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Abstract: This paper announces results on the problem of feedback compensator design for .X? norm weighted sensitivity 
minimization when the plant contains a delay in the input. A complete solution is presented for the case of one pole/zero weighting 
function and a single-input/single-output plant for stable minimum-phase rational part. Generalizations and proofs will be published 
elsewhere. 
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1. Introduction and problem formulation 

We consider the single-input/single output 2’” weighted sensitivity minimization control problem 
formulated in Zames [18], but with transfer functions of the form 

P(s) = e-““P,(s) 0.1) 

where P,(S) is a minimum-phase and stable rational function, and A > 0. The block diagram in Figure 1 
shows the feedback system models we are considering. 

Part of the motivation of this work is that all real systems contain delays, so that it is only by examining 
the optimum for such systems that an understanding can be obtained of how delays limit achievable 
performance. It is for this reason that we introduce the factor e-” into the plant transfer function. 

The closed-loop sensitivity S(S) is the transfer function from d to y. The weighted sensitivity X(S) for 
the weighting function W(S) is given by 

x(s) = W(s)S(s) = W(S)[l + P(s)C(s)] -*. (1.2) 
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Fig. 1. Feedback system considered. 
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The problem is to minimize the .%@” norm of X(s) over all stabilizing proper feedbacks C(s), that is, to 
solve 

where C(s) ranges over all proper compensators for which the feedback system in Figure 1 is internally 
stable. 

The criterion of minimErg the norm of (1.2) is introduced and motivated in Zames [19, pp. 585-5861. 
See Francis and Doyle [9] for a tutorial and bibliography on this and related problems. In this paper we 
also assume that the weighting function is given by 

w(s) = 5 

with 0 < /I. We have normalized the frequency scale to put the zero of the weighting function at the point 
-1, and so that lim,,, ‘oo W(s) = 1. (1.4) is a general one pole/one zero weighting function, subject to 
stability and minimum-phase conditions, and the assumption that W(s) is bounded away from zero at co. 

Remark. Assuming that lim , s, - m W(s) = 0 would avoid problems with construction and uniqueness of 
solutions. However, we believe that W(co) = 0 is not a reasonable choice since the resulting unweighted 
closed-loop sensitivities would be unbounded at co. 

In this paper we first show how to compute the infimal sensitivity for the modified (Problem 2.2) below. 
When the parameter p in the weighting function satisfies p < 1 there exists a unique solution to this 
minimization problem. We obtain this result using the work of Sarason [13]. In the case /3 > 1 there is an 
infinity of solutions, and when p = 1 there is again a unique solution. We state a theorem due-to Fagnani 
[l] which parametrizes all solutions of the problem for the case p > 1. 

We also compute the optimal feedback compensator corresponding to the infirmal sensitivity. We show 
that the optimal feedback compensator is improper, unstable and infinite dimensional, and we construct 
proper rational approximations of the optimal feedback compensator. It is by means of these approxima- 
tions that we actually solve (1.3) or (Problem 2.1) below. 

In Flamm [3] we discuss various aspects of the problem when more general weighting functions and 
plants are considered. Here we only announce the results for the case of the weighting function as in (1.4). 
The detailed proofs appear in Flamm and Mitter [5,6] and Fagnani [l]. 

The idea of using Sarason’s work for solving the sensitivity minimization problem for delay systems first 
appeared in Flamm [2]; see also [4]. 

(Another part of Sarason [13] was applied to the case of rational plants in Francis and Zames [lo].) 
Work similar to that of this paper and the more general treatment in [3] has been done independently 

by Foias, Tannenbaum and Zames [7,8]). Some extensions of this work to multiple delays in the plant have 
been achieved by G. Tadmor.. See Tadmor [15,16]. 

2. Reformulation of the problem 

We shall assume a basic knowledge on the part of the reader of the theory of L%‘P spaces, the Hardy 
spaces of analytic functions. We refer the reader unfamiliar with this material to the reference Hoffman 
[12]. We note that we shall work with functions analytic in the right half plane as in [12, Ch. 81. We also 
assume knowledge of the prior work of Zames and others, as represented, for example, in Francis and 
Zames [lo]. 

Following the argument which appears, for example, in [lo, p. lo] we assume the problem of minimizing 
the weighted sensitivity (1.3) has been transformed to the form 

(Problem 2.1) 
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Just as in the same reference, we first restrict our attention to the modified problem 

(Problem 2.2) 

since the infimum in (Problem 2.1) is generally not realized when P,(s) is strictly proper. Note that the 
infimum in (Problem 2.2) is not greater than that in (Problem 2.1). Later a compensator arising from a 
solution to (Problem 2.2) is used to find a sequence of compensators for which the closed-loop weighted 
sensitivity approaches the infimum in (2.1). We note that (Problem 2.2) is equivalent to the Nehari 
problem 

inf 
HEAT= 

]]e”‘W(s) -H(s) ]I o. 

where esAuI(s) E L”. 

3. The basic strategy for solution 

Following Sarason [13] we view [W(s) - e -“‘H(s)] in (Problem 2.2) as an operator on X2. The 
compression of this operator to K =.ZY2 8 emsA &‘* is equal to the compression of W(s) on the same 
subspace. Call this latter operator T = II,W ] K. (We note that ]I T ]I G ]I W ]I .) The infimum in (Problem 
2.2) cannot be less than the operator norm of T. Theorem 1 in [13] says that the desired infimum is in fact 
equal to ]I T 11. 

Following [13, Section 71 a way to find this supremum is to use the fact that I] T 11 = p(T *T)l/*. (p(a) 
is the spectral radius.) If T is compact we need only find the largest eigenvalue of T *T, but this is not the 
general case. 

In our case we have normalized W(s) with W(m) = 1. Since W(s) is rational it is then equal to 1 plus a 
strictly proper stable rational function. Thus T * T - I is compact, and we know from Weyl’s theorem that 
a(T*T) and a(l) differ only by eigenvalues. [ll, pp. 92&295]. (a(*) denotes the spectrum.) Also, 1 is the 
only cluster point of a(T *T). 

The idea will be to examine the eigenvalues of T *T for a maximum. If none exists, we will have 
II T II = 1. 

For computational reasons we transform the operator T to the time domain. The operator T is 
equivalent to an operator V: Y’(K) +Z ‘( K) via the inverse Laplace transformation. (Z(a) is the 
bilateral Laplace transform operator.) 5’(K) is a subspace of L*(O, 00). One can think of V acting on 
time functions via convolution and T on transfer functions via multiplication, each followed by the 
corresponding projection. In particular, there is a one-to-one correspondence between eigenvectors, and 
the eigenvalues of T *T and V * V are the same. Furthermore, compactness of V is equivalent to 
compactness of T. 

If T * T has a largest eigenvalue, say A*, then ]I T ]I * = A*, and the corresponding eigenfunction will be a 
maximal vector for T. According to Proposition 5.1 in [13], in this case T//l T ]I will be dilated by an inner 
function given by Tf/II T II f: This is the unique minimal dilation. In our case, Tf/r would be the optimal 
sensitivity. 

When T does not have a maximal vector, we still know from Theorem 1 in [13] that a minimal dilation 
of T exists, but we do not know that it is unique. Nevertheless using the theory of extension of Hankel 
operators, one can, in principle, parametrize all solutions of the problem (cf. Section 5 below). 

4. Computation of the infimal weighted sensitivity for /I < 1 

Theorem 1. For /3 < 1 the infimal sensitivity x(s) corresponding to Problem (2.2) is given by 

X(s)=h,, s+l-e -SALlax(s - P> 
h,,(s+p)-emsA(s-l)’ 

(4.1) 
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where A,, = [(c&g + l)/( fJ$ + /32)]“2 and o0 is the smallest positive solution of cot( WA) = ( o2 - p)/o(l + 
p). Furthermore, x(s) is a scalar multiple of an inner junction, and 11 X(s) 11 = A,,,,. 

The proof of this theorem proceeds via several propositions. 

Proposition 1. Let K=S2 8 e -sA.Z’2. Then K= { f=S( f) I f E L2(0, A)}. Moreover 

T:K+K: ,,(,=,[( ‘-I-“i * W(s)]f(s), 

where * denotes convolution; 

V:L2(0, A)+L2(0, A): f~(Vf)(t)=f(r)+/dw(f+f(~)dc 

where w(t) E L’(0, co) is given by w(t) =oEpl(WO(s)) and W,(s) = W(s) - 1, and the adjoint operator to V 
is given by 

V*:L2(0, A)+L2(0, A): f*(V*f)(t)=f(r)+~Aw(M)f(~) dr. 

To proceed further, it is convenient to obtain a state space realization of the operator V*V. 

Proposition 2. The operator 

V*V: L2(0, A) + L2(0, A): f t+ V*Vf 

is realized by the mapping f H E where 

-&(t) = -Mt) + (1 -P)fW 40 =o, YW =4> +f(O, (4.2) 

~x~(~)=Px~(I)-(~-P)Y(~), xz(A)=O, z(t) =x20) +Yw (4.3) 

,Remark. Although we are dealing with the case of a weighting function W(s) = (s + l)/(s + /3), p -C 1, the 
results derived so far are valid with obvious modifications for a more general rational proper weighting 
function. 

The next proposition solves the eigenvalue problem V* Vf = A2f. The proof uses the state space 
realization (4.2)-(4.3) and also determines the maximal eigenvalue and the corresponding maximal 
eigenvector. 

Proposition 3. For the eigenvalue problem V*Vf = A2f (with p < l), a maximal eigenvalue A$, and a 
corresponding maximal vector f,,,, exist and are given by 

where w,, is the smallest positive solution of cot(oA) = (02 - p)/w(l + /I), and f,,(t) = COS(W,$ + cp), 
where tan(q) = -p/q,. Furthermore, a(V*V) c (1, X’,,]. 

Remark. When /3 < 1, I Wjo) ] approaches 1 from above as w + co. 

Proposition 2 shows that for p < 1. h,, = ]I T I] > 1, and hence according to the proof of Proposition 
5.1 in [13] (cf. Section 3) T/II T II will b e interpolated by an inner function given by Tf,,/II T II fmax. The 
minimal dilation of T will be given by Tfm,/fi,. The explicit computation of this leads to Theorem 1. 
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Remark. As A + 0, A2m, + 1, and as A + cc, A2m,, + l/p. 

5. Computation of the ideal compensator 

Given the infimal sensitivity x(s) in Theorem 1 which is the solution to the (Problem 2.2), it is easy to 
calculate a formula for the corresponding feedback compensator using c(s) = (W(s) - x(s))/P(s)x(s). 
For the case W(s) = (s + l)/(s + j3) with fi < 1 we get 

C(s) = p,(s)-’ 
s2+w; 1 

s2+(p+l)s+p l+e-““A(P-.r)/(s+l)’ 

where 5 = <A’,,, - 1)/h mnx, X ,,,= and or, are as given in Theorem 1, and P,,(s) is the outer factor of the 
plant. 

Since P,(s) will generally be strictly proper, c(s) will be improper. c(s) also contains a pure delay 
term, and is therefore an infinite-dimensional system. In the next section we show how to construct a 
sequence {C,,(s)} of proper rational transfer functions, such that closed-loop stability is maintained and 
the closed-loop weighted sensitivities approach the infimal value 11 z(s) ]I m. 

Remark 1. In addition to being improper, c(s) is unstable. (In fact, we can show c(s) has infinitely many 
right half plane poles.) This can be demonstrated following an argument in [13, p. 1941 which shows that 
x(s) is a Blaschke product. 

Remark 2. One may consider the question of ‘delay margin’ when the true delay differs from the value of 
delay used to compute c(s). Initial investigation indicates that A?‘” minimal weighted sensitivity designs 
are characterized by zero delay margin. A feedback system using the approximations given in the next 
section would be stable in spite of small errors in the delay because the loop transfer function would be 
strictly proper. 

6. Computation of the infimal sensitivity for j3 > 1 

Theorem 2. For /I > 1, all infimal sensitivities X(s) corresponding to (Problem 2.2) are given by 

X(s) = 
s + 1 - e-““cp(s)(s - P) 

s + p - e-““cp(s)(s - 1) 
(6.1) 

as cp(s) ranges over B(.P”), the unit ball in 2’“. Moreover, II X(s) II m = 1, andfor p > 1, X(s) is inner 
* cp is inner. 

Remark. The proof of this theorem, first presented in [l], is based on Sarason [14] and will appear 
elsewhere. 

We give two examples of infimal sensitivities corresponding to v(s) = 0 and cp(s) = 1. Note that /3 = 1 
gives the unique solution X(s) = 1. 

First, we note that cp(s) = 0 gives X(s) = W(s) as an infimal sensitivity when p > 1. In this case alI 
eigenvahres are on the interval [h,i,, l), clustering at 1. We then can conclude that I] V ]I = 1, and 
therefore W(s) itself is an infimal sensitivity. The corresponding compensator is C(s) = 0. 

For j3 > 1 the choice of q(s) = 1 in equation (6.1) gives an infimal sensitivity 

x(s) = 
s+l-emS”(s-p) 

s+fl-e-sA(s-l) ’ 
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and a corresponding compensator 

qs) = w4 - w 
P(s)X(s) = po(s) 

-1 l-/32 1 

s’+(P+l)s+P l+e-sA(p-~)/(s+l)’ 

7. Approximation by proper finite-dimensional compensators 

Theorem 3. There exists a sequence of rational proper feedback compensators which result in weighted 
sensitivities of norm approaching the optimal value A,, of Theorem 1. 

Remark. Theorem 3 solves (Problem 2.1) for fi c 1. A similar result holds for j3 > 1. Since the infimal 
weighted sensitivity is unique (when it has norm greater than l), and the corresponding compensator is 
improper when the plant is strictly proper, there can be no proper compensator which achieves the 
i.nfimum. 

There are procedures in the literature to compute proper compensators for the case of a purely rational 
plant [19, p. 5911 and [17, p. 1781. The procedure in [19] requires the evaluation of the term ‘B,(co)‘, where 
B,(s) is the Blaschke product formed from plant zeros. In our case there is no apparent way to interpret 
‘blsl -*m e -“‘. The procedure in [17] does not work for our case either. The essence of the difficulty is 
the same as in the Zames-Francis procedure - the inner-factor of the plant is not continuous at infinity. 

The proof proceeds by developing approximations to C(s), first to make C(s)P(s) strictly proper, next 
to make C(s) proper, and finally to make C(s) finite dimensional. We emphasize that we are not 
necessarily approximating the optimal compensator, but rather describing a sequence of compensators for 
which the weighted 2” norm of the closed-loop sensitivity approaches the infimal value. 

Proposition 4. Let x(s) be the infimal sensitivity given in (4.1), with norm 11 x(s) I/ o. = A,, >, 1. Let 
h,(s) = [n/O + n>l ‘In Then as n ---, CO, the compensator given by . 

h,,(s)[W(s) -Al 
“(‘) = P(s)[(l- h,(s))W(s) + h,(s)F(s)] 

results in a stable closed loop for which the sensitivity approaches A,,. Furthermore, the loop gain 
IP(jW)C,‘(jW)l~O a$ IWI +oo. 

The reason for the given form of the ‘roll-off function h,(s) is that it is necessary to control the phase 
of h,,(s) until the loop gain has decreased sufficiently. Otherwise the sensitivity can be bounded away from 
the i.nfimaI value as n --, co, even if the roll-off does not start until high frequency. 

Having shown how to approach the optimal sensitivity with a compensator such that the loop gain goes 
to zero, it is simple to apply the standard approach to modify the compensator to make it proper, and at 
the same time introduce a rational approximation for h,,(s). It is sufficient to delay the faster roll-off 
which makes the compensator proper until the frequency w,, in the following proposition. 

Proposition 5. Let h,(s) be as in Proposition 4. For each n take w, to satisfy CO,, > n [4( X max + l)/( h mM - l)] “. 
‘Take or to be the least frequency above w, at which 1 f,(iw) I Q I h,(jw) I for I w I 2 wL. Let g,(s) be any 
stable rational minimum-phase function which satisfies II h, 11 o. G 1 and I h,(jo) - h,(jo) I < l/n2 for 
I w I < w,. Take f,(s) to be a stable minimum-phase rational function of s which satisfies II f, II Q1 G 1 and 
11 -f,(k) I < l/n2 f 
h,(s). Define 

or w Q w, and which eventually rolls off at least as fast as P(s). Define g,,(s) = f”(s). 

gn(s)[Ws) 4wl 
G(s) = P(s)[(l - Gz(s))Ws) + &(Gwl . 
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Then the closed-loop feedback system using C,,(s) as the compensator is stable, and the closed-loop weighted 
sensitivity X,(s) = W(s)[l + P(s)C,,(s)]-’ has a-norm which approaches the infimal value A,, as n + 00. 
Furthermore C,,(s) is a proper function. 

From the formulas in Propositions 4 and 5, C,, wiIl in general contain a pure delay. Even though this 
rolled-off compensator is physically more realistic than the ideal compensator, we next show how to 
further approximate the ideal compensator with one which is finite dimensional. In approximating emsA 
with a rational function, we must be concerned with two things: First, we must preserve the stability of the 
closed loop, and second, we must preserve the approximation of the closed-loop sensitivity to the optimal 
sensitivity. The restrictions these impose on rational approximation of the delay amount to (1) the delay 
must be approximated closely enough until h, is sufficiently small, and (2) after that the delay 
approximation must not exceed 1 in magnitude. 

We approximate the delay by replacing emsA with the rational function p(s). The following gives one 
set of criteria for selecting p(s). 

Proposition 6. Let or and g,(jw) be as in Proposition 5. Take o, z wr such that, if Re(s) > 0 and ] s ] > wc, 
then Ill <A,,, andif Ial >q, then l&,ci~)I <(A,,- IW~,>I)/(~,,+ IWi~c>I>. tit 

1-s 
y= inf X,,+e-‘*- 

Re(s),O s+p . 

Let p(s) be a stable rational approximation to emSA such that ]I p I] Q 1, and for Re(s) 2 0 and Is I < wE, 
1~0) - ePsA I <~<Y/2II~IIco. Define C”(s) as C,,(s) with p(s) substituted for e-‘*. Under these 

conditions, as n + co and E + 0, the closed-loop system with compensator d;,(s) and weighted sensitivity 
X,,(s) is stable and satisfies I] Xn(s) ]I + A,,. 

This proposition completes the proof of Theorem 3. 

8. Conclusion 

We have presented the solution to the simplest meaningful L%?’ minimal weighted sensitivity problem 
for the case of a plant having a delay in the input. This includes the analysis of the resulting improper and 
infinite-dimensional compensator and its approximation by a finite-dimensional proper compensator. 

Results parallel to those here are detailed in Flamrn [3] for more general rational weighting functions, 
and for plants having right half plane poles and zeros in addition to the input delay. The basic techniques 
are essentially generalizations of those presented here with modifications made for right half plane poles 
and zeros in the plant. However, in the most general case of rational, stable, proper and minimum-phase 
W(s) we are not necessarily able to construct an optimal sensitivity, although we know from the theory of 
Sarason that one exists. We are. able to ‘slightly’ modify any given W(s) so as to allow us to construct a 
solution to the changed problem. See [3] for details. 

Areas for future work include completing the theoretical picture for the case of general rational W(s), 
computational issues for the case of general weighting functions, and extensions to plants with other 
non-rational transfer functions. 
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