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ESTIMATION THEORY AND STATISTICAL PHYSICS

S.K. Mitter

Department of Electrical Engineering and Computer Science and
Laboratory for Information and Decision Systems, M.I.T,
Cambridge, MA 02139

1. INTRODUCTION

In my previous work on non-linear filtering for diffusion processes [Mitter
1980,19831 T have discussed the analogies that exist between these problems and
problems of guantum physics from the Feynman point of view [cf, Glimm-Jaffe 1981].
The basic ideas here is that construction of a non-linear filter involves an
integration over function space which is exactly analogous to the construction of a
measure on path-space via the Feynman—Kac-Nelson Formula. According to this
viewpoint, the Kalman-Bucy filtering problem, namely the filtering of Gauss—Markov
processes in the presence of additive white Gaussian noise occupies the same role as
the Ornstein-Uhlenbeck process (finite or infinite~dimensional) in Quantum Mechanics
or Quantum Field Theory. That this analogy may be deeper is borme out by the fact
that a solvable Lie algebra, the oscillator algebra which contains the Heisemnberg
algebra as a derived algebra is intrinsically attached to the Kalman—Bucy Filtering
problem, I have also shown that the problem of non-linear filtering of diffusion
processes admits a stochastic variational interpretation [Fleming—Mittet 1982). The
objective of this paper is to strengthen these analogies further with a view to
showing the close relationship of estimation theory to statistical mechanics. The

motivation for this comes from problems of estimation and inverse problems related

to image processing,

In order to carry out this program it is necessary to generalize these ideas to
filtering problems for infinite—dimensional processes where we are forced to work in
the context of generalized random fields, There are two types of processes

involved: continuous processes such as infinite-dimensional Ornstein-Uhlenbeck
processes and their L2-functionals which represent intensities of images and
processes of a “"discrete"-nature which will represent "boundaries” of images, The
most interesting models are obtained when these processes are coupled according to a
probabilistic mechanisms, The "discrete” processes should be thought of as gauge

fields and will be a process on connection forms.

Although the estimation problems of interest are natorally viewed in the context
of random fields which are independent of time, the best way to obtain sample
functions for these fields is to simulate it via finite or infinite-dimensional

stochastic differential equations whose invariant distribution coincides with the
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distribution of the time-independent random field, This Monte-Carlo simulation
procedure is the same idea as stochastic quantization, an idea advanced by Parisi
(cf. Parisi—Wu 1981) and recently studied in a rigorous manner for (P¢)2 fields in a
finite volume by Jona-Lasinio and Mitter, 1984, The problem which are of interest
here are filtering problems associated with these stochastic fields obtained by
introducing observations which are "local” and studying the behaviour of these
filters as t —>», To make any progress however, one would have to work with lattice
approximations of these stochastic fields and reduce the filtering problems to a
finite dimensional situation and even here there are severe technical difficulties,
When the observations are however local and considered to be on the stationary Gibbs
field the problems amounts to looking at the invariant distribution of a stochastic

differential equation with a coupling coming from the observations,
The main objective of this paper is to explore these relationships between problems
of estimation and stochastic quantization (stochastic mechanics) at a conceptual

level, The detailed technical discussion will appear elsewhere,

2, SIGNAL MODELS FOR IMAGE PROCESSING

In order to treat problems of Image Processing in s probabilistic framework we need
probabilistic models for the signals in question. These signals are various
attributes of images such as intensity of images and boundaries between smooth parts
of images. The probabilistic models we choose are Gibbsian random fields and are
borrowed from statistical mechanics, These models for image processing have been
used by several authors recently (c¢.f. Geman and Geman 1984, Grenander 1984,
Marroquin 1985), The exposition of signals models given below follows Sinai 1982.
The signal models we wish to consider correspond to statistical mechanical models on
a finite lattice and we shall take this lattice to be 72 with the Fuclidean morm,
The sample space Q consists of functions ¢:22 —)!:x=(x1,x2) - ¢(x), where § is a
finite set, a homogeneous space of a compact Lie Group with the natural c-algebra of
Borel Sets or Rl. The sample space Q is termed a configuration space in statistical
physics, For vez2, a finite subset, we denote by (V) = {ﬁ(x)'st) and
v 22 = tp(vy jvez?l, finite.

For a non-empty finite subset vez? we are given a function I:Q(V) —R:¢(V) >T(p(V))
which is called the potential, I(#(V) is the joint interation emergy of ¢(x)

inside the domain V.

For an arbitrary finite WCIZZ, we define the emergy H(g(w)) of the configuration ¢

in the domain W as

Hip(n) = ) T(p(x). (2.1)
v w
The sum
Hp(w |p(ZAW) = ) T(p(V) (2.2)
VY=g
VN Z2\¥=¢

is the interaction energy between the configuration g(W) and ¢(ZZ\W), where ¢(ZZ\W)
is the boundary condition., The total energy of the configuration ¢(W) is the sum

mg(W)) + B(p(z2\W).
The Hamiltonian is defined as the formal series.

) = ) T, (2.3)
v

where V ranges over all finite subsets of Zz. The model of most interest to us is
the 2-dimensiomal JIsing model when ¥ = {1, -1} (spins), and I(p(V)) = O
unless V= {x,y} with 'Ix—y" =1,

We take I(g(V)) = Jp(x)p(y) where T = + 1,
M) = =T ) plxIpy) (2.4)
{x,y}
[yl =1

This Hamiltonianm is translation invariant and reflection invariant, If J=+1, the

model is ferromagnetic and J=-1 corresponds to an antiferromagmetic model.

The other model which will be of interest to us is the Ising model with an extermal

magnetic field with Hamiltonian

Hg) = -1 ) #(x)ply) - h ) plo. (2.5)
{x,y} xe7%

Il

where h may be random,

Finally a case of interest to us is the Hamiltonian
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Hp) = ) Txpesly) - h } #(x) (2.6)
{x,y} xe72

Jlx-y =1

where J(x,y) is random, This corresponds to a spin glass,

Let a measure be given on § and for every VC 72 we consider the product measure

TT'Q}(¢(S)) = dp.
seV
¥We are interested in Gibbs distributions in the domain V which is a probability

distribution on (V) whose density with respect to dp is given by

exp (-H(g(V))) (2.7)
f exp(~H( (V) )dy

Z = [ exp(-H(g(v))dp is called the partition fumction.

This corresponds to the so-called Gibbs distributions in V with free boundary
conditions (Dirichlet Boundary conditions in the literature of quantum field
theory), The signals ¢ we shall be interested in will have Gibbs distributions

given by (2.7) and is defined by prescribing the potential I,

For modelling intensities of images we shall typically use a Gibbs distribution
corresponding to a Mamiltonian of the 2-dimensiopal Ising model., Boundaries between
smooth patches of images will be modelled as Gibbs distributions on the dual

lattice. We shall discuss this in a later section,

2.1 Simulation of the Gibbs Distribution

Sample functions of the Gibbs distribution are obtained by constructing a Markov
chain whose states correspond to the configurations of the Lattice field at time
points 1,2,..,. in such a way that it has a unique inveriant measure as the Gibbs
measure exp(-N(#(V)))dp, This chain clearly has to be reversible, Various
algorithms for creating such a chain are known of which the Metropolis algorithm is
the best known. Tn practice one may have to deal with a very large subset of a
lattice and the random variables at the lattice points may take values in Rl. In
this case it may be useful to make a diffusion approximation and simulate a
stochastic differential equation with the same properties as above. This is the

analogy to stochastic quantization we referred to before,

One therefore has to study the stochastic differential equation of the basic form:
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dp(t,x) -D'H(p(t,x)) + dw(t,x)

(2.8)

#(0,x) ¢0(x)

where in general ¢(t,") is a generalized random field and Dp denotes "functional”
derivative with respect to ¢. The questions of interest is to comstruct the measure
in the path space of ¢ and prove that the stochastic differential equation (2.8) has
a unique invariant measure with density (with respect to an appropriate measure)
exp(~H(g¢)), The interest in this model for generating Gibbs distributions is that
only Gaussian random numbers need to be generated and the computation is amenable to

parallel processing.

3. STOCHASTIC MECHANICS, STOCHASTIC QUANTIZATION AND SIMULATION OF TIMAGE
INTENSITIES

We start with some well-known facts relating the Feynman-Kac Formula and the

Girsanov Formula, (Carmona 1979, Simon 1980, Mitter 1980),

Let us suppose that V:R® —3R, be measurable, bounded below and tends to += as |x| -
» and consider the Schrddinger operator 0 = -A + V where A is the n-dimensional
Laplacian. Then H defines a self-adjoint operator on Lz(Rng dx) which is bounded
below and the lower bound A (assumed to be 0) of the spectrum of H is an eigenvalue
of A, LetW¥(x) be the corresponding eigenfunction of H, the so-called ground state
and assume Y(x) > 0. We normalize \(x) i.e. leKx)'zdx =1, Define the probability
measure dp = IV(x)lzdx, and the unitary operator

U LUER; dx) o LERY; dplo)
: £ v i,

If we define the Dirichlet form for f, g e C:(R“)
s(,8) = 3 | vi(x) * Vglx)ax
n
R
then a calculation shows
5(£,8) = th,g)"

where ( , )H denotes the scalar product in Lz(Rn;$u) and Jgis the diffusion operator

(self-adjoint, positive)

1, = - %-A, +V .,V , b :—[{jY} (3.1)
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Since ¢ satisfies the equation
1
E-A@ + Vix)p = 0, (3.2)

in the sense of distributions (note that we have taken A=0), a direct calculation

shows
Vix) = 2 ([ | - &b (3.3)

Now using the Feynman-Kac formula for (3.2)
t
p(x) = Elptx(t)exp(= | V(x(s))as) [x(t) = x1, (3.9
0

where E® denotes expectation w.r. to Wiemer measure, the properties of V, equation

(3.3) and the gemeralized Ito-differential rule (Meyer 1978), we see

L(t)

[

¢ L x(@g(x(t)exp(-[ Vx(x))as)
0
(3.5)

t t
exp[—j Vb(x(s)).dx(s) - %-j IVb(x(s))|2ds]
0 0

is a (n,E}t, u*) martingale, where Eﬂ is the o—~field generated by (x(s)|0 s S

and p® denotes Wiener measure. Therefore the process (w(t)[t 2 0) defined by
t
w(t) = x(t) - x(0) + | Wlx(s)ras (3.6)
0

x
is standard Brownian motion with respect to the measure p defined by

ox

- Le) (3.7)
w

dp

x
Hence x(t) considered as a stochastic process on (9':}t' p ) is a weak solution of
the equation

dx(t) = ~Vb{x(t))dt + dw(t)
(3.8)

x(0)

X,

Indeed, the stochastic process defined by (3.8) is a Feller process, which is

recurrent and has p as its unigue invariant measure, Therefore with the ground
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state of a Schrodinger operator we have attached a diffusion process which is

ergodic.

The converse procedure is of interest to us. Suppose we start with the stochastic
differential equation on R® given by (3.8) where -Vb(.) is a singular drift. The
case of interest to us is where b(.) is a polynomial which is bounded below. Now,

typically the Novikov condition
1t 2
E exp(y [ W(x(s))[2ds) < = (3.9)
0
will fail for these drifts and hence the Girsanov functional
& 1t 2
L(t) = exp(- f Vb(x(s)).dx(s) — E-I |Vb(x(s))| ds) (3.10)
0 0

although a super-martingale, need not satisfy

x
' L)1 =1

and hence fail to be z martingale, Therefore, the method of proof to show that
equation (3.8) has a weak solution using the Girsanov formula will not work, To
show, however that (3,8) has a weak solution and the process defined by (3.8) is

recurrent and possesses a unique invariant measure, we consider the operator

=—%A+Vb.v, (3.11)

and transform it to

n=—§—A+V(x). (3.12)

where
V() = 3 ([ [ - s,

using the Gauge transformationm,
¢(x) —exp(b(x))p(x), (3.13)

Then using functional-analytic arguments (cf, Segal 1970), ome shows that the
semigroup e_tH is indeed, a strongly continuous, self-adjoint contractive semigroup
on Lz(dp) where p is an appropriate probability measure, e—tH1=1. is positivity

preserving and improving and 1 is the unigque ground state, It then follows that
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e tH s ergodic with p as its unique invariant measure. To carry out this program
rigorously, one would use hyper—contractive estimates of Nelson and Segal and hence

it is natural to work with the stochastic differential equation:
dx(t) = -Wb(x(t))dt + dE(t), (3.14)

where

it

de(t) = -AE(t)dt + dwlt), (3.15)

where A is a symmetric nxn matrix, Therefore (3.15) defines a generalized Oranstein—

Uhlenbeck process. Let us define formally the semigroup,

(e"tg) (x) = ELE(x(£LIOR(E) () = ], (3.16)

where

t t
L(e) = exp(-[ Wizt .axts) - 3 [ ixten PPas)
0 0

R(t)

t t
1 2
exp(-| Ax(s).ds(s) - = | |Ax(s)[|“ds)
j; 2 IO

and EY denotes expectation with respect to VWienmer measure. One wants to write

(3.16) in Feynman-Kac form, i.e. in the form
~tL i
(") () = E°Le(x(t)exp(-[ V(x(s)ds) |x(e) = 2] . (3.17)
0

To do this we need an Ito differential rule for b, For this we need that b is

continuous,

1 n

2
loc.(R 3 dx).

Yo e Ly (R™; dx) and Ab e L

The measure du referred to previously then is
t
dp = exp(- I V(x(s))ds)dpt,
[

where

duE
dum

= R(t).

The rest then follows from Nelson 1973, Segal 1970, Glimm—Jaffe 1981, Gross 1972,

I
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These ideas can be generalized to random fields (cf. Jona Lasinio-Mitter loc.cit).
Let A R2 be a square and consider the Laplacian A on R2 with Dirichlet Boundary
conditions, which is a self-adjoint operator on V = Lz(/o. Let H'(A) be the Sobolev

space of functions f on R? with norm
IIfllzl - I(—A+1)1/2f(x) Z4x
A

and let V' = B 1(A) be the dual-space of distributions with nmorm

el = [ e ™ Y200 Pax.
H A

Let Mo denote the Gaussian measure on V' with mean zero and covariance operator C

given by

¢ = (-a+1)7t (3.19)

Consider the stochastic differential equatiom om V':

- %—C_eﬁ(t)dt + dw(t),

n

ap(t)
(3.20)

#(0) =5, 0 Ce <-%

interpreted in the weak sense, where w(t) is a V’'—-valued Brownian motion with

covariance cl-e min(t,s) (defined using test functioms).

One can show that this stochastic process defines a measure on the path space

C(O,m;V') and we denote this measure by P. Define the semigroup

~tL,
(e "£)(¢) = E[£(p(t)) |p(t) = 8], (3.21)

where f is a "suitable” function and E denotes expectation w.r, to P-measure. One

shows using the work Segal and Nelson referred to above that:
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-tL
2
(i) e is a strongly continnous semigroup on L (duc),

which is contractive, self-adjoint,

(ii) is positivity preserving and improving on Lz(dpc);

(iii) is a contraction on Lp(duc); 1 ¢ ple=

tL
(iv) is hypercontractive: [|e opll " Lellsll ,
RICTI L2 (du,)

¢
for ¢ e Lz(dpc) and t sufficiently large. Moreover the stochastic process defined
by (3.20) is ergodic and has M, as its unique invariant measure, Therefore the
Ornstein-Uhlenbeck process defined by (3,20) is the stochastic quantization of the
free euclidean field. In view of the well known relatiomship between the free field
and the Ising model via the lattice approximation (cf, Guerra-Rosen—Simon 1975), we
see that simulating the stochastic differential equation (3.,20) is a powerful way of
obtaining sample functions of the free field (Ising field) when the lattice is

large, This can be accomplished in a parallel machine nsing multi-grid methods,

As remarked by Guerra—Simon—Rosen, the Ising (nearest-neighbour) nature of the
lattice fields are not destroyed if we use non-gaussian random variables at the
lattice points. This can be accomplished by studying the stochastic differential

equation on V'

ag(t) = - 2 cTHnae + A g0 de + awlt)
(3.22)

- 1
$0) =8, 0 Ce g5

where : : denotes Wick ordering with respect to the covariance C (cf. Glimm-Jaffe
1981), Using an appropriate Ito rule (proved by approximation wusing tame
functions), comsidering an aprpoximation of (3.22) using a spectral basis related to
(~A+1) om Lz(ﬁo, and using limiting arguments coupled with hyper—contractive
estimates (sece the discussion in the first part of this section), Mitter—Jona

Lasinio show that the semi-group defined by
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(e ) (p) = E(E(p(t))exp(&(1) [p(t) = 9) (3.23)

where
art 3 A2t i 1- 3
2o == 2 [ Gos)®:, antsn) -2 [ e’ e s (3.24)
0 0

where ¢(t) is the Ornstein-Uhlenbeck process defined by (3.20) satisfy
(i) e tL 121 and e7tL is a contraction on L’(dpc).

(ii) e-tL is a strongly continuous, self-adjoint semigroup on Lz(dp)

with dp = exp(- %-I :¢4(x):dx)duc, positivity preserving and
A
improving and 1 is the unique ground state,
" ~tL ., y o
(iii) e is ergodic and mixing.
This then allows them to show that the stochastic differential equation (3,22)
has a weak solution and has as its unique invariant measure p.

Since the stochastic differential equations under consideration define a Markov

process which is ergodic (and mixing), we have

. - - -
::: E’((p(t), fl)(ﬁ(t).fz) fen (ﬁ(t),fn))

G AR R
S e

where the fi are test functions, This enables us to compute spatial statistics of
the time independent random field from the simulation of the stochastic

differential equation,

4., Some Estimation Problems for Random Fields on a Lattice (cf., Marroquin 1985)

Let VC 22 be a finite subset, Conrsider a random field
f:v -3 (4.1)

with Gibbs distribution having a density with respect to dp (see (2.7)) given by

P, = 7 lexp(~ T1—0 Ry(D), (4.2)
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and TO > 0 is & parameter (temperature),

We observe a corrupted version of f given by
g(j) = B(G(j:6), p(j)], j e SCV, (4.3)

where H(j,.) is a function with “local” support and @ is invertible in the sense
that g(j) = @_l(g(j), G(j3f)). We shall assume that y(i) and g(j) are indepenent
and also p(.) and f(,) are independent. Let us suppose that the distribution of

¥(.) with respect to dy has density

py >0 (4.4)

Define the functions

R(isf,g(i)) = -1n p”(Q-l(g(i), 6izf)). (4.5)

Then the conditional density Pg)g can be written as

Perg z'; exp(-H(£,8)), (4.6)
Ho(f,8) = = H(£) + ) K(i3f,g(1) (4.7
0
ieS

and Zp is a normalizing constant,

We can now provide a physical interpretation of the posterior distribution, by
considering that, while the prior distribution (4,2) describes the behavior of a
free field in thermal equilibrium, the distribution (4,7) describes the behavior of
the same field coupled with a fixed (but spatially varying) external field whose
value is given by g. The functions K whose magnitude depends on the noise variance,
can then be interpreted as the coupling strengths between the two fields, This

coupled system is also Gibbsian and if
G(izf) = G(izf(i))

the Markovian structure of this field will be identical to that of the original

field.

The importance of this interpretation lies in the fact that the optimal estimate of
f can be obtained simply by observing the equilibrium behavior of this coupled
field,
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In particular if Hy(f) is the Hamiltonian of a ferromagnetic Gaussian Ising field
and the observation is,
g(i) = f{1) + n(1), (4.8)

with n(i) Gaussian, then the coupled field corresponds to a Ising field coupled to a

random external field,

The estimates that are of interest to us depends on the choice of the problem, The

two most important estimates for image recomstruction purposes are:

E(flg) (Conditional mean)

= Arg Max Pflg(f's) (MAP)

From (4.6) and (4,7) the MAP estimate corresponds to minimizing the Hamiltonian
Hp(f,g) with respect to f.

4.1 Block Spin Transformation for MAP Estimation (Marroquin 1985)
In order to illustrate the analogy with Statistical Physics further we consider the

MAP estimation of a binary Ising field withe the observations taken as the output of
a binary symmetric channel with error rate e. Therefore § = {1,-1} and the
observation model is given by
1-e if g; = fi
P(g(i) |£(1)) =
e if g, # £i.

Then it is easy to see that

1 el -
LKENY T S ) +a Y £(i)g(4) (4.8)
{i,j} i
HE e

and
a = In(l:!b.
e
Minimizing Hp is now a combinatorial optimization problem,

4.,1,1 Simulated Annealing and Global Minimization

Simunlated annealing is & new technique, developed by Kirkpatrick et al (1983) for
the solution of combinatorial optimization problems, It is based on the idea that

any cost functional of N variables, each of which can take values on some finite
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set, can be considered as the Hamiltonian (Energy) of a physical system whose state
corresponds to a particular value of these variables, Therefore, we can use, say,
the Metropolis algorithm to genmerate, at any given “temperature” T (which now
becomes a parameter of the optimization process) samples from the corresponding
Gibbs measure, As T 4 0 this measure should converge to a measure which
concentrates on the states of minimum energy, the state of the system in thermal
equilibrium at zero temperature will correspond to the value of f that minimizes the

energy H(f) globally.

One serious difficulty, however, is that attaining thermal equilibrium might take a
very long time at low temperatures, Kirkpatrick's idea was to start st a relatively
high temperature (where thermal equilibrium is reached very fast), and then, to
slowly cool the system, until "freezing” occurs and the state stops changing.

The analysis of this algorithm is presented in the Appendix,

4.,1,2 Block Spin Transformations

In the case of the MAP estimator, the efficiency of the Simulated Annealing

algorithm for the minimization of H_ can be improved by defining large "blocks” of

sites (in a manner that is teminiscint of the ®"block-spin” strategy used by Wilson
(1975) in connection with the renormalization group approach to the study of
critical phenomenz); the optimal estimate for the average value of the field in each
of these blocks is found, and then progressively refimed by subdividing the blocks
in successive annealing stages. We will now show that, if we use a maximum entropy
assumption, the structure of the MAP estimation process for Ising models is
invariant under the "blocking” transformation; this means that the ground state
(i.e., the MAP estimator) of the aggregated process (with blocks of size L) also
corresponds to that of an Ising model with a coupled external field, in which the
natural temperature is scaled by a factor of 1/L, and the poise (coupling) parameter
by a factor of Lz. As a consequence of this scaling, the final temperature for the
simnlated annealing of this smaller network will be approximately L times larger

than for the original problem,
If we denote by V(f(i), f(j)) = f£(i)f(j) and q(£(i), g(i)) = £(i)g(i), let
Vo (£(i), £(j)) and q.(£f(i), g(i)) be the extension to RxR of V and q respectively,
We then write
H(f,g) =2 ) V(£(),E0) + o ) q (£(3),g(1)) 4.9
ALy T . , c ’ s

0 1 i
j

We will now derive an expressiom for the energy in the "block spin” case, Let us
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partition the original lattice into square blocks of side L, The *block

observations” gy, will now be the density of 1's on each block, i,e,,

g =% = ) s .
L jeBl

where B, is the ith block, The "block field” f; is defined in a similar way,

For a given fL' we compute the energy by assuming a maximum entropy configuration,
which occurs when the 1's that correspond to the given density fL(i) are randomly
distributed within the block, The energy will have three terms:

1, Interactions between adjacent blocks:

The interaction between two adjacent blocks i and j will be:

Iij =[-1 . (P11 + POO) +1, (P10 + POI)] . L

where Pkl is the probability of having an element with state k on block i adjacent

to an element with state 1 on block j:

P

11 fl(i)fL(j)

Poy = £ (N - £ (i)

P10

£ - £,(3)

Poo

(1 - fL(i))(l - fL(j))

Substituting these values we get:

Iij = L[Z(fL(i) + fl(j)) = 4fL(i)fL(j) - 1]

2. Iateractions within each block: the internal interaction I, is:
2
I1 2L(L-1) ( 4fL(i) + 4fL(i) =i

3. Interaction with the observations:
Assuming that the 1's in the observations and in the field are independently
distributed we get:

|

!

!

il

1

. ﬁ
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2
obs(i) = al [fL(i)(l - g (D) + (f - fL(i))gL(i)] =

2 s B ; :
al [fL(l) + gL(l) ZfL(x)gL(xﬁ
Finally, the Hamiltonian takes the form

=L E_l 0y =
B (f) = 5 } I+ I+ I i) =
0o .. . ]
i,j i

1 . . y =
= LLT;- Y OI20E () ¢ £ - 4 (DE () - 1) +
i,

2 .2 .
T (L - 1) ) (-4£, (07 + 48, (1) - 1) +

1

Fal Y (£ (5) + g (1) - 26, (g (8}

1

note that the sums are taken over pairs of adjacent blocks, and over all the blocks,

respectively, For L = 1, this expression reduces to (4.9) with
Vc(f(i).f(j)) = 2(£(i) + £(j)) - 4£(iVf(j) -1
qc(f(i). g(i)) = f£(i) + g(i) ~ 2£(i)g(4).
For L > 1, the quadratic terms of HL are:
L : : 2
T Y e - 80 -1 Y £ ()7
i,j i
and since
_ : . w2 ’ SRl
2 ) (06 +2 YW= (0 -GN 20
i,j i ij
it follows that
32> 5 .
Y @22y e
i i,

and
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N . W2
-4 ) £ (D () - B(L - 1) PEAEER

1,) 1

< —(4 + 8(L - 1)) } fL(i)2 <o

1

which implies that HL is negative definite for L > 1, and therefore, its minima,
constrained to the hypercube [0,1]N (NL is the total number of blocks) will always
lie in a corner of such hypercube which means that we can use simulated annealing to
find the global minimum of HL' constraining the search to (0,1]N . In this case,
the energy to be minimized takes the simpler equivalent form (up to an additive

constant):

1 . . 2 . .
LR S ovee (.8 () +al? Y e ()8, ()
i,] i

The minimnm energy solutions for each L can be interpreted as “coarse scale"
representations of the original pattern f, Once a solution is obtained, the mext
refinement (for blocks of size L/2) can be efficiently obtained using the previous
solution as a starting point, and initiating the annealing process at a lower

temperature,
5. FINAL REMARKS
Due to lack of space we are unable to discuss:

(i) Estimation of boundaries using coupled models on the lattice 22 and the

dual lattice of bonds on 22,

(ii) Estimation of the field and temperature parameter T using the innovations
field
(iii) other problems in computation vision such as depth from stero—images, shape

from shading etc.

A preliminary account can be found in Marroquin (1985),

Appendix on Simulated Annealing.

Let Q@ be a finite set and let |n| denote the cardinality of Q, Consider the problem

of minimizing the energy function:

mﬂ%R:i%%.

Let N, = N {0} where N are the natural numbers of Ty > 0, k & Ny be a sequence of

real nombers. Consider a Markov chain {xk)kzN with 1-step transition matrices
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{P(k'k+1)}ksN and some initial distribution constructed on a probability space and

let Psk) = P{xk=i), ie®, keNo. The "annealing chain” is simulated as follows:

Suppose xy =i, Then generated a random variable y with P{y=j} = 45 where
Q = {qij)i jeo @ stochastic matrizx., Suppose y=j, and then define

j ifu, LU,

i i

(Hi~H.)/Tk
Xep =13 £ 00T, with probability e J

i otherwise

We may think of the annealing algorithm as a probabilistic descent algorithm where
the Q-matrix represents some prior distribution of *directions”, transitions to some
or lower energies are always allowed and tramsitioms to higher energies are allowed

with positive probability which tends to 0 as k =,

Hajek 1985 has given necessary and sufficient conditions on the rate at which I&
should go to zero such that P{xk € S‘] -1 as X >« where S' is the set of global
minimizing energy states. In this analysis the stochastic matrix G has to be

irreducible and satisfy az weak reversibility condition,

Yn Gelfand-Mitter 1985 a finite—time analysis of the annealing chain has been
performed as well as a result on the rate of comvergence of Plxy e S‘) 31 as k Do

has been given, under somewhat weaker hypotheses omn Q.

Finally, in Tsitsiklis 1985, necessary and sufficient conditions for P(xk e S'] ->1
as k D o are given by considering the annealing chain as a singularly perturbed
Markov chain operating under different time—scales (under hypotheses weaker than

that of Hajek).
Space does not permit us to give a detailed account of these results,
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QUANTUM STOCHASTIC CALCULUS
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L. Introduction

The central aim of this lecture is to present to an audience of
probability theorists a very brief and somewhat hurried account of some
of the recent developments in quantum stochastic calculus which is
essentially based on the commutation rules of a free Boson field and
Riemann integration. This is simpler than and, in some respects, a
generalisation of the classical Ito calculus based on Brownian motion
and Polisson process. Furthermore , such an attempt leads to a quantun
Ito's formula, Schr8dinger and Heisenberg equations in the presence of
noise, a canonical isomorphism between the antisymmetric Fock space
over L2[O,W) and the Hilbert space of square integrable functions with
respect to standard Brownian motion explaining thereby the relations
between Fermi, Bose and Wiener chaos and finally a stochastic integral
representation of gquantum martingales in the symmetric Fock space over
L2[O,W).

Most of the work presented here has been done in collaboration
with R.L. Hudson. The results of the last section have been obtained
in collaboration with K.B. Sinha. Due to the limited scope of a one
hour lecture I have not touched on the work of several authors but I
hope that the bibliography, although incomplete, is rich enough to con-
vey the growing nature of the subject. Furthermore, the emphasis is

more on examples than proofs.

I wish to acknowledge several long and fruitful conversations with
R.L. Hudson, R.F. Streater, L.A. Accardi, K.B. Sinha and many other
friends on this subject. I also wish to thank Professor T. Hida and
the organisers of the Fifteenth Conference on Stochastic Processes
and their Applications of the Bernoulli Society for giving me an oppo-
rtunity to present these ideas and their generous hospitality and
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