uncertain information about the edges.
A model relating the input vector graph to the curves to be detected is proposed. An algorithm with linear time
complexity is described which solves the corresponding detection problem in a worst-case scenario. The stability of
curve reconstruction in the presence of uncertain information and multiple responses to the same edge is analyzed
and addressed explicitly by the proposed algorithm.

1. Introduction

1.1. The Role of Global Information

The problem of curve inference from a brightness im-
age is of fundamental importance for image analysis.
Curve detection and reconstruction is a difficult task
since brightness data provides only uncertain and am-
biguous information about curve location. A source
of uncertainty is for instance the presence of “invisi-
ble curves”, namely curves across which there is no
brightness change (e.g., the sides of the white trian-
gle in Fig. 1). Local information is not sufficient to
resolve these uncertainties reliably and “global” infor-
mation has to be used somehow. Zucker et al. (1988)
have pointed out the need for a multistage approach
which exploits both local and global computation.
Methods based on optimization of a cost functional
derived according to Bayesian, minimum description
length, or energy-based principles (Geman and Geman,
1984; Marroquin et al., 1987; Mumford and Shah,
1989; Nitzberg and Mumford, 1990; Nitzberg et al.,
1993; Zhu et al., 1995) introduce global information

by adding an appropriate term to the cost functional.
These formulations are simple and compact but may
lead to computationally intractable problems. More-
over, it is often difficult or impossible to guarantee that
the optimal solution of these cost functionals represents
correctly all the desired features such as junctions and
invisible curves (Richardson and Mitter, 1994). Active
contour methods (“snakes”) (Kass et al., 1988; Cohen
and Kimmel, 1996; Shah, 1996) are able to use global
information more efficiently but may require external
initialization. More recent active contour approaches
(Caselles et al., 1995; Kichenassamy et al., 1995) have
somewhat overcome the initialization problem but de-
tect only closed contours. Iterative procedures, such as
relaxation labeling, can produce good results but only
at a high computational cost (Parent and Zucker, 1989;
Hancock and Kittler, 1990).

To exploit global constraints, interactions between
data from distant locations are necessary. Therefore,
one has to use large “contextual neighborhoods”. This
typically causes a combinatorial explosion of the search
space since the number of possible configurations in
each neighborhood grows exponentially with its size.



P1: VBI

International Journal of Computer Vision KL551-04-Casadei February 26, 1998 16:18

72 Casadei and Mitter

Figure 1. Hierarchy of edge representations for image segmentation. At the highest level the data is represented as a white triangle floating on
top of three black disks (Kanizsa, 1979).

A strategy to avoid this combinatorial complexity is
to gradually increase the maximum allowed inter-
action distance between descriptors by decomposing
the whole detection process into several stages with
increasing scales of interaction. At every stage, the
process selects a small number of configurations which
describe succinctly all possible data interpretations per-
mitted by the maximum interaction distance of that
stage. This leads to a hierarchy of representations
where the spatial extent and complexity of descrip-
tors increases by moving up in the hierarchy whereas
the number of descriptors decreases. The scale in-
crease and the difference in expressive power between
any two adjacent levels of the hierarchy should be
small enough so that computation is always local and
efficient.

1.2. A Hierarchy of Representations
for Image Segmentation

Figure 1 shows a hierarchy of contour representations
whose highest level is a2.1D sketch, that is, a set of pla-
nar regions ordered by depth (Nitzberg and Mumford,
1990). At the bottom of the hierarchy we have the raw
brightness data. At the second level edges are repre-
sented by tangent vectors whose magnitudes are pro-
portional to the likelihood or strength of each edge
hypothesis. Efficient methods exist to estimate these

tangent vectors where the brightness discontinuity is
large enough compared to the noise (Canny, 1986; Har-
alick, 1984; Perona and Malik, 1990). Notice that at
this stage the number of edge hypotheses is roughly
proportional to the size (area) of the image.

The next stages (3, 4 and 5) represent edges by means
of curves. These curves can be obtained from sequences
of tangent vectors by means of some linking or fitting
procedure. Due to false negatives, false positives and
other kinds of uncertainties in the tangent vector repre-
sentation, a very large number of such sequences need
to be considered as possible curve hypotheses. Clearly,
the number of curve hypotheses depends exponentially
on the number of bifurcations (locations with multiple
tangents) and on the number of multiple responses to
the same edge. Also, due to invisible edges, one should
consider curve hypotheses connecting distant tangent
vectors, which causes another combinatorial explosion
of the number of possible hypotheses.

The basic assumption underlying the hierarchical
approach is that theorder in which uncertainties are
resolved is the most important factor affecting compu-
tational costs. Thus, in estimating curves, it is impor-
tant to determine what uncertainties can be resolved
immediately and what should be instead deferred to a
later stage.

This paper shows that uncertainties in the orienta-
tion and magnitude of tangent vectors and the problem
of multiple responses can be tackled effectively at an
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early stage. Curve singularities such as corners and
junctions are left for the next stage of curve estimation
(level 4 in Fig. 1). This should be contrasted with meth-
ods which estimate corners and junctions directly from
brightness (Deriche and Blaszka, 1993; Rosenthaler
et al., 1992; Rohr, 1992; Perona, 1992). Other hierar-
chical algorithms (Parent and Zucker, 1989) estimate
multiple tangentsbeforecurve reconstruction by using
local curvature information to select a set of tangents
at every point. Another approach to deal with multi-
ple tangents is presented in (Iverson and Zucker, 1995)
where curves with singularities are detected by using
logical/linear operatorsobtained by composing non-
linearly elementary edge properties.

The reason why we believe that curve singularities
should be estimatedafterthe recovery of regular curves
is that estimation of multiple junctions directly from
brightness can be computationally expensive. In fact,
the simplest edge models which yield efficient edge de-
tection algorithms (constancy of brightness along the
edge and sharp variations in the orthogonal direction)
break down near curve singularities. On the other hand,
more general edge models lead to nonlinear optimiza-
tion problems which require computationally expen-
sive iterative procedures or convolutions with many
filters with large spatial support. (However, Nayar et al.
(1996) propose a quite efficient approach for solving
these nonlinear problems.) Thus, since regular curves
can be estimated reliably and efficiently (as shown in
this paper) they should be used to constrain the search
for multiple tangents. A way for doing this is presented
in (Casadei and Mitter, 1996a).

Invisible curves are dealt with at the last stage of
curve estimation (level 5). Finally, two dimensional
descriptors (regions) and occlusion information are in-
troduced at the last stage of image segmentation. This
paper is devoted to the computation of regular visi-
ble curves (level 3) from tangent vectors (level 2). For
some results on the relationship between levels 1, 2 and
3 see (Casadei, 1995). Work on the remaining parts of
the hierarchy is in progress. Some experimental results
for level 4 are reported in (Casadei and Mitter, 1996a).

1.3. Compositional vs.“Wavelet” Hierarchies

The hierarchical approach adopted here is similar to
multiscale schemes such as wavelet analysis in that rep-
resentations at a large scale are constructed efficiently
from local data by using the appropriate number of
intermediate levels. The main difference is that the

dictionary of primitive elements used in wavelet-like
multiscale approaches does not change across the lev-
els, except for a dilation transformation. As a result,
information is lost or simplified and representations
become coarser at larger scales. On the contrary, we
are interested in hierarchies where the high levels con-
tain moreinformation than the lower levels. Thus the
expressive power of the underlying dictionary has to
increase when moving up in the hierarchy.

Whereas the basic transformation underlying wave-
let and similar multiscale representations is a dilation
applied to the domain of the raw data, the hierarchies
considered here are based on acompositionaltrans-
formation (Bienenstock and Geman, 1995). That is,
the models to be detected are decomposed recursively
into simpler units, leading to ahierarchy of models.
Computation is mostly a bottom-up process which de-
tects and reconstructs these models by means of com-
position. Top-down feedback, whose laws are derived
from the model hierarchy, is used to select groupings
of primitive units which are consistent with high level
models. Pruning the exponentially large search space
of all possible groupings is necessary to keep com-
putation efficient and can be done by using top-down
feedback. Ahierarchy of descriptionsobtained by re-
cursive composition of descriptors is generated from
the input data as a result of this process.

To achieve robustness and computational efficiency,
one needs to design a “smooth” hierarchy, that is a hier-
archy where consecutive levels are sufficiently “close”
to each other so that every level of the hierarchy con-
tains all the information necessary to reconstruct ef-
ficiently the objects at the following level. Thus, to
design the next level (in a bottom-up design approach),
one has to understand what composite objects can be
formed efficiently and robustly from the parts present
in the current level (for instance, regular visible curves
can be formed efficiently and robustly from tangent
vectors according to the model of Section 2.3). This
“smoothness” constraint limits the amount of expres-
sive power which can be added from one level to the
next and therefore determines how many levels in the
hierarchy are needed to bridge the gap between the in-
put data and the desired final representation. For this
reason (as argued in Section 1.2), we believe that in
edge detection curve singularities as well as invisible
curves should be left out of the lowest level dictionary
and included only at a higher level.

By using a hierarchical approach, it is possible to re-
solve uncertainties and ambiguities when the necessary
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contextual information is available. Typically, it is im-
possible to eliminate efficiently all uncertainties in a
single step. Then, one should eliminate part of the un-
certainties first and then use the new, more informative
representation to resolve more uncertainties. Those un-
certainties which can not be resolved should be prop-
agated to the higher levels, rather than being resolved
arbitrarily. Therefore, in general, intermediate repre-
sentations are quite uncertain and ambiguous and may
contain mutually inconsistent hypotheses.

1.4. Perceptual Organization as a Detection
Problem: Hierarchical Coverings
and Completeness

Many authors have suggested that hierarchical algo-
rithms can be used to infer global structures efficiently
(Dolan and Riseman, 1992). Computation of global
descriptors from simpler ones is related to the process
of perceptual organization(Sarkar and Boyer, 1993;
Mohan and Nevatia, 1992; Lowe, 1985). Perceptual
organization, which can be repeated recursively and hi-
erarchically, consists in grouping descriptors according
to properties such as proximity, continuity, similar-
ity, closure and symmetry. The role of these proper-
ties in human visual perception is well documented
in (Kanizsa, 1979). Every grouping of descriptors is
then composed into a higher level and more global
descriptor. To assess the significance of groupings in
a task independent fashion, principles such as non-
accidentalness (Lowe, 1985) and minimum description
length (Bienenstock and Geman, 1995) have been pro-
posed. These principles provide a general framework
to design all the grouping procedures in the hierarchy.
However, they do not guarantee per se that particu-
lar classes of objects are detected and reconstructed
correctly by these procedures. The ultimate goal of
perceptual organization is to detect and represent ex-
plicitly all the relevant structures present in the data.
Thus, perceptual organization can be viewed as ade-
tectionproblem where the dictionary of objects to be
detected consists of all the high level descriptors which
represent compactly the groupings of low level descrip-
tors. A detection algorithm is successful if it makes
explicit all the object in the dictionary which are con-
sistent with the set of low level descriptors in the input
representation. For instance, the problem of grouping
edge-points or tangent vectors into curvilinear struc-
tures can be cast as a curve detection problem by defin-
ing a class of curves to be detected and their relationship
with their constituent tangent vectors. A model for this

relationship is proposed in Section 2.3. Equivalently,
a detection problem can be formulated as acovering
problem where the goal is to construct a small subset
of the high level dictionary which approximates ev-
ery possible high level object consistent with the low
level data according to the given model (compare with
Theorem 5).

In a hierarchical approach, perceptual organizati-
on is really ahierarchyof detection problems. Each
problem consists in computing explicitly all the ob-
jects in the dictionary of that level which are consistent
with the data at the previous levels. Detection can be
achieved by composition: object parts are detected first
and then composed to reconstruct the object. This ag-
gregation method is repeated at every level up to the
top level which contains the desired global descrip-
tion.

To guarantee robust performance, the representation
computed at each level must becompletewith respect
to the dictionary of that level. In other words, the com-
puted representation must be a covering of the set of
objects in the dictionary which are consistent with the
data. That is, each consistent object must be approxi-
mated by at least one object in the computed represen-
tation. For instance, the set of regular curves computed
by the proposed algorithm contains an approximation
to every regular curve which is consistent with the in-
put set of tangent vectors. This completeness property
guarantees that all possible hypotheses will be explored
and that uncertainties are propagated upwards in the hi-
erarchy instead of being resolved arbitrarily.

1.5. Outline

The problem of detecting regular visible curves from
a set of tangent vectors is considered. It is assumed
that these tangent vectors represent all the possible hy-
potheses about edges which can be derived by local
estimates of the brightness variations. Since this paper
deals only with visible contours with sufficiently high
brightness change, we can assume that only nearby tan-
gent vectors can be consecutive points of a path. Thus,
all curve hypotheses can be represented as paths in a
graph with local connectivity. This graph is called the
vector graphof the image. In Section 2 a model is
defined which relates the curves to be detected to the
vector graph. The problem of approximating all these
curves efficiently is non trivial because the set of all
possible curve hypotheses is exponentially large due to
multiple responses and uncertainties in the magnitude
and orientation of the tangent vectors.
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In Section 3 the concept of stability in edge linking
and the notion of stable graphs are introduced. It will
be argued that some of the errors incurred by conven-
tional linking algorithms are due to the instability of
the underlying search graph.

The algorithm proposed to detect regular curves is
composed of two parts (an earlier version of this al-
gorithm is described in (Casadei and Mitter, 1996b).
First, a stable graph is computed from the initial vector
graph (Sections 4 and 5). It is proved that this sta-
ble graph preserves the relevant information about the
regular curves to be detected. At the same time, the
uncertainties which may cause instability are removed
so that an approximation of every curve can be com-
puted efficiently. The price for eliminating instabili-
ties is that information about multiple tangents at the
same point is lost. This information can be recovered
more reliably at a later stage (level 4 of Fig. 1. See
also (Casadei and Mitter, 1996a)). The second part
of the algorithm resolves the remaining ambiguities
by selecting the paths with minimum turn (Section 6).
Section 7 discusses how to deal with cycles in the graph.
The results of experiments are presented in Section 8.
Section 10 contains the proofs of the theorems.

1.6. Notation List

• P ⊂ R2: set of given candidate edge-points
• V = {vp : p ∈ P}: set of given tangent vectors

representing edge-point hypotheses
• φ(p) = |vp|: strength of edge hypothesisvp

• θ(p) ∈ [0, 2π ] orientation ofvp (estimate of edge
orientation)
• A ⊂ P × P: arcs of the vector graph
• l max(A): maximum arc length inA
• π : path in vector graph(P,V, A)
• arcs(π): the arcs in the pathπ
• σ(p1, p2): straight line segm. betweenp1 and p2

• σ(a): str. line segm. between end-points ofa ∈ A
• σ(π): polygonal line associated with pathπ
• Bw(p): ball centered atp with radiusw
• Nw(π) neighborhood ofσ(π) with radiusw
• d(S1; S2) asymmetric Hausdorff distance ofS1 from

S2 (Eq. (1))
• 0 = {γ }: set of curves to be detected
• κ: maximum curvature of a curve in0
• 21 maximum error on estimated orientation
• δ0: maximum deviation of approximating path in
(P,V, A) from curveγ to be detected
• δ1: distance fromγ at whichφ(p) decays

• δ2: max. dist. at whichγ affects vector field
• D0

γ , D1
γ , D2

γ : neighborhoods ofγ with radii δ0, δ1,
δ2 (Fig. 5)
• σ⊥w (p): segment centered atp with length 2w and

perpendicular to tangent vectorvp

• u⊥(p): unit vector perp. to tangent vectorvp

• Uw(π): attraction basin ofπ (Fig. 9(a))
• βw(π): boundary ofUw(π)

• β−w (π), β+w (π): lateral components ofβw(π)
• β−w (a), β+w (a): lateral segments of arca (Fig. 9(b))
• A − P′: subgraph ofA obtained by removing the

vertices inP′ from A
• E(a1,a2): The four end-points of arcsa1, a2

• P̃w(V, A): vertices suppressed by stabilization pro-
cedure (Eq. (11))
• Sw(V, A): arcs obtained by stabilization proc.
• Ā: graph obtained by sigma-connectingA (Fig. 13)

2. Vector Graphs

This paper addresses the problem of detecting and re-
constructing a set of regular curves0 from local and
noisy information about these curves. This informa-
tion is represented by avector graph, namely a triple
(P,V, A) where

• P ⊂ R2 is a finite set of candidate curve points;
• V = {vp : p∈ P} is a discrete vector field with

verticesP;
• A ⊂ P × P represents a set of directed arcs.

A directed arc betweenp1 and p2 is represented by
a pair(p1, p2)∈ P × P. The pair(P, A) is adirected
graph with arcs A and verticesP. Figure 2 shows
an example of a vector graph and introduces some
notation. The orientationsθ(p) of the tangent vectors
vp ∈V represent estimates of the local orientation of

Figure 2. Example of a vector graph. Solid segments represent arcs
of the directed graph and dashed segment represent tangent vectors.
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the curves in0 and the magnitudeφ(p)of these vectors
measures the likelihood that each candidate pointp∈ P
belongs to some curve. The vector graph(P,V, A) can
be viewed as a noisy local projection of the curves in0

onto small neighborhoods of the image. A model of the
relationship between0 and the vector graph(P,V, A)
is proposed in Section 2.3.

2.1. Computation of the Vector Graph

To guarantee that the proposed algorithm generates a
meaningful set of curves, the procedure which com-
putes the vector graph from the brightness image must
satisfy the three assumptions described in Section 2.3.
These assumptions can be reformulated in terms of
a noisy brightness model of the edge, as explained
in (Casadei, 1995). By means of this model, it is
possible to write all the parameters in the three as-
sumptions of Section 2.3 as a function of the contrast
and scale of the edge and the noise amplitude in the
image.

In our implementation, a fitting method similar to
(Haralick, 1984) has been used to compute the vector
graph. This method assumes that brightness changes
significantly across the curves to be detected. Fur-
thermore, it is assumed that the scale at which this
change occurs is known. To compute a set of tan-
gent vectors, the image is tiled with a set of overlap-
ping regions. One tangent vectorvp is computed from
each regionR by means of the following steps (see
Fig. 3):

• Estimate the gradient of the brightness data inR by
fitting a linear polynomial. Letθ(R) be the direction
orthogonal to the estimated gradient.
• Fit a third order polynomial constant alongθ(R) to

the brightness data inR.
• By using the fitted third order polynomial, locate

to sub-pixel accuracy the point where the estimated
brightness gradient is locally maximum in the direc-
tion of the gradient. Letp be this point.
• Let θ(p) = θ(R). This is an estimate of the orien-

tation of the curve passing throughp.
• Let φ(p) be the gradient magnitude atp. In gen-

eral, φ(p) is some positive quantity depending on
the gradient magnitude (and maybe also on the fit-
ting error) which represents some sort of feedback
from the brightness image. This feedback evaluates
the likelihood that there exists indeed a curve with
orientationθ(p) passing throughp.

• Let vp be the tangent vector with footp, orientation
θ(p), and magnitudeφ(p).

Let P be the set of all the estimated pointsp and let
V be the set of all the tangent vectorsvp, p ∈ P. V is
a discrete vector field. The set of arcsA is then given
by the set of all pairs(p1, p2) ∈ P× P estimated from
adjacent regions and aligned withvp1 (namely such
that (p2 − p1) · vp1 ≥ 0). A path in this graph is a
sequenceπ = (p1, . . . , pn) such that(pi , pi+1) ∈ A,
i = 1, . . . ,n−1. The corresponding sequence of vec-
tors(vp1, . . . , vpn) will also be called a path.

2.2. Relationship Between the Vector Graph
(P, V, A) and the CurvesΓ

0 denotes the set of regular curves to be detected
from the vector graph(P,V, A). What assumptions
are appropriate to model the relationship between0

and (P,V, A)? In the ideal case, when no noise is
present, the following assumptions are quite natural:

(C1) The vector graph contains a connected sampling
of the tangent bundle of each curveγ ∈ 0.

(C2) The vector fieldV is locally maximum on every
curveγ ∈ 0.

Recall that the tangent bundle of a curve is the set of all
its tangents. Thus, the first condition requires that for
every curveγ ∈ 0, the vector graph(P,V, A) contains
a path whose vertices are tangents toγ . This is called
the approximating path ofγ .

The second condition (C2) is necessary because
the graph may contain tangent vectors other than tho-
se belonging to curve-approximating paths. Ideally, the
magnitude of these spurious vectors is always smaller
than nearby vectors belonging to a true curve.

When noise is present, the following distortions may
be present:

• The vertices of the approximating paths are not ex-
actly on the curveγ ∈ 0. Let δ0 be an upper bound
on the distance of these vertices fromγ .
• The tangent vectorsvp of the approximating path are

not perfectly aligned with the curve tangents of the
approximated curveγ . Let21 be an upper bound
on this deviation.
• The magnitude of the vector fieldV may achieve the

local maximum at some distance away fromγ . Let
δ1 be an upper bound on this distance.
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(a) Brightness (b) PointsP

(c) VectorsV (d) Arcs A

Figure 3. The vector graph(P,V, A) computed from the brightness image in (a) by using the method described in Section 2.1. (b) The
estimated curve pointsP. (c) The tangent vectorsV . The magnitude of the tangent vectors is coded by the gray level of the segments. (d) The
set of arcsA (the direction of the arcs is not shown).

2.2. Formal Assumptions

We now proceed to state the three assumptions which
define the curve model in terms of the vector graph
(P,V, A). These assumptions define rigorously the
distortion parametersδ0, δ1 and 21. These three
parameters can be related to the parameters of a noisy

brightness model of the edge (sampling rate, con-
trast/noise ratio and scale) as explained in (Casadei,
1995).

For simplicity, the term “curve,” which usually
means a continuous mapping from an interval toR2,
will be used to denote the image of the curve, which is
a subset ofR2. Thus, ifγ is a curve, thenγ ⊂ R2.
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Figure 4. The asymmetric Hausdorff distance ofγ fromγ ′, denoted
d(γ ; γ ′), is the maximum distance of a point inγ from the setγ ′.
Notice thatd(γ ; γ ′) 6= d(γ ′; γ ).

The polygonal curve defined by the pathπ is denoted
σ(π). It is given by the union of all the straight line
segmentsσ(a) on the path. Hereσ(a), a = (p1, p2),
denotes the set of points lying on the straight line seg-
ment with end-pointsp1 and p2.

Let S1, S2 be subsets ofR2. The asymmetric
Hausdorff distanceof S1 from S2 is defined as

d(S1; S2) = max
p1∈S1

d(p1; S2) = max
p1∈S1

min
p2∈S2

‖p1− p2‖
(1)

whered(p1; S2) is the distance of the pointp1 from the
setS2. See Fig. 4.

The first assumption requires that every curveγ ∈
0 has an approximating path in(P, A) with error
bounded by some constantδ0.

Figure 5. Constraints on the vector field in the vicinity of a curve. The magnitudeφ(p) of the tangent vectors (length of arrows) is larger in
D0
γ than inD2

γ \D1
γ . The magnitudeφ(p) is arbitrary inD1

γ \D0
γ . The angle formed by a tangent vector inD1

γ with respect to the orientation of
the curve is less than21.

Covering Condition. The graph(P, A)covers0with
distanceδ0. That is, for everyγ ∈ 0 there exists a path
π in (P, A) such that d(γ ; σ(π)) < δ0.

Notice that since the asymmetric Hausdorff distance
is used, the approximating path may be longer than
the path itself. Had we used the symmetric Hausdorff
distance instead, we would have assumed that the graph
(P, A) contains information about curve end-points,
which is too strong an assumption.

The other two conditions involve only the vector field
V and the curves0. For simplicity, these constraints
are formulated only for unbounded curves with zero
curvature (namely infinite straight lines).

Let γ be a curve in0. The decay condition requires
that the vector fieldV decays at a distanceδ1 from γ .
More precisely (see Fig. 5),

Decay Condition.

p1 ∈ D0
γ ; p2 ∈ D2

γ

∖
D1
γ ⇒ φ(p1) > φ(p2) (2)

whereDi
γ , i = 0, 1, 2, are the neighborhoods ofγ with

radiusδi , 0< δ0 ≤ δ1 < δ2:

Di
γ = {p ∈ R2 : d(p; γ ) < δi } i = 0, 1, 2 ;

andδ0 is the parameter used in the covering condition.
The parameterδ2 is the distance up to whichγ con-
strains the vector fieldV . Notice that the magnitude
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of V in D1
γ \D0

γ is arbitrary. This is to model the fact
that, due to noise, the local maxima ofφ(p) may be
displaced from the inner neighborhoodD0

γ .
Finally, the alignment condition requires that the ori-

entation of the vector fieldV at a distance fromγ less
thanδ1 does not deviate by more that21 from the ori-
entation ofγ . That is, if θγ denotes the orientation
of γ ,

Alignment Condition.

p ∈ D1
γ ⇒ ‖θ(p)− θγ ‖ < 21 (3)

Definition 1. Let 0 be a set of curve. The vector
graph(P,V, A) is said to be aprojectionof 0 with
admissible deviationsδ0, δ1, δ2 and21 if it satisfies the
covering, decay and alignment conditions on0.

3. Stability

The goal of the algorithm is to compute a set of
disjoint curves0̂ which approximate every curve in

Figure 6. Noise can cause instability and wiggly curves in greedy tracking algorithms. (a) The model assumes that the vector field in the inner
neighborhoodD0

γ (dark area) is larger than in the outer regionR2\D1
γ (white area). Instability in curve tracking occurs because the maxima

of φ(p) leak fromD0
γ into D1

γ \D0
γ (light gray areas). (b) Notice that noise can cause greedy linking to follow a wiggling path rather than the

smoother path on the right.

0. Attaining robust performance in the presence of
the uncertainties implicit in the model described in
Section 2.3 is potentially an intractable problem. In
fact, interference due to nearby curves and uncertainty
in curve location and orientation generate ambiguities
as to how candidate points should be linked together to
form a curve. These ambiguities result in bifurcations
in the vector graph. The number of possible paths can
be exponentially large and it might be impossible to
explore efficiently all of them. On the other hand, to
obtain a complete representation every plausible path
must be somehow taken into account.

3.1. Inadequacy of Greedy Linking Methods

Figure 6 illustrates the inadequacy of straightforward
linking methods in the presence of uncertainties. Let’s
assume that there is just one curveγ to be detected,
namely0 = {γ }, and thatγ satisfies the decay condi-
tion. Also, let’s assume thatδ2 = ∞. Thus the vector
field in the inner neighborhoodD0

γ (dark shaded area) is
larger than the vector field in the outer regionR2\D1

γ
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(a) Brightness image (b) Edge-points (c) Greedy linking

Figure 7. Result of Canny’s edge detection with greedy linking on the image shown in (a). The set of points found by Canny’s algorithm is
shown in (b). The polygonal curves obtained by linking each point to one of its neighbors are shown in (c). When ambiguities are present, a
“best” neighbor is determined by minimizing a cost function which depends on the brightness gradient and on the orientation similarity between
the linked points. Notice that these ambiguities, which are usually caused by multiple responses to the same edge, can disrupt the tracking
process and lead to instability. That is, the reconstructed path can diverge significantly from the true edge. This is particularly evident for the
two parallel edges of the bright thin long line on the right of the image.

(white area) but it is not necessarily larger than the
vector field in the intermediate areasD1

γ \D0
γ (the light

shaded areas).
Now suppose that a polygonal curveγ̂ is constructed

from the pointp0 by a greedy linking procedure. That
is, the current point is linked to its strongest neigh-
bor and then the procedure is restarted from the new
point. Notice that the tracked path exits first the in-
ner neighborhood, then the outer neighborhood and
then it diverges arbitrarily fromγ . Thus, this simple
“greedy” procedure isunstablebecause a small devi-
ation of the tracked path from the path closest to the
curve can lead to an arbitrarily large deviation between
the two paths. This type of error occurs frequently in
real images if greedy linking is used. Several instances
of this error are shown in Fig. 7. Another problem with
greedy linking is that it might generate wiggly curves
(see Fig. 6(b)).

3.2. Definition of Stability

An important definition in this paper is that of a stable
graph. Roughly speaking, a graph is stable if every
path in the graph “attracts” nearby paths. A weak def-
inition of stability is given below and a stronger one
will be given in Section 5. Both definitions depend
on a positive constantw, which is the scale param-
eter used by the stabilization algorithm described in
Section 4.

For p ∈ R2, w > 0, let Bw(p) be the ball centered
at p with radiusw:

Bw(p) = {p′ ∈ R2 : ‖p− p′‖ < w}.
Thew-neighborhood of a pathπ is the set of points in
R2 with distance fromσ(π) less thanw. It is given by:

Nw(π) =
⋃

p∈σ(π)
Bw(p).

Let π = (p1, . . . , pn) andπ ′ = (p′1, . . . , p′n′) be two
paths and letq ∈ σ(π ′). Let σq(π

′) be the largest
connected subcurve ofσ(π ′) which containsq and is
separated by at leastw from the end-points ofπ (see
Fig. 8):

σq(π
′) ∩ Bw(p1) = σq(π

′) ∩ Bw(pn) = ∅.
In Fig. 8,σq(π

′) is the curve betweenq− andq+.

Definition 2. A pathπ in A is aw-attractor if there
is a neighborhoodU of σ(π), U ⊂ Nw(π), such that
σq(π

′) ⊂ U for every pathπ ′ in A and everyq ∈
σ(π ′) ∩ U . The setU is called anattraction basin
for π . A graph(P, A) isw-stableif every path in it is
aw-attractor.

A different way to construct attraction basins from
tangent vectors is described in (Parent and Zucker,
1989; David and Zucker, 1990). Their method is
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Figure 8. The pathπ in (a) is an attractor because the curveσq(π
′),

namely the curve betweenq− andq+, lies in some neighborhoodU
of σ(π) contained inNw(π). The pathπ in (b) is not an attractor
because there is no such neighborhoodU of π . In fact, σq(π

′)
diverges (laterally) fromπ , that is, the subcurveq → q+ exits the
neighborhoodNw(π) without intersectingBw(pn).

based on a potential function obtained by summing
the weighted contributions of several tangent vectors.
The desired curves are then defined as the valleys of
this potential. Each estimated curve is represented by
a covering consisting of many smooth curve pieces.
Each piece is computed by using a “snake” evolving
according to the potential function and initialized near
a tangent vector. Instead, the algorithm proposed here
constructs attraction basins in a more geometric fash-
ion (see Fig. 9) and reconstructs each curve as a whole
entity by means of a linear-time dynamic programming
procedure.

4. Stabilization of a Vector Graph

This section describes an algorithm which computes a
stable graph from an arbitrary vector graph(P,V, A).
Moreover, if (P,V, A) is a projection of0 then the
result is also a projection of0. The set of arcs in
the computed graph is denotedSw(V, A) wherew is
the scale parameter. This parameter is related to the
constants of the curve model by means of the bounds in
Theorem 2 (see below). Ultimately,w should depend
on the amount of noise in the brightness image and

on the sharpness of the brightness discontinuity across
edges. In the current implementation of the algorithm
w has to be provided externally.

To obtain a stable graph, the algorithm ensures that
every pathπ = (p1, . . . , pn) in Sw(V, A)has an attrac-
tion basinUw(π) contained inNw(π). The boundary
of Uw(π), denotedβw(π), is a polygonal curve con-
structed as follows. For everyp ∈ P let p+ and p−

be the points lyingw away from p in the direction
orthogonal to the vector field atp. That is,

p+ = p+ wu⊥(p) (4)

p− = p− wu⊥(p) (5)

whereu⊥(p) is the unit vector perpendicular to the
direction of the vector field atp, u⊥(p) = (sinθ(p),
− cosθ(p)). The boundary ofUw(π) is then the polyg-
onal curve with vertices:

p+1 , . . . , p+n , p−n , . . . , p−1 , p+1

(see Fig. 9(a)). The algorithm can be described as
follows. Letβ−w (a), β

+
w (a) be thelateral segmentsof

the arca = (p1, p2) ∈ A defined by (see Fig. 9(b)):

β−w (a) = σ(p−1 , p−2 ) (6)

β+w (a) = σ(p+1 , p+2 ) (7)

Let a1,a2 be arcs inA. If a1 intersects one of the
two lateral segments ofa2 or vice-versa then we say
that (a1,a2) is an incompatiblepair. Let’s define a
boolean functionψw: A× A→ {false , true } such
thatψw(a1,a2) = true if (a1,a2) is incompatible and
ψw(a1,a2) = false otherwise. Thus we have

ψw(a1,a2) = σ(a1) ∩ β−w (a2) 6= ∅
∨ σ(a1) ∩ β+w (a2) 6= ∅
∨ σ(a2) ∩ β−w (a1) 6= ∅
∨ σ(a2) ∩ β+w (a1) 6= ∅ (8)

where∨ denotes the logical “or” operator. LetIw be
the set of incompatible pairs of arcs inA. For every
(a1,a2) ∈ Iw let

• E(a1,a2) be the four end-points ofa1 anda2:

E(a1,a2) = {p1(a1), p2(a1), p1(a2), p2(a2)}
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Figure 9. (a): The attraction basinUw(π) is the polygon with verticesp+1 , . . . , p+n , p−n , . . . , p−1 , p+1 . Its perimeterβw(π) is composed of four
parts:βw(π) = β−w (π)∪ σ⊥w (pn)∪ β+w (π)∪ σ⊥w (p1) whereσ⊥w (pi ) = σ(p−i , p+i ); β

±
w (π) =

⋃
a∈arcs(π) β

±
w (a); arcs(π) are the arcs ofπ ; and

β±w (a) are the lateral segments ofa shown in (b). Notice that each point inUw(π) has distance fromσ(π) less thanw, that is,Uw(π) ⊂ Nw(π).

• Pmin(a1,a2) be the set of points minimizingφ in
E(a1,a2):

φ0= min
p∈E(a1,a2)

φ(p) (9)

Pmin(a1,a2)={p ∈ E(a1,a2) :φ(p) = φ0} (10)

If φ takes different values on the elements ofE(a1,a2),
then Pmin(a1,a2) is a singleton. LetP̃w(V, A) be the
union of all these minimum-achieving points over all
pairs of incompatible arcs:

P̃w(V, A) =
⋃

(a1,a2)∈Iw

Pmin(a1,a2) (11)

The set of vertices of the computed graph is
P\P̃w(V, A) and

Sw(V, A) = {(p1, p2) ∈ A : p1, p2 6∈ P̃w(V, A)}.
(12)

By using the following notation

A− P′ := {(p1, p2) ∈ A : p1, p2 6∈ P′} (13)

for any P′ ⊂ P, Eq. (12) can be rewritten as
Sw(V, A) = A − P̃w(V, A). The proofs of the fol-
lowing theorems are in Section 10. The result of the
stabilization algorithm on the graph of Fig. 10(a) is
shown in Fig. 10(d). LetUw(π) be as in Fig. 9.

Theorem 1. For any vector graph(P,V, A) and
w > 0, the graph with arcs Sw(V, A) generated by
the stabilization algorithm isw-stable with attraction
basins Uw(π).

Let l max(A) be the maximum arc length of the graph
(P, A),

l max(A) = max{‖p1− p2‖ : (p1, p2) ∈ A}
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(a) ArcsA (b) {σ⊥w (p)}

(c) {β±w (a)} (d) Sw(V, A)

Figure 10. Stabilization of the graph in (a). (b) The segmentsσ⊥w (p), p ∈ P. (c) The lateral boundaries. (d) The result of the stabilization
algorithm.

Theorem 2. Let 0 be a set of curves with bounded
curvature and let(P,V, A) be a projection of0 with
admissible deviationsδ0, δ1, δ2 and21. If

2δ1

cos21
< w · (1− ε1(κ)), (14)

δ2− δ1 > max{w, l max(A)} · (1+ ε2(κ)) (15)

then the graph Sw(V, A) covers0 with distanceδ0.
Namely, for everyγ ∈ 0, Sw(V, A) contains a pathπ
such that d(γ ; σ(π)) < δ0.

In Theorem 2,κ denotes the maximum curvature
of the curves in0 andε1(κ), ε2(κ) are positive func-
tions such thatε1(0) = ε2(0) = 0. As a corollary of
Theorems 1 and 2, notice that the vector graph with
arcsSw(V, A) is a stable projection of0.
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Since the asymmetric Hausdorff distanced(γ ;
σ(π)) is used, the estimated curveσ(π)may be longer
than the curveγ . This is a reasonable result since also
the covering condition was based on the asymmetric
Hausdorff distance.

5. Invalid End-Points and Strong Stability

In a stable graph, the tracked path is guaranteed to re-
main close to the true curve if this path contains a point
sufficiently close to the curve. Thus, errors such as
those in Fig. 6(a) can not occur in a stable graph. How-
ever, it is not guaranteed that all the paths near the curve
are long enough to cover the curve completely. There-
fore, the tracked path might terminate before reaching
the end of the curve (see Fig. 11).

To avoid this problem, invalid end-points such as
p3 in Fig. 11 are connected to some collateral path by
adding an arc (e.g.,(p3, p5)) to the graph. To describe
how this is done, a few definitions are needed. First
of all, let us assume for simplicity that the relationship
between the points inP and the other geometric entities
is “generic”, that is,

σ(p1, p2) ∩ P = {p1, p2} (16)

Table 1. The stabilization algorithm. Steps 2 and 4 need
not be carried out over all pairs of arcs. In fact, for
each arc, it is enough to consider all the arcs in a fixed
neighborhood around its midpoint. If we further assume
that the density of arcs in the image is upper bounded, then
the complexity of the algorithm is linear in the number
of arcs.

1 For every(a1,a2) ∈ A× A
2 computeψw(a1,a2), as given by Eq. (8)
3 For everya1,a2 ∈ A such thatψw(a1,a2) = true

4 computePmin(a1,a2) as given by Eq. (10)
5 P̃w(V, A) =⋃(a1,a2)∈Iw Pmin(a1,a2)

6 ReturnA− P̃w(V, A)

Figure 11. The path (p1, p2, p4, . . . ,q) covers γ whereas
(p1, p2, p3) does not (both paths are maximal).p3 is said to be
an “invalid” end-point. If during curve trackingp3 is chosen instead
of p4 at the bifurcation pointp2 (this occurs if the most collinear
arc with (p1, p2) is chosen), then the resulting path does not cover
γ completely.

Figure 12. (a) Definition ofσ̇⊥w (p). (b) To deal with invalid end-
points,p1 is connected top and p to p2 wheneverσ(p1, p2) inter-
sectsσ̇⊥w (p).

σ⊥w (p) ∩ P = {p} (17)

βw(π) ∩ P = {p1, pn} (18)

whereπ = (p1, . . . , pn). Also, without loss of gener-
ality, let us assume that(P, A)does not containisolated
vertices. Namely, every vertex in the graph(P, A) is
connected to at least one other vertex. LetAin

p andAout
p

be the set of in-arcs and out-arcs fromp, that isAin
p =

{a ∈ A : p2(a) = p}, Aout
p = {a ∈ A : p1(a) = p}.

A pathπ = (p1, . . . , pn) is said to bemaximal in Aif
Ain

p1
= Aout

pn
= ∅. Let (see Fig. 12(a))

σ̇⊥w (p) = σ⊥w (p)\{p}

Definition 3. A point p ∈ P is anend-pointif Aout
p =

∅ or Ain
p = ∅. An end-pointp is invalid if σ(p1, p2)∩

σ̇⊥w (p) 6= ∅ for some(p1, p2) ∈ A.

Notice that ifπ is a path terminating at an invalid
end-pointp, then there might be a collateral path ofπ
which “prolongs” it. This longer path contains the arc
(p1, p2) such thatσ(p1, p2) ∩ σ̇⊥w (p) 6= ∅.

To ensure that tracking does not get stuck at an
invalid-end point, a new graph with arcs̄A ⊃ A is
constructed as follows. Initially, let̄A = A. Then, for
any p such thatσ(p1, p2)∩ σ̇⊥w (p) 6= ∅, (p1, p2) ∈ A,
add the arcs(p1, p) and(p, p2) to Ā.1 The new graph
Ā obtained from the graph in Fig. 13(a) is shown in
Fig. 13(d). By stabilizing the graph with arcs̄A one
obtains a graph which possesses the following strong
stability property. LetA, Â be sets of arcs.

Definition 4. A pathπ in Â is astrong attractor with
respect to Aif there is a neighborhoodU of σ(π),
U ⊂ Nw(π), such thatσ(π ′)∩U 6= ∅ impliesσ(π ′) ⊂
Ū for every pathπ ′ in Â ∩ A. Â is stronglyw-stable
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(a) ArcsA (b) New arcs

(c) Ā (d) Sw(V, Ā)

Figure 13. Computation and stabilization of̄A. (a) Initial graph. (b) The arcs needed to connect invalid end-points to a collateral path. (c)
The graphĀ with the new arcs shown in bold. (d) The graph obtained by stabilizingĀ. This graph is strongly stable.

with respect to Aif every maximal path inÂ is a strong
attractor with respect toA.

Here,Ū denotes the topological closure ofU .

Theorem 3. For any vector graph(P,V, A) and
w>0, the graph with arcs Sw(V, Ā) is stronglyw-
stable with respect to A with attraction basins Uw(π).

A result similar to Theorem 2 holds also forSw(V,
Ā). The only difference is that the lower bound on
δ2− δ1 is now proportional tow+ l max(A) rather
thanw.

Theorem 4. Let 0 be a set of curves with bounded
curvature and (P,V, A) a projection of 0 with
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admissible deviationsδ0, δ1, δ2 and21. If

2δ1

cos21
< w · (1− ε1(κ)), (19)

δ2− δ1 > (w + l max(A)) · (1+ ε2(κ)) (20)

then, the graph Sw(V, Ā) ∩ A covers0. Namely, for
everyγ ∈ 0, Sw(V, Ā) ∩ A contains a pathπ such
that d(γ ; σ(π)) < δ0.

Notice that, as a corollary of Theorems 3 and 4,
Sw(V, Ā) ∩ A is a strongly stable projection of0.

6. Computing a Path Covering

In the previous sections a strongly stable projection
of 0 with arcsSw(V, Ā)was constructed. This section
addresses the problem of computing a family of disjoint
paths{π1, . . . , πN} in Sw(V, Ā) which covers0. It is
assumed for now thatSw(V, Ā) does not contain any
cycles. The more general case where cycle can be
present is treated in the next section.

Recall that the length of an arc inA is less or equal to
l max(A) whereas arcs inSw(V, Ā) have lengths less or
equal tol max(A)+w. Thus, elements inSw(V, Ā)∩ A
will be called short arcsand the other elements of
Sw(V, Ā) will be calledlong arcs. Notice that the sub-
graph of short arcs is sufficient to cover0. Long arcs
have been added to ensure that all maximal paths are
sufficiently extended to cover the tracked curve.

The pathsπ1, . . . , πN are computed one at a time by
an iterative procedure. This procedure extracts a maxi-
mal pathπ j from the current search graphAj and then
defines the new search graphAj+1 ⊂ Aj by remov-
ing from Aj all arcs with a vertex in the neighborhood
Uw(π j ). This is continued until the search graph is
empty. Existence of a maximal path inA is guaran-
teed by the assumption that the graph does not contain
cycles. The algorithm is shown in Table 2.

SinceUw(π j ) is a neighborhood ofσ(π j ), all the
vertices ofπ j belong toUw(π j ), except for the two
end-points (which belong to the boundary ofUw(π j )).
Thus, ifπ j has at least three vertices, then no arc ofπ j

belongs toAj+1 because every arc ofπ j has at least
one vertex inUw(π j ) (see lines 6 and 7 of Table 2).
That is, we have

arcs(π j ) ∩ Aj+1 = ∅ (21)

where arcs(π j ) denotes the arcs belonging the the path
π j . If π j has just two vertices, then one needs to modify

Table 2. The algorithm to compute
regular curves fromSw(V, Ā). A
sourcein Aj is a vertex with no in-
arcs. In line 6, ver(Aj ) denotes the
set of vertices of the graphAj . The
proceduremaximalPath(sj , Aj ) re-
turns a maximal path inAj with
starting pointsj (see Section 6.1).

1 A1 = Sw(V, Ā)
2 j = 1
3 Do until Aj = ∅
4 pick a sourcesj in Aj

5 π j =maximalPath(sj , Aj )

6 Q j = ver(Aj ) ∩Uw(π j )

7 Aj+1 = Aj − Q j

8 j = j + 1
9 end do

slightly the algorithm shown in Table 2 so that (21) is
still true. We omit these details for the sake of sim-
plicity. From (21) (and arcs(π j ) ⊂ Aj ) we have that
Aj+1 is a proper subset ofAj . SinceA1 is finite, this
implies that the algorithm terminates after a finite num-
ber of steps. Moreover, it implies that the pathsπ j are
arc-disjoint, that is,

arcs(π j ) ∩ arcs(πk) = ∅, j 6= k (22)

Let 0̂ = {σ(π j ) : 1≤ j ≤ N}.

Theorem 5. Let 0 be a set of curves with bounded
curvature and let(P,V, A) be projection of0 with
admissible deviationsδ0, δ1, δ2 and21. If

2δ1

cos21
< w · (1− ε1(κ)), (23)

δ2− δ1 > (w + l max(A)) · (1+ ε2(κ)). (24)

then for everyγ ∈ 0 there existsγ̂ ∈ 0̂ such that
d(γ ; γ̂ ) < w + δ0.

Notice that, in the zero curvature case, and ifw

is set to the lower bound given by Eq. (23), then the
localization error is

δ0+ 2
δ1

cos21
.

The parametersδ0 andδ1 represent two different types
of localization uncertainty in the local data whereas21

is an upper bound on orientation uncertainty. It is not
clear how tight this bound is. Probably, the factor 2
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(a) Sw(V, Ā) (b) {β±w (a)}

(c) 0̂ (d) {Uw(π j )}
Figure 14. Computation of regular curves from the strongly stable graphSw(V, Ā) in (a). (b) The lateral boundaries formed by the lateral
segments{β±w (a)}. (c) The regular curves computed by the algorithm. (d) The neighborhoods{Uw(π j )}.

can be reduced but it is unlikely that it can be made
smaller than 1.

The parameterδ2, which represents the minimum
separation distance between two curves, has to be at
least 3δ1 + l max(A) (by letting κ = 21 = 0). The
l max(A) part can be made arbitrarily small by breaking
down the arcs of the vector graph into smaller pieces.
This entails a linear increase of the computational

complexity. As for the other term, 3δ1, we do not
know how tight it is.

6.1. Computing the Optimal Path

The algorithm in Table 2 uses the proceduremaximal-
Path(sj , Aj ) which returns a pathπ j ∈ M j (sj ), where
M j (sj )denotes the set of maximal paths inAj with first
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elementsj . Notice that Theorem 5 holds for any choice
of a path inM j (sj ). Thus, this path can be determined
according to an arbitrarily chosen cost functionc(π).
If this cost is additive,

c(π) =
n∑

i=1

c(pi ), π = (p1, . . . , pn)

then the minimizing path can be computed by using an
efficient dynamic programming algorithm which runs
in linear time in the number of arcs in the graph. In fact,
let c?(p), p ∈ ver(Aj ), be the optimal cost of a max-
imal path starting atp. Then, the following Bellman
equation holds

c?(p) = c(p)+ min
p′∈F(p)

c?(p′), p ∈ ver(Aj )

where F(p) denotes the set of verticesp′ such that
(p, p′) ∈ Aj . The recursive algorithm in Table 3 can be
used to computec?(p) for all p ∈ ver(Aj ) (assuming
the graph does not contain cycles). The optimal path
starting fromp is then

maximalPath(sj , Aj )

= (sj , ν(sj ), ν(ν(sj )), . . . , ν
n(sj )) (25)

whereν(p) is the minimizer ofc?(p′), p′ ∈ F(p).
Notice that this method can be generalized to cost

functions of the form

c(π) =
n−k∑
i=1

c(pi , pi+1, . . . , pi+k).

To do this, one needs to construct a graph whose
nodes are all possible(k + 1)-paths(q1, . . . ,qk) in
the original graph and whose arcs are all the pairs
((q1, . . . ,qk), (q′1, . . . ,q

′
k)) where q′i = qi+1, i =

2, . . . , k− 1 (see Casadei, 1995).

Table 3. The recursive algorithm to compute optimal
maximal paths.

1 optimize(p)
2 if F(p) = ∅
3 c?(p) = c(p)
4 else
5 for everyp′ ∈ F(p)
6 optimize(p′)
7 c?(p) = c(p)+min{c?(p′) : p′ ∈ F(p)}
8 return

This approach can be used to compute paths with
minimum total turn. In fact, the total turn of a path
π = (p1, . . . , pn) is given by

c(π) =
n−1∑
i=2

c(pi−1, pi , pi+1)

wherec(pi−1, pi , pi+1) is the absolute value of the ori-
entation differences between the arcs(pi−1, pi ) and
(pi , pi+1). Similarly one could use this method to
incorporate other types of constraints (e.g., energy-
based) depending also on brightness.

A dynamic programming approach for optimal curve
detection was also proposed in (Subirana-Vilanova
and Sung, 1992; Sha’ashua and Ullman, 1988). Their
method minimizes a cost function which penalizes cur-
vature and favors the total length of the curve. Our
approach is simpler in that only curvature appears in
the cost function. This simplification is possible be-
cause all the curves which can be constructed from a
given point cover each other, i.e., they have the same
“length”. This is a consequence of the strong stability
of the graph.

Due to the above simplification, the dynamic pro-
gramming algorithm needs to pass through each point
only once and therefore has linear time complexity.
Also, since the stabilization algorithm runs in linear
time (see comments in Table 1) and since the procedure
which computesĀ from A runs also in linear time, it
follows that the whole algorithm has linear time com-
plexity.

7. Classification and Detection of Cycles

The curve extraction procedure of Section 6 needs
some adjustment to deal with cycles in the vector
graph. Recall that a cycle is a pathπ = (p1, . . . , pn)

such thatp1 = pn. The structure of the stabilized
graph Sw(V, Ā) makes it possible to classify cycles
into two classes,regular cycles andirregular cycles
(or looplets). To do this, notice first of all that the two
lateral boundariesβ+w (π) and β−w (π) of a cycle are
closed curves (see Fig. 15). SinceSw(V, Ā) is the
output of the stabilization algorithm, the closed poly-
gonal curveσ(π) is disjoint fromβ+w (π) andβ−w (π)
(see Proposition 2 in Section 10). Thus, two cases are
possible. In the first case,σ(π) encloses eitherβ+w (π)
or β−w (π). Then, the other lateral boundary encloses
the other two closed curves (see Fig. 15(a)). A cycle
of this type is said to beregular. In the second case,
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Figure 15. (a) The cycleπ is regular becauseR(β+w (π)) ⊂ R(π) ⊂ R(β−w (π)). Here,R(·) denotes the region enclosed by a closed curve.
(b) A looplet π satisfiesR(β+w (π)) ∩ R(π) = R(β−w (π)) ∩ R(π) = ∅.

neitherβ+w (π) norβ−w (π) enclosesσ(π) and the inte-
riors of the three cycles are all disjoint (Fig. 15(b)). A
cycle of this kind will be called alooplet, or irregular
cycle.

The procedureoptimize(p) in Table 3 can be modi-
fied slightly so that cycles are detected and handled ap-
propriately. The modified procedureoptimize′ works
as follows. Every pointp is assigned a state variable
which can take one of three possible values: “new”
(which is the initial state), “active” and “done”. When
a point is opened for the first time, namelyoptimize′

is called with argumentp, then the state ofp is
changed from “new” to “active”. When the procedure
optimize′(p) returns, the state ofp is changed from
“active” to “done”. A cycle occurs wheneveroptimize′

opens a point which is already “active”.
To check whether the cycle is regular it is suffi-

cient to pick one of its vertices and verify whether it
is enclosed by eitherβ+w (π) or β−w (π). If the cycle
is regular then the pathmaximalPath(sj , Aj ) in (25)
is set equal to this cycle and lines 7, 8 of the proce-
dure in Table 2 are applied to it. If the cycle is a looplet
then all its nodes are coalesced into a “super-node” and
the procedureoptimize′ continues from this new super-
node.

8. Experiments

The results of the proposed algorithm on two images are
shown in Figs. 16 and 17. The vector graph was com-
puted by using the method described in Section 2.1.
Rectangular regions with width 4 and height 3 were

used to compute the cubic polynomial fit and the
tangent vectors. Some thresholds were used to elim-
inate some of these tangent vectors. The parameterw

was set to 0.75 for all the experiments.
The results are compared to Canny’s algorithm with

sub-pixel accuracy followed by greedy edge linking
(Figs. 16(b) and 17(b)). The performance of the two
algorithms is comparable on edges which are iso-
lated, with low curvature and with significant bright-
ness change. However, when the topology of the edges
is more complex, the advantages of a more robust
approach become evident. In fact, greedy linking con-
nects points with very little knowledge about the semi-
local curvilinear structure. If an unstable bifurcation
is present, then greedy linking makes a blind choice
which may lead to a curve diverging from the true
edge. For instance, the two parallel edges on the left of
telephone keyboard are disconnected and merged to-
gether in Fig. 16(b). The contour of the telephone keys
and of the flower petals (Fig. 17(b)) are often confused
with nearby edges. One could decrease the chances of
greedy linking getting confused by raising the thresh-
olds in Canny’s edge detector, so that fewer multiple re-
sponses are generated. However this would cause many
edges to be missed (see the two parallel edges on the
right of the telephone keyboard in Fig. 16(b)). Instead,
the contours obtained by the proposed algorithm are
more complete (even though sometimes disconnected)
and do not diverge from the true edges (however, notice
the errors near the top keys).

The limits of the proposed algorithm lie in the
assumptions which are necessary for a curve to be
recovered without disconnections. If a curve in the
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(a) Brightness image (b) Canny’s algorithm (for comparison)

(c) Vector graph (d) Regular curves

Figure 16. Telephone image. The final result is shown in (d).

image violates one of these assumptions, then the curve
might be disconnected at the point where the violation
occurs. For instance, notice that edges are broken at
points of high curvature and at curve singularities such
as T-junctions. Also, since the asymmetric Hausdorff
distance is used to evaluate the match between the true
curve and the reconstructed one, curve end-points may
not be recovered correctly. Sometimes, curves are ex-
tended a little beyond the ideal end-point.

These limitations can be dealt with at higher levels
of the edge detection hierarchy by using more general
edge models. The regular curves extracted at the cur-
rent level can be used to construct hypotheses about the
missing portions of the edges. More global information
can then be applied to prune the set of these hypothe-
ses so that the process can be repeated recursively and
efficiently. For instance, Casadei and Mitter (1996a)
showed how this method can be used to bridge small

gaps in the curves due to high curvature and T-junctions
(see Fig. 18).

Finally, Fig. 19 shows the results of the algorithm
(including the edge continuation step) on two MRI im-
ages (courtesy of A. Tannenbaum). Since the brightness
discontinuities occur at a higher scale in these images,
the tangent vectorsV have been generated by using
rectangular regions 6 pixel wide and 7 pixel tall (the
parameterw was kept the same as before, 0.75).

9. Conclusions

To estimate contours in an image reliably it is neces-
sary to apply different types of local and global infor-
mation. For the sake of computational efficiency, this
information should be introduced in several stages so
that uncertainties are resolved in the right context. The
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(a) Brightness image (b) Canny’s algorithm (for comparison)

(c) Vector graph (d) Regular curves

Figure 17. Flower image. The final result is shown in (d).

state of the computational process is given by a set of
curve hypotheses represented by geometric descriptors
whose complexity and spatial support increase as com-
putation proceeds. When building a new layer in the
hierarchy, care has to be taken so that deriving the new
representation from the previous ones can be done effi-
ciently without resolving uncertainties arbitrarily. This
remark has two consequences.

First, a theoretical framework is needed to prove that,
at every stage, the computed representation approxi-
matesall the possible curve hypotheses which can be
expressed by the dictionary of that stage. Indeed, in this
paper it has been proved that the proposed algorithm
approximates efficiently all the regular curve hypothe-
ses which are consistent with the given set of tangent
vectors.
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Figure 18. Result after selecting locally-best edge continuations in Figs. 16(d) and 17(d).

Second, constraints exist on theorder in which un-
certainties should be resolved. In fact, only certain
types of hypotheses can be formulated efficiently from
the information available at the current stage. For the
problem of edge detection, this led us to believe that
curve singularities (corners and junctions) and invisi-
ble contours should be recovered only after represent-
ing the regular portions of the contours by means of
maximally long curves.

A model for these regular curves has been pro-
posed. The most important assumption of this model
is that the local edge-strength decays away from the
edge. The precise formulation of this assumption al-
lows for the presence of noise in the model and makes
the algorithm robust to noise. Correct detection of the
regular curves described by this model entails the res-
olution of ambiguities due to multiple responses to
the same edge and uncertainties in the orientation and
strength of the point-like edge estimates. These issues
are closely related to the problem of stability in edge
tracking.

9.1. Future Work

An important generalization of the algorithm presented
here is to include automatic adaptation to the scale of
brightness discontinuities. If this scale can be esti-
mated directly from local brightness data (Elder and
Zucker, 1996a) then each tangent vector in the input

can be labeled with this scale estimate. Then, the pa-
rameterw, which is now constant throughout the im-
age, becomes a function of the local scale and noise
estimates.

The information about multiple tangents (corners
and junctions) present in the given set of tangent vec-
torsV and removed during the stabilization procedure
needs to be reintegrated into the representation at the
next stage. This was partly done in (Casadei and Mitter,
1996a) but needs to be done in a more rigorous way.
Also, some corners and junctions in the image might
not be represented at all inV , especially ifV was com-
puted by an algorithm which assumes a single tangent
at every point. Thus one perhaps needs to create new
edge hypotheses by extrapolating the computed regular
curves.

The problem of detecting large gaps between vis-
ible curves requires different steps. First of all, one
needs to generate all possible invisible-curve hypothe-
ses connecting visible curves. Some diffusion process
emanating from the existing curves can be used for this
purpose (see for instance Williams and Jacobs, 1995;
Geiger and Kumaran, 1996). Alternatively, one could
use some localized versions of the Hough transform to
cluster curves in parameter space.

The set of all invisible-curve hypotheses together
with the visible curves generates a graph where paths
corresponds to partially invisible curves. This graph
might contain many bifurcations (nodes with many
arcs) so that finding “optimal” paths is in general
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Figure 19. Left: Two MRI of an heart. Right: Result of proposed algorithm (followed by edge continuation processing)..

computationally hard. As noted by Geiger et al. (1996),
the major problem is not hypothesizing possible curve
continuations or their shape but selecting the globally-
best arrangements of continuations.

To do this efficiently, one needs to identify top-down
feedback mechanisms to guide the search in the curve
graph. Closure (Elder and Zucker, 1996b) can provide
an important clue. However, for closure information
to be useful one needs a continuous measure of “being
closed” which applies to both closed and non-closed

curves. This is necessary to generate feedback sig-
nals to curve hypotheses which are not yet completely
formed into a closed contour.

At some stage, information about relative depth of
the curves has to be included to facilitate continua-
tion behind occluding contours, which should be the
first ones to be detected and “lifted” from the image
(Geiger et al., 1996). Eventually, at the highest level, a
2.1 sketch of the whole image should emerge from the
computational process.
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10. Proofs of the Results

10.1. Proof of Theorem 1

The proofs of the main results will be preceded by some
useful propositions.

Definition 5. A vector graph(P,V, A) is said to be
arc-compatibleif ψw(a1,a2) = false for every pair
of arcs(a1,a2) ∈ A× A. The setA will also be said
to be arc-compatible.

Proposition 1. For any vector graph(P,V, A) and
w > 0, Sw(V, A) is arc-compatible.

Proof: Letψw(a1,a2) = true for somea1,a2 ∈ A.
Then, P̃w(V, A) contains at least one of the points in
E(a1,a2). Hence eithera1 6∈ A− P̃w(V, A) or a2 6∈
A− P̃w(V, A) so thatSw(V, A) can not contain both
a1 anda2. 2

Proposition 2. Let A be arc-compatible. Then for
any pathsπ, π ′ in A:

σ(π) ∩ β−w (π ′) = σ(π) ∩ β+w (π ′) = ∅ (26)

Proof: Notice that

σ(π) =
⋃

a∈arcs(π)

σ (a)

β+w (π
′) =

⋃
a′∈arcs(π ′)

β+w (a
′)

β−w (π
′) =

⋃
a′∈arcs(π ′)

β−w (a
′)

The result follows then from Proposition 1. 2

Proposition 3. Let (P,V, A) be a vector graph and
w > 0. Then Uw(π) ⊂ Nw(π) for any pathπ in the
graph(P, A).

Proof: The result follows directly from the construc-
tion of the boundary ofUw(π) (see Fig. 9(a)). 2

Proof of Theorem 1: Letπ = (p1, . . . , pn)be a path
in Sw(V, A). From Proposition 3 we haveUw(π) ⊂
Nw(π). We have to prove thatUw(π) is an attraction
basin forπ (see Definition 2). Recall that the boundary
of Uw(π) is

∂Uw(π) = βw(π)
= β−w (π) ∪ σ⊥w (pn) ∪ β+w (π) ∪ σ⊥w (p1)

Let q ∈ Uw(π) and letπ ′ be a path such thatσ(π ′)
containsq. From Proposition 2 it follows that

σ(π ′) ∩ β−w (π) = σ(π ′) ∩ β+w (π) = ∅

so thatσ(π ′) can intersectβw(π)only at its extremities,
σ⊥w (p1) andσ⊥w (pn), which are contained inBw(p1)∪
Bw(pn):

(σ (π ′) ∩ βw(π)) ⊂ (σ⊥w (p1) ∪ σ⊥w (pn))

⊂ (Bw(p1) ∪ Bw(pn))

Therefore,σ(π ′) can intersect∂Uw(π) only inside
Bw(p1) ∪ Bw(pn). Henceσq(π

′)—namely the largest
connected subcurve ofσ(π ′) disjoint from Bw(p1) ∪
Bw(pn)—is contained inUw(π). Thus,Uw(π) is an
attraction basin forπ . 2

10.2. Proof of Theorem 2

Lemma 1. Let γ be an unbounded straight line and
let(P,V, A)be a vector graph satisfying the alignment
condition onγ . Let a∈ A. If σ(a) ⊂ D1

γ and

2δ1

cos21
< w, (27)

δ2− δ1 > w (28)

thenβ+w (a) ⊂ D2
γ \D1

γ andβ−w (a) ⊂ D2
γ \D1

γ .

Proof: Let us assume without loss of generality that
γ coincides with they-axis. For anyp ∈ R2 let x(p)
be thex-coordinate ofp so thatd(p; γ ) = |x(p)| (see
Fig. 20). Letp−1 , p−2 be the end-points ofβ−w (a) and
p+1 , p+2 the end-points ofβ+w (a). Recall that

p±i = pi ± wu⊥(pi ), i = 1, 2

whereu⊥(pi ) is the unit vector perpendicular tovpi .
Then,

x(p±i ) = x(pi )± w cosθi , i = 1, 2

whereθi is the angle betweenvpi andγ . The alignment
condition requiresθi < 21 so that

|x(p±i )− x(pi )| > w cos21, i = 1, 2
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Figure 20. Proof of Lemma 1.

Therefore, since|x(pi )| < δ1 and by using (27),

|x(p±i )| > w cos21− |x(pi )| > w cos21− δ1 > δ1

Also, by using (28),

|x(p±i )| ≤ |x(pi )| + w < δ1+ w < δ2

Thus p±i ∈ D2
γ \D1

γ and the result follows from the
convexity ofD2

γ \D1
γ . 2

Proposition 4. Letγ be an unbounded straight line.
Let (P,V, A) satisfy the decay and alignment con-
ditions onγ . Suppose Eqs.(27) and (28) hold and
δ2− δ1 > l max(A). Let p∈ P. Then

p ∈ D0
γ ⇒ p 6∈ P̃w(V, A)

Proof: Let Ap be the set of all arcs inA which have
p as one of its two end-points. Leta = (p, p̄) ∈ Ap

anda′ = (q1,q2) ∈ A. From Eqs. (8)–(11), we must
prove that eithera anda′ are compatible orφ(p) > φ0,
where

φ0 = min{p, p̄,q1,q2}

Since‖p− p̄‖ ≤ l max(A) < δ2− δ1 andd(p; γ ) < δ1

we have

d( p̄; γ ) < d(p; γ )+‖p− p̄‖ < δ1+ (δ2− δ1) < δ2,

that is p̄ ∈ D2
γ . If p̄ ∈ D2

γ \D1
γ thenφ(p) > φ0,

becausep ∈ D0
γ andφ(p) > φ( p̄) from the decay

condition (2). Let us assume then thatp̄ ∈ D1
γ . This

implies thatσ(a) ⊂ D1
γ and, from Lemma 1,

β+w (a) ∪ β−w (a) ⊂ D2
γ

∖
D1
γ (29)

The geometric relationship betweena′ = (q1,q2)

and γ can fall into one of three possible cases (see
Fig. 21):

(i) At least one ofq1,q2 belongs toD2
γ \D1

γ .
(ii) q1,q2 ∈ D1

γ .
(iii) q1,q2 ∈ R2\D2

γ .

The case where one ofq1,q2 is in D1
γ and the other is in

R2\D2
γ cannot occur because‖q1− q2‖ ≤ l max(A) <

δ2− δ1.

Case (i) From the decay condition it followsφ(p) >
φ(q1) or φ(p) > φ(q2) and thereforeφ(p) > φ0.

Case (ii) Notice thatσ(a′) = σ(q1,q2) ⊂ D1
γ . From

this and from Eq. (29) we have

σ(a′) ∩ ((β−w (a) ∪ β+w (a)) = ∅.

Similarly, fromσ(a) ⊂ D1
γ and from Lemma 1 ap-

plied toa′,

σ(a) ∩ ((β−w (a′) ∪ β+w (a′)) = ∅.

Henceψw(a,a′) = false and(a,a′) is a compat-
ible pair.

Case (iii) Sinceδ2− δ1 > w, it follows that

D1
γ ∩ ((β−w (a′) ∪ β+w (a′)) = ∅

and therefore, fromσ(a) ⊂ D1
γ ,

σ(a) ∩ ((β−w (a′) ∪ β+w (a′)) = ∅.

Sinceσ(a′) = σ(q1,q2) ⊂ R2\D2
γ , from (29) we

have

σ(a′) ∩ ((β−w (a) ∪ β+w (a)) = ∅

and thereforeψw(a,a′) = false . 2

Proof of Theorem 2: Let γ ∈ 0 and let us assume
thatγ is an unbounded straight line (The proof is given
for this case only).2 Since(P,V, A) is a projection of
0, γ ∈ 0 satisfies the covering, decay and alignment
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Figure 21. Proof of Proposition 21. The three possible cases fora′.
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conditions. From the covering condition, there exists a
pathπ in A such thatd(γ ; σ(π)) < δ0. Notice that the
vertices ofπ belong toD0

γ so that, from Proposition 4,
they do not belong tõPw(V, A). Therefore,π is also
a path inSw(V, A) = A− P̃w(V, A). 2

10.3. Proofs of Theorems 3 and 4

Definition 6. Let A, Â be sets of arcs and let̂P be
the set of vertices of̂A. The setÂ is said to beσ⊥w -
connected with respect to Aif

σ(p1, p2) ∩ σ̇⊥w (p) 6= ∅ ⇒ (p1, p) ∈ Â (p, p2) ∈ Â

(30)

for every(p1, p2) ∈ Â∩ A and everyp ∈ P̂.

Proposition 5. The setĀ constructed in Section5 is
σ⊥w -connected with respect to A.

Proof: The result follows directly from the definition
of Ā. 2

The following Lemma ensures that a graph remains
σ⊥w -connected if an arbitrary set of vertices is sup-
pressed.

Lemma 2. Let A, Â be sets of arcs whose vertices
belong to P. Let P′ ⊂ P. If Â is σ⊥w -connected with
respect to A thenÂ − P′ is alsoσ⊥w -connected with
respect to A.

Proof: Let p be a vertex inÂ− P′ and(p1, p2) an
arc in(Â− P′)∩ A such thatσ(p1, p2)∩ σ̇⊥w (p) 6= ∅.
We have to prove that(p1, p) ∈ Â− P′ and(p, p2) ∈
Â− P′. Notice that sincep is a vertex inÂ− P′ it is
also a vertex inÂ. Also, from(p1, p2) ∈ (Â− P′)∩ A
we have(p1, p2) ∈ A. Therefore, sinceÂ is σ⊥w -
connected w.r.t.A,

(p1, p) ∈ Â, (p, p2) ∈ Â (31)

Sincep is a vertex inÂ− P′ we havep 6∈ P′. Also,
from (p1, p2) ∈ (Â− P′) ∩ A we havep1, p2 6∈ P′.
Hence, from (31) it follows that(p1, p) ∈ Â− P′ and
(p, p2) ∈ Â− P′. 2

Proposition 6. For any vector graph(P,V, A),
Sw(V, Ā) is σ⊥w -connected with respect to A.

Proof: Notice that Sw(V, Ā) = Ā − P̃w(V, Ā).
Therefore, sinceĀ is σ⊥w -connected w.r.t.A, the re-
sult follows from Lemma 2. 2

Proposition 7. Let Â beσ⊥w -connected with respect
to A, and letπ = (p1, . . . , pn) be a maximal path in
Â. Then, for every(q1,q2) ∈ Â∩ A,

σ(q1,q2) ∩ σ̇⊥w (p1) = σ(q1,q2) ∩ σ̇⊥w (pn) = ∅

Proof: For the purpose of contradiction, let(q1,q2)

∈ Â∩ A be such that

σ(q1,q2) ∩ σ̇⊥w (q) 6= ∅ (32)

whereq is eitherp1 or pn. SinceÂ is σ⊥w -connected,
we have that(q,q2) and(q1,q) belong toÂ and there-
fore q has at least one out-arc and one in-arc. This
contradicts the fact thatπ is maximal inÂ. 2

Proposition 8. Let Â beσ⊥w -connected with respect
to A and arc-compatible.

• For every maximal pathπ = (p1, . . . , pn) in Â and
every pathπ ′ in Â∩ A,

βw(π) ∩ σ(π ′) ⊂ {p1, pn} (33)

• Â is stronglyw-stable with respect to A with attrac-
tion basins Uw(π).

Proof: Let π = (p1, . . . , pn) be a maximal path in
Â andπ ′ a path inÂ ∩ A. SinceÂ is arc-compatible
we have from Proposition 2,

σ(π ′) ∩ β−w (π) = σ(π ′) ∩ β+w (π) = ∅

Since Â is σ⊥w -connected andπ is maximal in Â we
have from Proposition 7

σ(π ′) ∩ σ̇⊥w (p1) = σ(π ′) ∩ σ̇⊥w (pn) = ∅

Thus, sinceσ⊥w (p) = σ̇⊥w (p) ∪ {p},

σ(π ′) ∩ βw(π) = σ(π ′) ∩ (β−w (π) ∪ σ⊥w (pn)

∪β+w (π) ∪ σ⊥w (p1)) ⊂ {p1, pn}
(34)

which proves the first part. Let nowπ ′ be a path
in Â ∩ A such thatσ(π ′) ∩ Uw(π) 6= ∅. To prove
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that Â is strongly w-stable, one has to show that
σ(π ′) ⊂ Ūw(π). From the assumptions (16)–(18) and
from Ain

p1
= Aout

pn
= ∅ we have thatσ(π ′) can not exit

Ūw(π) through the pointsp1, pn. This, together with
(34), yields the result. 2

Proof of Theorem 3: From Proposition 1,Sw(V,
Ā) is arc-compatible because it is the output of the
stabilization algorithm on the vector graph(P,V, Ā).
Moreover, Sw(V, Ā) is σ⊥w -connected from Proposi-
tion 6. The result then follows from Proposition 8.2

Proof of Theorem 4: The proof is similar the that
of Theorem 2. Letγ ∈ 0 and, as in the proof of
Theorem 2, let us assume thatγ is an unbounded
straight line. Since(P,V, A) is a projection of0,
γ satisfies the covering, decay and alignment condi-
tions. From the covering condition, there exists a path
π in A such thatd(γ ; σ(π)) < δ0. Notice that the
length of the segments added toA to constructĀ is at
mostw+ l max(A). Therefore,l max(Ā) ≤ w+ l max(A).
Since the vertices ofπ belong toD0

γ , by using Propo-
sition 4 with A replaced byĀ, we have that none of
the vertices ofπ belongs toP̃w(V, Ā). Hence, since
Sw(V, Ā) = Ā − P̃w(V, A) and A ⊂ Ā, π is also a
path inSw(V, Ā) ∩ A. 2

10.4. Proof of Theorem 5

Proposition 9. Aj is stronglyw-stable with attrac-
tion basins Uw(π).

Proof: Notice that

Aj = Sw(V, Ā)−
(⋃

k< j

Qk

)

Thus, from Lemma 2 and Proposition 6, we have
that Aj is σ⊥w -connected. Also,Aj is arc-compatible
because it is a subset ofSw(V, Ā) which is arc-
compatible. The result then follows from Proposition 8.

2

Proposition 10. Let π be a path in Sw(V, Ā) ∩ A.
Then there exists aπ j such that d(σ (π); σ(π j )) ≤ w.

Proof: As a first step we construct a partition ofA1 =
Sw(V, Ā) into N setsBj , j = 1, . . . , N. These sets
are given by:

Bj = {(p1, p2) ∈ Aj : p1 ∈ U j ∨ p2 ∈ U j } (35)

whereUj = Uw(π j ). Notice thatBj ⊂ Aj . The fol-
lowing must be proven:

N⋃
j=1

Bj = Sw(V, Ā) = A1 (36)

Bj ∩ Bk = ∅, k > j (37)

From the recursive definition ofAj (lines 6 and 7 of
Table 2) we have

Aj+1 = Aj − Qj

= Aj \{(p1, p2) ∈ Aj : p1 ∈ U j ∨ p2 ∈ U j }

and therefore

Aj+1 = Aj \Bj (38)

From this it follows thatBj ∩Aj+1 = ∅. Thus, ifk > j
we haveBj ∩ Bk = ∅ becauseBk ⊂ Ak ⊂ Aj+1. This
proves (37). Notice that by iterating (38) one obtains:

Aj = A1

∖⋃
k< j

Bk (39)

Let N be the number of steps done by the procedure
before terminating. That is, from line 3 of Table 2,

AN+1 = ∅

By using (39) one gets

AN+1 = A1

∖⋃
k≤N

Bk = ∅

from which (36) follows. Notice that from (39) and (36)
we have

Aj = A1

∖⋃
k< j

Bk =
⋃
k≥ j

Bk (40)

Now letk be the smallestj such thatBj contains at
least one arc of the pathπ :

arcs(π) ∩ Bj = ∅, j < k (41)

arcs(π) ∩ Bk 6= ∅. (42)
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From (36), (41) and (40) we have

arcs(π) =
⋃

1≤ j≤N

(arcs(π) ∩ Bj )

=
⋃
j≥k

(arcs(π) ∩ Bj ) ⊂
⋃
j≥k

Bj = Ak

Thus, sinceπ is path in A1 ∩ A by assumption,π
is a path inAk ∩ A. From arcs(π) ∩ Bk 6= ∅ and
from (35) we haveσ(π) ∩ Uk 6= ∅. Then, since
(from Proposition 9)Ak is stronglyw-stable, we have
σ(π) ⊂ Ūk ⊂ N̄w(πk). From this it follows that
d(σ (π); σ(πk)) ≤ w. 2

Proof of Theorem 5: Let γ ∈ 0. From Theorem 4
we have that there exists a pathπ in Sw(V, Ā)∩A such
thatd(γ ; σ(π)) < δ0. From Proposition 10 there exists
a pathπ j such thatd(σ (π); σ(π j )) ≤ w. Then, by
the triangular inequality of the asymmetric Hausdorff
distance one getsd(γ ; σ(π j )) < w + δ0. 2
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Notes

1. This has to be done forall the pointsp, not just the end-points
of A. In fact, new end-points can be created by the stabilization
procedure, which will be applied tōA.

2. The proof for finite curves requires a somewhat complicated gen-
eralization of the decay and alignment conditions to constrain the
vector field in the vicinity of the curve end-points. The gener-
alization to curves with bounded curvature is trivial, given the
arbitrariness of the functionsε1(κ) andε2(κ).
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