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Stochastic Processes at Generate 
olygonal and Related s 

Vivek S. Borkar, Senior Member, IEEE, and Sanjoy K. Mitter, Fellow, IEEE 

Abstract-A reversible, ergodic, Markov process taking values 
in the space of polygonally segmented images is constructed. The 
stationary distribution of this process can be made to correspond 
to a Gibbs-type distribution for polygonal random fields as 
introduced by Arak and Surgailis and a few variants thereof, 
such as those arising in Bayesian analysis of random fields. 
Extensions to generalized polygonal random fields are presented 
where the segmentation boundaries are not necessarily straight 
line segments. 

Index Terms-Polygonal random fields, generalized polygonal 
random fields, reversible Markov process, interacting particle 
system, Monte Carlo simulation of random fields. 

I. INTRODUCTION 

N A remarkable series of papers, Arak and Surgailis [ 11-[3] 
studied a class of Markov random fields called polygonal 

random fields (PRF’s) whose realizations can be construed as 
polygonally segmented images. An important aspect of this 
work is the specification of an interacting particle system on 
the line with certain birth, death, branching, and annihilation 
mechanisms, whose trace in the space-time domain gives a 
realization of the PRF. Since PRF’s provide a convenient 
model for polygonally segmented images, it is important to 
be able to construct a reversible Markov process taking values 
in the space of possible PRF realizations such that its sample 
at any given time gives a PRF realization with the desired 
statistics. This is needed, e.g., for Bayesian reconstmction 
of a polygonally segmented image by Monte Carlo methods. 
Motivated by this, Clifford [4], Clifford and Middleton [5] ,  and 
Judish [6] proposed schemes for constructing such processes. 
Their algorithms proceed by modifying at each step the present 
realization of the PRF on a hndomly chosen rectangular 
subdomain, so as to achieve the desired Gibbs distribution. 
These algorithms, however, are strewn with many analytic and 
computational difficulties, discussed at length in [6]. Our aim 
here is to provide a simpler alternative scheme which explicitly 
uses the Arak-Surgailis particle dynamics. This scheme also 
leads to an important generalization to Markov random fields 
exhibiting polygonal-like segmentations, but with curved (as 
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opposed to straight-line) boun es. We call these generalized 
polygonal random fields (GPRF’s). 

The paper is organized as follows: The next section de- 
scribes the notation and the Arak-Surgailis framework. The 
Arak-Surgailis particle system is described next in Section 
III. Section IV describes our construction of a process taking 
values in PRF realizations. Section V describes the extension 
to GPRF’s. 

11. PRELIMINARIES 
Let T C R2 be a bounded, open, convex domain. Parm- 

eterize the straight lines in R2 by ( p ,  a )  E R x [0, T )  where 
p is the signed length of the perpendicular to line 1 from the 
origin and CY the angle it makes with the horizontal axis. Let 
CT denote the set of all straight lines in R2 that intersect T 
and C;,, the set of n-tuples of distinct elements of CT. Let 
J be a prescribed finite set of “colors.” Define 

A CI,(l), = {w :  T -+ J I dw = 

the set of points of discontinuity of w,  satisfies: 
n 

To avoid any ambiguity in the definition of w E &(e), on 
dw, we further impose the condition 

w(z)  = inf limsup{w(x’) I x’ E T \ S, 112’ - 211 < E }  

where the infimum is over all S C T of Lebesgue measure 
zero, with respect to an arbitrary but fixed ordering of J .  Let 

s €10 

00 

02T = U U f b ( C ) , .  
n=O (e),€L$,n 

This is the space of “polygonally segmented images,” topolo- 
gized as follows: A local base for the topology at 

w E U &(e), 
(&I %.,, 
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Fig. 1. Nodes of different kind. (a) Corner. (b) T-junction. (c) X-junction. 

where we use the notation 

for A c T, E > 0. We endow C ~ T  with the corresponding 
Bore1 a-field BT. 

Let ,LL = ,LL( d l )  be a finite, nonatomic, nonnegative measure 
on LT. Define the set of “admissible potentials” 

F :  RT + U { m} I ZT,P,@ 

A polygonal random field on T corresponding to measure p 
and potential F E Q T , ~  is the probability measure PT = 
PT,F,~ on ( ~ T , B T )  given by 

x e -F(W) /ZT ,  A € & .  
bJERT(e)nflA 

Remark 2.1: In [2], Arak and Surgailis give a somewhat 
more general definition allowing for p that are not nonatomic. 
But the specific p that they use later on in [2] is nonatomic. 
We shall be using the same choice of p. 

Recall our parametrization of l E LT. A random sequence 
of lines l j ,  j 2 1, l3 M ( p 3 , a 3 ) ,  is said to be a Poisson 
line process with intensity p(dl) if ( p J ,  a3) ,  j 2 1, is a 
Poisson point process on R x [0, T) with intensity p ( d p ,  d a ) .  
It is stationary if and only if ,U(&) = p ( d p ,  dct) is of 
the form d p v ( d a )  for a bounded nonnegative measure v 
on [0, T). Motivated by image processing applications, we 
shall be interested in stationary isotropic PFW’s, i.e., those 
PRF’s whose satistics is invariant under Euclidean motions 
and reflections. Therefore, we take (as in [2]) ~ ( d a )  = da. 

The next step is to choose F( . ) .  Given w E OT,  let a “node” 
of w refer to any point in T that belongs to more than one 

distinct line segment of dw. Fig. 1 describes three kinds of 
nodes ( i ,  j ,  I C ,  m stand for colors in J ) .  

Let n 2 ( i , j ) ( w ) , n 3 ( i ; j ,  k ) ( w ) , n * ( i , j ,  IC,m)(w) denote the 
number of such corners, T-junctions, and X-junctions, re- 
spectively. 

Define F( . )  by 

2 

n where “log” denotes the natural logarithm (with log 0 = -CO) 

and 
i) x = Jl IsinPldP, 

ii) c ‘ ( i , j ,  I C ,  m) = if i , j ,  k,m are distinct, = if 

iii) T z ( w )  = ( 2  E T I W(Z) = i }  \ a w ,  IT,(w)I its area, 
i # IC, j = m o r  i = IC, j # m, = i f i  = I C , ~  = m, 

iv> B ( i , j ) ,  b(i,J.), C ( i , j , k ) ,  C ’ ( i , j ,hm) ,  4 i , j , k m ) ,  
e ( i ,  j )  are nonnegative weights satisfying [2, condi- 
tions (5.5)-(5.8), (5,12)-(5.18)], recalled in the 
Appendix, These conditions involve a symmetric tran- 
sition matrix [b2j]]z,3EJ, pZ3 = p j 2 ,  on J .  

v) [l] denotes a line segment belonging to line l and 
dw( i ,  j) the set of all (i,j)-segments, i.e., line segments 
in dw that separate colors i and j in w .  L(.  . .) denotes 
“the length of. . ..” 

vi) For w E Cl,(&, = [l,,...,l,] , the set a w n & ,  
when nonempty, is a single line segment for each i. 

We set F(w)  = -m if dw contains a node of any type 
other than those described in Fig. 1. This is not a serious 
restriction because other kinds of nodes (such as more than two 
line segments meeting or crossing at a point) are structurally 
unstable, i.e., become qualitatively different under arbitrarily 
small perturbations. 

For S c T open, let T S ( W )  E 0s for w E RT denote 
the restriction of w to S and let BS denote the sub-a-field 
of B generated by the map TS: RT 4 0s. A measurable 
map X: RT --f R U {ca} is said to be additive if, whenever 
T = S U V ,  S , V  open, X = X S  + XV for some X s ,  
X, .  OZT 4 R U {CO} which are, respectively, Bs, Bv- 
measurable. (This decomposition need not be unique.) With 
this definition, the potential F (  .) above is seen to be additive. 

The polygonal random field PT is said to be Markov if for 
S,  V as above and any A C Bs, PT(A/B~) = PT(A/Bvns). 
Let 40 denote the set of bounded convex open sets in R2. 
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Theorem 2.1 [2, Theorem 5.11: For the above choice of p 
and F as in (2.1), the probability measures PT, T E GO, define 
a consistent family of isotropic Markov PRF’s. 

The next result characterizes the conditional distribution 
under PT. 

Theorem 2.2 [2, Lemma 8.31: For A E B,  U C T open 

PT(AIBU) ( w )  = zT \ U(A/nU(w))/ZT \ U(‘.(W))- 

Here for ( E RTJ 

where the sum Cc is over all w E f 2 ~  satisfying T U ( W )  = E 
and w E R,((l), U E ( [ ) ) ,  z(E) being the set of lines that 
constitute I. 

ZT \ U ( T U  (U)) = ZT \ U (QT/TU(w)> 

is the normalizing factor. 
The proof of [2 ,  Theorem 2.11 uses the realization of 

these PW’s via an interacting particle system with prescribed 
dynamics. We describe this in the next section. In conclusion, 
we mention that the definition of isotropy in 121 does not 
include reflection symmetry, but this can be easily incorporated 
without altering the proof of Theorem 2.1. 

111. DYNAMICS OF THE PARTICLE SYSTEM 

We start with further notation and definitions from [2]. We 
consider a T which is a bounded convex polygon. Without 
any loss of generality, suppose that 

with no side parallel to the y-axis. This can always be 
achieved by redefining the axes and scaling-see, e.g., Fig. 2. 
In particular, T has one point each on the lines (0,y) and 
( 1 , ~ ) .  Let d T  = d T S  U dT- where dT* = ((t,y:), 0 5 
t 5 1) are the upper and lower parts of d T  = the boundary 
of T ,  so that T = {(t,y) I 0 < t < 1, y t  < y < y?}. We 
interpret the t-axis as the time axis. By a particle we mean 
a quadruple z = (y, U, i , j )  where y E [0,1] is its position, 
U E R its velocity, and i , j  E J ,  i # j ,  are the “environments” 
above and below the particle, respectively. Call such a particle 
an (z,j)-particle. A system of particles is a finite collection 

z =  (z~,...,zn), zr = (yr ,ur ,kT+,kg)  

of particles such that (yr, ur)  # (y3, us )  for s # T .  The system 
is said to be ordered if for 1 5 T < n, either yr < yr+l or 
yr = yr+l,  vr < ur+l. Any system of n particles can be 
ordered by a permutation of its indices. An ordered system is 
said to be consistent if k$ = k;+l, 1 5 T < n. Let X(”) ,  
n 2 1, denote the set of ordered consistent systems of n 
particles and for t E [0, I], X,(“) C X(“) its subset consisting 
of these systems for which for 1 5 T 5 n, either 

yt- < yr < 1~: 
or 

Vr  = yt-, vr > ut- 
or 

yr =Y$, ur <U,+ 

A 
Y 

Fig. 2. Redefinition of axes. 

holds, where 

is the tangent to 8T* at t. Set X(O) = X,(o) = J and 
CO 

x = U X(”) 

x, = U xi“). 
n=O 

CO 

n=O 

For any z = [zl ,  . . . , z,] E Xi”’, n 2 1, define its environ- 
ment as the right-continuous function w(., z) : (y;, yy,‘) i J 
such that 

k? = k-  r + l ,  if Y E ( y r , y r + l ) ,  1 <: T 5 n 
W(Y,X) = kT,  i f y  E (Y,,Yl> 

{ k k ,  if Y E (Yn,Y,*) 

for y # yl,-..,yn. For 5 = k E X,(’), set w ( y , z )  = k ,  
y E (y,,y$). The evolution of the particle system as a 
Markov process taking values in X t  at time t is described 
by i)-x) below: 

i) The initial distribution of z( t )  at t = 0 is concentrated 
on Xp) = J with P(z(0)  = j )  = 1/1J1. Let z ( t )  = 
z E X,(“) be the value of z( t )  at time t E [0,1). In a 
small time interval (t,t  + At) c [O, 11, the following 
changes can occur. 

ii) With probability p,,q(u$, du)At + o(At), a new par- 
ticle (9, U, i , j )  is born at dT+ with j = k$, v E du, 
v < U$, where 

q(u,du) = Ju - u/dudt/(l+ u2)3 \2 ,  

iii) With probability p,,q(u;, du)At+o(At) a new particle 
( y , v , i , j ) i s b o r n a t d T - w i t h i = k ~ , u ~ d u , u > u ~ .  

iv) With probability p:, b(z ,  j )  /u’-u’’I V(du’) V ( d u ” ) d y A t  
+o(At) two new particles (y, U’, i ,  j )  and (y, U”, z, j )  
are born with y E dy c (y;,y$), z = w(y,z) ,  
U’ E du‘, U“ E du“, U‘ > U” 

V(du)  = /{a! E ( 0 , T )  I cot(@) E du}I/J1+U2. 

v) With probability p,,b(i , j)q(u,  &)At + o ( A t ) ,  one of 
the particles*z,, 1 5 T 5 n, zr = (y, w ,  i , j ) ,  turns into 
the particle (y, w’, i , j )  with w’ E du .  
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> 
t t+At 

Fig. 5 .  Birth of particles. Fig. 3. Birth of particles. 

I t  t+& t t+At 

Fig. 4. Birth of particles. Fig. 6. Sequence of events after birth of particles. 

vi) 

vii) 

viii) 

ix) 

With probability p2Jp~3cp(v,  &)At+ o(At), one of the 
particles x,, 1 5 r 5 n, x, = (y, w ,  i , j ) ,  turns into 
either two new particles (y, ‘U, i, k ) ,  (y, U‘, k , j )  with 
U‘ E du, w’ < w ,  c = e ( i ; j ,  k )  or into two new 
particles (y, v ,  IC,j), (y, w’ ,  i ,  k )  with U’ E du, w’ > w ,  

With probability 
c = c ( j ; i , k ) .  

1 - { d w ,  {u > .)) + d v ,  {u < U } )  

n 

where 

z: = (z, + w,At,vr,k,+,k;), 1 5 r 5 72. 

In ii)-vii) above, At is assumed to be so small that the 
particles do not hit d T  or collide. If z, = (y, U ,  i ,  j )  and 
z,+1 = (U, U ,  j ,  k )  collide at (t ,  y)  with u > 21, then: 
If i = IC, with probability b ( i , j )  both die, or, with 
probability d ( i ,  j ,  i ,  m ) p K ,  they turn into 1.wo new 
particles (y, w ,  m,z), (y, U,  i ,  m) for i # m E J .  
If i # k ,  then: 
ixa) With probability c(k;  i ,  j ) p ; k ,  they merge into a 

single particle (y, U ,  i, k ) ,  

ixb) With probability c ( i ;  j ,  k)pzk .  they merge into a 
single particle (y, U, i, I C ) ,  

ixc) With probability d ( i ,  j ,  k ,  m)pZmpkm they tum 
into two particles (y, U ,  i ,  m), (y, w ,  m, k ) ,  m # 
i ,  k,m E J .  

x) If one of the particles (say, 2,) reaches dT at time t ,  
it dies and the process x(.) jumps from x( t - )  = 5 to 

Figs. 3-9 illustrate the events ii)-vi), viii), and ix), respec- 
tively. 

There exists a Markov process x(.)  evolving as per i)-x) 
above and to each trajectory x(.) thereof there corresponds a 
unique polygonally segmented image given by 

.(t) = 5’ = [ZI,. . . ,z,-1] E x p .  

Y) = W z (  ) (4 Y) = W(Y, .(t)), (4 Y) E T \ aw. 

Let QT be the probability measure induced by this random 
element of QT on ( Q T ,  BT).  

Theorem 3.1 [2 ,  Lemma 6.11: QT = P T , F , ~ .  

Iv. PROCESS OF POLYGONAL RANDOM FIELDS 

Our aim is to construct an RT-valued reversible ergodic 
process such that at each time t it yields a PRF with a 
prescribed additive potential H satisfying 

{ w  1 F(w)  = a} c {w  1 H ( w )  = a}. 

We shall consider the specific case of T = a rectangle. The 
case H = F is the simplest and we consider it first. In 
accordance with Fig. 2, draw T as shown in Fig. 10. We have 
marked its comers as a,  b ,c ,  d, while e ,  f are midpoints of 
ad,  be, respectively. The unit vector Q: is directed along the 
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t t+At 

(a) 

Fig. 7. Sequence of events after birth of particles. (a) v < v’. (b) U’ > 

Fig. 8. Diagrammatic description of events. 

perpendicular from the origin to abnand B is the angle it 
makes with the positive t-axis. Let T (respectively, 5!) de- 
note the one-sided (respectively, two-sided) infinite “cylinder” 
obtained from T by dropping cd (respectively, ab and cd) and 
extending ad, bc indefinitely. (See Fig. 11.) Construct a system 
of particles evolving as in Section 11 on ?, except that it is 
now allowed to go on indefinitely, i.e., z(t) is now defined 
for t E [0, CO). Define a rectangle-valued process T(t) ,  t E R 
by T(0) = T ,  T ( t )  = T + at. Define an &-valued process 
‘5, t 2 0, by 

[ t ( s ,y )=w(s+ tcosO,y+ t s inO) ,  (s,y) ET ,  t z o .  

Call an &--valued process { T t ,  t 2 0) R-reversible if for 

in law, where R: f l ~  i f l ~  is the map that maps w E S ~ T  to 
its reflection across the line ef in Fig. 2. 

Lemma 4.1: E t ,  t 2 0, is a stationary R-reversible Markov 
process. 

This is immediate from the isotropy and Markov property 
of PT. In particular, R-reversibility allows us to symmetrically 
define & for t 5 0. Thus we consider z( t )  and & as being 
defined for t E R. 

Theorem 4.1: & , t  E R is ergodic. 
Proofi Let t > 0 be such that T(t)nT(O) = 4. Let C = the 

convexbull of T(0) and T(t) and let w’,w’’ E QT. For any 
W E f 2 q t ) ,  we can always introduce an appropriate number 
of births, deaths, branching, etc., in C \ (T(0) U T( t ) )  to con- 
struct a valid trajectory of .(.) that restricts to w’ (respectively, 
w”)  on Q2T(0) and to W on f l ~ ( ~ ) .  Let yt: QT(o) -+ flT(t) 

any t o  > 0 ,  {rt,  t E [o, t o ] }  and {R(rto-t), t E 10, t o ] }  agree 

_ _ _ _  

4 
I A  

t t+At 

U. 

1 t 

P(& E Alto = U’) 

= zc \ T ( 0 )  (A’lTT(0) (W’))/ZC \ T(0)  ( V ( 0 )  (w’ ) )  

in the notation of Theorem 2.2, with a similar expression for 
P(& E Alto = U“). From the explicit expressions for the 
right hand side derived from Theorem 2.2, it follows that the 
probability measures P(& E dw/<o = w’) ,  P(& E dw/Eo = 
w”) are mutually absolutely continuous. Thus if (&} has 
two invariant probability measures, they must be mutually 
absolutely continuous. Since distinct ergodic measures must 
be mutually singular, t!ae claim follows. 0 

The next two lemmas establish some additional properties 
of {&). Let Tl,T2,T3 denote the open rectangles abf”e”, 
e’f’cd, e“f”c‘d, respectively, in Fig. 10. For S, U c T open, 
say that w1 E O s ,  w2 E flu are compatible if they are 
the restrictions to S,U respectively of some w E CLT. For 
w1 E f l ~ ,  the trace of w1 on el’f”, denoted by tr(w1), is an 
alternating sequence of colors, points of e”f”, and scalars, say 
21, XI,  u1,22,.2, 212,. . . ,in, x,, un, &+I, with the following 
interpretation: Under w1, if we move from e” to f” along 
e“ f“ looking at the immediate neighborhood in Tl, we first 
encounter a patch of color i l ,  till at 2 1  a trajectory from W I  



BORKAR AND MITTER STOCHASTIC PROCESSES THAT GENERATE POLYGONAL AND RELATED RANDOM FIELDS 611 

A 

Y 

> 
t 

Y 

> 
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Y 

> 
t 

(c) 

Fig. 9. Diagrammatic description of events. 

hits e”f” with velocity VI.  This is followed by a patch of color 
22 and so on. Clearly, ik # iks-1, 1 5 IC 5 n. (Situatbns such 
as 2 1  = e’’ are also possible and can be handled analogously.) 
Let w1, wz E Q T ~  with 

Let d(tr (wl), tr (wz)) = 00 if either ml # m2 or ml = m2 

but 2: # i: for some k ,  and = max;(lz: - ~ : ] , I V :  - $ 1 )  
otherwise. It is clear that if w, -+ w in C ? T ~ ,  tr (wn) -+ tr (w) 
w.r.t. the metric ‘d ’ .  

Recall our definition of nodes. We call these interior nodes 
to distinguish them from boundary nodes which are points on 
the boundary where a particle is born or dies. For w E Q T ,  let 
separation of w, denoted by sep (w), be the minimum of the 
distances between any two nodes of either variety, between a 
node and any line segment in a w  U aT that does not contain it, 
the angles between any line segment in a w  and the y-axis, or 
the angles beween any two distinct line segments in i3w U aT 
that meet at a point. Let N(w) = the number of distinct line 
segments in w. 

’? d 

b 

Fig. 10. Redrawing of domain T in accordance with Fig. 2. 

Lemma 4.2: {&} is a Feller process. 
Before proving this result, we first reduce it to another 

equivalent claim. Note that it suffices to show that for f E 
cb 

1 f(nT2 (W))dPT(dW/TTl (U) = U‘) 

depends continuously on w’. By Theorem 2.2, this equals 

when CUI denotes the summation over w in RT( (e), U L(w’)) 
compatible with w’. By the additivity of F ,  this is seen to equal 

where C’ denotes summation over T T ~  (w) in C ? ; ~ T ~  ((1),) com- 
patible with w’. Then it suffices to prove that the last expres- 
sion above depends continuously on w‘. 

Pro08 (Sketch) Let 7, E ,  E’, S > 0, N 2 1, ij E C?T, and 

D = {w E R T ~  I sep(w) 2 6,N(w) 5 N ,  
W, w are compatible}. 

It is easy to see that D is relatively sequentially compact in our 
topology on Q T ~ .  Keep W fixed henceforth and let W E R T ~  
be such that d(tr(W), @ ( U ) )  < E. Pick 6 > 0 small enough 
and N 2 1 large enough such that 

P ( w 2  (w) E D/tr ( T T ~  (w)) = tr (ij)) > 1 - 7. 

Given w’ E D, construct w” E CLT~ compatible with 0 as 
follows: Let 

tr(G) =(21,z1, r1,. . . , i n + l )  

tr (0) =(21,z1, VI,. ’ ‘ , in+l). 
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- L, f ( r T 2  (w))PT(dw/T’r~ (U) = w) 
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0, fl, ... , for some A > 0. This will be a discrete-time 
R-reversible ergodic process with invariant measure PT. < 3rlK 

/ 
Fig. 11. Redrawing of domain T in accordance with Fig. 2. 

For each k ,  1 5 k 5 n, start a particle at Z,+ with velocity 21k 
and environment ( i k ,  z k + l ) .  

Let births of the type depicted in Figs. 3-5 take place for w” 
in exactly the same manner as for w’. The particle in w” that 
started at (&, Vz) undergoes the same sequence of events of the 
type depicted in Figs. 6 and 7 as the particle in w’ that started 
at (zz, vz), with exactly the same times of occurence and same 
angles at the nodes generated thereby. The same also holds for 
the corresponding pairs of newly born particles (a la Figs. 3-5) 
in w’ and w”. Furthermore, events of the type depicted in 
Figs. 8 and 9 are in one-to-one correspondence in w‘, w“ and 
occur in the same order. Finally, w” satisfies: if W’ (respec- 
tively, 3”) denotes iz1 U w ’ l ~ ~  (respectively, ij U w ” I T ~ ) ,  then 

lexp(-F(w’)) - exp(-F(w”))l < E’ ,  I f (w’)  - f(d)l < E’. 

(*> 
Of course, all this may not be possible, but for prescribed 

E’ ,& and N ,  it is possible for in a sufficiently small 
deighborhood of 0. Let h denote the map w‘ ---f w” and let 
D‘ = h(D).  Then h: D + D’ is seen to be a continuous 
bijection. Now (*) and (t) together lead to 

IPT(TT~ (U) E D’/TT~ (U) = 0)  - PT(TT~ ( w )  

E D/TTl (U) = &>I < ?/2 

for sufficiently small E’ and (correspondingly small) E .  Hence 

PT(TT, ( U )  E D’/TT3 (w) = w) 2 1 - 7/2. 

Using (*), (t) once more, we have, for W in a sufficiently 
small neighborhood of 0 

Fig. 12. Parameterization of T .  

_ _ _ _  
Pick t > 0 large enough so that T(0) n T( t )  = 4. Let 

qt: QT(o) + QT(~)  denote the map 

( s ,  y) -+ ( s  + t cos 8 , g  + t sin 0) 

as before. 
Lemma 4.3: For any open set 0 c RT and w E QT 

P(& E o/&) = w) > 0. 

Proof.- It suffices to consider 0 = an open neighborhood 
of w E 0 ~ .  Let C = the convex hull of T(0) and T(t) .  By 
introducing an appropriate number of births, deaths, branching, 
etc., in C \ (T(0) U T(t)) ,  we can always construct a valid 
trajectory q of {x(.)} that restricts to w on “(0) and o cp;’ 
on T(t) .  Then from the particle dynamics described in the 
preceding section, it is clear that for any open set A c R c  
containing rl 

PC(TT(t)(G) E A / X T ( O ) ( G )  = w) > 0. 



BORKAR AND MITTER. STOCHASTIC PROCESSES THAT GENERATE POLYGONAL AND RELATED RANDOM FIELDS 

> 
a‘ a 

Fig. 13. Step in describing state transition for process [ t .  

2, is a PRF with potential H .  For this purpose, introduce the 
following convention: Parametrize T as 

T = { ( I I : , ~ )  I O  < II: < b i ,  0 < z < b 2 }  

where b l ,  b2 are the lengths of the sides of T (see Fig. 12). Let 

T, 1 { ( x , z )  I O  < II: < b1/2, 0 < z < b 2 }  

and 

T, = { ( I I : , ~ )  I b1/2 < IC < b i ,  0 < z < b z } .  

Given w E f 2 ~  define w, E f 2 ~ ~  and w, E 0, as the 
restrictions of w to T,, T,, respectively, which we refer to as 
the prefix and the suffix of w.  Given w ,  w’ E f 2 ~ ,  we say that 
w ,  w’ are neighbors if and only if either w; = w, or = wp. 
This is clearly a symmetric relation. Let 

n 
N ( w )  = { neighbors of w }  c &. 

Suppose 2, = w for some n. The state transition at time n is 
effected as follows: First pick one element from the set { p ,  s} 
with equal probability. Suppose you get s. Let an independent 
copy of the process x(.) evolve conditioned on . ( . ) I T  = w. 
Let 3 = x(.) restricted to T ( b l t / Z ) .  Thus D E R ~ ( b ~ , ~ p ) .  Let 
w‘ = pT1(3) E f 2 ~ ,  where s = b l t / 2 .  Set Zn+l = w’ with 
probability exp [ - (G(w’)  - G(w) )+ )  and = w with probability 
1 - exp ( - (G(w’ )  - G(w) )+ )  where G = H - F .  Note that 
w; = w, and thus w’ E N ( w )  (Fig. 13). If one picks 1-1 instead 
of s in the first step, the procedure is similar except that one 
evolves II:(.) in reversed time, leading to w: = wp. Then (2,) 
is an RT-valued Markov process whose transition probability 
is given by 

P(Z,+1 E [3, 3 + d3]/Z,  = w) 
1 
2 = - (pT(TTs (U)  E [b, 3 f d D ] / r T p  (U)  

= TTp(a)) + PT( rTp (w)  E [DIG + d 3 ] / r T 3 ( W )  

= TT, (U ) ) )  exp (-(G(L) - G(G))+)d3  

for 3 # 0 and 

P(Z,+1 = a/z, = a) = 1 - P(Z,+1 # a/2, == w) 
where the rightmost quantity is obtained by integrating the 
right-hand side of the preceding equation over {G I 5 # a}. 

~ 
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Theorem 4.2: (Zn} is a reversible ergodic process with 
invariant measure P T , H , ~ .  

Prooj? Let &, = [$, n = 0,&1,&2, .  . . , for A = 
( b l  cos8)/2. Let v+(w,  dw’), v - ( w ,  dw’), .(w, dw’) denote the 
transition probability measures for { E,},  { E- , } ,  { Z,}, re- 
spectively. Then 

1 
2 j j ( w ,  dwl) = - e - ( G ( ~ ~ ) - G ( ~ ) ) +  @+(U, d W l )  + v - (w ,  d u d )  

+ g(w)S,(dw1) 

where S,(.) is the Dirac measure at w and 

We need to show that 

and 

-rl(dw’)e-G(”‘)e-(G(w)-G(w‘))+ 1 (v+(w’,  dw) + v-(w’ ,  dw) )  

+V( dw’)e-G(”’)g(w’)S,, (dw) .  
2 

It is easily checked that ~ ( d w )  exp (-G(w))g(w)S,(dw’) and 
~ ( d w ’ )  exp (-G(w’))g(w’)S,t(dw) represent the same mea- 
sure concentrated on the diagonal {w = w’ } .  Thus we only 
need to verify that the first terms of the above expressions 
match. Consider the case G(w’) 2 G(w). (The reverse case 
follows by a symmetric argument.) Then we are reduced to 
verifying 

V ( d W ) ( V + ( W ,  dw’) + U-(w, dw’))  

= v (dw ’ ) ( v f (w ’ ,  dw) + v- (w ’ ,  dw)).  
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Since q is the invariant measure for {&I, we have 3)  If c E C, and e‘ is obtained by rotating c around x, then 
c’ E C,. (This operation will be called rotation.) v(dw)v+(w,  dw’) = v(dw’)v-(w’: dw). 4) If c E C,, then e’ E C, for e’ - Z,(T+.)-Z,(T)+Z, T E 

This completes the proof of the fact that {Zn}  is stationary- 
reversible when the law of 20 is f .  Ergodicity follows by 
arguments analogous to those used for proving Theorem 3.1. 

0 

R. (This operation will be called time shift.) 

operation will be called time reversal.) 
5 )  If c E c,, then c’ E C,, when z,i(t) = z,(-t). (This 

6) If B E R2 denotes the origin 
Examples of H: 
1) Consider the P W  given by PT observed at points 

{t l ,  . . .  , tn}  c T through a channel with distortion 
and noise, modeled as follows: We have observations 
yz = f ( w ( t z ) )  + Pz, I 5 i 5 n, for some function 
f :  QT + R and i.i.d. N(0,a2)  random viarables 
PI, . . . , Pn. The posterior distribution of the PRF given 
these observations then corresponds to a PRF with 
distribution P T , H , ~  where [51, [61 

n n 

i=l . i=l 

2) An alternative model of observations is [5]: We observe 
an inhomogeneous Poisson point process on T generated 
by w with spatial intensity f ( w ( t ) )  at point t. The 
posterior distribution now corresponds to 

H ( w )  = F ( w )  + s, f ( w ( t ) )  d t  - / 1% f ( 4 t ) P  ( d t )  
T 

where A is the counting measure for the observed point 
process [5]. 

3) We may take H = F + G where G ( w )  = the sum of 
angles (in absolute value-) between any two straight-line 
segments in dw that meet each other. This is in the spirit 
of the “total turn” considered in [7]. 

Note that each H above is additive and thus P T , H , ~  is a 
Markov random field by the arguments of [2, sec. 81. 

The process { Z n }  proposed above has much simpler dy- 
namics compared to the processes proposed in [4]-[61. In the 
next section, we consider a variant that permits segmentations 
with curved boundaries. 

V. EXTENSIONS TO GPRF 
This section extends some of the foregoing to “Generalized 

Polygonal Random Fields” (GPRF) which have polygonal-like 
realizations, but with curved boundaries. We begin with some 
preliminaries. 

To each z E R2, attach a set C, of non-self-intersecting 
C1 curves through x satisfying 

C, = { e  1 z,(.) = z + z,j(.) for some e‘ E CO}. 

7) If c E C,,C’ E Cy satisfy zc( t )  = a,/(. + t )  for t E 
(a ,  b) ,  for some a < b and 7 E R, then zc(.)  = z,T(T+.). 

For A c R2, set CA = UxEAC,. 
Remark 5.1: If for c E C,, z,(.) is viewed as the trajectory 

of a particle starting at I I : , ~ )  implies that the particle exits from 
any finite domain in finite time. 6) says the Cz is obtained from 
CQ by translation, so it suffices to prescribe CO. 7) says that if 
two trajectories agree on a nonempty open interval, one must 
be a time shift of the other. g y  3)-5), C, is closed under 
rotation, time shift, and time reversal. 

Example 5.1: Let CQ be a finite collection of curves 
cl, . . . , en passing through 0 such that zc, ( t )  = [t, fz(t)] 
where t + fi(t) are periodic with a common period T and 
no piece of any one of the curves or any of its rotations 
or translations coincides with any other of these curv~s on 
some interval. Let CO = {all curves obtained from CQ by 
rotation, time shift, or time reversal}. C,, II: E R2 are now 
automatically specified through 6). 

Typically one expects to obtain CQ from a “core” 60 
by the above procedure. As we shall be interested in CT 
for a rectangle T ,  the above example may often provide 
a sufficiently rich class in applications for suitable choices 
of n, {cl, . . . e,} and with T >> diameter (T) .  It has the 
advantage of easy parametrization. 

Let <Q denote a probability measure on (28 which is invariant 
under rotation, time shift, and time reversal. The existence of 
a probability measure that is invariant under rotation and time 
shift is guaranteed by elementary ergodic theory. It may be 
rendered invariant under time reversal by taking its image 
under time reversal and then taking the average of the two. 
We assume that support (58) = CO. (If not, it is equivalent to 
considering a smaller CQ, viz., support ((Q).) Let 5, denote the 
probability measure on C, obtained as the image of (Q under 
the map c E CQ + 5 + c E C,. 

Let T c R2 be a prescribed rectangle as before. By a “raw 
image” on T ,  we mean T endowed with a finite collection of 
finite curves, each of them a segment of  some element of C,. 
We shall now construct a probability measure on 1~ = the set 
of all raw images on T.  This is done in the following steps: 

1) Each c E Cz admits a parametrization t E R + zc(t)  = 

w e  write zc(.). Without loss of generality, we 
may and do assume that i,(t)’ + ?jc(t)’ = 1 Vt.  Also, 
{zc(  .) 1 E c, j is assumed to be compact under the 
topology of uniform convergence on compacts. 

Procedure 

i) Generate random points in T according to a Poisson 
point process with intensity X. 

ii) From each point IC obtained above, pick a random curve 

[~,( t ) ,y , ( t ) l  such that II :~( . ) ,Y,( . )  E C1, ~ ~ ( 0 )  = 5.  

2) For any bounded open A c R2 with x E A c - 4.) = [II:,(.),Yc(.)] E c, 
sup { It1 I zc( t )  E A }  <  ̂03. according to <,. 
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iii) Initiate a particle at each z with trajectory t --+ zc( t ) ,  
t 2 0, and with extinction time exponentially dis- 
tributed with mean 1. Extinction times of distinct par- 
ticles are independent. 

iv) Draw the traces of their trajectories till the extinction 
time or the first time they hit d T ,  whichever occurs first, 
thus obtaining a finite segment of the corresponding 
curve. 

This clearly gives an isotropic probability measure on IR, 
viz., the law of the raw image generated by the above 
procedure. 

Given a raw image y E IR,  let D(y) denote the set 
of curve segments that constitutes y and G ( y )  their union. 
Let A C T be a connected component of T\G(q). Then 
d A  c G ( y )  U d T .  We can write dA = dlA + daA where dlA 
is that part of dA which is also a part of the boundary of some 
other connected component of T \ G ( y )  or of d T ,  and &A = 
dA\dlA. Let A’ = interior of A U &A. Then dA’ = &A. 
A set A’ thus obtained will be called a piece of y. In Fig. 14, 
for example, if A is the interior of the region bounded by the 
contour abcd with the curve ef removed, then A’ is the entire 
interior of the same region. Let Gb(y) c G(y) denote the 
union of all dA’ such that A‘ is a piece of y. For each c E D(7)  
parametrized as, say, c = { ~ ( t )  I a 5 t 5 b} ,  define ,b(c) c c 

with a 5 a’, b _> b’, such that b(c) is the minimal such set 
containing c n Gb(y) .  If c n Gb(7) = 4,  b(c) = 4.  Define 
the “trimming operator” Tr: IR + IR to be the map that maps 
y E IR  to its “trimmed version” y’ E IR  obtained by replacing 
each c E D(y) by b(c).  Fig. 15 shows a raw image and its 
trimmed version. We shall denote by IT the set of trimmed 
images, i.e., the range of Tr. By a proper image (or siimply an 
image) we mean a map w :  T + J U { j * } ,  J being a finite 
set of colors as before and j *  J another distinguishled color, 
such that the following hold: These exist y ( w )  E IT such that 
w is constant and equal to an element of J on each piece of 
y ( w ) ,  w = j *  on Uc.D(7(u))b(e). Thus dw = Gb(y(w;i), where 
dw = the set of points of discontinuities of w.  Let T denote 
the set of images. Note that unlike in the case of PRF’s, we 
are allowing “internal” discontinuities that lie in the interior 
of a piece and not on its boundary. (For example, if y ( w )  is as 
in Fig. 15(b), then w will have the same color on either side 
of the segment ab, but a different color on it.) Conversely, 
given y E IT ,  define 

R(y) = {w E I I dw = G ( y ) }  

and X(y) = IR(y)I. In the foregoing, we have a procedure 
for generating a random y E IT (viz., generate a random 
element of 1, by Procedure 1 and trim it). Given this 7, 
we may generate a random w E I by picking any element 
of R(y) with equal probability (=l/X(y)). Let Pr = the 
probability measure on I induced by the random sample 
thereof generated as above, where we endow I with the Bore1 
a-field corresponding to its topology defined analogously as 
for QT.  We call PT a Generalized Polygonal Random Field 
(GPRF) on T.  

Define on CT an equivalFnce relation ‘‘x” by: c x e’ if 
e’ is a time shift of c. Let CT denote the set of equivalence 

as fOllOWS. If n Gb(7) # 4 ,  b(c) = { Z ( t )  I a’ 5 t 5 b’} 

Fig. 14. The set A’ = the region bounded by the contour ubcd is a piece 
of Y. 

classes thus obtained and 

= {c c CT 1 1 c( = n) ,  = 0,1,2,  ‘ ‘ * 

Let p, denote the probability measure on C, induced by steps 
i) and iii) of Procedure 1, conditioned on n curves being picked 
by the procedure. Probability of the latter event is 

(XITI)” exp (-XlTl)/n!. 

Clearly, pn is isotropic for each n. For q E C,, n 2 0, let 

IT (V)  ZZ {w E I I Gb(?(w)) c V ,  Gb(Y(W)) d 
for any proper subset q’ of 7). 

Note that this is a finite set. As before, L ( w )  = the total 
length of dw for w E I .  

Theorem 5. I :  The GPRF PT obtained above is an isotropic 
Markov random field given by 

where ZT is the normalizing constant. 
Proof: Isotropy of PT follows from its construction. Now 

the probability that Procedure 1 picks n curves cl, . . . , c, in 
[q,q + dq]  c C, and the independent system of particles 
planted one each on these survives for larger than .!?I, . . . , e, 
(respectively) time units (call this entire event Q) is 

The traces left by these particles need not, however, lead to 
a legal element of IT.  Hence the probability of obtaining an 
element y(w)  E  IT(^) thus is the probability of Q conditioned 
on the particle traces constituting an element of IT.  This is 

Given y(w) ,  a candidate w is picked by choosing a coloring 
with probability 

1/X(Y(W)) = exp (-log X(Y(W))). 
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(a) 

Fig. IS. Raw image and its trimmed version. (a) Raw. @) Trimmed. 

This completes the derivation of (5.1). The Markov property 
can be proved as follows: Let T = S U U, s, U open. Consider 
y E IT generated by Procedure 1. Then this procedure implies 
that the conditional statistics of .iru(y) given .~?-s(y) = < (say) 
may be simulated as follows: Generate random points in U \ S 
according to a Poisson point process with intensity and 
follow ii)-iv) of Procedure 1. Also, extend those curves in 

that hit 8s n U and can be extended into U \ S,  as in iii) of 
Procedure 1. Trim the resulting image. Accept it if it restricts 
to on S ,  otherwise reject and repeat the procedure. Now it 
is clear that in the above, one could replace T by U, S by 
U n S, and E by its restriction to U n S to obtain the same 
statistics for nu(y). This is because T = U U S and thus any 
curve in y that straddles both S and U must pass through 
S n U .  Markov property follows. (A more formal proof could 
be given along the lines of [2, sec. XI.) Now to prove that it is 
preserved in our passage from IT to I, we only need verify that 
the “potential” log X(y(w)) is additive. The event of picking a 
random coloring of y(w) E IT can be viewed as taking place 
in two steps: First one picks a coloring for the restriction 
of y ( w )  to S (denoted ys(w)  E I S )  according to uniform 
probability l/X(ys(w)). Let m ( w )  E I v ,  ysnu(w) E Lmu 
denote the restrictions of y ( w )  to U and S n U ,  resectively, 
and X(yu(w) /p )  the number of possible colorings of yu(w) 
compatible with the coloring of ysnu(w) given by p = the 
coloring it inherited from ys(w). The second step is to color 
yu(w)  by picking a random coloring from those compatible 
with ysnu(w) = ,B with equal probability, i.e., with probability 
X(YU (w) /P)- ‘ .  Then 

l / X ( Y ( W ) )  =(1/X(Ys(w)>)(l/X(Yu(w)/P)) 

log X ( Y ( W > )  =log X(YS(W)> + 1% X(ru(w)lio). 
and 

Thus log X(y (w) )  is additive. U 
Remark 5.2: An important limitation of the above theorem, 

in contrast to the corresponding result for PWs ,  is that we do 
not claim the family PT, T E BO, to be consistent. In order to 

achieve consistency, it is clear that one will have to allow the 
particle trajectories that hit the boundary re-enter if they do 
so before the extinction time. But then a curve may contribute 
to the image more than one segment separated in space (i.e., 
with strictly positive distance from each other). The Markov 
property cannot hold in such a situation. 

The next task is to generate an I-valued reversible ergodic 
Markov process { Zn} whose law at any time instant is 

&(dw) = aPT(dw)  exp ( -G(w) )  

for an additve G: I -+ [0, m], Q being the normalization 
constant. We mimick closely the earlier procedure for the 
P W s ,  as described below: Define Tp, T, and the prefix wp 
and suffix w, of an image w E I the same way as we did 
for the PFWs. 

Procedure 2: 
Let 2, = w. 

i) Pick one element of { p , s }  with equal probability 

ii) Construct w’ E I as follows: 
(say, SI. 

a) Set wb = w, (see Fig. 16). 
b) In T,, pick m (say) points according to a Poisson 

point process with rate x. At each point, pick a 
random curve as in Procedure 1, ii). 

c) From each point picked in b) and each point on 
ef where a trajectory from Tp hits e f ,  stah a 
particle with exponential lifetime and unit speed 
along the corresponding curve. (In the latter case, 
the motion should be toward the interior of T,). 
Trace its trajectory till extinction or till it hits d T ,  
whichever comes first. 

d) Trim the resultant raw image. 
e) If the trimmed image does not restrict to y(ws) 

on Tp, then reject those trajectories that led to the 
alterations of the trimmed image on Tp and replace 
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c 
I* 

f 

Fig. 16. 
curved boundaries. 

Step in the construction of reversible process for polygon with 

them by new independently generated trajectories 
from the same initial points. Trim again. 

f) Repeat till the trimmed image is consistant with 

g) Color the trimmed image on T, by sampling uni- 
formly from all colorings thereof that are compatible 
with the coloring on Tp. The resultant image on T 
is the desired w’. (In practice, this step cads for a 
good graph coloring heuristic.) 

iii) Set Zn+l = w’ with probability exp ( - (G(w ’ )  - 
G(w))+)  and = w with the remaining probability. 

Theorem 5.2: { Z n }  is a reversible ergodic Markov process 
with stationary distribution PT. 

This can be proved by adapting the proofs of the corre- 
sponding results for PRF’s. We omit the lengthy details. As 
for PRF, we may choose G so as to incorporate an observation- 
dependent term for Bayesian analysis or to incorporate extra 
“costs” such as the “total turn” discussed in [7] .  

A “greedy” heuristic for step (Procedure iig) above is as 
follows: identify the “uncolored” image with a planar graph 
by identifying each piece of it with a node, with two nodes 
connected by an edge if and only if the correspondiing pieces 
are adjacent (i.e., their boundaries intersect). Rank the nodes 
in the decreasing order of their degrees. Color the top node 
(i.e., the corresponding piece) by an element of J picked 
with uniform probability. Color the nodes in decreasiing order, 

?(Us)  on T p .  

picking a color at each step uniformly from the admissible 
colors at that node. If a node is encountered for which there is 
no color left admissible, restart the whole procedure. Repeat 
till a complete coloring is found. (A color is “admissible” if it 
has not been already used to color a neighboring node.) 

APPENDIX 
We summarize here from [2] the conditions on coefficients 

featuring in the definition of F .  Here [ [p i3 ] ] ,  i , j  E J ,  is a 
stochastic matrix with p;j = p3i,pii  = 0, i , j  E J .  

p;j = u ( i , j )  = u ( j ,  i ) ,  b ( i , j )  = b ( j ,  2 ) .  

c ( i ;  j ,  k )  = c ( i ;  k ,  j ) .  
d ( i , j ,  I C ,  m) = d ( j ,  I C ,  m, 2) = d ( k , j ,  i ,  m). 

(AI) 
(A2) 
(A31 

j # i  
with 
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