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Abstract-In this paper, we introduce an extension of the 
standard probably approximately correct (PAC) learning model, 
which allows the use of generaliized samples. We view a gen- 
eralized sample as a pair consisting of a tunctional on the 
concept class together with the value obtained by the hctional 
operating on the unknown concept. It appears that this model 
can be applied to a number of problems in signal processing 
and geometric reconstruction to provide sample size bounds 
under a PAC criterion. We consider a specific application of 
the generalized model to a problem of curve reconstruction and 
discuss some connections with a result from stochastic geometry. 

Index Terms- Curves, generalized samples, learning, PAC 
model, stochastic geometry. 

I. INTRODUCTION 
HE PROBABLY approximately correct (PAC) learning T model is a precise framework attempting to formalize 

the notion of learning from examples. The earliest work 
on PAC-like models was done by Vapnik [23], and many 
fundamental results relevant to the PAC model have been 
obtained in the probability and statistics literature [21], [22], 
[6], [13]. Valiant [20] independently proposed a similar model 
that has resulted in a great deal of work on the PAC model 
in the machine learning community. More recently, Haussler 
[7] has formulated a very general framework refining and 
consolidating much of the previous work on the PAC model. 

In the usual PAC model, the information received by the 
learner consists of random samples of some unknown function. 
Here, we introduce an extension in which the learner may 
receive information from much more general types of samples, 
which we refer to as generalized samples. A generalized 
sample is essentially a functional assigning a real number to 
each concept, where the number assigned may not necessarily 
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be the value of the unknown concept at a point but could 
be some other attribute of the unknown concept (e.g., the 
integral over a region or the derivative at a given point, 
etc.). The model is defined for the general case in which the 
concepts are real valued functions and is applicable to both 
distribution-free and fixed-distribution learnability. The idea 
is simply to transform learning with generalized samples to a 
problem of learning with standard samples over a new instance 
space and concept class. The PAC learning criteria over 
the original space is induced by the corresponding standard 
PAC criteria over the transformed space. Thus, the criteria 
for learnability and sample size bounds are the usual ones 
involving metric entropy and a generalization of VC dimension 
for functions (in the fixed distribution and distribution-free 
cases, respectively). 

We consider a particular example of learning from general- 
ized samples that is related to a classical result from stochastic 
geometry, namely, we take X to be the unit square in the 
plane and consider concept classes that are collections of 
curves contained in X. For example, one simple concept class 
of interest is the set of straight-line segments contained in 
X. A much more general concept class we consider is the 
set of curves in X with bounded length and bounded turn 
(total absolute curvature). The samples observed by the learner 
consist of randomly drawn straight lines labeled as to the 
number of intersections the random line makes with the target 
concept (i.e., the unknown curve). We consider leamability 
with respect to a fixed distribution, where the distribution is 
the uniform distribution on the set of lines intersecting X. 
A learnability result is obtained by providing metric entropy 
bounds for the class of curves under consideration. 

The example of learning a curve is closely related to a 
result from stochastic geometry that states that the expected 
number of intersections a random line makes with an arbitrary 
rectifiable curve is proportional to the length of the curve. This 
result suggests that the length of a curve can be estimated (or 
“learned”) from a set of generalized samples. In fact, this idea 
has been studied, although primarily from the point of view of 
deterministic sampling [ 191, [12]. The learnability result makes 
the much stronger statement that for certain classes of curves, 
from just knowing the number of intersections with a set of 
random lines, the curve itself can be learned (from which the 
length can then be estimated). In addition, for these classes of 
curves, the leaming result guarantees uniform convergence of 
empirical estimates of length to true length, which does not 
follow directly from the stochastic geometry result. 
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Finally, we discuss a number of open problems and di- 
rections for further work. We believe that the framework 
presented here can be applied to a number of problems in 
signavimage processing, geometric reconstruction, and stere- 
ology to provide sample size bounds under a PAC criterion. 
Some specific problems that may be approachable with these 
ideas include tomographic reconstruction using random ray 
or projection sampling and convex set reconstruction from 
support line or other types of measurements. For such prob- 
lems, we are interested in estimating some unknown function 
from data that are not traditional samples of the function. 
However, questions concerning the amount of data required for 
a reconstruction of a given quality are still of great interest. The 
framework presented may provide one approach to addressing 
such questions. 

11. PAC LEARNING WITH GENERALIZED SAMPLES 

In the original PAC learning model [20], a concept is a 
subset of some instance space X, and a concept class C is a 
collection of concepts. The learner knows C and tries to learn 
a target concept c belonging to C. The information received 
by the learner consists of points of X (drawn randomly) and 
labeled as to whether or not they belong to the target concept. 
The goal of the learner is to produce with high probability 
(greater than 1 - 6) a hypothesis that is close (within E) 

to the target concept (hence, the name PAC for “probably 
approximately correct’ ’). It is assumed that the distribution is 
unknown to the learner, and the number of samples needed 
to learn for fixed E and 6 is independent of the unknown 
concept as well as the unknown distribution (hence, the term 
“distribution free”). For precise definitions, see e.g., [20] and 

Some variations/extensions of the original model that have 
been studied and are relevant to the present work include 
learning with respect to a fixed distribution [4], [7] and 
learning functions as opposed to sets (i.e., binary valued 
functions) [7]. As the name suggests, learning with respect to 
a fixed distribution refers to the case in which the distribution 
with which the samples are being drawn is fixed and known 
to the learner. A very general framework was formulated by 
Haussler [7] building on some fundamental work by Vapnik 
and Chervonenkis [21]-[23], Dudley [6], and Pollard [13]. 
In this framework, the concept class (hypotheses), which is 
denoted by F, is a collection of functions from a domain X to 
a range Y. The samples are drawn according to a distribution 
on X x Y from some class of distributions. A loss function is 
defined on Y x Y, and the goal of the learner is to produce a 
hypothesis from F that is close to the optimal one in the sense 
of minimizing the expected loss between the hypothesis and 
the random samples. The work of Wahba [24] is also related 
to the model discussed below. In [24], observations of the 
form yi = Li f + ei are considered where the Li are bounded 
linear functionals and ei is noise. Hence, these observations 
consist of a particular form of generalized samples in which 
the functionals are chosen to be linear and bounded. 

Learning from generalized samples can be formulated as an 
extension of the framework in [7], as is briefly described at the 

PI. 

end of this section. However, for simplicity of the presentation, 
we consider a restricted formulation that is sufficiently general 
to treat the example of learning a curve discussed in this paper. 
We now define more carefully what we mean by learning from 
generalized samples. Let X be the original instance space as 
before, and let the concept class F be a collection of real 
valued functions on X. In the usual model, the information one 
gets are samples (z, f(z)), where z E X and where f E F is 
the target concept. We can view this as obtaining a functional 
6, and applying this functional to the target concept f to 
obtain the sample ( S z , S Z ( f ) )  = (6,,f(z)). The functional 
in this case simply evaluates f at the point 2 and is chosen 
randomly from the class of all such “impulse” functionals. 
Instead, we now assume that we get generalized samples in 
the sense that we obtain a more general functional 8, which is 
some mapping from F to R. The observed labeled sample is 
then (8, 8(f)), consisting of the functional and the real number 
obtained by applying this functional to the target concept f .  
We assume the functional 3 is cho_sen randomly from some 
collection of functionals X. Thus, X is the instance space for 
the generalized samples, and the distribution P is a probability 
measure on X .  Let SF denote-the set of labeled m samples 
for each m 2 1 for each 3 E X and each f E F, i.e. 

Given P, we can define an error criterion (i.e., notion of 
distance between concepts) with respect to P as 

d P ( f l , f 2 )  = W(f1) - 3(fi>l. 
This is simply the average absolute difference of real numbers 
produced by generalized samples on the two concepts. Note 
that we could define the framework with more general loss 
criteria as in [7], but for the example considered in this paper, 
we use the criterion above. 

Definition 1: Learning from Generalized Samples: Let P 
be a fixed and known collection of probability measures. Let 
F be a collection of functions from the instance space X into 
R, and let X be the instance space of generalized samples 
for F. F is said to be learnable with respect to P from the 
generalized samples X if there is a mapping A : SF + F for 
producing a hypothesis h from a set of labeled samples such 
that for every E, 6 > 0, there is a 0 < m = m(E, 6) < 00 such 
that for every probability measure P E P and every f E F, if 
h is the hypothesis produced from a labeled m sample drawn 
according to P”, then the probability that d p ( f , h )  < E is 
greater than 1 - 6. 

If P is the set of all distributions over some o algebra of X, 
then this corresponds to distribution-free learning from gener- 
alized samples. If P consists of a single distribution P, then 
this corresponds to fixed distribution learning from generalized 
samples. This is a direct extension of the usual definition of 
PAC learnability (see, for example, [5]) to learning functions 
from generalized samples over a class of distributions. In the 
definition, we have assumed that there is an underlying target 
concept f .  As with the restrictions mentioned earlier, this 
could be removed following the framework of [7]. 

Learning with generalized samples can be easily trans- 
formed into an equivalent problem of PAC learning from 
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standard samples. The conce-pt class F on X corresponds 
naturally to a concept class F on X as follows. For a fixed 
f E F ,  each functional 3 E X produces a real number when 
applied to f .  Therefore, f induces a real valued function on 
X in a natural way. The rea1 valued function on X induced 
by f will be denoted by f and is defined by 

J(5) = qf). 
The concept class F is the collection of all functions on X 
obtained in this way as f ranges through F. 

We a_re now in the standard PAC framework with instance 
space X, concept class F ,  and distribution P on X. Hence, 
as usual, P induces a learning critefion or metric (actually 
only a pseudo-metric in general) 0-n F ,  and as a result of the 
correspondence between F and F ,  this metric is equivalent 
to the (pseudo-)metric dp induced by P on F defined above. 
This metric will be denoted by dp over both F and F and 
is given by 

dP(J1, J 2 )  = Elf1 - f21 = ElWl) - W 2 ) l  = dp(f1, f 2 ) .  

Distribution-free and fix_ed distribution learnability are de- 
fined in the usual way for X and F. Thus, a generalized notion 
of VC dimension for functions (called pseudo dimension in 
[?I) and metric entropy of F characterize the learnability of 
F in the distribution-free and fixed-distribution cases, respec- 
tively. These same quantities for F then also characterize the 
leamability of F with respect to dp. 

Definition 2: Metric Entropy: Let (Y, p )  be a metric space. 
A set Y(') is said to be an E cover (or E approximation) for Y if 
for every y E Y there exists y' E Y(') such that p(y, y') 5 E. 

Define N ( E )  N ( e , Y , p )  to be the smallest integer n such 
that there exists an E cover for Y with n elements. If no such n 
exists, then N ( E ,  Y, p)  = 00. The metric entropy of Y (which 
is often called the €entropy) is defined to be log, N ( E ) .  

N ( E )  represents the smallest number of balls of radius E that 
are required to cover Y. For convenience, if P is a distribution, 
we will use the notation N ( E ,  C, P) (instead of N ( E ,  C,  dp)), 
and we will speak of the metric entropy of C with respect to P, 
with the understanding that the metric being used is dp(., a) .  

Using results from [7] (based on results from [13]), we have 
the following result for learning from generalized samples with 
respect to a fixed distribution. 

Theorem 1: F is learnable from generalized samples (or 
equivalently, F is learnable) with respect to _a distribFtion P 
if for each E > 0, there is a finite E cover F(') for F (with 
respect to dp) such that 0 5 fi 5 M ( E )  for each fi E F('). 
Furthermore, a sample size 

is sufficient for ( E ,  6) learnability. 
Proof: Let F('12) be an 5 cover with 0 5 fi 5 M ( E / ~ )  

for each fi E F('12). Let F('12) be obtained from F ( E / 2 )  
using the correspondence between F and F. After seeing 
m ( ~ ,  d )  samples, let the learning algorithm output a hypothesis 
h E F('12) that is most consistent with the data, i.e., that 

minimizes 

where (&, yi) are the observed generalized samples. Then, 
using Theorem 1 of [7], it follows that with probability greater 

0 
Note that in the theorem above, the fi in the E cover need to 

be bounded, but this bound is allowed to depend on E. Hence, 
M ( E )  can be unbounded as a function of E. Abe and Warmuth 
[l] have also considered this approach of using a bound that 
depends on E. Note also that as in [7], we have taken the range 
of the functions to be nonnegative. All the results go through 
in the more general case, where the range of the functions is 

Although we will not use distribution-free learning in the 
example of learning a curve, for completeness, we give a result 
for this case. 

Definition 3: Pseudo Dimension: Let F be a collection of 
functions from a set Y to R. For any set of points jj = 

4, is a set of points in Rd. If there is some translation of 
qv that intersects all of the 2d orthants of Rd, then jj is 
said to be shattered by F. Following terminology from [7], 
the pseudo dimension of F ,  which we denote dim(F), is the 
largest integer d such that there exists a set of d points in Y 
that is shattered by F. If no such largest integer exists, then 
dim(F) is infinite. 

We have the following result for distribution-free learning 
from generalized samples, again using results from [7]. 
Theorem 2: F is distributicn-free leamable from general- 

ized samples (or equivalently, F is distribution-free leamable) 
if for some M < 00, we have 0 5 f 5 M for every f E F 
and if dim(p) = d for some 1 5 d < 00. Furthermore, a 
sample size 

than 1-6, we have d p ( f , h )  5 E. 

[Ml(€), M2(E)I. 

(yl,...,Yd) f r o m Y , l e t q , =  {(f(!/l),*..,f(Yd)) : f E F ) .  

is sufficient for ( E ,  6) distribution-free learnability. 
Proof: The result follows from a direct application of 

Corollary 2 fro-m ["I, together with the corresponden? be- 
tween F and F and the fact that dp(fl,f,) = dp(fi,f2). 
0 

Note that the metric entropy of F is identical to the 
metric entropy of F (since both are with respect to dp) so 
that the metric entropy of F characterizes learnability for a 
fixed distribution as well. However, the pseudo dimension 
of F with respect to X does not characterize distribution- 
free learnability. This quantity can be very different from the 
pseudo dimension of F with respect to X. 
As mentioned above, for simplicity, we have defined the 

concepts to be real valued functions, have chosen the gen- 
eralized samples to retum real values, and have selected a 
particular form for the learning criterion or metric d p .  Our 
ideas can easily be formulated in the much more general 
framework considered by Haussler [7]. Specifidly, one could 
take F to be a family of functions with domain X and range Y. 
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The genera!ked samples X would be-a collection-of mappings 
from F to Y. A family of functions F mapping X to Y would 
be obtained ?om F by assigning to each f E F an f E 
defined by f ( 2 )  = 5(f). As in [7], the distributions would 
be defined on X x Y ,  a_loss-function L would be defined oc 
Y x Y, and for each f E F, the error of the hypothesis f 
with respect to a distribution would be E L ( J ( Z ) , j j ) ,  where 
the expectation is over the distribution on ( 2 ,  jj). 

Although learning with generalized samples is, in essence, 
simply a transformation to a different standard learning prob- 
lem, it allows the learning framework and results to be 
applied a broad range of problems. To show the variety in 
the type of observations that are available, we briefly mention 
some types of generalized samples that may be of interest 
in certain applications. In the case where the concepts are 
subsets of X (i.e., binary valued functions), some interesting 
generalized samples might be to draw random (parameterized) 
subsets (e.g., disks, lines, or other parameterized curves) of 
X labeled as to whether or not the random set intersects or 
is contained in the target concept. Alternatively, the random 
set could be labeled as to the number of intersections (or 
length, area, or volume of the intersection, as appropriate). 
In the case where the concepts are real valued functions, 
one might consider generalized samples consisting of certain 
random sets and returning the integral of the concept over these 
sets. For example, drawing random lines would correspond 
to tomographic-type problems with random ray sampling. 
Other possibilities might be to return weighted integrals of 
the concept where the weighting function is selected randomly 
from a suitable set (e.g., an orthonormal basis) or to sample 
derivatives of the concept at random points. 

111. A RESULT FROM SToCHASTIC GEOMETRY 
In this section, we state an interesting and well-known result 

from stochastic geometry. This result will be used in the next 
section in connection with a specific example of learning from 
generalized samples. 

To state the result, we first need to describe the notion of 
drawing a “random” straight line, i.e., a uniform distribution 
for the set of straight lines intersecting a bounded domain. A 
line in the plane will be parameterized by the polar coordinates 
T ,  8 of the point on the line closest to the origin, where 
T 2 0 and 0 5 8 5 27r. The set (manifold) of all lines in the 
plane parameterized in this way corresponds to a semi-infinite 
cylinder. 

A well-known result from stochastic geometry states that the 
unique measure (up to a scale factor) on the set of lines that 
is invariant to rigid transformations of the plane (translation, 
rotation) is drd8,  i.e., uniform density in T and 8 [16]. This 
measure is thus independent of the choice of coordinate system 
and is referred to as the uniform measure (or density) for the 
set of straight lines in the plane. This measure corresponds 
precisely to the surface area measure on the cylinder. 

From this measure, a uniform probability measure can be 
obtained for the set of all straight lines intersecting a bounded 
domain. Specifically, the set of straight lines- intersecting a 
bounded domain X, which we will denote by X, is a bounded 

subset of the cylinder. The uniform probability measure on X 
is then simply the surface area measure of the cylinder suitably 
normalized (i.e., by the area of X). 

We can now state the following classic result from stochastic 
geometry (see e.g. [16], [3]). 
Theorem 3: Let X be a bounded convex subset of R2, and 

let c c X be a curve of finite length. Suppose lines intersecting 
X are drawn uniformly, and let n ( 2 ,  c) denote the number of 
intersections of the random line 2 with the curve c. Then, 

2 
A 

E n ( &  c)  = --L(c) 

where L(c) denotes the length of the curve c, and A is the 
perimeter of X. 

In the next section, for simplicity, we will take X to be 
the unit square. In this case, the theorem reduces simply to 

A surprising (and powerful) aspect of this theorem is that 
the expected number of intersections a random line makes with 
the curve c depends only on the length of c but is independent 
of any other geometric properties of c. In fact, the expression 
on the left-hand side (suitably normalized) can be used as a 
definition for the length (or 1-D measure) of general sets in 
the plane [17]. 

An interesting implication of Theorem 3 is that the length 
of an unknown curve can be estimated or “learned” if one is 
told the number of intersections between the unknown curve 
and a collection of lines drawn randomly (from the uniform 
distribution). In fact, deterministic versions of this idea have 
been studied [19], [12]. 

E n ( 2 , c )  = $(c).  

Iv. LEARNING A CURVE BY 
COUNTING INTERSECTIONS WITH LINES 

In this section, we consider a particular example of learning 
from generalized samples. For concreteness, we take X to be 
the unit square in R2, although our results easily extend to the 
case where X is any bounded convex domain in R2. We will 
consider concept classes C,  which are collections of curves 
contained in X. For example, one particular concept class of 
interest will be the set of straight line segments contained in X. 
Other concept classes will consist of more general curves in X 
satisfying certain regularity constraints. The samples observed 
by the learner consist of randomly drawn straight lines that 
are labeled as to the number of intersections the random 
line makes with the target concept (i.e., the unknown curve). 
Recall, that with the r,B parameterization, :he set of lines 
intersecting X, which is the instance space X, is a bounded 
subset of the semi-infinite cylinder. We consider learnability 
with respect to a fixed distributLon, where the distribution P 
is the uniform distribution on X. 

A. Learning a Line Segment 
Consider the case where C is the set of straight-line seg- 

ments in X. In this case, given a concept c E C, every 
straight line (except for a set of measu_re zero) intersects c 
either exactly once or not at all. Thu_s, C consists of subset? 
(Le,, binary valued functions) of X, where each 2. E C 
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contains exactly those straight lines 3 E X that intersect the 
corresponding c E C. 

The metric d p  on C and C induced by P is given by 

dp (~ i ,~~)=dp( i : i , 2 .2 )=Eln (~ ,c i )  - n(2 ,cz ) l  

where, as in the previous section, n ( 2 , c )  is the number of 
intersections the line x makes with c. In the case of line 
segments, n(2, c )  is either one or zero, i.e., i: is binary valued; 
therefore 

d p ( ~ 1 , ~ 2 )  = dp( i ; l ,&)  = P(i:iAi;2) 

where 21A22 is the usual symmetric difference of E l  and 2 2 .  
In the case of line segments, a simple bound on the d p  

distance between two segments can be obtained in terms of 
the distances between the endpoints of the segments. 

Lemma 1: Let c1, c2 be two line segments, and let a l ,  bl 

and a2, b2 be the endpoints of c1 and c2, respectively. Then 

Proof: Since c1,cz are line segments, the distance 
dp(c1,ca) between c1 and c2 is the probability that a random 
line intersects exactly one of c1 and c2. Any line that intersects 
exactly one of c1, c2 must intersect one of the segments a1a2 
or blbz joining the endpoints of c1 and cp. Therefore 

d p ( c 1 , c 2 )  I ~ ( ~ n m f 8  or znb,bz# 8) 
I ~ ( 2  n 0103 # 8) + ~ ( 3  n blb2 # 8). 

Using Theorem 3, the probability that a random line intersects 
a line segment in the unit square is simply half the length of 

0 
Using Lemma 1, we can bound the metric entropy of C 

(and, hence, C) with respect to the metric induced by P. 
Lemma 2: Let C be the set of line segments contained in 

the unit square X, and let P be the uniform distribution on 
the set of lines intersecting X. Then 

the line segment, from which the result follows. 

1 
4E4. 

N(E, e, P )  = N ( € ,  c, P )  5 - 

Proof: We construct an E cover for C as follows. Con- 
sider a rectangular grid of points in X with spacing & Let 
C(') be the set of all line segments with endpoints on this 
grid. There are =& points in the grid; therefore, there are & 
line segments in de). (We ignore the fact that some of these 
segments are actually just points since there are just & of 
these.) For any c E C,  there is a c' E C(') such that each 
endpoint of c' is within E of an endpoint of c. Hence, from 
Lemma 1, dp(c ,  c') 5 $(E  + E) = E so that C(') is an E cover 

0 
The construction of the previous lemma allows us to obtain 

the following learning result for straight line segments. 
Theorem 4: Let C be the set of line segments in the unit 

square X. Then, C is learnable by counting intersections with 
straight lines drawn uniformly using 

for C with & elements. 

2 8  m ( ~ ,  6) = - in - 
€ 2  €46 

samples. 

Proof: Let C be the concept class over X corresponding 
to C. Then, 2. E C is defined by E(2) = n ( 2 , c ) ,  i.e., Z(2) 
is the number of intersections of the line 2 with c. Clearly, 
0 5 i: 5 1 (except for a set of measure zero) for every i: E C, 
Using the construction of Lemma 2, we have an 5 cover of C 
with 4/c4 elements. Hence, the result follows from Theorem 1. 

B. Learning Curves of Bounded Turn and Length 

Now: we consider the learnability of a much more general 
class of curves. First, we need some preliminary definitions. 
We will consider rectifiable curves parameterized by arc length 
s so that a curve c of length L is given by 

c = { ( z 1 ( s ) , z 2 ( s ) )  I 0 I 3 I L }  

where 2 1  (.) and 2 2  (.) are absolutely continuous functions 
from [0, L] to R such that d m  is defined and equal to 
unity almost everywhere. If 2 1  and 2 2  are twice differentiable 
at s, then the curvature of c at s ,  denoted tc(s) ,  is defined as 
the rate of change of the direction of the tangent to the curve 
at s and is given by K ( S )  = 2221 - 21x2. The total absolute 
curvature of c is given by s," Itc(s)l ds. 

Alexandrov and Reshetnyak [2] have developed an in- 
teresting theory for irregular curves. Among other things, 
they study the notion of the "turn" of a curve, which is a 
generalization of total absolute curvature to curves that are not 
necessarily twice differentiable, For example, for a piecewise 
linear curve, the turn is simply the sum of the absolute angles 
that the tangent turns between adjacent segments. The tum 
for more general curves can be obtained by piecewise linear 
approximations. In fact, this is precisely the manner in which 
turn is defined [2]. 

Definition 4: Turn: Let 00..21, denote a piecewise linear 
curve with vertices W O , .  . . ,vn.  Let ai be the vector w, 
and let q5i be the angle between the vector a; and ai+l, that 
is, q5i represents the total angle through which the tangent 
to the curve turns at vertex i (T minus the interior angle at 
vertex 2) .  The turn of 210..., which is denoted tc(210...), 
is defined by 

n-1 

K ( " U , )  = q5i. 
i=l 

The turn of a general parameterized curve c, which is denoted 
~ ( c ) ,  is defined as the supremum of the turn over all piecewise 
linear curves inscribed in c, i.e. 

K ( C )  = S U P { K ( C ( S O )  . c(s,)) I O I SO <SI < * * * < sn I L }  

where L is the length of c. As expected, the notion of tum 
reduces to the total absolute curvature of a curve when the 
latter quantity is defined [2]. We will use the generalized notion 
of turn throughout; therefore, our results will apply to curves 
that are not necessarily twice differentiable (e.g., piecewise 
linear curves). 

We will consider classes of curves of bounded length and 
bounded tum. Specifically, let CK,L be the set of all curves 
contained in the unit square whose length is less than or 
equal to L and whose turn is less than or equal to K. Note 
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that for curves contained in a bounded domain, the length of 
a curve can be bounded in terms of the turn of the curve 
and the diameter of the domain (Theorem 5.6.1 from [2]; for 
differentiable curves, see, for example, p. 35 of [16]). Hence, 
we really need only consider classes of curves with a bound 
on the turn. However, for convenience, we will carry both 
parameters K and L explicitly. 
As before, the samples will be randomjines drawn accord- 

ing to the uniform distribution P on X, which is labeled 
as to the number of intersections the line makes with the 
unknown curve c. However, with curves in CK,L,  the number 
of intersections with a given line can be any positive integer as 
opposed to just zero or one for straight line segments. (Note 
that by Theorem 3, the probability that a random line has 
an infinite number of intersections with a given curve is zero; 
therefore, the number of intersections is a well-defined integer- 
valued function.) Thus, the class CK,L consists of a collection 
of integer-valued functions on X as opposed to just subsets 
of X ,  as in the previous section. 

In addition, as before, the results on learning for the set of 
curves will be with respect to the metric d p  induced by the 
measure P, that is, the dp distance between two curves c1 and 
c2 or their corresponding functions Cl, 22 is given by 

where the expectation is taken over the random line 5 with 
respect to the uniform measure P. This notion of distance 
between curves has been studied previously (e.g., see [ 191 and 
p. 38 of [16]). For example, on the set of rectifiable curves, 
d p  satisfies the triangle inequality and is always nonnegative. 
It is not known whether on the set of rectifiable curves, d p  
satisfies the property that dp(c1,cB) = 0 implies c1 = c2. 
However, on the set of curves of bounded turn, this property 
does hold [15]. Hence, over the class of curves CK,L, d p  is, 
in fact, a metric. (Note that in [16] and [19], the notion of 
distance used is actually i d p ,  but this makes no difference in 
the metric properties.) 

To obtain a learning result for CK,L, we will show that 
each curve in CK,L can be approximated (with respect to d p )  
by a bounded number of straight-line segments. The metric 
entropy computation for a single straight-line segment can 
be extended to provide a metric entropy bound for curves 
consisting of a bounded number of straight-line segments. 
Thus, by combining these two ideas, we can obtain a metric 
entropy bound for CK,L that yields the desired learning result. 

First, we need several properties of the d p  metric for curves 
of bounded turn. 

Lemma 3: If c1 ,  c2 are curves with a common endpoint (so 
that c1 U c2 is a curve) and similarly for c i ,  ch, then 

Proof: For any line 5 (except for a set of measure zero), 
n ( 5 , c i  U c2) = n ( 3 , c l )  + n(3,c2) and similarly for cl,,ch. 

Therefore 
1 
2 

dp(c1 U c2, c; U c’z) = -Eln(3, c1 U c2) - n(3 ,c ;  U .;)I 
- - LEln(3, c1)  - n(3, c; )  + n(3, c2) - n(3, c;)1 

2 
1 1 
2 2 5 -Eln(5, ~ 1 )  - n(3, .’,)I + -Eln(Z, cg) - n(5, 

= dP(C1,C;) + dP(C2,C;). 

0 
By induction, this result can clearly be extended to unions 

of any finite number curves. The case of a finite number of 
curves will be used later in Lemma 6. 

Lemma 4: If c is a curve and 2 is the line segment joining 
the endpoints of c, then 

dp(c ,  2)  = - (L(c )  1 - L(2)) .  2 

Proof: Each line can intersect 2 at most once, and every 
line intersecting 2 also intersects c. Therefore, n ( 3 , c )  2 
n(3, e )  so that ln(3, c)  - n(3, 2)l = n(3, c)  - n(5, e )  for all 
lines 5 (except a set of measure zero). Hence 

dp(c ,  e)  = Eln(2, c )  - n(5, e)!  
= E(n(3, c )  - n(5, e ) )  

1 1 
2 2 

= -L(c)  - -L(2) 

where the last equality follows from the stochastic geometry 
result (Theorem 3). 0 

We will make use of the following result from [2]. 
Theorem 5: Alexandrov and Reshetnyak: Let c be a curve 

in R“ with K ( C )  < a, and let a be the distance between its 
endpoints. Then 

(Y 

L(c )  I ~ 

cos y 
Equality is obtained iff c consists of two line segments of 
equal length. 

Lemma 5: For 0 5 a 5 a/6, 1/ cosa  - 1 5 a2 so that if 
c is a curve with turn K ( C )  I a/6 and is the line connecting 
the endpoints of c, then 

Proof: Let g(a) = l / c o s a  and h(a)  = 1 + a2. For 
0 5 a I a/6, sin a 5 1/2, and cos a 2 &/2 so that g(a) = 
2sin2 4 c o s 3 a  + l / c o s a  5 4 + 2 - EB < 2 = h(a).  
Combining g(a) < h(a) with the fact that g(0) = h(0) and 
g(0) = h(0) gives g(a) 5 h(a); therefore, l / c o s a  - 1 I a2 
for 0 5 a 5 a/6. 

Now, using the above result, Lemma 4, and Theorem 5, we 
have 

3& 4 -  9 

1 
2 

dp(C, e )  = - (L(c )  - L(2)) 

- 1 I -6 ( c ) .  
2 COS(K(C)/2) 1 l (  

5 -L(Z) 

0 
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Lemma 6: If c E CK,L, then for all sufficiently small E > 0 
(e.g., E 5 sKL/48) ,  the curve c can be approximated to within 
E by an inscribed piecewise linear curve with at most 
segments. 

Proof: As usual, let s denote arc length along c. Since 
~ ( c )  5 K for any a > 0, we can find a decomposition of c 
into at most [ K / a l  pieces C 1 , .  . . ,CyK/,1 such that &(ti) 5 (Y 

for each i. For example, let SO = 0, and let 
sa = sup{si-1 5 s 5 LlK(c(si-l,s)) 5 a }  

where c(s;-1, s) is the part of the curve c between arc length 
si-1 and s inclusive. Then, let l!i = c(si-1, si). Theorem 5.1.1, 
which is on p. 120 of [2], states that if a sequence of curves c, 
converges to a curve c, then ~ ( c )  5 lim infm+m ~(c , ) .  Using 
this result and the definition of the si, we have that K ( & )  5 a. 
Another result from [2] (Theorem 5.1.3 on p. 122) states that 
if c(s) ,  0 5 s 5 L is a curve of finite turn, then for any 
0 < t < L,  we have ~ ( c )  = K(c(O,  t ) )  + K ( c ( ~ ,  L ) )  + 4(c( t ) ) ,  
where 4(t) is the angle through which the tangent turns at the 
point c( t )  (i.e., the angle between the left-hand and the right- 
hand tangents). From the definition of si and the property that 
K ( C ( S ,  s’)) 4 0 as s’ + s from the right (see Corollary 3 on 
p. 121 of [2]), we have that K ( C ( S ~ - I , S ~ ) )  + 4(c(s i ) )  2 a. It 
follows that if si < L,  then for any 9 > 0, n(c(0, s;+q)) 2 ia. 
Since ~ ( c )  I - K ,  we must have s; = L for some i 5 [ K / a l .  

Now, let C; be the lineASsegment joining the ends of e;. 
Clearly, the union of the C; forms a piecewise linear curve 
inscribed in c (i.e., with endpoints of. the segments lying on 
c). For a 5 s/6 ,  from Lemmas 3 and 5, and the fact that 
€,(t!i) 5 L(c) 5 L ,  we have 

Thus, if a 5 2~ with E 5 7rKL/48), then dp(c, UE’Ft!;) 5 E 

so that 5 = 9 segments suffice for an c approximation to 
0 

Theorem 6: Let CK,L be the set of all curves in the unit 
square with turn bounded by K and length bounded by L. Let 
P be the uniform distribution on the set of lines intersecting 
the unit square, and let d p  be the metric on CK,L defined by 
dp(cl,c2) = E(n( I ,  c1) - n( I ,  c2)I. Then, the metric entropy 
of CK,L with respect to d p  satisfies 

K!i ( 

c by an inscribed piecewise linear curve. 

Proof: We construct an c cover for C as follows. Con- 
sider a rectangular grid of points in the unit square with 
spacing w. Let Ct!L be the set of all piecewise linear 
curves with at most 9 segments, where the endpoints all 
lie on this grid. There are K4L2/8c4 points in the grid so 
that there are at most (K4L2 /8~4)1+KzL/4E  distinct curves in 

To show that C$!L is an E cover for CK,L, let c E CK,L. 
By Lemma 6, there is a piecewise linear curve E with at 
most e segments such that dp(c,e)  < c /2 .  We can find 
a curve c’ E C$b close to E by finding a point on the grid 

cpL. 

within $& of each endpoint of a segment in e. By Lemma 
1, each line segment of c’ is a distance at most & (with 
respect to d p )  from the corresponding line segment of 2. Since 
~ , c ’  consist of at most e segments, applying Lemma 3, 
we get d p ( E ,  c’) 5 c/2 .  Hence, by the triangle inequality, 
d p ( C , ~ ‘ )  5 E. 0 

We can now prove a learning result for curves of bounded 
turn and length. 

Theorem 7: Let CK,L be the set of all curves in the unit 
square with turn bounded by K and length bounded by L. 
Then, CK,L is learnable by counting intersections with straight 
lines drawn uniformly using 

Proof: Let ~ K , L  be the concept class over X correspond- 
ing to C K J .  Then, Z. E C is defined by E(I) = n(S,c) ,  i.e., 
E(?) is the number of intersections of the line I with c. 

Using the construction of Theorem 6, we have an 5 cover 
C(e /2 )  of CK,L with (2K4L2/~4) i+K2L/2E elements. Further- 
more, each element of the 5 cover consists of at most e 
line segments. Since a line I can intersect each segment at 
most once, we have 0 5 &(I) 5 9 for every Z.i E 
Hence, the result follows from Theorem 1. 0 

This learning result is in terms of d p ,  which is a metric 
induced by the uniform measure on the set of lines. Although 
some properties of this metric are known, to better understand 
the implications of the learning result, it would be useful 
to obtain further properties of this metric. Alternatively, we 
could try to obtain a learning result with respect to other more 
standard metrics. For example, a common measure of distance 
between curves is Hausdorff metric d H ( . ,  .) defined as 

dH(c1, c2) = inf{q : c1 c c p )  and c2 C cp’) 

c(q) = {x : inf 1x - yl < q). 
Y € C  

A sufficient condition for learning with respect to d H  ( d H  
could actually be replaced by any other metric) is 

where c(q) is the 9 neighborhood of c i.e. 

inf dp(c1 ,c2)  > O. 
{CI,CZ 1 d H ( c l , c Z ) > € }  

This result combined with the learning result with respect to 
d p  would immediately imply a learning result with respect 
to d H .  However, this condition is not satisfied since c1 and 
c2 can can have arbitrarily small lengths (so that dp(c1, c2) 
is arbitrarily small) but with c1 and c2 spatially separated 
so that dH(C1,c2) is greater than some fixed constant. We 
can eliminate this problem by considering the class C K , t , L  
consisting of all curves in CK,L whose lengths are larger than 
some fixed C, that is, C K , ~ , L  consists of all curves with length 
between C and L and with turn less than K.  Using results 
from [2] and [15], it can be shown that the condition above 
is satisfied for curves in C K , e , L .  Hence, we have a learning 
result for CK,e ,L  with respect to d H  (and with respect to a 
stronger metric defined in 121 as well). 

It is interesting to note that CK,L has infinite pseudodimen- 
sion (generalized VC dimension). In general, infinite pseu- 
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dodimension does not necessarily imply that a class is not 
distribution-free learnable; however, in the present case, we 
expect that CK,L is not distribution-free learnable. That the 
pseudodimension is infinite can be seen as follows. First, 
assume that K ,  L 2 27r. For each k, let 31,. . . ,3k be the 
set of lines corresponding to the sides of a k-gon inscribed 
in the unit circle. For any subset G of these k lines, we can 
find a curve CG E CK,L SO that n ( 3 ; , c ~ )  = 2 for 2; E G 
and n(Z,,cG) = 0 for xi 4 G. Such a curve can be obtained 
by taking a point on the unit circle in each arc corresponding 
to 3i E G and taking CG to be the boundary of the convex 
hull of these points. Then, K ( C G )  = 27r and L(cG) < 27r 
so that CG E CK,L. Thus, the set 31,. . . , 3 k  is shattered by 
C K J ,  and since k is arbitrary, the pseudodimension of CK,L 
is infinite. For K ,  L < 27r, we can apply essentially the same 
construction over an arc of the unit circle and without taking 
CG to be a closed curve. 

C. Connections with the Stochastic Geometry Result 

For the class of curves whose length and curvature are 
bounded by constants, the learnability result of Theorem 7 
can be thought of as a refinement of the stochastic geometry 
result. First, using the expression for the expected number of 
intersections, one can estimate or "learn" the length of c from 
a set of generalized samples. The learnability result makes the 
much stronger statement that the curve c itself can be learned 
(from which the length can then be estimated). To show that 
the length can be estimated, we need only note that 

1 1 I p l n ( Y t c l )  - n(y,c2)l = 5dP(Clt"2) 

so that if we learn c to within E, then the length of c can be 
obtained to within ~ / 2 .  

Second, for the class of curves considered, we have a 
uniform learning result. Hence, this refines the stochastic 
geometry result by guaranteeing uniform convergence of em- 
pirical estimates of length to the true length for the class of 
curves considered. 

V. DISCUSSION 
We introduced a model of learning from generalized samples 

and considered an application of this model to a problem of 
reconstructing a curve by counting intersections with random 
lines. The curve reconstruction problem is closely related to 
a well-known result from stochastic geometry. The stochastic 
geometry result (Theorem 3) suggests that the length of a curve 
can be estimated by counting the number of intersections with 
an appropriate set of lines, and this has been studied by others. 
Our results show that for certain classes of curves, the curve 
itself can be learned from such information. Furthermore, over 
these classes of curves, the estimates of length from a random 
sample converge uniformly to the true length of a curve. 

There are a number of interesting questions/possible 
extensions concerning the problem of learning a curve. We 
have not considered the question of computational complexity 
of algorithms for learning a curve from intersections with lines. 

The results of Lemma 2 and Theorem 6 suggest exhaustive 
procedures that simply consider all curves in an E cover and 
select one that is most consistent with the line crossing data. 
For the case of learning a straight-line segment, this trivial 
procedure runs in time polynomial in 1 / ~ .  However, in the case 
of learning a curve of bounded length and turn, this simplistic 
approach requires time exponential in 1 / ~ ,  K ,  and L. We leave 
open the question of whether there exists a polynomial time 
algorithm for the problem of learning a curve of bounded 
length and turn. 

The stochastic geometry result holds for any bounded con- 
vex subset of the plane, and as we mentioned before, our 
results can be extended to this case as well. Furthermore, 
results that are analogous to Theorem 3 can be shown in 
higher dimensions and in some nonEuclidean spaces [16]. 
Some results on curves of bounded turn that are analogous 
to those we needed can also be obtained more generally [2]. 
Hence, learning results should be obtainable for these cases. 

Regarding other possible extensions of the problem of 
learning a curve, note that the stochastic geometry result is 
not true for distributions other than the uniform distribution. 
In addition, we are not aware of any generalizations to 
cases where parameterized curves other than lines are drawn 
randomly. However, learnability results likely hold true for 
some other distributions and perhaps for other randomly 
drawn parameterized curves, although the metric entropy 
computations may be difficult. 

There is an interesting connection between the problem 
of learning a curve discussed here and a problem of com- 
puting the length of curves from discrete approximations. In 
particular, it can be shown that computing the length of a 
curve from its digitization on a rectangular grid requires a 
nonlocal computation (even for just straight line segments), 
although computing the length of a line segment from discrete 
approximations on a random tesselation can be done locally 
[lo]. The construction is essentially a learning problem with 
intersection samples from random straight lines. Furthermore, 
the construction provides insight as to why local compu- 
tation fails for a rectangular digitization and suggests that 
appropriate deterministic digitizations would still allow local 
computations. This is related to the work in [12]. 

We considered here only one particular example of learning 
from generalized samples. However, we expect that this frame- 
work can be applied to a number of problems in signayimage 
processing, geometric reconstruction, stereology, etc., to pro- 
vide learnability results and sample size bounds under a PAC 
criterion. As previously mentioned, learning with generalized 
samples is, in essence, simply a transformation to a different 
standard learning problem, although the variety available in 
choosing this transformation (i.e., the form of the generalized 
samples) should allow the learning framework and results to 
be applied to a broad range of problems. 

For example, the generalized samples could consist of 
drawing certain random sets and returning the integral of the 
concept over these sets. Other possibilities might be to return 
weighted integrals of the concept where the weighting function 
is selected randomly from a suitable set (e.g., an orthonormal 
basis) or to sample derivatives of the concept at random points. 
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One interesting application would be to problems in tomo- 
graphic reconstruction. In these problems, one is interested 
in reconstructing a function from a set of projections of the 
function onto lower dimensional subspaces. One could have 
the generalized samples consist of drawing random lines la- 
beled according to the integral of the unknown function along 
the line. This would correspond to a problem in tomographic 
reconstruction with random ray sampling. Alternatively, as 
previously mentioned, one could combine the general frame- 
work discussed by Haussler [7] with generalized samples and 
consider an application to tomography where the generalized 
samples consist of entire projections. This would be more 
in line with standard problems in tomography, where the 
directions of the projections are chosen randomly, however. 

For more geometric problems in which the concepts are 
subsets of X, some interesting generalized samples might be 
to draw random (parameterized) subsets (e.g., disks, lines, or 
other parameterized curves) of X labeled as to whether or not 
the random set intersects or is contained in the target concept. 
Other possibilities might be to label the random set as to the 
number of intersections (or length, area, or volume of the 
intersection, as appropriate) with the unknown concept. One 
interesting application to consider would be the reconstruction 
of a convex set from various types of data (e.g., see [8], 
[MI, [ l l ] ,  and [14]). For example, the generalized samples 
could be random lines labeled as to whether or not they 
intersect the convex set (which would provide bounds on 
the support function). This is actually just a special case of 
learning a curve, which is closed and convex, although tighter 
bounds should be obtainable due to the added restrictions. 
Alternatively, the lines could be labeled as to the length 
of the intersection (which is like the tomography problem 
with random ray sampling in the case of binary objects). A 
third possibility (which is actually just learning from standard 
samples) would be to obtain samples of the support function. 

Formulating learning from generalized samples in the gen- 
eral framework of Haussler [7] allows issues such as noisy 
samples to be treated in a unified framework. Application of 
the framework to a particular problem reduces the question of 
estimatiodlearning under a PAC criterion to a metric entropy 
(or generalized VC dimension) computation. This is not meant 
to imply that such a computation is easy. On the contrary, the 
metric entropy computation is the essence of the problem and 
can be quite difficult. Another problem that can be difficult is 
interpreting the learning criterion on the original space induced 
by the distribution on the generalized samples. The induced 
metric is a natural one, given the type of information available, 
but it may be difficult to understand the properties it endows 
on the original concept class. Finally, although this approach 
may provide sample size bounds for a variety of problems, it 
leaves open the question of finding good algorithms. 
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