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Nonlinear Estimation

Nonlinear Estimation problems may be divided into two categories:

(1) Static Estimation of Nonlinear Systems

(2) State Estimation for Nonlinear Dynamical Systems.

Static Nonlinear Estimation

A general static non-linear estimation problem can be modelled by considering a state vector
z € R™ which can be observed through a nonlinear sensor resulting in a signal y € R? which is
measured in the presence of additive noise. In many situations the noise can be modelled as a

gaussian random variable. The general model is therefore
y=h(z)+v (1)

where h : R® — RP transforms the state into the observed signal and v is an RP-valued Gaussian
random variable. We adopt a probabilistic viewpoint which unifies the static and dynamic situation,
namely, we extract the maximum probabilistic information contained in y about z. This means
that we are required to compute the conditional probability density (assuming all random variables
have a density)

p(zly), (2)

which by Bayes Theorem can be computed as

p(aly) = 1&1‘_)9%)111)7(_31:) ~ Lz, y)p(a). 3)

L(z,y) is the so-called likelihood function and p(z) is the prior density of z, representing the prior

knowledge of the state z. The estimator is the mapping

y — plzly) (4)



and specific estimates such as the conditional mean, £ = [g, p(z|y) dy or the maximum likelihood
estimate £ = max L(z,y) can all be obtained from p(z|y). In general the estimates are non-linear

functions of the observed signal y.

The conditional mean estimate # can be computed by solving a non-linear least squares problem
in the sense that the estimate £ = ¢(y) is obtained by minimizing n}pin E[(z —(y))?], and in order
for this problem to make sense we can assume that all random variables have finite energy. We

carry out the same program in a dynamical context in the next sections.

State Estimation for Nonlinear Dynamical Systems

There are several issues to be considered in formulating the state-estimation problem for non-
linear dynamical systems. Firstly, there are modelling issues, namely, the modelling of process
noise, the modelling of the sensor and modelling of the measurement noise. We use models in the
framework of Markov Diffusion processes. The case where the process and observation noise are

point-processes can be developed along similar lines.

The Filtering Problem Considered, and the Basic Questions

We consider the signal-observation model:

dzi = b(ze)dt + o(ze)dw, x(0) = o

(8)
dy, = h(z)dt + dn; 0<t<1
which is a differential notation for the integral equation
Ty = To + fg b(xs)ds + fot o(mt)dwt (5,)

ve = vo + Jo h(zs)ds +me
In the above, z; is the state at time ¢, w; is Brownian motion whose formal derivative iy is

white noise, y; is the observation at time ¢ and 7 is also Brownian motion which is independent of



w;. For simplicity all random variables are scalar random variables. b(-) represents the drift of the
state process, o the diffusion coefficient and h models the sensor. Equation (5) is a precise way of
describing a non-linear dynamical system with a white noise input. The reader may compare this

model with the model for a Kalman filter where the function b, and h are linear.

For further details about modelling of stochastic dynamical systems the reader may consult
the references cited at the end of the section. Suffice it to say that the calculus involved in the
description of stochastic dynamical systems is not ordinary differential calculus but the so-called
Ito differential calculus where certain second-order terms have to be included in the differentiation
formula since they have first order effects. In turn, this depends on variance properties of Brownian

motion in the sense that the variance of w; behaves like . Thus the differential of f(z:) is

_of 162%f
df = 5,0+ 5524
and not
B
df = 6—£da:¢

as in ordinary calculus.

A word about the modelling of the observation process y; is in order. If we write the second
equation in (5) as
Ut = h(ze) + 7,
then 7; should be considered as white noise approximation of wide-band observation noise.

The fundamental description of the filter is obtained by describing the evolution of the condi-

tional density.

In order to describe the evolution of the conditional density, let us first consider the situation



where there are no observations present. In this situation, the evolution of the probability density

of z; can be described by the so-called Forward Kolmogoroff equation

op _
E(t)x) =L p(t)m)

(6)
p(0,z) = po(x)
where L£* is the formal adjoint of the operator
1 e Op

For example, if z; were Brownian motion, then the evolution equation for the density of z; is

the familiar heat equation

Op _18%

p(0,z) = po(z).

The description of the evolution of the conditional density equation leads to a non-linear stochas-

tic partial differential equation, the so-called Kushner-Stratanovich equation.

It turns out that the conditional density #(¢,z) (which depends on the observation y; the

dependency has been suppressed in the notation) can be written as

p(t,x)

Bt ) = frp(t, z)dz

(9)

In view of this it is natural to call p(t, z) the unnormalized conditional density. The advantage of
working with p(¢, z) is that is satisfies a linear stochastic partial differential equation, the so-called

Zakai equation

dp(t,z) = L*p(t, z)dt + h(z)dy;
(10)

p(0,z) = po(),



where £* is as described by equation (7) and the term h(z)dy; represents the interaction of the

state process x; with the observation process Y.
As an example, suppose that z; is Brownian motion and let the observation process be described
by
dyy = zdt + dm. (11)

In this case equation (10) becomes

19

The reader should recognize that we are now in the Kalman filter situation and hence p(t, ) must

be conditionally gaussian. Equation (12) can be solved explicitly by wiring
1
p(t,z) = K exp—s P(t)(z — m(t))* (13)
where K is a constant and obtaining equations for m(t) and P(t). The equation for m(t) and P(t)

are nothing else but the Kalman filter with m(t) representing the evolution of the conditional mean.

In order to describe the evolution of the normalized conditional density we introduce some

notation. Denote by

m(h) = [ h@)(t,)de (14)
7;(h) denotes the estimate (conditional) of h. For example, the conditional mean estimate is given
by

ni(s) = [ oBt,)do (15)

The normalized conditional density (¢, z) satisfies the so-called Kushner-Stratanovich equation

dp(t, z) = L*P(t, z)dt + p(t, z)[h(x) — me(h)]dre (16)



In the above, 4, the innovation process representing the new information contained in the

observation is given by

dvy = dy, — me(h)dt (17)

It can be shown that v; is Brownian motion which is adapted to the observation process y:. The fact
that v; is Brownian motion has the interpretation that the optimal filter has extracted all relevant
information from the observation and has left us with white noise 14 which contains no information.
This question is however subtle since in a certain sense v; contains the same information as yt, that

is, one can pass from y; to 1 via a causal and causally-invertible transformation.

A stochastic differential equation for the conditional mean (or other conditional moments) can
be written down, but the computation of the conditional mean depends on the conditional variance
which in turn depends on the third conditional moment. Thus, in general, the non-linear filtering
problem does not lead to finite-dimensional recursive filters (excepting in the linear and certain

special cases).

Since the conditional mean filter is not finite-dimensionally recursively computable one has to
resort to approximations. The most popular of these approximate filters is the Extended Kalman
filter which is obtained through a process of linearization around the current estimate. Assuming

o in equation (5) is the identity leads to the filter

d(it = b(ﬁt)dt + K(t) [dyt — h(f)t)dt]



where the gain K (t) is obtained as follows:

P(t) = B(&;,t)P(t) + P(t) BT (&4, ) + 1

—P(t)HT (&;,t)R™ () H(&:,) P(t); P(0) = Po

. ob(x, t
B(xtst) = (Tmtt'_)':tt=ﬁt

R Oh(xy,1
H(xt’t) = _é'a':t—)l-’rt:’it

In the above note that Z; is not the conditional mean but may provide a good approximation

to it.

In many situations the Extended Kalman Filter gives good performance but if local observability

fails the filter may become unstable.
Applications

Ideas of non-linear filtering, especially the Extended Kalman filter has been widely applied in
guidance of missiles, tracking and in the design of receivers. In general, linear filtering suffices when
the signal to noise ratio is high. To improve performance in regimes where the signal to noise ratio
is low some nonlinear effects need to be introduced. Some success in doing this has been achieved

in the design of phase-locked loops.
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