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ROBUST RECURSIVE ESTIMATION IN THE PRESENCE OF 
HEAVY-TAILED OBSERVATION NOISE1 

BY IRVIN C. SCHICK AND SANJOY K. MITTER 

Massachusetts Institute of Technology 

Under the usual assumptions of normality, the recursive estimator 
known as the Kalman filter gives excellent results and has found an ex- 
tremely broad field of application-not only for estimating the state of a 
stochastic dynamic system, but also for estimating model parameters as 
well as detecting abrupt changes in the states or the parameters. It is well 
known, however, that significantly nonnormal noise, and particularly the 
presence of outliers, severely degrades the performance of the Kalman fil- 
ter. This results in poor state estimates, nonwhite residuals and invalid 
inference. 

A first-order approximation is derived for the conditional prior distri- 
bution of the state of a discrete-time stochastic linear dynamic system in 
the presence of ?-contaminated normal observation noise. This distribution 
is then used to derive a first-order approximation of the conditional mean 
(minimum-variance) estimator. If the observation noise distribution can be 
represented as a member of the e-contaminated normal neighborhood, then 
the conditional prior is also, to first order, an analogous perturbation from 
a normal distribution whose first two moments are given by the Kalman 
filter. Moreover, the perturbation is itself of a special form, combining dis- 
tributions whose parameters are given by banks of parallel Kalman filters 
and optimal smoothers. 

1. Introduction. Time-dependent data are often modeled by linear dy- 
namic systems. Such representations assume that the data contain a determin- 
istic component which may be described by a difference or differential equation. 
Deviations from this component are assumed to be random and to have certain 
known distributional properties. These models may be used to estimate the 
"true" values of the data uncorrupted by measurement error, and possibly also 
to draw inference on the source generating the data. 

A method that has found an exceptionally broad range of applications- 
not only for estimating the state of a dynamic system, but also for simultane- 
ously estimating model parameters, choosing among several competing models 
and detecting abrupt changes in the states, the parameters or the form of the 
model-is the recursive estimator known as the Kalman filter [Kalman (1960), 
Kalman and Bucy (1961)]. While it has so far enjoyed greater popularity within 
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the engineering community than among statisticians, this versatile technique 
deserves more attention. Originally derived via orthogonal projections as a gen- 
eralization of the Wiener filter to nonstationary processes, the Kalman filter has 
been shown to be optimal in a variety of settings [e.g., Jazwinski (1970), pages 
200-218]. It has been derived as the weighted least-squares solution to a re- 
gression problem, without regard to distributional assumptions [e.g., Duncan 
and Horn (1972), Bryson and Ho (1975), pages 349-3641; as the Bayes estimator 
assuming Gaussian noise, without regard to the cost functional [e.g., Harrison 
and Stevens (1971), Meinhold and Singpurwalla (1983)]; and as the solution 
to various game theoretic and other problems. Indeed, Morris (1976) is led to 
conclude that the Kalman filter is therefore "a robust estimator" and proceeds 
to demonstrate its minimax optimality "against a wide class of driving noise, 
measurement noise, and initial state distributions for a linear system model 
and the expected squared-error cost function." 

One condition under which the Kalman filter is not robust is heavy-tailed 
noise, that is, the presence of outliers: even rare occurrences of unusually large 
observations severely degrade the performance of the Kalman filter, resulting 
in poor state estimates, nonwhite residuals and invalid inference. There is no 
contradiction between this fact and the findings of Morris and others. It is well 
known that the squared-error criterion is extremely sensitive to outliers [Tukey 
(1960), Huber (1964)], for reasons that are intuitively easy to grasp. Squar- 
ing a large number makes it even larger, so that an outlier entering the cost 
functional linearly is likely to dominate all other observations. In other words, 
optimality relative to the "linear system model and the expected squared-error 
cost function" must not be sought when the noise distribution is heavy-tailed. 

Statisticians and engineers often confront the problem of dealing with out- 
liers in the course of model building and validation. Routinely ignoring un- 
usual observations is neither wise nor statistically sound, since such observa- 
tions may contain valuable information as to unmodeled system characteristics, 
model degradation or breakdown, measurement errors, and so forth. However, 
detecting unusual observations is only possible by comparison with the under- 
lying trends and behavior; yet it is precisely these that nonrobust methods fail 
to capture when outliers are present. The purpose of robust estimators is thus 
twofold: to be as nearly optimal as possible when there are no outliers, that 
is, under "nominal" conditions; and to be resistent to outliers when they do oc- 
cur, that is, to be able to extract the underlying system behavior without being 
unduly affected by spurious values. 

Past efforts to mitigate the effects of outliers on the Kalman filter range 
from ad hoc practices, such as simply discarding observations for which resid- 
uals are "too large," to more formal approaches based on nonparametric statis- 
tics, Bayesian methods or minimax theory. Many, however, include heuristic 
approximations with ill-understood characteristics. While some of these tech- 
niques have been empirically found to work well, their theoretical justifications 
have remained scanty at best. Their nonlinear forms, coupled with the difficul- 
ties inherent in dealing with nonnormal distributions, have resulted in a strong 
preference in the literature for Monte Carlo simulations over analytical rigor. 
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In this paper, a robust recursive estimator is derived formally, in an effort to 
bridge the gap between appealing heuristics and sound theory. An asymptotic 
expansion is used to derive a nonlinear filter that approximates the conditional 
mean estimator. The resulting estimator has good performance characteristics 
both under nominal conditions and in the presence of outliers. Since its distri- 
butional properties are known (approximately), it is also possible to use this 
estimator for statistical inference, such as failure detection and identification. 

The paper is organized as follows. The problem is formally stated in Sec- 
tion 2, and a survey of the literature is offered in Section 3. In Section 4, a first- 
order approximation of the conditional prior distribution of the state given past 
observations is derived. This distribution is used to derive a first-order approx- 
imation of the conditional mean estimator of the state given past and present 
observations, in Section 5. Minimax issues and the choice of noise distribution 
are addressed in Section 6, followed in Section 7 by some simulation results, 
and in Section 8 by a brief summary. 

2. Problem statement. Let (Rd, , A) be a measure space, where R de- 
notes the real line, 3 the Borel a-algebra and A the Lebesgue measure. Below, 
the notation Q(x) denotes the probability law of the random vector x taking 
values in Rd; N(p, E) denotes the multivariate normal distribution with mean 
It and covariance E; and N(x; ,, 3) denotes its Radon-Nikodym derivative with 
respect to the Lebesgue measure. Finally, the notation p.(X) denotes the prob- 
ability distribution fumction of the random variable x E Rd evaluated at X, 
although the subscript will be dropped wherever there is no ambiguity. 

Consider the model 

(2.1) Zn= HnOn +Dnvn 

where 

(2.2) On+1 = FnOn + Wn , 

n = 0, 1, ... denotes discrete time; On E Rq is the system state, with a random 
initial value distributed as ?(60) = N( 0o, So); Zn E RP is the observation or 
measurement; wn E IRq is a random variable (the process or plant noise) dis- 
tributed as Z(wn) = N(O, Qn); Vn E RIP is a random variable (the observation 
or measurement noise) distributed as Q(vn) = Y, a given distribution that is 
absolutely continuous with respect to the Lebesgue measure with E[vn] = 0 
and E[vnvT] = R; {Fn}, {IH}, {Dn}, {Qnl, Eo and R are known matrices or se- 
quences of matrices with appropriate dimensions; 6o E Rq is a known vector; 
and finally 00, wn and vn are mutually independent for all n. 

A well-known estimator 6On of the state On given the observations Zn = {Zo, * 

zn } is the Kalman filter, given by the recursion 

(2.3) On = On + Knan 
where 

(2.4) f9n = Fn - l9n -1 
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is the predicted (a priori) estimate of the state at time n (i.e., before updating 
by the observation Zn) and 

(2.5) Mn = Fn- lPn -Fn- 1 + Qn-1 

is the prediction error covariance at time n; 

(2.6) -n=Zn-HA 

is the innovation at time n and 

(2.7) rn = HnMnHnT+DnRn 

is its covariance; 

(2.8) Kn = mnHTr-1 

is the gain; and 

(2.9) Pn = Mn- KnrnKT 

is the a posteriori estimation error covariance at time n (i.e., after updating). 
The initial condition 6o is given. 

As is clear from equations (2.3) and (2.6), the estimate is a linear function 
of the observation, a characteristic that is optimal only in the case of normally 
distributed noise [Goel and DeGroot (1980)1 or elliptical processes (sample- 
pathwise mixtures of normal processes). Similarly, equations (2.5) and (2.8)- 
(2.9) show that the gain and covariance are independent of the data, a property 
related once again to the assumption of normality. Finally, in the Gaussian 
case Y = N(O, R), the residual (innovation) sequence {-1,. , In} is white and 
is distributed as 2(^Yj) = N(0, ri). 

When Y is a heavy-tailed distribution, on the other hand, the state estima- 
tion error can grow without bound (since the estimate is a linear function of 
the observation noise), the residual sequence becomes colored and residuals be- 
come nonnormal. Thus, not only is the estimate poor, but furthermore invalid 
inference would result from utilizing the residual sequence when significant ex- 
cursions from normality occur. A robust estimator should at the very least have 
the following characteristics: the state estimation error must remain bounded 
as a single observation outlier grows arbitrarily; the effect of a single observa- 
tion outlier must not be spread out over time by the filter dynamics, that is, a 
single outlier in the observation noise sequence must result in a single outlier in 
the residual sequence; and the residual sequence should remain nearly white 
when the observation noise is normally distributed except for an occasional 
outlier. 

If Yis unknown but can be expressed as a member of a class of distributions, it 
makes sense to seek the optimal estimator On Of en given Zn in a minimax sense 
[Huber (1964)]. Huber shows for the static case On = 6 that under fairly mild 
conditions, the minimax optimal estimator is in fact the maximum likelihood 
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estimator for the least favorable member of the class, that is, for the distribution 
with minimum Fisher information. 

In choosing a class containing Y, a convenient model of indeterminacy similar 
to that of Huber (1964) is the E-contaminated normal neighborhood 

(2.10) Te,R= {(1 - E)N(O, R) + eH: H E 8), 
where S is the set of all suitably regular probability distributions, and 0 < <? 1 
is the known fraction of "contamination." It is assumed in the sequel that 
T E 1e,R for some appropriately chosen E and R. The form of the observation 
noise distribution is exploited in an asymptotic expansion, in order to obtain a 
first-order approximation of the conditional prior distribution P(On I Zn - 1) Of 
the state variable On given the observations Zn - 1. A key property that ensures 
the finite dimensionality of this approximation is the exponential stability of 
the Kalman filter, that is, the fact that the effects of past observations decay 
fast enough. The resulting distribution is a perturbation from the normal, and 
all the pertinent parameters are given by various Kalman filters and optimal 
smoothers that each make a specific assumption on the distribution of the noise 
at each point in time. The relationship between Huber's estimator of a location 
parameter, its recursive versions proposed by Martin (1972), Martin and Masre- 
liez (1975), Nevel'son (1975) and Price and Vandelinde (1979), and the estimator 
derived here, is discussed in greater detail in Mitter and Schick (1992). 

It is assumed that the observation noise is white, that is, that outliers occur 
independently. While this assumption may be seen as limiting [other models 
have been proposed, e.g., by Martin and Yohai (1986)], the principal goal of 
this effort is to derive a recursive estimator that can be used for inference 
on the linear dynamic model in the presence of heavy-tailed noise: if outliers 
were allowed to occur in "patches," the distinction between model changes and 
sequences of outliers would become arbitrary, or might have to be based upon 
prior probabilities for patch duration. This is not to say that patchy outliers 
do not constitute a problem worthy of study-time series outliers can occur 
in patches, and an approach to that case based upon time-scaling is currently 
under study. 

It is also assumed that outliers only occur in the observation noise: process 
noise outliers (also known as "innovational" outliers, as opposed to observa- 
tion or "additive" outliers) would cause abrupt state changes that would not 
immediately be distinguishable from failures (except by observation of the sub- 
sequent behavior of the model, i.e., noncausally). Nevertheless, dealing with 
process noise outliers in real time is a problem for which satisfactory solutions 
remain unavailable. 

The first-order approximation of the conditional prior distribution P(On I Zn - 1) 
is next used to obtain a first-order approximation of the conditional mean of the 
state variable On given the observations Zn (i.e., to update the predicted esti- 
mate by the current observation zn). This step uses a generalization of a proof 
due to Masreliez (1975) and Masreliez and Martin (1977), made possible by a 
change in the order of integration. A similar derivation also yields the condi- 
tional covariance. 
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3. Literature survey. Engineers have long had recourse to ad hoc meth- 
ods aimed at downweighting the influence of outliers on the Kalman filter. The 
simplest way employed is just to discard observations for which the residual is 
"too large" [e.g., Meyr and Spies (1984)]. Thus, the predicted estimate On of the 
state On would not be updated by zn if, for example, 

(3.1) kY[7]iI > 0! 

for some i (where [.i and [ ij denote elements of a vector and a matrix, respec- 
tively), or if 

(3.2) T > ,B 

for some positive thresholds a and o3. This is equivalent to rewriting the Kalman 
filter in equation (2.3) as 

(3.3) On = On + Kn in (-n) 7 

where On is an influence-bounding function that is linear between some possi- 
bly time-dependent (e.g., as a function of the covariance) thresholds, and zero 
elsewhere. There are several disadvantages to this approach, notably the ab- 
sence of a firm theoretical basis or justification, as well as the lack of a rigorous 
way to choose the thresholds. (Three standard deviations is sometimes used, 
but more for historical reasons than due to statistical considerations.) More- 
over, no use is made of information contained in the observations if they fall 
outside the thresholds, which may in some cases result in decreased efficiency: 
if something is known about the statistical properties of the outliers, then it 
might be possible to extract some information from outlying observations as 
well, and discarding them outright may not be appropriate. Finally, sharply re- 
descending influence-bounding functions of this type lead to a lack of continuity 
in the estimates as functions of the data, giving rise to nonrobust covariances 
[see Huber (1981), page 103]. 

Somewhat more sophisticated approaches have also been advanced to pre- 
process the data prior to its use in updating the Kalman filter estimate. Thus, 
for instance, Kirlin and Moghaddamjoo (1986) use the median, while Hewer, 
Martin and Zeh (1987) use Huber's M-estimator. Both papers report on applica- 
tions to real data (target tracking in the former, glint noise in the latter), where 
outliers were found to affect adversely the performance of the Kalman filter. 

In recent years, a great deal of work has been published, investigating more 
formal techniques for "robustifying" recursive estimators. Broadly speaking, 
these methods can be grouped in three categories: 

1. Bayesian methods-When the noise is non-Gaussian, but its statistical prop- 
erties are known and not excessively complex, estimators can be derived in 
a Bayesian framework, whereby observations are used to update modeled 
prior information. The parameters of these estimators are often chosen in 
accordance with some performance criterion, such as the risk. 
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2. Nonparametric methods-There are cases of practical importance where the 
statistical properties of the noise are either entirely unknown or known only 
partially, or possibly known but very complex. In such cases, distribution- 
free estimators are sometimes sought that remain valid in a relatively broad 
class of situations. 

3. Minimax methods-Another way of dealing with incomplete or absent 
knowledge of the statistical properties of the noise is to choose a class of 
distributions and derive the estimator whose worst-case performance is op- 
timal. If a saddle-point property can be shown to hold, such estimators are 
referred to as minimax robust. 

A review of the literature follows. It is worth noting that the recent literature on 
robust statistics is vast, and a broad survey is not attempted here. Indeed, even 
indirectly related works, such as those on robust regression or outlier detection, 
are not discussed, except when they specifically focus on the robust estimation 
of the state of a dynamic system. Published reviews include Ershov (1978b), 
Stockinger and Dutter (1983, 1987), Kassam and Poor (1985) and Martin and 
Raftery (1987). 

McGarty (1975) proposes a method to maximize the Bayes risk, eliminating 
outliers and concurrently computing the estimate. His model assumes that the 
state is totally absent from the observation when an outlier occurs, that is, that 
observations are occasionally pure noise and contain no information at all. That 
differs from the model assumed here, where the state is always observed, al- 
though the noise may occasionally contain outliers. Moreover, McGarty's 
method is nonrecursive, as well as computationally burdensome. 

A Bayesian setting is also employed by Sorenson and Alspach (1971), Alspach 
(1974) and Agee and Dunn (1980), who use a Gaussian-sums approximation 
for the prior distributions. There is some similarity between this approach and 
the derivation of the conditional prior in this paper. However, while the num- 
ber of components in the approximating sum grows exponentially with time 
in these papers, the formulation adopted here (which exploits the exponential 
asymptotic stability of the Kalman filter) results in a bounded number of terms. 
Although the option of truncating the mixture sums to reduce complexity has 
been raised in the literature, little is known about the consequences of such a 
move in the general case. Tanaka and Katayama (1987) use maximum a poste- 
riori (MAP) estimation to determine of which component of the sum the noise 
was a realization. Their method is noncausal, but that is because they assume 
both the process and the observation noise to be distributed according to Gaus- 
sian sums. They also make the questionable assumption that the conditional 
distribution of the state (given all past and present observations) is normal. 
Pefia and Guttman (1989) propose to replace the posterior mixture by a single 
normal distribution whose mean and variance are equal to those of the mix- 
ture, and they show that this "collapsing by moments" procedure minimizes the 
Kullback-Leibler distance between the two distributions. While this method is 
insensitive to outliers, the resulting loss of efficiency under nominal conditions 
(normal noise) is unclear. 
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Meinhold and Singpurwalla (1989) also use mixture of distributions, with 
Student-t rather than normal components. This assumption yields the rather 
elegant property that the posterior reduces to the prior at the limit as an ob- 
servation tends to infinity; for finite observations, however, Student-t prior and 
noise distributions would not result in a Student-t posterior, necessitating some 
ad hoc manipulations, both to ensure that the posterior distribution can be rep- 
resented as a mixture of Student-t distributions and to limit the number of com- 
ponents in the mixture. Furthermore, the results only hold for the scalar case. 

A simple way to decrease the influence of outliers is to adjust the noise co- 
variance matrix used in the filter to reflect the greater variance due to them. 
Suppose, for instance, that outliers occur with probability E and that the covari- 
ances of the nominal (underlying) and outlier models are denoted by Rnom and 
Rout, respectively. Then, using the inflated covariance 

(3.4) R = (1- 6)Rnom + ERout 

in the Kalman filter recursion results in the deflation of the gain Kn and hence a 
reduction in the influence of outliers. Unfortunately, of course, this results in a 
reduction of the influence of all other observations as well, with the consequence 
that very inefficient use is made of measurement information when no outliers 
are present. 

Guttman and Penia (1984, 1985) and Pefia and Guttman (1988) propose a 
more refined version of (3.4): they assume a distributional model for the obser- 
vation noise and compute a posterior observation noise convariance by using 
the posterior probability that an outlier has occurred, conditioned on the mea- 
surement. Similar approaches are discussed by Harrison and Stevens (1971, 
1976) and Kliokis (1987), as well as by Athans, Whiting and Gruber (1977), who 
assume that measurements are occasionally independent of the state, that is, 
pure noise. Athans, Whiting and Gruber also offer a comparison between their 
Bayesian estimator and a simple outlier-rejection scheme based on a x2 test. 
One problem with this method is the need for an explicit model for the noise: 
Guttman and Pefia use a two-component Gaussian mixture (scale contami- 
nation) model, which is somewhat limiting-although frequently used in the 
literature. Another problem is that inflated covariances and poor performance 
at the nominal model may result when the 'outlier" distribution contains sig- 
nificant mass in the "center," as is the case with the Gaussian mixture. 

A related method is proposed by Ershov and Lipster (1978) and Ershov 
(1978a), whose framework is very similar to that of Guttman and Penia, but 
who make a hard decision at each step as to whether or not the observation is 
an outlier. This approach has the distinct advantage of superior performance 
at the nominal model, since the effective covariance is either Rnom, or Rout but 
not a weighted combination of the two. Furthermore, although the published 
derivation is for the scalar case, the multivariate extension is straightforward. 
The difficulty with this formulation is that the problem of choosing an outlier 
model remains: Ershov and Lipster only consider the Gaussian mixture case. In 
addition, it is probable that such hard decisions result in nonrobust covariances, 
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in view of the fact that small deviations in the neighborhood of thresholds can 
yield large differences in the value of the estimate. Indeed, abrupt switching of 
covariances introduces transients in the filter dynamics which have apparently 
not been the object of study. 

It is worth noting that both the Guttman-Penia and the Ershov-Lipster fil- 
ters can also be formulated in the form of equation (3.3)-the first with a smooth 
and the latter with a piecewise linear +-function. Neither function is bounded, 
implying that the performance of these estimators is poor when the observation 
noise is very heavy-tailed. 

Mixture models are also used by West, Harrison and Migon (1985) in the 
context of generalized linear models for nonlinear time series in the presence of 
outliers. Their discussion is brief, however, and their proposal rather sketchy. 

A Bayesian framework is also used by Kitagawa (1987), who proposes to 
approximate non-Gaussian distributions by piecewise linear functions and to 
select the best among a set of competing models by means of the Akaike infor- 
mation criterion (AIC). This method is computation-intensive. Furthermore, 
there is little theoretical justification for using AIC in this context, although 
different considerations, such as minimax optimality, could be used for choosing 
among the competing models. 

Another attempt at representing a distribution by simpler functions is that 
of Tsai and Kurz (1983), where a piecewise polynomial approximation is used 
in adaptively deriving the influence-bounding function. Some connections be- 
tween this approach and AIC are discussed in Tsai and Kurz (1982). While 
adaptive methods are very appealing when modeling information is incomplete, 
this particular application raises a problem: since outliers are rare occurrences 
by definition, large samples are likely to be required for even moderate levels 
of confidence, particularly in the tails. Furthermore, the derivation presented 
in the paper is for the scalar case only (or, more precisely, for the case where 
the elements of each observation vector are uncorrelated), and the multivariate 
extension is quite arbitrary; yet, such correlation could provide crucial informa- 
tion in the event of an outlier that affects some measurements more than others. 

The need to select probabilistic models for the noise is entirely circumvented 
by the use of nonparametric, distribution-free estimators such as the median 
[Nevel'son (1975), Evans, Kersten and Kurz (1976), Guilbo (1979), Gebski and 
McNeil (1984)]. Medians and other quantiles have very useful properties, such 
as strong resistance to transients (like outliers) but perfect tracking of abrupt 
changes (like step inputs or slope changes). Furthermore, the development of re- 
cursive methods for estimating them has eliminated the computational burden 
and memory requirements commonly associated with such statistics. However, 
their performance remains ill-understood, as do their statistical properties. 

A final class of robust filters is based on a minimax approach. Here, a class or 
neighborhood of situations (e.g., noise distributions) is selected, and the estima- 
tor with the best performance under the least favorable member of that class 
is sought-where best and worst are defined in a certain sense. This paradigm 
is very appealing, since, in view of the absence of precise knowledge of the 
noise distribution, the essence of robust estimation is a quest for methods that 
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perform satisfactorily under a relatively broad range of conditions. Since the 
least favorable situation may in fact not represent reality, and estimators could 
conceivably be found that perform better under some other conditions, this ap- 
proach is necessarily conservative. However, it has the important advantage of 
providing a lower bound on the performance of the estimator. 

One group of papers [VandeLinde, Doraiswami and Yurtseven (1972), 
Doraiswami (1976), Yurtseven and Sinha (1978), Yurtseven (1979)] assumes 
bounds on covariances and obtains a minimax estimator under various condi- 
tions. Unfortunately, these papers are opaque and not always consistent with 
each other, making their complicated methods somewhat inaccessible. More- 
over, their nonrecursive nature makes them unsuitable for the present problem. 

The literature most pertinent to this paper [Masreliez (1974, 1975), Masreliez 
and Martin (1974, 1977), Tollet (1976), Stankovic and Kovacevic (1979, 1986), 
West (1981), Stepinski (1982), Kovacevic and Stankovic (1986, 1988)] uses 
stochastic approximation of the Robbins-Monro type to get a recursive approxi- 
mate conditional mean (minimum variance) estimator having the form of (3.3), 
with the influence-bounding function On given by the score of the conditional 
distribution of the observation Zn, that is, 

(3.5) 4n(z) = -VzlogNPzn(Z I Zn - 1) 
(3.6) = 'Vzpzn (Z I Zn- 1) 

This estimator has been found to perform well in simulation studies [e.g., 
Martin and DeBow (1976)], as well as with real data [e.g., Qetin and Tekalp 
(1990)], but its theoretical basis has remained inadequate. Moreover, a crucial 
assumption, that of a normal conditional prior for the state at each time step, 
is insufficiently justified and remains controversial. [For a continuity theorem 
regarding the near-normality of the conditional prior, see Martin (1979).] Fi- 
nally, the one-step estimator is converted into a recursion in an ad hoc manner 
that contradicts the assumption of conditional normality. 

Similar filters are investigated by Agee and Turner (1979) and Agee, Turner 
and Gomez (1979), who eliminate the explicit relationship between the influ- 
ence function and distributional assumptions in the interest of versatility. As 
a result, however, these filters are not minimax and the choice of influence- 
bounding fimction remains arbitrary. Matausek and Stankovic (1980) also 
study related filters for the case of nonlinear, continuous-time, discretely sam- 
pled systems; their discussion of influence-bounding functions does not appear 
to be statistically motivated either. Shirazi, Sannomiya and Nishikawa (1988) 
consider models where both the process and the observation noises contain 
outliers; they, too, make the questionable assumption of Gaussian conditional 
prior and only offer simulation results to support their algorithm. Levin (1980) 
investigates methods for analyzing the accuracy of filters of the form (3.3) 
with bounded +-functions, including notably the minimax robust estimators 
described above. 

Tsaknakis and Papantoni-Kazakos (1988) start out from a rather different 
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definition of robustness, based on the Prokhorov distance and on what they call 
"asymptotic outlier resistance," and construct a minimax robust estimator that 
is insensitive to bursty outliers of fixed duration. While the scalar estimator 
is minimax, however, its multivariate generalization is ad hoc and does not 
obviously share this property. 

Boncelet and Dickinson (1983) describe a minimax filter obtained by apply- 
ing M-estimation techniques to the Kalman filter reformulated as a regression 
problem. However, the results are incomplete, and the crucial problem of updat- 
ing the covariance is not addressed; further results do not appear to have been 
published as of this writing. Cipra and Romera (1991) similarly reformulate 
the one-step update of the state as a least-squares estimation problem and ap- 
ply M-estimation techniques to it. Some approximations allow them to obtain 
recursions for both the state and its covariance. 

4. The conditional prior distribution. Before deriving a robust estima- 
tor of the state 6n given the observations Zn, it is necessary to define the sense in 
which optimality will be sought. The often-used linear-estimator least-squares 
criterion is not robust in the presence of outliers, as mentioned earlier, while 
Huber's asymptotic variance (or, alternatively, the Fisher information) criterion 
is not meaningful in the time-varying case of equation (2.2). 

The conditional mean estimator is well known to have several desirable prop- 
erties, such as unbiasedness and minimum error variance [see e.g., Anderson 
and Moore (1979), pages 26-28], and is chosen to be the optimality criterion 
here. The first derivation of a robust approximate conditional mean estimator 
in the present context is due to Masreliez and Martin (1974, 1977) and is based 
on Masreliez (1974, 1975); some generalizations are provided by West (1981). 

A key assumption made by these and other authors is that at each n the 
conditional probability distribution of the state On given past observations Zn - 1 
is normal. This assumption allows some elegant algebraic manipulations that 
yield a stochastic approximation-like estimator. However, while the assumption 
of conditional normality has been shown in simulation studies to be a good 
approximation of the true density, it is only strictly correct for finite n in the 
special case where Y = N(O,R) [see Spall and Wall (1984)], which is clearly of 
no interest here. 

In this section, a first-order approximation of the conditional distribution 
prior to updating, P(OnIZn - 1), is derived for the case where T is known and 
belongs to the c-contaminated normal family ?e,R defined in equation (2.10). 
While conditional normality is never exactly satisfied in the presence of non- 
normal noise, it is shown that the zeroeth-order term in a Taylor series repre- 
sentation of the distribution is normal. The small parameter around which the 
Taylor series is constructed involves ?, the fraction of "contamination," as well 
as a measure of the dynamic stability of the model. This approximation is then 
used, in an extension of Masreliez's theorem, to derive a first-order approxi- 
mation of a robust conditional mean estimator. It is initially assumed that the 
"contaminating" distribution H is known. The choice of H in practice, a problem 
whose solution remains incomplete, is further discussed in Section 6. 
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It is first noted that the Kalman filter recursions are exponentially asymp- 
totically stable under certain conditions. This property ensures that the effects 
of past outliers are attenuated rapidly enough as new observations become 
available. The stability of the Kalman filter recursions has been studied by 
several researchers, notably Deyst and Price (1968), Caines and Mayne (1970), 
Jazwinski [(1970), pages 234-2431, Hager and Horowitz (1976) and Moore and 
Anderson (1980). Hager and Horowitz (1976) relax the conditions of control- 
lability and observability, used below, in certain cases. See also Anderson and 
Moore (1981) and Anderson (1982). 

The following stability theorem is stated without proof. 

THEOREM 4.1. Let the matrix sequences {Fn}, {Hn}, {Qn and {Dn} be 
bounded above, and let {Dn} also be bounded below. Let there exist positive 
integers t and s and positive real numbers a and / such that, for all n, 

n+t /i-1 \T i - 1\ 

(4.1) , F) HiT (D,RDiT) - 1H r Fj > aX 
i=n j=n j=n 

(i.e., the system is completely observable) and 

n n \/ n T 

(4.2) E j iQ i Fj) > OI 
i=n-s j=i+l j=i+l 

(i.e., the system is completely controllable). 

Then, given any 80 < oo and defining the closed-loop recursion 

(4.3) in + 1 = (I-Kn + iHn + 1)Fnon 

[where Kn is the Kalman gain defined in equation (2.8)], there exist A > 0 and 
0 < 6 < 1 such that 

(4.4) 116nll < Ap 

(i.e., the filter is exponentially asymptotically stable). 

PROOF. See Moore and Anderson (1980). This result is used in the following, 
slightly different form. 

COROLLARY 4.1. Let the conditions of Theorem 4.1 be satisfied, and let a 
0 < q < oo exist such that, for all n, 

n 

(4.5) flFj <q 
j= 1 

(i.e., the system is uniformly stable). For i = 1,2, let Qni and Mn, respectively, 
denote the estimators and error covariances of two Kalman filters tracking a 
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dynamic system of the form (2.1)-(2.2), with respective initial conditions O' and 
M'. Then there is a 0 < 6 < 1 such that, for any finite 0, 

(4.6) n; ,MM1) = 2N(6;2XM,2) + 0(6n). 

PROOF. Theorem 4.1 leads in straightforward fashion to 

(4.7) IMn _ Mn2| =0(62n) 

and 

(4.8) jO6 n- = 0pG"). 

Now, N(x; ,i, E) is everywhere continuously differentiable with respect to ja and 
E except at E = 0. However, it can be shown [see Moore and Anderson (1980)] 
that Min is bounded away from 0 for all n, so that it is possible to write a first- 
order Taylor series expansion of N(O; 6n, Mn) around the point (62 , M2). Using 
(4.7) and (4.8) concludes the proof. [For a detailed proof, see Schick (1989), pages 
122-124.] a 

Define 

(4.9) -(x; IL, E) = JN(x - (; i, E) dH(,). 

Note that this convolution integral yields the distribution of the sum of two ran- 
dom variables, of which one is normal and the other obeys the "contaminating" 
distribution H. Note also that, from (2.10), one can write 

(4.10) Vn = (1-q1n)VvN + 7lnVH 
where j,, is a random variable independent of 00 and {wn } obeying 

(4.11) 71n={ ={ PI (1 -E)7 

and {vN} and {v1} are random variables independent of {In}, 6o and {wnj 
with ?Q(v) = N(O, R), for some R > 0, and C(VH) = H. Finally, loosely defining 
a random variable distributed as H as an "outlier," denote the event "there has 
been no outlier among the first n observations" by 9-n = {1o = 0 .... , rn = 0}, and 
the event "there has been exactly one outlier among the first n observations, at 
time i - 1" by Xn = {r/0 = Oi . .. X 77i - 2 = ?X 1/i - 1 = 71,zi = 0, . .., t7n = O}. Then it is 
easy to verify that 

P(On I Zn-l)P(Zn-1) 
=P(Sn -1)P(Zn - 1 | n -1)P(On I Zn- 1. n-1) 

(4.12) ~+ E P (Xn-1) P (Zn -1 1 in -1) P (On i Zn -l vi in -1) 
i=1 

+ higher-order terms. 
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Clearly, the first term on the right-hand side of (4.12) is the distribution con- 
ditioned on the event that there were no outliers; each term in the summation 
to the event that there was exactly one outlier; and the higher-order terms to 
the occurrence of two or more outliers. Moreover, defining Zn = ZO. .... i Zi - 2 
zi,X Zn }, it follows that 

P(Zni- 1 1 Xi P(On I Zn-19Xi-1) 
(4.13) 

= P(Zn-1 1 en -Y1) P(On I Zn - (n -1) P(Zi- 1 1 on, ZnI- XI -1). 

Note that the only nonnormal term on the right-hand side of (4.13) is the last 
one. It is shown in the sequel that this term corresponds to a convolution of the 
form (4.9). Furthermore, since the distribution of a past event is expressed here 
conditioned on subsequent observations, this corresponds to a smoother. The 
second term on the right-hand side of (4.13), on the other hand, is the distri- 
bution of a normal random variable (the state On) conditioned on normally dis- 
tributed observations Z, - 1. It is therefore a normal distribution, whose mean 
and variance are given by a Kalman filter that skips the observation zi -. 
These remarks are formalized below. 

A first-order approximation of the conditional probability distribution P(Onr 
Zn - 1) is given by the following theorem. 

THEOREM 4.2. Let the conditions of Theorem 4.1 and Corollary 4.1 be satis- 
fied for the system given by equations (2.1) and (2.2), and let 6 be a real number 
for which (4.4) holds. Let w be the smallest integer such that 

(4.14) 6w <6 

(or, alternatively, w > loge/log 6). If 

(4.15) w < 1 

and if the distribution H has s, then 

P(0n I Zn -1)=( 1 _ O r)m rn iN (On; -6n? 7 Mno) 
n 

(4.16) +6(1-6)m-llin E tin(On; ki 7Min) (Hi - iVni0n; (i iZi) 

+ o (M2E2) 

with m =min(n, w) and e = max(l, n - w + 1), where, for i =0,1, .. and n > i, 

(4.17) oini n - 10ni- Dv 
(4.18) oi + K 
(4.19) Ml = Fn_ lPn - lFnr- 1 + Qn- 1 
(4.20) = Zn- X 
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(4.21) rX = HnMnHT + D,RDT, (4.22) Kn =MnH(Fn1, 
(4.23) Pn =Mn 

and 

(4.24) K- N(-n -1;o ri 

and, for i =1, 2, ... and n > i, 

(4.25) Vn = Vni_ inP- 1FT_ 1(Mi - , 
(4.26) v4 =un1 +VV,1K,-1y1, 

(4.27) Wn - 1 - Vn - KnK - 1 Tn V - n nT 1, 
(4.28) Ir Zi-i -Hi-lvn 
(4.29) Cn =Hi Ynik +rni 
(4.30) n= - - V1 M n T)H 1 

subject to the initial conditions 

(4.31) +iQ=,Fi-1 
(4.32) Mii = Fi_ -Mi_- lFji 1 + Qi - 1 
(4.33) Vi' = M?_ -Il 1 il (Min)- 1 
(4.34) V= = 
(4.35) Wi = Mi1, 
(4.36) 

for i > 0, and 

(4.37) 00 = i0v 
(4.38) M? = Mo, 

(4.39) ?= 1. 

The normalization constant satisfies 
n 

(4.40) 1 = (1 _)mn,n + .6(1 _ E)m l KZ , (ri; o HWHi _ W ) 
i=t 

PROOF. See Appendix A. 

COMMENTS. Some comments on Theorem 4.2 are as follows: 

(i) Equations (4.17)-(4.23) are a bank of Kalman filters, each starting at 
a different point in time i = 0,1,.... Because of the way in which they are 
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initialized, the cases i > 0 correspond to Kalman filters that start at time n = 0 
and skip the (i - 1)st observation. In other words, 0 i is the estimate of On based 
on the observations Z_1 and the event JC _ The case i = 0 is based on all 
observations, that is, #,, estimates On based on the observations Zn - 1 and the 
event -Cn- 1- 

(ii) Equations (4.25)-(4.27) are a bank of optimal fixed-point smoothers [see, 
e.g., Anderson and Moore (1979), pages 170-1751, each estimating the state at a 
different point in time i -1 based on all preceding and subsequent observations. 
In other words, vi is the estimate of Oi - 1 based on the observations Zi - 1 and 
the event Sz - 1 

(iii) Thus, each term in the summation on the right-hand side of (4.16) is 
a Kalman filter that skips one observation, coupled with an optimal smoother 
that estimates the state at the time the observation is skipped. Some general 
results pertaining to conditional probability distributions of the form (4.16) are 
given in Di Masi, Runggaldier and Barazzi (1983). 

(iv) Evidently, as n -* oo, the probability of the event that only a finite num- 
ber of outliers occur vanishes for any e > 0. That the density can nevertheless 
be approximated by the first-order expression in (4.16) is due to the exponential 
asymptotic stability of the Kalman filter: w represents a "window size" beyond 
which the effects of older observations have sufficiently attenuated. Compare 
Martin and Yohai [(1986), Theorem 4.2] and its discussion in Kunsch (1986), 
where weak dependence on temporally distant observations is exploited in the 
context of influence curves for time series. 

(v) Sample values of the "window size" w appearing in Table 1 can give an 
idea of the dimensionality involved. These examples are for the scalar time- 
invariant case, with Hn = Dn = Qn = R = 1 for all n. A 6 is computed for each 
value of Fn = F (by fitting a straight line to log9On for large n), and an w is 
calculated for each pair of values F and E [using (4.14)]. As the table indicates, 
for a given e, a smaller F (i.e., faster system dynamics) implies that a smaller 
"window" w is enough to guarantee sufficient attenuation. Conversely, for a 
given F, a smaller E implies that a longer "window" w is needed. 

(vi) It is easy to show that 

(4.41) (1- _ n)ni KO = P(YC1)P(Zn1 -1I 
-i) 

(4.42) =P(xn-1 I Zn-1) 

is the posterior probability, conditioned on all past observations Zn - 1, that no 
outliers have occurred among the first n observations. Similarly, it is easy to 
show that 

(4.43) E(1 -)n- nKin`(n; O, Hi-iWnii-1) =P P(n-1 | Zn1) 

is the posterior probability that exactly one outlier occurred, at time i - 1. Thus, 
equation (4.16) is a sum of conditional distributions similar to (4.12). 
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TABLE 1 
Sample values for w 

F 6 0.001 0.005 0.01 0.05 0.1 0.5 

1.00 0.382 8 6 5 4 3 1 
0.90 0.362 7 6 5 3 3 1 
0.50 0.234 5 4 4 3 2 1 
0.10 0.050 3 2 2 1 1 1 
0.05 0.025 2 2 2 1 1 1 
0.01 0.005 2 1 1 1 1 1 

5. The conditional mean estimator. The approximate conditional prior 
probability distribution of the state On given the observations Zn -1 is now used 
in an extension of a theorem due to Masreliez. This results in a first-order 
approximation of the conditional mean (i.e., minimum-variance) estimator. 

The following notation is used, respectively, for the a posteriori conditional 
mean and conditional variance of On: 

(5.1) Tn = E [On I Zn]; 
(5.2) En = E[(n - Tn)(n - Tn)T I Zn]. 

In addition, the functional 

(5.3) Yfl(Z) =- pVzPz(z V Zn-ln(-z1) n 
Pznx (Z I Zn - 1 n - 1) 

denotes the score function for the conditional probability of Zn given that no 
outliers occurred during the first n - 1 observations. [Compare with equation 
(3.6).] Similarly, for i =1, 2,... and all n > i, 

1 (5.4) t/41(z) =p1( Z,:J{)Vzpzi..1(Zz i ZX J) 
Pzi- 1(Z I Znx X' ) 

denotes the score function for the conditional probability of zi-,1 given that 
it was an outlier and that no outliers occurred among the remaining n - 1 
observations. For i = 0, 1, 27 ... and all n > i, 

(5.5) V (z) = V O' (z) 

denotes the Jacobian of O'1. Finally, let h denote the Radon-Nikodym derivative 
of the "contaminating" distribution H with respect to the Lebesgue measure, 
provided that it exists. 

THEOREM 5.1. Let the conditions of Theorem 4.1, Corollary 4.1 and Theorem 
4.2 be satisfied for the system given by equations (2.1) and (2.2). If h exists and 
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is bounded and differentiable a.e., then 

n 

(5.6) Tn = (1 _E)m l7n+17OTO +6(1 -E)m`-111E1rTn + Op(m2E2) 
i =f 

with m =min(n, w) and =max(1, n - w + 1), where, for i =0,1,.. ., and n > i, 

(5.7) To = +MOHPTQ.y5o), 
(5.8) Tn = an + PV nH _Li4 (ri +1), 
(5.9) 7r? = (1 - e)irn+ + K iQ-Y ; Ox HnMnHn) 
(5.10) 1 = (1- Or, - (n + 1; 0, Hi - Wn + AT- 1) 

and the score (or influence-bounding) functions are given by 

(5.11) ,/J( ) - (1 -)N(y,; o,Ir)(rF) -1 - EV^y (-; O,HnMMn?T) 
n 7 (1 - e)4(Y; 0, FO) +e-y; 0, H MOH,T) 

(5.12) VTi(T; 0,Hi - lWnH1) 

with f X X Pn, IN, Vn, Wn, rX nand in as defined in equations (4.17)- 
(4.28) and (4.40), subject to the initial conditions (4.31)-(4.39). Furthermore, 

n 

(5.13) En = (l_E)mKn + liroEn+ E(1_ )m lrin + 
1 Er 1rEn + Op (m2E2) E 

where, for i = 0, 1,... and n > i, 

(5.14) En = Mno -M?InTT(,y)HnMnO + (Tn -T) (Tn -TO) T 
(5.15)>ZX=P - Pi ViTHi. ip + ( - V)(n- T')T (5.15) Ei = Pn-V H_ i( +)i iP+ (Tn- )(nT) 

and Tin is given by equation (5.5), subject to (5.11) and (5.12). 

PROOF. See Appendix B. 

COMMENTS. Some comments on Theorem 5.1 are as follows: 

(i) Both Theorem 4.2 and Theorem 5.1 are based on the assumption that 
outliers occur rarely relative to the dynamics of the filter. In the unlikely event 
that two outliers occur within less than w time steps of each other, equation 
(5.8)-which shows that Ti is linear in On and therefore [by (4.17) and (4.18)] 
in zn-suggests that the estimate would be strongly affected. This implies that 
the estimator developed here is robust in the presence of rare and isolated 
outliers, but not when outliers occur in batches. This important limitation is 
further discussed in Section 8. 
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(ii) It is easy to see that 

(5.16) (1-E), K, +1ir = P(:Jn-1 1 Zn) 

and 

(5.17) (1 I = Zn) 

that is, the estimator is a weighted sum of stochastic approximation-like esti- 
mators, with weights equal to the posterior probabilities of each outlier config- 
uration. These probabilities are conditioned on all the observations, including 
the current one. 

(iii) Unlike the Kalman filter, the estimation error covariance En is a func- 
tion of the observations. Indeed, the Gaussian case is the only one where the 
error covariance is independent of the observations. Note, however, that the 
covariance is a function of a set of matrices {Mn}, {P'}, {ri}, {Vi} and {Wn}, 
which are themselves independent of the observations. Thus, they can be pre- 
computed and stored, as is sometimes done with the Kalman filter. This would 
drastically reduce the on-line computational burden. 

(iv) The estimate of Theorem 5.1, as well as its error covariance, are both 
fairly complex. In all but the simplest cases, obtaining them will be computation- 
intensive. However, the structure given in Theorems 4.2 and 5.1 includes banks 
of parallel filters and smoothers that are entirely independent of each 
other. This suggests that the estimator derived here is well suited to 
parallel computation. 

(v) The error covariance En includes a weighted sum of quadratic terms of 
the form (Tn - Ti)(Tn - Ti)T. In some sense, this sum measures the disagree- 
ment among the parallel estimators, weighted by the posterior probabilities of 
each outlier configuration, and can be regarded as a price paid for analytical 
redundancy. 

(vi) The "robust Kalman filter" of Masreliez and Martin (1974, 1977) is ap- 
proximately equivalent to the zeroeth-order term in equation (5.6), that is, to T? 
as given in (5.7). This may explain its good empirical performance, as reported 
in the literature, despite the questionable assumption of normal conditional 
prior on which it is based. It is also instructive to compare Ti with the robust 
smoother of Martin (1979). 
(vii) It is easy to verify that, for E = 0, 

(5 .18) oo (Y? ) = wor? 1o, 

so that Tn reduces to the Kalman filter in the Gaussian case. 

6. The noise distribution. The significance of the functional O lies in the 
fact that it processes the innovation so as to mitigate the effects of observation 
outliers. "Overprocessing" the data results in loss of efficiency at the nominal 
model, while "underprocessing" makes the estimator excessively sensitive to 
outliers, that is, nonrobust. 
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In the case of Huber's M-estimator of location [Huber (1964, 1969, 1972, 
1977), (1981), Chapter 4] and its recursive versions [Martin (1972), Martin 
and Masreliez (1975), Schick (1989), Chapter 31, the goal is to estimate a de- 
terministic parameter-either a time-invariant location parameter or one that 
changes in a known and deterministic fashion-given observations corrupted 
by heavy-tailed noise. Since the parameter itself is deterministic, asymptotic 
performance measures are used, following the lead of Huber. Estimators are de- 
signed to minimize the asymptotic estimation error covariance under the least 
favorable noise distribution, and these are shown to be saddle-points, that is, 
optimal in the minimax sense. 

In this paper, however, the goal is to estimate the state of a stochastic time- 
variant linear dynamic system. In other words, the parameter to be estimated 
is itself randomly changing, and the problem consists of optimally tracking it, 
rather than achieving minimum asymptotic estimation error. Thus, approxi- 
mations of a conditional mean estimator are sought, since such estimators are 
known to achieve minimum error variance at each point in time. In Sections 4 
and 5, the "contaminating" noise distribution H is treated as known. In other 
words, the results of Sections 4 and 5 are better characterized as non-Gaussian 
(or, more generally, Bayesian) filters than as robust ones. To achieve minimax 
robustness in this case as well, it is necessary to choose a least favorable dis- 
tribution H and show that the solution satisfies a saddle-point property. [Of 
related interest is Berger and Berliner (1983, 1986), who investigate Bayes ro- 
bustness in the presence of E-contaminated noise, although not in a minimax 
framework.] 

It is clear from equations (5.13)-(5.15) that the estimation error variance 
En depends crucially on the distributions of the innovation and residual terms. 
The relationship between these distributions and En is complicated, as is fairly 
evident from these equations, but there is an additional factor that makes this 
problem especially difficult: the innovation and residual terms are clearly sums 
of normally distributed random variables and random variables distributed 
according to a member of the e-contaminated normal neighborhood of dis- 
tributions. The main difference between Huber's formulation and this one is 
thus that the former involves the neighborhood T,,R defined in equation (2.10), 
whereas the corresponding neighborhood in the latter case is 

(6.1) TE,R,R2 = {(1 - e)N(O,R1) + E(N(O,R2) 0 H): H E 8 

where R1 and R2 are given positive-definite matrices, and 0 denotes the con- 
volution operator. To appreciate the distinction, note that when R1 = R2 = R, 
Huber's case involves replacing outliers, and (6.1) additive ones. 

The problem of minimizing the Fisher information for the location parameter 
of neighborhoods of the form (6.1) was first posed by Mallows (1978), who pos- 
tulated that the minimizing H concentrates its mass on a set of isolated points, 
and that it has a geometric form; Donoho (1978) proposes a slight variant, also 
of a basically geometric form, and offers some numerical results supporting his 
choice. Marazzi (1985) also presents numerical results and proposes some ap- 
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proximations to the form of the least favorable distribution. This issue has been 
widely discussed in the literature, particularly in a Bayesian setting where ei- 
ther the prior or the noise distribution is normal and the other distribution 
is sought to maximize the expected risk. Since it has been shown [see Brown 
(1971)] that the minimum Bayes risk is a linear function of the Fisher informa- 
tion, the problems are equivalent. This connection was used in the present con- 
text by Bickel (1981, 1983), Levit (1979, 1980) and Marazzi (1980, 1985, 1990). 

Mallows (1980) states without reference that B. F. Logan demonstrated that 
the least favorable H cannot have a continuous density, but that "after much 
effort I have been unable to determine" the distribution in question. Casella 
and Strawderman (1981) show that if the least favorable distribution is con- 
strained to place all its mass within some interval [-m, m] then, for small m, 
it concentrates on the endpoints. Bickel (1981) investigates this case for large 
m and derives a cosine-shaped density that is a second-order approximation 
of the least favorable one. Bickel and Collins (1983) prove under certain reg- 
ularity conditions that the least favorable density concentrates its mass on a 
countable subset of isolated points, possibly including {+oo}. Marazzi (1980) 
also provides a proof that the least favorable distribution is discrete. None of 
these authors, however, is able to derive exactly the distribution minimizing 
the Fisher information in this case. 

Another difficulty in deriving a least favorable distribution for the present 
problem is due to its multivariate nature. The usual ordering of matrices (given 
X, Ye Rdd X d, Y > X if and only if Y - X > 0, i.e., their difference is positive 
definite) is not a lattice ordering. Thus, finding the member of a class of dis- 
tributions that maximizes the error covariance is not generally possible in the 
multivariate case. In the special case of spherically symmetric distributions, the 
multivariate extension is of course trivial: if the least favorable distributions 
and influence-bounding functions can be found coordinatewise, everything else 
follows immediately. 

Huber touches on the multivariate case only very briefly [Huber (1972), 
(1977), page 35; (1981), pages 211 and 222-223]. He proposes to consider spher- 
ically symmetric distributions and to apply nondegenerate affine transforma- 
tions to obtain parametric families of "elliptic" distributions. This, however, 
brings forth the problem of determining the scaling parameter when, as is usu- 
ally the case, it is not known a priori. Huber addresses the issue of simultaneous 
location and scale estimation in the scalar case and also offers some methods 
for estimating the scaling parameter [see Huber (1981), pages 215-223]. In the 
present case, the scaling matrix is simply the covariance of the innovation and 
residual terms and can be found analytically. Thus, if the observation noise 
distribution Y is spherically symmetric, the multivariate extension is straight- 
forward. However, the difficulty with finding the least favorable distribution 
componentwise remains. 

It is clear from the literature discussed above that the least favorable distri- 
bution in the neighborhood J',R1,R2 is of a highly complex shape and extremely 
difficult to derive. Moreover, even if such a least favorable distribution were 
found, it is not clear a priori that the resulting estimator could be shown to sat- 
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isfy a saddle-point condition. Since the very choice of neighborhood is to a large 
extent arbitrary, all this effort is perhaps unwarranted in the present case. 

An approximation [see also Marazzi (1990)] consists of the following: since 
e,R1,,R2 C T., R1, the least favorable distribution in Te, R1, clearly has Fisher 

information no greater than that in Te, R1, R2. Indeed, the least favorable distri- 
bution in T,,R1 (derived by Huber) can easily be shown not to be a member of 
SE,R1,R2, by noting that the support of the minimizing H distribution is not R, so 
that it cannot be the result of a convolution with a normal distribution N(O, R2). 
Thus, since it was shown to be unique, its Fisher information is in fact strictly 
less than that of the least favorable distribution in ,, R1,R2* Consequently, a 
conservative approach to approximating a minimax solution is simply to use 
the least favorable distribution in P,,R for given E and R; this has also the 
additional advantage of simplicity. 

The well-known least favorable distribution of Huber [see, e.g., Huber (1969), 
pages 87-89, (1981), pages 84-851 is given by 

(1 - E)N(k; 0, 1)exp(kx + k2), x < -k, 

(6.2) f*(x) (1 - E)N(x; 0,1), -k < x < k, 
fX (1 - E)N(k; 0, 1)exp( kx + k2), k <x, 

where k is related to the fraction of "contamination" E by 

(6.3) 2 (k; -| N(x; 0, 1)dx) = 

For this distribution, it follows from (5.3) that the score (influence-bounding) 
function is 

( -k, x < -k, 
(6.4) (x) x, -k <x<k, 

k, k <x. 

Thus, the transformation 'iP(x) leaves its argument unaffected if it is within 
some predefined range, and truncates it if it goes beyond that range. This func- 
tion illustrates well the concept of bounded-influence estimation. Since wild 
observations are truncated, no single data point can totally dominate the oth- 
ers; this contrasts with the Kalman filter, for instance, where any data point 
may have arbitrarily large influence on the estimate of the parameter. There 
is, nevertheless, a problem with this choice of observation noise distribution in 
the present problem: 44, is unbounded at ?k. Although a simple step-function 
approximation of this function has performed well in simulations, there is, at 
this writing, no firm justification for such a substitution. 

Deriving a least favorable distribution for the neighborhood 9Te,R1,R2 seems 
to be destined to remain an open problem for a while longer. However, the 
estimator derived in this paper may be used when there is sufficient prior 
information to support the choice of a particular "contaminating" distribution 
H, or with a suitable approximation to the score functions. 
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7. Numerical examples. This section presents the results of some Monte 
Carlo simulation experiments, comparing the performance of several published 
robust recursive estimators for a number of different observation noise dis- 
tributions. Since individual estimators could be "tuned" to function better in 
particular situations, these results are only intended to enable a rough and pri- 
marily qualitative comparison. The following recursive estimators were tested: 
the Kalman filter; the Guttman-Peiia estimator; the Ershov-Lipster estimator; 
the Masreliez-Martin estimator; and the first-order approximation of the condi- 
tional mean estimator derived in this paper (with the approximation discussed 
earlier). For further details on these estimators or the numerical experiments, 
see Schick [(1989), Chapter 5]. 

At a minimum, a good robust estimator should be resistant to outliers but 
lose minimal efficiency at the nominal model. To verify these properties, the 
noise distributions used in the simulations range from the very light- to the 
very heavy-tailed, following the well-known Princeton robustness study [see 
Andrews, Bickel, Hampel, Huber, Rogers and Tukey (1972), pages 67-68]. They 
include the normal distribution, the scale-contaminated normal (or Gaussian 
mixture) distribution, the Laplace (double exponential) distribution, Tukey's 
"Slash" distribution (the ratio of a normally distributed random variable to a 
[0, 1] uniformly distributed random variable) and the Cauchy distribution. 

Each simulation experiment described here consists of 200 runs of 50 time 
steps each. For simplicity, only the scalar time-invariant case is considered. 
Model parameters are F= 0.1 or 0.5 and Hn = Dn = Qn = R = 1 for all n, 
with initial conditions 6o = 0 and Mo = 1. Assumed outlier variances Rout = 
4, 6.25 and 9, and assumed fractions of "contamination" E = 0.01, 0.05 and 0.10 
are used in constructing the recursive estimators. The contaminating normal 
distribution (in the scale-contaminated normal case), as well as the Laplace 
distribution, both have variances Rout = 9. 

Table 2 illustrates the performance of various estimators when no outliers 
are present, by showing the percentage by which their respective mean-squared 
errors (MSE) exceed the optimal value given by the Kalman filter. As expected, 
the Guttman-Peiia estimator is very close to the Kalman filter for small Rout and 
F' however, its MSE increases markedly with both parameters. The Masreliez- 
Martin estimator has a slightly higher MSE than the first-order approximation, 
and the difference between the two increases with E. 

Table 3 also illustrates the performance of the estimators under nominal con- 
ditions, by showing the degree to which the residuals deviate from whiteness. 
Although the Kalman filter theoretically results in white residuals, that was not 
exactly true here due to the finite number of experiments and possibly short- 
comings of the pseudorandom number generator. Thus, the fractions by which 
the lag-1 serial correlations for robust estimators exceed that of the Kalman 
filter are shown in the table. Here again the performance of the Guttman- 
Peiia estimator degrades with increasing Rout and E. The difference between 
the Masreliez-Martin estimator, which truncates observations, and the first- 
order approximation, which does so selectively, is clear, particularly for higher 
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TABLE 2 
Percentage by which the MSEs of robust estimators exceed that of the Kalman filter, for the nominal 

(no contamination) case 

F=0.1 F=0.5 

=O0.01 E=0.05 0.10 E=0.01 E=0.05 E=0.10 

Guttman-Pefia 

ROUt = 4 0.34 2.02 4.49 0.32 2.02 4.55 

ROUt = 6.25 0.94 4.97 9.83 0.98 5.19 10.43 
Rout =9 1.78 8.29 15.30 1.90 8.90 16.81 

Ershov-Lipster 
ROUt =4 9.79 10.88 

ROUt =6.25 14.32 16.67 

Rout =9 17.51 20.78 
Masreliez-Martin 

1.48 6.11 11.20 1.66 6.94 12.88 
First-order approximation 

1.46 5.67 9.97 1.49 5.60 9.96 

TABLE 3 
Fraction by which the lag-1 serial correlations of robust estimators exceed that of the Kalman filter, 

for the nominal (no contamination) case 

F=0.1 F=0.5 

E = 0.01 E = 0.05 E = 0.10 E = 0.01 E = 0.05 E = 0.10 

Guttman-Pefia 

Rout = 4 0.26 0.96 1.60 0.88 3.41 5.68 
Rout = 6.25 0.47 1.54 2.39 1.65 5.56 8.69 

Rout = 9 0.67 2.04 3.02 2.42 7.46 11.18 
Ershov-Lipster 

Rout =4 1.35 5.42 
Rout = 6.25 1.63 6.71 
Rout = 9 1.81 7.49 

Masreliez-Martin 
0.44 1.35 2.14 1.59 5.00 8.03 

First-order approximation 
0.42 1.28 1.96 1.55 4.41 6.85 
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TABLE 4 
MSEs of robust estimators as percentages of that of the Kalman filter, at the time an "outlier" 

occurs 

Mixture Laplace 

E = 0.01 E = 0.05 E = 0.10 E = 0.01 E = 0.05 E = 0.10 

Guttman-Pefia 
53.91 45.98 43.65 81.50 77.97 78.58 

Ershov-Lipster 
76.40 84.10 

Masreliez-Martin 
56.93 48.58 45.61 81.50 77.26 76.67 

First-order approximation 
57.28 49.09 46.13 81.33 76.46 76.44 

Slash Cauchy 

E = 0.01 E = 0.05 9 = 0.10 E = 0.01 E = 0.05 E = 0.10 

Guttman-Pefia 
8.52 8.04 7.91 40.16 40.14 40.17 

Ershov-Lipster 
8.05 40.11 

Masreliez-Martin 
5.67 4.72 4.41 1.12 0.94 0.90 

First-order approximation 
5.69 4.76 4.47 1.12 0.95 0.90 

assumed values of E (i.e., lower truncation levels). 
Table 4 illustrates the respective performances of the four robust recursive 

estimators in the presence of an outlier. For ease of comparison, all MSEs are 
presented as percentages of that of the Kalman filter. Also, for economy of space, 
only the Fn = 0.1, Rout = 9 case is shown. Since the Guttman-Peiia estimator 
models exactly the scale-contaminated (mixture) distribution, its performance 
is particularly good in that case. However, it degrades severely as the outlier 
distribution becomes more heavy-tailed. The performance of the Masreliez- 
Martin and first-order approximation estimators are very similar in most cases, 
and the two diverge most from the others when the outliers obey the "Slash" 
and Cauchy distributions. 

Given its relatively modest loss of efficiency under nominal conditions, and 
its good performance when the observation noise is very heavy-tailed, the first- 
order approximation of the conditional mean estimator derived here compares 
favorably with other robust recursive estimators. However, the choice of esti- 
mator must depend upon the particular problem at hand. 
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8. Conclusion. This paper follows and extends the work of Martin and 
Masreliez in combining the robust location estimation ideas of Huber with the 
stochastic approximation method of Robbins and Monro to develop a robust 
recursive estimator of the state of a linear dynamic system. Both point estima- 
tion and filtering seek to obtain estimates of parameters based on observations 
contaminated by noise, but while the parameters to be estimated are fixed in 
the former case, they vary according to some (possibly stochastic) model in 
the latter. When the "location parameter" varies randomly, that is, when pro- 
cess noise is present, the stochastic approximation technique cannot be used 
to obtain a consistent recursive estimator. Moreover, asymptotic performance 
measures make little sense in ths case, and a conditional mean estimator is 
sought instead. 

Using an asymptotic expansion around a small parameter involving the frac- 
tion of "contamination" e, a first-order approximation is obtained for the con- 
ditional prior distribution of the state (given all past observations) for the case 
where the observation noise belongs to the ?-contaminated Guassian neighbor- 
hood. This approximation makes use of the exponential stability of the Kalman 
filter, which ensures that the effects of past outliers attenuate fast enough. The 
first-order approximation to the conditional prior distribution is then used in 
a theorem that generalizes a result due to Masreliez, to derive a first-order 
approximation to the conditional mean of the state (given all past observations 
and the current one). This non-Gaussian estimator has the form of banks of 
Kalman filters and optimal smoothers weighted by the posterior probabilities 
that each observation was an outlier. It performs well in the presence of heavy- 
tailed observation noise, but whether or not its added complexity (relative to 
the estimator of Masreliez and Martin) is warranted depends on the particular 
application for which it is to be used. 

The principal limitations of the robust recursive estimator derived here are 
the following: 

1. Theorem 5.1 describes an approximate estimator that is not robust when 
two or more outliers occur within less than w time intervals of each other. 
This is a limitation due to the fact that the approximations are of first order. 
Using a second-order approximation would eliminate the nonrobustness of 
the estimator against pairs of outliers, but not against three or more out- 
liers. Higher-order approximations to the conditional prior and conditional 
mean are thus one potential direction for future research. How much they 
would complicate the estimator, and whether or not the result will be of any 
practical value, remains to be seen. 

2. The estimator and approximate estimation error covariance matrix of 
Theorem 5.1 are defined to within Op(w2E2). Such probabilistic bounds are 
not of much practical use in determining the performance of the estimator, 
and better measures of the estimation error constitute an important direc- 
tion for future research. 

3. Because the derivation of a least favorable distribution in this case remains 
an open problem, the estimator derived here is not minimax. Indeed, even if 
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the least favorable distribution could be found, there is no guarantee that it 
and the corresponding estimator would be a saddle-point and thus a solution 
to the minimax problem. 

Other topics for future research include patchy outliers, process noise outliers, 
the continuous-time case, simultaneous estimation of model parameters, failure 
(jump) detection and nonlinear models. 

APPENDIX A 

PROOF OF THEOREM 4.2. This is a much-abridged outline of the proof of 
Theorem 4.2. Details may be found in Schick [(1989), pages 130-144]. For sim- 
plicity, the case where the "contaminating" distribution H admits the Radon- 
Nikodym derivative h, and where Hn = Dn = I for all n, is treated below. The 
extension to the general case is immediate. 

The proof proceeds by induction. Note first that 

P((An1) J Zn)P(Zn I Zn-1) 
(A. 1) = P (On +11 On)P(Zn |O4n)P(69n1|Zn-1) don 

from the definition of the conditional and marginal probabilities, as well as 
the independence of {w.} and {v.}. Moreover, some tedious manipulation, re- 
peated completions of the square and use of the Sherman-Morrison-Woodbury 
theorem yield that 

(A.2) JN(On+ 1; lFnOnX Qn)N(zn - On; 0,R)N(On; onX Mn) dOn 

=N(On + 1; no+ 1 iMno +1) N(-YO; O o) n 

and, similarly, it can be shown that 

(A.3) JN(On + l; FnOn x Qn)h (zn - On) N4(On; #,n M) dOn 

= N(n + 1; 9n + 1, Mnn++ 1) (Vnn+On6+1; n+1,Z+ 

Finally, it is easy to show by integration (including an order change) that 

(A.4) p(zo) = (1 - E)N(-Yo; 0, ro) + ce(r1; 0, W1) 
(A.5) = I;-1 
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For the case n = 0, therefore, combining (A.1) with (A.2) and (A.3) yields 

p(6l I Zo)P(Zo) 

(A.6) = JN(06;FoOojQo) 

x ((1 - E)N(zo - 0o; 0, R) + Eh(zo - 6o)) N(Oo; Oo, Mo) dOo 
= (1 - E)N(01; 0 , MO)N(QO; O, ro) 

(A.7) 
0 0 

+ eN(O1; 01,Ml) (V1@7, Cl,z1), 

which, together with (A.5), establishes (4.16) for the case n = 0. Next, assuming 
by the induction argument that (4.16) holds for some n (with m = n and e = 1, 
i.e., assuming for now that n < w) and once again using (A.1) yields 

P(0n+1 | Zn)P(Zn I Zn-1) 
= fN(On + 1; FnOn i Qn) 

x ((1 - E)N(zn - On; 0,R) + eh(zn - On)) 

(A.8) x t(1 - EYn nKn(n8, 
n 

+ c(j - e)n-, Z LZN + s1 _E)nlKNn K tin(On; #n i Min)- (Vin On; (i i zin) 
i=l 

+ 0, (n2E2)) dOn 

Considerable algebraic manipulation establishes in the same fashion the va- 
lidity of (4.16) (with m = n and e = 1) for all n. 

There remains to show that the error term remains bounded as n -x 00. 
This proof exploits the exponential asymptotic stability of the Kalman filter, 
established by Theorem 4.1. Using Corollary 4.1, it can be shown that 

(A.9) N(6On; ,iiMin) = N(6n; #no Mn) + op(6n - i) 

and that 

(A.1O) - (Vn6n; (,Z-) = -(n; O? Wn) + op(6n i). 

Moreover, it can be shown that 

(A.11) KO = /i N(n;O,Wn + R), 

so that each term in the summation in (A.8) may be rewritten as 

(A.12) =(j )n- Kn1K' N(On; 4nj Min) - (VOnOn; 2 iM Zn) 
(j - _ ?n-1rntoK' niN (On; #n f MnO + Op (6xn- 
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where 

(A.13) -( n/ W 
=n N(ri ,O1Win + R) 

is the likelihood ratio for the dual alternatives of whether or not zi - 1 was an 
outlier. Once again using Corollary 4.1, it can be shown that 

(A.14) E[pn] = l+Op(6n)i+) 

w.p. 1, and the Chernoff bound implies that deviations from the mean vanish 
geometrically in probability. Thus, terms corresponding to past outliers are 
"absorbed" by the "no outlier" term. 

To derive the coefficients and error term, suppose first that a finite number 
k of outliers occurred during the first n time steps. The prior probability of such 
an event is Ek(l k 1 )n - k All the outliers may have occurred during the most 
recent w time steps, resulting in 

(A.15) (k) = k!(w - k)! 

terms in the corresponding sum. Alternatively, k - 1 outliers may have occurred 
during the most recent w time steps, and one during the earlier n - w time steps. 
In this case, the effects of that early outlier will have attenuated to O(E) by (4.14), 
and the corresponding term will therefore be indistinguishable, to O(e2), from 
the case where only k - 1 outliers occurred. Clearly, there are 

(A.16) (n w) - 

such terms. Analogous arguments can be made for k - 2, ... , 0 outliers occurring 
during the last w time steps. Now, if no outliers at all occurred during the most 
recent w steps, then this case is indistinguishable, to 0(e2), from the case where 
no outliers ever occurred. The same would be true if k - 1 outliers occurred, 
neither of which during the most recent w time steps, and so on. In general, 
therefore, the "no outlier" term has the coefficient 

(1 _i,)n +( )n - 1 nw) + E2( _ )n - 2 (n - w) +... 

= (17)w2 

Similarly, the "one outlier" term corresponds to the coefficient 

E(l _)n-1+2(l ) - 2(n-1w) + 3(l _,)n(3 (-w)+ 

= E(1 - w - 1. 

Similar arguments may be made for higher numbers of outliers, and the order 
of each term is 

(A. 19 kl _ {>AS-kw(w-l) (w-k + 1) = (kk)k 
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From (4.15), the most significant term is for the smallest possible k, that is, for 
k = 2, concluding the proof. 0 

APPENDIX B 

PROOF OF THEOREM 5.1. This is a much-abridged outline of the proof of 
Theorem 5.1, which is an extension of a theorem due to Masreliez. Details may 
be found in Schick [(1989), pages 147-157]. For simplicity, the case Hn = Dn = I 
for all n is treated below. The extension to the general case is trivial. 

Note first that 

(B.1) P(On I n) P(Zn I Zn- 1) 

from the definition of the conditional probability and the independence of {vn}. 
Let f denote the Radon-Nikodym derivative of Y (which exists by hypothesis). 
From (5.1) and (4.16) (with m = n and e = 1), it therefore follows that 

1 
= 

P(Zn IZn-1) 

(B.2) xfOnf (Zn -On) ((1EY)n Kn (ON( ; #no Mno) 
n 

n-1 i x 0-4 ~~~O~(262) + E( - e)n 1 n E tn (O1n; lki X Min) 6- (VniOn ; i XZ'n ) + p(nE ) d9n- 
=1 

Consider the first term on the right-hand side of (B.2), that is, the "no outlier 
among the first n observations" term: this is basically the expression considered 
by Masreliez. Rewriting it as 

(1 - EY fneKfzO - 6nN9 ,Mno) d6n 
P(Zn I Zn - 1)) Onf(Zn - On)X(In; n 

(1 -E)n 0 

(B.3) P(Zn I Zn-1) 

(Mno (Mn)-1(60n- o)f(zn-On)N(9n;9 on,Mn) dOn 

+non f(Zn - 0n)N(on; 6 Mno) dOn) 

and noting that 

(B.4) (Mno) ' (On - N(ONn; iin0 = Mno) - V 4(O;no ?Mno) I 
6 = on 
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it can be shown, integrating by parts, that 

J(Mn)-' (On - onn)N(On; #no, Mno) f(zn -n) dOn 

(B.5) J N(n; Mno) Vo f(zn - O) df n 

(B.6) JN(6n;Q?Mn)Vzf(z-On)| dOn z = zn 
(B.7) = -Vzp(z I Zn -1i ;n - 1) Iz=zn 
(B.8) =P(Zn I Zn i Hn 1bo (?n) I 

from (5.3). It follows, after some manipulation, that 

(1 -E Kni f 8f(zn - n)N(&n;6,%?Mn) d8n 

(B.9) P(ZnIZn - 1) 
OnfZ OO(n;noiModn 

= (1-E)n rn + 1rnTn. 

Consider now each term in the summation in (B.2), that is, the "exactly one 
outlier among the first n observations, at time i - 1" terms. Since these are 0(E), 
the following approximation is used in the sequel: 

(B.10) f(zn - On) = (1 - E)N(Zn; On,R) + 0(E), 

This permits manipulations similar to those used for the "no outlier" term. Note 
next that, by (4.9), 

(B.11) (VnOn; Ci i Zn)= - (i Vin 
n; O zi) 

Then, 

E(1 -e)n'K-KX Jn r j(,' 
p (z I Z ) n o Snf(zn - 19n )N(l9n; On o Mn ) - (Vn On; Ci 1 zn) dOn 

(B. 12) E(1 - ) Kn [nON(Zn; n, R)N(On; ni, Mn ) -P(Zn IZn-1)1 

X -Vn VOn; 0 Zn) dOn + 0(e2) 

and noting that 

(B. 13) N(zn; On, R)N(On; f9ni Min) = N(Yi; 0 rn) N((On; Oi Pn) 

and 

(B. 14) V6 (0 -Vn6;O,Zn) |e=e= V, Vz (z-V=n;O,Z|zz 
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[recall from (4.28) and (4.29) that C' is linear in zi - 1], it can be shown in the 
same manner as before that 

e(1- 6)f J n (OnfZ - On)N (On; Oni Mni) _ (Vni On; Ci I Zn) dOn 
P (ZnZn-1n 

(B. 15) 
= 6(1 _ e)n1 Kni + nTX + O(E2). 

This proves the assertion for m = n and e = 1. Equation (5.6) is obtained as in 
the proof of Theorem 4.2. 

The covariance in (5.13) is obtained in much the same manner, starting with 
(5.2), rewriting the quadratic product as 

to = ? (? - 6n to 
_n - So _ T nT (B.16) ( T- n)(On-)=( n-Tn+ n n (n )( no + n JT 

and expanding. E 

Acknowledgments. The authors are grateful to Dr. Ofer Zeitouni and 
Professor Peter J. Huber for their helpful comments, and to an Associate Editor 
and the referees for suggestions that have considerably improved the legibility 
of this paper. 

REFERENCES 
AGEE, W. S. and DUNN, B. A. (1980). Robust filtering and smoothing via Gaussian mixtures. 

Technical Report 73, Data Sciences Div., U.S. Army White Sands Missile Range, NM. 
AGEE, W. S. and TURNER, R. H. (1979). Application of robust regression to trajectory data re- 

duction. In Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds.) 107-126. 
Academic, New York. 

AGEE, W. S., TURNER, R. H. and GOMEZ, J. E. (1979). Application of robust filtering and smooth- 
ing to tracking data. Technical Report 71, Data Sciences Div., U.S. Army White Sands 
Missile Range, NM. 

ALSPACH, D. L. (1974). The use of Gaussian sum approximations in nonlinear filtering. In Proc. 
of the Eighth Annual Princeton Conf. on Information Sciences and Systems (M. E. van 
Valkenburg, ed.) 479-483. Dept. Electrical Engineering, Princeton Univ. 

ANDERSON, B. D. 0. (1982). Internal and external stability of linear time-varying systems. SIAM 
J Control Optim. 20 408-413. 

ANDERSON, B. D. 0. and MOORE J. B. (1979). Optimal Filtering. Prentice-Hall, Englewood Cliffs, 
NJ. 

ANDERSON, B. D. 0. and MOORE, J. B. (1981). Detectability and stabilizability of time-varying 
discrete-time linear systems. SIAM J Control Optim. 19 20-32. 

ANDREWS, D. F., BICKEL, P. J., HAMPEL, F. R., HUBER, P. J., ROGERS, W. H. and TUKEY, J. W. 
(1972). Robust Estimates of Location-Survey and Advances. Princeton Univ. Press. 

ATHANS, M., WHITING, R. H. and GRUBER, M. (1977). A suboptimal estimation algorithm with 
probabilistic editing for false measurements with applications to target tracking with 
wake phenomena. IEEE Trans. Automat. Control AC-22 372-384. 

BERGER, J. 0. and BERLINER, L. M. (1983). Robust Bayes and empirical Bayes, analysis with 
e-contaminated priors. Technical Report 83-35, Dept. Statistics, Purdue Univ. 

BERGER, J. 0. and BERLINER, L. M. (1986). Robust Bayes and empirical Bayes analysis with 
e-contaminated priors. Ann. Statist. 14 461-486. 

BICKEL, P. J. (1981). Minimax estimation ofthe mean of a normal distribution when the parameter 
space is restricted. Ann. Statist. 9 1301-1309. 



ROBUST RECURSIVE ESTIMATION 1077 

BICKEL, P. J. (1983). Minimax estimation of the mean of a normal distribution subject to doing 
well at a point. In Recent Advances in Statistics: Papers in Honor of Herman Chernoff 
on his Sixtieth Birthday (M. H. Rizvi, J. S. Rustagi and D. Siegmund, eds.) 511-528. 
Academic, New York. 

BICKEL, P. J. and COLLINS, J. R. (1983). Minimizing Fisher information over mixtures of distri- 
butions. Sankhya Ser. A 45 1-19. 

BONCELET, C. G., JR. and DICKINSON, B. W. (1983). An approach to robust Kalman filtering. In 
Procof the 22nd IEEE Conf on Decision and Control 1 304-305. IEEE, New York. 

BROWN L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary value 
problems. Ann. Math. Statist. 42 855-903. 

BRYSON, A. E., JR. and Ho, Y.-C. (1975). Applied Optimal Control: Optimization, Estimation, 
and Control. Wiley, New York. 

CAINES, P. E. and MAYNE, D. Q. (1970). On the discrete time matrix Riccati equation of optimal 
control. Internat. J Control. 12 785-794. 

CASELLA, G. and STRAWDERMAN, W. (1981). Estimating a bounded normal mean. Ann. Statist. 9 
868-876. 

?ETIN, A. E. and TEKALP, A. M. (1990). Robust reduced update Kalman filtering. IEEE Trans. 
Circuits and Systems 37 155-156. 

CIPRA, T. and ROMERA, R. (1991). Robust Kalman filter and its application in time series analysis. 
Kybernetika 27 481-494. 

DEYST, J. J. and PRICE, C. F. (1968). Conditions for asymptotic stability of the discrete minimum- 
variance linear estimator. IEEE Trans. Automat. Control AC-13 702-705. 

DI MASI, G. B., RUNGGALDIER, W. J. and BARAZZI, B. (1983). Generalized finite-dimensional 
filters in discrete time. In Nonlinear Stochastic Problems. Proc. of the NATO Advanced 
Study Inst. on Nonlinear Stochastic Problems, Armagao de Pera, Portugal (R. S. Bucy 
and J. M. F. Moura, eds.) 267-277. Reidel, Dordrecht. 

DONOHO, D. L. (1978). The asymptotic variance formula and large-sample criteria for the design 
of robust estimators. Unpublished senior thesis, Dept. Statistics, Princeton Univ. 

DORAISWAMI, R. (1976). A decision theoretic approach to parameter estimation. IEEE Trans. Au- 
tomat. Control AC-21 860-866. 

DUNCAN, D. B. and HORN, S. D. (1972). Linear dynamic recursive estimation from the viewpoint 
of regression analysis. J Amer. Statist. Assoc. 67 815-821. 

ERSHOV, A. A. (1978a). Robust filtering algorithms. Automat. Remote Control 39 992-996. 
ERSHOV, A. A. (1978b). Stable methods of estimating parameters. Automat. Remote Control 39 

1152-1181. 
ERSHOV, A. A. and LIPSTER, R. SH. (1978). Robust Kalman filter in discrete time. Automat. 

Remote Control 39 359-367. 
EVANS, J., KERSTEN, P. and KURZ, L. (1976). Robustized recursive estimation with applications. 

Inform. Sci. 11 69-92. 
GEBSKI, V. and McNEIL, D. (1984). A refined method of robust smoothing. J Amer. Statist. Assoc. 

79 616-623. 
GOEL, P. K. and DEGROOT, M. H. (1980). Only normal distributions have linear posterior expec- 

tations in linear regression. J. Amer. Statist. Assoc. 75 895-900. 
GUILBO, E. P. (1979). Robust adaptive stochastic approximation-type algorithms. In A Link Be- 

tween Science and Applications ofAutomatic Control. Proc. of the Seventh Triennal World 
Cong. of the Internat. Federation Automatic Control (A. Niemi, ed.) 3 2153-2157. Perg- 
amon Press, Oxford. 

GUTTMAN, I. and PEfNA, D. (1984). Robust Kalman filtering and its applications. Technical Report 
2766, Mathematics Research Center, Univ. Wisconsin-Madison. 

GUTTMAN, I. and PEINA, D. (1985). Comment on "Dynamic generalized linear models and Bayesian 
forecasting" by M. West, P. J. Harrison and H. S. Migon. J Amer. Statist. Assoc. 80 91-92. 

HAGER, W. W. and HoROWITZ, L. L. (1976). Convergence and stability properties of the discrete 
Riccati operator equation and the associated optimal control and filtering problems. 
SIAM J Control Optim. 14 295-312. 

HARRISON, P. J. and STEVENS, C. F. (1971). A Bayesian approach to short-term forecasting. Op- 



1078 I. C. SCHICK AND S. K MITTER 

erations Research Quarterly 22 341-362. 
HARRISON, P. J. and STEVENS, C. F. (1976). Bayesian forecasting. J Roy. Statist. Soc Ser. B 38 

205-228. 
HEWER, G. A., MARTIN, R. D. and ZEH, J. (1987). Robust preprocessing for Kalman filtering of 

glint noise. IEEE Trans. Aerospace Electron. Systems AES-23 120-128. 
HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101. 
HUBER, P. J. (1969). Theorie de l'inference statistique robuste. Presses de lUniversite de Montreal. 
HUBER, P. J. (1972). Robust statistics: a review. Ann. Math. Statist. 43 1041-1067. 
HUBER, P. J. (1977). Robust Statistical Procedures. SIAM, Philadelphia. 
HUBER, P. J. (1981). Robust Statistics. Wiley, New York. 
JAZWINSKI, A. H. (1970). Stochastic Processes and Filtering Theory. Academic, New York. 
KALMAN, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of 

Basic Engineering-Transactions of the ASME 82 35-45. 
KALMAN, R. E. and BucY, R. S. (1961). New results in filtering and prediction theory. Journal of 

Basic Engineering-Transactions of the ASME 83 95-108. 
KASSAM, S. A. and POOR, H. V. (1985). Robust techniques for signal processing: a survey. Proc. 

of the IEEE 73 433-481. 
KIRLIN, R. L. and MOGHADDAMJOO, A. (1986). Robust adaptive Kalman filtering for systems 

with unknown step inputs and non-Gaussian measurement errors. IEEE Trans. Acoust. 
Speech Signal Process. ASSP-34 252-263. 

KITAGAWA, G. (1987). Non-Gaussian state-space modeling of nonstationary time series. J Amer. 
Statist. Assoc. 82 1032-1050. 

KLIOKIS, E. A. (1987). Optimal filtering in discrete-time random structure systems. Automat. 
Remote Control 48 1460-1467. 

KOVACEVIC, B. D. and STANKOVIC, S. S. (1986). Robust real-time identification for a class of linear 
time-varying discrete systems. Internat. J. Systems Sci. 17 1409-1419. 

KOVACEVIC, B. D. and STANKOVIC, S. S. (1988). Robust real-time algorithms for identification of 
linear multivariable time-varying systems. Internat. J. Control 47 349-362. 

KiNSCH, H. R. (1986). Discussion of 'Influence functionals for time series" by R. D. Martin and V. 
J. Yohai. Ann. Statist. 14 824-826. 

LEVIN, I. K. (1980). Accuracy analysis of a robust filter of a certain type by the method of convex 
hulls. Automat. Remote Control. 5 660-669. 

LEVIT, B. YA. (1979). On the theory of the asymptotic minimax property of second order. Theory 
Probab. Appl. 24 435-437. 

LEVIT, B. YA. (1980). On asymptotic minimax estimates of the second order. Theory Probab. Appl. 
25 552-568. 

MALLOWS, C. L. (1978). Problem 78-4: minimizing an integral. SIAM Rev. 10 183. 
MALLOWS, C. L. (1980). Some theory of nonlinear smoothers. Ann. Statist. 8 695-715. 
MARAZZI, A. (1980). Robust Bayesian estimation for the linear model. Research Report 27, Fach- 

gruppe fur Statistik, ETH Zurich. 
MARAZZI, A (1985). On constrained minimization of the Bayes risk for the linear model. Statist. 

Decisions 3 277-296. 
MARAZZI, A. (1990). Restricted minimax credibility: two special cases. Mitteilungen der Schweiz. 

Vereinigung der Versicherungsmathematiker 1 101-114. 
MARTIN, R. D. (1972). Robust estimation of signal amplitude. IEEE 7rans. Inform. Theory IT-18 

596-606. 
MARTIN, R. D. (1979). Approximate conditional-mean type smoothers and interpolators. Smooth- 

ing Techniques for Curve Estimation. Lecture Notes in Math. 757 117-143. Springer, 
Berlin. 

MARTIN, R. D. and DEBow, G. (1976). Robust filtering with data-dependent covariance. In Proc. 
1976 Information Sciences and Systems (G. L. Meyer and W. J. Rugh, eds.). Dept. Elec- 
trical Engineering, Johns Hopkins Univ. 

MARTIN, R. D. and MASRELIEZ, C. J. (1975). Robust estimation via stochastic approximation. 
IEEE Trans. Inform. Theory IT-21 263-271. 

MARTIN, R. D. and RAFTERY, . A. E. (1987). Comment: robustness, computation, and non- 



ROBUST RECURSIVE ESTIMATION 1079 

Euclidean models. J Amer. Statist. Assoc. 82 1044-1050. 
MARTIN, R. D. and YOHAI, V. J. (1986). Influence functionals for time series (with discussion). 

Ann. Statist. 14 781-855. 
MASRELIEZ, C. J. (1974). Approximate non-Gaussian filtering with linear state and observation 

relations (abstract). In Proc. Eighth Annual Princeton Conf. Information Sciences and 
Systems (M. E. van Valkenburg, ed.) 398. Dept. Electrical Engineering, Princeton Univ. 

MASRELIEZ, C. J. (1975). Approximate non-Gaussian filtering with linear state and observation 
relations. IEEE 7rans. Automat. Control AC-20 107-110. 

MASRELIEZ; C. J. and MARTIN, R. D. (1974). Robust Bayesian estimation for the linear model and 
robustizing the Kalman filter. In Proc. Eighth Annual Princeton Conf: on Information 
Sciences and Systems (M. E. van Valkenburg, ed.) 488-492. Dept. Electrical Engineering, 
Princeton Univ. 

MASRELIEZ, C. J. and MARTIN, R. D. (1977). Robust Bayesian estimation for the linear model and 
robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 361-371. 

MATAUSEK, M. R. and STANKOVIC, S. S. (1980). Robust real-time algorithm for identification of 
non-linear time-varying systems. Internat. J Control. 31 79-94. 

McGARTY, T. P. (1975). Bayesian outlier rejection and state estimation. IEEE Trans. Automat. 
Control. AC-20 682-687. 

MEINHOLD, R. J. and SINGPURWALLA, N. D. (1983). Understanding the Kalman filter. Amer. 
Statist. 37 123-127. 

MEINHOLD, R. J. and SINGPURWALLA, N. D. (1989). Robustification of Kalman filter models. 
J Amer. Statist. Assoc. 84 479-486. 

MEYR, H. and SPIES, G. (1984). The structure and performance of estimators for real-time es- 
timation of randomly varying time delay. IEEE Trans. Acoust. Speech Signal Process. 
ASSP-32 81-94. 

MITTER, S. K. and SCHICK, I. C. (1992). Point estimation, stochastic approximation, and robust 
Kalman filtering. In Systems, Models and Feedback: Theory and Applications. Proc. US.- 
Italy Workshop in Honor of Professor Antonio Ruberti (A. Isidori and T. J. Tarn, eds.) 
127-151. Birkhauser, Boston. 

MOORE, J. B. and ANDERSON, B. D. 0. (1980). Coping with singular transition matrices in esti- 
mation and control stability theory. Internat. J Control. 31 571-586. 

MORRIS, J. M. (1976). The Kalman filter: a robust estimator for some classes of linear quadratic 
problems. IEEE Thans. Inform. Theory IT-22 526-534. 

NEVEL'SON, M. B. (1975). On the properties of the recursive estimates for a functional of an 
unknown distribution function. In Limit Theorems of Probability Theory. (P. Revesz, ed.) 
227-251. North-Holland, Amsterdam. 

PENA, D. and GUTTMAN, I. (1988). Bayesian approach to robustifying the Kalman filter. In 
Bayesian Analysis of 7ime Series and Dyanamic Models (J. C. Spall, ed.) 227-258. 
Dekker, New York. 

PENA, D. and GUTTMAN, I. (1989). Optimal collapsing of mixture distributions in robust recursive 
estimation. Comm. Statist. Theory Methods 18 817-833. 

PRICE, E. L. and VANDELINDE V. D. (1979). Robust estimation using the Robbins-Monro stochas- 
tic approximation algorithm. IEEE Trans. Inform. Theory IT-25 698-704. 

SCHICK, I. C. (1989). Robust recursive estimation of the state of a discrete-time stochastic linear 
dynamic system in the presence of heavy-tailed observation noise. Ph.D. dissertation, 
Dept. Mathematics, MIT. [Reprinted as Report LIDS-TH-1975, Laboratory for Informa- 
tion and Decision Systems, MIT (1990).] 

SHIRAZI, M. N., SANNOMIYA, N. and NISHIKAWA, Y. (1988). Robust e-contaminated Gaussian fil- 
tering of discrete-time linear systems. Internat. J. Control. 48 1967-1977. 

SORENSON, H. W. and ALSPACH, D. L. (1971). Recursive Bayesian estimation using Gaussian 
sums. Automatica 7 465-479. 

SPALL, J. C. and WALL, K. D. (1984). Asymptotic distribution theory for the Kalman filter state 
estimator. Comm. Statist. Theory Methods 13 1981-2003. 

STANKOVIC, S. S. and KOVACEVI6, B. (1979). Comparative analysis of a class of robust real-time 
identification methods. In Identification and System Parameter Estimation. Proc. Fifth 



1080 I. C. SCHICK AND S. K. MITTER 

IFAC Symp. (R. Isermann, ed.) 1 763-770. Pergamon, Oxford. 
STANKOVIC, S. S. and KOVACEVIC, B. D. (1986). Analysis of robust stochastic approximation al- 

gorithms for process identification. Automatica 22 483-488. 
STEPINISKI, T. (1982). Comparative study of robust methods of vehicle state estimation. In Identi- 

fication and System Parameter Estimation. Proc. Sixth IFAC Symp. (G. A. Bekey and G. 
N. Saridis, eds.) 1 829-834. Pergamon, Oxford. 

STOCKINGER, N. and DUTTER, R. (1983). Robust time series analysis: an overview. Research Report 
9, Institut fur Statistik, Technische Universitat Graz. 

STOCKINGER, N. and DUTTER, R. (1987). Robust time series analysis: a survey. Kybernetika 23 
1-5 (Supplements) 1-92. 

TANAKA, M. and KATAYAMA, T. (1987). Robust Kalman filter for linear discrete-time system with 
Gaussian sum noises. Internat. J Systems Sci. 18 1721-1731. 

TOLLET, I. H. (1976). Robust forecasting for the linear model with emphasis on robustness toward 
occasional outliers. In Proc. IEEE Internat. Conf Cybernetics and Society 600-605. IEEE, 
New York. 

TSAI, C. and KURZ, L. (1982). A robustized maximum entropy approach to system identification. 
In System Modeling and Optimization. Lecture Notes in Control and Inform. Sci. 38 
276-284. Springer, Berlin. 

TSAI, C. and KURZ, L. (1983). An adaptive robustizing approach to Kalman filtering. Automatica 
19 279-288. 

TSAKNAKIS, H. and PAPANTONI-KAZAKOS, P. (1988). Outlier resistant filtering and smoothing. 
Inform. and Comput. 79 163-192. 

TUKEY, J. W. (1960). A survey of sampling from contaminated distributions. In Contributions 
to Probability and Statistics: Essays in Honor of Harold Hotelling (I. Olkin et al., eds.) 
Stanford Univ. Press. 

VANDELINDE, V. D., DORAISWAMI, R. and YURTSEVEN, H. 0. (1972). Robust filtering for linear 
systems. In Proc. IEEE Conf on Decision and Control 652-656. IEEE, New York. 

WEST, M. (1981). Robust sequential approximate Bayesian estimation. J Roy. Statist. Soc. Ser. B 
43 157-166. 

WEST, M., HARRISON, P. J. and MIGON, H. S. (1985). Dynamic generalized linear models and 
Bayesian forecasting. J Amer Statist. Assoc. 80 73-83. 

YURTSEVEN, H. 0. (1979). Multistage robust filtering for linear systems. In Proc. 18th Conf: Deci- 
sion and Control 500-501. IEEE, New York. 

YURTSEVEN, H. 0. and SINHA, A. S. C. (1978). Two-stage exact robust filtering for a single-input 
single-output system. In Proc. Joint Automatic Control Conf: 4 165-173. Instrument 
Society of America, Pittsburgh, PA. 

LABORATORY FOR INFORMATION 
AND DECISION SYSTEMS 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
CAMBRIDGE, MASSACHUSETTS 02139 


	Article Contents
	p. 1045
	p. 1046
	p. 1047
	p. 1048
	p. 1049
	p. 1050
	p. 1051
	p. 1052
	p. 1053
	p. 1054
	p. 1055
	p. 1056
	p. 1057
	p. 1058
	p. 1059
	p. 1060
	p. 1061
	p. 1062
	p. 1063
	p. 1064
	p. 1065
	p. 1066
	p. 1067
	p. 1068
	p. 1069
	p. 1070
	p. 1071
	p. 1072
	p. 1073
	p. 1074
	p. 1075
	p. 1076
	p. 1077
	p. 1078
	p. 1079
	p. 1080

	Issue Table of Contents
	The Annals of Statistics, Vol. 22, No. 2 (Jun., 1994), pp. 565-1114
	Front Matter [pp. ]
	Asymptotic Theory
	Approximation of the Basic Martingale [pp. 565-579]
	Convergence Rate of Sieve Estimates [pp. 580-615]

	Bayesian Design and Inference
	Recursive Testing of Multiple Hypotheses: Consistency and Efficiency of the Bayes Rule [pp. 616-633]
	Asymptotic Bayes Criteria for Nonparametric Response Surface Design [pp. 634-651]
	Bayesian Robustness with Mixture Classes of Priors [pp. 652-667]
	Some Diagnostics of Maximum Likelihood and Posterior Nonnormality [pp. 668-695]
	Bayesian Variable Sampling Plans for the Exponential Distribution with Type I Censoring [pp. 696-711]

	Censored Data
	Consistency in a Proportional Hazards Model Incorporating a Random Effect [pp. 712-731]
	Monotone Estimating Equations for Censored Data [pp. 732-746]
	On Using Stratification in the Analysis of Linear Regression Models with Right Censoring [pp. 747-762]

	Change Point Problems
	An Efficient Sequential Nonparametric Scheme for Detecting a Change of Distribution [pp. 763-804]
	Dynamic Sampling Plan in Shiryayev-Roberts Procedure for Detecting a Change in the Drift of Brownian Motion [pp. 805-823]
	Linear Estimators in Change Point Problems [pp. 824-834]

	Curve Estimation
	Ordered Linear Smoothers [pp. 835-866]
	On Curve Estimation by Minimizing Mean Absolute Deviation and Its Implications [pp. 867-885]
	On Good Deterministic Smoothing Sequences for Kernel Density Estimates [pp. 886-889]

	Design of Experiments
	Discrimination Designs for Polynomial Regression on Compact Intervals [pp. 890-903]
	On the Construction of Trend Resistant Mixed Level Factorial Run Orders [pp. 904-916]
	E-Optimal Designs in Weighted Polynomial Regression [pp. 917-929]
	Lattice Sampling Revisited: Monte Carlo Variance of Means Over Randomized Orthogonal Arrays [pp. 930-945]

	L Statistics
	L-Statistics in Complex Survey Problems [pp. 946-967]
	On the Berry-Esseen Bound for L-Statistics in the Non-I.D. Case with Applications to the Estimation of Location Parameters [pp. 968-979]

	Resampling
	Validity of Blockwise Bootstrap for Empirical Processes with Stationary Observations [pp. 980-994]
	Blockwise Bootstrapped Empirical Process for Stationary Sequences [pp. 995-1012]
	Invalidity of Bootstrap for Critical Branching Processes with Immigration [pp. 1013-1023]

	Robust Estimation
	Finite Sample Breakdown Points of Projection Based Multivariate Location and Scatter Statistics [pp. 1024-1044]
	Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise [pp. 1045-1080]
	Efficiency Versus Robustness: The Case for Minimum Hellinger Distance and Related Methods [pp. 1081-1114]

	Back Matter [pp. ]



