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Abstract—The paper proposes a framework for modeling and
analysis of the dynamics of supply, demand, and clearing prices
in power systems with real-time retail pricing and information
asymmetry. Characterized by passing on the real-time wholesale
electricity prices to the end consumers, real-time pricing creates
a closed-loop feedback system between the physical layer and
the market layer of the system. In the absence of a carefully
designed control law, such direct feedback can increase sensitivity
and lower the system’s robustness to uncertainty in demand and
generation. It is shown that price volatility can be characterized
in terms of the system’s maximal relative price elasticity, defined as
the maximal ratio of the generalized price-elasticity of consumers
to that of the producers. As this ratio increases, the system may
become more volatile. Since new demand response technologies
increase the price-elasticity of demand, and since increased pene-
tration of distributed generation can also increase the uncertainty
in price-based demand response, the theoretical findings suggest
that the architecture under examination can potentially lead to
increased volatility. This study highlights the need for assessing
architecture systematically and in advance, in order to optimally
strike the trade-offs between volatility/robustness and perfor-
mance metrics such as economic efficiency and environmental
efficiency.

Index Terms—Lyapunov analysis, marginal cost pricing, real-
time pricing, volatility.

I. INTRODUCTION

T HE increasing demand for energy along with growing en-
vironmental concerns have led to a national agenda for

engineering modern power grids with the capacity to integrate
renewable energy resources at large scale. In this paradigm shift,
demand response and dynamic pricing are often considered as
means of mitigating the uncertainties and intermittencies of re-
newable generation and improving the system’s efficiency with
respect to economic and environmental metrics. The idea is to
allow the consumers to adjust their consumption in response to a
signal that reflects the wholesale market conditions, possibly the
real-time prices. However, this real-time or near real-time cou-
pling between supply and demand creates significant challenges
for guaranteeing reliability and robustness of future power sys-
tems. The challenges are in part, due to the uncertainties and
complexities in the dynamics of consumption, particularly the
dynamics of load-shifting and storage, as well as uncertainty in
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consumer behavior, preferences, time-varying and private valu-
ation for electricity, and consequently, uncertainty in response to
real-time prices. Various forms of dynamic retail pricing of elec-
tricity have been studied in economic and engineering litera-
ture. In [1], Borenstein et al. investigate both the theoretical and
the practical implications of different dynamic pricing schemes
such as critical peak pricing (CPP), time-of-use pricing (TUP),
and real-time pricing (RTP). They argue in favor of real-time
pricing, characterized by passing on a price that best reflects
the wholesale market prices to the end consumers, and conclude
that real-time pricing delivers the most benefits in the sense of
reducing the peak demand and flattening the load curve. In [2],
Hogan identifies dynamic pricing, particularly real-time pricing
as a priority for implementation of demand response in orga-
nized wholesale energy markets. Similar conclusions can be
found in several independent studies including but not limited
to the MIT Future of the Grid report [3], and a study conducted
by Energy Futures Australia [4]. Real-world implementations
of various forms of dynamic pricing have begun to emerge as
well [5].
The viewpoint adopted in this paper is that directly linking

price sensitive consumers to the wholesale electricity markets
fundamentally changes the architecture of the system from an
open-loop system in which demand is an exogenous input, to
a closed-loop feedback dynamical system. In the absence of
a well-designed control law, such direct feedback may lead to
increased volatility, decreased robustness to disturbances, and
new fragilities that increase the risk of a systemic failure.
The factors contributing to dynamics in the system—in addi-

tion to the supply-side dynamics—are at least twofold. The first
is the time delay between market clearing and consumption de-
cision, which necessitates a prediction (of demand or price) step.
One may also consider this as a form of information asymmetry
among consumers and system operators. Predicting price sen-
sitive demand can be particularly challenging [3], [6], [7], and
the errors in the prediction step and uncertainty in demand re-
sponse contribute to volatility. This challenge is naturally more
profound if consumers have access to highly variable distributed
generation. The second factor is the inherent dynamics of con-
sumption induced by storage and time-shifting of deferrable
loads [7], [8]. In this paper, we abstract away the internal dy-
namics of consumers and develop a model with only the loca-
tional marginal prices (LMPs) as the state variables. This leads
to an abstract model that sheds light on the important macro
parameters that influence the behavior of the system. The level
of granularity at which such a complex multi-layered network
must be modeled for design purposes and for guaranteeing reli-
ability, robustness, and efficiency is an open question deserving
dedicated research.
We introduce a notion of generalized price-elasticity, and

use Lyapunov theory [9] and contraction analysis [10] to show
that price volatility can be upperbounded by a function of the
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system’s maximal relative price-elasticity (MRPE), defined as
the maximal ratio of the generalized price-elasticity of con-
sumers to the generalized price-elasticity of producers. As this
ratio increases, the system may become more volatile, while
no meaningful upper bound on volatility can be provided when
the MRPE exceeds one.
While it is possible to stabilize the system and mitigate

volatility by proper design of a control law that regulates the in-
teraction of wholesale markets and retail consumers, limitations
of performance and the tradeoffs between various performance
and robustness properties must be carefully considered. The
limitations of performance and the tradeoffs between perfor-
mance and robustness are well studies in the context of classical
control [11]–[14], and have been more recently studied in the
context of networked systems (see, e.g., [13], [15]–[18] and
the references therein). In view of these results, we posit that
different pricing mechanisms, i.e., different control laws, pose
different tradeoffs on performance metrics such as economic or
environmental efficiency, and system reliability metrics such as
volatility, robustness to disturbances, and fragility. We do not
consider design issues and the associated tradeoffs in this paper
and focus on analysis of the system under direct feedback.
The intended message is that the design of a real-time pricing
mechanism must take price and demand volatility issues into
consideration, and that successful design and implementation
of such a mechanism entails careful modeling and analysis
of consumer behavior in response to price signals, and the
trade-offs between appropriate robustness and efficiency met-
rics.
Other existing literature related to our work can be found in

the context of stability of power markets. These include some
earlier works by Alvarado [19], [20] on dynamic modeling and
stability, and more recent works by Watts and Alvarado [21] on
the influence of future markets on price stability, and Nutaro and
Protopopescu [22] on the impact of market clearing time and
price signal delay on power market stability. The model adopted
in this paper differs from those of [19]–[21], and [22] in that
we analyze the global properties of the full non-linear model
as opposed to the first-order linear differential equations exam-
ined in these papers. In addition, the price updates in our paper
occur at discrete time intervals, and are the outcome of marginal
cost pricing in the wholesale market by an Independent System
Operator (ISO), which is consistent with the current practice in
deregulated electricity markets. Furthermore, beyond stability,
we are interested in providing a characterization of the impacts
of uncertainty in consumer behavior on price volatility and the
system’s robustness to uncertainties.

II. PRELIMINARIES

A. Notation

The set of positive real numbers (integers) is denoted by
, and nonnegative real numbers (integers) by .

The class of real-valued functions with a continuous th deriva-
tive on is denoted by . For a vector ,
denotes the th element of , and denotes the standard

p-norm: . Also, we will use to

denote any p-norm when there is no ambiguity. For a differen-
tiable function , we use to denote the derivative
of with respect to its argument: . Finally,
for a measurable set , is the Lebesgue measure
of .

B. Basic Definitions

Definition 1: Scaled Incremental Mean Volatility (IMV):
Given a signal , and a function , the
-scaled incremental mean volatilitymeasure of is defined
as

(1)

where, to simplify the notation, the dependence of the measure
on the norm used in (1) is dropped from the notation .
To quantify volatility for fast-decaying signals with zero

IMV, e.g., state variables of a stable autonomous system, we
will use the notion of scaled aggregate volatility, defined as
follows.
Definition 2: Scaled Incremental Aggregate Volatility (IAV):

Given a signal , and a function ,
the -scaled incremental aggregate volatility measure of
is defined as

(2)

In particular, we will be interested in the -scaled incremental
volatility as a metric for quantifying volatility of price, supply,
or demand in electricity markets.
Remark 1: The notions of incremental volatility presented

in Definitions 1 and 2 accentuate the fast time scale, i.e., high
frequency characteristics of the signal of interest. Roughly
speaking, the scaled IMV or IAV are measures of the mean
deviations of the signal from its moving average. In contrast,
sample variance or CV (coefficient of variation, i.e., the ratio
of standard deviation to mean) provide a measure of the mean
deviations of the signal from its average, without necessarily
emphasizing the high-frequency characteristics. Since we are
interested in studying the fast dynamics of spot prices and
supply/demand in electricity markets from a reliability perspec-
tive, the scaled IMV and IAV as defined above are appropriate
metrics for volatility.
The notion of stability used in this paper is the standard notion

of asymptotic stability and it applies to both price and quantity.
Definition 3: Consider the system

(3)

where is an arbitrary map from a domain to .
The equilibrium of (3) is stable in the sense of Lyapunov
if all trajectories that start sufficiently close to remain arbi-
trarily close to it, i.e., for every , there exists such
that
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The equilibrium is globally asymptotically stable if it is Lya-
punov stable, and for all , we have
.

C. Market Structure

We begin with developing an electricity market model with
three participants: 1) the suppliers, 2) the consumers, and 3) an
ISO. The suppliers and the consumers are price-taking, profit-
maximizing agents. The ISO is an independent, profit-neutral
player in charge of clearing the market, that is, matching supply
and demand subject to the network constraints with the objec-
tive of maximizing the social welfare. The details are as follows.
1) Consumers and Producers: Let and denote the sets of

consumers and producers, respectively. Each consumer
is associated with a value function , where
can be thought of as the monetary value that consumer derives
from consuming units of the resource, electricity in this case.
Similarly, each producer is associated with a production
cost function .
Assumption I: For all , the cost functions are in

, strictly increasing, and strictly convex. For all ,
the value functions are in , strictly increasing,
and strictly concave.
Let , and be de-

mand and supply functions mapping price to consumption and
production, respectively. In this paper, the producers and con-
sumers are price-taking, utility-maximizing agents. Therefore,
letting be the price per unit of electricity, we have

(4)

and

(5)

For convenience in notation and in order to avoid cumbersome
technicalities, we will assume in the remainder of this paper
that is the demand function, and

is the supply function. This can be mathematically jus-
tified by assuming that , and , or that

.
a) Consumers With Uncertain Value Functions: We will

consider two models of uncertainty in consumer behavior.
Multiplicative Perturbation Model: The uncertainty in

consumer’s value function is modeled as

(6)

where is a nominal value function and
is an exogenous signal or disturbance. Given a price
, under the multiplicative perturbation model (6), we

have

(7)

Thus, the same price may induce different consumptions at
different times, depending on the type and composition of the
load.

Additive Perturbation Model: The uncertainty in con-
sumer’s value function is modeled as

(8)

where is exogenous. Thus, given a price
, under the additive perturbation model (8), the demand func-
tion is

(9)

Aggregation of Several Consumers: The aggregate re-
sponse of several consumers (or producers) to a price signal
may be modeled as the response of a single representative agent
[23], although explicit formula for the utility of the representa-
tive agent may sometimes be too complicated to find [23], [24].
For the case of identical consumers with value functions

, it can be verified that the aggregate demand
is equivalent to the demand of a representative consumer with
value function [24]:

(10)

Suppose now that the consumer behavior can be modeled via
(6)–(7). Let

and suppose that there exists a nominal value , such that

where satisfies . Define
. It can be then verified that the aggregate demand

can be modeled as the response of a representative agent with
value function

(11)

The aggregate response is then given by

(12)

Similarly, under the additive perturbation model the aggre-
gate behavior can be represented by

(13)

(14)

where is given by (10) and . The interpre-
tation of (13) and (14) is that at any given time , the demand
comprises of an inelastic component which is exogenous,
and an elastic component . Another interpretation is
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Fig. 1. Aggregate consumption under load-shifting [7]. (a) Variation of con-
sumption as the price history varies. Darker regions indicate more frequent pres-
ence of the price-consumption function out of 100 000 price history points. (b)
Sample price-consumption function at an arbitrary time.

that represents the demand of those consumers who
are subject to real-time pricing, and represents the demand
of the non-participating consumers. More importantly, the in-
elastic component may include contributions from distributed
generators owned by the consumers, and thus, it may be subject
to high variability and high uncertainty, making it more chal-
lenging to predict the total demand as a function of price.
Remark 2: The concave utility maximizing agent models

have been used in many engineering and economic contexts.
Recent results [7] on emerging aggregate behaviors from op-
timal load-shifting by individual consumers give theoretical jus-
tification to adoption of this model in the context of electricity
consumers. In this model, individual consumers defer their flex-
ible demands up to a deadline in order to minimize their total
cost of consumption in the presence of time-varying exogenous
prices. While the demand of an individual consumer may not
be a monotonic function of price (because time may take pri-
ority over price), the aggregate consumption of a large popula-
tion at each instance of time becomes a non-increasing function
of price. However, as shown in Fig. 1 this function is not a static
function and it depends on both materialization of random ex-
ogenous demands and history of prices. More accurately, con-
sumption is a function of the state (backlogged demand) which
evolves dynamically in time. Interested readers may consult
[7] for more information. In this paper, we abstract away the
state and adopt a time-varying memoryless concave utility max-
imizing model for the consumer. More discussion will follow in
Section V-C.
2) Independent System Operator (ISO): The ISO is a

non-for-profit entity whose primary function is to optimally
match supply and demand subject to network and operational
constraints. The constraints include power flow constraints,
transmission line and generator capacity constraints, local and
system-wide reserve capacity requirements, and possibly some
other constraints specific to the ISO [25]–[27]. For real-time
market operation, the constraints are linearized near the
steady-state operating point and the ISO optimization problem
is reduced to a convex—typically linear—optimization problem
often referred to as the economic dispatch problem (EDP), or
the optimal power flow problem. A set of LMPs emerge as
the shadow cost of the nodal power balance constraints. These
prices vary from location to location as they represent the
marginal cost of supplying electricity to a particular location.
We refer the interested reader to [26]–[28], and [29] for more
details. However, we emphasize that the spatial variation in the

LMPs is a consequence of congestion in the transmission lines.
When there is sufficient transmission capacity in the system, a
uniform price will materialize for the entire network. With this
observation in sight, we make the following assumptions:
1) Resistive losses are negligible.
2) The line capacities are high enough, (i.e., no congestion)
3) There are no generator capacity constraints.
4) The discrepancy between forecast load and actual load is
resolved through reserve generation/demand capacity, and
the ex-ante energy price is used to settle the discrepancy
between forecast load and actual load.

Under the first two assumptions, the network parameters
become irrelevant in the supply-demand optimal matching
problem. The third and fourth assumptions are made in the
interest of keeping the development in this paper simple and
focused. They could, otherwise, be relaxed at the expense of
a somewhat more involved technical analysis. A thorough
investigation of the effects of network constraints and reserve
capacity markets, whether they are stabilizing or destabilizing,
does not fall within the scope of this paper. The interested
readers may consult [20], [29], and [30] for an analysis of
dynamic pricing in electricity networks with transmission line
and generator capacity constraints.

a) Real-Time System Operation and Market Clearing:
Consider the case of real-time market operation and assume
that price-sensitive retail consumers do not bid in the real-time
market. In other words, they do not provide their value func-
tions to the system operator (or any intermediary entity in
charge of real-time pricing). Though, they may adjust their
consumption in response to a price signal, which is assumed in
this paper, to be the ex-ante wholesale market clearing price.
In this case, the demand is assumed to be inelastic over each
short pricing interval, and supply is matched to demand. Thus,
the ISO’s problem reduces to meeting the fixed demand at
minimum cost:

(15)

where is the predicted demand of consumer for the next
time period. We assume that the system operator solves (15) and
sets the price to the marginal cost of production at the minimum
cost solution. As stated in the assumptions, we do not include re-
serve capacity in our model and instead, assume that the ex-ante
energy price is used to settle the discrepancy between the fore-
cast load and the actual load that materializes. More details are
presented in the next section.
As we will see in the sequel, the prediction step in the ISO’s

optimization problem and the discrepancy between the sched-
uled generation and the materialized demand lead to a variant of
cobweb-like dynamics [31], which in general describes cyclical
fluctuations of supply and demand in markets where the quan-
tity to produce must be decided before prices are revealed. In the
model developed in this paper, the price associated with the sup-
plied quantity must be decided before demand (which is equal to
the supplied quantity) is revealed. We will see in Section IV that
qualitatively similar fluctuations arise in this case. The higher
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the relative sensitivity of demand to supply, the more difficult
it is to correctly predict the demand at the next time step, and
tame the fluctuations.

III. DYNAMIC MODELS OF SUPPLY-DEMAND
UNDER REAL-TIME PRICING

In this section, we develop dynamical system models for
the interaction of wholesale supply and retail demand. These
models are based on the current practice of marginal cost
pricing in most wholesale electricity markets, with the addi-
tional feature that the retail consumers adjust their usages in
response to the real-time wholesale market prices. We assume
that the consumers do not bid in the market, i.e., they do not
provide their value/demand functions to the ISO.
The real-time market is cleared at discrete time intervals and

the prices are calculated and announced for each interval. The
practice of defining the clearing price corresponding to each
pricing interval based on the predicted demand at the beginning
of that interval is called ex-ante pricing. As opposed to this,
ex-post pricing refers to the practice of defining the clearing
price for each pricing interval based on the materialized con-
sumption at the end of the interval. Here, we only present the
dynamics of the ex-ante case. Under similar assumptions, the
dynamics and the results for the ex-post case are analogous and
can be found in [24] and [32]. It is also possible to consider dy-
namic models arising from ex-ante pricing complemented with
ex-post adjustments; see for instance [33].

A. Price Dynamics Under Ex-ante Pricing

Let denote the ex-ante price corresponding to the con-
sumption of one unit of energy in the time interval .
Let be the actual aggregate consumption
during this interval:

(16)

Since is known only to consumer , at time , only an
estimate of is available to the ISO, based on which, the
price is calculated. The price is therefore the marginal
cost of predicted supply that matches the predicted demand for
the time interval .We assume that the predicted demand/
supply for each time interval is based on the actual demand at
the previous intervals:

. The
following equations describe the dynamics of the market:

(17)

(18)

(19)

where (19) follows from (16), and in (17) is the
Lagrangian multiplier associated with the balance constraint
in optimization problem (15) solved at time , i.e., with

. The prediction step (18) may be carried

Fig. 2. Ex-ante priced supply/demand feedback.

through by resorting to linear auto-regressive models, in which
case, we will have

(20)

When is of the form (20), (17)–(19) result in

(21)

A special case of (18) is the so-called persistence model which
corresponds to the case where the predicted demand for the next
time step is assumed to be equal to the demand at the previous
time step, i.e., . In this case,
(17)–(19) result in

(22)

If all the producers can be aggregated into one representative
producer with a convex cost function , and all the consumers
can be aggregated into one representative consumer with a con-
cave value function , then (21) and (22) reduce, respec-
tively, to

(23)

and

(24)

This process is summarized in Fig. 2.

B. Demand Dynamics

We could alternatively write dynamical system equations for
the evolution of demand. Under ex-ante pricing, we will have

(25)

(26)

Assuming representative agent models, (25)–(26) reduce to

(27)
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Finally, under the persistence model for prediction, we have

(28)

In what follows, we will develop a theoretical framework that
is suitable for analysis of dynamical systems described by im-
plicit equations. Such systems arise in many applications which
incorporate real-time optimization in a feedback loop, several
instances of which were developed in this section. As we will
see, this framework is useful for studying the dynamics of elec-
tricity markets, robustness to disturbances, and price volatility
under real-time pricing.

IV. THEORETICAL FRAMEWORK

A. Stability Analysis

In this section, we present several stability criteria based on
Lyapunov theory [9] and contraction analysis [10], and examine
stability properties of the clearing price dynamics formulated in
Section III.
Theorem 1: Let be a discrete-time dynamical system de-

scribed by the state-space equation

(29)

for some function . Then, is stable if there exists
a pair of continuously differentiable functions
satisfying

(30)

and

(31)

(32)

and either

(33)
or

(34)
Proof: See the Appendix.

Remark 3: The monotonicity conditions (33)–(34) in The-
orem 1 can be relaxed at the expense of more involved techni-
calities in both the statement of the theorem and its proof. As
we will see, these assumptions are naturally satisfied in appli-
cations of interest to this paper. Therefore, we will not bother
with the technicalities of removing the condition.
There are situations in which a natural decomposition of dis-

crete-time dynamical systems via functions and satisfying
(30) is readily available. This is often the case for applications
that involve optimization in a feedback loop. For instance, for
the price dynamics (24), we have , and the decom-
position is obtained with , and . However,
and obtained in this way may not readily satisfy (31). We

present the following corollaries.

Corollary 1: Consider the system (29) and suppose that con-
tinuously differentiable functions satisfying
(30) and (32)–(34) are given. Then, the system is stable if there
exist and a strictly monotonic, continuously differentiable
function satisfying

for all .
Proof: If and satisfy (30), then so do and

for any . Furthermore, under the assumptions of
the corollary, both and satisfy (31)–(34). The result
then follows from Theorem 1.
Corollary 2: Market Stability I: The system (24) is stable

if there exists a strictly monotonic, continuously differentiable
function satisfying

(35)

for all .
Similarly, the system (28) is stable if

(36)

for all .
Proof: The statements follow from Corollary 1 with
and for (35), and and for (36), and

the fact that under Assumption I, all of the conditions required
in Corollary 1 are satisfied.
Elasticity is often defined as a measure of how one vari-

able responds to a change in another variable. In particular,
price-elasticity of demand is defined as the percentage change
in the quantity demanded, resulting from one percentage change
in the price, and is viewed as a measure of responsiveness, or
sensitivity of demand to variations in the price. Price-elasticity
of supply is defined analogously. Herein, we generalize the stan-
dard definitions of elasticity as follows.
Definition 4: Generalized Elasticity: The quantity

is the generalized price-elasticity of demand at price . Simi-
larly

is the generalized price-elasticity of supply at price . Note that
these notions depend on the exponent . For , we obtain
the standard notions of elasticity.We define themarket’s relative
generalized price-elasticity as the ratio of the generalized price-
elasticities:

(37)

The market’s maximal relative price-elasticity (MRPE) is de-
fined as

(38)
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The notions of generalized demand-elasticity of price and gen-
eralized supply-elasticity of price are defined analogously:

When , these notions coincide with the Arrow-Pratt coef-
ficient of risk aversion (RA) [34], [35], and we will adopt the
same terminology in this paper. The market’s relative general-
ized risk aversion factor is defined as

Finally, the market’s maximal relative risk-aversion (MRRA) is
defined as

(39)

With a slight abuse of notation, when , we write
instead of , and instead of , etc.
The following corollary relates stability to the market’s

relative price-elasticity , and relative risk-aversion
.

Corollary 3: Market Stability II: The system (22) is stable if
the market’s MRPE is less than one for some , that is

(40)

The system (28) is stable if the market’s MRRA is less than one
for some , that is

(41)

Proof: The results are obtained by applying Corollary 2,
criteria (35) and (36), with for , and

for .
When the cost and value functions are explicitly available,

conditions (36) or (41) are more convenient to check, whereas,
when explicit expressions are available for the supply and de-
mand functions, it is more convenient to work with (35) or (40).
1) Example 1: Consider (24) with , and

, where and is a constant. First,
consider the case. Then, we have

It can be verified that . However, by invoking (41)
with , we have

Hence, the system is stable if

TABLE I
NUMERICAL RESULTS CORRESPONDING TO EXAMPLE 1

It can be shown that the condition is also necessary and the
system diverges for . Moreover, invoking (40) with

yields exactly the same result, though, this need not be the
case in general. Consider now the same system with
and . Simulations show that the system is not stable in the
asymptotic sense for . Table I summarizes the results
of our analysis.
Thus, when , the system is at least marginally stable.

Furthermore, the above analysis highlights the importance of
the notion of generalized elasticity (cf. Definition 4), as ,
which is associated with the standard notion of price elasticity,
can be greater than one while the system is stable and its stability
can be proven using the MRPE for some .
Remark 4: The main stability results (Theorem 1, and Corol-

laries 1, 2, and 3) provide criteria for analysis of nonlinear dis-
crete time systems. These results can be readily applied to anal-
ysis of discrete-time systems described by implicit equations
which arise from optimization in feedback loop in general, and
to systems with cobweb-like dynamics in particular. The no-
tions of “Generalized Elasticity” and “Generalized Risk Aver-
sion” and the associated global stability criteria (i.e., Corol-
lary 3) are new contributions to this domain, and more gener-
ally, to nonlinear systems analysis. In Section IV-B we extend
these results to systems with autoregressive prediction, while
in Section IV-C we go beyond stability by providing a charac-
terization of volatility induced by uncertainty in the consumer’s
response. Relating the notions of generalized elasticity and gen-
eralized risk aversion to incremental volatility is a contribution
of this paper.
Remark 5: We assumed that the network has high enough ca-

pacity and thereby removed congestion constraints to obtain a
uniform price across the network. Numerical simulations of a
DC power flow model with congestion constraints reported in
[29] suggest that the qualitative behavior does not change signif-
icantly when transmission constraints and power flow equations
are fully considered. For systems with relatively homogeneous
consumers and producers, it appears that volatility is determined
mostly by the relative price elasticity of consumers to the pro-
ducers, as opposed to the network parameters. The network pa-
rameters become more important as heterogeneity of agents in
the network increases.

B. Invariance Analysis

The analysis in the preceding sections is based on applying
the results of Theorem 1 and Corollary 3 to systems of the form
(22) [or (28)], which correspond to the persistence prediction
model, whether it is demand prediction by the ISO in the ex-ante
pricing case, or price prediction by the consumers in the ex-post
pricing case. When functions of the form (18) are used for pre-
diction of price or demand, the underlying dynamical system is
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not a scalar system. An immediate extension of Theorem 1 in
its full generality to the multidimensional case, while possible,
requires additional technicalities in both the proof and the appli-
cation of the theorem. In what follows we take the middle way:
we present a theorem that exploits the structure of the dynam-
ical system that arises from autoregressive prediction models to
both make the extension possible and to simplify the analysis.
Theorem 2: Let be a real-valued sequence satis-

fying a state-space equation of the form

(42)

for some continuously differentiable function ,
and a continuously differentiable monotonic function
, which satisfy

(43)

where

(44)

Then, there exists a constant , which depends only on the
first initial states , such that the set

(45)

is invariant under (42), i.e.,

Furthermore, if (44) holds with strict inequality, then the
-scaled IAV of is bounded from above:

(46)

Proof: See the Appendix.
It follows from the proof of Theorem 2 that when the initial

conditions are close to the equilibrium of (42), it is sufficient to
satisfy conditions (43)–(44) only locally, over a properly defined
subset of . This is summarized in the following corollary.
Corollary 4: Let be a real-valued sequence satis-

fying (42), where and are continuously differentiable func-
tions. Let

where is given in (74)–(75). If

where ’s satisfy (44), then is invariant under (42). Further-
more, when (44) holds with strict inequality, and the initializa-
tion vector is an element of , then
(46) holds.

Theorem 2 and Corollary 4 can be applied to analysis of
market dynamics under the generic autoregressive prediction
models that were presented in Section III. The sets or
being invariant implies that the difference between the predicted
demand and the actual supply remains bounded.
1) Analysis of Market Dynamics Under Linear Autoregres-

sive Prediction Models: Consider the model (23), repeated here
for convenience:

We apply Theorem 2 (alternatively Corollary 4) with

(47)

and

(48)

We examine (47)–(48) with and
. Conditions (43)–(44) then imply that the fol-

lowing conditions are sufficient (for some ):

(49)

(50)

Conditions (49)–(50) are complicated and in general demand
numerical computation for verification. However, examination
of (49) near equilibrium is informative. Suppose that (23) con-
verges to an equilibrium price . Letting

, we observe that the following condition is implied
by (49)–(50):

(51)

where and are generalized elasticities as
defined in Definition 4, evaluated at the equilibrium. It can
be shown that (51) is equivalent to , indepen-
dently of . Furthermore, for a large class of cost and value
functions, namely power functions of the form
and , the equilibrium relative
elasticity is independent of the autoregres-
sive coefficients . Thus, if the closed-loop
market is unstable under the persistent prediction model

, then global stability cannot be
verified for any linear auto-regressive model of the form (23)
using (49)–(50). Although this analysis is based on sufficient
criteria, it suggests that it may be difficult to globally stabilize
these systems via linear autoregressive prediction. Indeed,
extensive simulations show that such models will not globally
stabilize an unstable market, unless the MRPE is very close to
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one. For values of global stabilization could not be
achieved in our simulations. Local stabilization is, however,
possible for moderate values of , namely, .
2) Analysis of Market Dynamics Under Exogenous Distur-

bances: This subsection provides theoretical results that will
be used as the basis for volatility analysis in Section IV-C.
Theorem 3: Let and be real-valued

sequences which satisfy a state-space equation of the form

(52)

for some continuously differentiable function and
a continuously differentiable monotonic function
satisfying

(53)

and

(54)

where

and , and . Define

(55)

Then, the set

(56)
is invariant under (52). Furthermore, the -scaled IMV of is
bounded from above:

(57)
Proof: See the Appendix.

The following corollary is a local variant of Theorem 3, and
is useful for scenarios in which there exists no positive number

such that (54) is satisfied for all , whereas it might
be possible to satisfy the inequality locally over a subset that
contains .
Corollary 5: Let and be real-valued

sequences satisfying (52). For , define

where is given in (56). Then is invariant under (52)
if

Furthermore, (57) holds with .

C. Volatility

Consider (52) or (42). When the functions and are
-scaled supply and demand functions, the minimal satis-
fying (54) or (43) will be the MRPE associated with these
market models. When and are -scaled marginal value and
marginal cost functions, respectively, the minimal satisfying
the inequalities will be the associated MRRA. The following
corollaries follow from Theorems 2 and 3, and explicitly relate
the market’s MRPE and MRRA to volatility.
Corollary 6: Volatility I: Let and be theMRPE

and MRRA associated with the market model (52). Then, there
exists a constant , depending on the size of the disturbances
only, such that the -scaled IMV of supply is upperbounded
by , i.e.,

(58)

and the -scaled IMV of price is upperbounded by
, i.e.,

(59)

Corollary 7: Volatility II: Let and be the
MRPE and MRRA associated with the market model (42).
Then, there exists a constant such that the -scaled IAV of
supply is upperbounded by , i.e.,

(60)
and the -scaled IAV of price is upperbounded by

, i.e.,

(61)

Remark 6: Generalized versions of the above corollaries
can be formulated based on and , in which case the
scalings of the signals need to be defined accordingly: letting

for , the -scaled IMV of supply and price
will be upperbounded by and ,
respectively. Furthermore, when the prices remain bounded
within an invariant set, e.g., when the conditions of Corollary 4
or Corollary 5 hold, one can replace and with local
relative elasticity ratios and .
In the remainder of this section, we apply Corollaries 6 and 7

to the two time-varying models of consumer behavior (14) and
(12).

a) Multiplicative Perturbation: Consider the multiplica-
tive perturbation model (12). Under this model, the market dy-
namics is given by

(62)
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where the factor in front of is simply a scaling factor.
We invoke Corollary 6 (or Theorem 3) with

(63)

and

It can be verified that (53) and (54) are satisfied as long as
and , where is the MRPE defined in (38). Further-
more, is the upperbound on the size of the invariant set,
where is defined in (55). In particular as , small
perturbations may induce extremely large fluctuations as mea-
sured by -scaled IMV of supply. The theoretical upperbound
is . When Corollary 5 is applicable, the size of the
invariant set can be characterized by , where is the
market’s local relative price-elasticity. Furthermore, volatility
can be characterized by as well.

b) Additive Perturbation: Under the additive perturbation
model (14), the market dynamics can be written as

(64)
where is a shifting factor, and , so that the
demand is always at least . Again, we invoke Corollary 6
(or Theorem 3) with (63) and

Then, under the above assumptions, (53) is satisfied. In a similar
fashion to previous analyzes, (54) can be related to the MRPE.
In this case, the price-elasticity of demand turns out to be

The larger the minimum of the inelastic component (i.e.,
), the smaller the price-elasticity of the overall demand

will be. Under the assumptions made above, there is always
a nonzero minimal demand . Therefore, it is
sufficient to verify (54) over instead of all .
In conclusion, (54) reduces to

(65)

Let be the minimal satisfying (65). Similar to the case with
multiplicative uncertainty, in this case too, the upperbound on
the size of the invariant set is given by , where is
given in (55). Moreover, the -scaled IMV of supply is upper-
bounded by .
The analysis confirms the intuition that participation of a

small portion of the population in real-time pricing will not
greatly impact the level of volatility in the system, as satisfying
(65) for larger values of is easier. Increased volatility may
materialize only when a large portion of the population is
exposed to real-time pricing.

V. DISCUSSION

A. Ramp Constraints

Cho and Meyn [36] have investigated the problem of
volatility of power markets in a dynamic general equilibrium
framework. Their model can be viewed as a full-information
model in which the system operator has full information about
the cost and value functions of the producers and consumers.
Market clearing is instantaneous and supply and demand are
matched with no time lag. The producer’s problem is, how-
ever, subject to supply friction or a ramp constraint, i.e., a
finite bound on the rate of change in the supply capacity. It
is concluded that efficient equilibria are volatile and volatility
is attributed to the supply friction. In the formulation of [36],
the consumer’s problem is not subject to ramp constraints. In
our formulation, neither the consumer’s nor the producer’s
problem is explicitly subject to ramp constraints, yet other fac-
tors are shown to contribute to volatility, namely, information
asymmetry and subsequently, prediction errors, and relatively
high price elasticity of demand. Interestingly, if we included
ramp constraints in the consumer’s problem it would have a
stabilizing effect, as it would limit the consumer’s responsive-
ness to price signals and reduce the elasticity of demand. This
effect is, however, abstractly and qualitatively captured in our
framework through the introduction of an inelastic component
in the demand, which certainly limits the rate of change in
the demand in a similar way to ramp constraints. However,
uncertainty in the supply side, either in the available capacity
or in the cost, works in the reverse direction: when supply is
sufficiently volatile, a trade-off might exist and responsiveness
and increased elasticity of demand might be desirable to some
extent. The models developed in the paper do not include
uncertainty in generation, and investigating these tradeoffs
in a rigorous framework is an interesting direction for future
research.

B. Learning

An interesting question that arises here is related to learning
and can be posed as follows: canmarket participants learn to ad-
just their behavior in response to volatility in market prices and,
thereby, mitigate volatility? Remarkably, learning in the sense
intended here and ramp constraints are closely related. Absence
of ramp constraints implies that consumers can quickly adjust
their consumption, hence, price volatility may not necessarily
alter their consumption patterns or the way they (or autonomous
devices on their behalf) react to prices. In other words, con-
sumers’ optimal strategy in response to price signals would be
myopic. Therefore, in this case, the consumers may not have
an incentive for altering their behavior to avoid aggravating
volatility. Consumers have an incentive to reduce volatility only
when they have ramp constraints, since they stand to loose in
a volatile market if they cannot adjust their consumption fast
enough. On the contrary, consumers with access to storage, or
storage owners, have an incentive to increase price volatility,
particularly if the market allows them to use storage as an arbi-
trage mechanism. This is because the economic value of storage
increases with price volatility [8]. Whether learning in such a
complex market with erratic outcomes can occur or not is an
open question which does not fall within the scope of this paper.
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However, we note in passing that it has been shown that con-
vergence of neural network learning in cobweb-like macro-eco-
nomic models is related to the so-called E-Stability condition
in Muth model (see, e.g., Heinemann [37] and Packalen [38]).
The E-stability condition is a sensitivity-based sufficient con-
dition for stability. The implication is that for unstable sys-
tems, neural network learning may not necessarily converge,
and higher levels of sensitivity to disturbances make learning
more challenging. Regulating consumer behavior and designing
proper incentives might be a practical alternative to relying on
learning. Nevertheless, even in the absence of ramp constraints
on the demand side, volatility has an effect on the supply side
and/or ISO side. Since the suppliers have ramp constraints, and
since increased demand volatility increases the overall stress on
the grid, the ISO has an incentive to reduce volatility. This may
be done by externality pricing or by adopting pricing mecha-
nisms other than direct marginal cost pricing.

C. Storage and Load Shifting

Access to storage, and the possibility to defer flexible loads
induce an internal state or memory in the consumer model [7],
[8]. The state is essentially the amount of backlogged or stored
energy, which evolves dynamically in time. If the consumers
are price responsive, the evolution of this state is dependent
on the history of the materialized prices: an extended period
of high prices is likely to induce a relatively large backlogged
demand and a relatively small amount of stored energy; while
an extended period of low prices has the reverse effect. Fur-
thermore, the price-responsiveness or elasticity of consumers is
not a memoryless function of the current price. Rather, it is a
function of the past history of prices which can be summarized
in the state; when there is a lot of backlogged demand in the
system, a relatively low price will induce a large demand for
power, whereas the same price may induce a relatively small
demand when there is little or no backlogged demand in the
system. Such effects will be even more exaggerated if the con-
sumers implement price threshold policies—which are shown
to be optimal for load-shifting under some technical assump-
tions [7]—for managing their consumption. As a result, dy-
namics is inherent to such systems even in the “full information”
case in which the ISO has a complete model of the consumers.
While bidding will change the dynamics of the system, it will
not create amemoryless system because the bids themselves will
be dynamic; they will depend on the internal state which itself is
determined by the past history. This discussion on existence of
a dynamic feedback due to storage and load-shifting also high-
lights additional challenges in learning the demand curve by the
ISO, or learning the dynamics of the market by the consumers.
Modeling, system identification, state estimation, and analysis
of the dynamics of such systems are interesting and important
directions for further research. Some recent results on identi-
fication of the aggregate dynamics that emerges from optimal
load-shifting by a large group consumers can be found in [7].

D. Value of Information and Bidding

The above discussions lead to yet another interesting research
direction: “quantifying the value of information in closed-loop
electricity markets”. Given the heterogeneous nature of con-
sumers and time-varying uncertainty in their preferences, needs,

and valuations for electricity, learning their value functions and
predicting their response to a price signal in real-time is a chal-
lenging problem. Furthermore, as we discussed in Section V-C,
load-shifting and storage lead to additional complexities by in-
ducing dynamics in the demand model. Suppose that the con-
sumers provide a real-time estimate of their inelastic and elastic
consumption to the ISO, either directly or through bidding in
the market. Such information will change the dynamics of the
market. The important question is “How valuable will this real-
time information be and what would its impact be on volatility,
efficiency, robustness and fragility of the system?” Given the
potentially significant costs and barriers associated with cre-
ating and obtaining such information in real-time, quantifying
the value of information in this context seems an important and
timely question with potentially significant impact the architec-
ture of future power systems.

VI. NUMERICAL SIMULATIONS

In this section we present the results of some numerical sim-
ulation. For the purpose of simulations, we use the following
demand model:

(66)

where is the exogenous, inelastic demand:

and and are
random disturbances. The parameters and are adjusted,
on a case-to-case basis, such that the average demand under
real-time pricing (i.e., when , ) remains
nearly equal to the average demand in the open loop market

, that is

This normalization, takes out the effect of higher or lower
average demand on price and allows for a fair comparison of
volatility of prices in open-loop and closed-loop markets. The
following parameters are chosen for all simulations in this
section:

This puts the peak of the inelastic demand at 6 GW and the
valley at 2 GW,modulo the random disturbance . All simu-
lations are for a 24-h period and prices are updated every 5 min.
The average demand in all simulations is approximately 4 GW
per five minutes for both open-loop and closed-loop markets.
The metric for comparison in these simulation is the relative
volatility ratio (RVR), defined as the ratio of the -scaled IAV
of the closed-loop market to the -scaled IAV of the open-loop
market. The results of the first simulation are summarized in
Fig. 3. The prices are extremely volatile under real-time pricing
(RVR= 51.12) and the system is practically unstable.
The results of the second simulation are summarized in Fig. 4.

Based on the chosen parameters, this market is less volatile than
the one in the first simulation, yet, volatility of demand increases
under real-time pricing (RVR=2.33). Since in this simulation
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Fig. 3. Simulation of a market with quadratic cost function , value
function , and demand function given in (66) with

, .

Fig. 4. Simulation of a market with quadratic cost function , value
function , and demand function in (66) with ,

.

the cost is quadratic, the price (not shown) has a very similar
pattern.
The third simulation is summarized in Fig. 5. For each value

of (with 0.05 increments), the expected RVR was
calculated by taking the average RVR of 50 randomized simu-
lations. The random parameters are , , and the initial
conditions. The experiment was repeated for four different value
functions: . It is observed that
volatility increases with decreasing or , both of which in-
crease the price-elasticity of demand.

VII. CONCLUSIONS AND FUTURE WORK

We developed a theoretical framework to study the effects of
real-time retail pricing on the stability and volatility of power
systems. We highlighted that exposing the retail consumers
to the real-time wholesale market prices creates a closed-loop
feedback system. From a control system’s perspective, it is
intuitive that in the absence of a carefully designed control
law, such direct feedback may lead to increased volatility

Fig. 5. Simulation of a market with quadratic cost function ,
value function , and demand function given in (66) with

, and adjusted accordingly to keep the total demand constant. De-
creasing or increase the price-elasticity of the overall demand and hence,
increase volatility.

and decreased robustness to external disturbances. While we
used a static model of consumers and derived a dynamical
system model based on delay and information asymmetry, we
pointed out that storage and load shifting induce dynamics
and memory in the consumer model, with the state being the
amount of stored or backlogged demand. Considering such
models would lead to closed loop dynamical system models of
power systems even when the consumers bid in the market. As
a result, feedback and dynamics are inherent to power systems
under real-time pricing. Rigorous analysis of the dynamics of
the system in this case is part of the future work.
Under the assumptions of memoryless utility functions for

the consumers and autoregressive prediction models for the
ISO, we showed that scaled incremental volatility can be linked
to a function of the market’s maximal relative price-elasticity,
defined as the maximal ratio of generalized price-elasticity of
consumers to that of the producers. As this ratio increases, the
system may become more volatile. As the penetration of new
demand response technologies and distributed storage within
the power grid increases, so does the price-elasticity of demand.
Our theoretical analysis suggests that under current market and
system operation practices, this technological change may to
lead to increased volatility. In order to further substantiate these
results, more experimental studies as well as simulations with
more detailed models of consumer behavior and actual market
data are needed.
While it is possible to design a pricing mechanism, i.e., a con-

trol law that regulates the interaction of wholesale markets and
retail consumers, limitations of performance and the trade-offs
between various performance and robustness properties must be
carefully considered. In light of this, systematic analysis of the
implications of different pricing mechanisms, analysis of the
inherent dynamics of the system induced by load-shifting and
storage, quantifying the value of information and characteri-
zation of the fundamental trade-offs between volatility/robust-
ness/reliability, and economic efficiency, and environmental ef-
ficiency are important directions of future research. In sum-
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mary, more sophisticated models of demand, a deeper under-
standing of consumer behavior in response to real-time prices,
and a thorough understanding of the implications of different
market mechanisms and system architectures are needed for ef-
ficient and reliable implementation of real-time pricing schemes
in large-scale.

APPENDIX
PROOFS

Before we proceed with providing the proofs, we present the
following lemma, which will be used several times in this sec-
tion.

Lemma 1: Let be a subset of . Suppose that there ex-
ists a continuously differentiable function , a con-
tinuously differentiable monotonic function , and a
constant satisfying

(67)

Then

(68)

Furthermore, if (32) is satisfied, then

(69)

Proof: We have

(70)

where the inequality in (70) follows from (67) and the subse-
quent equality follows from (33). Proof of (69) is similar, ex-
cept that under the assumptions of the lemma, the non-strict in-
equality in (70) can be replaced with a strict inequality.
We will now present the proof of Theorem 1.
Proof of Theorem 1: The key idea of the proof is that the

function

(71)

is strictly monotonically decreasing along the trajectories of
(29). From Lemma 1, we have

(72)

Therefore, is a strictly decreasing bounded se-
quence and converges to a limit . We show that
is not possible. Note that the sequence is bounded

from below since the domain of is . Furthermore, as long
as , the sequence decreases
strictly. Therefore, (33) implies that

(73)

It follows from (73), monotonicity and continuity of that
the sequence is bounded from above too [similar argu-
ments prove boundedness of when (34) holds]. Hence,
either or has a subsequence
which converges to a limit . In the latter case, we have

If , then [due
to (30)]. If , then

Define a function according to

Then it follows from (72) that for all .
Furthermore, the function is continuous over the compact set

and achieves its supremum , where . Since
converges to , there exists , such that
. Then

Since , this proves that . Finally

This completes the proof of convergence for all initial condi-
tions. Proof of Lyapunov stability is based on standard argu-
ments in proving stability of nonlinear systems (see, e.g., [9]),
while using the same Lyapunov function defined in (71).

Proof of Theorem 2: For simplicity and convenience in
notation, we prove the theorem for the case. The proof
for the general case is entirely analogous. Define the function

according to

(74)

Let

(75)
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To prove that is invariant under (42), it is sufficient to show
that

(76)

To simplify the notation, define
and .

We have

(77)

where the first inequality is obtained by applying the triangular
inequality, and (77) follows from (43) and Lemma 1. By sum-
ming up both sides of (77) from to , we obtain

(78)

The inequality (76) then follows from (78) and (44). When (44)
holds with strict inequality, (46) follows from (78) and nonneg-
ativity of for all .

Proof of Theorem 3: Define

It is sufficient to show that there exists , such that

To simplify the notation, define
and

. Then

(79)

(80)

(81)

where (79) follows from the choice of and
, (80) follows from the triangular inequality, and (81) follows
from (53)–(54) and Lemma 1. The desired result follows from
the fact that the right-hand side of (81) will be non-positive for

, and defined in (55). To prove (57), let in
(81) to obtain

(82)

Summing both sides of (82) over all results in

(83)

It follows from (83) and nonnegativity of
that

(84)

The desired result (57) then follows immediately from (83) by
dividing by and taking the limit as .
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