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ON THE ANALOGY BETWEEN MATHEMATICAL PROBLEMS
OF NON-LINEAR FILTERING AND QUANTUM PHYSICS

S. K. MITTER

Abstract, In this paper we investigate the relationship between the mathe-
matical structures underlying quantum physics and non-linear filtering theory.

1. _Introduction.

The main thesis of this paper is that there are striking similarities
between the mathematical problems of stochastic system theory, notably
linear and nonlinear filtering theory, and mathematical developments
underlying quantum mechanics and quantum field theory. Thus the
mathematical developments of the past thirty years in functional
analysis, Lie groups and Lie algebras, group representations and
probabilistic methods of quantum theory can serve as a guide and
indicator to search for an appropriate theory of stochastic systems.
In the current state of development of linear and non-linear filtering
theory, it is best to proceed by «analogy» and with care, since «unitarity»
which plays such an important part in quantum mechanics and
quantum field theory is not necessarily relevant to linear and non-linear
filtering theory. The partial differential equations that arise in quantum
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theory are generally wave equations, whereas the partial differential
equations arising in filtering theory are stochastic parabolic equations.
Nevertheless the possibility of passing to a wave equation by appropriate
analytic continuation “from the parabolic equation, reminiscent of
the current program in euclidean field theory, should not be overlooked.

To develop these ideas, it is best to begin with a reasonably
general non-linear filtering problem:

Let (2, #A, P) be the underlying probability space and let x, denote
a scalar-valued diffusion process which is the solution of the following
It6 stochastic differential equation:

dx.=f (x;) dt+ g (x.) dw,, 1.1

where w; is standard Brownian motion and f satisfies appropriate
assumptions so that (1.1) has a unique solution in the sense of Itd.
We shall refer to (1.1) as the physical process. Let )

z=h (%) (1.2)

with z,el? (2, A, P), denote the signal process, and we observe the
signal in the presence of another Wiener process

;
ye=|zs ds+1.. (1.3)

(]

We shall refer to (1.3) as the observation equation. We make the
assumption that (x, 7:) are independent. Let F/ denote the o-field
generated by {y.|0<s<t¢}. The problem of non-linear filtering is
to recursively compute .

El¢ )| F71, 7 ()

where ¢ say is a bounded, continuous function. E [¢ (-) | F7] denotes

conditional expectation with respect to F7. The solution to this
problem can be obtained by Functional Integration and the Cameron-
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Marti;—Girsanov formula. Define a new measure P on 2, o) by the

" Cameron-Martin-Girsanov transformation:

t t
: iig: exp(jz, dys— ;—fzfds). ©(15)
dp y

]

Under this new measure, the probability distribution of x. remains
invariant, but y, and x; are independent and y. is standard Browman

‘motion,

Let = denote the conditional expectation operator. Then a standard
application of the theory of conditional expectations gives us:

E[(ﬁ (xr)d—;;lg:t’l
ne (P)=E [ (x)) ! Fel= (1.6)

E d—f IET:’}
dapP

where E denotes expectation with respect to the P-measure. The mapping
¢ +> 7; ($) is defined to be the filter for the stochastic system (1.1)-(1.3).
7, itself can be thought of as a measure-valued stochastic process.

For what follows it is convenient to rewrite (1.6) in the form
of an input-state-output relation. For this purpose define

pe: $>E [¢(xt)d—f IS‘/] . | a.7n
P S

Then (1.6) may be rewritten as

2: ()

()’ (1.8)

7 ()=

where 1 denotes the constant function 1 for all x. v
In the above p; is to be thought of as the state of the filter and
equation (1.8) as the state-output relation of the filter.

It is instructive to view (1.7) and .(1.8) in the light of the Gelfand-
Naimark-Segal construction of states and representations. The functions
X+ ¢ (x) are the observables of the stochastic system (1.1). The
formula (1.8) computes the conditional statistics of the observables
¢ given the observation program {y.|0<s<¢}. The analogy with the
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algebraic theory of quantum mechanics is striking, the notable diffe-
rence being that the idea of computing conditional statistics based on
an observation program seems to be absent in physics. This viewpoint
turns out to be important in the definition of generalised observables
for quantum systems as probability operator-valued measures.
It can be shown that p; has density g: which satisfies a stochastic
partial differential equation
dq:=L0* q: dt+ Ly b: dyt’ (1.9

where L¢* is the formal adjoint of the diffusion process generator of
(1.1) and L, is the operator: multiplication by & (x). This is the Duncan-
Mortensen-Zakai equation and is the fundamental equation of non-
linear filtering. The density ¢ (z, yo) has a representation as a function

space integral
t ¢
q: (z, y.f):f exp ([h (x:) dys— %fh’ (xs) ds) du*(x) (1.10)
’ 54 [ 0

where the integration is over the path space of x with %=0 and x,=z.

Now in equation (1.9) the observation {y.|0=<s<t} is given to
us, and if we rewrite equation (1.9) in the followmg suggestive form
using Stratonovich calculus:

‘flq; (Lo* - Lx )qz—l—y: Li g, (1.11)
then equation (1.11) is the analogue of a euclidean (imaginary time)
quantum field with an external force defined by the observations. We
say that the analogy is to euclidean quantum field (as opposed to
euclidean quantum mechanics) since g, is a measure-valued stochastic
process. This paper is concerned with a systematic investigation of this
point of view. In particular, in this picture the Kalman filter occupies
the role of the free quantum field.

This paper is divided into six sections. In section 2 we discuss
the relationship between Dirichlet and Schridinger operators and show
that it is possible to associate a stochastic process with the ground
state measure of Schridinger operators. Section 3 is devoted to the
Bayes formula on non-linear filtering and describes the Feynman point
of view for non-linear filtering. Section 4 is concerned with the
construction of Fock space and discussing its role in non-linear filtering.
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In Secion 5 we argue that the Lie algebra of operators 2=
=LA Lo*——:lzL;’, L;{ has an important role to play in non-linear

filtering. In section 6 we discuss the question of representation of
the filter.

This is a semi-expository paper and we have tried to concentrate
on the ideas involved and emphasize a certain point of view. The
ideas come from constructive quantum field theory as emphasized by
Nelson and Segal, recent developments in system theory and the
theory of group representations. It is our hope that this paper will
go towards pointing in a small way the conceptual depth of stochastic
system theory which is still in its infancy.

2. The Feynman-Kac Formula, Dirichlet and Schrodinger Operators.
2.1. INTRODUCTION.

Recent work on non-linear filtering theory, euclidean quantum
field theory and the stochastic mechanics of Nelson make extensive
use of the Feynman-Kac formula and the interplay between Schrodinger
and Dirichlet operators. In particular, a stochastic process associated
with the ground-state measure of Schrodinger operators turns out
to be important. In this section we give an account of these ideas and
the related theory of hypercontractive semigroups.

2.2. PRELIMINARIES.

Throughout this paper integration with respect to Wiener measure,
the Brownian bridge measure and the oscillator measure will be
important. The relation of Wiener measure to the Laplacian and -the
semigroup generated by the Laplacian will also be important. For
simplicity we shall be concerned with scalar-valued stochastic processes.
There is no difficulty in generalising these ideas to vector-valued
stochastic processes.

Let 2=C(R;;R) and let Wi w— W, (@w)=w ¥: 2—->KR be the
#* coordinates function. We denote by 7. the right shift on 2. If we
denote by F. the smallest o-field with respect to which {W.|0=<s=<¢}

(*) We shall also use the notation x (f) for x, when dealing with processes.
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aré measurable and by F=0 {W,|£=0}, then F is the Burel o-ficld
of 2 and on (2, F) there is a unique probability measure W such
that W {Wo=0}=0, the random variables W, —W,, , ..., Wi, —We,
are independent, Gaussian, zero mean, with variance #j—#;_; for the
f* increment. This measure is Wiener-measure. For each x€eR, the
probability measure W, is defined by path translation:

. W.(B)=W (: (B)), BeF,
where
' 0. (@)=x+w, xeR, we, =0

Alternatively one could have started with a Gaussian process
{W:|t=0, Wo=0 a. 5.} which is zeromean and has variance Jt—s|
and stationary independent increments and constructed Wiener measure

as a path space measure on C-(R;;R). For a measurable real-valued
function f, define

(P: ) X)=Ew, (f (W) @.1)

where Ew, denotes expectation with respect to Wx. If the right hand
side makes sense,

@.f) )= f F0) P € y; 0,%) dy, @2
R

where p(t,y; 0,x) is the transition density 6f Brownian motion

pity; 0,0= 1_. exp(—%—%z—) t>0, x,y€R. .3)

@ E

It is known that for pef[1, ], (P.|t=0) is a strongly continuous
contraction semigroup on L? (R). Its infinitesimal generator is ——;— 4,

where A is the Laplacian and QD (4)=H"* ®)={feLl?|Dfel” in
the sense of distributions}.

For certain applications we shall need to do integration with
respect to conditional Wiener measure. From the properties of Wiener
measure and the corresponding transition density of Brownian motion,
for 0<t<.. <t
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W.{w|w(@)EA, ... ,0 (tn)€AR}=

£ 3
= !Il P (i, x5 i1, Xi1) Xa,(x)) dx:

where ya is the characteristic function of A, xo=x, fo=0. We can then
construct a measure Wiy on the continuous paths on [0,¢] with
Wo=x, W,=y with probability 1, 0<t<...<ta<t

 Wen{w|w®)eA, ...,0 (t)ehn}=

= [ H1 P, X5 tia, %i0) Xa,(X) P Y; b, Xew) dX;
J i=
i .

W.y: is called conditional Wiener measure. We have
f £ @) dW,= f a ( ff (@) AW @4)

for f which are functions of the values the path takes on [0, #].
This measure corresponds to the Brownian bridge process, which
is the Gaussian process f, say on [0, 1] with covariance

E@.B)=s(1—0, 0O=<s<i<l1.

In terms of this process we can write (2.4) as

ff(ws) dW= ff((l— fi) x+:%y+y7ﬁi)p(t, ¥; 0,x)dxdydu (B
t
2.5)
where dp (f) represents the measure on the path spacebof B..
The two processes which we have dealt with are not stationary

Gauss-Markov processes. For this reason it is often important to deal
with the oscillator process which is the family of Gaussian random

variables {g;, — o0 <t< oo} with covariance % exp (— [t—s|). It is

1 & 1 1 . .
related to the operator Le= 2 @ts x’—i, the Harmonic Oscilla-

tor Hamiltonian.
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2.3. THE FeynMan-KACc FORMULA.

Both in filtering theory and in quantum physics we are required
to deal with an operator on I? (R), say

H=—-%A+V(x)

where A is the Laplacian and we need to compute exp (—¢H), the

semi-group generated by —H. The Feynman-Kac formula provides
us with a representation of the operator T,= exp (—H) as a Wiener
. Integral. The first approach exemplified in the work of Nelson uses the
Trotter Product formula to make sense of the formula but requires
information on the self-adjointness of the operator H. The second
approach proceeds by writing the formula first, proving that it
represents a strongly continuous one-parameter semigroup and then
its unique infinitesimal generator is computed. The second approach
uses probabilistic techniques and turns out to be the more general one.

If the potential is bounded above then a general form of the
Feynman-Kac formula can be obtained using martingale methods. For
this purpose and for later use we introduce certain probabilistic
machinery.

Let 2, F, P) be a probability space and (F,, t=0) a non-decreasing
family of sub o-fields of F. Let s=0 be arbitrary and a: [s, o [x 2R
and b:[s, oo [x2—> R be bounded progressively measurable functions.
For any feC?(R), define A,f for t=s by

af

@D =7a0,03w+5 .0 @6)

H £(-,-) is any progressively measurable function from
[s, 00 [x2—>R, then (A:(q)/) (6 (4 q)) defines another progressively

measurable function of ¢ and ¢. Then it can be shown that for any £,
a and b satisfying the above,

Fe.EW)— f ( +A. f(u,f(u)) du @.7n

is a martingale relative to (2, F,, P) for all =5, ¥feC'? ([0, o [x, R).
A process § satisfying (2.7) will be referred to as an It process with
drift b and covariance a. The FeynmanKac formula depends on
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the Tollowing observation (V).

Let £ be an Itd process relative to (2, F:, P) with drift & and
covariance a. Then for any progressively measurable function
V: [s,a [x22— R which is bounded below and feC'?([0, « [x, R])

¢
f_V(u)du Tt f-—V(v)dc

¢ 1eto-[BLrarvawiwe @ es

is a martingale after time s.
- Now 'define the operator

14
f—V(a) au )
TV f =] ¢ F& £ ) dps @ 9)

where dp., . (§) denotes the measure on the path-space of £ given £ (s)=x.
Then we can show that T, is a one-parameter strongly contintous
semi-group and form (2.8) we conclude that its differential generator
is Au+V (©). (2.9) is the Feynman-Kac formula. When we specialize
to the case when & () is Brownian motion, then Au—% :2, and the

formula reads setting s=0.
]
(T¥ ) ()=Ew, [CXP ( f =V (W) dS);‘ W (S))J . .9y
\ .

Now this formula turns out to be valid for a much larger-class of
unbounded potentials and the semigroup T has strong regularity
properties. )

The more general class of potentials-we consider are: (H1) V is
a measurable function on R which can be written as V=V;—V, with
V2=0, .VoeL”? R) for p>1 and V; measurable, bounded below, such
that for each compact set K in R, there exists g (K)=2 s. t.

j [Va@)fde<oo.
K

For this class of potentials, using the recent estimate

(1) This argument is an exercise in Stroock-Varadhan: Multi-dimensional
Diffusion Processes, Springer-Verlag, New York, 1979.



172 S. K. MITTER

. 5 ¢
¥1>0, ¥r>0, K(r,nA sup Ew,(exP(— fV(xs) ds) <o
. € o

and their refinements, the Feynman-Kac formula holds for the class of
potentials governed by (H 1). If we define the operator

t
Tg(f) (x)=EW5 (CXP(—[V(Ws) ds)f(Ws)):
. ]
we have
TueoreM 2.1. (Carmona). For any qe€[l, <[ and >0,

(@) T.is a bounded operator on L* and ||T||,<K (1,9

(i) If g’ denotes the conjugate exponent of q, then for fe s,
geL”

| [(T:f) ) g () de= ff(x) (T.g) () dx
R " R

i) T.isa strongly continuous semi-group on L?
(iv) Ifl ll.lm Vi(x)=+ oo, then T: is a cOrripact operator on L4,

2.4. SCHRODINGER AND DIRICHLET OPERATORS.

Let —H denote the infinitesimal generator of T, In quantum
physics we often need to show that —H is the self-adjoint extension
of - A+V, the imaginary-time Schrédinger operator. If V=0 this
is well known. For the class of potentials given by (H 1) if Ve L%, then

PropoSITION 2.2, (Carmona) C.>(RYC D(H) and for feC.~(R), Hf=
=—3 (A+V)f where H is the infnitesimal generator of the semi-
group T: defined on I°. ' :

In mathematical physics perturbed Hamiltonians are usually defined
as sums of quadratic forms. We briefly review this. ‘

Let 9 be a Hilbert space. A quadratic form is a map ¢: Q @ X
XQ(g)—>C, where Q(g) is a dense linear subset of U, called the
form domain, such that q(-,¢) is conjugate linear and q(p,-) is
linear for ¢, ¢€Q (9). If g (¢, )=4 (¢, ) we say that ¢ is symmetric.
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If 466, 9)=0 V¢€Q, q is called positive and if g (g, $)=—M [|g]]2
for some M we say q is semibounded.
Let A be a self-adjoint operator on 9. By passing to ‘the spectral

representation of A, A is multiplication by x on @ IL*(R, ). Let
f=}

N
QD=1 @ Z [+l P din<o} O

-—co

for all ¢, $€Q (q) define

co

N
g, D= .ﬁ: [ X @u (X) G (x) ditn

—co

q is called the quadratic form associated with A and writing Q (4)=
Q(q), Q(A) is called the form domain of A.

Let ¢ be a semi-bounded quadratic form, g (¢, ¢)=—M ||¢|].
q is called closed if Q(q) is complete under the norm

Il =V ¢ &, H+M+DGIE

If q is closed and DcQ(g) is dense in Q(g) in the [[-]|s+ norm
then D is called a form core for g. The following fact is important.

THeoreM: If q is a closed semibounded quadratic form, then q

_is the quadratic form of a unique self- adjoint operator.

We now define Schrodinger operators as forms sums on L*(R).
For f, geC2 (R) define

& (f, g)=% [Vf *) Vg (x) dx.
i .

Integrating by parts

w0.0=(-5Vhe),

and hence & is closable. The form domain Q (s) of & is H! R). Let V
be a real-valued measurable function on R and set

() The y,’s are the corresponding spectral measures.
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am=iter|[ IVl lf @ de< <o,
R

On Q () NQ (V) define

e, 9=a( 9+
where
V1, 9 =(sgn V) [V]"2 1, [V]'Z g).

If we assume V=V;—V; s. t. V; bounded below and V;€LY.., V2€L!
then ¢ is the form of a unique bounded below self-adjoint operator H
on I? with form domain Q (H)=Q ()1 Q (V).

Let u# be a Borel prob. measure on R which satisfies

dp (x)=e = dx (2.10)

where h is a real-valued, locally bounded, absolutely continuous function
with first order partial derivatives in L%... For all f, geC.” (R), define

o g)=% { Vi) vg () dp (x) () @2.11)
R
Integrating by parts the right hand side, we get
3 (f, =D}, @, _ 2.12)

where (-,-), denotes the L?(p)-inner product and
Df=—%Af+Vh Vi 2.13)

From (2.12) ¢ is given by a symmetric operator and hence is
closable. Let & denote the closure. 8 is referred to as the Dirichlet
form of g and D the associated Dirichlet operator.

We can prove that

PROPOSITION 2.3. (Carmona). The form domain Q () is H' (g).

We show the relationship between Dirichlet forms and Quadratic -

forms associated with Schrodinger Operators. Let the potential V
satisfy hypothesis (H 1). We assume that inf spec (H)=E is an eigen-

() Vf denotes the gradient of § and Af the Laplacian (in this case one-
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valee and let ¢ be the corresponding ground state eigenfunction (1).

Let h=— Logy and define the Borel probability measure g on
R by

dp (x)=e 2 dx.
Define the operator D by
D=C(H—E)C! (2.14)
where C is the unitary operator from L?(R,dx)—> L?(u) defined by
Co=4'¢,6e* R, dx). (2.15)

D is a positive self-adjoint operator in L*(u), O is a simple
eigenvalue and the constant function 1 is the corresponding eigen-

. function.

In fact D is the unique positive self-adjoint operator associated
to the closed positive bilinear form & corresponding to eé—E (in the
unitary equivalence C) and C.~ (R) is 2 core for o.

Since ¢ is bounded and locally bounded away from 0, % is bounded
and locally bounded above. Since $€Q (s), the first order partial
derivatives of k are in L%, we can associate with g a.Dirichlet form
& and a Dirichlet Operator D. Now since & is defined as the closure

of a form whose domain is C.~ (R) and C.” (R) is a form core for 9,

one can show that =8 and D=D and hence the Dirichlet form
and Dirichlet operator are unitarily equivalent to the Schrddinger
form and Schrddinger operator.

2.5. StocHASTIC PROCESSES ASSOCIATED WITH DIRICHLET FORMS
AND DIRICHLET OPERATORS.

The unitary equivalence between Schrodinger and Dirichlet ope-
rators exhibited .in the previous section has an important role in
Nelson’s stochastic mechanics and also in non-linear filtering theory.

We consider the Schrddinger operator H=—%A+V defined

as a sum of quadratic forms on L? (R, dx). We assume that inf spectrum
()=E (assumed to be 0) is an eigenvalue and the corresponding

© (1) Assume ¢>0.
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eigenfunction ¢=0 and ‘normalized[gb(x)’dx:l. Define the Borel
B

probability measure g by dp (x) =(¢ (x))?dx. Let & be the corresponding
Dirichlet form and D the corresponding Dirichlet operator. Let h=
=~ logg.

- We want to construct a Markov diffusion process which corre-
sponds to a stochastic differential equation with drift —VA. There
is an obvious difficulty in interpreting the stochastic differential equation
in a strong sense. But we can conmstruct a weak solution using the
measure transformation technique of Girsanov and the Feynman-Kac
formula. v

To do this we assume the ground state ¢ (x)>0, Vx (by choosing
a representative from an equivalence class) and we also assume that
Y —>0 as x> . :

Now we use the unitary equivalence between the Dirichlet operator

D and the operator H= —%‘g— +V (x) to conclude that

@D =46 B, [exp(~ [VOn ) s Wt owaas| c216)
[}

where ¢ is the semi-group generated by —D.
For each #>0, consider

L=y (x)-’s&(W,) exp(e- f V(W) ds)', @.17)
. o

which is a random variable, positive Wi-a. s. and Ew, (L)=1. Hence,

2, F,, L) is a martingale, where F, denotes the smallest o-algebra
for which the coordinate functions Wrare measurable, Hence for
each x, P,:L,-W,Ig‘ is a probability measure on (R, F).

Now by explicit calculation, V(x)=% (—Ah ()+ VR (x)P) and
since h=— log ¢, we get from (2.17) '

t t
L= exp|—h (Wy+h ——;-( ] Ah (W) ds— [ ]Vh(W,){st)] @.18)
] [] :
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“The idea now is to apply the TiS-differential to the function . There
is a difficulty here because the function % does not have continuous
partial derivatives upto order two. But % is a convex function and
for these functions the It6-differential rule can be extended to conti-
nuous functions with first partial derivatives in L3 R,dx) and
second partial derivatives in LY. (R, dx). Applying the generalized Ito-
differential rule to (2.18), we get

t £
L= exp[ —[ Vh (W) dW,— %[]Vh WP ds].
0 0

Therefore by the Girsanov theorem, the process B, = W, — We -+
[4
+ |Vh (W) ds is a (. P.) standard Brownian and calling W,=X,,

L] .
the stochastic process (X:|#=0) considered on the probability space
2, F., P) is a unique weak solution of

dX,=—Vh (X)) dt+dB,
(2.19)

Xo=x, a. s.

Furthermore the measure g defined by du(x)=¢ (x)*dx is the
unique finite invariant measure of (2.19). . :

From the construction of the probability measure P., we see that
it has a transition density

P30, 9=¢0) 6 (1) Ew, [exp— f V(W) ds | W=y ]p«, 3 0, %)
' ’ ’ (2.20)

where p is the transition density of Brownian motion.

We remark that it is this transition density we wish to compute
since this corresponds to the fundamental solution of a parabolic
partial differential equation. We shall see later the importance of (2.20)
for non-linear filtering problems. For non-linear filtering problems the
decay properties of this transition density are also of importance.

We investigate these matters now.

Firstly, we can check that for V¢>0, p(t,y;0,x) is a continuous
function of the pair (x,y). In fact the following estimate holds:
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3 constants ¢;, ¢; such that
V>0, ¥ (x, eRXR, 2.21)

p(y;0,x) <cie* g X' (x) py; 0,x).

If the semigroup
| $
T f) =Ex, [f W) exp ( ~[vam ds)]
. ]

is compact (see Theorem 2.1) and its spectrum is strictly bounded away
from zero, then the density p (,y; 0, x) satisfies:

3 positive constants ¢;, ¢; such that
2.22)

sup [p(4,y;0,9)—¢ O] e ' (x) et  Wi>0, ¥xeR.
Ve

2.6. HYPERCONTRACTIVE SEMIGROUPS.

In the previous sections we have seen that for a large class of
potentials, the semigroup T:¥ has a negative infinitesimal generator
which coincides with a self-adjoint extension of -—% ;xiﬁV (x). In
this section we point out that the semigroups defined by the Feynman-
Kac formula are often Hypercontractive semigroups. These semigroups
have played an important role in constructive quantum field theory
and -are likely to- play- an -equally important role -in - the  theory of
non-linear filtering.

We follow the notation, hypotheses (specially on the potential V)
and the terminology of the previous sections.

We consider the Dirichlet semi-group (¢=*,#=0) on I?(g) where
dp (x)=¢ (x)* dx.

Dermirion: The semigroup (¢, ¢=0) is said to be hypercon-
tractive if for some >0 and some r>2, e~ is a bounded operator
from L?(g) into L7 (u).

From our point of view the best approach towards the question of
hypercontractivity is via the approach of Gross using Logarithmic
Sobolev inequalities.
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~ DEFNITION: The operator D is called a Sobolev genergior if for
some real constants ¢>0 and y we have

[ 1 Log il due f, Do +7 i + o Log 0 @29
R

for all feD (D). The constants ¢ and y are called the Sobolev coeffi-
cient and the local norm of D.

Logarithmic Sobolev Inequality (Gross).
If g is a probability measure on R which satisfies:

f Iff* Log [fl du=<c| [VfF du+y [ififires + IlEgo Loglifllzen @24
R R ‘

for some constants ¢>0, y=0 and Vf which are bounded functions
with distributional first order derivative in L?(g), then Mre[2, + o[

[ Lo i due Of w7-vtedutr im0 +
R R ‘

+ Al 2o Log Ifllagy  2:25)

V/f as above, where fr=(sgnf) |f"* and ¢ (= 3 (:r._;) :

The salient facts -about hypercontractive semigroups and Sobelev
generators are the following propositions due to Carmona:

PRrOPOSITION 2.4. (¢*®|t=0) is a hypercontractive semigroup if
and only if D is a Sobolev generator.

ProposiTiON 2.5. D is a Sobolev generator with Sobolev coeffi-
cient ¢ if and only if — Logy<cD+b, the above interpreted as
quadratic forms on L* (u), for some constant b.

Consider potentials satisfying (H 1) which have the further pro-
perty: ) .

YxeR, e P()+bi=Vi() <& P (0 +b;
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where @13,>0,b;,b,€R and P an even polynomial, and lim inf-
z|~e0
-[x72 P () >o0.

PROPOSITION 2.6. Schridinger operators with potentials of the
above class generate Dirichlet semigroups which are hypercontractive.

ExAMPLE:

; &?
(i) The operator D= —?1 E+x %generates a hypercontractive

semi-group ¢~ on LZ(R,Le—*’dx).
V=
(i) Consider a stochastic differential equation:

dxt=f [6A) dt+dW1.

Suppose that the Riccati equation
df o
E+F—V(x),

where V (x) is an even polynomial satisfying the hypotheses of this
section such that a global solution exists for the Riccati equation. Then
the generator of the associated diffusion process is in fact a Dirichlet
operator and generates a hypercontractive semigroup on an appropriate

L? (g)-space. ’

NoTEs AND REFERENCES FOR SECTION 2.

() For general references for thls section, consult:
B. Simon:  Functional Integration and Quantum Physics, Academic Press, New
York, 1979. '

M. Reep, B. SiMoN: Methods of Modern Mathematical Physics, Vols. 1 and i,
Academic Press, New York, 1972, 1975.

D. W. Stroock, S. R. S. VarapHAN: Multi-dimensional Diffusion Processes,
Springer-Verlag, Berlin, New York, 1979,

(ii) In this section we followed very closely:

R. Carmona: Regularity Properties of Schrodinger and Dirichlet Semigroups,
J. of Functional Analysis 33, 259-296 (1979).
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~(iif) The material in Section 25 is apparently partially new and uses
the Girsanov transformation to obtain a weak solution of a stochastic differential
equation. For a slightly different approach see: .

H. Ezawa, J. R. KtauDer, L. Saeep: A Path Space Picture for Feynman-Kac
Averages, Annals of Physics 88, 588620 (1974).

(iv) For the generalized It6 Differential rule, see:

A. BensoussaN, J. L. Lions: Applications des Inéquations Varigtionnelles en
Controle Stochastique, Dunod, Paris 1978.

() The reference to stochastic mechanics is:

E. NELsoN: Dynamical Theories of Brownian Motion, Princeton University Press,
Princeton, N. J., 1976.

3. The Bayes Formula and the Unnormalized Conditional Density
Equation.
Let (2, F,P) be a complete probability space, F=(F,), 0<t=<1
a nondecreasing family of sub o-algebras of F and (1., F)), 0<t<1

a Wiener Process. Consider the signal process z=(z,, F,) and the
observation equation ’

¢
)'t=[ zZsds+1.. (3.1)
[

Let .
z=h (%), . : (3.2)

and x, be the @uﬁon of the It6 stochastic differential equation
dx,=f (x)) dt+g (x;) dw.. (3.3)
We make the following assumptions:

Al. The functions f and g are continuous and bounded and
equation (3.3) has a unique solution in the weak sense for each
initial condition xo (later we shall have to make further smoothness
assumptions).

1
A2. x: and 7, are independent and E([h(xs)zds)<°e.
9
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Under the above hypotheses we can write down a Bayes formula
for computing E (¢ (x:| F?) where F? is the o-field generated by

{y:}]0<s<t} and E([(ﬁ (xs)zds>< oo, This relies on the Girsanov

e
transformation. It is known that there is a new equivalent measure
P under which ¥ and x, are independent, the distribution of «x;
remains invariant and under this new measure y, is Brownian motion.
The Radon-Nikodym Derivative of P with respect to P is given by

¢ t
dpP f 1
Pl =exp| [he)ay—t f P () ds) AL,
dplar ( J 2 )

Hence

E (¢ (x0) L, ' g"ty)

E (@ ()| Fy=—
EW|F»

Using the independence, it is convenient to view this conditional expec-

tation as expectation on a product space (SZX.Q .dx.szl P®P) and
write it explicitly as

A

& (x)=
t t
] $ (e (@) eXP( [ k(. (@) dy: (@) — % f b (x; (@) ds) dP ()
A [ : o

= £ + - - . Iy (3.4)
f exp( f b (x; @) dys (w)—% [ b (v, @) ds )dP @)
[ 0

A
2

This is the Bayes Formula.
If we replace y; by x; for xeC (0, 1) and define

[ 4 ¢
ot x, @)= exp( f b (% @) dxs (@) — % f b (x: (@) ds) (35)
[ [

g 1= f p (¢ x, @) dP (@), (3.6)
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then 2 (#,x) is the Radon-Nikodym derivative 3{1 2 (t,x), where p, is

the measure induced on C(0,1) by the observation and Ly is the
Wiener measure on C (0, 1) induced by 7.

Let o:(¢) denote the numerator of (3.4). It will be also conve-
nient to write the numerator of (34) as a Feynman-Kac formula

4 ¢ .
w@=[s@en( [s@2 -1 [Fera)mo, 61
X 0 [}

and X=C (0, 1).

Let P; be the sermgroup of the diffusion process correspondmg
to (3.3) and Lo— &) 3 x’+,8 be its infinitesimal generator. Then
o; satisfies the stochastxc partial differential equation

do: ($)=0: (Lo §) dt+o: (Lig) dy,, V€D (LaND (Ly), (3.8

where L, is the unbounded multiplication operator A.
This is one of the fundamental results of non-linear filtering. Now

using the fact that & (x;) is a semi-martingale and using the relationship
between It6 and Fisk-Stratonovich mtegrals we get

fas (hg) d)’s:-fcs (h¢)4dys— 3 {o(hp), ).,
H 0 :

where (, ). denotes the quadratic variation and - denotes the Fisk-
Stratonovich integral and hence we obtain

do, @)=0: (Lo§) di—- 5, (# )+ 0. (hg)-dy, 6.9
which we write symbolically as
do:;t(qs)___a‘ [( Loty h— % h’)(¢)l, (.10)

which we can integrate by the Feynman-Kac formula

. t t
o (¢)=E,,,{ exp(fy} hds—-—;- fhzds)qﬁ(x;)] (3.11)
é ?
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where oo is a measufe-valued random variable inde
pendent of y such
that ge I;;: @)1= p($) and g is the initial distribution,
e

 ZxwI=E [L|o{x} xF7]
and define
' 9¢.2,9)=2(,zy) p(t2)

where p (¢, 2) is the density of the x-process. Then

a@=[s@a0zm .
R

Now o: (¢)= f ¢ d 0., and hence we see that o; has a density q (¢, z, yo9),
and hence from (3.7)

¢ t
9z )= f exp( f h (x) dys——,l)— f R (x) ds) dy? (x) (3.12)
X () T %

;:hete thl:ein::i;ation is over the path space of x with %=0 and x,=z ()
can wn that ¢:Aq(t,z, w') satisfies the st ic ial
Giflcrontial eoanion e stochastic partial

' 1
dq::([a,t_? L? )q: dt+-L, g;-dy,, (3.13)

where Ly* is the formal adjoint of L.
, Equahon (3.1.3). is fhe Duucan—Mortensen—Zakal equation for the

3.1. DUNCAN-MonTEN_SEN-ZAKAI EQUATION AND GAUGE TRANSFORMA-
TIONS.

‘.I'he stu'dy of non-linear filtering is the study of the Duncan-Mortensen-
Zak'ax equation - its explicit solution and its group invariance properties.
Equivalently it is the study of the function space representation of
o (¢) given in (3.7) and (3.12). In (3.7) we have the stochastic

‘() This function space integration is to be interpreted integra
. o o as .
against conditional Wiener measure or equivalently the Brownian bridge. on
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integral / k(&) dys. Under -our hypotheses we can write
e N

) t ¢ o
f R &) dye=y: b E)—y0 &) — f ye dh &).
L] [)

Using the above it is clear that o, can be _evaluaied for all yeC (0,1)
(not just a subset of full Wiener measure). It has been shown by
Clark that (.5 is a version of the conditional expectation gi:

o: (1,y)
An equivalent way of considering this problem is to eliminate

the stochastic integral from the Duncan-Mortensen-Zakai equation (3.13).

This can be done by making the observation that the operator
L;= multiplication by h is a diagonal operator, and its effect can
be removed via a time-dependent Gauge transformation. To see this
write q:= exp (h (x) y;) 5, Then a direct calculation shows that Z,
satisfies an ordinary partial differential equation (parametrized by y):

‘%‘: exp (—h () y,)(l’;o*—%L,’) xp (@ y-q). (G4

It is interesting to rewrite equation (3.14) in a form which brings

out the commutation properties of Lu*——%LB and L;. If we denote

by Lzz{Ln*-%L.Z, Lll and Ly=[Ly, L;] considered as formal diffe-

rential operators and computed on some common invariant domain,
(3.13) can “be rewritten a5t Co - i

% = ( Lo*— % L})E,+y, L q:—y? ks q.. (3.15)

Explicitly L2=hx% +(% hxx—fhx); L;=—h? (assuming g=1 for sim-
plicity).

When we are dealing with unbounded observation operators h
it is this equation which is the easiest to deal with. The above also
shows that the commutators L, and L; have an important role to play
in the understanding of equation (3.14). :

In (3.12) we see that evaluating ¢. involves an integration over
the path space of the x-process. The integration would be simplified
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if this could be done with respect to Wiener measure. This corresponds
to removing the drift term in the operator Lo*. For stmplicity assume
&=1. Define the operator « multiplication by ¢ (x) », where ¢ is inver-
tible and defined from the intertwining relationship.

7(z)dz

a . Then the operator

(—-' )¢=¢ %, which defines ¢ (x)=ei

dx
1 & i
Le* transforms to ¢! Lo* ¢=?¢K2 =5 V&), where V@)=(f+p.

Then q‘:=¢“ q: is the solution of

1 1

A~A - 1 A A A _ ‘F
dq:=Lo g: dt—=-V (x) q: dt+hg.-dy,, where L= 25—5". (3.16)

This is also an example of a Gauge transformation. Equation (3.16)

‘involves the (imaginary time) Schrédinger operator — % Zi‘%-}_zihq.

+-;—V (). It should be noted that the Lie Algebra of operators

LA L,'——;-L;’, Li{ and LA{£o—V (9, Li} are isomorphic. Recall in

section 2 we have seen how certain Schrédinger operators are unitarilj}
equivalent to Dirichlet operaiors.

3.2, INTEGRATION OF THE MORTENSEN-ZAKAL EQUATION AND CALCULUS
OF VARIATIONS. .

In section 3 we have seen that solving the Mortensen-Zakai
equation s equivalent to evaluating the function-space integral '

t . t
262 30=] expfh ) dy L [ e as) o .
X 0 °

We now show how this can be done by adapting certain ideas of
Feynman. Feynman’s idea was to separate the classical and quantum
parts of the total quantum motion and also to understand’ the rela-
tionship between classical and quantum mechanics. We shall attempt to
separate the contribution of the observation in q: from that of the
signal process. For the class of problems considered by Benes this can
be done explicitly.

R
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For this purpose, we consider that the x~process is governed by

dxy=f (x) dt+dw., and the observation equation is dy;=x df +dn.

Hence Lo*=—;—- d—;’{_ ;—x- f, and Ly= mult. by x.

We do a gauge transformation and attempt to solve
A A A A A 1
dg:=Le q: dt—V (x) q: dt+xq: dy:, where V (x) =5 G+P
Hence we have to compute:

t t t
lc‘](t, 2z, W)=E - {exp( fxs dy,—%fxfds—fV(x,) ds] (3.17)
) 0 0 v .

where the integration is over Wiener-measure with x%=0 and x,=z (%).
We show that if V (x)=ax’+bx+c, a=0 and (a, b, )0 then

a sufficient statistic for computing :1 is the set of equations: _
‘d§s:—n, ds; £=0,6=z

6] (3.18)
' ldﬂs= —& ds— Ve (&) ds+dys.

We call the above set of equations the deterministic bi-characteristics of
the Mortensen-Zakai equation. To see this, we introduce the transfor-
mation dx,=d§;+dz;, where &; is given by the above and we do not
impose the boundary conditions.

" By essentially the Girsanov Theorem,

t t
=l [ndeimy [oras)
——= €x] s dzs— = | nds).
dpts P J " 2°

Now impose the boundary conditions and hence in terms of the z-
variable

g,z 3= f eXP(o j(z,+§s) dys ;j (z+EF ds—o j V (z:+£) ds)

. 1
X exp( f R dz,——% ] 7 ds) dp?,
[

L)

(1) See remark on p. 184. .
(?) The interpretation is by conditioning.
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where the integration is over the path space of z with zy=

By applying 1t6’s rule se

t t
A R 1
¢ 2, 3)= exp(7 f & dy.— / bf. ds+ %(zq,))
] 0.

P &
.1 1 ;
h'i‘m?—[u}ds+ 7/[@":-)’5)2"'2‘, (§5)] ds
'] 0

bi=uy; £=0, &=

tv;xeth li:;’miﬁal condmon & *,0)=exp[—s, (*)/2] and show that
.tmg s?lunon satisfies the corresponding equations of classical
:;Mamcs. ';‘i:s would provide' an alternative derivation to the results
Mashvﬂ:ns ?;alt:)d the Schridinger equation version of this problem
Equa -18) are related to the smoothing problem. It tums‘
;ut, that the unnormahzed conditional density could also be eval ted
y the following sufficient statistic, : “

veral tim 0 and z,=0,
V®=ar'+2bx+c, we obtain %, and using the fact that

X fexp( - j V(@) + %z})d[z,". ' (3.19)
]
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~ das:(f(as)—ﬂs) ds; =0 a,=z ’
(3.20)
dﬂs = (fc (as) Ns+as) ds""dys- -

These are the Euler-Lagrange equations for the following optimal
control problem: .

¢ ¢ -
Min ';— usz ds"'%f{(as—ys)z"'zv (as)} ds
¢ L

“

a.=f (@) +u; @=0, a=z.
' For the general Kalman filtering problem

‘dx,:Fx, dt+Gdw,

, (3.21)
(dyo=Hx. dt+dn,
the equations cotresponding to (3.20) would be
da;=Fa: dt—GG’ B, dt; ay=0 a,=z
(3.22)

df,=—H’ Ha, dt—F f, di+ H' dy,.

These can be recognized to be the smoothing equations given in

Hamiltonian form. Our methods show that these equations are intrinsi-

cally attached to the Mortensen-Zakai equation and play the role of
bi~characteristics corresponding to Hamiltonian-Jacobi equations.

- -Although we do net-do it -in this paper it ‘seems reasonable to
believe that a perturbation theory analogous to Maslov’s work could
be carried out for non-linear filtering using the framework used in
this section. '

NOTES AND REFERENCES FOR SECTION 3.

(i) For the derivation of the Bayes formula and the Mortensen-Zakai
equations see:

E. WoNe: Stochastic Processes in Information and Dynamical Systems, McGraw
: Hill, New York, 1971, and the references cited there.
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(i) The seminal paper on non-linear filtering is:

M. Fupisaki, G. KALLIANPUR, H. KuniTa: Stochastic Differential equations for
the Nonlinear Filtering Problem, Osaka J. of Math., Vol. 9, 1972,
pp. 1940.

(iii) Equation (3.14) was first derived by:

J. M. C. CLARK: The Design of Robust Approximations to the Stochastic Diffe-
rential Equations of Non-inear Filtering, in Communication Systems
and Random Process Theory: ed. J. K. Skwirzynski, Sithoff and
Noordhoff, 1978,

For more recent work see for example:

M. H. A Davis: On a Multiplicative Functional Transformation Arising in
Norlinear Filtering Theory, Z. Wahrscheinlichkeitstheorie ver. Gebiete,
to appear.

Writing it in a form involving the commutators makes it clear that for

certain problems these equations can be integrated using group invariance methods

(iv) The idea of using gauge transformations in the context of nonlinear
filtering theory is new, although it is implicit in the work of Bene3. See also:

R. W. Brockerr: Classification and Equivalence in Estimation Theory, Proceedings
of the IEEE Decision and Control Conferen , 1979, Ft. Lauderdale,
Florida.

Thegaugeuansformaﬁoncanbeintroducedinamuchmomgmeral setting.
(v) The variational interpretation of certain nonlinear filtering pro-
blemsinthefowmpresentedinSecﬁon3.2isnewandusescertainideasof

Feynman. See for example: )

R. P. Feynman, A. R. Hisss: Quantum Mechanics and Path Integrals, McGraw
Hill, New York, 1965.

For the Girsanov transformation and absolute continuity of measures, see:

R. S. Liester, A. N. SHIRYAYEV: Statistics of Random Processes I, Springer-
Verlsg, New York, 1977, 7
(vi) The reference to Maslov’s work is:

V. P. Maswov: Théorie des Perturbations et Méthodes Asymptotiques, Dunod-
Gauthier-Villars, Paris, 1972. ’

4. Multiple Itd Integrals and Fock Space.

There is a close relationship between the theory of multiple It6
integrals and Wick polynomials. These objects also have an important
role to play in Wiener’s theory of homogeneous chaos and representations
of the Weyl Commutation relations on Fock space. These ideas and
constructions also are of importance in non-linear filtering theory.
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~
4.1. MuLTiPLE ITO INTEGRALS.

The multiple 1t6 integral of order K is a map f+> Ix (f): I* RX) —
—> L*(2, F, P) having the following properties:
K
O Ith)= ‘II' W (4) if h=hx><.,-><14,_
for disjoint rectangles A, ..., Ax.
@ Iz(+9=Ic (W +Ix 9).
(i) If f,-—-)_f in I2(RX) then Ix =1k in 2(Q,F,P).
If k=0 and keR, define I, (B)=h.
Let }(t;, e s tﬂ:% Z (x5 .. , txiwy) denote the symmetrization

of f. The mapping f+s f is the projection of L? (RF) onto the subspace
L? (R®) of I?(RX) spanned by the symmetric functions.
The multiple It6 integral has the following properties:

@ For fel’ ®¥), gel? ®RE), Ir()=Ix () and
E(Ix () Ix (@)=1ig-x1 K} (f:g)z;
(6) For ¢€l?(R) and leC,

oo lK
exp(l fq&s dws—é—jtz ’;652 ds) =k=zq E[qs.‘...qs.,( dws, ... dwsy
R R RX

© P@FP=@ (O)|fel®RI}= & L? R,
K=o K=g
We now consider two applications of multiple It integrals.

4.2. A REPRESENTATION THEOREM FOR THE BEST ESTIMATE OF A SIGNAL.

Consider the non-linear filtering problem

4

)’s=f Zs ds""ﬂs’

[
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md assume that the hypotheses of Section 3 (assumptions A1 and A 2)

w0ld. Suppose that we want a representation for z=E | FH. It
s a standard result that the innovations process

€
v,:y,—f fsds.
°

s standard Brownian motion. Recently we have shown F7=%,"mod P.
fence z€L? (2, F7, P) and hence from property (¢)

. t t &
£,=za+ [k; @ 9) dv,+fsz (¢, 51, 8) dv, dvs, +...
DJ o9

ind a standard application of the definition of conditional expectation
15 a projection shows

E (x:vs vs,) etc.

ki (¢, S)=a—as' E (x:v)), k2 (8, 81, 5)= a_s?;;z

This representation is not too useful since the computation of

he innovations requires computing 2. However for the following pro-
dem it immediately leads to a finite dimensional filter. Suppose that
s=Hx; and dx;=Fx,ds+Gdw,. We are required to estimate x, and
=P (x;, 0<5<¢) where P is a polynomial functional of x, with
eparable kernels. Then it is not too difficult to show that the estimate

s also a polynomial functional with separable kernels of the innova-

ions dv,=dy,—Hx.ds whete x, is the Kalman filter estimate.

The ideas of multiple Itd integrals also have applications to re-
wesenting the density g (4, z, w') as a multiple integral expansion in
he semi-martingale y..

-2. RanpoM FIELDS.

In quantum field theory random fields (weak distributions)y and
heir polynomial functions (suitably defined) have played an important
ole. A Wiener integral or more generally an Itd integral is an
xample of a random field. Multiple It integrals can be considered
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to be polynomial functions of random fields, provided these polynomial
functions are suitably renormalized. These are the Wick polynomials.
Orthogonal polynomials and in particular the Hermite polynomials
have a special role to play in this theory.

4.2.1. Basic DEFINITIONS AND PROPERTIES.

Let H be a real Hilbert space, with the scalar product (-,-). We
shall identify H with its topological dual. Let (2, o, u) be a probabi-
lity space. We denote by L® (2, o, u) the space of real (complex)-valued
random  variables on (2, &, p).

DErmNITION 4.1. A continuous (*) linear function
F:H->L'(2,4,n) 4.1
is termed a random field or weak distribution. Two random fields F;
and F; are equivalent if for any {f, ....f.}<H, the joint distribution
of Fi(f), ... , Fi(fz) and Fz (f)), ..., Fz (}) are the same.

An example of a random field which is of importance to us is one
which is « generated » by the Wiener process. Let W (f, w) denote the
Wiener process for ¢=0. Define W (—#, w)=W (¢, ), =0 and thus
extend the definition to all of 9. Then if we define

F: (®)—>L (2,4, 1) @.2)
by F()= f fdW (t,w), where the right hand side is a Wiener integral,
then Fis & random field.

DerFmITION 4.2. Given a randorﬁ field F: H— L*(2, o, ), the
mean functional is the map

Mer()=EF U)):fF () dp. : “4.3)

The mean functional need not exist for all feH. If it exists, then Mr
is a linear (not necessarily continuous) functional on H.

() Continuous means if f;—>f in H then F{f)->F(f) in probability.
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The covariance functional Cr: HXH — C is defined by

Cr(, 9=E{[F (N—Mr (N] [F (©—Mr(g)1} 44)

where — denotes complex conjugation. If Cr exists for all f, geH then
Cp is 'a positive Hermitian bilinear form on H. The variance functional
Ve is defined by Ve (D=Cr (f, ) and the correlation functional by

B (, 9=E [F () F@].

The random field is said to be bounded if there exists a k>0, such

that VB (, p<k |lfl| VfeH.
The characteristic functional ¢r: H— C is defined by

¢r (H=E [F] = f &FD gy “5)

It is a continuous, positive definite functional and ¢r (0)=1.

Remark: Bochner’s theorem extends to this infinite dimensional
situation.

The following proposition is a consequence of the Riesz represen-
tation theorem.

. ProposiTioN 4.1. Suppose F is a bounded random field. Then
there exists a unique vector fr€H (the mean) and unique bounded
self-adjoint non-negative operators Ry (covariance) and Sg (correlation)
such that Mr BO=Lf,fe), Cr (f, @={Rr [, g) and Br ({, 8)=(Sr 1, g)-

DerFmiTion 4.3. A random field N such that By (f,p< oo with
characteristic function

¢F(f)=exp[ Me (D=2 Ve D )

is termed a Gaussian random field.

We shall be interested in isonormal random fields N. with mean
zero, variance parameter ¢>0. Its covariance function is Cy (f, g)=

=c(f,g). If c=1 then we get the unit isonormal random field. Its
s
characteristic function ¢x (l=e * .
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~Now let us consider a bounded Gaussian random field N. Its
characteristic function can be written as:

El

o ()= exp i (1, fuy— 5 (Ruf, )]

In particular, if the bounded Gaussian random field is the isonormal
field with parameter 6>0 then

Ry=ol.

Let B (H) denote the Borel o-algebra of H and let x be a proba-
bility measure on B(H). Define the random field F: H—>L® (HB(H).p)
by [F (N1 (@=(f.g). In this way every Borel Probability measure
p on B (H) produces a random field. Suppose F: H— L°(R2, A, v)
is a random ficld. Then we say F is generated by g on B (H) if F
is equivalent to F. We then have

ProrosiTION 4.2. A Gaussian random field N is generated by a
probability measure on (H, B (H)) if and only if the covariance operator
Ry is trace class.

Thus if dim H=co, the isonormal random ficld with covariance
operator ¢l,5>0 could never be produced by a countably-additive
probability measure on (H, B (H)). By the Gross construction of
« lifting », the finitely additive measure corresponding to the isonor-
mal field can be «extended » to a countably additive measure on a
separable Banach space.

S(®") will denote the Schwartz space of rapidly decreasing
functions, and S8 (R") its dual, the space of tempered distributions.
In the sequel it will be.often convenient -to-define- a random field as
a mapping F: V—> L° (22, A, 1) where V is a topological space. ‘In
particular we shall have occasion to take V=S (%). We shall often
make the assumption that the random field is determined by feVY in
the sense- that the smallest c-algebra w. r. fo which the random
variables {F (f)|feV} is measurable is of. We call such a random
field full.

Construction of the Unit Gaussian Random Field.

Let Hbe a sep:_arable Hilbert Space and let (e.) be an orthonormal
basis f(_)_r H. Let R be the one point compactification of ¥ and let
2=ITR be the Cartesian countable product of copies of ®. 2 is
a Compact Hausdorff space in the Tychonov topology. Let C () be
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the set of continuous, functions on £2 and let P (2) be the set of
functions ¢ (xi, ... , x») in C (2) which depend only on a finite number
of copies. With the supremum norm topology C (£2) is a Banach space
and (by the Stone-Weierstrass theorem) P (f2) is dense in C (2). For
$€P (R)define

_= N LIL
k(@)=@2n) * f ¢ (X, x) € 2 dx, .. , dxa.

Then k: P (2)—> R is linear and |k ()] < ||¢]] and hence k can be
extended to a continuous linear functional on C (£2). By the Riesz
Representation theorem there exists a Borel probability measure

on B (C) such that k(¢)=f¢dll, VoeC (2).

Let F(e): 2— R be multiplication by x., n=1,2,.. Then
F (ey) is a. ¢. in R and hence F (e,): 2 — R, measurable. It can be
shown that F(e)el*(R2, B (C),p) and {F(e.|n=1,2,..} generate
B(C). X feH and f=23 a, e, then X a, F (e,) converges in L (2,B(C).p)
to an element F (f). This is the unit full Gaussian Random field on H.

4.22. RanooM FiELDS ON S(%")_ AND WmITE NOISE.

Let F: S(BD—> L (2,9, P) be a random field. The derivative
F’ of the random field is defined by .

F(=-F({)

F’ is a random field and if F is Gaussian, F’ is also Gaussian, Now
a random field F: S (®") —> L° (2, A, 1) is generated by a stochastic
process (assumed to have square integrable sample paths) X: R* X 2—>R
if

[F (] (w)=] FOX (@) dx, MfeS R,

Let W (t, w), t€l0, =] be the standard Wiener process and let

F be the Gaussian random field generated by W (¢, w). The covariance
functional of F can be computed as

cr 9= [ min (5,9 f (5) g (6 ds dt =
° % :
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~ oo

= [ [F ©)—F (=) g ()= (oo)] ds dt
0
where

[ ¢
fo=/ 1 ds ana g(t)=[ () ds.
° °

F’ the derivative of F exists (in the sense of distributions) and its
covariance functional is given by

Cr(.9=Ce ¢\ )=[ 18 dt=(1,0)
°

where ( , ) represents the natural inner product on S (R) embedded in
I? (‘KZ) F' is white noise. .

4.3, SECOND QUANTIZATION (AFTER SEGAL AND NELSON).

Let H be a real Hilbert space and let F: H—> L° (2, o, pr) be the
unit Gaussian full random field. If fi,...,f . are orthonormal in H
and ¢ is a Bounded Baire function on R~ then

: 1 [ g iEal
f PEG, . F D= [swe 7 dx
@ ®"

For concreteness (2, ¢, n) may be chosen to be. countably infinite
copies of (R, B (R), 2rn) Ve *~dx).
If E denotes expectation on (2, A, ) then

 EF () o F () =0 - @3.0)
) E (F (fl) -F (fbl)): z (fil ’fjl) woe (fi,.)fj") (4'3'2)

where the sum of over all pairings of 1,..,2r i e & <...<iu
84<jty e 5 in<ju, and (i, j1, ... , in, ju) is a permutation 1, ...,2n.
L?(2,4,p) is denoted by E*(H) and I'(H) denotes L? (H).
Let I' (H)<a be the closed linear span in I" (H) of all elements of the form
F{fy) ... F (fn) with m=<n and let I (H), denote the orthogonal comple-
ment of I'(H)<n—1 in I' (H)<n. For fi, ..., fx in H we define the Wick
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polynomial
:F(f) .. F (fo):

to be the orthogonal projection of F(fy)...F(f,) into I' (H). In the

special case, where H is one dimensional and hence I'(H) =

=12 (R, B (R), @r)? e 2 dx),T (H). is the one dimensional sub-

space spanned by the nth Hermite polynomial and :x": is the nth

Hermite polynomial normalized so that the leading coefficient is 1.
We have the formula

(:F () . F )z, :F(g) . Flga): )=
= f’ {facys &) e {Fatrs 8n)- 4.3.3)

where the sum is over all permutations # of 1, ..,n. If all the /s and
g's are equal, we get

GE @y, F ()= 1;7 f (% Y e dx=n) @34

Let H, be the complexification of H and let H, denote the n-fold
Hilbert space symmetric tensor product of H; with itself. On H. we
define the inner product such that

(Sym (1 ® ... @ f), Sym (@ ® ... ® go))=
Z {fxms 1) -~ (frtmrs 8a) “4.3.5)
where
Sym (1 ® . @ f=7 Zfx) @ o @ frtw- | 4.3.6)

From (4.3.3) and (4.3.5), we see that the mapping :F (fi) ... F (f):+—~
+>Sym (i ® ... @ f) extends uniquely to a unitary operator from
I' (H). onto H. We usc this mapping to identify I' (H,) and- H,.
Analogous to the fact that the one-dimensional Hermite polynomials
span L*(R, B (R), 2n) e ?" dx), Segal proved

rH)= E’ H,, for arbitrary real Hilbert space H. 43.7)
”;0 .
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I (H) i Fock Space.
If the random field F(]):[de, where fe*(R)=H and W

is the standard Wiener process, the elements of I (H), are multiple
Wiener integrals (in the sense of 1t9).

The space I'(H) is intrinsically attached to the structure of H as
a real Hilbert space. Thus if U: H—>K is an orthogonal mapping
of one real Hilbert space into another, it induces a unitary mapping
I {Uy: r (H)—>Tr (K), where on H,, T(IN=UQ® .. ®U Slmnlarly if

. »—fuld

I: H=>K is an isometric embedding then it induces. an isometric
embedding I (I): I' (H)— I (K) and similarly for an orthogonal projec-
tion E: H—>K. If A: H— K is a contraction then I' (A): ' (H) - T'(K)
is defined to be the direct sum of I’ (A).: H,~>K,, where I' (A)x=
=A ® ®A Now any contraction A: H —> K can be decomposed as

“w-fold

H————)H@K———»K@H

NS4

where I, U and E are as above.
Hence I (A)=T"(E) I (U).I' (I). Now . I (A) is doubly Markovian in
the sense that

a=0=>T (A)a=0

)T A)1=1 4.3.8)
\ETl (A) a=Ea,

Any doubly Markovian operator is a contraction from L? to I-.
It turns out that I' (A) has stronger contractive properties and the
precise statement of this is an important theorem of Nelson.
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TaeoreM 4.3.1. (Nelson Hypercontractivity Theorem). Let A: H->K
be a contraction. Then I (A) is a contraction from L?(H)—> L* (K)
for 1<q<p=<oo provided that

q—1
llall <)/ 2= 439)

If (4.39) does not hold then I (A) is not a bounded operator from
L (H) - L7 (K). '

44. Ansow‘ﬁ; CONTINUITY OF GAUSSIAN Ranpom FEips.

Let ¢ be a Gaussian unit random field H— L* (2, A, p)=T (H).
‘We consider the following related questions:

(1) Given A: H— H linear, continuous when is there a
unitary map U: I' (H)— I' (H) so that

U (DU '=¢ (AN ¥feH?

(2) Given A s in (1) when is there an F in I'(H) so that
each ¢ (f) is a Gaussian random variable with respect to [Ff? du but
with variance - [|Af|} instead of —-{}?

(3) Given two Gaussian random fields with general covariance
on the same Hilbert space H when can they be realized on a single

The above problems are essentially equivalent and we present

an answer to (3) under the assumption that A is positive and has a .

bounded inverse.

TaeoreM 4.4.1. (Feldman, Segal, Shale). Let ¢: H-—> L* (2, A, p)
be a Gaussian unit random field and let A: H—> H be linear, bounded,
positive with bounded inverse. Then a necessary and sufficient condi-

. . 1
tion for the Gaussian random field on H with variance —- Afl]? to

be redlizable on 2 with measure v equivalent to p is that A—1I be a
Hilbert Schmidt Operator. '

NON-LINEAR FILTERING AND QUANTUM PHYSICS o201

-~
4.5. DISCUSSION.

Fock space has an important role to play in the study of the free
Quantum field which can be considered to be an infinite assembly of
non-interacting harmonic oscillators.

1 & 1
2zt z*
as a self-adjoint operator on L? (R). If instead we work with I? (R, g),
where g is Gaussian measure then the action of H on the Hermite
polynomials h, is given by h.e>nh, From this it is clear that the
one-parameter group ¢ generated by H acts as h.+—>e™ h, If we

denote by W the unitary map f (x) — f (x){rzl—_n e'“’”]-m: L:R)y—>LR)

then the operators pﬁi}x and g=x on L? (R) transform to p’=WpW-!

and ¢'=WqW-' and % (@"+¢? can be identified as the Harmonic
Oscillator hamiltonian. By the ideas of second quantization described

Consider the harmonic oscillator hamiltonian H=

-in section 4.3, we can extend the one-dimensional case to an infinite

dimensional setting. When this is done this gives rise to the particle

" representation of the free ficld and the concept of a number operator.

Shale’s theorem on the equivalence of Gaussian Random fields
essentially shows that the Kalman filter is analogous to the free quantum
field. This can be done by noting that the observations and innovations
processes are related by v=(I—K)y where K is a Hilbert-Schmidt
operator.
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E. NeLson: The Free Markoy Field, J. Functional Analysis, 12, 1973, pp. 211-227
where the basic Hypercontractivity Theorem is proved.

() The idea of studying the infinite dimensional harmonic oscillator
on Fock space is due to:
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5. Some Lie Algebras of Interest in Filtering Theory.

Let us recall that in section 3 we shdwed that the unnormalized con-
ditional density of x. given the observations {y;|0=<s=<t} satisfies a
stochastic partial differential. equation

dq (¢, x, w)=L* q (¢, x, )+ L1 g ¢, x, @) dy: (5.1)

where Lo* is the formal adjoint of the generator of the diﬁ'_usioﬁ process
corresponding to the stochastic differential

dx,=f () dt+g (x;) dw, (5.2)

and hence L¢* is given by

1 &, d ’
Lo*—?a;zgz—af, (5.3
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and
L;= Multiplication by 4 (x). G4

The Lie Algebra of operators LA gla*——;—L?, L;} generated by

Ia‘—-%—sz and L; has an important role to play in filtering theory.

This comes about by writing equation (5.2) in Stratonovich form (a
fact which can be justified rigorously under the hypotheses we have
adopted)

1 .
10 x)=( Lt~ 2 Lo+, Ll) a0, Gy

This suggestive form of writing is meant to show the anology of
the filtering problem with the interaction picture of quantum physics.

1t turns out that a number of filtering problems give rise to Lie
Algebras of operators which are representations of known algebras
which arise in mathematical physics. We. first summarise these known
facts about some Lie Algebras arising in mathematical physics.

5.1. THE HEISENBERG ALGEBRA AND THE WEYL ALGEBRA.

Let n=0, and let (py, ..., Pn, G1, - s Gn, 2) be a basis for a real
vector space V. On this space we can define the structure of a Lie
Algebra by defining [p:, .1 = — [q:, p] =z, the other brackets between
elements of the basis being zero. Let us denote this Lie Algebra by 9.
The centre of N is Rz and we have [N, N]=Rz and hence this
Lie -algebra is nilpotent.- - . ,

If 9 is a Lie algebra with centre ¢ and if c=[U,N] and
dim c=1, then 9C is a Heisenberg algcbra.

PROPOSITION 5.1. Let U be a nilpotent algebra. Suppose that all
characteristic ideals () of N are of dimension <1. Then either N
is zero or a Heisenberg algebra.

We denote the algebra defined by 2n-generators pi, qi, ... s P Gn

(1) Let g be a Lie algebra. A derivation of g is a linear mapping. D: g—> g
such that D ([x, y)=IDx, y1+[x, Dyl ¥x,yeg. A characteristic ideal of g is a
subspace which is stable for all derivations of g. i
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and the bracket relations
[ps gl =1.
L. 41 =1ps pi1=[g: g:1=0 for i%j
by A, (R) or simply A, These are the socalled Weyl algebras.
Elements of the form p,*, qf",..., p:",q,{"(il, Jts e » in, jn€N) gen-

erate the vector space Ap. .
In the vector space E=R[Xi,...,X.] let P; be the endomor-

phism ;X— and Q; the endomorphism of multiplication by X;. We have

[P, Q]=1.
[P, ;1 =[P, P;1=[Q; Q;1=0 for i*j
and hence there exists a homomorphism p: A,~> End (E) such that
p (p)=P;: and p(g)=Q; for all i. The elements PLQF, ..., E*Qf* are
linearly independent and therefore the elements pi g, ..., pa* ¢/* form
a basis for the vector space A. and p is injective. It follows that
A=A ®, ..., ® A1 (ncopies). The representation p of A, in E is
termed the standard representation. Finally E is a simple Ay,module

and the set of Arendomorphisms of E is R.
Let B, be the set of linear combinations of

pigh, ... 0t g2 €A, such that iitjit ... dintje<m.

TheanBmCBm-l-u’
Consequently - the . graded .algebra. .associated - with. A, -equipped

with the filtration (Bo, By, ... ) is the polynomial algebra in 2n-variables.
PROPOSITION 5.2.
(@) A. is integral and noetherian.
(ii) The centre of A. is R.
(iii) The algebra A, is simple.

PROPOSITION 5.3. Let py, qu, ... , Pn, g be the canonical generators
Of Aa. Let us define vector subspaces S, T of A. as follows:

@ S= X {(rptra) | reR).
i=1
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(u) T=_z z { P: gi+9; p)+rpi pitra: anGR}
Then:
(i) R®S and T are Lie sub-algebras of A
(i) R @S is a Heisenberg algebra.

The relationship between Heisenberg and Weyl algebras is given
by ’

PrOPOSITION 5.4.

A R)=U (N)/]

where U (N) is the enveloping algebra of the (2n+1)-dimensional
Heisenberg Algebra N and | is a two-sided ideal in U (N).

5.2. THE OSCILLATOR ALGEBRA.

The real Lie algebra with 2n+2 generators (&, pi, .. , Pa, Giy .-  Gn> 2)
satisfying the bracket relations

[, pil= =% [k, ¢1=p:, [p: ¢l=z,

and the other brackets being zero is defined to be the oscillator algebra.
This is a solvable Lie algebra. This algebra is the semi-direct sum of
the one-dimensional algebra spanned by # and the Heisenberg algebra 9C.

5.3. THE PO1ssON BRACKET ALGEBRA.

Consider R"‘:{(q, p) lg= (q;, e s Gn)s P=(P1, ... , Pa) } With its stan-
dard symplectic structure (see later section). For f, geC~ (R>), the
Poisson bracket is given by

o 0 _of 3
{f g}_ ==x(3q. ap. aP: 3‘].)

The real vector space of polynomials in (g, p) denoted by P, is a Lie
algebra under the Poisson bracket operation.

PROPOSITION 5.5. P, is generated by the two polynomials q; and
n n—t
h=p'+q' if n=1 and q and h= i (p,3+q,-‘)+é; qi Qist if n>1.
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That is P. coincides with the smollest Lie subalgebra Q. containing
qu and k. '

PROPOSITION 5.6. P./R is simple.

5.4. EXAMPLES OF NON-LINEAR FILTERING PrOBLEMS AND THEIR LiE
ALGEBRAS.

ExampLE 1. Consider the non-linear filtering problem
dx.=f (x.) dt+dw,
(5.5)

d)’t= h(x) dt +d77t

and let us assume that f, A€C~ (R). In the light of section 3, the

Mortensen-Zakai equation is

dq: =( Le* -‘% le) q: dt+ 1L, q:~dy:

where
1 & d
L*=3 @~ &’
L= multiplication by & (x).
We then have

\

PrOPOSITION 5.7. LAtLo*— 212, L] is finite dimensional only
~ in the case

@) h=ax+b.

() ftP=a+bx+e,

where the Lie algebra of operators is computed on the common domair
C"R) or I (R). /

In the above if we want the diffusion process to be defined
globally on R, then for the Riccati equation f:+f=ax’+bx+c to have
a global solution we need a=0, and (g, b, ¢)+0.

The example covered by Proposition 5.7 has recently been consi-
dered by Benes. From Section 3.1, we can see that we can remove the
effect of the drift by a Gauge transformation. From (3.15) we see that
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it is enough to solve

dgi=Lo q: dt—V (x) g: dt-+hg,-dy..

But LA {L,*— LA L azLA {fo—V (), L}, and under the hypotheses

of Proposition 5.7 the second Lie algebra has a basis consisting of the
clements :

Lo— % L2, L;,[L—% L2, L,} =L=a%, [L,L]=al.

This however is essentially the Harmonic Oscillator algébra and corre-
sponds (essentially) to the filtering problem -

%x; =W
dy?=Xt dt + dﬂ:

which is a Kalman filtering problem.
It should also be remarked that there is no difficulty in extending
this example to the multi-dimensional situation

dx,=f (x;) dt+dw¢ .

dy,=Hx, dt+dy.,

. . oF F\
provided f: R"—> R" is VF:(g;l, ,gz) and H: R*— R. This fact

is also clear from our considerations relating Schrodinger and Dirichlet
operators. Finally, this problem is the analogue of the imaginary time
Harmonic Oscillator problem with an external force.

ExampLE 2. Consider the non-linear filtering problem

Xt =W; .
(5.6)
dy,=x3 dt-+-d:. :

This is the so-called cubic sensor problem. From Proposition 5.7,

LAl &1

o ?x‘,x’ is infinite dimensional. From calculations similar
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to that required to establish Proposition 5.7 it can be shown that the Lie

algebra is isomorphic to the Weyl algebra A, which is simple.

: ExampLE 3. Consider the model given by (5.5) and suppose that
F+F=V (x) has a global solution where V (x) say is an even positive
polynomial (other than the quadratic). Then from Proposition 5.7,

LA ;L.‘—% L, Ly} is infinite dimensional. Even more, these Lie alge-

bras (modulo their centre which is R) are simple. This fact follows
from calculations similar to that in Proposition 5.5. ’

ExAMPLE 4. Let us consider the model of (5.5) and let f, h€C= (U)
where U is some open set in R. Then by restricting L..*—% L2 and
L to C~ (U) the Lie algebra LAlLi*~ - L?, L} is finite dimensional
only in the (prototype) case

@ h=x

@ fotf=—f 2.

Note that the last equation (Riccati) has finite escape time.
Suppose we consider the slightly more general model

dx.=f () dt+g (x) dw,, where §, geC~ (U)
U open in R and g (x)>0, xeU. In this case we can remove the diffusion
term g by a non-linear smooth change of coordinates.

Let x;=a (z)) where a is smooth and mvertlble Then by the Ito
differential rule

dx=a, dzt 3 a dt=f (@ (20) di-+g (@ (D) dw.
Hence

d=(@)™ (f (@ () di— - ac (20) de-+@) g (a 2))
Let a satisfy the differential equation

=g (2),
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and Jet I be the maximal interval in R on which the solution is defined.
Then

dz=(g (@ ) @ (@) — —g,, (z,)) dt+dw,=f (z) dt+dw..
The observation equation is
dye=h (z) dt:+ dn, where h=h (a (z))).

Now it is easy to see that

1 hZ,h} _LA{i f—i/——m Py

1
LA 2 de dx

T TaT7
where the first Lie algebra is computed on the common invariant domain
C= (U) and the second on the common invariant domain C= ().

5.5. SIGNIFICANCE OF THE RESULTS. .

If the Lie Algebra LA Lo’—% L3, L.} is finite dimensional, then

it should be possible fo construct the filter by integrating the Lie algebra.
We consider this aspect of the problem in the next section. If the Lie
algebra is infinite dimensional and simple then we conjecture that it
cannot be represented by a Lie algebra of vector fields with analytic
coeflicients on'a finite-dimensional manifold. That is, we cannot represent
the solution q (4, z, ') of the Mortensen-Zakai equation by means of a
finite dimensional sufficient statistic described by a vector differential

-equation:

de;=a(a)) dt+b (a.) dy.. 6.7

Suppose we are interested only in computing unnormalized condi-
tional statistics ¢ (x)). If we denote this by @, then

13:: [ ¢ (2) q (¢, z, ¥ dz.
i :

It may be possible to represent 3, as the output of a vector differen-
tial system:
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}da;:a (a:) dt +b (at) dyg
(5.83)

$e=c (a).

A theorem of Brockett says. that for this to be possible there must
exist a homomorphism between the Lie algebra of operators

LA{L,*—%L;’, L;t and the Lie algebra of vector fields a—% b:.b

and b such that under the homomorphism Lo*——;ldzv—)a——;— b. b and
L+ b. This would suggest that the ideal structure of the Lie Algebra
LP=LA 31.9*— -;— L, Ly % should be important. If there exist non-

trivial ideals I then a candidate for such a homomorphism would be
¢: L—> L/I. The results of this section show that for a large class
of problems this line of attack will not be possible, since the Lie algebra
£ is infinite dimensional and simple.

A possible approach might be to represent ¢, as the output of a
delay system, that is ook for a representation of the form

-\da¢=a (ar, @:—9) dt+ b (ar, ar-g) dy:

[
(A
'95:= f ¢ (az, ar_g) db.

4 -6

There is some reason to believe that it might be possible to do
this for the cubic sensor problem considered in Example 2
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6. Representation of the Filtgr.

The complete solution of the non-linear filtering problem requires
computing the propagator of the Mortensen-Zakai equation or equiva-

~ lently the unnormalized conditional transition density q (4, z, yo' |s, 2.

We have discussed several approaches to computing the density
q (t, z, ). For the class of problems considered by Benes the propagator
could be computed by solving the two-point boundary value problem

dgt: — N dz; §s=x, §t=z
dne=—£.dv— Vi (€.) de+dy.

according to the development of section 3.2. This is the approach of

- functional integration.

The Lie-algebra viewpoint to computing the propagator would
require that the Lie algebra be integrable. This is a difficult question




212 S. K. MITTER

as we can see by discussing the commutation relatlonshlp of quantum
mechanics.

6.1. CANONICAL COMMUTATION RELATIONS AND THEIR UNITARY REPRE-
SENTATIONS.

Consider a massive spinless, nonrelativistic particle. Its conﬁ%ura
tion space is typically L* (R). The position operator ¢: P®)—->L®)
is defined-as the operator with domain

D (9)={fel* ®) | xf (YL’ R)} and

(6.1)
gh D=xf(x).
The momentum operator p: L (R) = L* (R) has domain
D (p)="fe’® |fe* ®)} and |
62)
Pt y=ik.

The Schwartz space S RICD (PND (P), S R) is dense in
I*®) and is left invariant under ¢ and p. Moreover on d R) they
satisfy the Heisenberg Commutation Retations :

gp—pg=il. ' 6.3)

_Since p is self-adjoint, the operator U (@)= e, aeR is unitary
and the operators {U (@) |a€R} form a one-parameter strongly condi-
nuous unitary group. Now- D-{g) is -invariant under U (), aeR and
it can be shown that

U(a) qU (—a)=qg—al on D (g). 6.4

This is the Schridinger form of the Canonical Commubaﬁo‘n Relations.
Since g is self-adjoint it generates a strongly continuous one-
parameter unitary group V (b) given by

V®) f)=e2*f ). 6.5)
It can be shown that

U@V ®=e2V (b)U (). (6.6)
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“This is done by first checking it on ¢ (R) and then extending
by continuity to all of 12 (R).

(6.6) represents the Weyl Form of the Commutation Relations.

It is a well known fact that the Heisenberg form of the canonical
commutation relations do not give rise to a unitary group representation,
while the Schrodinger and Weyl forms do. This gives rise to the
following general question: Suppose we have a representation of a Lie
algebra g by skew-symmetric operators defined on a common invariant
domain @ in a Hilbert space ¥ and let @ be the simply connected
Lie group with Lie algebra g. When does the representation of g come
from a unitary representation G?

The answer to this question is connected with questions of essential
self-adjointness and the existence of a common dense set of analytic
vectors. We discuss some of these questions now.

Let @ be a Lie group and X a Banach space. A representation T
of G is a mapping @ —> L (X): a+> T (a), where L2 (X) is the set
of bounded operators such that T (¢)=1, e being the identity element
and T (ar-@)=T (a) T (@), for all &1, ;€ G and VxeX, ars T (a)x
is continuous (with X the norm topology). The representation is called
unitary if X is a Hilbert space and each T (a) is a unitary operator.

A vector x€X is an analytic vector for T in case the mapping
a>T (@) x: G — X is analytic.

The salient facts connecting representations and analytic vectors are:

Tarorem 6.1: Let T be a representation of a Lie group G on a
Banach space X. Then T has a dense set of analytic vectors in X.

The answer to the question raised earlier in the section is contained

in thefollomggtheomandmﬂaryduetoblelsen

THEOREM 6.2: Let g be a Lie algebra of skew symmeiric operators
on a Hilbert space H having a common invariant domain D. Let
Xy, ..., X4 be a basis for g, A=X{+..+ X2 If A is essentially self- .
adjoint, then there is on H a unique unitary representation U of the
simply connected Lie Group G having g as its Lie algebra such that for
al X in g, U X)=X (bar denotes closure of an operator).

CorOLLARY 6.3: Let g be a real Lie Algebra, H a Hilbert space.
For each X in g let p (X) be a skew-synmmetric operator on H. Let D be
a dense linear subspace of H such that for all X, Y in g, D is contained
in the domain of p (X)p (Y). Suppose that for all X, Y in g, x in D,
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and real numbers a and b,
p @X+bY) x=ap (X) x-+bp (Y) x
(X YDx=@X) p Y)—p (@) p (X)) x.

Let Xy, ..., X4 be a basis for g. If the restriction A of p (XiP*+ ...+p (X2f
to D is essentially self-adjoint, then there is on H a unique unitary
representation U of the simply connected Lie group G having g as its
Lie algebra such that for al X in g, UX)=pX).

COROLLARY 6.4: Let g be a real Lie algebra with a basis Xj, ..., X4,
@ the simply connected Lie group with Lie algebra g, H a Hilbert space,
@ a dense linear subspace of H. Let p be a representation of g by skew-
symmetric operators with domain C. Then there is a unitary representation
U of G such that C is the space of infinitely differentiable vectors for
U and U (X)=p (X) for all X in g if and only if

A=p (X)+...4+p Xa)

is essentially self-adjoint and C= D__l D (4").

How do these ideas relate to the representation of the filter? Firstly,
the equation. we are dealing with is a stochastic parabolic equation valid
for +=0. Hence the operators Lo* and L, will in general only generate
semi-groups. Consider the Kalman filtering problem (or any problem
Gauge equivalent to it). Then what is necessary is to give a precise
meaning to the time-ordered operator product

e I® ghlh olals e&, =0

as an evolution operator (in the sense of Kato). For the Kalman filtering

this can be done using special methods. There are examples, like the

estimation of a Bessel process in additive white noise where this appears
not possible to do. To see the connection to unitary representations of
Lie groups, it might be best to complexify and try to check the conditions
of Nelson’s theorem. We conjecture that if the Lie algebra representation
does not extend to a unitary group representation then we shall not be
able to give meaning to the time-ordered operator product considered
above.
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Finally, the most direct way appears to be to try to integrate equation
(3.15) of Section 3

~

i ~
é‘g—t :(Lo—?le) i+ y: Izz qi—Yi ?Ls Qt

but the question of integrating the Lie algebra also appears here.

NOTES AND REFERENCES FOR SECTION 6.

(i) For a detailed account of group representation theory relevant to
this section see:

A. O. BARUT, R. Raczka: Theory of Group Representations, PWN-Polish
Scientific Publishers, Warsaw 1977.
The exposition given here closely follows:
E. NeLsoN: Analytic Vectors, Annals of Mathematics, 70, 1959, pp. 572-615.
(i) The details of treating the Bemes and similar problems using
Group Invariance and Lie Algebraic ideas will appear in a joint paper by J.
Baras, S.- K. Mitter, D. Ocone. See also D. Ocone, forthcoming Doctoral

Dissertation, M.I.T., June 1980, for estimation problems for diffusions with
boundary. .
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