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IDENTIFICATION AND FILTERING:
OPTIMAL RECURSIVE MAXIMUM LIKELIHOOD APPROACH §
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and
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Abstract: The paper studies the combined estimation of the parameters and filter-
ing of the state of a stochastic nonlinear dynamical system. It circumvents the two
basic limitations found in the litterature on the subject: i) the lack of recursibility
of the optimal solution, and ii) the approximations involved when authors discuss
recursive algorithms. To derive the optimal recursive joint identification algorithm,
the problem is formulated in the context of stochastic nonlinear filtering theory.
Key to the results is the use of a dynamic programming type approach to the prob-
lem, whereby what is important is not the integral form of the likelihood function,
but the partial differential equation (pde) it satisfies. The joint likelihood functional
of the state and parameters is established as a Feyman-Kac path integral solution
to a stochastic pde. The maximum likelihood (ML) estimates are defined as the
roots of the likelihood equation, i.e., as the stationarity points of the (negative)
log-likelihood functional. By application of Ito's differential rule, the pde satisfied
by the latter is derived, and then used to obtain formally recursive equations for
the maximum likelihood estimates. These are applied to the important case where
the underlying state model is linear. The resulting structure provides a recursive
scheme for joint estimation of the state and parameters. In some sense, it is for
continuous time the optimal version of the approximate stochastic (discrete time)
identification algorithms found in the litterature. In general, the nonlinear struc-
ture of the problem precludes a finite dimensional implementation of the optimal
estimator. This reflects a tradeoff between recursibility and complexity. Practical
implementation requires again approximations, but now directly on the solution,
not on the statement of the problem. The optimal algorithm provides a guideline
on how to achieve a balance between reduced dimension and acceptable transient
behavior.
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1 Statement of the Problem

In numerous problems in Stochastic Control and Statistical Communica-
tions, the underlying phenomena are modeled as the output of systems driven by
external random disturbances. A crucial step in these applications is the adequate
identification of a suitable model that replicates the essential features of the phe-
nomena under study. The topic is addressed here from the following point of view.
The system structure is known to belong to a given class of models, that of finite
dimensional diffusion processes. This knowledge greatly simplifies the identifica-
tion problem, since it assumes before hand that questions regarding the dimension
of the system have been successfully answered, and that the stochastic differential
equations describing the processes have been specified up to a finite number of un-
known parameters. Within this restricted scope, a very general perspective is taken,
namely that the models of interest are nonlinear and stochastic. The framework
includes the important problem of identification of parameters in linear systems,
where the unknowns may represent noise power levels, pole locations, significant
time constants, equivalent bandwidths, correlation times, or other structural pa-
rameters defining for example the state variable description of the processes.

In the above context, identification corresponds to the determination of
parameters in diffusion processes. The approach to be taken considers it as a
stochastic nonlinear filtering problem of specialized structure. As such, the solution
requires the joint i) filtering of the processes and ii) identification of the unknown
parameters. The paper presents the optimal recursive algorithm and analyses its
structure.

The present work is now compared to the existing results published in the
litterature. Two main concerns are distinguished:

i) The first relates to the presentation of the likelihood function for the iden-
tification of parameters in processes. Starting with Schweppe [26], many
authors, e.g., Balakrishnan [6], Bagchi [5], Borgar and Bagchi [7], Tugnait
[30], address the question of formulating the likelihood function. The re-
sults describe the likelihood functional in integral form. The maximum
likelihood (ML) parameters are then found by maximization of this func-
tional. These approaches are intrinsically nonrecursive, lacking expedite
methods to update the parameter estimates.

ii) The second concern is along the direction of obtaining recursive identifi-
cation structures. Here the main thrust constructs approximate solutions
to the associated nonlinear optimization problem. Depending on the type
of simplifications made, different algorithms result, see Sandell and Yared
[25], Ljung [18], Caines [10], Astrom and Wittenmark [4], Soderstrom [27],
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Young [32], for typical references. Recurrent arguments in these methods
use truncated Taylor series approximations to the nonlinear model, or apply
stochastic approximation algorithms as introduced in the Statistics littera-
ture by Robbins and Monro [24]. A large effort has been invested in proving
asymptotic convergence results for these suboptimal recursions. Practical
experience shows that the part of the estimator concerned with the pro-
cess filtering usually converges at a faster rate than the parameter estimate
itself. If one thinks of the parameters as slowly drifting, this behavior is in-
tuitively understood as being a consequence of the two drastically different
time constants present in the problem. To improve on the behavior of the
recursive algorithms requires an understanding of the associated transients,
for which the above approximate techniques provide no clues.

What the work accomplishes, in the context of continuous time diffusions,
is the presentation of the optimal recursive solution for the (joint) identification of
the state and parameters of a possibly nonlinear finite dimensional system. This
is done by first deriving a stochastic partial differential equation (pde) for the like-
lihood function. This equation propagates recursively the (joint) ML likelihood
function. In fact, working with the (negative) log-likelihood function, the equation
that results is of the Hamilton-Jacobi type. Said in other words, the approach
obtains the recursive ML-estimates by first imbedding the combined identification
problem into a dynamic programming perspective. Following a different approach,
the paper extends to the identification question the formal approach of Mortensen
[21] to ML-state estimation and is motivated by the suggestion of Mitter [19] of
obtaining dynamical equations for the MAP state estimates via a duality between
stochastic control and nonlinear filtering. The estimation structure involves two
sets of stochastic differential equations, one that filters the state, and the other that
estimates the parameters. The proposed algorithm corrects and couples directly
both. It is a nonlinear stochastic optimal filter, but its structure reflects the specific
nature of the underlying model.

The following steps are taken:

i) Determination of the joint likelihood function for both the state (at present
time t) and the unknown model parameters (section 3).

ii) Derivation of the stochastic partial differential equation (SPDE) for the
likelihood function (section 4).

iii) Application of the so called logarithmic transformation, converting the
problem of maximizing the likelihood function into that of minimizing the
(negative) log-likelihood function (section 6).
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iv) Tracking of the stationarity points of the (negative) log-likelihood function,
leading to a set of dynamical equations for the ML-estimates of the state
and of the parameters (section 7).

v) Particularization of the general estimator equations to the important prob-
lem of a linear state model (section 8). This is made simple, by use of an
interpretation of the likelihood-function as a ratio of two densities (section
5).

To carry out the above involves the application of Ito Stochastic Calculus and of
Ito differential rule. Suitable references include Bucy and Joseph [9], Lipster and
Shiryayev [17], Kunita [16].

For the discrete time case, only the first three steps above can be accom-
plished exactly. Step iii) still provides a recursive update of the (log)-likelihood
function, but step iv) is substituted by a global optimization procedure. Finally,
note that the symmetric point of view of simultaneous ML-estimation of the state
and parameters is not essential to the results described. The approach can be re-
formulated in terms of a double criterion where the state estimate minimizes the
mean square error, and the parameter estimate minimizes the likelihood function.
For the linear state model, this follows immediately, since the two state estimates,
the conditional mean and the ML estimate, are related by a suitable normalization.

2 Model: Preliminaries

As mentioned in section 1, the problem concerns the recursive identification
of parameters in diffusion processes. The model is now set up. On the complete
probability space (2, 7,P), {,(t,t > 0 is a (complete) nondecreasing family of
right continuous sub-c-algebras of !. Given two independent Wiener processes
Ut = (ut, At, Pt) and Wt = (wt, It, Pt), t > 0 with intensities q and r respectively,
and an independent At-measurable random variable xo, P(lxol < oo) = 1, with
probability density function (pdf) po(x, 0), let x(t) and Yt = (yt, It, Pt) be two Ito
processes governed by the Ito stochastic differential equations

dxt = f(t, 0, xt)dt + g(t, 0, xt)dut, 0 < t < T (2-1)

dyt = h(t,0, xt)dt + dwt, O < t < T. (2-2)

Equation (2-1) is labeled the state equation, while (2-2) is the observation equation.

The dependence of the model on some possibly unknown parameter vector
0, taking values in e C Rm is explicitly stated. Most of the time, the processes and
the parameter are considered one-dimensional. This does not restrict in a fundamen-
tal way the main thrust of the paper. The vector signal and the multidimensional
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parameter cases are recovered by a suitable matrix and implied tensor notation
reinterpretation of the results. On occasion, a short hand is used for functions of
several variables, e.g.,

cp(x) = a(t, O, x). (2-3)

When no ambiguity arises, arguments may also be ommitted. In sections 6-8,
subscripts will indicate partial derivatives.

If Q is a set of smooth functions, e.g., the set of continuous functions on
[0, T]

Q = C([O, T ]; R1), (2-4)

endow it with the topology of uniform convergence on bounded t-intervals. Let
a(t, W) denote the standard coordinate function

a (t, W) =j (t). (2-5)

The map a(t) given by W -+ a(t,Ev) is continuous, therefore Borel-measurable. It
can be shown, see Stroock and Varadhan [28], that the Borel a-field a' is

a =a-{ 8 ':O<_s<_T} P-a.s. (2-6)

where r-{-} denotes the least a-algebra generated by the enclosed variables. Even
if not stated, all a-algebras are assumed P-complete. We define

t- = a-{ a,': < < t}. (2-7)

The restriction of the underlying measure P to ja (or ta) is represented by P" (or
Pta). The measure induced by the Wiener process is called the Wiener Measure.
Expectation with respect to a measure /t is noted by EP(.). Again, although not
directly indicated, expectations are defined uniquely within sets of iL-measure zero.
When the measure is clear from the context, the superscript is ommitted. With the
above notation, the nondecreasing family of a-algebras Ft is usually the cartesian
product

ft = a- {xo} x t' X tw. (2-8)

The model (2-1)-(2-2) is assumed well posed. For all 0 E E, the drift f, the
diffusion g, and the sensor h satisfy measurability, smoothness, and Lipschitz growth
conditions on t, 0, and x that guarantee the existence, uniqueness, and smoothness
of the strong sense solution of (2-1)-(2-2). Sufficient conditions are readily available
in standard texts, e.g., Lipster and Shiryayev [17], Stroock and Varadhan [28].

The paper studies the combined maximum-likelihood (ML) estimation of
the state and model parameter: Given a record of observations

Yt = (yS,O < s < t)
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construct for each t the ML-estimate of the state x(t) and of the parameter 0. As
t ranges from 0 to T, we are further interested in a recursive solution. For f, g,
and h linear in x, the combined state-parameter estimation is part of the param-
eter identification in linear systems problem, highly relevant in adaptive control,
communication systems, ARMA modeling. Because the parameters appear nonlin-
early in the model, it still is a nonlinear problem. As such, and except for trivial
situations, the optimal solution is non-feasible. From a practical point of view, its
implementation requires some sort of approximation, the optimal algorithm provid-
ing a guideline for shortcuts to be taken in actual practical problems. However, the
fact that the model is linear in the state, provides the identification problem under
consideration with a peculiar structure. This structure is reflected in the solution,
and will be noted upon later. It is worth to point out here, that the algorithm to
be discussed intrinsically differs from a common strategy found in the litterature,
where the parameters are treated as auxiliary state variables with trivial dynamics.
Extended Kalman-Bucy filtering arguments are then applied to the extended state
vector model. The optimal version of this technique would construct the optimal
filter for the extended state vector (nonlinear) model, e.g., the Zakai equation, see
Zakai [33]. The difficulty with this approach lies in that the diffusion operator of the
extended state vector process is degenerate, the optimal filter becoming numerically
highly sensitive.

3 The Likelihood Function

On the measure space ([, Y, P), assume given the family P = { Pe : 8 E O
of probability measures indexed by the parameter 0 E O. Further, let there exists a
(a-finite) measure A that dominates every P8 E P. The Radon-Nikodym derivative,
see Lipster and Shiryayev [17],

dP8(w)L (0) = de(w) (3-1)

considered as a function of 0 (with w fixed) is called a likelihood function. The
subindex w will frequently be ommitted. Lw(0) is unique within stochastic equiva-
lence, i.e., it is defined A - a.s.. The statistic that maximizes L, (8) is the maximum
likelihood estimate.

We apply the above concept to the model (2-1)-(2-2). Loosely speaking,
the likelihood function L(O) is the Radon-Nikodym derivative of the measure in-
duced by the observation process on the set of continuous functions (C[0, T]; R81 )
with respect to the Wiener measure, as evaluated along the observed record Yt.

Define

Zte = exp - j h(s,8, x)dy8 - - h2(, ,x,)ds] (3-2.a)
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Assuming the finite energy condition

EP( h2(s,e, ,)dds) < , (3-2.b)

the supermartingale Z4 is in fact a martingale (e.g., Theorem 6.1, p. 216, and
example 4, p. 221, Lipster and Shiryayev [17]) with

EZte = 1. (3-2.c)

Then Girsanov's Theorem, see Lipster and Shiryayev [17], applies. Under the mea-
sure P whose Radon-Nikodym derivative

dP ( w) = (z) (P - a.s.) (3-3)

i) the process Yt is a Wiener process; ii) Yt is independent of Xt; and iii) the
probability measure of Xt remains unchanged. Girsanov's theorem implies that
given an r-measurable function 'p

E P ['p] = E P [~oZ']. (3-4)

Define the innovations process Vt = (vt, Ft, Pt) by

dv(t) = dy(t) - ht(xt)dt (3-5.a)
where

hih(xt) = EP [ h(t,0,xt) I ]tY]. (3-5.b)

We assume the innovations property, i.e., that for all t

it" = ty.- (3-6)

Under the assumed independence of Xt and Wt, Allinger and Mitter [1] have shown
that (3-6.a) is true under the general condition (3-2b).

Using (3-3) and the Girsanov's Theorem, the family of measures

exp [-- jo h(, 0, x)dv8 - fh2(s 8 )dS] PAY(dw) (3-7)r 2r q't 2

is Wiener measure. A likelihood function for 0 is then

Lt(0) = exp[ hj(s, , s)dys 2r h2(s,, xs)ds (3-8)

~~""",~"[lfot " cl for ]-~·--·-



Equation (3-8) follows by evaluating the Radon-Nikodym derivative of P2Yt with
respect to the Wiener measure (3-7), and upon substitution of the innovations
process by its definition (3-5). Application of Girsanov's Theorem is justified, see
notes 1 and 3 to Theorem 7-13, Lipster and Shiryayev [17].

It remains to modify (3-8) to include the state xt = X at present time t as
a parameter. In what follows, let

n = n · x nW (3-9.a)

Y = f x Y (3-9.b)

P = Pz x pw (3-9.c)

where WM, fl' are (C[o,TJ]; 1), the set of continuous functions defined on [0,T],
and all remaining objects have previously been defined. Further, let

(xt) = a - {x.: s < t, x(t) = X held fixed} (3-10.a)

B,%7' = FY, v f(xt) (3-10.b)

pYt = p I .yz. (3-10.c)
From (3-10.c),

ply Z = PZ X PUW |I Y' V 7(Xt). (3-11)

Invoking the independence between Wt and Xt (see begining paragraph of section 2)

pYXt =([PZ I Y(Xt)] X Pw) i (3-12)

where P' I Y(xt) is the measure induced by the Xt trajectories terminating at time
t at xt = X. Equation (3-12) provides the correct modified measure with respect
to which conditional expectations are to be taken, when, besides the record Yt, the
terminal state xt is also known. But (3-12) shows that the problem is conceptually
equivalent to the original filtering problem, except for a change of the a priori
measure induced by the (state) process. Also note that

EP°l (t)[ . =EP · (Xt)] (3-13)

= EPZ [- | a=t X(3-14)

where (3-14) is a notational convenience.
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For an Y7Y-measurable yo, and applying the Girsanov transformation (3-3),
one has successively

E)t. [I] =EP[p | It] (3-15)

= EP [PZ |t] (3-16)

= EP'zI(zt) g[sz:] (3-17)

= EPZ | = X ] (3-18)

The step from (3-16) to (3-17) is justified by conditions ii) and iii) of the Gir-
sanov theorem (see under equation (3-3)), i.e., because under P, Xt and Yt are
independent, and P leaves the law of Xt unchanged.

Let now

hs(X) = EP [h(s, 0, xs) Yzt,X 0] (3-19)

which transforms to

h9(X) = EPt I ( =t)xP [h(s,t,x,) |I TV,] . (3-20)

Under (3-2.b), measure

exp [-- h(s,O , x)dz8- 2- - h2(s, 0, xs)ds PY t (dw) = A(dw) (3-21)

is Wiener measure. The innovations Vt are defined as in (3-5) with h(s, 0, x,)
substituted by h(s, 0, x8). We have proved the following result.

Theorem 3-1. Under the above setup, the joint likelihood function for the terminal
state xt = X and the parameter 0 is

Lt(, X) = dA (w)

= exp- h(s, , xs)dY -2- h2(s,x)ds (3-22)

Alternatively, (3-22) can be reinterpreted as

Lt(O,X) = EP m [ZtO = xo] (3-23)

9-~sn I II~-· LIQ·ls~QI II·~IC--· ---- (3-23)



where in (3-23), the trajectory Yt is fixed. Equivalence of (3-22) and (3-23) follows
from Theorems 7-1 and 7-13, see also note 1, p. 266, Lipster and Shiryayev [17].

The following remarks are intended to enlighten (3-22) and (3-23):

i) The expectation in (3-23) is over the measure induced by the state trajec-
tories Xt when the terminal state is kept fixed, i.e., xt = X. Of all possible
trajectories, one is only considering those terminating at X at time t. The
likelihood function is now dependent on X (and on 0), and may be maxi-
mized with respect to X (and with respect to 0).

ii) If in (2-1), we set ut - 0, then (x 8, 0 < t < T) is deterministically obtained
by integration of (2-1). The set of trajectories terminating at xt = X
collapses in one trajectory (integrate (2-1) backwards in time from xt = X),
i.e., PZ is a delta measure (in function space). Then, (3-23) becomes

l rt 1 t2 1Lt(, X) = exp h (s, 0, xs(X))dys - - Jh 2 (s,, 8 (X))ds] (3-24)

where xs(X) is notation for the solution at time s of (2-1) integrated back-
wards from xt = X. No expectation is involved in (3-24). Equation (3-24)
is nothing but the classical likelihood function of nonrandom waveform esti-
mation when the measurement noise is white, see Van Trees [31], chapter V.

4 Stochastic Partial Differential Equation for the Likelihood Function

To obtain filtering structures updating recursively the ML-estimates of
xt = X and 0, a stochastic partial differential equation (SPDE) for Lt(O,X) is
needed. To accomplish this, the likelihood function (3-23) is interpreted as the
solution in a probabilistic sense of a Cauchy problem associated with a forward
parabolic differential equation (FPDE) (Feyman-Kac's formula). The correspond-
ing differential operator is obtained by writing a backward Ito stochastic differential
equation (SDE) for the forward Ito SDE (2-1). For details on the probabilistic inter-
pretation of the solution of Cauchy problems associated with forward and backward
PDEs, and on the connections between these and forward and backward Ito SDEs,
see Kunita [16].

By Feyman-Kac's formula, equation (3-23) is the solution of the forward
PDE

dv°(X) = Lv°(X)dt + - h(t,O,X)vt°(X)dyt (41)
r (4-1)

lim Vt(X) = 1.
t-O1

10



where LC" is a second order elliptic operator. It is the infinitesimal generator of the
Ito backward SDE associated with the process (2-1) given by

a 1 a2
~[-] = f(t,O,X) [.] + g(t,e,X)2a2X [. ] (4-2)a 2 2dX (4-2)

where the modified (backward) drift

f ,) = (p(t,) + )(t,X)=(p(t,X)+) X tX)] f(t,,X). (4-3)

In (4-3), f and g are the drift and diffusion coefficients of (2-1), p(t,X) is the
probability density function of Px (the prior measure of the process) assumed to
exist, and

0 if p(t,X)=O

p(t,X)+ = I .t (4-4)
p(t, X) otherwise.

The drift of the backward process as given by (4-3) was obtained in Anderson[2],
and used in Anderson and Rhodes [3) to derive smoothing formulae for nonlinear
diffusion models. Conditions exist for the time reversed process to be again a
diffusion, see Anderson[2], Elliot [12], Haussman and Pardoux [15], Follmer [14].
By the support Theorem in Stroock [29] (Theorem 4.20 for the degenerate case, or
Corollary 3.9 for the nondegenerate case), p(t, X) > O, VX, so that (4-4) is irrelevant
under the present conditions.

5 The Likelihood Function as a Ratio of Two Densities

In section 8, it will be useful to have the interpretation of the (conditional)
likelihood function L(t, 0, X) as a ratio of two densities. Let p(t, X) be the probabil-
ity density function of the process measure Pt, satisfying the Forward Kolmogorof
equation

dpr(X) = L£* (p'(X)) dt, (5-1)

where

(') = (f(t,O,X). + 1aa2 (g(t , X) 2 .) (5-2)

is the adjoint of the operator £1eassociated with the original diffusion process (2-1).
Also, let q (x) satisfy

dq t(x) = £* (qt(x)) dt + -h(t,1,X)q6(x)dyt. (5-3)

Equation (5-3) is known in the filtering litterature as the Zakai equation, see Zakai
[33], also Bucy [8]. General conditions for (5-3) to have a solution are given for
example in Kunita [16]. When it exists, the solution of (5-3) is known as the
unnormalized probability density function.

~~""""~""""""~~""""""""~~~1



Result 5-1. Assume (4-1), (5-1), and (5-3), have unique solutions. Then

v (X) = q (x)p (X)+ (5-4)

where pO (X)+ is defined in (4-4).

Proof: Application of Ito's formula to (5-4) leads to

dv(X) = p (X)+dq (x) - q(x) (p° (X)+)2 dp (X). (5-5)

Evaluating the right hand side of (4-1), after straightforward manipulation, obtain

Eit (q°(x)p°(X)+ ) = pt(X)+e° * (q°(x)) -q q(x)(pz(X)+)2£° * (p9(X)) (5-6)

where tof * is given by (5-2). Substitution of (5-5) and (5-6) in (4-1)

p (X)+dqt(x) - qt(x)(p(X)pX)+()2 X) = p(X)+ £* (q (x)) dt

-qt°(x)(pt'(X)+)2£t * (p(X)) dt + (p9(X)+ ) h(t, ,X)q (x)dyt.

Finally, (5-1) and (5-3) show the desired result.

Equation (5-4) factors the likelihood function as the product of the unnor-
malized probability density function by the inverse of the prior density. Alterna-
tively,

qt(x) = 4s(X)p0 (X)

corresponds to the numerator of the Representation Theorem of Bucy, see Bucy
and Joseph [9], Theorem 4.1. See Pardoux [23] for a similar discussion. In a sense,
factoring (5-4) is not surprising. The parameter 0 having no probabilistic structure,
the likelihood function for the terminal state xt = X, or the joint likelihood function
for the terminal state xt = X and the parameter 0, lead both to the same object.

6 The Negative Log-Likelihood Function

Due to the monotonic behavior of the logarithmic function, it is a standard
procedure to substitute the maximization of the likelihood function by the mini-
mization of its negative logarithm. In the context of stochastic filtering and control,
the logarithmic transformation has been introduced by Flemming and Mitter [13],
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see also Mitter [19], to establish a certain duality between problems in the two fields.
Consider

L(t, O, X) = exp [-S(t, O, X)] (6-1)

or

S(t, 8, X) = - In L(t, 8, X) (6-2)

Remark: By (3-2.b), S(t, 0, X) is well defined.

Notation: In the rest of the paper, subscripts x and 0 stand for differentiation with
respect to the subscripted variable.

Theorem 6-1. The (negative) log-likelihood function satisfies

1 1 1
dS = (S) dt - g(t X)Sdt h(t,,X) 2dt - -h(t,, X)dy(t), (6-3)

t 2 2r r

where the operator L£ has been defined in (4-2).

Proof: Application of Ito stochastic differential rule to (6-2) leads directly to (6-3).

To facilitate the interpretations later on, (6-3) is explicitly evaluated

dS = a (S$. - S2) dt + aSdt + -h(t,, X) 2 dt - h(t,, X)dy(t) (6-4)
2r r

where

a = -g(t,8,X) 2 (6-5)

a = 2a, - 2aS S- f(t,, X) (6-6)

S=- n pt (X) (6-7)

with p9(X) being the a priori probability density function of the process which is
supposed to exist. For conditions on the coefficients of equations of the type of
(6-4) to have a solution which has continuous time derivatives and continuous first
and second order spatial derivatives see Flemming and Mitter [13], Theorem 4.1
and section 6.
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7 Filtering and Identification: Joint ML-Estimation Equations

The joint maximum likelihood (ML) estimates of 0 and xt = X are

[8(t)] =arg min S(t,O,X). (7-1)
0(t) BEe ,Xe R

Alternatively, and in the sequel, the ML-estimates are defined implicitly as the roots
of the log-likelihood equation

VS(t, O, X) =0 (7-2)

where

a= X aO

is the gradient operator. Explicitly, (7-2) is

s.(t) = 0 (7-3)

Se(t) = O.

The hat notation represents evaluation along the ML-trajectory, while subscripts
stand for partial derivatives. Let V 2 S be the Hessian matrix

V2= S [S z S.z S (7-4)

Result 7-1. Assume that for all t > 0, 0 E e, and x E Rl:

i) S(t, 0, X) is measurable and smooth up to fourth order partial derivatives;

ii) The Hessian V 2 S exists and is invertible;

iii) For each t > O, there exists a countable number of solutions to (7-2).

Then, the joint ML state and parameter estimates satisfy:

dO((t) ]= ' (t)dt + 7(t)d(t)7

with the (pseudo) innovations

dr (t) = dy(t) - h(t)dt, (7-6)

the filter gain
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(t) [ (t) ](77)

_ 1 1 h(t)See - he (t)Se1

-r SS 7~Soo - s-h(t)S.o + he(t) Sx 
and the drift

A(t)=- [ ] (7-8)
0

+ 1 [ f ~a( SeesX- SXS +Xo) + (aS8 - OSX8) SXzx

blot),

where the term corresponding to the Ito correction

(lt~dt ) 2 ( )V2S S. SS2S ] ( ((IC 2 (t) d. (7-9)(t) dt- I ($t-x8x) 2 S8 e L )2(t) d. -

Proof: This is only a formal argument. A rigorous analysis requires that conditions
for smoothness of the required derivatives of S be given. That is not trivial in the
general nonlinear case. In the linear stationary problem of section 8, however, these
conditions translate into smoothness of the solution of the algebraic Riccati equation
for which there are in fact results, see Delchamps [11]. By the measurability and
smoothness of S on t, 0, and X, and by completeness of the o-fields, it is possible
to choose YtY-(progressively) measurable versions for S(t), S.(t), So(t), and for the
higher order derivatives, see Lemma 4.7 in Lipster and Shiryayev [171. To track the
time variations of the stationarity points of S(t,, X), the total time derivative of
(7-3)

d[ S t) ]=0 (7-10)

is evaluated by Ito's rule. In symbolic notation,

atVS + V2S [ d(](t ) + (t)dt = O, (7-11)

where
Sxz Sxe

V2S= (7-12)
S18 Soo
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is the Hessian evaluated along the ML-trajectory. The last term ¢(t) represents the
Ito correction

'(t)dt = -V3Sdm(t) (7-13)

with

V3S Sxz 2S=e S ] (7-14)
S$ozx 2Sesz Sass

the matrix of third order derivatives, and

dm(t)= (, O)t dt (7-15)

the vector of quadratic variations. To evaluate the first term of (7-11), following
Mitter [20], interchange orders of differentiation

atVS = VdS (7-16)

and use (6-4) to compute dS. Assuming the Hessian is invertible, obtain from
(7-11)

rdl(t' )(-1
[dO(t) =- (V 2 S) VdS + '(t)dt (7-17)

with

@(t) = - (V2S) ¢(t). (7-18)

After algebraic manipulations, and using the stationarity condition (7-3), equation
(7-17) leads to (7-5) - (7-9).

The following comments apply:

i) From (7-8), the ML-filter drift is -[ O]T corrected by terms involving
higher order derivatives. This is the model following structure of the filter.

ii) Under general conditions, maximum likelihood commutes with nonlinear
no memory operations. So,

h(t) = h(t, At, Ot),

and similarly for a, -a,, . For memory functions, care should be taken. In
general, expressions like Szx(t) make no sense in the realm of Ito calculus.
They would involve notions of stochastic integration with nonantecipative
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integrands. As remarked before, this does not however preclude that an
rtY-measurable version may be chosen for S,,,x(t) (and for the other higher

order derivatives), so that (7-5) is well defined in the sense of Ito.

iii) In face of the previous comment, it is clear that the filter (7-5) is not
in closed form, knowledge of the higher order derivatives evaluated along
the ML-trajectory being required. Dynamical equations for these may be
obtained in much the same way (7-5) was derived. As a further example,
the equation for Sxx(t) is

dS=z(t) = S,zedO(t) + S+zddx(t) + (a8= + 2am) S,,dt

+ (2ax + a) Szxzdt + -zzzzdt - 2oSxdt (7-19)

+-h (t) 2 dt - -hz(t)dr7(t) + Ito correction.
r r

In turn, this equation requires knowledge of measurable versions of third
and fourth order derivatives of S. Well known in nonlinear filtering, this
coupling to higher order moments shows that recursibility trades off with
dimensionality in ML-estimation.

iv) As noted, the process ( rl(t), t > 0) is a pseudo innovation. In its definition,
h(t) is not the conditional expectation of the sensor but the sensor evaluated
along the ML-trajectory. Its bounded variation component also contributes
to the drift in (7-5).

v) The structure of (7-5) resembles that of the (optimal) conditional mean
filter, except that conditional expectation is herein substituted by ML-
estimation. One distinguishes a drift term and an "innovations" weighted
by a gain.

vi) Equation (7-5) has assumed the invertibility of the Hessian matrix along
the ML-trajectory. If this is not true, (7-11) might then be solved by a least
squares technique. Next section sheds light on the meaning of the Hessian
matrix. In the linear state problem, it corresponds to the inverse of the
state error covariance matrix computed by the Riccati equation associated
with the Kalman-Bucy filter.

vii) Filter (7-5) addresses the combined state and parameter ML-estimation.
If the parameters are known a priori, the filter structure is correspondingly
simplified. The resulting filter corrects (with the Ito correction term) the
one in Mortensen [21], who was the first to address formally the question
of nonlinear ML state estimation. If there is no plant noise, the state is
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a deterministic signal, (7-5) describes the recursive observer/identification
algorithm. Finally, if, except for the unknown parameters, the state is
a known time function, (7-5) provides the recursive parameter estimator
equations.

8 Identification of Parameters in Linear Systems

Although in general, equation (6-4) has no closed form solution, there is
an important class of problems for which one is readily available. This corresponds
to the special case where in the model (2-1)-(2-2)

f(t, 0, xt) = F(t, O)x(t)

g(t, o, xt) = G(t, o)

h(t, O, xt) = H(t, O)x(t).

Substitution in (2-1) and (2-2) leads to the linear (in state) model

dx(t) = F(t, o)x(t)dt + G(t, )du(t), xo (8-1)
dy(t) = H(t,6)x(t)dt + dw(t), y(O) = 0. (8-2)

The initial condition is also assumed to be

xo - Normal (Yo, Po) (8-3)

The mean and covariance of xo may be 0 dependent. All remaining hypotheses
underlying (2-1) and (2-2) stay in force. For each value of 0 E e, the processes Xt
and Yt described by (8-1) and (8-2) are Gaussian. The prior mean x(t) and prior
covariance P(t, 0) of x(t) satisfy

x(t, O) = F(t, O):(t), Y(O, 0) = xo, (8-4)

and the Lyapounov equation

P(t, 0) = F(t, O)P(t, 0) + 1i(t, O)F(t, 0 )T + G(t, 0)G(t, O)T, i(0, 0) = fro. (8-5)

The conditional density of x(t) given FtY is also Gaussian. Its moments, the
mean

A(t, ) = E [x(t) lt y] (8-6)
and the covariance

P(t,0) = Cov [x(t) - 't(t, 0) lY ] (8-7)
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are updated by the Kalman-Bucy filter

dgt(t, 0) = F(t, 0),t(t, O)dt + P(t, O)H(t, O)r-l [ dy(t) - H(t, O)t(t, O)dt ] (8-8)

P(t, 0) = F(t, O)P(t, 0) + P(t, 0)F(t, 0 )T + G(t, 0)G(t, 0 )T

- P(t, O)H(t, o)TR-1H(t, O)P(t, 0). (8-9)

The initial condition for the above recursion is

tL(O, 0) = o (8-10)

P (O, ) = P(O, 0).

With the insight provided in section 5 that interprets the likelihood function as the
ratio of the unnormalized conditional probability density function over the prior
probability density function, it is easy to establish the closed form expression for S

2S(t,0 , X) = [ X- _(t, 0)]T[ P(t,0) ]-l X- (t,0) ]

+- [ H(t,0)jAt,) d -d - H(t, )tA(t, 0) dy(t) (8-11)
r Jo r

-[X- (t)]T[15(t, )]- [X- (t)] +ln[ P(t,O) l/ |P(t, O) I]

as a solution to (6-4). In (8-11), I l is the determinant function. Verification of
(8-11) follows if it is substituted in (6-4), all derivatives are carried out (taking
care of Ito corrections), and terms in x 2, x l, and x °0 are collected.

To specialize the ML estimator equation (7-5) to the present problem,
notice that from (8-11), S is quadratic in X. So

S.ZZ = 0. (8-12)

Also, because G is independent of X

s = 2(GGT)z = 0. (8-13)

Obtain

dx(t) [[F(t, (t)) + G(t, 0(t)) P2 (t) x(t)dt + B(t)dt
dO(t) 0

+ ?(t)dt + 4(t)dht. (8-14)
where ¢(t) is as in (7-9)
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W(t) = -a-; 8 [ Szx J (8-15)

and the filter gain

i1 1 I H(t, (t))Seo - He(t,(t))x(t) Se
E = (t) -- (8-16)

r Sx§S0-Sx2 -H(t,O(t))Sxo + Ho(t,O(t)) (t) Sx,

Rearrange the filter gain as

=(t) = a(t) + -b(t) (8-17.a)

where
1 1 r Y(t, V0(0 6

ica"(t) = S X'-8 S. _ Ho(t10(t))x(t)Sx, (8-17.b)
and

-1 1 Ho(t, O (t))1(t-17c)
S S-0 1. H ',(t))J (8-17.c)

Appendix A computes all the required partial derivatives S$x, "*, as well as the de-
terminant of the Hessian I V2S(t) i. The expressions in the Appendix involve knowl-
edge of the prior moments T(t) and P(t, 0), and of the conditional moments p (t, 0)
and P(t, 0), as well as higher order partial derivatives, along the ML-trajectory. In
general, these quantities are not available in closed form. Instead, they are them-
selves described by stochastic differential equations, which are in turn obtained by
Ito's rule. For example, the equation for x(t) is

dcz(t) = t(t) + o(t)d0')(t) + 3 oo(t)k2(t)2dt (8-18)

where k2 (t) is the second component of the gain vector, see (8-16) or (8-17). The
first term of the right hand side of (8-18) is given by (8-4) evaluated along the ML
estimates. Likewise,

dj2(t) = at-(t) + ((t)dO(t) + ~i'7(t)k2(t)2dt (8-19)

where, from the Kalman-Bucy filter (8-8),

att(t) = F(t, e(t)) i(t)dt

+ P(t)H(t, 0( [dy(t) - H(t, O(t))R(t)dt] (8-20)

Again, we observe that the above equations are not in closed form, higher order
partial derivatives of the moments being required.
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9 Conclusion

The present work has presented the recursive equations satisfied by the joint
maximum likelihood estimates of the state and of the parameters of a dynamical
system. This has been accomplished in steps. First, by deriving the joint likelihood
function. Secondly, by finding a recursive (stochastic partial differential equation)
description for the likelihood function. Thirdly, by writing the stochastic partial
differential equation for the log-likelihood function through application of the Ito
stochastic differential rule to the logarithmic transformation. Finally, obtaining
the desired recursive algorithm through minimization of the log-likelihood function.
After discussing the structure of the estimator, section 8 of the paper studied the
special problem when the underlying model is linear in the state. Examples of
application of the present work and the question of implementation of the schemes
proposed are considered in Moura, Mitter, and Ljung [22]. Consistency, for which
there are presently partial answers, is studied elsewhere.
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Appendix A: Identification of Linear Systems

In this appendix, we write the detailed equations obtained when the state
equation and the observation equation are linear in the state. To avoid burdening
the notation, the processes and the unknown parameter vector are all taken to be
scalars. The gradient of the log-likelihood function along the ML-trajectory leads
to

s (t) = P (t)[x(t) - (t)] - P (t)[x(t) - (t)] (A-1)
and

So(t) = -P (t) [(t) - "(t)]A' (t) +-P (t)[-X(t) - (t) (t) (A-2)

1 i1 1 2
+2 [(t))o[(t) - (t)] (-" (t))e [(t)- (t)]2

+ - (Hl(s, 0))9dy(s) -- ] [Ht (s, 0)] [(H(s, 0)) ] ds

+(In l (t) I
,I P(t) I 0

By stationarity, it follows from (A-1) the useful relations

P- (t) [(t) - ~(t)] = P (t)[x(t) - (t)] (A-3.a)

= [(t) - P(t)] -[(t)- (t)] (A-3.b)
and

-(t) = [-I (t) --- (t)] [P-l(t)(t) -P-1 (t)(t)]. (A-3.c)
From (A-2), and using (A-3),

-2 (Hlt(s, 0)) d (s, ) + n (t) ) (A-4)

r IJ0~~ [ P(t) I-

[(t) - P(t)] - [(t) - x(t)] [(t) - x(t)]

-2 lP(t) - P (t)] y(t)- P(t)]- [_(t) - (t)] 

The pseudo innovations are

dI(t, 0) = dy(t) - HIl(t, 8)dt. (A-5)

The left hand side of (A-4) is the parameter's only log-likelihood function. The
right hand side shows how the prior information on the process x(t) affects the
parameter estimation.When

P (O) = 0, (A-6)
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it results that
x(t) = j(t), (A-7)

and the right hand side of (A-4) is zero. The parameter ML-estimate is then that
value of 8 for which the inner product

< (Hut) , Xot >_ 0, (A-8)

i.e., that value of 0 for which the 0-gradient of the sensor Hpu(t) is orthogonal to the
innovations. Under no prior knowledge on the state process statistics, we recover
then the usual ML-parameter interpretation.

Remark: The ^ notation over the first integral in (A-2) stands for a measurable
version of the integral evaluated at the ML-estimates at time t. Over the second
integral, it means evaluation of the integral over a Borel measurable version of
the integrand evaluated at the ML-estimates at time t. As discussed previously,
completeness of the a-fields and continuity of the several functions on the arguments
guarantee the existence of such measurable versions.

Carrying out the higher order partial derivatives, obtain along the ML-
trajectory

P= -P'(t) - (lt) ) (A-9)

S$s(t) = -P (t) (t) + -(t) (t) (A-10)

+ (P-l(t))-[-(t) - (t)] - (-l (t)) o[-(t) -(t)]

sea(t) = P-) ([i(t)]2- -'(t)[ )] (A-11)

- 2(P-l(t))O [x(t) - (t)] i(t) + 2(T-l(t))O [-x(t) - x(t)]:x"(t)

P- (t) [x(t) - (t)] -'(t) + P (t) [(t) - (t)]s (t)

+ (P-lt)) (t))e - (t)] - P (t)) s [x(t) -(t)]

t t

+ (H.(s,))]dy (s) - [(Hl(s,.))] ds

-|[HA (s, 0)][ (H (a, 0 ) ) OO ds + (ln P(t) W I

S;O2(t) = (p-l (t)) _ (-l (t))O. (A-12)
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To compute the filter, we need the determinant of the Hesssian matrix. Combiningthe terms in S2 with corresponding terms in the product S.x by Sao and usingrelations (A-3), obtain

I V2S(t) I= -p- (t)-P (t)[ X8(t)- (t)] (A-13)

_ P~ (t) P (t) lB(t) -x (t)] [Cl(t) -xe(t)]

+p-l(t)-P (t)[~(t)-P(t)] [Bi(t)_-(t)]2 I ~'t -^

- P(t] (t) -(t)]{ ( (,))ed( ) f -t X [()d

Under (A-6), i.e., no prior knowledge on the process statistics, the ML state esti-mate coincides with the conditional mean as stated in (A-7). Equations (A-9) to(A-12) become
S[e(t) P -lP1 (t) ^) (A-15)- j [(I(,)) 2ds - 2 [Hil(s, )] [(B (s,)) ee]d s _ + (n P 0(t) )0]\ P(t)Amate concde wthth conditional mean as stated in (A-?). Equations (A-9) to(A-12) becomeSX,; (t) = ( P (t)) (A-14)

SO(t) =Finally, (A-13) is now)

IV 2S(t) = P- (t)' 2 (Ht(s, 0)) od (s, ) [( )) ds (A-18)

+ (n I P(t) )
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