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RECURSIVE STOCHASTIC ALGORITHMS FOR GLOBAL
OPTIMIZATION IN R‘*

SAUL B. GELFANDt AND SANJOY K. MITTER#

Abstract. An algorithm of the form X, =X, —a,(VU(X,)+ &)+ b W,, where U(-) is a smooth
function on R¢ {£.} is a sequence of R%valued random variables, {W,} is a sequence of independent
standard d-dimensional Gaussian random variables, a, = A/k and b, =vB/vkloglogk for k large, is
considered. An algorithm of this type arises by adding slowly decreasing white Gaussian noise to a stochastic
gradient algorithm. It is shown, under suitable conditions on U(-), {&}, A, and B, that X, converges in
probability to the set of global minima of U(-). No prior information is assumed as to what bounded region
contains a global minimum. The analysis is based on the asymptotic behavior of the related diffusion process
dY(t)=—-VU(Y(t))dt+c(t)dW(t), where W(-) is a standard d-dimensional Wiener process and c¢(t) =
VC/Viogt for t large.
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1. Introduction. In this paper we consider a class of algorithms for finding a global
minimum of a smooth function U(x), x € R%. Specifically, we analyze the convergence
of a modified stochastic gradient algorithm

(1.1) Xic1= X —ar(VU(Xy) + &) + bWy,

where {£} is a sequence of R%-valued random variables, { W;} is a sequence of standard
d-dimensional independent Gaussian random variables, and {a,}, {b,} are sequences
of positive numbers with a,, b, 0. An algorithm of this type arises by artificially
adding the b, W, term (via a Monte Carlo simulation) to a standard stochastic gradient
algorithm,

(1.2) Zin=2Z—a(VU(Z,) + &).

Algorithms like (1.2) arise in a variety of optimization problems including adaptive
filtering, identification, and control; here the sequence {£} is due to noisy or imprecise
measurements of VU(+) (cf. [1]). The asymptotic behavior of {Z,} has been extensively
studied. Let S and S* be the set of local and global minima of U(-), respectively. It
can be shown, for example, that if U(-) and {&} are suitably behaved, a, = A/k for
k large, and {Z,} is bounded, then Z, > S as k> o with probability one. However, in
general, Z, # S* (unless of course S = S*). The idea behind the additional bW, term
in (1.1) compared with (1.2) is that if b, tends to zero slowly enough, then possibly
{X;i} (unlike {Z,}) will avoid getting trapped in a strictly local minimum of U(-). In
fact, we will show that if U(-) and {&]} are suitably behaved, a,=A/k and b;=
B/kloglog k for k large with B/ A> C, (where C, is a positive constant that depends
only on U(+)), and {X,} is tight, then X, > $* as k> 0 in probability. We also give
a condition for the tightness of {X;}. We remark that in [1] both probability one and
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weak convergence of {Z,} are treated. Furthermore, convergence of Z; to S is estab-
lished under very weak conditions on {&} assuming that {Z,} is bounded. Here the
convergence of X to S* is established under somewhat stronger conditions on {&.}
assuming that {X,} is tight (which is weaker than boundedness).

An algorithm like (1.1) was first proposed and analyzed by Kushner [2]. However,
the analysis in [2] required that the trajectories of {X,} lie within a fixed ball (which
was achieved by modifying (1.1) near the boundary of the ball). Hence, the version
of (1.1) in [2] is only suitable for optimizing U(-) over a compact set. Some other
differences between the results presented here and in [2] include conditions on {a.},
{b}, and {&}, and also the method of analysis; these are discussed below.

The analysis of the convergence of {Z, } is usually based on the asymptotic behavior
of the associated ordinary differential equation (ODE)

(1.3) Z(1)=-VU(z(1))

(cf. [1], [3]). This motivates our analysis of the convergence of {X,} based on the
asymptotic behavior of the associated stochastic differential equation (SDE)

(1.4) dY(t)==-VU(Y(t)) dt+c(t) dW(t),

where W( ) is a standard d-dimensional Wiener process and c¢( - ) is a positive function
with ¢(¢#)>0 as t—>o0. The diffusion Y(-) has been called continuous simulated
annealing. In this context, U(x) is called the energy of state x and T(t)=c*(t)/2 is
called the temperature at time #. Continuous simulated annealing was first suggested
in [4] and [5] for global optimization problems that arise in image processing applica-
tions with continuous grey levels. Now the asymptotic behavior of Y(¢) as ¢ o0 has
been studied intensively by a number of researchers. In [2] and [5], convergence results
were obtained by considering a version of (1.4) with a reflecting boundary; in [6] and
[7] the reflecting boundary was removed. Our analysis of {X,} is based on the analysis
of Y(-) developed by Chiang, Hwang, and Sheu [7] who prove the following result:
if U(-) is well behaved and c*(t) = C/log t for t large with C > C, then Y(t)~> S* as
t-> oo in probability. The main difficulty associated with using Y(-) to analyze {X,}
is that we must deal with long time intervals and slowly decreasing (unbounded)
Gaussian noise.

We make some further remarks on the differences between the results and methods
in this paper as compared with [2]. We first note that in [2] the modified version of
(1.1), which constrains the trajectories of {X;} to lie within a fixed ball, is analyzed
for a, = b, = A/log k, k large. Although a detailed asymptotic description of {X,} is
obtained for this case, in general, X, # S* unless & = 0. The reason for this is intuitively
clear: even if {&} is bounded, a,& and a, W, can be of the same order, and hence
can interfere with each other. On the other hand, here we allow {&.} with unbounded
variance, in particular, E{|&|*} = O(k”) and y<1. This has important implications
when VU(-) is not medsured exactly. We also note that the analysis in [2] is different
from that done here, in that in [2] the behavior of { X} is obtained by deriving various
large deviations estimates of Donsker-Varadhan type, whereas here we obtain the
behavior of {X,} directly from the corresponding behavior of Y(-). It should be
pointed out that in a certain sense the results in [2] are also stronger than those
presented here, because the large deviation approach in [2] treats the whole tail of the
process {X;}, while only “local” type results are discussed here. However, from our
point of view the most significant difference between our work and that done in [2]
(and more generally in other work on global optimization such as [8]) is that we deal
with unbounded processes and establish the convergence of an algorithm that finds a



RECURSIVE STOCHASTIC ALGORITHMS 1001

global minimum of a function when it is not known a priori what bounded region
contains such a point.

The paper is organized as follows. In § 2 we state our assumptions and main
result. In § 3 we take up the proof of this result. In § 4 we prove a general tightness
criterion, which is then used in § 5 to establish tightness and ultimately convergence
for two example algorithms.

2. Main result. In this section we present our main result on the convergence of
the discrete time algorithm

(2.1) Xir1= X —a (VU (X)) + &) + bW, k=0,
which is closely related to the continuous time algorithm
(2.2) dY (£)=—-VU(Y(t)) dt+c(t) dW(t), t=0.

Here U(-) is a smooth function on R {£.} is a sequence of R*valued random variables,
{W,} is a sequence of independent d-dimensional Gaussian random variables with
E{W;}=0and E{W,X W,} = I (the identity matrix), W(-) is a standard d-dimensional
Wiener process, and

A B
ay = 2

[ S
k> T kloglogk® | TES

C
()y=—, 1l
(1) g 'laree

where A, B, and C are positive constants with C = B/ A. Further conditions on U(-),
{&}, and { W, } will be discussed below. It will be useful to define a continuous-time
interpolation of {X,}. Let

k-1
t, = Z a,, k.%O,
=0

and
X(t)zxka te[tka tk+1)9 k=o0.

In the sequel we assume some or all of the following conditions (« and B are
constants whose values will be specified later):

(A1) U(-) is a C? function from R? to [0, c0) such that
min U(x)=0,
U(x)»>o and |[VU(x)|> asl|x|> oo,
inf ((VU(x)|?—AU(x)) > —c.
(A2) For ¢ >0 let

da®(x)= le exp (—22(2)‘)) dx, zZ°= J exp (—22(2")> dx <00,

7° has a unique weak limit 7 as £ > 0.

. VU(x) x [(4d—4 1/2
X T e T b= A




1002 S. B. GELFAND AND S. K. MITTER

(A4) For k=0, 1, <o let gk':O'(Xo, W(), Ty, Wk—ls fo, Tty fk—-l)' Let K be a
compact subset of R%. There exists L> 0 such that

E{lgklzlgk}§LaZ9 IE{§k|gk}l§La€’ V)(ke K’ W.p.l.
W, is independent of %,.

We note that the measure 7 concentrates on S*, the global minima of U(-). The
existence of 7 and a simple characterization in terms of the Hessian of U( - ) is discussed
in [9]. In [7], (A1) and (A2) were needed for the analysis of Y(¢) as t > c0; here we
also need (A3) and (A4) for the analysis of X, as k- 0. Assumption (A3) asserts that
VU(x) has a sufficiently large radial component for |x| large. This condition will be
used to extend an escape time estimate for {X,} from a bounded region in the d =1
case to the d > 1 case (see Lemma 4). It may be possible to replace L(d) by 0 in (A3)
but we have not been able to do so (except of course for d =1). Note that (A3) is
implied by (A1) when d =1.

For a process Z(-) and a function f(-), let E, ,{f(Z(t))} denote conditional
expectation given Z(t,) = z,, and let E, , ., .,{f(Z(t))} denote conditional expectation
given Z(t,) =z, and Z(t,) =z, (more precisely, these are suitable fixed versions of
conditional expectations). Also for a measure w(-) and a function f(-) let w(f) =[ fdu.

In [7] it was shown that there exists a constant C, (denoted there by ¢,) that plays
a critical role in the convergence of Y(#) as t> 0. C, has an interpretation in terms
of the action functional [10] for the perturbed dynamical systems

(2.3) dY* (1)=-VU(Y*()) dt+edW(t).

Now for ¢(-) an absolutely continuous function on R% the (normalized) action
functional for (2.3) is given by

1 (.
I(t,x,y)= ¢(ig)1)t;x5 L | (s)+VU(p(s))f ds.
d()=y

According to [7]

Co=3 sup (V(x,y)—2U(y)),

x,y€ 8o

where V(x, y)=Ilim, . I(t, x, y) and S, is the set of all the stationary points of U(-),
i.e., So={x: VU(x) = 0}; see [7] for a further discussion of C,including some examples.
Here is the Chiang-Hwang-Sheu theorem on the convergence of Y(t) as t— .

THEOREM 1 [7]. Assume (A1) and (A2) hold. Then for C > C, and any bounded
continuous function f(+) on R*

(24) lim Ey,,{f (Y ()} = 7(f)

uniformly for y, in a compact set.

Let K,<R“ and let {X 3} denote the solution of (2.1) with X,= x,. We say that
{X7: k=0, xo€ K} is tight if given &> 0 there exists a compact K,<=R? such that
Py . { Xk € K,}>1—¢ for all k=0 and x,€ K. Here is our theorem on the convergence
of X, as k- oo.

THEOREM 2. Assume (Al)-(A4) hold with > —1 and B>0. Also assume that
{X3%: k=0, x,€ K} is tight for K a compact set. Then for B/ A> C, and any bounded
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continuous function f(-) on R*

2.5) lim Ey., {f (X0} =7(/)

uniformly for x, in a compact set.

Remark. We specifically separate the question of tightness from convergence in
Theorem 2. It is appropriate to do this because sometimes it is convenient to first prove
tightness and then to put an algorithm into the form of (2.1) to prove convergence. In
§ 4, we actually give a condition for tightness of a class of algorithms somewhat more
general than (2.1), and then use it in § 5 to prove tightness and ultimately convergence
for two example algorithms.

Since 7 concentrates on S*, we have, of course, that (2.4) and (2.5) imply Y (¢) > S*
as t>o and X, ~> S* as k> o in probability, respectively.

The proof of Theorem 2 requires the following two lemmas. Let B(-) be defined
by

B(s) lo
J' gSdu=s2/3, s> 1.
s logu

Note that s+ s”>=B(s)=s+2s” for s large.
LemMMA 1 [7]. Assume the conditions of Theorem 1. Then for any bounded con-
tinuous function f(-) on R*

lim (E,{f(Y(B()))} - 7“(f)) =0

uniformly for x in a compact set.
LeEMMA 2. Assume the conditions of Theorem 2. Then for any bounded continuous
function f(+) on R?

lim (Eo,xyssx{f (X (B(5)))} = Eexd f(Y(B(5)))}) =0

uniformly for x, in a compact set and all x.

Lemma 1 is proved in Lemmas 1-3 of [7]. Lemma 2 is proved in § 3. Note that
these lemmas involve approximation on increasingly large time intervals: B(s)—s=
s3>0 as s->0. We now show how these lemmas may be combined to prove
Theorem 2.

Proof of Theorem 2. Since B(s) is continuous and B(s)-> o0 as s - 0, it is enough
to show that

(2.6) lim By {f (X(B())} = 7(f)

uniformly for x, in a compact set. We have for r>0

ol f(X (B} =71
7y =] B X(6) B X B ()

= L _ P, {X () € dX}Y Ep s X F (X (BN} = 7(O)|+2]| f || Poxd| X (s)|> r}.

Now by the tightness assumption
(2.8) sup Po {|X(s)|>r}>0 asr->c.

s=0



1004 S. B. GELFAND AND S. K. MITTER

Also by Lemmas 1 and 2 and assumption (A2)
sup |E0,x0;s,x{f(X(B(s)))} - ﬂ(f)'

|x|=r

=sup |Eo .ol f (X (B(s)N}— E LS (Y(B(s))}
(2.9) =

+|51|15P |E, {f(Y(B(s))}—7(f)]
+ @)= a(f)|>0 ass->o0.

Combining (2.7)-(2.9) and letting s> and then r—oo gives (2.6) and hence the
theorem. 0

3. Proof of Lemma 2. Before proceeding with the proof of Lemma 2 we address
the following technical issue. Observe that Lemma 2 is not concerned with the joint
probability law of X (-) and Y(-). Hence without loss of generality we can and will
assume that

Wi =ai2(W(t) — W(H)),
and that the following assumption holds in place of (A4):

(A4") Fork=0,1,---let . =0 (X,, Yo, &, ", &1, W(5),0=s=1). Let K be
a compact subset of R?. There exists L> 0 such that

E{&l|Zd = Lai, |E{&|%)|=Lal VX,eK, wp.l
W(t)— W(t.) is independent of %, for t> t,.

It will also be convenient to define

C
(t)y=—", kI
c ( k) log log k, arge,

and to let ¢*(-) be a piecewise linear interpolation of {c*(#.)}. Note that ¢*(t)~ C/log ¢,
and since C = B/ A we have vVa,c(t,) = by.

In the sequel, ¢;, c,, - - - denote positive constants whose value may change from
proof to proof.

The proof of Lemma 2 is based on the following three lemmas. For s, R > 0 define
the exit times

a(s, R)=inf{t=s:|X(t)|> R},
7(s, R)=inf {t=s:|Y(t)|> R}.

LEMMA 3 [7, p. 745]. Assume the conditions of Theorem 1. Then given r>0 there
exists R > r such that

lim P, (7(s, R)> B(s)}=1
uniformly for |x|=r.

LEMMA 4. Assume the conditions of Theorem 2. Then given r> 0 there exists R>r
such that

lim PO,xo;s,x{o-(s9 R) > B(s)} =1

uniformly for |x|=r and all x,.



RECURSIVE STOCHASTIC ALGORITHMS 1005

LEMMA 5. Assume the conditions of Theorem 2. Then for 0<r<R
lim B vy.f1X (B(5) = Y(B()F, o(s, R) A 7(5, R)> B(5)} =0

uniformly for |x|=r and all x,.

The proofs of Lemmas 4 and 5 are given below. We now show how these lemmas
may be combined to prove Lemma 2.

Proof of Lemma 2. Given r>0, choose R> r as in Lemmas 3 and 4. Fix s >0 for
the moment and let o = o(s, R) and 7= 7(s, R). Henceforth assume all quantities are
conditioned on X (0)=x,, X(s)=Y(s)=x, and |x|=r. We have

|[EQAX(B(s)N}— E{f (Y (B(s))Y]

= E{|f(X(B(s)) = f(Y(B(s))], o n 7> B(s)}+2|| f| P{o A 7= B(5)}.
Now by Lemmas 3 and 4
(3.2) P{oaT=B(s)}>0 ass—>.

Also, since f(-) is uniformly continuous on a compact, given ¢ > 0 there exists § >0
such that |f(u)—f(v)|<e whenever |u—v|<& and |u|,|v|=R. Hence using the
Chebyshev inequality and Lemma 5

E{f(X(B(s)) ~f(Y(B()], o n 7> B(s5)}

(3.1)

(3.3) =2\ f|P{IX(B(s) - Y(B(s)|= 8, onT>p(s)}+e
ég[lsz” E{|X(B(s)—Y(B(s),onT>PB(s)}+e>¢ ass—>co.

Combining (3.1)-(3.3) and letting s >0 and then £ >0 gives the lemma. 0
The proofs of Lemmas 4 and 5 involve comparisons between X(-) and Y(-).
Define £(-, ) by

Y()=Y(s)=(t=s)(VU(Y(s5)) +{(s, 1)) +c(s)(W(1) = W(s))

for t=5=0. To compare X(-) and Y(-) we will need statistics for £(-, -).
ProrosiTiON 1. For every R>0

E. {|L(s, tA7(s, R)}=O(t—s]|)

as t| s, uniformly for s=0 and all y.

Proof. In this proof we can and will assume that VU(-) is a bounded and Lipschitz
function on R? (since | Y (u)|= R for s=u =t 7(s, R) we can modify U(x) for |x|> R
without loss of generality). Fix s =0 and let 7 = 7(s, R). Henceforth assume all quan-
tities are conditioned on Y(s)=y. Now for t=s we can write

tAT IAT

(VU(Y(u))=VU(Y(s))) du —J (c(u)—c(s)) AW (u).

s

(3.4) (t—5)(s,taT)= J'

s

Let d, and d, be Lipschitz constants for VU(-), ¢(-), respectively. Under our assump-
tions on VU(-) and c( ) it is well known (cf. [11]) that E{|Y(u) — Y(s)|*} = O(Ju —s|))
as uls, uniformly for s =0 and all y. Hence

E{ } ;de{(L' ¥ ()~ Y(s)| du)z}

(3.5) =2di(t—s) Jt E{|Y(u)— Y(5)]’} du

s

JMT (VU(Y(u))~-VU(Y(s))) du

= 0((t-5))
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7|

and

J v (c(u)—c(s)) dW(u) }éj (c(u)—c(s))* du

(3.6) ‘
=d? J (u—5)>du=0((t—s)*)

as t|s, uniformly for s =0 and all y. The proposition follows from (3.4)-(3.6). 0
CoROLLARY 1. Given R>0, let ¢, = {(t, tis1 A T(t, R)). Then there exists M >0
such that

E{|§k|2|9’k}§Mak, |E{§k|?/7k}|§Ma,1(/2 W.p.l.

Proof. Observe that {, is {Y(#), W(t) — W(t,), tp <t=t,,,} measurable. Since
Y(t.) is &, measurable and {W(t)— W(t), i, <t=t.,,} is independent of %, we
must have P{{, € - |%} = P{{ce - |Y(t)} w.p.1. The corollary now follows from Propo-
sition 1 and Holder’s inequality. a

3.1. Proof of Lemma 4. The idea behind this proof is to compare X (¢) and Y (¢)
in such a way as to eliminate the slowly decreasing Gaussian noise (i.e., the bW,
term) between them. Once the decreasing Gaussian noise is eliminated, we can control
the deviation of X (¢) from Y(t) over increasingly large time intervals and ultimately
obtain the escape time estimate for X () from a bounded region from that for Y(t)
in Lemma 3. It seems very difficult to work directly with the continuous-time interpola-
tion X (t).

For each n let k, be the integer that satisfies B(t,)e[# , &
exists R> r such that

(3.7) lim Py .. {o(t,, R)> 1, }=1

). We show there

n+1

uniformly for |x|=r and all x,. The lemma then follows by some minor details that
are omitted.
By Lemma 3 there exists R, > r such that

lim P, {r(t,, R))>1t }=1
uniformly for |x|=r. Hence (3.7) will follow if we can show that there exists R>r
such that
(38) llm PO,x[,;l,.,x{a'(tn, R) = tk,. ) T(tm Rl) > tk,,} = 0
uniformly for |x|=r and all x,. We first assume d =1 (the scalar case) and then

generalize to d > 1. The generalization to d > 1 requires (A3).
Proof for d =1. In view of (Al) there exists R,> R, such that

sup U’(x)<|i|g§; U'(x), inf U'(x)> sup U'(x).

x=—R, |x|=R,

Let R;=R,+1 and R,=2R;+3R,. We show that (3.8) holds with R=R,.
Fix n for the moment and let o =o(t,, R,), 7= 7(t,, R;). Let

&= {(tic, ey A T(1, Ry))
and

Yie1=Yi—a(VU(Yi) + &) + b Wi
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Note that if Y(¢,)=Y, and 7=, =1t,, then Y() = Y,. Henceforth assume all quan-
tities are conditioned on X(0)=X,=x0, X(£,)=X,=Y(t,) =Y, =x, |x|=r.
We proceed by observing that if the event {o = f, } occurs then either
e At some time k, n=k<k,, X, jumps from [—-R,, R,] to (R;, ), or from
[-R:, Rs] to (=0, —R;);
e At some time k, n=k<k,, X; jumps from [—R,, R,] to (R,, R;], and exits
from (R,, R,] to (R,, ) at some time [, k<I=k,;
e At some time k, n =k <k,, X; jumps from [—R,, R,] to [-R;, —R,), and exits
from [-R,4, —R,) to (—00, —R,) at some time L, k<I=k,.
Now define %,-stopping times:

/.LT =inf{k> n: Xk—l = Rz, R2< Xk = R3},
V-I'— = inf{k> [.Lr. Xk = Rz},
#;— =inf{k> V_IFZ Xk—-l = Rz, R2<Xk = R3},

V; = lnf{k> [.L;—. Xk = Rz},

and
pur=inf{k>n: X;_,=Z—R,, —R;= X; <—R,},

vy =inf{k>pu7: X, =R},
/.Lz— = inf{k> Vl_: Xk—l = _Rz, _R3§Xk < —Rz},

vy =inf{k> u3: X, = —R,},

Note that if u,,, wm <k,, then we must have m = m, (where m, =(k, —n)/2). Hence
if we let

k,~1
D,= U {-R:=Xi =Ry, Xict1> R}U{-R, = Xk =Ry, Xis:1 < —Rs},
ke

=n

m

Ey=U {t,:<o<t,, 0=t ,7>14},

m=1
mn

E,= U {t,. <o<t.,0=4,7>1)},
m=1

then
P{o=t ,7> 4, }=P{D,}+P{E,}+P{E,}.

CramM 1. lim, . P{D,}=0 uniformly for |x|=r and all x,.

CraiM 2. lim, P{E;}=0 uniformly for |x|=r and all x,.

Assuming that Claims 1 and 2 hold, we have P{o =t , 7>t} >0 as n>. And
the convergence is uniform for |x|=r and all x,. This proves (3.8) and hence Lemma
4 when d =1.
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Proof of Claim 1. Using the Chebyshev inequality and a standard estimate for
the tail probability of a Gaussian random variable we have
k,—1
P{D,}= ¥ P{-Ri;=Xi =Ry, Xics1— Xic> R;— Ry}
K

=n

U{-R,=Xi =Ry, X1 — X <—(R;— R,)}

K,—1
= k; P{IXklé R,, |Xk+1 —Xk|> R;— R}

k_—1

n

= k‘; P{Xi|= R, |—an(U'(X) + &)+ b Wi|> R, — Ry}

k —1
n R;—R R;—R
ékg (P{|Xk|§R4,ak|§k|> 33 2}+P{bk|Wk|> 33 2}), n large
k,—1 e
= § (aiE{|§k|2, X = Ry} + exp ( “F))
et p

k,~1
=c ¥ (aff"+exp(—c—i>)
k=n bk

® 1
=c¢s Y, (W+exp (—c4k))—>0 as n- oo,

k=n

since a > —1. This completes the proof of Claim 1. 0
Proof of Claim 2. Since the proofs for E;, and E,, are symmetric, we only consider

E}. For convenience we suppress the + sign throughout, i.e., E, 2 E\, = thmm, U =
+
V.

For 1=m=m, let
E,n,={t, <o<t, ,0=t, , 7>t}

We have
kn
P{E,.,}=P U {1, <t<t, ,o0=4,7>1}
k=n+2
kn
=P U {Xi\—Y>R,—R,,t, <t<t, ,0=t,7>1}
k=n+2
k

=P U {Xi,—Y,>R,—Ry,t, <t,=t, NOAT}
k=n+2

P{k max [Xk_Yk]> R4_R1}
I

H <= A t
ST =ly AOCATALE

1

P{k, max [Xum“ Y, — ki a(U'(X;) - U'(Y)))

: = —
Hy, SOSl, ACATAL 1=t

Il

k—1

_1 ) al(&_gl)] > R4_R1}-
=tm

Note that the b, W, terms have been eliminated at this point; it is here we see the

utility of comparing X (¢) and Y(¢). Now suppose ¢, <t =t, ACATAL, . Then

X, €(R,,R;], Y, €(—R,,R,), which implies X, —Y, =R;+R,=(R,—R,)/2.
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Also X, € (R,, R,], Y;€ (—R,, R)) for all [ such that u,, = [ <k, which implies U'(X}) —
U'(Y;) >0 for all I such that u,, =<k Now let

Nk = (fk - {k)l{leI§R4}-
Note that by (A4’) and Corollary 1
E{nl|F} = ciai™, |E{ml F} = cral"? wop.l.

Hence
k—1 .R __R
ID{E%,n}EEI){ max 2: afnl:> 4 1}
3 k:tum<’k§t"m"”"”"kn 1= 2
k—1 ‘R __R
=P max am,>—2 1
{I—"m<k§vm/\kn I———Z,u,m 1M 2
: R,~R
3.9 =P max a 1 ey > 4 1
(39) {n+1§k§k,,_1 ,=zn:+1 MY u,=1<v,} )
k
éP{ max Y ai(m— E{n|FN L, =1<v,
n+l1=k=k,—1 j—p41
" R,—R
+ max aE{m|F};, = >4
n+1=k=k,—1 1=§+1 ! {ml ’} {rm=1<vy} )
But
k
max aE Fi, <1<
n+1=k=k,—1 ,:gﬂ E{m|F} {rm=I<vm}
k,—1
= X allE{”fh‘%H
I=n+1
(3.10) -
écl Z a§3/2)/\(1+B)
I=n+1
it 1
=¢ L Tamam 0 asn>o
I=n+1

since B> 0. Combining (3.9) and (3.10) gives for n large enough

k R,—R
(3.11) P{E,.,m}éP{ max ¥ a(m—E{mFD,zie0,0 > '}.
n+1=k=k,~1 |4 4

Let 7 = m — E{m| %} and

K
Smi= 2 amly, =i<v,)» k=zn+1.
I=n+1
Since 7, is %, -measurable and {u,, =I1<v,}e %, {Spr, Fr+i1}r=n+1 is a martingale.
Hence applying Doob’s inequality to (3.11) gives for n large enough

R4_ Rl
< 4 1
P{E,m}= P{n+lgca§}$cn—l Sme> 4 }
= c3E{S%n,k,,—l}
k,~1
=c ) a%cE{lﬁklzl(p.mS_-k<vm}}~

k=n+1
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Finally,

P{E}= Y P{E,,}

m=1

=¢ 2 akE{|17k‘ Z l{um§k<um}}

k=n+1

=y Z akE{lnklz}

k=n+1
k,—1
=c¢ Y aiE{nf}
k=n+1
k,—1
= s E a:;(/\(2+a)
k=n+1
< - 1
=cCs k}n:ﬂm-)o as n->oo
since a > —1. This completes the proof of Claim 2.
Proof for d >1. We now show how the above proof for d =1 can be extended
tod>1.
Let u' denote the ith component of a vector u. Suppose for the moment that there
exists R,> R, such that for R;= R,+1 and R,=2R;+3R,, we have

oU
3.12 PSS Gyl A
( ) xS<upR2 ( )< x’|<R vj 9x' ()
Ix/|=RyVj=i
oU U
(3.13) inf  —=(x)> sup —=(x).
W

For s>0,R,>0,and i=1,---,d let
o;(s, Ro) =inf {t= s: | X'(t)|> Ry}.
Then we can show that as n—»> o

PO,xo;l,,,x{o'(tna \/ER4) = tk,, s T( tn9 Rl) > tk,,}
d
= Z PO,XQ;!,,,x{Ui(tna Ry = e, s oi(t,, Ry = O'j(tn, R,) Vj#i, T(tna Ry))> tk,,}_>0
i=1

similarly to the proof given above that
Po syt A0 (tn, R =i, (80, R1)> 1, } >0

in the scalar case d =1. So (3.8) and hence Lemma 4 holds for R =\/ER4.

It remains to establish (3.12) and (3.13). We only consider (3.13). Let D(R,) =
{x: x'= R,,|x’|= R, Vj#i}. Since R, is fixed here, there will exist R, such that (3.13)
holds if we can show

aU
lim inf —(x)=oc0.
R,>00 xe D(R,) X'
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We proceed by breaking VU (x) into radial and tangential components and comparing
the projection of these components on e, the ith standard basis element in R% So let
X= |x|>0,

b

|x

VU(x)—(VU(x), £)£
VU(x)—(VU(x), $%]’

=0, IVU(x)—(VU(x), $)%|=0

6=

[VU(x)—(VU(x), )%|>0

and

_(VU(x), 6)6, e")
TV U(x), £X%, e')’

g(x)

x' large.

Of course (%, §)=0. Then

Tm 2x)=Tim su v UX)=(VU(x), %)’ 1-(%€')’
i su = - C—
R bty © L R xeniry (VU(X), 27 (% e’

=Tim sup [<VU(x) x>'2_1:|.___—|x|2—(xi)2

R,>00 xe D(R;) |V U(x)|’|-;| (xi)z

<(L(d)?-14d-1)=1,

where the first inequality follows from Bessel’s inequality (applied to VU (x) and to
e'), and the last inequality follows from (A3) and the fact that if x€ D(R,) then
|x|*—(x)>=(d —1)Rj and (x')*= R3 (and also R,~2R, as R, ). Hence

19) . A A
lim inf —(x)=1lim inf [VU(x), XXX e")+(VU(x), X6, e')]
Ry—»00 xe D(Ry) 0x R,;—»>00 xe D(R;)

=lim inf (VU(x), XXX, e")(1+g(x))

R,;—>00 xe D(Ry)

= lim inf IVU(x)|<

R,->00 xe D(R;y)

VUG) x\x' _
RO ) e O 5D

Hence (3.13) and similarly (3.12) follows. This completes the proof of Lemma 4.

3.2. Proof of Lemma 5. The idea behind this proof is that if X (s)= Y(s) and
X (t) and Y(t) remain in a fixed bounded set on large time intervals t € [s, B(s)] (and
they do by Lemmas 3 and 4), then we can develop a recursion for estimating
E{|X(B(s))— Y(B(s))]’}, and from the recursion we can show that E{|X(B(s))—
Y(B(s))|’} >0 as s> co. This is true even though the interval length B(s)—s-> as
§ —> 00,

For each n let k, be the integer that satisfies B(¢,) € [# , #

(3.14) Hm Eo v, {1 X (1) = Y(1,)

). We show that

n+1

2’ O-(tns R) A T(tn9 R)> tk,,} = 0'

The lemma then follows by some minor details, which are omitted.
In this proof we can and will assume that VU (- ) is bounded and Lipschitz function
on RY and ¢, satisfies (A4') with K =R“ (instead of K a compact subset of R?), i.e.,

(3.15) E{|&P|F}=Lay, |E{&|%)=Laf w.p.



1012 S. B. GELFAND AND S. K. MITTER

(if o(t., R) A 7(t,, R)> 1, then |X(1)|,|Y(¢)]=R for t,=t=t,, and so U(x) can be
modified for |x|> R and we can set & =0 for | X,|> R without loss of generality).
Fix n for the moment and let o = o(t,, R), 7= 7(t,, R). Let

&= L(tic, tiea A T(t, R))
and
Yi1=Yie—a,(VU(Y )+ ) + bW

Note that if Y(#,) =Y, and 7> ¢ , then Y (#,) = Y} . Henceforth assume all quantities
are conditioned on X (0) = X,=x,, X (t,) =X, = Y(t,) = Y, =Xx, |x|=r. Then

E{|X(tkn) - Y(t,) Lont> t,} = E{|an - Y, LonT> t,}
= E{|X,, - Y., |7}

(3.16)

We proceed to show that the right side of (3.16) tends to zero as n—> . Let
A =X, - Y, N = & — Lk
Note that by (3.15) and Corollary 1
E{n|F=cai™!, |E{mlFH = cial™? w.p.l.

Now using Holder’s inequality and the fact that X, Y, and hence A, are %, measurable
we have

E{|Ajn [} = E{|Ax — au (VU (X, +A) —VU(X,) + o)}

= E{|Al} =2 E{(Ax, VU (X, +A,) =V U (X))}
—2aE{(Ar, i)} + ai E{[VU (X +A,) - VU (X))}
+2a3 E{(VU(X +Ay) =V U(X0), m)} + aiE{|nil}

= E{|A} +2d,aE{|A P}
+2aE{| ALY E{ E{nd PP} +2d ai E{|A}
+2d,ai E{| ALY 2 E{|E{mi| FIP}? + ai E{E{|ni["| Fic}}

=(1+ca) E{|A} + caag,

where d, is a Lipschitz constant for VU(-) and 8 =min[3,2+ a, 1+ 8]. Using the
assumptions that @ > —1 and B >0 we have 6> 1. Now for each n

E{|Aia =1+ 0a) E{[A} + coak, k=,
E{|A,[}=0,

and if we replace the inequality with equality, the resulting difference equation is
unstable as k- co (recall that a, = A/k, k large). Nonetheless, we make the following
claim.

CLAIM 3. There exists y> 1 such that

lim sup E{|AJ}=0.

n->o0 k:t,=t=vyt,
Assume the claim holds. Since t, = B(t,) =1, + 2123 < yt, for n large, it follows that
lim E{|A, |} =0.

This proves (3.14) and hence Lemma 5. It remains to prove the claim.
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Proof of Claim 3. For each n let {u,,},=, be a sequence of nonnegative numbers
such that

8
un,k+lé(1+ak)un,k+ak’ kén,
un,n=0’

where 6 > 1. Now

k-1

- k-1 k-1 k—1
U= ) | (1+al)§< x a?n) 'eXP( z am),
m=n l=m+1 m=n m=n

since 1+x=e* Also Y% 'a,=A(log(k/n)+1/n) and Y5 'al=A(1/(6-1)n"""
+1/n®), and if t, =vyt, then k=c,n”. Choose y such that 1<y<1+(86—1)/A. It
follows that

(y=1A-(5-1)

sup U, =Con >0 asn-oo.

k:t, =t =yt,
The claim follows by setting u, , = E{|A,[*}.
Remark. The proof of Claim 3 does not work if a, = A/k" for any n <1.

4. General tightness criterion. In this section we consider the tightness of an
algorithm of the form

(4.1) X1 = X — ar (Y (Xi) + &) + bW, k=0

where {a,}, {bi}, {&), and { W, } are defined as in § 2, and {,(x): x e R} is an R valued

random vector field for k=0,1,---. We will deal with the following conditions in

this section («, B, v;, and vy, are constants whose values will be specified later).

(B1) For k=0,1,---, let F=0(Xy, Wy, "+, Wi_1, &, *, &—1). There exists
L, >0 such that

E{l&l|#d = Liak, |E{&|F3=Liakl wp.l
W, is independent of Z,.
(B2) Let K be a compact subset of R%. There exists L,> 0 such that
E{lgn(x)P|FI=L, VxeK, w.p.l.
(B3) There exists Ly, R >0 such that

Ixf

E{lgn(x)|| .}’ = Ls V|x|>R, w.p.l.

anl
(B4) There exists L,, R >0 such that

2
X
EQuoPF) =L, V>R, wpa.
k

(B5) There exists Ls, R >0 such that
E{{(x), x)l%c} = LsE{|dn(x)||x|| Fi} V|x| >R, wup.l.

THEOREM 3. Assume that (B1)-(B5) hold with a > —1,8>0, and 0=y, = y,<1.
Let {X,} be given by (4.1) and K be a compact subset of R%. Then {X}: k=0, x,€ K}
is a tight family of random variables.

The proof of Theorem 3 will require the following lemmas.

LEMMA 6. Assume the conditions of Theorem 3. Then there exist an integer k, and
an M, >0 such that

Eo,x0{|Xk+1|2} - EO,xo{|Xk|2} =0 ion,xo{|Xk|2} =zM,,
Jor k= ky and all x,.
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Proof. Assume all quantities are conditioned on X,=x,. Now it follows from
(B2)-(B5) and the fact that X, is %,-measurable that

E{|n (X | X = RY= Ly,

E{|yn(X0)l%, [Xi| > R} = Liai " E{| X, | X[ > R},
E{|yn(X)P, 1X > Ry = Liai E{|X,", IX,|> R},
E{(n(Xi), Xu), | Xi|> Ry = LsLY?a; " E{| X", | Xi| > R}.

Let D € %,. Then using Holder’s inequality and the fact that X, is %,-measurable and
W, is independent of %, we have

E{|X,..[’, D}~ E{|X.[’, D}
= E{|X; — ax(4u(Xi) + &) + bW’ D} - E{|X, [, D}
= 2aE{(Xi, ¥(Xi)), D} =2aE{( X, &), D}
+2bE{(X}, W), D}+ ai E{|¥n.(X,)?, D}
+2a3 E{(dn(X1), &), D} —2ab E{($(X,), W), D}
+aiE{|&P, D} =2abiE{(&, W), DY+ biE{|Wi[’, D}
4.2) = -2a,E{(X, ¥1.(Xyx)), D}
+2aE{|X.[’, DY ?E{|E{&|F:)}
+2b, E{(X,, E{W}), D}+ ai E{|¢n(X,)*, D}
+2ai E{|un (X, DY E{E{|&| .}
+2a,bE{|[Yn(X), DY E{| Wi}
+aiE{E{|&173)
+2ab E{E{|&’| Fi 3} P E{| Wi} /2 + bLE{| Wi ).
Let D ={X, > R}. Then using (4.2) we have
E{|Xil’, | Xi> R} = E{|X.[’, |Xi| > R}
=—ca "?E{ X, | Xc|> R}
+ e ((ay+ai b ) E{| X, %, |Xk| > R}+ a2+ adb,+b3),

where 8;=min [1+8,2—y,,2+(a —v,)/2], S;=min[1+ 8,2+ (¢ —v,)/2,2+ a], and
é;=min[1-1v,/2,1+ «/2]. Using the assumptions that a > -1, 8 >0,and 0=y, =y, <
1, we have 8§,>1, 8,>1, and 8,>3, and since b, = o(a}/?) we get

E{| X+’ | X > R} — E{| X[, |Xx|> R}
(4.3) =(—car " *+o(ay ")) E{ X, | Xi|> R} + o(a) %)
=—ca " HE{ X[} -R~1)

for all k= k,, if we choose k, large enough.
Let D ={X, = R}. Then using (4.2) we have

E{| Xk’ [Xi| = R} = E{|X, ", |Xi| = R} = cs(afs+ afsb, + b}),
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where §,=min[1,1+8,2+a/2,2+a] and §s;=min (1, 1+ «/2]. Using the assump-
tions that @ > —1 and B>0 we have 8,=1 and 8s>1, and since b, = o(ay?) we get
(4.4) E{| X1’ | X = R} — E{|X\ ], | Xi| = R} = coay = cgal” >
for all k=0.

Finally, let M,=c¢s/cs+R+1. Then combining (4.3) and (4.4) gives the
lemma. 0

LEMMA 7. Assume the conditions of Theorem 3. Then there exists an M,> 0 such that

Eo o {1 Xicr '} = Eo o{ | X} = Mo(Bo o {| X} + 1)

for k=0 and all x,.
Proof. Similarly to the proof of Lemma 6 we can show that conditioned on X, = x,

E{| X1’ | X > RY— E{|Xi|%, | Xi|> R} = c;al (E{|X, [} +1)
and
E{| X[, | X = R} - E{ X | X = R} = ¢, 4.

Combining these equations gives the lemma. 0
Proof of Theorem 3. Let M,;, M,, and k, be as in Lemmas 6 and 7. By Lemma 7
there exists ¢; = M, such that

Eo X} =ci, Vk=ky, x0€K,
and by Lemmas 6 and 7 we also have
Eox {1 Xiti[} = Bo o {IXi} =0 if By J{IX} 2 M,
and
Eo {1 X1} = Eo o {|Xi['} = Mo( By (I X} + 1)
for k= k, and all x,. Let ¢,=¢,+ M,(M,+1). Then by induction we get
Eo { XS, Vkz0, x0€K,
and the tightness of {X73: k=0, x,€ K} follows from this. O

5. Tightness and convergence for two example algorithms. In this section we apply
Theorems 2 and 3 to establish the tightness and ultimately the convergence of two
example algorithms. Define U(:), {ai}, {bc}, {&}, and {W,} as in § 2. We will need
to consider one or both of the following conditions:

(As)  lim [VU(x)|/|x|>0.

|x|—>00

(A6)  Tim |VU(x)|/|x| < co.

|x|>00
Example 1. Here we consider the following algorithm:
(5.1) Xk+1=Xk’_ak(VU(Xk)+§k)+kak, k=0.
THEOREM 4. Assume (A1)-(A3), (B1), (AS), and (A6) hold with a >—1, 8>0.

Let {X,} be given by (5.1). Then for B/ A> C, and any bounded continuous function
f() onR?

lim Eo «,{f (Xi)}=7(f)
uniformly for x, in a compact set.

Proof. The assumptions of Theorem 2 and Theorem 3 (with ¢, (x)=VU(x) and
v:1=7v,=0) are satisfied. 0
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Observe that the proof of tightness of {X3°} using Theorem 3 requires that (A5)
and (A6) hold, i.e., there exists M, and M, such that

M, |x|=|VU(x)|= M,|x|, |x]|large.

Intuitively, the upper bound on |VU(x)| is needed to prevent potentially unbounded
oscillations of { X} around the origin. It is possible to modify (5.1) in such a way that
only the lower bound on |VU(x)| (i.e., (AS)) but not the upper bound on |VU(x)|
(i.e., (A6)) is needed. Since we still want convergence to a global minimum of U(-),
which is not known to lie in a specified bounded domain, standard multiplier and
projection methods [1] are precluded. The next example gives a modification of (5.1),
which has the desired properties.
Example 2. Here we consider the following algorithm:

Xilv1
Xi+1= X —a (VU (X)) + &)+ bW, if IVU(Xk)+§k|<| ’;l
(5.2)

|Xk|V1

=X, —a; "X, + bW, if |V U(Xk)+§k|> s
where y> 0. Intuitively, note that if K is a fixed compact set, X, € K, &, is not too
large, and k is very large, then X, is updated to X, as in (5.1). Also note that in
(5.2) (like (5.1)), VU(X}) and & only appear as the sum VU(X)+ &. This means
that we can use noisy or imprecise measurements of VU(+) in (5.2) in exactly the
same way as in (5.1).

THEOREM 5. Assume (A1)-(A3), (B1), and (AS) (but not necessarily (A6)) hold
with a>0. Let {X,} be given by (5.2) with 0<+y<3. Then for B/A> C, and any
bounded continuous function f(-) on R*

(5.3) lim Eo, {£ (X} =7(f)
uniformly for x, in a compact set.

Proof. Let
(5.4) Xicr1 = Xi —ar(VU(X)) + €k) + bW

(this defines &;) and Fi.=0(X,, &, k-1, Wo, "=+, Wik_1). We show that
(&, Wi, F1) satisfies (A4). Hence by Theorem 2 if {Xo: k>0 xo€ K} is tight for K
compact then (5.3) holds.

Let

. xlv1

b)) =VUG) if VUG +&|=2

k
X . x|v1
= if [VUX)+& lly :

Let
(5.5) X1 = Xi — a (Y (X)) + €D + b Wi

(this defines ¢7) and Fl=0(Xo, &5, Ekc1, Wo, -+, Wi_1). We show that
(&%, Wi, F) satisfies (B1) and (¢, (x), Fi) satisfies (B2)-(B5) with y, =0, y,=2%.
Hence by Theorem 3 {Xj;°: k=0, xo€ K} is tight for K compact and (5.3) does hold.
These assertions are proved in Claims 4 and 5 below.
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Remark. The proof shows the importance of separating the tightness and con-
vergence issues. Even though we can write algorithm (5.2) in the form of algorithm
(5.4), we cannot apply Theorem 3 to (5.4) to prove tightness because U(-) may not
satisfy (A6), and &) may not satisfy (B1) even though &, satisfies (B1).

CLAIM 4. Let K be a compact subset of R®. Then there exists M,> 0 such that

E{&P|F}=M,af VX, eK, wp.l.

Also, W, is independent of F.
Proof. Clearly,

X, |v1
&= if |VU(Xk)+§kl<| ';'V

X

Xi|v1
_a__VU(Xk) lf |VU(Xk)+§k|>| k|V .

Hence for X; € K and k large enough

X X |v1
E{Ifklzl%c}<E{|§k|2|a«,<}+E{ [Xiv1 klv

(V U(X,)+&|>——

/)

/)

=La;+ Pr{|VU(Xk)+§k|>|Xk|v1

C
y Fi
ag

C
= Llaz'f'a—{y Pr {|§k|>—

=Lia; + E{|&| %} =M,ai wop.l,

where we have used the assumption that y >0 and the Chebyshev inequality. It is easy
to see that the inequality actually holds for all k= 0. Since F; = %,, the claim follows.

CLAM 5. Let K be a compact subset of R”. Then there exists M,, M,, M;, M,,
and Ms, R >0 such that

(i) E{|&P|Fit=M,af w.p.l. Also W, is independent of F/,

(ii) E{|yn(x)| Fi}=M, for all xe K, w.p.1,

(iti) E{|un(x)|| F1Y*= Ms|x|* for all |x|> R, w.p.,

(i) Eflin(x)[1# 1= My(x[/ a2 for all |x|> R, w,p.1,

(V) E{(y(x), )| Fi} = MsE{|yn ()| |x|| F1} for all |x|> R, w.p.1.

Proof. First observe that (iii) and (v) follow immediately from (A3) and (A5).

(i) Clearly,

X, 1
e it FUK)+el =KL

Xi|v1
=0 if IVU(Xk)+§k|>| '°|V .

Hence
E{|¢if’| #i} = E{|&’| i} = Mya wp.1.
Since &} < %, (i) must hold.
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(ii) For xe€ K and k large enough
|x|v1

Bl #) =y Ueor+ 2 pef v +4)> 2L

’

sa+aE{&l|F=M, wpl,

where we have used the assumption that y > 0 and the Chebyshev inequality. It is easy
to see that the inequality actually holds for x € K and all k=0. Since %} < %, (ii)
must hold.

(iv) For |x| large enough and k=0

/)

G C
= CI+-—_a27 Pr {|§k|>;
k

x| v 1
ag

E{|¢’k(x)|2‘gk}<

+|v U(x)|2P{|V Ux)+&|=

<2 i +E{|vu<x>|2 FUGi= '+|gk|

2
+3E{|§k|2| FI=M, x Jy w.p.1.

ay
Since % < %, (iv) must hold. This completes the proof of the claim and hence the
theorem. 0

As a final note observe that the algorithm (5.1) does require (A6), and also (B1)
with a > -1, B> 0. On the other hand, the algorithm (5.2) does not require (A6), but
does require (B1) with a >0 (and hence 8>0 by Holder’s inequality). It may be
possible to allow {&.} with unbounded variance in (5.2) but this would require some
additional assumptions on {&} and we do not pursue this.
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