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Introduction

The objective of this paper is to study the infinite-time quadratic
cost problem for a class of infinite dimensional systems. In under-
taking this study we insist on using an approach which clarifies the
relationship between the system-theoretic issues of controllability
(reachability), stabilizability, L’ -stability and the existence of a
positive solution to an operator equation of quadratic type.

Problem Formulation

let H and U be Hilbert spaces. let L'(0,T;U) denote the Spa<i—
eqminedemee class of all square integrable functions defined on [0,T].
Let £(U,H) denote the space of continuous linear transformations from
U into H.

Consider the linear differential system

dx _
qE T Ax(t) + Bv(t)
(6D)

x(0) = x;

where v € 17(0,T;U), A: D(A) * H is a closed linear operator with
dense domain which is the infinitesimal generator of a one-parameter
strongly continuous semi-group ®(t), B € £(U,H) and x € D(A).

*This research was supported by AFOSR Grant 72-2273 and NSF Grant
GK-25781 both at the Electronic Systems Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts  02139.
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I see soberected 1n Lhe Eollong ephaeal okl sl

A. TFind u€ L’ (0,T;U) which minimizes

T
(2) J(v,x ) = fo [(x(t),Qx(t))H + (v(t),Nv(t))U]dt

where Q € £L(H,H) is a symmetric positive operator and
N € £(U,U) is a symmetric operator satisfying (NV,V)U
>alvif, «>0 ¥ €U. One is however interested in
obtaining the optimal control in feedback form, that is
in the form u(t) = ¢ (t,x(t)).

B. Study the same problem on an infinite time interval.

Examples of Systems Covered by the Problem Formulation
and Summary of Existing Results

Suppose H and U are finite-dimensional spaces. It is then
well known that for the finite-time problem an optimal control exists,
is unique and is characterized by

(3) ult) = =N B (£)x(t;u)

where B* € L(H*,U%) and =(t) satisfies the following ordinary dif-
ferential equation of Riccati type:

j—’; = AMn(t) + 7(t)A - m(t)BN " Bn(t) + Q
()
#(T) = 0.

A global solution to equation (4) can be shown to exist. To study
the infinite-time problem we first have to ensure that there exists at
least one control for which the cost is finite. The concept of control-
lability plays a key role here.

A system is said to be controllable if any initial state can be
brought to the origin in a finite time interval [0,T] using a control
ue r’ (0,T;U). It is well known that a system is controllable ¢ rank
(B AB .. A""'B] = n, the dimension of H.
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A system is said to be stabilizable if there exists a K € L(H,U)
such that the eigenvalues of (A + BK) have negative real parts. This
implies that the differential system

(s) g% = (A + Bx(t)

is asymptotically stable.

There is an important theorem which states that controllability =
stabilizability.

,If one makes the assumption that the system is controllable and
(A,') is an observable pair, that is, rank [P* A*p (A%)"' p%] = n,
where P = @, then it is well known that the infinite time problem has
a unique solution and the optimal control is given by

(6) ult) = =N~ Brrx(t;u),

where 7 1is the unique, positive definite solution of the matrix quad-
ratic equation

(7) A*n + mA - 7BN ' B*m + Q = O.
Moreover the system

(8) %’5 = (A - BN B*n)x(t)

is asymptotically stable.

Suppose now that we are in a parabolic equation situation and
-A is a coercive operator. A typical example is the heat equation.
This case has been extensively studied by Lions. The results here are
analogous to the finite dimensional case with the optimal control being
given by (3) and (4). Equation (4) must now however be interpreted ap-
propriately since A is an unbounded operator. The infinite time problem
has also been studied by Lions. The crucial point here is that parabolic
equations are essentially stable, that is for v € (0,~3U), the solu-
tion x(v) € L (0,>;H). Hence a theorem of the type controllability =
stabilizability is not required and the infinite time problem can be
solved by studying limiting versions of the finite-time problem.
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Suppose now that the operator -A is maximal dissipative (in
the sense of Phillips) and hence the infinitesimal generator of a con-
traction semi-group. This situation would arise if the wave equation
were to be considered in an abstract setting. The finite-time quadratic
cost optimal control problem for this class of systems has been solved
by Lions. The stabilizability problem for this class of systems is
somewhat open although some progress has recently been made by Slemrod.
As a result the infinite-time problem is still an open problem.

Optimal Control of Linear Hereditary Differential Systems
with a Quadratic Cost: The Finite-Time Case

We now show how hereditary differential systems fit in the general
model (1).

Notation and Basic Definitions. Let N = 1 be an integer,
let a>0, 0=06 >0 > >0N=—a be real numbers and b€ [a,=].
let I(a,B)=R N [a,8] for any o <8 in [-==]. Let | IH(resp.| ]U)
and (| ) (resp. ( | );) denote the normand inner products on H(resp. U).

Space of Initial Data and Space of Solutions. Consider the space
5 (-b,0;H) (not to be confused with L (-b,0;H)) of allmaps I(-b,0)-H
which are square integrable in I(-b,0) endowed with the seminorm

2 2 1/2
lyllye = [ly(mlH + rb |y<o)|H dG}

The quotient space of £ (-b,03H) by the linear subspaceof all y such
that IlyllM, = 0 is a Hilbert space which is isometrically isomorphic to
the product space H X L’ (-b,03;H). It will be denoted by M (-b,0;H)

andVMz. (-b,03;X) is denoted by K.
e SomorPUisn b eda e Hix LT cond
In order to discuss the Cauchy problem we must also describe the

space in which solutions will be sought. Let 1< p <, fo € R. For
all t € It,, ~[we denote by ACp(to ,t;H) the vector space of all abso-
lutely continuous maps [t ,t}» H with a derivative in L.p(‘c0 yt3H).
When ACP(t,,t;H) is endowed with the norm

1/P
s ds] ,

§ oo .
(P = [ (t) +I
AcP W t, H
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it is a Banach space isometrically isomorphic to H X Lp(to ,t;H). In
particular, AC (t,,t;H) is a Hilbert space. Weshall also need
C(t, »t3H), the Banach space of all continuous maps [t,,t}» H endowed
with the sup norm I "C'
When we consider the evolution of a system in an infinite-time in-
terval it is useful and quite natural to introduce the following spaces.
Let = t(x) be the restriction of the map x:[t,,~[> H to the interval
[t,,t], t € Jt,,=[. Denote by Lioc(to ,o3H), AC{OC(to ,°3H) and
Cloc (t, ,=;H) the vector space of all maps x:[t, ;[ H such that for
all te I, ~[,n () isin LP(t, ,t3H), ACP(t ,t3H) and C(t,,t3H),
respectively. They are Frechet spaces (cf. Delfour) when their respective
topologies are defined by the saturated family of seminorms qt(x) =

||1rt(x)ILF, t€ It ,~[, where F is either P, aAc® or c.

System Description. Consider the affine hereditary differ-
ential system defined on [0,[:
x(t+01),t+0 =0

N
(9) -g—’é(t) = A (Ox(t) + ] A (D) .
i=1 * h(t +6.), t+0, <0

o x(t +0), t+6 =20
+J AN(t,G) ae
-b h(t +6), t+6 <0

+ B(t)v(t) + f(t) a.e. in [0,»),
%(0) = h(0), h € M (-b,0;H),

where A, and A /(i=1,2,.,N) arein L; (0,=3£(H),
@ «© 2
ANGLloc(O,“;-b,O;-C(h)), B€E Lloc(o,w;c(u,m), v € Lloc(o,w;u) and

2
£ €L (0,2H).

v is to be thought of as the control to be applied to the system
and f is a known external input to the system. Under the above hy-
potheses, (9) has a unique solution ¢(-3h,v) in ACzloc(O,w;H) and the

map

(10)  (h,v)> ¢(-3h,v): M (=b,03H) X L’loc(o,w-,U) - Ac’loc(o,w;m
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is affine and continuous (cf. Delfour and Mitter [1], [2] and Delfour
[11). We also have the variation of constants formula

t t
(11) ¢(t3h,v) = ®(t,0)h + J & (t,s)B(s)v(s)ds + J ® (t,s)f(s)ds,
0 0
where
0
&(t,s)h = & (t,s)h(0) + J & (t,s,0)h(a)da,
-b

and @ (t,s) € £(H) is the unique solution in AC’loc(s,";-E (H)) of the

system
0
2 S N ¢(t+61,s),t+ei>s
(12) 5(t,8) =4, (D)@ (t,8) + ] A (1)
i=1 0, otherwise
0
0 ®(t+0,8),t+8>5s
+ J A, (£,0) ad
-b o0, otherwise

a.e. in [s,>=[

and

N ¢°(t,s+a-01)Ai(s+a—8i), at+ts-t<0_ <a

(13) @' (t,s,0) = &
i=1 (0, otherwise

r¢°(t,s+a-0)A“(s+a-0,9)d6, sta<t-b
-b

r ® (t,s+a-0)A (s+a-0,0)d, s+a>t-b
a-t+s

State Equation of the System.

Definition 1. lLet £ =0, v =0 in (9). The evolution of the
state of the homogeneous system is given by the map

(14) +t = o(tsh): [0,%[ ~ M (=b,0;3H)
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defined as

p(t +063h), t+6=20,
(19 #(t;h) ()

h(t +0), t +6<0.

It is easy to verify the following theorem.

Theorem 1. Consider (9) with f =0, v =0 on [s,o[ with ini-
tial datwn h at time s. Let $s(t;h) denote the solution of this
system in AC’loc(s,“',H). The map (t,s)> ﬁs(t;h) generates a two-
parameter semigroup ®(t,s) satisfying the following properties:

(i) d(t,s)ecLf), t=s>0;

(ii) ®B(t,r) = 3(t,8)d(s,r), t>s>1r> 0

(iii) 1= ®(t,s)h: [s,=[» M s continuous for all hE€ M  and

s € [0,2[;

(iv) ®(s,s) = I, where 1 is the identity operator in caf )

(v) for t-s>b, $(t,s):l“f-’ M e compact (i.e., maps

bounded sets into relatively compact sets);

(vi) et D = AC (-b,03H) N M (-b,03H). Then for all h€ D,

®(t,s)h € D.

Since M is isomorphic to H X L’ (-b,0;H), ¥(t,s) can be decom-
posed into two operators & (t,s) € .C(H,Pf) and ¢ (t,s) €
£(1* (-b,03H),M' ) such that

F(t,s)h = & (t,5)h" + & (t,9)n',

where
~ o & (t +a,s)h, t+a=s,
(18) [® (t,s)h J(a) =
0, t+ a<s,
and

0

a7 @ ¢,s)hn N = J-b
h(t+a-s), t+a<s.

@ (t + a,s,)h ()dn, t+a>s,
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Finally corresponding to (9) we have the state equation in<integral form

- By E
(18) @ (t3;h,v) = &(t,0)h + j ¢ (t,s)B(s)v(s)ds + I ¢ (t,s)f(s)ds.

o o

We now wish to obtain the state equation in differential form.

first construct an unbounded operator A(t) whose domain is
= AC" (-b,03H) NM (-b,0;3H).
For this purpose define the linear maps
A@:D+H and A : D~ L' (-b,03H)

as follows

N 0
(19) & (th = A, (Hh(0) + 121 A (h(0 ) + J A (t,6 )h(8 )

and

e _ dh(@)
(20) (Ah)@e) = T

We

From the operators () and A we construct the unbounded operator

At): 0 » M (-b,03;H) as

N A (t)h, o =0,
(21) [A(ONI) =4
[A hl(a), o#0.

Define also the operator B(t): U= M (-b,0;H) as

(22) [B(t)ul(a)

JB(t)u, o:=0;

lO X otherwise,

and f(t) € M (-b,0;H) as

(23) [£(t)I(a)

0, otherwise.
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We then have the following theorem.

Theorem 2. (i) For all h€ D and all u€ L}oc(o, sU), the

system
(24) (t) = Aty + Bout) + F(1) a.e. in [0,
y(0) = h

has a unique solution in AC’loc(O,w;lVf) which coineides with
o (- shyu).

(ii) The map (h,u) ~ ACh,u) = ¢Cshuw): DX LY (0, 5U)
ACzloc(O,w;Pf) can be lifted to a unique continuous affine
map: A M X L’loc(O,“;U) - Cloc(O,w;M;) and for all pairs

(h,u), X(h,u.) coineides with ;(-;h,u).

Formulation of Optimal Control Problem. Consider the con-
trolled system (9). We fix the final time T € ]0,°[ and consider the
solution of (9) in the interval [0,T]. Wealsoconsider f tobe given.
The solution in [0,T] corresponding to h € o (-b,0;H) and v €
i (0,T3;U) is denoted by x(-3;h,v). We associate with v and h the
cost function J(v,h) given by

(25) J(v,h) = (x(T3h,v)|Fx(T;h,v))

T
+ L [ (x(s3h,v) [Q(s)x(s3h,v)) + (v(s)|N(s)v(s))1ds

T T
+ 2 Jo (v(s)|m(s))ds + 2 L (x(s3h,v) [g(s))ds,

where g € L' (0,T;H), me€ L'(0,t;U), F € L(H), Q€ L (0,T;:L(H)),

N € L7(0,T;£(U)), F, Q(s) and N(s) are positive symmetric trans-
formations and there exists a constant ¢ > 0 wuch that (y|[N(s)y) =
diyff, forall s in [0,7].

Existence and Characterization of Optimal Controls. For each
h, it can be easily shown that there exists a unique control u which

minimizes J(v,h) over all v in L (0,T;U). In Delfour-Mitter [3]
the following results are proved:
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Consider the optimal control problem on the interval [t,T], where
t € [0,T[ with initial datun h. Assume f =0, m=0, g = 0. Then
the minimun value of the cost function can be uniquely characterized by
a positive symmetric operator nT(t) €M),

(26) (hym (t)h) = i J(v,h).
% ver}n?g,r;u)

Moreover the optimal control is given by
o) (s) = -N"Bre.(s)%, (s)
% it hatd

where ?h(s) is the solution of

(28) & - Bs) + Buls)

s

%(t) =h, on [t,T]
and
(29) ﬂ;(s)?ch(s) = [ﬂ,r(s)?%(s)lo.

m.(s) satisfies an operational differential equation of Riccati type
which has a global solution.

The Infinite Time Problem

Assume A(t) = K, B(t) = B. As we have discussed before, the first
question to be settled for the infinite time problem is the question of
stabilizability.

Stabilizability. We first need two definitions.

Definition 2. The system

dz" %

dc - Az(t) on [0,d,
(30)

30) =heM,

where A is given by (21) is said to be L' -stable if Vhe M
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t
(31) 1ff,[«; (2h(s)|2h(s)) M,ds < oo,

Definition 3. The control system (24) in state-equation form is
said to be stabilizable if there exists a G € £(M (-b,0;H),U) such
that A + BG defines an L -stable system.

Using the spectral properties of A (cf. Hale), necessary and suf-
ficient conditions for stabilizability can be given (cf. Vandevenne).
For example, a scalar system with one time delay whose control coeffi-
cient is non-zero is stabilizable.

Main Theorems on Optimal Control for Infinite Time Problem.

Theorem 2. Assume that the pair (A,B) is stabilizable. Then the

following statements are true:

(32) 1lim n,r(‘t) =7V t=>0.
t<T=w

For VheM

(33) (7h,h) f ([Q + Rr1x(s) |x(s))ds,

%(t) = [A - Relx(t), te€ [0,
where
%(0)

h,
Rh(0), 6 = 0

R=aN"B, (R)@)

0, otherwise

Qn(0), 6 =0

Q) =
0, otherwise.

Consider the control law
-1 % o
(34) u(t) =N B xh(t), where

7'h = (vh)(0) and ;h(t) i8 the solution of

279



SANJOY K. MITTER

o

%f— = Bx(t) + Bult)
%(€0) = h.

Then the control law (34) minimizes
T
(35) J(v,h) = 1lim L { (o) [Qx(1)) + (v(t) |Nv(t))}dt
T

2 2
over all v €L (0,=3U) such that J(v,h) < Clh]Mz .

Tneorem 3. Let Q> 0. The pair (A,B) is stabilizable if and

only if there exists m = 0, symmetric in Lf) which is a solution to
~% ~ ~ ~
(36) Am+nA -nRn +Q =

If a positive solution of‘ (36) e:c-z,sts, it is unique and given by (32).
Moreover the operator A-TFRr is L' -stable.

Remark. 1In the above equation (36) has to be interpreted in anap-
propriate weak sense since A is an unbounded operator.

The proofs of Theorems 2 and 3 may be found in Delfour-Mitter [4].
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