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I. Introduction and Problem Formulation.

In Part I of this paper [Flamm and Mitter 1986] we considered the

single-input/single output X weighted sensitivity minimization control

problem formulated in [Zames 1981], but with transfer functions of the

form

P(s) = e P(s) (1.1)

where PO(s) is a minimum phase and stable rational function, and A>0.

The block diagram in Figure 1 shows the feedback system models we are

considering.
d.

Figure 1. Feedback system considered.

The closed loop sensitivity S(s) is the transfer function from d to

y. The weighted sensitivity X(s) for the weighting function W(s) is

given by

X(s) = W(s)S(s) = W(s)[l+P(s)C(s)]-' (1.2)

The problem is to minimize the go norm of X(s) over all stabilizing

proper feedbacks C(s), that is, to solve
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tnf IIW(s)[1+P(s)C(s)]-l l[ O (1.3)
C(s)

where C(s) ranges over all proper compensators for which the feedback

system in Figure 1 is internally stable.

For later convenience we define the "Q-parameter" as Q = and

we note that C - Q For stable plants P. there is a one-to-one
1-PQ'

correspondence between stable proper Q (i.e., Q E X ) and proper C(s)

for which the system in Figure 1 is internally stable. See [Zames

1981].

The criterion of minimizing the norm of (1.2) for P(s) rational is

introduced and motivated in [Zames 1981, pp. 585-586]. In this paper we

continue the solution of (1.3) from Part I. As before, we assume the

weighting function is given by

s+1
W(s) - s+j (1.4)

with 0 < p.

In Part I we restricted our attention to the modified problem

tnf, IIW(s) - e-SAH(s)ll (1.5)
HE-.

since the infimum in (1.3) is generally not attainable when P(s) is

strictly proper, and the solution to (1.5) is not greater than that of

(1.3). See, for example, [Francis and Zames 1984, p. 10] for the

rationale behind the transition from (1.3) to (1.5). In this part we

shall use a compensator arising from a solution to (1.5) to find a
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sequence of compensators for which the closed loop weighted sensitivity

approaches the infimum in (1.3).

II. Results from Part I and Overview of Part II.

We first repeat the main results of Part I.

Theorem 1.

For p < 1 the infimal sensitivity X(s) corresponding to problem (1.5) is

given by

s+1 - e-sAx (s-p)
X(s) = ma (2.1)

max (s+p) - e -s(s-l)

where

[O+111/2

aX 2 2(2.2)

and wo is the smallest positive solution of

cot(oA) = (l+)

Theorem 2

For 1p 2 1, all infimal sensitivities X(s) corresponding to problem (1.5)

are given by

X(s) s+1 - e -S(s)(s-fP) (2.3)X(s) A (2.3)
s+P - e p(s)(s-1)
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as p(s) ranges over B( f), the unit ball in X . Moreover, for P > 1

X(s) is inner 4 qp is inner.

Our present purpose is to use these results to solve the original

problem (1.3)

Using the optimal sensitivity (2.1) for problem (1.5), we shall

compute a corresponding compensator for (1.3) as if (2.1) were the

solution to (1.3). The result of these calculations will show that the

resulting compensator is generally improper, and therefore (2.1) cannot

be obtained as a solution to (1.3). We shall see that the optimal

improper compensator is also unstable, and that the resulting closed

loop system has zero "delay margin."

Remark: In case P is not strictly proper, the optimal compensator
is proper, and there is less difficulty with realizing it. To treat
the most general case, we assume that P is strictly proper.

We next show how to approximate this improper compensator by proper

ones which result in stable closed loop systems having sensitivities

with norms arbitrarily close to that of (2.1). Since the infimal value

for (1.3) is not generally attainable, this sequence of compensators

solves the problem (1.3).

Finally, since the compensators in our sequence contain delays, we

show how to modify these compensators to eliminate the delays, yet

preserve stability and yield sensitivities with norms approaching the

infimum. Thus we obtain a sequence of proper and finite dimensional

compensators which solve (1.3).
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III. Computation of the Improper Compensator

Now we compute an improper compensator which would give us the

computed optimal sensitivity for (1.5) as described in Theorem 1. The

computation of the improper compensator involves finding the value of

the free parameter-function H(s) which gives rise to the optimal

weighted sensitivity, using the formula X(s) = W(s) + e -SH(s). Since

our computation of X did not involve finding an H which attains the

X-W
infimum, we need to show that H as given by the computation H = -sA is

e

an element of X . Suppose we have computed the optimal sensitivity X(s)

as above. We know (See [Flamm and Mitter 1986, pp. 5-9]) that

lK(XIK) = fK(WIK), so HK((X-W)IK) = O. We can also see that UK(X-W) = 0

since KL is closed under multiplication by Xo functions. Therefore

(X-W32 A X -sA~2 -sA
(X-W)~2 C K' = e s2. But then e divides (X-W) in ? (this follows

from the uniqueness of the inner-outer factorization), and the

computation works.

We proceed to find the feedback compensator C which results in the

weighted sensitivity (2.1). Using the Q-parametrization mentioned in

Section I. we have X = W(1-PQ) and C = PQ, so

W-X
C = X (3.1)

-sA
Recall that we are assuming P(s) = e 'PO(s), with Po(s) stable and

minimum phase.

Using (2.1) and (1.4) in (3.1) and simplifying, we get for the

optimal compensator (with X = X x)

1 s21 -_ 2 (s 2 -p2)

Po X -(s+l)(s+P) + e-SAx(s2- 32)
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Substituting for X2 using (2.2) we get

-X 2_1. 22 2O2
C = X. L . A

Po ( 2+1 -(s+l)(s+p) + e-s~X(s2-p2)

Taking

(1_p2 ) x2 I_1

2O+1 -

this is

2+ 2
C~= 5s +WO 1

s2+(P+1)s+P 1 + e -SX- s '

s+l

which can be realized as shown in Figure 2.

u s2+ CU

s 2 +(P1+l )s+

s+I

Figure 2. Realization of Optimal Compensator

Since Po (the outer part of P) will generally be strictly proper, C

and Q will in general be improper. We also note that since the

compensator contains a delay it is infinite dimensional.

IV. Stability of Optimal Improper Feedback Compensator.

We present two ways to see that the optimal compensator is

unstable.
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The first is essentially just an extension of the situation for

purely rational plants. The idea is that the optimal sensitivity is a

constant times a (infinite) Blaschke product, and the numerator of the

sensitivity appears in the denominator of the compensator. Therefore

the compensator has right half plane poles. The details are as follows.

W-X
We know from above that C = W so

PX 1].

Since W and P have only left half plane zeros and poles by assumption,

if we can show that X is a constant times a Blaschke product, we can

conclude that C is unstable.

Let (o = X-'X. Then qo is inner. We argue (following [Sarason 1967,

p. 194]) that +p(s) is a Blaschke product: Since (p(s) is continuous on

the imaginary axis, the only singular inner functions that can divide it

are of the form e-sa with a > O. But epsa(s) is unbounded on the

positive real axis, so w( is purely a Blaschke product.

We can further show that p is an infinite Blaschke product by

applying Picard's theorem to its numerator. Thus we prove that

1-e sAXs- has finitely many zeros in the closed left half plane, and
s+s

then conclude by appealing to Picard's theorem that 1-e s'+-T has

infinitely many zeros in the right half plane.

First we note that le-SA > 1 for s in the left half plane, and

le-SAI < 1 in the right half plane. Now all zeros must satisfy

e e(s-).lss+l = vT, and therefore all closed left half plane zeros

satisfy s- I< 1 . The locus ss+-P = v is an ellipse, and so all

closed left half plane zeros lie on or inside the intersection of the
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ellipse s-P = v with the closed left half plane. See Figure 3.

Ote (s)

T- 3X-1 1 1 )
2 X+l X- 

Figure 3. Region for possible left half plane zeros.

Thus all closed left half plane zeros lie in a compact region, and

we conclude from analyticity that there are only finitely many in that

region. Picard's theorem tells us that there are infinitely many zeros,

so that we must conclude that there are infinitely many in the open

right half plane. A similar argument shows that the denominator of X(s)

in (2.1) has only finitely many right half plane zeros. Therefore the

numerator and denominator of X(s) have only finitely many common zeros,

and X(s) is an infinite Blaschke product.

(The same conclusion might be reached by looking at the Nyquist

plot for the feedback loop in Figure 2, although we know of no version

of the Nyquist stability criterion which applies to the case of

infinitely many right half plane poles.)

A second instability proof gives us more detailed information about

the distribution of the right half plane zeros without much more
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trouble. As stated above, the right half plane zeros must satisfy

S+P > 9j. As is- - s-P 1. Therefore as Isi - a, the zero set

{zi} approaches the line Ie s I = which is the same as

Ae(s) = Al and 'm(zI) - (2n+1l). Also, since right half plane zeros

must satisfy (Is-P < 1 (by comparing distances from P and from the point

-1), we have iXi- sI < JXJ. Then since <e siA. = - 1

{eSAl < hxI, and we conclude De(s) < Inli for these zeros.A

IV. Motivation for a Sequence of Proper Compensators.

We consider the problem of approximating the sensitivity resulting

from the improper ideal compensator using a sequence of realizable

compensators.

There are two problems with the ideal compensator: First, it is

generally improper. The physical interpretation of this is that it

would have to contain differentiators, which can only be approximated

with real systems. That is why our problem (1.3) requires C(s) to be

proper. The second problem is that the optimal compensator contains a

ideal delay, and again this cannot be constructed exactly.

The best we can hope for is that we can approximate the ideal

compensator over a finite bandwidth, and design the system so that the

behavior outside this band does not significantly affect performance.

We would like to describe an approximation procedure such that we can

pick whatever finite bandwidth we want, and the performance will

approach the optimum as the bandwidth grows.

We are not attempting to approximate the optimal compensator, but

rather describe a sequence of compensators for which the weighted X

norm of the closed loop sensitivity approaches the infimal value. It
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does turn out, however, that our sequence of compensators approaches the

optimal compensator uniformly on compact sets. For this point see

[Fagnani 1986, pp. 45-461.

Since the infimal weighted sensitivity is unique (when it has norm

greater than 1), and the corresponding compensator is improper when the

plant is strictly proper, there can be no proper compensator which

achieves the infimum.

For the case of a purely rational plant it is also the case that

the optimal compensator is generally improper, and there are procedures

in the'literature to compute proper compensators for this case ([Zames

and Francis 1983, p. 591] and [Vidyasagar 1985, p. 178]). The procedure

in [Zames and Francis 1983] requires the evaluation of the term BZ(o),

where Bz(s) is the Blaschke product formed from plant zeros. In our

case there is no Blaschke product involved, but rather a singular inner

function. If we interpret B (s) to be this inner function, Bz({) is not

defined. There is no apparent way to fix this problem for our case.

The procedure in [Vidyasagar 1985] does not work for our case

either. The essence of the difficulty is the same as in the

Zames-Francis procedure - the inner factor of the plant is not

continuous at infinity. In the case of a stable plant, the Vidyasagar

procedure consists of multiplying the optimal "Q-parameter" by a

rational function, the magnitude of which decreases with increasing

frequency at a sufficiently high rate. As the breakpoint of this

"roll-off" function increases, the X -norm of the rolled-off sensitivity

function approaches the minimum. The idea is then to compute the

compensator which yields this suboptimal Q-parameter, and in the

rational plant case one will have a satisfactory sequence of

approximating compensators.
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Additional details on why that approach does not work for our delay

case are given in [Flamm 1986, pp. 64-67]. The essential point is that

in the rational plant case, at high frequency the product PQ approaches

a real constant. Roll-off can therefore be introduced into the feedback

loop at high frequency without regard for the phase, whereas in the

delay case PQ has unbounded phase.

V. Approximation by Proper Finite Dimensional Compensators

We now describe how to construct an approximating sequence of

compensators which does produce sensitivities which approach the

optimum. We summarize this result as

Theorem 3. There exists a sequence of rational proper feedback

compensators which result in weighted sensitivities of norm approaching

the optimal value max of Theorem 1.
max

Remark: Theorem 3 solves (Problem 1.3) for P < 1. A similar
results holds for P > 1. Since the infimal weighted sensitivity is
unique (when it has norm greater than 1), and the corresponding
compensator is improper when the plant is strictly proper, there can
be no proper compensator which achieves the infimum. (For P > 1,
the solution is not unique, and there is a proper compensator which
achieves the infimum, namely the zero compensator C(s) = O. See
Theorem 2 above.)

The essential idea is to roll-off the ideal Q-parameter by multiplying

it by a stable transfer function for which the Bode magnitude plot has

slope less than 1 (such as (5.1) below), so as to limit the phase

deviation due to the roll-off, until sufficient attenuation has been

obtained. This this can be accomplished, for example, with a lead-lag

network which approximates such compensation by having average slope

magnitude less than 1.
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We note that any stable Q-parameter results in a stable closed loop

system, so that this roll-off technique preserves stability just as do

the procedures for the case of a purely rational plant transfer

function.

Assume Q is the optimal (improper) Q parameter resulting in the

optimal weighted sensitivity X(s) = W(s)[s-e Q(s)]. Define X = IIXIIC,

and note that X > 1. We can write X(jw) = Xeja((), where a(w) is real.

The proof proceeds by developing approximations to C(s), first to

make C(s)P(s) strictly proper, next to make C(s) proper, and finally to

make C(s) finite dimensional. Again, our goal is to describe a sequence

of compensators for which the weighted X norm of the closed loop

sensitivity approaches the infimal value.

The proof consists of three propositions. The first step is the

following:

Proposition 1. Let X(s) be the infimal sensitivity given in (2.1), with

norm IIX(s)ll, = X > 1. Let

hn(s) = [n/(s+n)] (5.1)

Then the compensator given by

hn(s)[W(s) - X(s)]
CA(s) =

P(s)[(1-hn(s))W(s) + hn(s)X(s)]

results in a stable closed loop for which the sensitivity approaches X

as n -e . Furthermore, the loop gain JP(jw)CA(j)J -o 0 as IwI -I . I

Remark: This formula amounts to using a different roll-off function
in the Vidyasagar approach. The reason for the given form of the
roll-off function hn(s) is that it is necessary to control the phase

of hn(s) until the loop gain has decreased sufficiently. Otherwise

the sensitivity can be bounded away from the infimal value as the
breakpoint frequency increases, even if the roll-off does not start
until high frequency.
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Proof: We examine the effect of multiplying the parameter Q by the

roll-off function hn(s). The critical feature of hn is that we can make

the magnitude of arg(hn) as small as we want by taking n sufficiently

large.

We first note that using the sequence of Q parameters

Qn(s) = hn(s)Q(s) preserves a stable closed loop since this is a stable

Q parameter, and that the resulting loop gains P(jw)CA(jw) go to zero

because P(jw)CA(jw) is strictly proper.

We now consider the magnitude squared of the sensitivity,

IXn(jW) 12 = IW(jw) + hn(j)[Xeia(W)-W(j)'!

Suppose wn is the frequency at which IXn(jwn)i = IIXnll, (wn is finite for

any given n since the sensitivity function is 1 at o), and define

h = Ihn(jw )I, 6 = arg[hn(jwn)], W = W(jon), and a = a(n)

Note that h, 6 and a are functions of n, as is we. We also note for

later use that 6 satisfies 0 < 6 < 2-, i.e, 6 O0(1/n).

Now we show that the norm of this sensitivity approaches the

infimal value X as n increases.

JXn(jw) I < IW + h-eJ6 (Xeja-W) 12

=W - W-h-e j6 + h-ej 6 XeJCaI2

= IW12 - 2hlW 2Cos6 + h2 lW12 + h2X2 + 2hXe[We-ja(e-Jb-h)]

= Iwl 2 - 2hlW 2cos + h2 1WI2 + h2X2 + 2h{e(W) [os(a+6) -

h-cos(a)]] + Sm(W)[sin(a+6) - h-sin(a)]}
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Assume we have taken n large enough so that cos(6) - 1 and sin(6) - 6.

Then we write

IXn(jw)l < IW12 - 2hIW 2 + h2 1Wj2 + h2 X2 + 2hXe(W) cos(a) - hcos(a)

- 6sin(a)] + 1m(W)[sin(a)[1-h] + 6.cos(a)]} + 0(62)

W12 _- 2h+WI 2 + h 2 lwI 2 + h2X2 + 2hM((l-h) e(W)cos(a) +

m(W)fsin(a)] + 6f-e(W)sin(a) + !1m(W)cos(a)} + 0(1/n 2)

< IJw2 - 2hlW12 + h2 lW12 + h2X2 + 2hlXWI[1-h+6] + O(1/n2 )

= [IWI(l-h) + hX] 2 + 2hXIWi6 + O(l/n 2 )

Given n, there are two possibilities: either (i) wn > n , or else (ii)

o < n. We examine both cases.

case (i). (wn > n) In this case we shall use the fact that IWI -. 1 as
,2+1 +1<1+ 1 jw+

(in W(jwn) 12 < n =1 + ,< 1 + 1 since W(j(o) = j+1 and
n2+P2 n2+p2 n2

p < 1. Therefore

IXn(j(o) < [(1+-)(1-h) + hX]2 + 2h,6(1+) + O(1/n2)

= [(l+l) n h(;-1)]= + h(l+n)+ O(1/n 2 )
lh 1

= [(1+-)-h(X- 1)]2 + 2hX6(1+-) + 0(1/n 2 )n n
-~< [ h 1+:-xh(-1]2 + 2(1+~ ) + O(1/n 2 )

= [lhL+X]2 + 2X6(1+ (1) ) + O(l/n2 )
= + 2(1) + (1/O(l/n)

= + 0(1/n)

We conclude that (IIXII-IIXn lI) - 0 as n - o.
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case (ii). (wn C n) The idea in this case is that h - 1 since Wn < n.

Since IWI > 1 and h < 1,

2

IX(jwn)| < [EIW(l-h) + hX] 2 + 2hX61W + O(1/n 2 )

= EIWI-(IWI-1)h+h(X-1)] 2 + 2hX61Wl + O(1/n 2 )

= [(IWI-1)(1-h)+1+h(X-1)] 2 + 2hX61WI + 0(1/n 2 )

[(IWI-1l)(l-h)+X] 2 + 2X61W1 + O(l/n2)

=
2 + 0(1-h) + 0(1/n)

21l/n

Now since (n < n in this case, h2 = jh(jrn) 12 = n 2 and

4n (using a Taylor(0.5) !/n < hz < 1. Therefore 1-h < ±-(v.o) ( n (using a Taylor
1/n 2

series for x/). This gives us IX(jwn) <_ X2 + O(1/n), and once again

we conclude that (IIXII-IIX II) -, 0 as n - .c.

The compensator resulting from Proposition 1 is given by

hnQW-X
cA = PX

1-PhnQ

Recall that we are assuming W(s) = s+'. Take n(s) = s+1 and

d(s) = s+P. Let f(s) denote f(-s). Then some calculations give

h (X2dd - nn)P-1

C' --
n -sA * 

-nd + e [(1-h )n - X2dd]
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In Proposition 1 the roll-off could be fast after the loop gain has

decreased sufficiently: As o increases and after Ihn(jo)I is

sufficiently small for w > on for some on, since Ihn(jo) -+ 0 as o -o

and le-SApoQI is bounded, we can modify hn(jw) (call the modification

gn(jw)) so that Ign(jO)l decreases arbitrarily fast without increasing

the X -norm of the resulting sensitivity. It suffices to take on large

enough so that for o > (n we have both

Ihn(i)l < ,(X+-W(j1 )l) (5.2)
and

Iw(o)l < 2 (5.3)

These conditions are motivated by graphical considerations: They

ensure that the graphs of the sensitivity Xn(jo) and the weighting W(jw)

are close enough to the point 1 so that rotation of the graph of

Xn(jw)about any point in the locus W(jw) will not cause it to leave the

disk Ist = X. Such rotation will be an effect of increased phase due to

rolling off hn(jo) more rapidly. i 2 2 will ensure that hn can safely

be rolled off, but we will want to take j > 2 to leave "room" for the

approximation of hn by a finite dimensional function.

In order to demonstrate a specific gn(jo), we must must estimate

the smallest value of (n which allows (5.2) to hold. Then we must

choose gn(jo) so that for o < on it differs very little from hn(j&) both

in magnitude and phase.

Some simple calculations give a sufficient condition of

W > n (l)

for (5.2) to hold. (5.3) will hold for On sufficiently large
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independently of n. Now we pick gn(jw) = fn(jo)-hn(jw) where fn(s) is a

stable rational function of s which satisfies Il-fn(jw)l < 1/n2 for

_< n, Ifn(jw)I is strictly decreasing for Iow > on, and which

eventually rolls off at least as fast as P(s). One such function when

m = 1 (m is the differenc ebetween the degree of the denominator of
2

n on

Po(s) and the degree of its numerator) is fn(s) =
s+n 2on

The argument works with a stable finite dimensional approximation

to hn. We also note that roll-off of the parameter Q can ensure a

proper compensator: Let Qn = Qhn, the rolled-off Q parameter. Then if

Qn
Cn is the resulting compensator, Cn = 1-PQn Thus if Qn is proper, so

is Cn since P is proper. These points form the basis for the next

proposition.

Proposition 2. Let hn(s) be as in Proposition 1. For each n take on to

satisfy (5.4) with ji = 4. Take or to be the least frequency above on at

which Ifn(jo)l < jhn(jw)I for >I Ž wr. Let ihn(s) be any stable

rational minimum phase function which satisfies

Ilhnll < 1 (5.6)

and

Ihn(jo)ihn(j) I < 1 for _wl < (r (5.7)
n

Take fn(s) to be a stable minimum phase rational function of s which

satisfies

Illfnll, 1 (5.8)

and

1-fn(jw)l < 1/n2 for _< on (5.9)
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and which eventually rolls off at least as fast as P(s). Define

gn(s) = fn(jw)'hn(s) (5.10)

Define

gn(s)[W(s) - X(s)]
Cn(s) = (5.11)

P(s)[(1-gn(s))W(s) + gn(s)X(s)]

Then the closed loop feedback system using Cn(s) as the compensator is

stable, and the closed loop weighted sensitivity

Xn(s) = W(s)[l+P(s)Cn(s)]- 1

has co-norm which approaches the infimal value X as n - X. Furthermore

Cn(s) is a proper function.

Proof: The expression (5.6) results from using the Q-parameter

gn(jw)Q(jw) in the formula C(s) = Q(s) The closed loop is stable1-P(s)Q(s) T

because gn(jw)Q(jw) is a stable Q-parameter.

We show that the "o-norm of the sensitivity approaches the optimal

value by showing first that the magnitude of the sensitivity function is

bounded above by X on the range IwI E (wn,x), and second that on the

range [O,pn] it can be made arbitrarily close to X by increasing n.

Remark: From (5.4) we see Wn - X as n - c.

For o > Wn (5.2) implies

4-1 > Ihn(j)l[I + IW(ji)l]

2 Ihn(j&)lI-IXe ja( jw) - W(j))I

= hn(jw)-(Xeja( ) - W(jw)) I

On [CrO), we have from (5.5) that

Ifn(j)l I Ihn(ji)I for w > Or'

and

Ihn(jo) < 1
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from (5.9), so

Ign(j)-(XeJa(j ° ) - W(j)) < X-1

But

Xn(jw) = W(jw) + gn(j)-'(XeJa(Ji) - W(jw)),

so using (5.3) we conclude that

IXn(j)J < 3x+1 < X for 2 -r 

On (wn,er),

Ign(jco) = Ifn(jw)hn(jw) 
1

< Ihn(i() I + -
2n2

using (5.2), (5.7) and (5.8). Further calculation using (5.2) shows

that the condition

n2 > 2(X+IIWll)
X-1

will ensure that

Ign(jm)(Xeia(3j ) - W(jw))l < 2

and it follows from (5.3) that

JXn(jW)l < X on (fnr).

For w < (n, we repeat the argument in Proposition 1. Take

IXn1 2 = IW(jo) + gn(jw)[XeJa()-W(jo)]l

and set A to the frequency at which IXn(jjm)l = sup IXn(jw)l. Now
WoC[O,Wn]

define

g = Ign(j M)l, 6 = argEgn(jw)], W = W(jam), and a = a(w).

g. 6 and a are functions of n, as is wm. One can see from (5.4), (5.7),

(5.9) and the definition of hn(s) that 6 - O(1/n).
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Now we show that the norm of this sensitivity approaches the

infimal value X as n increases. As in the proof of Proposition 1,

2

IXn(j)I| < [IWI(l-g) + gX] 2 + 2gXlWl6 + O(l/n 2 ).

Given n, there are two possibilities: either (i) Um > n , or else (ii)

u < n. We examine both cases.

case (i). (M > n) Exactly as in the proof of Proposition 1 we find
2

IXn(ji)l < X2 + O(1/n)

We conclude that (IIXII-IIXnll) - 0 as n - ao.

case (ii). (ws < n) Let 7 = IIW(jum)ll. Then since 77 2 1 and g < 1, as

before

2

IXn(jWm)I < X2 + O(l-g) + O(1/n)

1-g < I l-gn(jm) I

= I1-fn(ju)h-n(juj)I

< Il-hn(jum)I + Ihn(jWm)-hn(jWm)I + l1-fn(jum)11hIn(jum)I

Using the estimate of (1-h) from the proof of Proposition 1, along with

(5.6), (5.7) and (5.9), we find

1-g <_ + L + -
rn2 n2

2

Once again we get IXn(ju) I < X2 + 0(1/n), and we conclude that

(IIXII-IIX II) - 0 as n -. .
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The properness of Cn follows from the definitions (5.10) and

(5.11), and the assumed roll-off of fn(s).

The resulting compensator is given by

gn(X2dd- Mn)Po

Xnd + e SE(l-g)nn - X2 dd]

A realization of this clearly contains a pure delay. We now examine the

effect of approximations to this delay on the closed loop sensitivity,

in order to further approximate the ideal compensator with one which is

-sA
finite dimensional. In approximating e with a rational function, we

must be concerned with two things: First, we must preserve the

stability of the closed loop, and second, we must preserve the

approximation of the closed loop sensitivity to the optimal sensitivity.

The restrictions these impose on rational approximation of the delay

amount to (1) the delay must be approximated closely enough until gn and

W are sufficiently small, and (2) after that the delay approximation

must not exceed 1 in magnitude.

We approximate the delay by replacing eSA with the rational

function p(s). (We repeat that approximation of the delay in our sense

means only that our closed loop sensitivity approximates the infimal

norm of the sensitivity.) The following gives one set of criteria for

selecting p(s).

Proposition 3. Let or and gn(jw) be as in Proposition 2. Take wc > wr

such that,

if

ge(s) 2 0 and Isl Ž tc then lW(s)l < X,
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and if

Il > O , then Ign(jW)l < (5.12)
x+ IW(iw) I

Let 7 = inf IX + e-S * )-. Let p(s) be a stable rational
~e(s)ŽO d(s)

approximation to e such that

IIpll < 1,

and for ge(s) 2 0 and Isl < Wc

Ip(s)-eSt I < e < 
2 IIWII'

Define Cn(s) as Cn(s) with p(s) substituted for e Under these

conditions, as n -~ o and e - O0, the closed loop system with compensator

Cn(s) and weighted sensitivity Xn(s) is stable and satisfies

IlXn (s)li -, X

proof: The Q-parameter corresponding to Cn is

Qn(s) = ) p t( ) (X2d(s)d(s) - n(s)n(s)Qn(s) = gn(s).Po'(s).(s) a(- ) ~(S ) -s(A)~(~)
n(s)(Xd(s) + e n(s))

-sA
Let Qn be Qn with p(s) substituted for e , and let Cn be the resulting

compensator. Let Q represent the optimal Q-parameter Q with p(s)

-sA
substituted for e .

Since stability of the closed loop is equivalent to stability of

the Q-parameter, n(s) and d(s) have no zeros in the right half plane,

and Qn is stable, we can show that IX + e sA. )I > 7 for some 7 > 0,
d(s)

when !e(s) > O. For stability of Qn it suffices to show that

[, + p(s).- -s has no zeros in the right half plane. This is

equivalent to showing that IX + p(s)d(s)I > O. The condition
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|p(s),-e sI < 2*IiII for Die(s) > 0 and Isl < (c suffices to show this.

A simple calculation gives, for 5e(s) > 0 and Isl < c ,

I + p(s)-I ) > I2 + e-SA-(s)I - _ l(p(s)-eSA)- (s
d(s) - d(s) d(s)

> - - Ip(s)-e-SAI-IW(s)I > - - (s)i > 211WII 2

For Oe(s) > O and Is| > icC IW(s)l < X and Ip(s) < 1, so

Ix + P(s)-. )n > 0 there as well.d(s)

Using the condition (5.12), we now show that IlXnll -+ IIXII as n -+ 

and e -+ O. The first step is to note that we need only show that

IWPQn| < IIXII - IWI, since then IW(1-PQn)| < IIXII, and therefore

IIXnll < IIXII. So we calculate as follows.

IWPQnl = JW(s)P(s)gn(s).PO'((s ) - n(s)n(s)|n(s)(Xd(s) + p(s)n(s))

= W(s)gn(s).l(X2 d(s)d(s) - n(s)n(s)
n(s)(Xd(s) + p(s)n(s))

= !w(s)gn(s). IW(S)12
W(s) + p(s)W(s)

d(s)

g.(;) lX - IW(S)12W

d(s)

Since W(s) = s+P, I > (a implies that |W(j(o) < IW(jc)l. Now we have

for Iv{ > Pc
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X- IW(jC) I X- IW(jo) I
Ign(j ) I < -<

N+ IW(jW) i X+ Iw(W)) I

d(jW)

This implies

Ign(j)I [IX2 -_ IW(jio)] / [+ p(w).W(j)] ( X -)W(i))
d(jw)

These arguments apply on the imaginary axis for jow > C . For

I1W < Oc taking e sufficiently small and n sufficiently large make

I TM[Xn(jj) l - x a(j s small as desired. Since Xn EC , this behavior

on the imaginary axis guarantees that IIXnll - IIXII. 

This proposition completes the proof of Theorem 3, since we have

now shown a way to construct a sequence of rational proper feedback

compensators Cn(s) for which the weighted sensitivities Xn(s) have norms

approaching the optimal value X. To summarize, we have three ranges of

frequency over which the approximation of the optimal compensator takes

effect. For I|l < on the approximating compensator is very close in

magnitude and phase to the optimal compensator. Over on < I4 < _ c the

compensator starts to roll off while maintaining a close approximation

to the delay, until by oc (5.12) is satisfied. From then on, IwI w c ,

jAso long as p(jw) need not be lose to e
so long as Ip(ji)I • 1, p(jo) need not be close to e-
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V. Conclusion

We have presented the solution to the simplest meaningful WX

minimal weighted sensitivity problem for the case of a plant having a

delay at the input.

Parallel solutions are detailed in [Flamm 1986] for more general

rational weighting functions, and for plants having right half plane

poles and zeros in addition to the input delay. The basic techniques

are essentially generalizations of those presented here with

modifications made for right half plane poles and zeros in the plant.

However, in the most general case, when W(s) results in a non-compact

operator on f2, we are not necessarily able to construct an optimal

sensitivity, although we know from the theory of Sarason that one

exists. We are able to "slightly" modify any given W(s) so as to make

the corresponding operator compact, and thus obtain a solution to a

"close" problem. See [Flamm 1986] for details.

Areas for future work include completing the picture for the

non-compact case, computational issues for the case of general weighting

functions, and extensions to plants with other non-rational transfer

functions.
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