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1. Preliminaries.

This chapter contains a generalisation to infinite dimensional systems
of the classical optimal control theory of linear time - dependent systems
with a linear - quadratic cost function. The structure of the problem and
the results are formally identical to what is already known in the finite -
dimensional case. For the infinite - dimensional case, the initial hypo-
theses and the interpretation of the results are both very important. A
slightly too strong hypothesis can rule out a complete family of infinite -
dimensional systems and reduce the applicability of the whole theory solely
to finite - dimensional systems.

Important classes of systems governed by linear partial differential

equations or differential delay equations admit an internal representation

in terms of a certain evolution operator which characterizes the system. 1In
this chapter we shall assume that such an evolution operator exists and that
the evolution of the state of the controlled system can be described by an
integral equation. We shall present a general theory of the optimal control
problem for such a linear system defined in a finite time interval when the
cost function to be minimized is linear-quadratic. Optimality conditicns

will be obtained and the feedback operator and the reference function will

be characterized by integral equations. Finally in the last section we shall
show how differential equations can be directly obtained from the integral

equations when the evolution operator is generated by some linear operational

differential equation.



Notation and Terminology.

Let Rbe the field of all reals. Let X and Y be two Banach spaces on

Rwith norms and | |Y' We denote by £(X,Y) the real Banach space of all

|
|1y

continuous linear maps T:X - Y endowed with the natural norm

(1.1) |T| = sup { |Tx1Y : |x|x =1} ;
when £(X,Y) is endowed with the strong (resp. weak) operator topology, it will
be written £S(X,Y) (resp. £W(X,Y)). When X = Y we shall abbreviate and use

the notation £(X), £S(X) and £w(X). The adjoint operator of T in L£(X,Y) is

an element of £ (Y*,X*) which will be denoted T*. When X and Y are Hilbert
spaces on R, it will be understood that the adjoint operator T* of T in
L(X,Y) vbelongs to £(Y,X).

Let X be a Hilbert space on R with inner product (-,-)X. T in £(X) is
said to be self-adjoint if T* = T. A self-adjoint element T of £(X) is said
to be positive, T 2 0 (resp. positive-definite, T > 0), if for all x in X,
(x,Tx)X > 0 (resp. for all x # 0 in X, (x,Tx)x > 0).

Given - < a < b < +», we define

(1.2) I(a,b) = [a,b] " IR
(1:3) P(a,b) = {(t,s) € Rx R:s € I(a,b), t € I(s,b)}.
Let X and Y be a Banach spaces on IR. C(a,b;X) will denote the Banach

space of all bounded continuous maps I(a,b) > X endowed with the sup norm,

Lp(a,b;X) the Banach space of all Lebesgue measurable maps I(a,b) = X which



are p-integrable (1 < p < =) or essentially bounded (p = =). The space of
all maps G:I(a,b) = £(X,Y) such that for all x in X the map t = G(t)x belongs
to Lp(a,b;Y) (resp. C(a,b;Y)) will be denoted by Lp(a,b;£s(X,Y))
(C(a,b;f (X,Y)). Given a in R, LIl)oc(a,m;X) (resp. Lfl’oc(a,oo;.cs(x,v))) will
denote the Fréchet space of all measurable maps [a,=) = X (resp. £S(X,Y))
the restriction of which to [a,T] belongs to Lp(a,T;X) (resp. Lp(a,T;fs(x,Y)))
for all T, a < T < o,

When X is a Hilbert space on R, Hl(a,b;X) will denote the Sobolev
space of all maps x in Lz(a,b;X) with a distributional derivative Dx in
Lz(a,b;X); C(a,b;Xw) will denote the space of all maps g:I(a,b) = X such
that for all x in X the map t = (g(t),x)x belongs to C(a,b;IR). Finally
C(a,b;£w(X,Y)) will denote the space of all maps G:I(a,b) = £(X,Y) such that

for all x in X the map t = G(t)x belongs to C(a,b;Yw).



2. System description, adjoint system.

In this section we introduce all the elements which will allow us to

start with an internal representation of a linear controlled system (S).

=]

Definition 2.1. (i) Let G belong to Lloc

2
L1oc

with the following properties:

(O,w;LS(U,X)), let £ and g belong

to (0,*;X) and let the map A:P(0,») - L(X) define an evolution operator

a) A(t,r) = A(t,s) A(s,7), t2s 21 2 0,
b) A(t,t) = 1 (identity in L(X)), t = 0.
c) Y x€ X, (t,s) ™ A(t,s)x: P(0,») = X is continuous.

(ii) The state E(t;s,xo,v) of system (S) at time t 2 s with
initial datum XO at time s =2 0 and control function v in Lioc (s,»;U) is

defined as follows:
t

(2.1) £(t;s,x4,v) = A(t,s)x, + f A(t,r) [G(x)v(r) + £(r)]dr.
s

(iii) Given T, 0 < T < », the state n(t;T,xT) of the adjoint
system (S*) at time t, 0 < t < T, with final datum Xp at time T is defined

as follows:

(2.2) m(t;T,x

T
) = AT, *x, + [ A(r,t)*g(r)dr.O0
t

Lemma 2.2. Let X and Y be two Hilbert spaces. (i) Let the map

A:P(0,») - L(X,Y) be weakly coutinuous, then the map



(t,s) = |A(t,s)]|: P(0,») = R

is bounded and measurable on every compact subsets of P(0,«).

(ii) The map A:P(0,») = £(X,Y) is strongly measurable if and only if
it is weakly measurable.
Proof. (i) We first prove that iA(t,s)i is bounded on all sets P(0,T).
Consider the family {A(t,s)]|(t,s) € P(0,T)} in £(X,Y). By continuity for
each x and y in X, (y,A(t,s)x) is bounded in P(0,T). By the Uniform
Boundedness Principle IA(t,s)l is bounded in P(0,T). To show that A is also

measurable we introduce for an arbitrary & > 0 the set
V= {(t,s) € P0,») | |A(t,s)]| > &}.

If (t;,s,) €V we can find x and y with [x]X =1 and |le = 1 such that

| (y,A(t,s)x)| > & for every (t,s) in an open ball containing (t Thus

0507 -
V is open in P(0,~) and the map (t,s) = |A(t,s)!:P(0,=) = R is measurable.
(ii) Cf. HILLE-PHILLIPS p. 72-73.0

Corollary 2.3. Given A:P(0,=) - £(X,Y) strongly measurable and bounded, the

map (t,s) = A(t,s)*:P(0,») > £(Y,X) is also strongly measurable and bounded.O

Corollary 2.4. The conclusions of Lemma 2.2 and Corollary 2.3 remain true for a

map A defined on [0,*) rather than P(0,«).O

Proposition 2.5, (i) The map (t,s) = [A(t,s)| : P(0,») » IRis measurable and

for all T, 0 < T < », and there exists a constant c(T) > 0 such that

(2.3} sup {|A(t,s)] | (t,s) € P(0,T)} < c(T).



(ii) The map
(2.4) (V) > EC55,%0,v) 1 X x L3(5,T50) > C(5,T3X)

(resp. (xT,g) g n(-;T,xT) : X x Lz(s,T;X) - C(s,T;Xw)) is affine (resp.
linear) and continuous.

Proof. (i) cf. Lemma 2.2. (ii) From definitions. O



3. Formulation of the Problem.

Consider the controlled system (S) defined in a fixed time interval
[0,T], 0 < T < », The function t H-E(t;o,xo,v) defined in [0,T] will be

denoted by x. We associate with X, and v the cost function

T
J(v,xg) = (x(T),Lx(T)) + [ [(x(£),QU0x(8)) + (v(),N(E)V(t)) ]dt
(3.1) &

+2(x(1),2) + 2 | [(x(t),q(t)) + (v(t),n(t)),ldt,

O3

where 2 ¢ X, q ¢ LZ(O,T;X), n e LZ(O,T;U), Le L(X), and Q:[0,T] = £(X)

and N:[0,T] - £(U) are strongly measurable and bounded. Moreover
(3.2) L* =L 20, Q(t)* = Q(t) =2 0, N(t)* = N(t)

and there exists v > 0 such that

(3.3) Ny 2 vlul?, v winu.

Our objective is to show that for each x, there exists a unique control func-

0
tion u which minimizeé the cost function J(v,xo) over all control functions
v in a closed convex subset Uad of LZ(O,T;U). When Uad is all of LZ(O,T;U)
the minimizing control function u will be completely characterized in terms
of the "adjoint solution'. We shall also show that the control u(t) can be
synthesized using a feedback law and that the minimum of the cost function

can be expressed in terms of the initial datum x We shall also study the

0

feedback operator p and the reference function r.




4. Examples.

We shall give in this section a few examples for which the general theory
developped later may be applied. Our main example, the hereditary systems will
however be developped in a separate chapter. Here we shall present other pos-
sibilities with less details, since they are more classical and easily availa-
ble in the litterature.

4.1. Second order parabolic systems.

Let 0 be an open subset of ™. Let P(0) be the set of infinitely differ-
entiable functions with compact support in 0 with the Schwartz' topology. Let
Hl(O) be the Sobolev space of order 1 on 0, and Hé(O) the closure of P(0) in
Hl(O). We denote by z the space variable (z € 0).

We take as state space X = LZ(O). We next consider the family of unbounded

operators F(t) on X defined by

(4.1) F(t) = a(t)a,

where A is the Laplacian and

(4.2) M=>a(t) 2a>0, Y t=0.

The domain of F(t) in X is defined by
(4.3) D(E(t)) = {x(z) € x_l(l)(O), ax € L2(0)}

which does not depend on t.

Let us consider the solution x(t;z) of the heat equation

,

%%~- a(t)ax = 0 t>s

x(s,z) = xo(Z).



where Xy € LZ(O). We define the operator A(t,x) € £L(X) by

(4.5) x(t) = A(t,s)xo,

then A(t,s) satisfies properties a), b), c). We can consider the following

control problem: choose v € LZ(Q) where Q = 0 x (0,T) to minimize

T
J(v) = f I (x(t,z)—xd(t;z))zdtdz
0’0

(4.6)

T,
+ I I Vi (t,z)dtdz,
0’0

where x(t;z) to solution of

4

%% - a(t)ax = v
(4.7) ] x|30 = 0
x(0) = x,..
L x(0) X0

Remark 4.1: Problems of the form (4.6), (4.7) have been studied in full detail
in the book of J.L. LIONS [ 1]. The reader will find in this reference numer-
ous other examples.

4.2. First order hyperbolic systems.

Let 0 be an open domain of Hﬂ?with smooth boundary 30. Let ai(z), 2 5,
i =1,...,n, be functions which are continuously differentiable with bounded
derivatives. Let

n
(4.8) T ={z|z€r =230, ) a, (x)v, <0},
} i=1 *

where v = {vi} denotes the outward norwal in z € 30. Let again X = Lz(O). e

consider in X the linear unbounded operator

R X
Fe 1o

a



<10

where

(4.9) D(F) = (x€ 120) | Ja, - 1%0), x| _ = o
i+ P23 r

We know (cf. N. BARDOS [1], J.L. LIONS [ 1]) that the problem

(4.10) i 1

has one and only one solution in D(F), provided that

da.

;1
9z.

n
(4.11) A>w=supl }
i=1 i

The operator F is clearly a closed operator with dense domain in X. Let us
check that it generates a semigroup. This follows from applying the Hille-

Yosida-Phillips Criterion. Indeed, from (4.10) it follows

(A-w)x + wx + 'E a, =—= f.
i=1 i

Multiply by x and integrating over 0 yields

2 2 1 sz "
(4.12) (A-w) x"dz + w| x"dz +.2 &y g 5o F fxdz.
0 " 0 i 0

1 A

i’/0 i

By Green's formula we have

5x2 2 g P8y
a. —aT = aivix - X 'a—z— .
oL %y Jp 0 i

By virtue of (4.11) and using the boundary condition (4.10) we get

(A-w) J xzd: < J fxdz
0 0



=]

from which it follows that

AI-F) Y s -yt for A w

which is the Hille Yosida Phillips criterion.
We can therefore give a meaning to the following control problem. The

system is described by

[ 3 3
5%.: Ja, 2X

(4.13) { x| =0

r
2

l x(0,2) = xO(z) €L

and the payoff is given by (4.6).

4.3. Boundary control.

In many distributed parameter systems, the control is exerted on the
boundary. We shall describe here an approach due to A.V. BALAKRISHNAN [2].
We shall proceed formally.

We want to consider the system

[ 3y
at -4
(4.14) oyl
( y(0) =0,

where v(*) € LZ(O,T;Lz(r)). We note by Gv = & the solution of

AE =0 in 0
(4.15)

E:!l. = v,

when v is a continuous function on the boundary. We assume that



D

(4.16) |Gv|

Defining

X _ _ 3§ 4 G2
Tha 5t + Ax = -Gv + AXx
x|r =0

x(0) = -Gv(0).

Let now F be the Laplace operator with zero boundary condition. It generates
a semigroup A(t). Hence we can express x(t) as follows
T

x(t) = -A(t)Gv(0) - j A(t-s)Gv(s)ds
0

x(t) = -A(t)Gv(0) - Gv(t) + A(t)Gv(D)

t
- J FA(t-s)Gv(s)ds,
0

i.e.

t
(4.17) , y(t) = -f FA(t-s)Gv(s)ds.
0

In A.V. BALAKRISHNAN [2], it is shown that (4.17) is well defined for a.e. t
and that the mapping
i 2 2 2 2 onnias
v(*) » y(*) belongs to £ (L°(0,T;L°(T)); L°(0,T;L7(0))).

To some extent x(t) appears as a state variable and y(t) as an output. Although
our theory does not apply directly to these systems, similar methods can be

developped (see A.V. BALAKRISHNAN [21], [3]).
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5. Necessary and sufficient conditions for optimality.

We now put our original control problem in an abstract form which has a
convenient structure for analysis. This is J.L. LIONS [1]'s direct approach
to the solution of the optimal control problem.

Lemma 5.1. (i) The cost function is of the form
(5.1) J(v,xo) = w(v,v) - 2A(v) + terms independent of v,
where

T
(5.2)  m(v,v) = (M(T)V,LM(T)V) + J [M(t)V,QEIM(E)V) + (v(),N(t)V (1)) ]dt
0

T
[ -A(v) = (2+Lm(T) ,M(TDv) + f (Q(t)m(t) + q(t),M(t)v)dt
0

(5.:3) T
+ f (n(t),v(£))dt
0
and
t
(5.4) m(t) = A(t,O)xO + J A(t,r)f(r)dr
; 0
t
(5.5) M(t)v = J A(t,r)G(r)v(r)dr,
0

where (v,v) & w(v,v) is a real continuous bilinear form defined on LZ(O,T;U)

with the follcwing properties

a) m(v,v) = n(v,v), ¥ Vv,V in LZ(O,T;U),



5 .

b) 3 ¢ > 0 such that n(v,v) = c|v 2y vin L2(0,T;U)

12,
and v~ A(v) is a real continuous linear form defined on LZ(O,T;U).
Proof. Directly from definitions, Proposition 2.5 and Lemma 2.2. O

Now that the problem has been reduced to equation (5.1), it is readily
seen that minimizing J(v,xo) is equivalent to minimizing the form w(v,v) -
2A(v). This problem has been considered by J.L. LIONS [1, Thms 1.1 and 1.2]

and his results are quoted in the following theorem.

Theorem 5.2. (J.L. LIONS). Let uad be a closed convex subset of a real Hilbert

space U, let m be a real continuous bilinear form defined on U such that
(1) m(u,v) = n(v,u), Y u,v in U, (symmetry),

(ii) 3 ¢ > 0 such that w(v,v) = c[v]ﬁ, Y v in U, (coerciveness),.
Let A be a real continuous linear form defined on U, and let

(5.6) C(v) = m(v,v) - 2x(v).

Then there exists a unique u in U;; such that

(5.7) C(u) = Inf{c(v)| v ¢ U3

and u is uniquely characterized by the inequality

(5.8) n(u,v-u) = A(v-u), V¥ v in uad’
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Proof. (i) (uniqueness). Let 1y and u, be two points of uad for which the

minimum is achieved. We can write

¢ + c(5D) = ictup) + 10y + By,

u_+u u.-u
¢ = iy + ey - (53

IA

2
iC(up) + 3C(wy) - 7 lup-u,l”.
By convexity (u;+u,)/2 belongs to U 4 and |u1-u2| = 0.
(ii) (existence). The functional C(v) is convex and continuous and for

all v in U
C(v) = m(v,v) - 2A(v) 2 c[vlz - 2|al]v].

As |v[ goes to infinity C(v) goes to +». So there exists M > 0 for which
the set

UN

= {v € uad : C(v) < M}

is not empty. This set is closed and convex since C is continuous and
convex. It is also bounded in view of the inequality of part (i) which is

true for all u, and u, in U, 1f we let u = v and u, = 0
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1 1 v 1
< E-C(v) + E'C(O) - C(EJ < E'C(V) <M
for all v in UM. In particular UM is weakly compact and there exists u in
UM for which the minimum is achieved.

(iii) (characterization of u). By definition for all v and u in Uad

C(v) - C(u)

m(v,v) - 2x(v) - [m(u,u) - 2A(u)]

m(v-u,v-u) + 2[n(u,v-u) - A(v-u)]

v

2[m(u,v-u) - A(v-u)].

If the element u in Uad is characterized by (5.8) the L.H.S. of the above
inequality is positive for all v in Uad and the minimum of C is achieved for
the element u in uad‘ Conversely assume that the minimum of the cost func-

tion C is achieved for u in uad’ Then for all v in uad and 6 in (0,1)
C(u) £ C((1-8)u + 6V)
and
lim %3- [JGu + 8(v-u)) - Jw)] = 0.
60

If the limit exists



Jt(u)s(v-u) 20 V ve uad'

But the limit exists and

J'(u)+(v-u) = 2[n(u,v-u) - A(v-u)].

This yields inequality (5.8). O

inequality (5.8) is equivalent to Euler's equation

Remark. When U = U
e ad

m(u,w) = A(w), V w in U.

The above theorem asserts the existence and uniqueness of the optimal

control function u which is characterized by the following inequality

T
(
M(T)u, IM(T) (v-u)) + f [M(E)u,QEIM(E) (v-u)) + (u(t),N(t) (v{t)-u(t)), ldt
0

T
(5.9) § + (2+Lm(T) ,M(T) (v-u))+ J FQE)m(t)+q (L) ,M(t) (v-u))+(n(t),v(t)-u(t)) Jdt
0

>0, V vin Uad'

Let y(t) = M(t)(v-u) and x(t) = M(t)u + m(t). The L.H.S. of (5.9) can be

rewritten in the form
T
(Lx(T),y(T)) + [ (Q(t)x(t) + q(t), y(t))dt
0

(5.10) T
+ J (N(tdu(t) + n(t), v(t) - u(t))Udt >0, Y vin Uad'
0
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We now introduce the adjoint system
1
(5+11) p(t) = A(T,t)*Lx(T) + J A(r,t)*[Q(x)x(r) + q(x)]dr.
t
The term
T
J Q(t)x(t) + q(t), y(t))dt
0

in (5.10) can be expanded as follows

OoONY——r

t
Q(t)x(t) + q(t), J A(t,r)G(r) [v(r)-n(r)]dr)dt
0

ONYr— - OV—x]

7

T
( J ACt,r)*[Q(t)x(t) + q(t)]dt, G(x)[v(r) - U(r)]]dr
T

(p(r) - A(T,r)*Lx(T), G(r)[v(x) - u(r)])dr
T T
» [ (G(x)*p(x), V(r)-UCr))Udr - (Lx(T), r A(T,r)G(r) [v(r)-u(r)]dr)
0 0
T
= J G(@m*p(r), vir)-ulr)),dr - (Lx(T),y(T)).
0
We can now substitute this last result in (5.10) to obtain
T
(5.12) f (N(t)u(t) + n(t) + G(t)*p(t), v(t) - u(t))Udt 20, Y vin Uad‘
0

We have proved the following result.

Theorem 5.3, Let Ua be a closed convex subset of LZ(O,T;U).

d



=10x

(i) For each Xy there exists a unique control function u in Uad which
minimizes J(v,xo) in U, . Moreover it is completely characterized by (5.12),
where p is as defined in (5.11).

(1) If Uy = L°(0,T;U), then

(5.13) ut) = -N(&) L6 *p(t) + n(t)], a.e. in [0,T],

where (x,p) is the unique solution in C(0,T;U) x C(O,T;Xw) of the coupled

system

t
x(t) = A(t,O)x0 + J A(t,r) [f(x) - G(r)N(r)-ln(r)]dr
(5.14) 0

t
- [ A(t,r)G(r)N(r)_lG(r)*p(r)dr
0
T
(5.15) p(t) = A(T,t)*[Lx(T) + 2] + ( Ar,t)*[Q(x)x(r) + q(x)]dr.
t

Proof. (i) is clear. (ii) Here (5.12) becomes an equality which is true for

all v in LZ(O,T;U). As a result

(5.16) u(t) = -N(t) " [G(t)*p(t) + n(t)], a.e. in [0,T].

For all v in LZ(O,T;U) the system

t
o(t) = A(t,0)x, + J ACt,T) [B(x)v(r) + £(r)]dr
0
(5.17) T
p(t) = A(T,t)*Le(T) + { A(r,t)*[Q(r) ¢ (x) + q(r)]dr
t
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has a unique solution (¢,y) in C(0,T;X) x C(O,T;Xw). In particular when v is
u, the optimal control function, system (5.17) still has a unique solution

(x,p) in C(0,T;X) x C(O,T;Xw). But the optimal control function u is unique-
ly characterized by (5.16). The elimination of u in the first equation (5.17)

yields (5.14). O

Remark. System (5.14)-(5.15) will be referred to as the optimality system in

[0,T].



6. 'Decoupling' of the optimality system.

In this section we assume that Uad = LZ(O,T;U) and proceed via
J.L. LIONS' direct method. We first consider the problem of section 5 in
the time interval [s,T] for some s, 0 < s < T, and study the dependence of
the optimality system in [s,T] with respect to the initial datum h at time s.
This dependence will be characterized by an operator P(s) in L(X) and an
element r(s) of X which will be shown to characterize the feedback law. To

simplify our equation we introduce the following notation:
(6.1) £1(t) = £(t) - G(EN(t) In(t) and R(t) = G(t)N(t) lG(t)*.
Consider the system (S) in [s,T]
t
(6.2) E(t) = A(t,s)h + f ACt,r) [G(x)v(r) + f(r)]dr
s
with the cost function

. i ;
Js(v,xo) = (E(T),LE(T)) + J [(E(t),Q(t)e(L)) + (V(t),N(t)V(t))U]dt
(6.3) 5

T
+ 2(8(T),2) + 2 [ [(E(t),a(t)) + (v(t),n(t))]dt.
s

As was previously done, we introduce the adjoint system in [s,T]

T
[

(6.4) m(t) = A(T,t)*LE(T) + J A(r,t)*[Q(x)E(r) + q(r)]dr
t

and essentially obtain Theorem 5.2 (ii) in the time interval [s,T]:



Lemma 6.1. For each X0 there exists a unique control function u in LZ(S,T;U)

which minimizes Js(v,xo) over all v in Lz(s,T;U). Moreover it is completely

characterized by
€6.5) u(t) = -N(©) " Y[G(e)*n(t) + n(t)], a.e. in [s,T],

where (£,m) is the unique solution in C(s,T;X) X C(s,T;Xw) of the optimality

system
t t
(6.6) E(t) = A(t,s)h + I A(t,r) f'(r)dr - J A(t,r)R(xr)m(x)dr
s s
T
(6.7) m(t) = A(T,t)*Fg(T) + f A(r,t)*[Q(x)E(r) + q(x)]dr.
t

Corollary 6.2. The map

(6.8) he m(s) : X =X

is affine. Hence there exists a linear map P(s) : X = X and r(s) in X such

that
(6.9) m(s) = P(s)h + r(s).O

Theorem 6.3. Let (x,p) be the solution of the coupled systems (5.14)-(5.15).
Then

(6.10) p(t) = P(t)x(t) + r(t), 0 <t =T,

where P(t) and r(t) are defined by the following rules:



(i) we solve the system

t
g(t) = A(t,s)h - J A(t,v)R(r)y(r)dr
s
(6.11) T
y(t) = A(T,t)*LB(T) + f A(r,t)*Q(r)B(r)dr,
t
then
(6.12) P(s)h = v(s);

(ii) we solve the system

t t
u(t) = J A(t,r)£' (x)dr - [ A(t,r)R(r)v(r)dr
s s
(6.13) T
YO = MLO M + 4+ [ D EHE + @ ldr,
t
then
(6.14) r(s) = v(s).

Proof. P(s) and r(s) are clearly obtained from the rules (i) and (ii) of the
theorem: it suffices to decompose the map h = n(s) of the Corollary 6.2

into its linear part and its constant part. We only need to establish
identity (6.10). Consider system (6.6)~(6.7) with initial datum x(s) at time

s, where x is the solution of system (5.14)-(5.15) with initial datum x. at time

0
0. We denote its solution by (&,7).



We also define

E (resp. m) = restriction of x (resp. p) to [s,T].

Clearly
t
E(t) = A(t,s) A(s,0)x, + f ACt,T) [£'(r) - R(x)7(x)]dr
s
s
(6.15) + J A(t,s) A(s,r) [£f'(x) - R(x)n(r)]dr
0
t
= A(t,s) x(s) + [ A(t,) [£'(xr) - R(x)7(r)]dr
3
T
(6.16) m(t) = A(T,t)*LE(T) + J A(r,t)*[Q(r)E(x) + q(r)]dr.
t

But (£,m) are solutions of system (6.6)-(6.7) in the interval [s,T]. By

uniqueness (&,m) = (£,7) and

p(s) = E(s) = E(s) = P(s)x(s) + r(s).

This proves the theorem.O

Remark. The operator P(s) will be referred to as the feedback operator and

the element r(s) as the reference function.
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7. Study of the properties of the feedback operator P(s).

The feedback operator P(s) is characterized by the optimality system
(6.11) of Theorem 6.3 which corresponds to the following optimal control problemn

in [s,T]: the controlled system is

t
(7.1) g(t) = A(t,s)h + J A(t,r)G(r)v(Tr)dr
3
and the cost function is
T
(7.2) Js(v,h) = (Lg(T),E(T)) + I [@Q(t)E(t),E(t)) + (N(t)V(t),V(t))U]dt-
s

It is readily seen that the above problem corresponds to the case where £
2, q and n are all equal to zero where the feedback law will be linear.
Theorem 7.1. (i) Let (B8,y) (resp. B,y) be the solution of (6.11) with initial

datum h (resp. h) at time s, 0 < s < T. Then

T
(7.3) (P(s)h,h) = (LB(T),B(T)) + I [(Q(t)8(t),B()) + (v(t),R(t)v(t))]dt.
s

(ii) Let u be the optimal control function in [s,T] for the problem

(7.1)-(7.2). Then

(7.4) Js(u,h) = (P(s)h,h).
(iii) For all s in [0,T)
(7.5) P(s)* = P(s) 2 0
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and there exists ¢ > 0 (independent of s and h) such that

(7.6) |P(s)h| < c|n].

Proof. (i) We already know (cf. Theorem 6.3) that P(s)h = w(s). We now

compute (m(s),h). It is equal to

(A(T,s)*LB(T) + | A(t,s)*Q(t)B(t)dt,h)

B —

T
(LB(T) ,A(T,s)h) + I (Q(t)B(t) ,A(t,s)h)dt

S

T
(LB(T),B(T) + [ A(T,T)R(x)Y(r)dr)
S

A(t,r)R(x)Y{r)dr)dt

5
0n N——xrt

T
J (Q(t)B(t),B(t) +
S

T
(LB(T),B(T)) + j (Q(t)B(t),B(t))dt
S

+-

T T
J (A(T,r)*LB(T) + J ACt,T)*Q(t)B(t)dt,R(r)Y(r))dr
s T

T =
(LB(T),B(T)) + [ [(Qt)B(L),B()) + (v(t),R(t)Y(t))]dt.
s

This establishes (7.3).
(ii) Set h = h in (7.3) to obtain (7.4).
(1ii) The symmetry and positivity of P(s) follow from the symmetry and

positivity of L, Q(t) and R(t). Moreover

(P(s)h,h) = Js(u,h) < JS(O,h)



and

Js(O,h)

T
(LA(T,s)h, A(T,s)h) + J (Q(t)A(t,s)h, A(t,s)h)dt
S

IA

o
(L] + J lQ(t)|dt] max  |Act,s)|%|nl?,
5 P(C,T)

where (cf. Proposition 2.5(i)) |A(t,s)| is bounded by some constant C(T). Now
(7.6) follows by symmetry and positivity of P(s). O

Corollary 7.2. P(s) is in L{X) for all s in [0,T). O

We have established the existence and uniqueness of the operator P(s),
studied its decoupling properties and shown that it is a positive self adjoint
element of L(X). We now dencte by (BS,YS) the solution of the optimality
system (6.11) and study the properties of the map (t,s) = Bs(t). This will be
used to establish some kind of continuity of P(s) as a function of s.

Definition 7.3. ET(T) = h, YT(T) = Lh, P(T) = L.O

Lemma 7.4. (i) Given s in [0,T), the equation
t

(7.7) Bs(t) = A(t,s)h - J A(t,r)R(r)P(r)Bs(r)dr, s $t<7T,
s

has a unique solution in C(s,T;X).- Moreover there exists a constant c(P) =1

(independent of s and h) such that

(7.8) 'Bs"C(s,T;x) < c(P) |n|.

(ii) Given t in (0,T], the map s P Bs(t):[O,t] - X is continuous, and

for all € > 0 there exists &(h,e) (independent of t) such that
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v s;,s, e [0,T] and |52—sl| < §(h,e)

1,

= |g_ (t) - B_ (t)] <e.
=y 1
(iii) The map (t,s) = Bs(t) : P(0,T) » X is continuous and there

exists Ap(t,s) in £ (X) such that
(7.9) Bs(t) = Ap(t,s)h,

moreover Ap(t,r) = Ap(t,s)Ap(s,r), T2tz2sz2=27r20, Ap(s,s) = I (identity
in L(X)), T2 s 2 0, and the map AP : P(0,T) = L(X) is strongly continuous.
Proof. (i) We know that the optimality system (6.11) has a unique solution
(BS,YS) in C(s,T;X) x C(s,T;Xw). But in that situation we know by Theorem

6.3 that
(7.10) Ys(t) = P(t)Bs(t).
The substitution of (7.10) in the first equation (6.11) yields (7.7) and the

existence of a unique solution in C(0,T;X). Identity (7.7) yields the

following inequality

IA

|aCt,s) | |n]| +

ENGY [Ace, ) [IR() | e [B (x) |dr

0 ~——rct

IA

t
c(T) |n| + f c(D|R(x)] ¢ IBS(r)[dr.
s

Let m(x) = c(T)|R(x)|c. By definition m is in L](O,T;Hﬂ. We define for any



=90

o, 0 < a <1, the positive monotonically increasing continuous function 8,

in [0,T]:
t
g, (t) = exp (6 f m(r)dr].
0
It is easily verified that
o
(7.11) J m(r)g, (r)dr < ag, (t),
s
and that
| |8 ()|
18, (t)| < c(M[h| + ag (t) max

[s,t] ga(r) '

We can conclude from this last inequality that

e ()] 1
R T O R
and
2, (T)
(7+12) "Bs“C(s,T;X) < —szr-c(T)]hl = c(P) |h|

since ga(t) > 1, £, is monotonically increasing and neither g nor a are
functions of s or h.

(ii) Assume that T >t >s,6 2s, 20. Forallt,t2T125s,2S5

2 1 2
equation (7.7) yields the fcllowing inequality

1’



<20=

lssz(r) s esl(r)l < |A(t,5,)h - A(T,5))h|

T
- IJ AT, T)R()P (1) B (r)dr - A(T,r)R(r)P(r)Ss(r)drl.
2 1
S

2 1

0N NY~——nA

We can estimate the last term in the R.H.S. of the above inequality:

|A(t,0) | [R@) | [P(X) (B (r) - B (r))[dr
2 1

M | IR P8 () [dr

[

IA

+
N SN—H N — WV — A
NN

[\S)

S
2
c(M[R()] ¢ Iesér) - ssgr)ldr * J c(T) [R(x) |c*c(P) |n]dr.
S
1

Now by using techniques analogous to the ones in part (i) we obtain

|B.(t) - B_(t)| < max [B_(1) - B_(7)]
52 51 [s,t] S .|

s
g, (T 2
< 5 | max |A(t,s,)h - A(T,s)h| + J c(T)|R(r)Ic-c(P)-|h|dr].
[5,5t] .
1
By uniform continuity of A in P(0,T) for all € > 0 there exists Gl(h,e) such

that |52—sl| < 8, (h,e) implies
max {|A(r,sz)h - A(t,sl)hl |t e [s,,t] } < gf2,
and there exists éz(h,s) > 0 such that

S

2
J |R(r) |dr < e/[2c(t) *c-c(P)-|h]].
S

1
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The case S 2 s, is similar. To complete the proof we need to show that
when t = T the map s = BS(T) : [0,T] = X is continuous at s = T. Since (7.8)
gives a bound on BS(T) we know that the limit as s goes to T exists. Moreover

for all s in [0,T)

T
|BS(T) - A(T,s)h]| = [ |A(T,r)R(r)Bs(r)|dr
S
s
< ¢(T)+c(P)*|h]| j [R(T) |dr
S
and
lim B_(T) = lim A(T,s)h = h = B (T)

s=T s>T

in agreement with Definition 7.3.
(iii) The proof is in two parts. We first consider the case where

t = s. It was established in part (ii) that

leslctl) - B(s)] = Ile(tl) - h| = Isslctl) . Btl(tl)l <

for all (t;,s;) such that Itl-s < §(h,e). Finally for all (t;,s;) in

)|
P@0,T)

[t)-s] + Is;-s| < 8(h,e) = [t;-s,] < 8(h,e) = lssl(tl) - B ()] <e.

This shows the continuity at (s,s). When t > s, we notice that the set

(7.13) N(t,s) = {(t',s') € P(0,T) | t' = s}



is a neighborhood of (t,s). Sc pick (tl,sl) in N(t,s) and consider the

following inequality
lssl(tl) - 8,0 < (B () - B (ep] ¢ 8ty - B (0],
By part (ii) there exists &(h,e) > 0 such that
|sl-s| < §(h,e) = IBSl(tl) = Bit)] s
and by part (i) there exists &§(h,e,t,s) > 0 such that
|ty-t] < 8(h,e,t,s) = |8, (ty) - B ()] < e.

This shows the continuity at (t,s) in P(0,T), t > s. The map h » Bs(t) is
clearly linear. It is continuous in view of inequality (7.8) and this defines
an element AP(t,s) in L(X). 1Its properties follow directly from the
definition.O
We now turn to the second equation (6.11)

“ T

(7.14) ys(t) = A(T,t)*LBS(T) + J A(r,t)*Q(r)Bs(r)dr.
t

Lemma 7.5. (i) Given s in [0,T), squation (7.14) has a unique solution in
C(s,T;Xw). Moreover there exists a constant Sy > 0 (independent of s, t and

h) such that

|
(7.15) @ = e |nl.



(ii) Given t in (0,T], the map s » ys(t) : [0,t] = X is continuous,
and for all € > 0 there exists 6Y(h,e) (independent of t) such that
0 <s

s, <t and |52—sll < GY(h,e) = Iys (t) -7, 8) | < &,

: 2 1

(iii) The map (t,s) = Ys(t) : P(0,T) = X is weakly continuous.

Proof. (i) For all k in X the function
T
tr (A(T,t)k, LB (T)) + J (A(x,t)k, Q(r) 8, (r))dr
t

defined in [s,T] is continuous. Moreover

IA

T
lvg @) = e Lle®)[h] + c(T)-c(P) |h| f Q(x) dr = < [h].
¢

(ii) Pick 0

A
7]
IA

1 55, <t <T. Then by Lemma 7.4(ii)

'Ysz(t) - Ysl(t)l < (ML Ieszct) - le(t)l

+ c(T)-

|Q(r) |dr+ max |es (x) - B (x) |
[£,T] 2 1

OoONY——-]

7
(

< c(T)-[|L] + J |Q(x) |dr] -e
0

for all s, and s, such that |52'5 < 8§(h,e). When t = T we need to check

3 wnd &y 1|
the continuity of YS(T) as s goes to T. It is clear that the limit exists
since the map s H-YS(T) : [0,T) = X is bounded by the results of part (i)
and continuous by the results of part (ii). When t = T equation (7.14)

reduces to
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¥4 (T) = L8 (T)
and

lim YS(T) = L. lim BS(T) = Lh = YT(T).
s*T s~T
The last equality is in agreement with Definition 7.3.
(iii) The proof is similar to the proof of Lemma 7.4(iii). O
Theorem 7.6. (i) The map P : [0,T] — Lw(X) is continuous and the map
t~ |P(t)| : [0,T] » IRis bounded and measurable.

(ii) P is the unique solution in C(O,T;LW(X)) of the following system

(7.16)
(P(s)h,h) = (LA, (T,s)h, AP(T,s)ﬁ)
T .
+ J [(Q(t)A,(t,s)h,A (t,s)h) + (R(t)P(t)Ap(t,S)h,P(t)Ap(t,s)ﬁ)]dt
4 .
V s in [0,T], h and h in X, .

(7.17) A (t,s)k

t
A(t,s)k - I A(t;r)R(r)P(r)AP(r,s)k dr,
s

<C
ot

in. Is,T), 's in [0,T], k din X.

Proof. (i) In Lemma 7.4(iii) we have established that

Bs(t) = Ap(t,s)h;
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by decoupling of the optimality system (6.11)
Ys(t) = P(t)Bs(t) = P(t)AP(t,s)h.

The substitution of the above two equalities in identity (7.3) yields identity
(7.16). By inspection the map s = (P(s)h,h) is continuous and this establishes
the weak continuity of the map P. The map t = |P(t)| : [0,T] - Ris bounded
by Theorem 7,1(iii) and measurable by Lemma 2.2.

(ii) It suffices to show that the solution P of system (7.16)-(7.17) is
unique. Let E be another solution of system (7.16)-(7.17) in C(O,T;LW(X)).
Denote by Es the solution in C(s,T:X) of the following equation:

(7.18) Es(t) = A(t,s)h - A(t,r)R(r)F(r)Es(r)dr, s<t<T.

0 ‘———ct

There exists K(t,s) in L(X) such that

(7.19) E;(t) = A(t,s)h,
where
t
(7.20) X(t,s)h = A(t,s)h - J A(t,r)R(r)g(r)X(r,s)h dr.
S
We define
T
(7.21) 2(t) = P(t)B () - A(T,t)*LES(T) s J A(r,t)*Q(r)Eg(r)dr-
t

We want to show that z(t) = 0 in [s,T]. For arbitrary k in X we consider the



expression (z(t),k) it is equal to
T
(P(£)B,(£) k) - (A(T,t)*LE_(T) + J A(r,£)*Q(x) B (x)dr k).
t

By definition of a solution, equation (7.16) is verified with P and A in place

of P and Ap. By using (7.16) to expand the term in P the above expression

becomes
T

(LA(T, £)8_(8), A(T,t)K) + [ QOIA(r, )8 (t), A(r,t)k)dr
S

T
+ f (PN, t)B (), RIIP(X)A(r,t)k)dr
S

T
- (A(T, )3, (1), AT, )K) - f QE@A(,£)B(t), Alx,0)k)dr.
! _

By using identity (7.20) the above expression reduces to

(P()A(p,t)B(8), R(PIP(pIA(0,t)K)dp

SN -

T
(LB, (T, f A(T,0)R(p)P(p)A(p,t)k dp)
)

r
QA B (1), j A(x,pIR(PIP(0) A (o, t)K)do dr
t

R(PIP(EIA(p, )k, P(eIA(p,€)B (t) - A(T,p)*LE(T)

]t ——]

T
o [ ,\.(r,p)*Q(r)X(r,t)Es(t)dr)dp.
p

In view of (7.21) and the last expression, it is easy to see that we finally
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obtain
T

(7.22) (z(t) k) = f (R()P(0)A(p,t)k, z(p))dp, s <t <T.
t

This last equation has a unique solution in C(s,t;xw) which is identically

zero in [s,T]. Thus we have established that

~

T
(7.23) Y (1) = BB () = MT,0)*LE(T) + J A(r,£)*Q(x) B (r)dr.
t

The elimination of the term E(r)gs(r) in (61) yields
t

(7.24) B,(t) = A(t,s)h - J A(t,T)R(x)Y (x) dr.
S

But system (7.23)-(7.24) is the optimality systiem (6.11). By rule (i) of
Theorem 6.3

P(s)h = ?S(s) = P(s)h = P(s) = P(s).O



]

8. Study of the properties of the reference function r(s).

In order to study r(s) we again use the results of Theorem 6.3, Lemma 7.4
and the characterization of P(s) given in Theorem 7.6.
Lemma 8.1. Let (us,ys) be the solution in C(s,T;X) x C(s,T;Xw) of the optima-
lity system (6.13) of Theorem 6.3. (i) The map r belongs to C(O,T;Xw). {ii)

For each s in [0,T), Mg is the unique solution in C(0,T;X) of the equation

t .
(8.1) wu (1) = J A (t,0) {£1 () -R() [P(PIu (P) *+ T(0)]}dp, s < t < T.
S

Proof. (i) Let (uo,vo) be the solution of the optimality system (6.13) with

s = 0. We know by Theorem 6.3 that
r(t) = vo(t) - P(t)po(t), 0<t<=<T.

In view of the properties of v and P, r is weakly continuous (hence

0’ Yo

strongly measurable and bounded) and the right hand side of (8.1) makes sense.

(ii) We know by Theorem 6.3 that the following system has a unique

solution (us,vs) in C(s,T;X) X C(s,T;Xw):

t
' Mg (1) { ACt, ™) [£' (x) - R(x)v  (x)]dr
S

T
(8.2) 1 Vg (t) = AT, t)*[Lu (T)+&] + J Az, t)*[Q(r)u (r) + q(x)]dr
t

v (t) = P(t)u (t) + r(t).

If we substitute the third equation (8.2) into the first equation (8.2) we



obtain equation (8.1). This proves the existence and uniqueness of the
solution.O
Theorem 8.2. The reference function r is the unique solution in C(O,T;Xw) of

the equation

g
(8.3) <r(s) = A(T,s)*2 + I Alp,s)*{P(p) [f' (p) - R(p)r(p)] + q(p)}dp.
S

Proof. By Theorem 6.3
T
vs(t) = A(T,t)*[Lus(T)+2] + J A(r,t)*[Q(r)us(r) + q(r)]dr.
t

Again by Theorem 6.3 and Lemma 8.1

T
r(s) vs(s) = A(T,s)*2 + j A(r,s)*q(r)dr
s

+

T
AU&VLJAﬁTmeTM-MMrmnw
S

+

i z
J A(z,s)*{Q(z) J Ao (C,p) [£1(P) - R(p)x{p)]dpld
S S

and r(s) is equal to
T
(8.4) A(T,s)*% + [ A(r,s)*q(r)dr
s
+

A(p,s)*{A(T,p)*LAL(T,0) [£' (p) - R(p)T(p)]

+

A(g,e)*Q(e) A, (g,0) £ () - R(p)r(p)]dzlde.

DY 0
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But for all k in X we know that (cf. Theorem 6.3 and Lemma 7.4)

Bp (t) ‘A‘P(t:p)k

T
(8.5) Y, (t) = AT, €)*L8_(T) + J A(z,p)*Q(2) 8 (2)dz
t

= Yp(p) = P(p)k.

It is easy to see that the expression between curly brackets in (8.4) is

precisely yp(p) of (8.5) with
k = £'(p) - R(p)x(p)

and as a result equation (8.4) reduces to equation (8.3). In Lemma 8.1 we

have established that r is weakly continuous. The uniquenesé of the solution

can easily be verified.O
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9. Differential equations for P and r.

In sections 7 and 8 we have derived integral equations for P and r. In
this section we show that when A is generated by some linear differential equa-
tion, differential equations can be obtained for P and r in a rather natural
and direct way. |

Let V anc X be two Hilbert spaces on R. Let V' and X' denote the topo-
logical duals of V and X, respectively. We identify the elements of X with the
elements of its dual X'. We denote by (+,+) the inner product in X and by
(+,+ ) the natural pairing between V and V'. We assume that V is a dense
linear subspace of H and that the canonical injection i:V > H is continuous.

We denote by i* the adjoint map of i and obtain the continuous dense injections

(9.1) vix=x'3> v

Let AP be the evolution cperator introduced in Lemma 7.4 of section 7.
We introduce for some k in X and some f in LZ(O,T;X) the map z : [0,T] » X

defined as follows
T

(9.2) z(t) = AP(T,t)*k + [ Ap(r,t)*f(r)dr.
&

Lemma 9.1. The map z is the unique weakly continuous solution of the integral

equation &
T
(9.3) z(t) = A(T,t)*k + J A(s,t)*[£(s)-P(s)R(s)z(s)]ds

t

and for all r in (0,T] and all h in X
T

(9.4) Ap(r,t)h = A(r,t)h - J Ap(r,s)R(s)P(s)A(s,t)hds.
t

Proof. (i) By definition of z and the properties of Ap (cf. Lemma 7.4) the

map z is clearly weakly continuous.
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(ii) (Existence). Let

T (T
A(r,t)*£(r)dr - J A(s,t) *P(s)R(s)z(s)ds.

A(t) = -z(t) + A(T,t)*k + J
t

t
By definition of z
(T

(9.5) A(t) = ACT,t)*k - Mp(T,8)*k + | [ACr,£) %Ay (x,€) *J£()dr

t

T
- j A(s,t)*P(s)R(s)z(s)ds.
t

But again by definition of AP (cf. equations (4.9)-(5.1))

T
(9.6) Ap(r,t)h = A(r,t)h - J A(r,s)R(s)P(s)Ap(s,t)ds.
t

When we substitute the transposed of equation (9.6) into equation (9.5), we
obtain

T
9.7) A(t) = J AP(s,t)*P(s)R(s)A(T,s)*kds

t

T T
+ j dr J dsA_(s,t)*P(s)R(s)A(x,s)*f(r)
; o t B

1§
- J A(s,t) *P(s)R(s)z(s)ds.
€

We now change the order of integration in the second term in the R.H.S. of

(9.7) and group the terms

(9.8) A(t)

T T
J Ap(s,t)*P(s)R(s)[A(T,s)*k - [ A(r,s) *f(r)dr-z(s)]ds
t S

T
+ [ [Ap(s,t)*-A(s,t)*]P(s)R(s)z(s)ds
t

T
J Ap(s,t)*P(s)R(s)A(s}ds
t
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T 34
(9.8) + J Ap(s,t)*P(s)R(s) J A(x,s)*P(r)R(r)z(xr)drds
T S
[T
+ j [Ap(s,t)*—A(s,t)*]P(s)r(s)z(s)ds
2

T
= J Ap(s,t)*P(s)R(s)A(s)ds
t

S

T
+ J [Ap(s,t)*-A(s,t)* + J Ap(r,t)*P(r)R(r)A(s;r)*dr]P(s)R(s)z(s)ds.
t t

But in view of equation (9.6) the second term of the last equation is zero and
T

(9.9) A(t) = J Ap(s,t)*P(s)R(s)A(s)ds, 0 <t=sT.
t

By definition A is weakly continuous and the term Ap(s,t)*P(s)R(s) is uniformly

bounded by some constant ¢ > 0. As a result

T
(9.10) [a(t) | < J cla(s)lds, 0 <t
t

IA

T,

0 everywhere in [0,T].

and it is now straightforward to show that A(t)
(iii) (Uniqueness). Pick two weakly continuous soiutions 2y and Zoe Let
A(t) = zz(t) - zl(t). From equation (9.3)

'I\ -
(9.11) A(t) .= - j A{r,t)*P(r)R(x)A(T)dr
t

and since A(r,t)*P(r)R(r) is uniformly bounded by some constant ¢ > 0, equation
(9.11) yields A(t) = 0 everywhere in [0,T]. This prove uniqueness. O

(iv) In order to obtain (9.4) we specialize (9.2)-(9.3) to the case where
f is 0. [
Remark. If we compare equation (9.4) and the transposed of equation (9.6), we

notice that the role of A and Ap is interchanged in the integral term. That is
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T 1
(9.12) J Ap(r,s)R(s)P(s)A(s,t)hds = J A(r,s)R(s)P(s)Ap(s,t)hds.
t t

It is readily seen that equation (9.4) will allow us to conclude that the
properties of the evolution operator AP will be the same as the properties of

the evolution operator A. We introduce the spaces

W(0,T;X,V")
(9.13)

W(0,T;V,V")

ty € L"0,T;X) |Dy € L?(0,T;V"))

ty € 12(0,T;V) |Dy € L?(0,T;V")},

where Dy denotes the distributional derivative of y. We shall consider the
case where the map t » A(T,t)*k belongs to W(0,T;X,V') and the case where that
map belongs to W(0,T;V,V').

9.1. Case W(0,T;X,V").

We first prove a lemma which describes the properties of the elements of
W(0,T;X,V').
Lemma 9.2. Corresponding to each element y of W(0,T;X,V'), ;here exists a

unique weakly continuous map y : [0,T] > X such that

t
i*y(t) - i*y(s) = J Dy(r)dr, 0 < s < t,
(9.14) | s
y(s) = y(s), a.e. in [0,t], and Dy = Dy.

Proof. Pick y in W(0,T;X,V'), the map s = i*y(s) belongs to Lw(O,T;V') and
has a distributional derivative Dy in L2(0,T;V'). As a result there exists a
unique y* in C(0,T;V') such that

i*y(s) = y*(s), a.e. in [0,T].
Can y be redefined in a unique way as a map y : [0,T] > X for which
i*y(s) = y*(s), everywhere in [0,T].

We first prove that for all s the map h » (h,y*(s) } defines a continuous
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linear functional on X. The proof is by contradiction. Assume that there

exists s in [0,T] such that
sup{(h,y*(s) > :h €V, ]ih|x =1} = o,
This means that for each M > 0

3 hM € V such that IihMlX = 1 and I(hM,y*(S) Y| =2 M.

But for all 0 < € < M/2, there exists § > 0 such that

Is'-s| < &= [Chy,y*(s") } = Ahy,y*(s) V| < e

As a result for all M > 0, there exist hM and § > 0 such that
Ist-s| < &= I(hM,y*(s') Y| = M/2.
Let S be the subset of [s-8,s+8] for which i*y(s') = y*(s'). The measure of S
is equal to 28 and for all s' in S
ly(s') Iy 2 I (ihy,y(s')) 1 = IChyy* (s") Y1z M2.
As a result y is unbounded on a set of non-zero measure, that is,.y does not
belong to Lw(O,T;X). This is in contradiction with our original hypothesis.

As a result y* defines in a unique way a map y : [0,T] -~ X such that

i*y(s) = y*(s) everywhere in [0,T]. But
i*y(s) 2 y*(s) = i*z(s), a.e. in [0,T],
and since i* is injective
y(s) = y(s), a.e. in [0,T].
By hypothesis y also belongs to Lm(O,T;X) and there exists c¢ > 0 such that

17(s) Iy < ¢, a.e. in [0,T].

We now prove that y is uniformly bounded by the constant c. Again we use
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a contradiction argument. Let I be the subset of [0,T] for which y(s) is not
bounded by ¢. Pick s in I
l;(s)lx = a > C.
Given 0 < ¢ < a-c, there exists h in V such that
IihlX = 1 and |(ih,z(s)}| = ]z(s)lx - € >c.

By continuity of y*, there exists an open neighborhood N(s) of s with non-zero

measure such that

[¢h,y*(s') > | = |(ih,z(s")) ] > c.
Finally for all s' in N'(s) = {s' € N(s) : s' & I}
ly(s') Iy 2 lihly ly(s") Iy 2 iGh,y(s)| > ¢
and the norm of y(s') in X is strictly greater than c on a set of non-zero
measure (N'(s) has the same measure as N(s)). This is in contradiction with
our initial hypothesis. Thus y is uniformly bounded.

We are now ready to establish the weak continuity of y. Given h in X,

there exists a sequence {hn} in V which converges to h in X and
| (h,y(s")) - (h,y(s))I| < |(ih ,y(s") - (ih_,y(s)) |
+ I (h-ih_,y(s")) | + |(h-ih_,y(s))|.

Pick n such that

Ih-ihnlx < g/4c

and § > 0 such that

IA

Is'-s] < &= [Kh ,i*y(s') ) - ¢h ,i*y(s) )| < e/2.

This is sufficient to establish the weak continuity of y. Finally

S (t
i*y(s) = y*({s) = i*k - J Dy(r)dr, everywhere in [0,T],
s



=47

and Dy = Dy.
Lemma 9.3. Let f belong to LZ(O,T;X) and let F: [0,T] -~ £(V,X) be strongly
measurable and bounded. Assume that for all k in X and all t in (0,T] the map

s » A(t,s)*k is the unique solution in
(9.15) W(O,t;X,V') = {y € L7(0,t;X) Dy € L2(0,t;V")}

of the operational differential equation

gz.(s) + F(s)*y(s) = 0 in (0,t)
(9.16) =

y(t) = k.
(i) For all h in V and t in (0,T]
t

(9.17) A(t,s)ih = ih + J A{(t,r)F(r)hdr
S

and the map s » A(t,s)ih is continuous with a distributional derivative in
[+ 2]
L (0,t;X).

(ii) For all k in X and t in (0,T] the map z

t
(9.18) z(s) = Ap(t,s)*k + j Ap(r,s)*f(r)dr
S

is the unique solution in W(0,t;X,V') of the operational differential equation

%g—(s) + [F(s)*-i*P(s)R(s)]z(s) + i*£(s) = 0 in (0,t)
(9.19)

z(t) = k.

Moreover for all h in V and t in (0,T]

t
(9.20) Ap(t,s)ih = ih + J Ay (t,7) [F(x)-R(x)P(x)i]h.
S

Proof. (i) By definition the map s » A(t,s)*k is weakly continuous and

necessarily coincides with the weeskly continuous map of Lemma 9.2. As a result
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t
i*A(t,s)*k = i*k + J F(»)*A(t,r) *kdr
s

and for all h in V we obtain (9.17) after transposition.
(ii) Let g belong to L?(0,t;X). By hypothesis on A, it is clear that
the map

t
(9.21) p(s) = A(t,s)*k + j A(r,s)*g(r)dr
s

is the unique solution in W(0,t;X,V') of the equation

L (s) + F(s)*p(s) + i*g(s) =0 in (0,1)
(9.22) .

p(t) = k.

By Lemma 9.1 the map z of equation (9.18) is given by

t
(9.23) z(s) = A(t,s)*k + J A(r,s)*[f(x)-P(r)R(x)z(r)]dr
s

and by hypothesis on A, z belongs to W(0,t;X,V'). Let
(9.24) g(r) = £(r) - P(r)R(x)z(x).

From the above considerations z is the unique solution in W(0,t;X,V') of the
equation

(9.25) gg-(s) + F(s)*z(s) + i*g(s) = O.

By definition the map s v+ Ap(t,s)*k is weakly continuous and necessarily

coincides with the weakly continuous map of Lemma 9.2. As a result

t
i*AP(t,s)*k = i*k + J [F(x)*-i*P(r)R(T) JA(t,T) *kdr
s

and for all h in V we obtain (9.20) after transposition. O

Proposition 9.4. Under the hypothesis of Lemma 9.3, (i) the operator P of

Theorem 7.6 is the solution in
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(9.26) We,T;X,v") = {K:[0,T] > L(X)|¥Y h € X, t » K(t)h belongs to
L”(0,T;X); and 3 DK : [0,T] -~ £(V,V'), ¥V h € V,
t » DK(t)h belongs to Lw(O,T;V') and is the dis-

tributional derivative of the map t » K(t)ih}

of the operator Riccati differential equation

r é%—P(t) + F(£)*P(t)i + i*P(t)F(t)
(9.27) { + i*[Q(t)-P()R(L)P(t)]i = 0 in (0,T)
| P(T) = L.

If in addition for all s in [0,T) and h in V, the map t » A(t,s)ih is the

unique solution in
2 2
(9.28) {x € L°(s,T;V) IDx € L (s,T;H)}

of the operational differential equation

%§.(t) = F(t)x(t) in (s,T)
(9.29)

x(s) = ih,
then P is the unique solution in W(0,T;X,V') of equation (9.27) and (ii) the
reference function r of Theorem 8.2 is the unique solution in W(O0,T;X,V') of

the operational differential equation

£ (t) + [F()-R()P(t)i]*r(t) + i*[P(t)£f'(t)+q(t)] = 0 in (0,T)
(9. 30) dt

r(T) = £.

Proof. (i) By Theorem 7.6, P is given by the integral equation

(9.31) (P(s)h,h) = (LA (T,s)h, A (T,s)h)

T
: j ([QUE)+P(EIR(EIP(£) JA, (£, )R, Ay, 5)R) dt.
S
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By Lemma 7.4 (iii) for all h in X and all t in (0,T] the map s - Ap(t,s)h is
continuous and by Lemma 9.3 for all h in V and t in (0,T]
t

(9.32) Ap(t,s)ih = ih + J Ap(t,r)[F(r)-R(r)P(r)i]hdr.
s

As a result for all h and h in X the map s » (P(s)h,h) is continuous and hence
for all h in X the map s » P(s)h belongs to Lm(O,t;X). For all h and h in V
we can substitute for Ap the R.H.S. of identity (9.32)

T

(9.33) (P(s)ih,ih) = (Lih,ih) + J (LAP(T,r)ih,AP(T,r)F‘(r)ﬁ)dr
S

+

T
j (LAP(T,r)F'(r)h,AP(T,r)E)dr
S

+

T
J (Q' (t)ih,ih)dt
S

+

T (t
J Q' (1) J Ap(t,x)ih, Ay (t,x)F' (r)h)drdt
S S

+

‘5 t
f Q' (1) J Ap(t,r)F'(r)h,Ap(t,r)iﬁ)drdt,
S S :

where F'(r) = F(r) - R(r)P(r)i and Q'(t) = Q(t) + P(t)R(t)P(t). We change the
order of integration in the last two terms on the R.H.S. of the last identity

and regroup the terms:

T
(P(s)ih,ih) = (Lih,ih) + j (Q' (t)ih,ih)dt

)
+ js[(LAP(T,r)ih,Ap(T,r)F'(r)ﬂ)

T
+ f (Q'(t)AP(t,r)ih,AP(t,r)F'(r)ﬁ)dt]dr
T

[\
+ J [(LA, (T, ¥)F' (x)h, A, (T, 1) ih)
S

T
% f (Q'(t)Ap(t,r)F'(r)h,Ap(t,r)iﬁ)at]dr
2 i
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(9.34)  (P(s)ih,ih) = (Lih,ih) + J ([Q(t)+P(t)R(t)P(t)]ih,ih)dt
S

T
+ J {(P(z)ih, [F(r)-R(r)P(x)i]h) + (P(r) [F(x)-R(x)P(r)i]h,ih) }dr.
s

The last identity shows that

( é% (P(s)ih,ih)+(P(s)ih, [F(s)-R(s)P(s)i]h) + (P(s)[F(s)-R(s)P(s)i]h,ih)

(9.35) { + ([Q(s) + P(s)R(s)P(s)]ih,ih) =0 in (0,T),

| P(T) = L.

Since (9.35) is true for all h and h in V, we obtain (9.27) and we see by

inspection that the map

(h,F) > 4= (P(s)ih,iR)

defines an operator %g (s) in £(V,V') such that for all h in V the map

s & [%g (s)]h which belongs to Lm(O,T;V') coincides with the distributional
derivative of the map s » i*P(s)ih.
Assume that there exist two positive self adjoint solutions P1 and P2 of

equation (9.27). Let A(t) = Pz(t) - Pl(t). Then A(T) = 0 and

I
(A(s)ih,ih) = j ([Pl(t)R(t)Pl(t) - Pz(t)R(t)PZ(t)]ih,iﬁ)dt
S
T
+ J [(A(t)ih,F(t)R) + (F(t)h,a(t)ih)]dt
S
T - -
= J [(a(t)ih, [F(£)-R(t)P, (t)i]h) + ([F(t)-R(t)P, (t)i]h,A(t)ih)]dt

T
- j (A(t)ih,R(t)A(t)ih)dt
S

(T
= | [0, [FEO-ROP, (IR + ([FB)-REP,(DiTh,4(6)iR) Jat
s

T
+ J (A(t)ih,R(t)A(t)ih)dt.
S



As a result for all s in [0,T]

T
J 2(a(t)ih, [F(t)-R(t)P,(£)ilh)dt = (A(s)ih,ih)
S

\%

T
J 2(A(t)ih, [F(t)-R(t)P, () i]h)dt
S

and

T
02 J 2(A(t)ih,R(t)A{t)ih)dt
S

=Y h, R(t)A(t)ih = 0 in [0,T].

Finally for all h and hinV

fT

(9.36) (5(s)ih,ih) ] [(A(t)ih,F(t)R) + (F(t)h,a(t)ih)]dt
S

and

(9.37) g% (A(s)ih,iR) = -[(A(s)ih,F(s)R) + (F(s)h,A(s)ih)].

Fix s in [0,T) and consider the map
(9.38) t » (A(t)A(t,s)ih,A(t,s)ih).

In view of (9.36) the norm |A(s)| is bounded in [0,T] and the norm of [A(t,s) |
is bounded in [s,T]. The additional hypothesis on A makes it possible to write
t

(9.39) A(t,s)ih = ih + J F(r)[l\(r,s)ih]v dr,
s

where [A(r,s)ih]V is A(r,s)ih viewed as an element of V. It is now easy to
see from equations (9.36) and (9.39) that thc map (9.38) is absolutely continuous
and that its derivative with respect to t is 0. Therefore for all t in [$,T]

(A(t)A(t,s)ih,A(t,s)iR) = (A(T)A(T,s)ih,A(T,s)ih) = 0

and necessarily for all h and h in V (4(s)ih,ih) = 0. Since this is true for

all h,h and s, we conclude that A is identically zero and that (9.27) has a
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unique solution.
(ii) By Theorem 8.2 r is the unique solution in C(0,T;X) of

T

(9.40) r(s) = A(T,s)*E + J A(p,s)*{P(p) [f' (p)-R(p)T(p)]+q(p) }dp.
S

Let

(9.41) gle) = P(p) [£' (p)-R(p)T(P)] + q(p).

From part (ii) we conclude that r is the unique solution in W(0,T;X,V') of

G (s) + F(s)*x(s) + i*g(s) = 0 in (0,%)
(9.42) ?
r(T) = L.

The substitution of (9.41) in (9.42) yields (9.28). O

9.2. Case W(0,T;V,V'").

Again we first quote a lemma which describes the properties of the elements
of W(0,T;V,V").
Lemma 9.5. Corresponding to each element y of W(O,T;V,V'),.there exists a

unique continuous map y : [0,T] + X such that

IA
ct+
-

t
i*y(t) - i*y(s) = j Dy(r)dr, 0 <s
(9.43) ®
D(i*y).

iy(s) = y(s), a.e. in [0,t], and Dy

Proof. Cf. LIONS-MAGENES [1]. O

We now assume that a family of continuous bilinear forms
(h,k) » b(t;h,k) : V. x V > R
is given with the following properties. For fixed h and k in V the map
t » b(t;h,k) : [0,T] - R

is measurable and bounded. We can define the operators F(t) and F*(t) in

L(V,V') as follows
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(9.44)

(k,E(t)h ) = b(t;h,k)
(h,F*(t)k ) = b(t;k,h).

At this point it is helpful to list hypotheses and introduce definitions
which will be used throughout this section.

Hypothesis I. For all k in X and all t in (0,T] we assume that the map

s (Ftk)(s) = A(t,s)*k belongs to L2(O,t;V) and that

(9.45) 3 c¢>0, Y t€ (0,T], V k€X, Ttk I < clk|. O
2
L (0,t;V)

Hypothesis II. For all k in X the map

(9.46) (t,s) » A(t,s)*k: P(0,T) » V

is measurable. O
We now fix t in (0,T]. Denote by St(0,t;X) the vector space of all step
maps. We can define the linear map ft: St(0,t;X) » Ll(O,t;V) as follows.

Given ¢ in St(0,t;X) of the form

N
(9.47) o(s) = ) kxp (),
n=1 n
we define
=t N t
(9.48) o) = I (k) (s)xg (s),
n=1 n

It is easy to check that (by Hypothesis I)

(9.49) 15t | . <cliol ;
L7 (0,t;V) L7(0,t;X)

It follows from the last inequality that the map it can be lifted to a unique
continuous linear map (also denoted ft) from L2(0,t;X) to Ll(O,t;V). As a
result we can define a map (ft)*: Lw(O,t;V') =% L2(0,t;X)

t

t
(9.50) J ((FY*g) (s),£(s))ds = J0<cftf)(s),g(s) ) ds.
0



When g belongs to Lm(O,t;X), (ft)*g reduces to

(9.51) (FYH*g) (s) = Alt,s)g(s)
and for this reason the map (ft)* will be denoted by
(9.52) | s » R(t,s)g(s).

Moreover for all f in L2(0,t;X) and all g in Lm(O,t;V')

A

KFC£,g0 | < HTCE N | gl

L (0,t;V) L7(0,t;V")

IA

clfll , gt
L7(0,t;X) L (0t V")

by Hypothesis I and

(9.53) IEH*gl scligh .
L7(0,t;X) L (0,t;V')

For each ¢ in St(P(0,T);X) we can construct the map I'¢: P(0,T) » V

N

(9.54) (o) (t,s) =
i=

K.Xp -
y By

It I~12Z

A(t,s)*kiXEi(t’s): ¢ =

1 i

By Hypothesis II, T'¢ is measurable and

ire I

IA
Il ~2

IPIA(t’S)*kiIVXEi(t’S)dP

trero, v isl

IA
I o~12Z

T t
dt J ds |A(t,s)*k. | X, (t,s)
1 Jo 0 LV

T t %

J dt cIk.l[J X. (t,s)ds]?

i E.

0 0 i

(by Hypothesis I)
1 N 1
2

cT .z Ikilm(Ei)

i=1

A

< cT* gl 2 .
L7(0,T;X)



As a result T can be lifted to a unique continuous linear map

(9.55) r:L3(Pe0,1);X) + LE(P(0,T);V).

We can now define a map I'* :Lm(P(O,T);V') - LZ(P(O,T);X) by

. T (t t
(T*g,f) = j dt | ds ¢ (FECE: <)) (8)4g(tss) ?
0 -0

and

1
(9.56) Ir*g i, < cT gl .

Again the above map will be denoted

(t,s) » A(t,s)g(t,s)

since it is a lifting of the map (t,s) » A{t,s)g(t,s) form g in Lw(P(O,T);X) to
L”(P(0,T);V").

Consider equation (9.4) of Lemma 9.1. For all h in X

t
(9.57) Ap(t,s)h = A(t,s)h - J Ap(t,r)R(r)P(r)A(r,s)hdr.
s

In view of the previous considerations we can define for each t in (0,T] a

map Ht :Lw(O,t;V') - L2(0,t;X) as follows

t
(Htg)(s) = A(t,s)g(s) - j Ap(t,r)R(r)P(r)K(r,s)g(s)dr.
S
Necessarily
t t (t . 2 1
Imglh, scligh, + [ J |J Ap(t,r)R(r)P(r)A(r,s)g(s)dr[ ds]®.
0 ’s

The term Ap(t,r)R(r)P(r) is uniformly bounded by some constant c' > 0 and the

above inequality reduces to

" ) [ t ot 5|3
In g H2 <cligh + oSl J ds | dr [L(r,s)g(s) ]
L 0o Js
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(9.58) Im*g 1, < [c+ cc'TI g,
by inequality (9.56). Moreover in view of the definition of I for all g in
L% (P(0,T)5)

, t
(9.59) (7ng)(t,s) = (rg)(t,s) - f Ap (£, T)R(T)P(x) (Tg) (x,s)dr
S

and the map I :Lw(P(O,T);V') > LZ(P(O,T;X)) is linear and continuous.
Lemma 9.6. Let F* and F be as defined in identity (9.44).

(i) Assume that Hypotheses I and II are verified and that for all k in X
and t in (0,T] the map s » A(t,s)*k is the unique solution in W(0,t;V,V') of

the operational differential equation

L (s) + Fy)(s) = 0 in (0,1)
(9.60)
y(t) = k.

For all h in V, t in (0,T] and s in [0,t]

t
(9.61) A(t,s)ih = ih + J i(t,r) (Fh)dr,
S

where the map Fh in Lm(O,t;V') is defined as
(9.62) (Fh) (s) = F(s)h.

As a result the map s » A(t,s)ih has a distributional derivative in LZ(O,t;X)

which coincides with the map
(9.63) s » A(t,s) (Fh).

For all k in X and g in L2(0,t;X) the map

t
(9.64) p(s) = A(t,s)*k + J A(r,s)*g(r)dr
s

is the unique solution in W(0,t;V,V') of the operational differential equation
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B (s) + (Frp)(s) + ivgls) = 0 in (0,1)
(9.65) s

L p(t) = k.
(ii) Under the hypotheses of part (i), for all t in (0T}, @1% k. in X;
and g in LZ(O,t;X) the map
t

(9.66) p(s) = Ap(t,s)*k + J Ap(r,s)*g(r)dr
s

is the unique solution in W(0,t;V,V') of the operational differential equation

B (s) + [(F*-1*PRi)p](s) + i*g(s) = 0 in (0,1)

(9.67)
p(t) =k,
where
(9.68) [(F*-i*PRi)p](s) = F*(s)p(s) - i*P(s)R(s)p(s).

For all h in Vv, t in (0,T] and s in [0,t]
t

(9.69) Ap(t,s)ih = ih + J Kp(t,r)[(F-i*RPi)h]dr.
S

As a result the map s » Ap(t,s)ih has a distributional derivative in Lz(O,t;X)

which coincides with the map

(9.70) s o KP(t,s)[(F-i*RPi)h].

(iii) For all k in X and t in (0,T] the map
(9.71) s b (r;k)(s) = A (t,5) %k
belongs to LZ(O,t;V) and

(9.72) J¢>0,VteE (0,T], VkEX, Hr;k I < clk].

L™(0,t;V)
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(iv) For all k in V the map

(9.73) (t,s) = Ap(t,s)*k : PO, T) »V

is measurable.

(v) For all t in (0,T] the map Ht :Lw(O,t;V') - L2(0,t;X) defined by

(9.74) (") (s) = Rp(t,s)g
is linear and continuous and
(9.75) 3c>0,Vte (0,1, Ingh, sclgi,.
(vi) The linear map II: Lw(P(O,T);V') -> LZ(P(O,T);X) defined by

(9.76) (mg) (t,s) = A (t,s)g

is continuous.

Proof. (i) By Lemma 9.5

s!
i*A(t,s')*k - i*A(t,s)*k = - I (F*y) (r)dr.

S

For all h in V and s in [0,t]

t
(A(t,t)ih,k) - (A(t,s)ih,k) - J {(h, (F*y)(r) ?dr

S

or
t

(A(t,s)ih-ih,k) (y(x), (Fh)(r) ?dr

S

t
- f ¢ [ACt,1)*K]y, (Fh) (r) ) dr
S

t
= | (k,A(t,r)(Fh))dr.

J e

This proves identity (9.61). Pick g in LZ(O,t;X) and consider the map (9.64).
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By Hypothesis II, p :[0,t] » V is measurable and

¢ t
p Il ’ <tk i 5 + f
L°(0,t;V) L°(0,t;V) 0

1
2

¢ 2
f A(r,s)*g(r)drl ds
s |

But

IA

)

t 2 t t 2
J A(r,s)*g(r)dr| ds J ds [ dr |A(r,s)*g(xr)|
s

IA

t j ds I dr [A(x,s)*g(x)]

IA

t T 2
t I dr J ds |A(x,s)*g(x) |
0 0

IA

k =T 2
t J dr IT"g(x) Il 2 .
0 L(0,t;V)

By Hypothesis T the above expression can be majored by

t
t J c? Ig(r)lzdr < tc? g |I22 :
0 L7(0,t5X)

We can now conclude that p belongs to Lz(O,t;V). In view of equation (9.61)
for all k in X
t

(9.77) i*A(t,s)k = i*k + J F*(r) [A(t,T) *k] dr.
S

We can now substitute (9.71) into (9.64) to obtain

t
i*p(s) = i*k + j F*(r)[A(t,r)*k]vdr

S

t T
+ J {i*g(r) + J F*(p) [A(xr,0) *g(x) ] dp }dr
S S

t
i*k + J i*g(r)dr
s
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t t
- J F*(r) [ACt,x)*k + J ACp,r)*g(n)do], dr
S r

t
oF: & o ( [i*g(r) + F*(r)p(xr)]dr.
‘s
This shows that p has a distributional derivative equal to
(9.78) -[i*g + F*p]
in LZ(O,t;V'). The uniqueness follows from the uniqueness of solution to
(9.60) in W(O,t;V,V').
(ii) By Lemma 9.1 the map p defined by identity (9.66) is the unique
weakly continuous solution of the integral equation

t

(9.79) p(s) = A(t,s)*k + J A(r,s)*[g(r)-P(r)R(x)p(r)]dr.
S

By Hypotheses I and II it is readily seen that p belongs to Lz(O,t;V) and has

a distributional derivative in L2(0,t;V') equal to
-[F*p - i%g'],
where
g'(r) = g(r) - P(x)R(x)p(x).

The solution p to equation (9.67) is unique in W(0,t;V,V') since the solution

p to

(9-80 9\ pap 4 srg = 0

p(t) =k

is unique in W(0,t;V,V'). Now we can repeat the argument of part (i) to

obtain identity (9.69).

(iii) to (iv) From the considerations preceding Lemma 9.6. O



o

Proposition 9.7, Let the hypotheses of Lemma 9.6 be verified.

(i) The operator P of Lemma 7.6 is the solution in

(9.81) W(eo,T;V,v') = {K: [0,T] » £(X) weakly continuous.
For all h in V the map t » i*P(t)ih
has a distributional derivative in
Ll(O,T;V'). The map t » K(t)h can be
lifted to a unique continuous linear
map K* :LZ(O,T;X) - Ll(O,T;V). The
map K* can also be lifted to a unique
continuous linear map K :Lm(O,T;V') -
12(0,T;X) 1.

of the operator Riccati differential equation

( = _
é% [i*P(t)ih] + i*(P(Fh))(t) + F*(t) (P*(ih))(¥)

(9.82) { + i*[Q(t)-P(t)R(t)P(t)]ih = 0, in (0,T), Y h €V,

| P(t) = L.
(ii) The reference function r of Theorem 8.2 is the unique solution in

W(0,T;V,V') of the operational differential equation

(ar

3¢ (8) + [(F*-i*PRi)T] () + i*[P(t)£'(t)+q(t)] = 0 in (0,T)

(9.83)
BLTY =il

Proof. (i) By Theorem 7.6, P is given by the integral equation

(9.84) (P(s)h,h) = (LAP(T,s)h,AD(T,s)E)

T
+ j ([Q(t)+P(LIR(EIP () JA, (t,5)h, A (t,s)h)dt.
s

By Lemma 7.4 (iii) for all h in X and all t in (0,T] the map s » Ap(t,s)h is

continuous and by Lemma 9.6 for all h in V and t in (0,T]



t
(9.85) Ag(t,s)ih ih + J Rp(t,r)[F-i*RP]hdr.
S

As a result for all h and h in X, the map s » (P(s)h,h) is continuous and hence
for all h in X the map s » P(s)h is weakly continuous. We now rewrite equation

(9.84) in the form

(9.86) P(s)h = AP(T,s)*LAP(T,s)h

T
+ J Ap (t,5) *[Q(E)+P()R(EIP () JA, (t,s)hdt.
S

In view of Lemma 9.6 (v) for all g in L (0,T;V') the map P : L7(0,T;V") -

12(0,T;X) defined by

(9.87) (Bg) () = Ap(T,s)*LAL(T,s)g

T
+ J Ap(t,S)*[Q(t)+P(t)R(t)P(t)]ip(t,S)gdt
S

ijs linear and continuous. It coincides with the map s > P(s)g(s) when g
belongs to Lm(O,T;X). Similarly using the results preceeding Lemma 9.6 for

2 -
all f in L7(0,T;X) the map P*: LZ(O,T;X) -~ Ll(O,T;V) defined by

(9.88) (B*£) (s) = [A(T,s)*LAL(T,s)£(s)]y
T
+ f [Ap(t,s)*(QUE)+P(LIR(EIP(£)) Ap(t,s) £(s) ] dt
S

is also linear and continuous. Moreover for all f in LZ(O,T;X) and g in

L7(0,T;V")

(9.89) (P*f,g) | = (£,Pg) ,

L' (0,T; V)L (0,T;V") L0, 75%) .

For all h and h in V we can substitute for A, the R.H.S. of identity

(9.85) in equation (9.84}
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T

P(s)ih,ih) = (Lih, ih) + (LA (T,r)ih, ﬂ (T,r) (F'h)dr

v

|
.

(LA (T,r) (F'h),A (T r)ih)dr

7]

3

(Q' (t)ih,ih)dt

wn

-

(Q'(t) J A (t,r)ih,ﬁp(t,r)(F'ﬁ))drdt

wn

T

J Q' (v) J A (t,r)(F'h),AP(t,r)iﬁ)drdt,
s

where F' = F-i*RPi and Q'(t) = Q(t) + P(t)R(t)P(t). By Lemma 9.6 (ii) we can
change the order of integration in the last two terms on the R.H.S. of the

last identity and regroup the terms:

T
(P(s)ih,ih) = (Lih,ih) + J (Q' (t)ih,ih)dt
S
T
+ f [(LAP(T,r)ih.Kp(T,r)(F'ﬁ))
S
T
+ j (Q'(t)AP(t,r)ih,K (t,r) (F'h)dt]dr
r
T
+ f [(LEP(T,r)(F'h),AP(T,r)iﬁ)
S

T
+ J (Q' (1)K, (t,7) (F'h), A, (t,T) iR)dt]dr.
Tr

We obtain

T
(P(s)ih,ih) = (Lih,ih) + J ([Q(t)+P(t)R(t)P(t)]ih,ih)dt
s

T
+ J [(ih, (P(F'R)) (x)) + C(P*(ih)) (x),F'(x)h ) ]dr.

S
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The terms on the last line are equal to
(ih, (P(FR~i*RPih)) (x)) + ¢ (P*(ih)) (¥),F(r)h-i*R(x)P(r)ih ?
= (ih, (P(FR)) (r)-P(r)R(x)P(r)ih) + (h,F(x)*(P*(ih)) (x) ?
- (P(xr)ih,R(x)P(x)ih).
Finally
) ) T
(P(s)ih,ih) = (Lih,ih) + j ([Q(t)-P(t)R(t)P(t)]ih,ih)dt
S
(e, 12 P est
* (h,i*(P(FR)) (r) + F*(r)(P*(ih))(r) }dr
S

and for all h in V the map t » i*P(t)ih has a distributional derivative

(9.89) é%_i*p(t)ih + i*[Q(t)-P(t)R(t)P(t) ]ih

+ i*(P(Fh)) (t) + F*(t) (P*(ik))(t) = O
which belongs to Ll(O,T;V').

(ii) By Theorem 8.2 r is the unique solution in C(0,T;X) of

T
(9.90) r(s) = A(T,s)*L + [ A(p,s)*{P(e) [£' (p)-R(p)r(p)]+q(p) }do.
%28

Let
(9.91) ge) = P(p) [£'(e)-R(p)x(p)] + qlp).

From Lemma 9.6 (i) we conclude that r is the unique solution in W(0,T;V,V') of

L (5) + (Frr)(s) + i%g(s) = 0 in (0,1)
(9.92)

r{T) = L

The substitution of (9.91) in (9.92) yields (9.83). O
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Remark. The derivation of the Riccati differential equation for the case
W(0,T;V,V') is not as ''clean'" as for the case W(0,T;X,V'). Proposition 9.7

is not complete; the question of uniqueness has not been dealt with. This
section was meant to cover the parabolic case, but a certain amount of work

is still required to lighten the presentation of the results. However we shall
see in Chapter 7 that the derivation of the Riccati differential equation is
not necessary to construct numerical approximation to the operator P(s). This
will be done by the method of J.C. NEDELEC which does not require a direct

approximation of the Riccati differential equation.
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