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1. Introduction

We are increasingly confronted with very high dimensional data from speech,
images, genomes, and other sources. A collection of methodologies for analyzing
high dimensional data based on the hypothesis that data tend to lie near a low
dimensional manifold is now called “manifold learning” (see Figure 1). We refer
to the underlying hypothesis as the “manifold hypothesis.” Manifold learning, in
particular, fitting low dimensional nonlinear manifolds to sampled data points in
high dimensional spaces, has been an area of intense activity over the past two
decades. These problems have been viewed as optimization problems generalizing
the projection theorem in Hilbert space. We refer the interested reader to a limited
set of papers associated with this field; see [3, 8, 9, 11, 16, 20, 26, 31, 32, 41, 43, 47,
50, 52, 55] and the references therein. Section 2 contains a brief review of manifold
learning.

The goal of this paper is to develop an algorithm that tests the manifold hy-
pothesis.

Examples of low dimensional manifolds embedded in high dimensional spaces
include the following: image vectors representing three dimensional (3D) objects
under different illumination conditions, and camera views and phonemes in speech
signals. The low dimensional structure typically arises due to constraints arising
from physical laws. A recent empirical study [9] of a large number of 3 × 3 im-
ages represented as points in R

9 revealed that they approximately lie on a two
dimensional manifold knows as the Klein bottle.

One of the characteristics of high dimensional data of the type mentioned ear-
lier is that the number of dimensions is comparable to, or larger than, the number
of samples. This has the consequence that the sample complexity of function ap-
proximation can grow exponentially. On the positive side, the data exhibit the
phenomenon of “concentration of measure” [19,33], and asymptotic analysis of sta-
tistical techniques is possible. Standard dimension reduction techniques, such as
principal component analysis and factor analysis, work well when the data lie near
a linear subspace of high dimensional space. They do not work well when the data
lie near a nonlinear manifold embedded in the high dimensional space.

In this paper, we take a “worst case” viewpoint of the manifold learning problem.
Let H be a separable Hilbert space, and let P be a probability measure supported
on the unit ball BH of H. Let | · | denote the Hilbert space norm of H, and for any
x, y ∈ H let d(x, y) = |x− y|. For any x ∈ BH and any M ⊂ BH, a closed subset,
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TESTING THE MANIFOLD HYPOTHESIS 985

let d(x,M) = infy∈M |x − y| and L(M,P) =
∫
d(x,M)2dP(x). We assume that

i.i.d. data are generated from sampling P, which is fixed but unknown. This is a
worst-case view in the sense that no prior information about the data generating
mechanism is assumed to be available or used for the subsequent development. This
is the viewpoint of the modern statistical learning theory [54].

In order to state the problem more precisely, we need to describe the class of
manifolds within which we will search for the existence of a manifold which satisfies
the manifold hypothesis.

Let M be a submanifold of H. The reach τ > 0 of M is the largest number such
that for any 0 < r < τ , any point at a distance r of M has a unique nearest point
on M.

Let G = G(d, V, τ ) be the family of d dimensional C2-submanifolds of the unit
ball in H with volume ≤ V and reach ≥ τ . We will assume that τ < 1. We consider
a bound on the reach to be a natural constraint since if data lie within a distance
less than the reach of the manifold, it can be denoised by mapping data points to
the nearest point on the manifold.

Let P be an unknown probability distribution supported on the unit ball of a
separable (possibly infinite dimensional) Hilbert space and let (x1, x2, . . .) be i.i.d.
random samples sampled from P.

Let B be a black-box function which when given the labels �(v), �(w) of two
vectors v, w ∈ H outputs the inner product

B(�(u), �(v)) = 〈v, w〉.
Note that while we permit the Hilbert space to be infinite dimensional, we require
the labels to be finite dimensional for the finiteness of the algorithm.

The test for the manifold hypothesis answers the following affirmatively:
Given error ε, dimension d, volume V , reach τ , and confidence 1− δ, is there an

algorithm that takes a number of samples depending on these parameters and with
probability 1 − δ distinguishes between the following two cases (at least one must
hold):

(a) whether there is a

M ∈ G = G(d, CV, τ/C)

such that ∫
d(M,x)2dP (x) < Cε,

(b) whether there is no manifold

M ∈ G(d, V/C,Cτ )

such that ∫
d(M,x)2dP (x) < ε/C ?

Here d(M,x) is the distance from a random point x to the manifold M, C is a
constant depending only on d.

The basic statistical question is the following:
What is the number of samples needed for testing the hypothesis that data lie

near a low dimensional manifold?
The desired result is that the sample complexity of the task depends only on the

“intrinsic” dimension, volume, and reach, but not the “ambient” dimension.
We approach this by considering the empirical risk minimization problem.
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986 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Let

L(M,P ) =

∫
d(x,M)2dP (x) ,

and define the empirical loss

Lemp(M) =
1

s

s∑
i=1

d(xi,M)2,

where (x1, . . . , xs) are the data points. The sample complexity is defined to be
the smallest s such that there exists a rule A which assigns to given (x1, . . . , xs) a
manifold MA with the property that if x1, . . . , xs are generated i.i.d. from P, then

P

[
L(MA,P)− inf

M∈G
L(M,P) > ε

]
< δ.

We need to determine how large s needs to be so that

P

[
sup
G

∣∣∣1
s

s∑
i=1

d(xi,M)2 − L(M,P)
∣∣∣ < ε

]
> 1− δ.

The answer to this question is given by Theorem 1 in the paper.
The proof of the theorem proceeds by approximating manifolds using point

clouds and then using uniform bounds for k-means (Lemma 6 of the paper).
The uniform bounds for k-means are proven by getting an upper bound on the fat

shattering dimension of a certain function class and then using an integral related to
Dudley’s entropy integral. The bound on the fat shattering dimension is obtained
using a random projection (along with the Johnson Lindenstrauss lemma) and
the Sauer-Shelah lemma. The use of random projections in this context appears
in Chapter 4 of [35] and in [40]. However, due to the absence of chaining, the
bounds derived there are weaker. The Johnson-Lindenstrauss lemma has been used
previously in the context of manifolds in [2,13,28], where random projections of low
dimensional submanifolds of a high dimensional space are shown (after a suitable
dilation) to be nearly isometric to the original manifold with high probability.
The algorithmic question can be stated as follows:

Given N points x1, . . . , xN in the unit ball in R
n, distinguish between the fol-

lowing two cases (at least one must be true):
(a) whether there is a manifold M ∈ G = G(d, CV,C−1τ ) such that

1

N

N∑
i=1

d(xi,M)2 ≤ Cε,

where C is some constant depending only on d.
(b) whether there is no manifold M ∈ G = G(d, V/C,Cτ ) such that

1

N

N∑
i=1

d(xi,M)2 ≤ ε/C,

where C is some constant greater than 1 depending only on d.
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TESTING THE MANIFOLD HYPOTHESIS 987

The key step to solving this problem is to translate the question of optimizing
the squared loss over a family of manifolds to that of optimizing over sections of a
disc bundle. The former involves an optimization over a non-parameterized infinite
dimensional space, while the latter involves an optimization over a parameterized
(albeit infinite dimensional) set.

The proof of correctness of our algorithm requires showing two things:

(1) If a “good manifold” exists, then our algorithm is guaranteed to find “good
local sections” close to pieces of this manifold. Therefore, if the algorithm
is unable to find good local sections, then there is no good manifold.

(2) If good local sections are found by our algorithm, then these local sections
can be patched together to form a manifold in the class of interest, such
that each local section is close to a piece of this manifold.

These good local sections are local sections of a disc bundle. We introduce the
notion of a cylinder packet in order to define a disc bundle. A cylinder packet is a
finite collection of cylinders satisfying certain alignment constraints. An example
of a cylinder packet corresponding to a d-manifold M of reach τ (see Definition 1)
in R

n is obtained by taking a net (see Definition 6) of the manifold and for every
point p in the net, throwing in a cylinder centered at p isometric to 2τ̄(Bd ×Bn−d)
whose d dimensional central cross section is tangent to M. In general, p need not
be at the center of the cylinder, but would lie inside the cylinder. Here τ̄ = cτ
for some appropriate constant c depending only on d, while Bd and Bn−d are d
dimensional and (n− d) dimensional balls, respectively.

On every cylinder cyli in the packet, we define a function fi that is the squared
distance to the d dimensional central cross section of cyli. These functions are put
together using a partition of unity defined on ∪icyli. The resulting function f is
an “approximate-squared-distance function” (see Definition 15). The base manifold
is the set of points x at which the gradient ∂f is orthogonal to the eigenvectors
corresponding to the top n − d eigenvalues of the Hessian Hess f(x). The fiber of
the disc bundle at a point x on the base manifold is defined to be the (n − d) di-
mensional Euclidean ball centered at x contained in the span of the aforementioned
eigenvectors of the Hessian. The base manifold and its fibers together define the
disc bundle. The base manifold is a temporary approximation to the manifold that
we are searching for.

We next perform an optimization over sections of the disc bundle in order to cer-
tify the existence of the desired manifold, if it exists. This optimization proceeds as
follows. We fix a cylinder cyli of the cylinder packet. We optimize the squared loss
over local sections corresponding to jets whose C2-form is bounded above by c1

τ̄ ,
where c1 is a controlled constant. The corresponding graphs are each contained in-
side cyli. The optimization over local sections is performed by minimizing squared
loss over a space of C2-jets (see Definition 22) constrained by inequalities developed
in [24]. The resulting local sections corresponding to various i are then patched
together using the disc bundle and a partition of unity supported on the base man-
ifold, to yield the actual manifold. The last step is performed implicitly, since we
do not actually need to produce a manifold, but only need to certify the existence
or non-existence of a manifold possessing certain properties.

The optimizations are performed over a large ensemble of cylinder packets. In-
deed the size of this ensemble is the chief contribution in the complexity bound.
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988 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

The results of this paper together with those of [24] lead to an algorithm for
fitting a manifold to the data as well; the main additional step is to construct local
sections from jets, rather than settling for the existence of good local sections as
we do here.

1.1. Definitions.

Definition 1 (reach). Let M be a subset of H. The reach of M is the largest
number τ to have the property that any point at a distance r < τ from M has a
unique nearest point in M.

Definition 2 (tangent space). Let H be a separable Hilbert space. For a closed A ⊆
H, and a ∈ A, let the “tangent space” Tan0(a,A) denote the set of all vectors v such
that for all ε > 0, there exists b ∈ A such that 0 < |a−b| < ε and

∣∣v/|v|− b−a
|b−a|

∣∣ < ε.

Let Tan(a,A) denote the set of all x such that x−a ∈ Tan0(a,A). For a set X ⊆ H
and a point p ∈ H, let d(p,X) denote the Euclidean distance of the nearest point
in X to p.

The following result of Federer (Theorem 4.18 of [22]) gives an alternate charac-
terization of the reach.

Proposition 1. Let A be a closed subset of Rn. Then

reach(A)−1 = sup
{
2|b− a|−2d(b, Tan(a,A))

∣∣a, b ∈ A, a 
= b
}
.(1)

1.2. Constants. d is a fixed integer. Constants c, C, C ′, etc., depend only on d.
These symbols may denote different constants in different occurrences, but d always
stays fixed.

1.3. d-planes. H denotes a fixed Hilbert space, possibly infinite dimensional, but
in any case of dimension > d. A d-plane is a d dimensional vector subspace of H.
We write Π to denote a d-plane, and we write dPL to denote the space of all d-
planes. If Π,Π′ ∈ dPL, then we write dist(Π,Π′) to denote the infimum of ‖T − I‖
over all orthogonal linear transformations T : H → H that carry Π to Π′. Here,
the norm ‖A‖ of a linear map A : H → H is defined as

sup
v∈H\{0}

‖Av‖H
‖v‖H

.

One checks easily that (dPL, dist) is a metric space. We write Π⊥ to denote the
orthocomplement of Π in H.

1.4. Patches. Suppose BΠ(0, r) is the ball of radius r about the origin in a d-plane
Π, and suppose

Ψ : BΠ(0, r) → Π⊥

is a C2-map and hence a C1,1-map, with Ψ(0) = 0. Then we call

Γ = {x+Ψ(x) : x ∈ BΠ(0, r)} ⊂ H
a patch of radius r over Π centered at 0. We define

‖Γ‖Ċ1,1(BΠ(0,r)) := sup
distinctx,y∈BΠ(0,r)

‖∂Ψ(x)− ∂Ψ(y)‖
‖x− y‖ .
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TESTING THE MANIFOLD HYPOTHESIS 989

Here,

∂Ψ(x) : Π → Π⊥

is a linear map, and for linear maps A : Π → Π⊥, we define ‖A‖ as

sup
v∈Π\{0}

‖Av‖
‖v‖ .

If also

∂Ψ(0) = 0,

then we call Γ a patch of radius r tangent to Π at its center 0. If Γ0 is a patch of
radius r over Π centered at 0 and if z ∈ H, then we call the translate Γ = Γ0+z ⊂ H
a patch of radius r over Π, centered at z. If Γ0 is tangent to Π at its center 0, then
we say that Γ is tangent to Π at its center z.

1.5. Imbedded manifolds.

Definition 3. Let M ⊂ H be a “compact imbedded d-manifold” (for short, just a
“manifold”) if the following hold:

• M is compact.
• There exists an r1 > r2 > 0 such that for every z ∈ M, there exists
TzM ∈ dPL such that M ∩ BH(z, r2) = Γ ∩ BH(z, r2) for some patch Γ
over Tz(M) of radius r1, centered at z and tangent to Tz(M) at z. We call
Tz(M) the tangent space to M at z.

We say that M has infinitesimal reach ≥ ρ if for every ρ′ < ρ, there is a choice
of r1 > r2 > 0 such that for every z ∈ M there is a patch Γ over Tz(M) of radius
r1, centered at z and tangent to Tz(M) at z which has C1,1-norm at most 1

ρ′ .

Definition 4 (a class of imbedded C2 d-manifolds). Let BH be the unit ball in
H. Let G = G(d, V, τ ) be the family of imbedded C2 d-submanifolds of BH having
volume less than or equal to V and reach greater than or equal to τ . We assume as
mentioned before that τ < 1.

Let H be a separable Hilbert space and P be a probability distribution supported
on its unit ball BH. Let | · | denote the Hilbert space norm on H. For x, y ∈ H, let
d(x, y) := |x−y|. For any x ∈ BH and any M ⊆ BH, let d(x,M) := infy∈M |x−y|,
and

L(M,P) :=

∫
d(x,M)2dP(x).

Let B be a black-box function which when given the labels �(v), �(w) of two
vectors v, w ∈ H outputs the inner product

B(�(u), �(v)) = 〈v, w〉.

We develop an algorithm which for given δ, ε ∈ (0, 1), V > 0, integer d, and τ > 0
takes i.i.d. random samples from P as input and determines which of the following
two is true (at least one must be):

(1) there exists M ∈ G(d, CV, τ
C ) such that L(M,P) ≤ Cε,

(2) there exists no M ∈ G(d, V/C,Cτ ) such that L(M,P) ≤ ε
C .
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Figure 1. Data lying in the vicinity of a two dimensional torus.

The answer is correct with probability at least 1− δ. Here, C depends on d alone
and is greater than 1.

The number of data points required (Theorem 1) is of the order of

n :=
Np ln

4
(

Np

ε

)
+ ln(δ−1)

ε2
,

where

Np := V

(
1

τd
+

1

εd/2τd/2

)
,

and the number of arithmetic operations is

exp

(
C

(
V

τd

)
n ln(τ−1)

)
.

(Corollary 2 shows that Np is an upper bound on the size of a
√
ετ -net of M.) The

number of calls made to B is O(n2).
We say that such an algorithm tests the manifold hypothesis.
If one wishes to ascertain the mean of a bounded random variable to within ε, it

requires 1/ε2 samples. However, for more complicated questions such as estimating
a manifold to within ε in Hausdorff distance, there are upper and lower bounds of

O(ε
−(2+d)

2 ) [12]. Thus our upper bound of ε−d/2−2 is not far from this bound.
The outline of the paper is as follows.
Section 2 is a brief survey of the literature on manifold learning.
Section 3 introduces sample complexity and has the statement of Theorem 1

which is our main result on sample complexity of testing the manifold hypothesis.
This theorem is about the number of samples needed to fit a manifold of certain
reach, volume, and dimension to an arbitrary probability distribution supported on
the unit ball.

Section 4 contains the proof of Theorem 1. We reduce the problem to a uniform
bound over a space of manifolds relating the empirical risk (or loss) to the true risk
(i.e., expected squared distance between a random point to the manifold). Covering
numbers at small scales play an important role. Here, by a covering number we
mean the minimal size of a finite subset (net) of a manifold M such that every
point of M is within ε of some point of the net. Primary tools include the Johnson-
Lindenstrauss lemma, the Vapnik-Chervonenkis theory (Lemma 3 and Lemma 4),
and tools from empirical processes (Lemma 5 and Lemma 6).
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TESTING THE MANIFOLD HYPOTHESIS 991

In Lemma 9 of Section 5, a uniform bound over the space of k-tuples of affine
subspaces is obtained relating the empirical risk to the true risk.

In Section 6, we perform a dimension reduction that maps the manifold into a
subspace spanned by a net of the manifold. This dimension reduction maps a man-
ifold onto another with a similar reach, volume, and equal dimension. Further, the
Hausdorff distance between the two manifolds is small. Since we are not assuming
that the dimension on the ambient space is finite, such a dimension reduction is
essential to obtain a finite algorithm. Our results are stated for separable Hilbert
spaces. Once the dimension reduction is done, without loss of generality, we assume
that the ambient space is Rn.

In Section 7, we provide an overview of the algorithm for testing the manifold
hypothesis.

In Section 8, we give the formal definitions of the disc bundles we use in our
algorithm.

Section 9 contains the key technical result of the paper—Theorem 13.
In this theorem we consider, as a function φ of an open subset of the ambient

space, the gradient of an approximate-squared-distance-function F ō. For each point
x in the domain of φ, we project φ(x) to the subspace spanned by the eigenvectors
of the Hessian of F ō(x) corresponding to large eigenvalues, and we use the implicit
function theorem on the zeros of that set. Specifically, we consider the set of
points where φ is orthogonal to the span of these eigenvectors. We construct a disc
bundle with a manifold (the “putative manifold”) as the base space, with the fiber
at a base point being given by the span of the eigenvectors corresponding to the
large eigenvalues of the Hessian of F ō intersected with a ball of radius τ̄ . Every
point in the disc bundle can be expressed uniquely as a base point on the putative
manifold plus a vector in the fiber corresponding to that base point. This unique
decomposition is used later to patch together local sections to form a global section
of the disc bundle. A key component is a lower bound on the gap between the top
(n−d) eigenvalues and bottom d eigenvalues of the Hessian of F ō that is given by a
controlled constant. This gap affects both the reach of the manifold and the radius
τ̄ of the fibers.

At this point our goal is to perform an optimization over the space of manifolds
G(d, V, τ ) in order to certify the existence or non-existence of a manifold having a
certain least squares error with respect to the data. Unfortunately this space is not
equipped with a vector space structure and is difficult to optimize on. Our approach
to handling this difficulty is to express it as the union of classes of manifolds, each
class consisting of those manifolds that are near a given putative manifold. Each
manifold in a fixed class can be associated with a section of a disc bundle over
the relevant putative manifold. These sections enjoy a convex structure. Since
the squared loss function is a convex function, we can use convex optimization
techniques over the manifolds in a given class. It remains to describe how we
come up with an exhaustive collection of disc bundles such that every manifold in
G(d, V, τ ) corresponds to a section of some disc bundle.

In Section 10, it is shown how to construct cylinder packets consisting of cylinders
isometric to τ̄ (Bd ×Bn−d) that satisfy certain alignment constraints.

In Section 11, an approximate-squared-distance function (asdf) is defined, and
it is shown how to construct a disc bundle from such a function. It is further shown
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992 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

that if an asdf has certain properties with respect to a manifold, then the manifold
is the graph of a section of the corresponding disc bundle.

In Section 12 it is shown how to construct an asdf using cylinder packets. Each
such function defines a disc bundle over a base putative manifold. A subset of
the manifolds in G correspond to sections of this disc bundle. It is further shown
that if the cylinder packet is “admissible” with respect to a manifold, then the
corresponding disc bundle has a section of which this manifold is the graph.

In Section 13 results on Whitney interpolation are used to give a polyhedral
description of the collection of jets that correspond to local sections with the ap-
propriate bound on the C2 norm. Vaidya’s algorithm [53] is then used to optimize
over the polytope thus constructed to estimate the optimal mean-squared error with
respect to the data. The complexity of testing the existence of good local sections
for a given cylinder packet is polynomial in the size of the data.

In Section 14 we describe how local sections are patched together to give global
sections, using a partition of unity supported on a putative manifold.

In Section 15 we show that the reach of the manifold constructed in the previous
step is of the order of τ .

In Section 16, we show that the mean-square error in approximating the data is
within a controlled constant C of the optimal.

In Section 17, we provide bounds on the number of arithmetic operations required
by the algorithm.

The Appendix contains proofs of some of the results in the main text.

1.6. A note on controlled constants. In this section, and the following sections,
we will make frequent use of constants c, C, C1, C2, c1, . . . , c11 and c12, etc. These
constants are “controlled constants” in the sense that their value is entirely deter-
mined by the dimension d unless explicitly specified otherwise (as for example in
Theorem 13). Also, the value of a constant can depend on the values of constants
defined before it, but not those defined after it. This convention clearly eliminates
the possibility of loops.

2. Literature on manifold learning

At present there are available a number of methods which aim to transform data
lying near a d dimensional manifold in an N dimensional space into a set of points
in a low dimensional space close to a d dimensional manifold. A comprehensive
review of manifold learning can be found in a recent book [35]. The most basic
method is “principal component analysis” (PCA) [27, 45], where data points are
projected on to the span of the eigenvectors corresponding to the top d eigenvalues
of the (N ×N) covariance matrix of the data points. A variation is the kernel PCA
[49] where one works in the “feature space” rather than the original ambient space.

In the case of “multi-dimensional scaling”(MDS) [15], only pairwise distances be-
tween points are attempted to be preserved when projecting to a lower dimensional
space.

“Isomap” [52] attempts to improve on MDS by trying to capture geodesic dis-
tances between points while projecting. For each data point a “neighborhood
graph” is constructed using its k neighbors (k could be varied based on other
criteria), the edges carrying the length between points. Now the shortest distance
between points is computed in the resulting global graph containing all the neigh-
borhood graphs using a standard graph theoretic algorithm such as Dijkstra’s. It
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is this “geodesic” distance which the method tries to preserve when projecting to
a lower dimensional space.

“Maximum variance unfolding” [55] also constructs the neighborhood graph as
in the case of Isomap but tries to maximize the distance between projected points
keeping distance between the nearest points unchanged after projection.

In “diffusion maps” [14], a complete graph on the N data points is built. Each
edge is assigned a weight based on a gaussian. The matrix is normalized to make it
into a transition matrix of a Markov chain. The d nontrivial λi and their eigenvec-
tors vi of P

t are computed, the d eigenvectors form the rows of the d×N matrix,
and the columns of this matrix constitute the lower dimensional representation of
the data points.

“Local linear embedding” (LLE) [47] preserves solely local properties of the data
once again using the neighborhood graph of each data point.

In the case of the “Laplacian eigenmap” [3,30] again, a nearest neighbor graph is
formed. Either this could be an undirected k-nearest neighbor graph or there could
be a parameter ε that determines neighborhoods based on points that are within
a Euclidean distance of ε. Weights are assigned to the edges as indicated below,
a Laplacian matrix is computed, and a certain quadratic function is based on the
Laplacian minimized through the solution of a generalized eigenvalue problem. The
top d-eigenvectors constitute a representation of the data.

Hessian LLE (also called Hessian eigenmaps) [20] and “local tangent space align-
ment” (LTSA) [56] attempt to improve on LLE by also taking into consideration
the curvature of the higher dimensional manifold while preserving the local pairwise
distances.

The alignment of local coordinate mappings also underlies some other methods
such as “local linear coordinates” [46] and “manifold charting” [7].

Methods which map higher dimensional data points to lower dimensional con-
structs (principal sets) more general than manifolds are described in [44] and studied
more formally in [25]. Another line of research starts with principal curves/surfaces
[26] and topology preserving networks [36]. Manifolds of probability distributions
and connections to the work of Amari [1] have been studied in the work of Newton
[42]. Uniform rectifiability offers an alternative to reach as a way of distinguishing
complicated sets from simple ones (see [17]).

Some of the algorithms are known to perform correctly under the hypothesis
that data lie on a manifold of a specific kind. In Isomap and LLE, the manifold has
to be an isometric embedding of a convex subset of Euclidean space. In the case of
[4, 10], the manifold is a simplicial complex and witness complex, respectively. In
the limit as the number of data points tends to infinity, when the data approximate
a manifold, then one can recover the geometry of this manifold by computing an
approximation of the Laplace-Beltrami operator. Laplacian eigenmaps and diffu-
sion maps rest on this idea. LTSA works for parameterized manifolds and detailed
error analysis is available for it.

3. Sample complexity of manifold fitting

In this section, we show that if we randomly sample sufficiently many points as
in the above mentioned algorithm and then find the least squares fit manifold to
these data, we obtain an almost optimal manifold.
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Definition 5 (sample complexity). Given error parameters ε, δ, a space Y , and a
set of functions (henceforth function class) F of functions f : Y → R, we define
the sample complexity s = s(ε, δ,F) to be the least number such that the following is
true. There exists a function A : Y s → F such that, for any probability distribution
P supported on Y , if (x1, . . . , xs) ∈ Y s is a sequence of i.i.d. draws from P, then
fout := A((x1, . . . , xs)) satisfies

P

[
Ex�Pfout(x) < ( inf

f∈F
Ex�Pf(x)) + ε

]
> 1− δ.

We state below, a sample complexity bound when the mean-squared error is
minimized over G(d, V, τ ). Thus the function class F consists of functions fM(x) :=
d(x,M)2 indexed by M. The manifold that minimizes the empirical risk will be
denoted Merm(X), erm standing for empirical risk minimization. This manifold is
a function of X = (x1, . . . , xs), a sequence of i.i.d. points from P. The minimization
involved is of a quantity L(M,PX). The theorem as stated is true only if s, the
number of data points, is greater than or equal to sG(ε, δ). This theorem says
that instead of optimizing L(M,P) over manifolds M, if s is sufficiently large,
we might as well optimize L(M,PX) over manifolds M, where PX is the empirical
measure equally distributed over the data set x1, . . . , xs. The constant C > 1 in the
definition of UG(1/ε) depends on the volume of a ball in d dimensional Euclidean
space. The constant C ′ > 1 in sG(ε, δ) is a universal constant.

Theorem 1. For r > 0, let

UG(1/r) =
CV

τd
+

CV

(τr)d/2
.

Let

sG(ε, δ) := C ′
(
UG(1/ε)

ε2

(
log4

(
UG(1/ε)

ε

))
+

1

ε2
log

1

δ

)
.

Let s ≥ sG(ε, δ) and X = (x1, . . . , xs) be a sequence of i.i.d. points from P and
PX be the uniform probability measure over X. Let Merm(X) denote a manifold
in G(d, V, τ ) that approximately minimizes the quantity

L(M,PX) = s−1
s∑

i=1

d(xi,M)2

in the sense that

L(Merm(X),PX)− inf
M∈G(d,V,τ)

L(M,PX) <
ε

2
.

Then,

P

[
L(Merm(X),P)− inf

M∈G(d,V,τ)
L(M,P) < ε

]
> 1− δ.

3.1. Sketch of the proof of Theorem 1. The first step involves obtaining new
dimension independent bounds for the sample complexity of k-means, or in other
words the problem of fitting k points to a probability distribution supported on
the unit ball in a Hilbert space. This is essentially done in Lemma 6. Recall
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that given a data set {x1, . . . , xs}, k-means is the problem of producing k-centers
c = {c1, . . . , ck} with the property that for any other set of k centers c′,

∑
i≤s

min
j≤k

d(xi, cj)
2 ≤

∑
i≤s

min
j≤k

d(xi, c
′
j)

2.

(For the best previously known bound of O
(

k2

ε2

)
for the sample complexity of

k-means in a ball in a Hilbert space, see [38].)
The second step involves upper bounding (see Lemma 7), the sample complexity

of fitting the best manifold in G(d, V, τ ) to a probability distribution supported on
the unit ball, by the sample complexity of fitting UG(1/ε) points in a least squares
sense to the same probability distribution. This argument involves approximat-
ing manifolds in G(d, V, τ ) to within ε using point sets with respect to Hausdorff
distance. This is done in Claim 1 and Corollary 2.

4. Proof of Theorem 1

Let M ∈ G(d, V, τ ). For x ∈ M denote the orthogonal projection from H to
the affine subspace Tan(x,M) by Πx. We will need the following claim to prove
Theorem 1.

Claim 1. Suppose that M ∈ G(d, V, τ ). Let

U := {y
∣∣|y −Πxy| ≤ τ/C} ∩ {y

∣∣|x−Πxy| ≤ τ/C},
for a sufficiently large controlled constant C. There exists a C1,1 function Fx,U

from Πx(U) to Π−1
x (Πx(0)) such that

{y + Fx,U (y)
∣∣y ∈ Πx(U)} = M∩ U

and further such that the Lipschitz constant of the gradient of Fx,U is bounded above

by C1

τ .

The above claim is proved in the Appendix.

4.1. A bound on the size of an ε-net.

Definition 6. Let (X,d) be a metric space, and r > 0. We say that Y is an r-net
of X if Y ⊆ X and for every x ∈ X, there is a point y ∈ Y such that d(x, y) < r.

Corollary 2. Let

UG : R+ → R

be given by

UG(1/r) = CV

(
1

τd
+

1

(τr)d/2

)
.

Let M ∈ G(d, V, τ ) and M be equipped with the metric dH of the Hilbert space H.
Then, for any r > 0, there is a

√
τr-net of M consisting of no more than UG(1/r)

points.

Proof. It suffices to prove that for any r ≤ τ , there is an r-net of M consisting
of no more than CV

(
1
τd + 1

rd

)
, since if r > τ , a τ -net is also an r-net. Suppose

Y = {y1, y2, . . . } is constructed by the following greedy procedure. Let y1 ∈ M
be chosen arbitrarily. Suppose y1, . . . , yk have been chosen. If the set of all y such
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Figure 2. A uniform bound (over G) on the difference between
the empirical and true loss.

that min1≤i≤k |y − yi| ≥ r is non-empty, let yk+1 be an arbitrary member of this
set. Else declare the construction of Y to be complete.

We see that Y is an r-net of M. Second, we see that the distance between any
two distinct points yi, yj ∈ Y is greater than or equal to r. Therefore the two balls
M∩BH(yi, r/2) and M∩BH(yj , r/2) do not intersect.

By Claim 1, and the fact that the reach of M is greater than or equal to τ , it
follows that for each y ∈ Y , there are controlled constants 0 < c < 1/2 and 0 < c′

such that for any r ∈ (0, τ ], the volume of M ∩ BH(y, cr) is greater than c′rd.
See footnote.1 (In invoking Claim 1, the Lipschitz property of the gradient is not
needed.)

Since the volume of

{z ∈ M|d(z, Y ) ≤ r/2}
is less than or equal to V , the cardinality of Y is less than or equal to V

c′rd for all
r ∈ (0, τ ]. The corollary follows. �

4.2. Tools from empirical processes. In this subsection, unless otherwise stated,
data (x1, . . . , xs) will be a sequence of i.i.d. draws from a probability measure P
(or μ) supported on the unit ball BH of a Hilbert space H. In order to prove a
uniform bound of the form

P

[
sup
F∈F

∣∣∣∣∣
∑s

i=1 F (xi)

s
− EPF (x)

∣∣∣∣∣ < ε

]
> 1− δ,(2)

it suffices to bound a measure of the complexity of F known as the fat shattering
dimension of the function class F . The metric entropy (defined below) of F can
be bounded using the fat shattering dimension, leading to a uniform bound of the
form of (2), see Figure 2.

Definition 7 (metric entropy). Given a metric space (Y, ρ), we call Z ⊆ Y an
η-net of Y if for every y ∈ Y , there is a z ∈ Z such that ρ(y, z) < η. Let P be
a measure supported on a metric space X, and F a class of functions from X to
R. Let N(η,F ,L2(P)) denote the minimum number of elements that an η-net of
F could have, with respect to the metric imposed by the Hilbert space L2(P). Here,

1This is because the area of a surface is no less than the area of a projection of it onto a
subspace.
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the distance between f1 : X → R and f2 : X → R is

‖f1 − f2‖L2(P) =

√∫
(f1(x)− f2(x))2dP .

We call lnN(η,F ,L2(P)) the metric entropy of F at scale η with respect to L2(P).

Definition 8 (fat shattering dimension). Let F be a set of real valued functions.
We say that a set of points x1, . . . , xk is γ-shattered by F if there is a vector of real
numbers t = (t1, . . . , tk) such that for all binary vectors b = (b1, . . . , bk), there is a
function fb,t satisfying,

fb,t(xi) =

{
> ti + γ, if bi = 1;
< ti − γ, if bi = 0.

(3)

For each γ > 0, the fat shattering dimension fatγ(F) of the set F is defined to be
the size of the largest γ-shattered set if this is finite; otherwise fatγ(F) is declared
to be infinite.

The supremum taken over (t1, . . . , tk) of the number of binary vectors b, for
which there is a function fb,t ∈ F which satisfies ( 3), is called the γ-shatter co-
efficient of (x1, . . . , xk). (Thus the γ-shatter coefficient of a k-element set that is
γ-shattered is 2k.)

We will also need to use the notion of VC dimension and some of its properties.
These appear below.

Definition 9. Let Λ be a collection of measurable subsets of Rm. For x1, . . . , xk ∈
R

m, let the number of different sets in {{x1, . . . , xk} ∩ H;H ∈ Λ} be denoted the
shatter coefficient NΛ(x1, . . . , xk) of (x1, . . . , xk). The VC dimension V CΛ of Λ is
the largest integer k such that there exist x1, . . . , xk such that NΛ(x1, . . . , xk) = 2k.

The following result concerning the VC dimension of half-spaces is well known
(Corollary 13.1 [18]).

Lemma 3. Let Λ be the class of half-spaces in R
g. Then V CΛ = g + 1.

We state the Sauer-Shelah lemma below.

Lemma 4 (Theorem 13.2 [18]). Let Λ be a collection of measurable subsets of Rg.

For any x1, . . . , xk ∈ R
g, NΛ(x1, . . . , xk) ≤

∑V CΛ

i=0

(
k
i

)
. (Note that

(
k
i

)
= 0 if i > k.)

For V CΛ > 2,
∑V CΛ

i=0

(
k
i

)
≤ kV CΛ .

The lemma below follows from existing results from the theory of empirical
processes in a straightforward manner, but does not seem to have appeared in
print before. We have provided a proof in the Appendix.

Lemma 5. Let μ be a probability measure supported on X and F be a class of
functions f : X → R. Let x1, . . . , xs be independent random variables drawn from
μ and μs be the uniform measure on x := {x1, . . . , xs}. If

s ≥ C

ε2

((∫ ∞

cε

√
fatγ(F)dγ

)2

+ log 1/δ

)
,

then

P

[
sup
f∈F

∣∣∣∣Eμs
f(xi)− Eμf

∣∣∣∣ ≥ ε

]
≤ δ.
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Figure 3. Random projections are likely to preserve linear separations.

A key component in the proof of the uniform bound in Theorem 1 is an upper
bound on the fat shattering dimension of functions given by the maximum of a
set of minima of collections of linear functions on a ball in H. We will use the
Johnson-Lindenstrauss lemma [29] in its proof.

Let J be a finite dimensional vector space of dimension greater than or equal to
g. In what follows, by “uniformly random g dimensional subspace in J ,” we mean a
random variable taking values in the set of g dimensional subspaces of J , possessing
the property that its distribution is invariant under the action of the orthogonal
group acting on J .
Johnson-Lindenstrauss lemma: Let y1, . . . , y�̄ be points in the unit ball in R

m for
some finite m. Let R be an orthogonal projection (see Figure 3) onto a random g

dimensional subspace (where g = C log �̄
γ2 for some γ > 0, and an absolute constant

C > 1). Then,

P

[
sup

i,j∈{1,...,�̄}

∣∣∣∣
(
m

g

)
〈Ryi, Ryj〉 − 〈yi, yj〉

∣∣∣∣ > γ

2

]
<

1

2
.

Lemma 6. Let μ be a probability distribution supported on BH := {x ∈ H : ‖x‖ ≤
1}. Let x1, . . . , xs be independent random variables drawn from μ and μs be the
uniform measure on x := {x1, . . . , xs}. Let Fk,� be the set of all functions f from
H to R, such that for some k� vectors v11, . . . , vk� ∈ BH,

f(x) = max
j

min
i
(vij · x).

Then,

(1) fatγ(Fk,�) ≤ Ck�
γ2 log2 Ck�

γ2 .

(2) If s ≥ C
ε2

(
k� ln4(k�/ε2) + ln 1/δ

)
, then P[supf∈Fk,�

∣∣Eμs
f(xi)−Eμf

∣∣ ≥ ε] ≤
δ.

The proof of this lemma has been shifted to the Appendix.
In order to prove Theorem 1, we relate the empirical squared loss

s−1
∑s

i=1 d(xi,M)2 and the expected squared loss over a class of manifolds whose
covering numbers at a scale ε have a specified upper bound. Let U : R+ → Z

+

be a real-valued function. Let G̃ be any family of subsets of the unit ball BH in a
Hilbert space H such that for all r > 0 every element M ∈ G̃ can be covered using
U( 1r ) open Euclidean balls.
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A priori it is unclear if

sup
M∈G̃

∣∣∣∣
∑s

i=1 d(xi,M)2

s
− EPd(x,M)2

∣∣∣∣(4)

is a random variable, since the supremum of a set of random variables is not always
a random variable (although if the set is countable, this is true). Let dhaus represent

the Hausdorff distance. For each n ≥ 1, G̃n is a countable set of finite subsets of H,
such that for each M ∈ G̃, there exists M′ ∈ G̃n such that dhaus(M,M′) ≤ 1/n,

and for each M′ ∈ G̃n, there is an M′′ ∈ G̃ such that dhaus(M′′,M′) ≤ 1/n. For

each n, such a G̃n exists because H is separable. Now (4) is equal to

lim
n→∞

sup
M′∈G̃n

∣∣∣∣
∑s

i=1 d(xi,Mn)
2

s
− EPd(x,Mn)

2

∣∣∣∣,
and for each n, the supremum in the limits is over a countable set; thus, for a
fixed n, the quantity in the limits is a random variable. Since the pointwise limit
of a sequence of measurable functions (random variables) is a measurable function
(random variable), this proves that

sup
M∈G̃

∣∣∣∣
∑s

i=1 d(xi,M)2

s
− EPd(x,M)2

∣∣∣∣
is a random variable.

Lemma 7. Let ε and δ be error parameters. Let UG : R+ → R
+ be a function

taking values in the positive reals. Suppose every M ∈ G(d, V, τ ) can be covered by

the union of some UG(
1
r ) open Euclidean balls of radius

√
rτ
16 , for every r > 0. If

s ≥ C

(
UG(1/ε)

ε2

(
log4

(
UG(1/ε)

ε

))
+

1

ε2
log

1

δ

)
,

then

P

[
sup

M∈G(d,V,τ)

∣∣∣∣
∑s

i=1 d(xi,M)2

s
− EPd(x,M)2

∣∣∣∣ < ε

]
> 1− δ.

Proof. Given a collection c := {c1, . . . , ck} of points in H, let

fc(x) := min
cj∈c

|x− cj |2.(5)

Let Fk denote the set of all such functions for

c = {c1, . . . , ck} ⊆ BH,

BH being the unit ball in the Hilbert space.

Consider M ∈ G := G(d, V, τ ). Let c(M, ε) = {ĉ1, . . . , ĉk̂} be a set of k̂ :=
UG(1/ε) points in M, such that M is contained in the union of Euclidean balls of
radius

√
τε/16 centered at these points. Suppose x ∈ BH. Since c(M, ε) ⊆ M,

we have d(x,M) ≤ d(x, c(M, ε)). To obtain a bound in the reverse direction, let
y ∈ M be a point such that |x− y| = d(x,M), and let z ∈ c(M, ε) be a point such
that |y − z| < √

τε/16. Let z′ be the point on Tan(y,M) that is closest to z. By
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the reach condition, and Proposition 1,

|z − z′| = d(z, Tan(y,M))

≤ |y − z|2
2τ

≤ ε

512
.

Therefore,

2〈y − z, x− y〉 = 2〈y − z′ + z′ − z, x− y〉
= 2〈z′ − z, x− y〉
≤ 2|z − z′||x− y|
≤ ε

128
.

In the last line above, we use the fact that both x and M � y belong to the unit
ball and hence |x− y| ≤ 2.

Thus

d(x, c(M, ε))2 ≤ |x− z|2

≤ |x− y|2 + 2〈y − z, x− y〉+ |y − z|2

≤ d(x,M)2 + ε
128 + ετ

256 .

Since τ < 1, this shows that

d(x,M)2 ≤ d(x, c(M, ε))2 ≤ d(x,M)2 +
ε

64
.

Note that

d(x, c(M, ε))2 = fc(M,ε)(x).

Therefore,

P

[
sup
M∈G

∣∣∣∣
∑s

i=1 d(xi,M)2

s
− EPd(x,M)2

∣∣∣∣ < ε

]
(6)

≥ P

[
sup

fc∈Fk̂

∣∣∣∣
∑s

i=1 fc(xi)

s
− EPfc(xi)

∣∣∣∣ < ε

3

]
.

Inequality (6) reduces the problem of deriving uniform bounds over a space of
manifolds to a problem of deriving uniform bounds for k-means.

Let

Φ : x �→ 2−1/2(x, 1)

map a point x ∈ H to one in H⊕R, which we equip with the natural Hilbert space
structure. For each i, let

c̃i := 2−1/2(−ci,
‖ci‖2
2

).(7)

The factor of 2−1/2 (which could have been replaced by a slightly larger constant)
is present because we want c̃i to belong to the unit ball. Then,

fc(x) = |x|2 + 4min(〈Φ(x), c̃1〉, . . . , 〈Φ(x), c̃k〉).
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Let FΦ be the set of functions that map H to R having the form 4minki=1 Φ(x) · c̃i
where c̃i is given by (7) and

c = {c1, . . . , ck} ⊆ BH.

The metric entropy of the function class obtained by translating FΦ by adding
|x|2 to every function in it is the same as the metric entropy of FΦ. However, this
translated function class has the unit ball of a separable Hilbert space as its domain
as well.

Therefore the integral of the square root of the metric entropy of functions of
the form (5) in Fk can be bounded above, and by Lemma 6, if

s ≥ C

(
k

ε2

(
log4

(
k

ε

))
+

1

ε2
log

1

δ

)
,

then

P

[
sup
M∈G

∣∣∣∣
∑s

i=1 d(xi,M)2

s
− EPd(x,M)2

∣∣∣∣ < ε

]
> 1− δ. �

Proof of Theorem 1. This follows immediately from Corollary 2 and Lemma 7. �

5. Fitting k affine subspaces of dimension d

A natural generalization of k-means was proposed in [6] wherein one fits k d-
dimensional planes to data in a manner that minimizes the average squared distance
of a data point to the nearest d dimensional plane. For more recent results on this
kind of model, with the average pth powers rather than squares, see [34]. We can
view k-means as a zero dimensional special case of k-planes.

In this section, we derive an upper bound for the generalization error of fitting
k-planes. Unlike the earlier bounds for fitting manifolds, the bounds here are linear
in the dimension d rather than exponential in it. The dependence on k is linear up
to logarithmic factors, as before. In the section, we assume for notation convenience
that the dimension m of the Hilbert space is finite, though the results can be proved
for any separable Hilbert space.

Let P be a probability distribution supported on B := {x ∈ R
m
∣∣ ‖x‖ ≤ 1}. Let

H := Hk,d be the set whose elements are unions of not more than k affine subspaces
of dimension ≤ d, each of which intersects B. Let Fk,d be the set of all loss functions
F (x) = d(x,H)2 for some H ∈ H (where d(x, S) := infy∈S ‖x− y‖).

We wish to obtain a probabilistic upper bound on

sup
F∈Fk,d

∣∣∣∣∣
∑s

i=1 F (xi)

s
− EPF (x)

∣∣∣∣∣,(8)

where {xi}s1 is the train set and EPF (x) is the expected value of F with respect to
P. Due to issues of measurability, (8) need not be a random variable for arbitrary
F . However, in our situation, this is the case because F is a family of bounded
piecewise quadratic functions, continuously parameterized by Hk,d, which has a
countable dense subset, for example, the subset of elements specified using rational
data. We obtain a bound that is independent of m, the ambient dimension. We
will need the following form of Hoeffding’s inequality.
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1002 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Lemma 8 (Hoeffding’s inequality). Let X1, . . . , Xs be i.i.d. copies of the random
variable X whose range is [0, 1]. Then,

P

[∣∣∣∣∣1s
(

s∑
i=1

Xi

)
− E[X]

∣∣∣∣∣ ≤ ε

]
≥ 1− 2 exp(−2sε2).(9)

Lemma 9. Let x1, . . . , xs be i.i.d. samples from P, a distribution supported on the
ball of radius 1 in R

m. If

s ≥ C

(
dk

ε2
log4

(
dk

ε

)
+

d

ε2
log

1

δ

)
,

then P

[
sup

F∈Fk,d

∣∣∣∣∣
∑s

i=1 F (xi)

s − EPF (x)

∣∣∣∣∣ < ε

]
> 1− δ.

Proof. Any F ∈ Fk,d can be expressed as F (x) = min1≤i≤k d(x,Hi)
2 where each

Hi is an affine subspace of dimension less than or equal to d that intersects the unit
ball. In turn, min1≤i≤k d(x,Hi)

2 can be expressed as

min
1≤i≤k

(
‖x− ci‖2 − (x− ci)

†A†
iAi(x− ci)

)
,

where Ai is defined by the condition that for any vector z, (z − (Aiz))
† and Aiz

are the components of z parallel and perpendicular to Hi, and ci is the point on
Hi that is the nearest to the origin (it could have been any point on Hi). Thus

F (x) := min
i

(
‖x‖2 − 2c†ix+ ‖ci‖2 − x†A†

iAix+ 2c†iA
†
iAix− c†iA

†
iAici

)
.

Now, define vector valued maps Φ and Ψ whose respective domains are the space
of d dimensional affine subspaces and H, respectively,

Φ(Hi) :=

(
1√
d+ 5

)(
‖ci‖2, A†

iAi, (2A
†
iAici − 2ci)

†
)

and

Ψ(x) :=

(
1√
3

)
(1, xx†, x†),

where A†
iAi and xx† are interpreted as rows of m2 real entries.

Thus,

min
i

(
‖x‖2 − 2c†ix+ ‖ci‖2 − x†A†

iAix+ 2c†iA
†
iAix− c†iA

†
iAici

)
is equal to

‖x‖2 +
√
3(d+ 5)min

i
Φ(Hi) ·Ψ(x).

We see that since ‖x‖ ≤ 1, ‖Ψ(x)‖ ≤ 1. The Frobenius norm ‖A†
iAi‖2 is equal to

Tr(AiA
†
iAiA

†
i ), which is the rank of Ai since Ai is a projection. Therefore,

(d+ 5)‖Φ(Hi)‖2 ≤ ‖ci‖4 + ‖A†
iAi‖2 + ‖(2(I −A†

iAi)ci‖2,
which is less than or equal to d+ 5.

Uniform bounds for classes of functions of the form mini Φ(Hi) ·Ψ(x) follow from
Lemma 6. We infer from Lemma 6 and the Hoeffding’s inequality that if

s ≥ C

(
k

ε2
log4

(
k

ε

)
+

1

ε2
log

1

δ

)
,
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TESTING THE MANIFOLD HYPOTHESIS 1003

then P

[
sup

F∈Fk,d

∣∣∣∣∣
∑s

i=1 F (xi)

s − EPF (x)

∣∣∣∣∣ <
√
3(d+ 5)ε

]
> 1 − δ. The last statement

can be rephrased as follows. If

s ≥ C

(
dk

ε2
log4

(
dk

ε

)
+

d

ε2
log

1

δ

)
,

then P

[
sup

F∈Fk,d

∣∣∣∣∣
∑s

i=1 F (xi)

s − EPF (x)

∣∣∣∣∣ < ε

]
> 1− δ. �

6. Dimension reduction

Suppose that X = {x1, . . . , xs} is a set of i.i.d. random points drawn from P, a
probability measure supported on the unit ball BH of a separable Hilbert space H.
Let Merm(X) denote a manifold in G(d, V, τ ) that (approximately) minimizes

s∑
i=1

d(xi,M)2

over all M ∈ G(d, V, τ ) and denote by PX the probability distribution on X that
assigns a probability of 1/s to each point. More precisely, we know from Theorem 1
that there is some function sG(ε, δ) of ε, δ, d, V , and τ such that if

s ≥ sG(ε, δ),

then

P

[
L(Merm(X),PX)− inf

M∈G
L(M,P) < ε

]
> 1− δ.(10)

Lemma 10. Suppose ε < cτ . Let W denote an arbitrary 2sG(ε, δ) dimensional
linear subspace of H containing X. Then

inf
G(d,V,τ(1−c))
M⊆W

L(M,PX) ≤ Cε+ inf
M∈G(d,V,τ)

L(M,PX).(11)

Proof. Let M2 ∈ G := G(d, V, τ ) achieve
L(M2,PX) ≤ inf

M⊆G
L(M,PX) + ε.(12)

Let Nε denote a set of no more than sG(ε, δ) points contained in M2 that is an
ε-net of M2. Thus for every x ∈ M2, there is y ∈ Nε such that |x− y| < ε. Let O
denote a unitary transformation from H to H that fixes each point in X and maps
every point in Nε to some point in W . Let ΠW denote the map from H to W that
maps x to the point in W nearest to x. Let M3 := OM2. Since O is an isometry
that fixes X,

L(M3,PX) = L(M2,PX) ≤ inf
M⊆G

L(M,PX) + ε.(13)

Since PX is supported on the unit ball and the Hausdorff distance between ΠWM3

and M3 is at most ε,∣∣L(ΠWM3,PX)− L(M3,PX)
∣∣ ≤ Ex�PX

∣∣d(x,ΠWM3)
2 − d(x,M3)

2
∣∣

≤ Ex�PX
4
∣∣d(x,ΠWM3)− d(x,M3)

∣∣
≤ 4ε.

By Lemma 11, we see that ΠWM3 belongs to G(d, V, τ (1 − c)), thus proving the
lemma. �
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1004 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

By Lemma 10, it suffices to find a manifold G(d, V, τ ) � M̃erm(X) ⊆ V such that

L(M̃erm(X),PX) ≤ Cε+ inf
V⊇M∈G(d,V,τ)

L(M,PX).

Lemma 11. Let M ∈ G(d, V, τ ), and let Π be a map that projects H orthogonally
onto a subspace containing the linear span of a cετ -net S̄ of M. Then, the image
of M, is a d dimensional submanifold of H and

Π(M) ∈ G(d, V, τ (1− C
√
ε)).

Proof. The volume of Π(M) is no more than the volume of M because Π is a
contraction. Since M is contained in the unit ball, Π(M) is contained in the unit
ball.

Claim 2. For any x, y ∈ M,

|Π(x− y)| ≥ (1− C
√
ε)|x− y|.

Proof. First suppose that |x− y| < √
ετ . Choose x̃ ∈ S̄ that satisfies

|x̃− x| < C1ετ.

Let z := x+ (y−x)
√
ετ

|y−x| . By linearity and Proposition 1,

d(z, Tan(x,M)) = d(y, Tan(x,M))

( √
ετ

|y − x|

)
(14)

≤ |x− y|2
2τ

( √
ετ

|y − x|

)
(15)

≤ ετ

2
.(16)

Therefore, there is a point ŷ ∈ Tan(x,M) such that∣∣∣∣ŷ −
(
x̃+

(y − x)
√
ετ

|y − x|

) ∣∣∣∣ ≤ C2ετ.

By Claim 1, there is a point ȳ ∈ M such that∣∣∣∣ȳ − ŷ

∣∣∣∣ ≤ C3ετ.

Let ỹ ∈ S̄ satisfy

|ỹ − ȳ| < cετ.

Then, ∣∣∣∣ỹ −
(
x̃+

(y − x)
√
ετ

|y − x|

) ∣∣∣∣ ≤ C4ετ,

i.e., ∣∣∣∣
(
ỹ − x̃√

ετ

)
− (y − x)

|y − x|

∣∣∣∣ ≤ C4

√
ε.

Consequently, ∣∣∣∣
(
ỹ − x̃√

ετ

) ∣∣∣∣− 1 ≤ C4

√
ε.(17)
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TESTING THE MANIFOLD HYPOTHESIS 1005

We now have〈
y − x

|y − x| ,
ỹ − x̃√

ετ

〉
=

〈
y − x

|y − x| ,
y − x

|y − x|

〉
+

〈
y − x

|y − x| ,
(
ỹ − x̃√

ετ
− y − x

|y − x|

)〉
(18)

= 1 +

〈
y − x

|y − x| ,
(
ỹ − x̃√

ετ
− y − x

|y − x|

)〉
(19)

≥ 1− C4

√
ε.(20)

Since x̃ and ỹ belong to the range of Π, it follows from (17) and (20) that

|Π(x− y)| ≥ (1− C
√
ε)|x− y|.

Next, suppose that |x− y| ≥
√
ετ . Choose x̃, ỹ ∈ S̄ such that |x− x̃|+ |y− ỹ| <

2cετ . Then, 〈
x− y

|x− y| ,
x̃− ỹ

|x̃− ỹ|

〉
=

〈
x− y

|x− y| ,
x− y

|x̃− ỹ|

〉
+
(
|x̃− ỹ|−1

)
〈

x− y

|x− y| , (x̃− x)− (ỹ − y)

〉
≥ 1− C

√
ε,

and the claim follows since x̃ and ỹ belong to the range of Π. �

By Claim 2, we see that

∀x ∈ M, Tan0(x,M) ∩ ker(Π) = {0}.(21)

Moreover, by Claim 2, we see that if x, y ∈ M and Π(x) is close to Π(y) then x is
close to y. Therefore, to examine all Π(x) in a neighborhood of Π(y), it is enough to
examine all x in a neighborhood of y. So by Definition 3, it follows that Π(M) is a
submanifold of H. Finally, in view of Claim 2 and the fact that Π is a contraction,
we see that

reach(Π(M)) = sup
x,y∈M

|Π(x)−Π(y)|2
2d(Π(x), Tan(Π(y),Π(M)))

(22)

≥ (1− C
√
ε) sup

x,y∈M

|x− y|2
2d(x, Tan(y,M))

(23)

= (1− C
√
ε) reach(M),(24)

and the lemma follows. �

7. Overview of the algorithm for testing the manifold hypothesis

Given a set X := {x1, . . . , xs} of points in R
n, we give an overview of the

algorithm that finds a nearly optimal interpolating manifold.

Definition 10. Let M ∈ G(d, V, τ ) be called an ε-optimal interpolant if

s∑
i=1

d(xi,M)2 ≤ sε+ inf
M′∈G(d,V/C,Cτ)

s∑
i=1

d(xi,M′)2,(25)

where C is some constant depending only on d.
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1006 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Figure 4. A disc bundle Dnorm ∈ D̄norm.

Given d, τ, V, ε, and δ, our goal is to output an implicit representation of a
manifold M and an estimated error ε̄ ≥ 0 such that

(1) With probability greater than 1− δ, M is an ε-optimal interpolant, and
(2)

sε̄ ≤
∑
x∈X

d(x,M)2 ≤ s
( ε
2
+ ε̄
)
.

Thus, we are required to perform an optimization over the set of manifolds
G = G(d, τ, V ). This set G can be viewed as a metric space (G,dhaus) by defining the
distance between two manifolds M,M′ in G to be the Hausdorff distance between
M and M′. Our strategy for producing an approximately optimal manifold will be
to execute the following steps. First identify a O(τ )-net SG of (G,dhaus). Next, for
each M′ ∈ SG , construct a disc bundle D′ that approximates its normal bundle.
The fiber of D′ at a point z ∈ M′ is a n− d dimensional disc of radius O(τ ) that is
roughly orthogonal to Tan(z,M′) (this is formalized in Definitions 11 and 12, see
Figure 4). Suppose that M is a manifold in G such that

dhaus(M,M′) < O(τ ).(26)

As a consequence of (26) and the lower bounds on the reaches of M and M′, it
follows (as will be shown in Lemma 17) that M must be the graph of a section of
D′. In other words, M intersects each fiber of D′ in a unique point. We use convex
optimization to find good local sections, and patch them up to find a good global
section. Thus, our algorithm involves two main phases:

(1) Construct a set D̄norm of disc bundles over manifolds in G(d, CV, τ/C) which
is rich enough that every ε-optimal interpolant is a section of some member
of D̄norm.

(2) Given Dnorm ∈ D̄norm, use convex optimization to find a minimal ε̂ such
that Dnorm has a section (i.e., a small transverse perturbation of the base
manifold of Dnorm) which is a ε̂-optimal interpolant. This is achieved by
finding the right manifold in the vicinity of the base manifold of Dnorm by
finding good local sections (using results from [23, 24]) and then patching
these up using a gentle partition of unity supported on the base manifold
of Dnorm.
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TESTING THE MANIFOLD HYPOTHESIS 1007

8. Disc bundles

The following definition specifies the kind of bundles we will be interested in.
The constants have been named so as to be consistent with their appearance in
(79) and Observation 3. Recall the parameter r from Definition 3.

Definition 11. Let D be an open subset of R
n and M be a submanifold of D

that belongs to G(d, τ, V ) for some choice of parameters d, τ, V . Let π be a C4

map π : D → M such that for any z ∈ M, π(z) = z and π−1(z) is isometric to
a Euclidean disc of dimension n − d, of some radius independent of z. We then

say D
π−→ M is a disc bundle. When M is clear from context, we will simply

refer to the bundle as D. We refer to Dz := π−1(z) as the fiber of D at z. We
call s : M → D a section of D if for any z ∈ M, s(z) ∈ Dz and for some

τ̂ , V̂ > 0, s(M) ∈ G(d, τ̂ , V̂ ). Let U be an open subset of M. We call a given
C2-map sloc : U → D a local section of D if for any z ∈ U , s(z) ∈ Dz and
{(z, sloc(z))|z ∈ U} can locally be expressed as the graph of a C2-function.

Definition 12. For reals τ̂ , V̂ > 0, let D̄(d, τ̂ , V̂ ) denote the set of all disc bundles

Dnorm π−→ M with the following properties:

(1) Dnorm is a disc bundle over the manifold M ∈ G(d, τ̂ , V̂ ).
(2) Let z0 ∈ M. For z0 ∈ M, let Dnorm

z0 := π−1(z0) denote the fiber over z0,
and Πz0 denote the projection of Rn onto the affine span of Dnorm

z0 . Without
loss of generality assume after rotation (if necessary) that Tan(z0,M) =
R

d⊕{0} and Norz0,M = {0}⊕R
n−d. Then, Dnorm∩B(z0, c11τ̂) is a bundle

over a graph {(z,Ψ(z))}z∈Ωz0
where the domain Ωz0 is an open subset of

Tan(z0,M).
(3) Any z ∈ Bn(z0, c11τ̂ ) may be expressed uniquely in the form (x,Ψ(x)) + v

with x ∈ Bd(z0, c10τ̂), v ∈ Π(x,Ψ(x))Bn−d(x,
c10τ̂
2 ). Moreover, x and v here

are Ck−2-smooth functions of z ∈ Bn(x, c11τ̂ ), with derivatives up to order
k − 2 bounded by C in absolute value.

(4) Let x ∈ Bd(z0, c10τ̂ ), and let v ∈ Π(x,Ψ(x))R
n. Then, we can express v in

the form

v = Π(x,Ψ(x))v
#,(27)

where v# ∈ {0} ⊕ R
n−d and |v#| ≤ 2|v|.

Definition 13. For any Dnorm → Mbase ∈ D̄(d, τ̂ , V̂ ), and α ∈ (0, 1), let αD̄(d, τ̂ , V̂ )
denote a bundle over Mbase, whose every fiber is a scaling by α of the corresponding
fiber of Dnorm.

9. A key result

Given a function with prescribed smoothness, the following key result allows us
to construct a bundle satisfying certain conditions, as well as assert that the base
manifold has controlled reach. We decompose R

n as R
d ⊕ R

n−d. The theorem
roughly says that given a sufficiently smooth function F with bounded derivatives
that resembles the squared distance to the intersection of the ball with a d dimen-
sional subspace, we can construct from it a map Ψ that maps a neighborhood of the
origin in R

d to a neighborhood of the origin in R
n−d, whose graph is the intersec-

tion of a smooth manifold M with a neighborhood of the origin in R
n. Further one

can also construct a disc bundle over the manifold M using the large eigenspace of
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1008 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

the Hessian of the function F . When we write (x, y) ∈ R
n, we mean x ∈ R

d and
y ∈ R

n−d. We will need Taylor’s theorem (see [39]), which we state below.

Theorem 12 (Taylor’s theorem). Let Ω be open in R
n, and f ∈ Ck(Ω). Then, if

x, y ∈ Ω and the closed line segment [x, y] joining x to y is also contained in Ω, we
have

f(x) =
∑

|α|≤k−1

Dαf(y)

α!
(x− y)α +

∑
|α|=k

Dαf(ζ)

α!
(x− y)α,

where ζ is a point of [x, y].

Theorem 13. Let the following conditions hold:

(1) Suppose F : Bn(0, 1) → R is Ck-smooth.
(2)

∂α
x,yF (x, y) ≤ C0(28)

for (x, y) ∈ Bn(0, 1) and |α| ≤ k.
(3) For x ∈ R

d, y ∈ R
n−d, and (x, y) ∈ Bn(0, 1), suppose also that

c1[|y|2 + ρ2] ≤ [F (x, y) + ρ2] ≤ C1[|y|2 + ρ2],(29)

where

0 < ρ < c,(30)

where c is a small enough constant determined by C0, c1, C1, k, n.

Then there exist constants c2, . . . , c7 and C determined by C0, c1, C1, k, n, such that
the following hold:

(1) For z ∈ Bn(0, c2), let N (z) be the subspace of Rn spanned by the eigenvec-
tors of the Hessian ∂2F (z) corresponding to the (n−d) largest eigenvalues.
Let Πhi(z) : R

n → N (z) be the orthogonal projection from R
n onto N(z).

Then |∂αΠhi(z)| ≤ C for z ∈ Bn(0, c2), |α| ≤ k − 2. Thus, N (z) depends
Ck−2-smoothly on z.

(2) There is a map

Ψ : Bd(0, c4) → Bn−d(0, c3),(31)

with the following properties:

|Ψ(0)| ≤ Cρ; |∂αΨ| ≤ C |α|(32)

on Bd(0, c4), for 1 ≤ |α| ≤ k − 2. The set of all z = (x, y) ∈ Bd(0, c4) ×
Bn−d(0, c3), such that{

z|Πhi(z)∂F (z) = 0} =: {(x,Ψ(x))
∣∣x ∈ Bd(0, c4)

}
is a Ck−2-smooth graph.

Proof. We first study the gradient and Hessian of F . Taking (x, y) = (0, 0) in (29),
we see that

c1ρ
2 ≤ F (0, 0) + ρ2 ≤ C1ρ

2.(33)

A standard lemma in analysis asserts that non-negative F satisfying (28) must
also satisfy

∣∣∂F (z)
∣∣ ≤ C (F (z))

1
2 .
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TESTING THE MANIFOLD HYPOTHESIS 1009

In particular, applying this result to the function F + ρ2, we find that∣∣∂F (0, 0)
∣∣ ≤ Cρ.(34)

Next, we apply Taylor’s theorem: For (|x|2 + |y|2) 1
2 ≤ ρ

2
3 , for z = (z1, . . . , zn) =

(x, y), estimates (28) and (33) and Taylor’s theorem yield

∣∣F (x, y) + F (−x,−y)−
n∑

i,j=1

∂2
ijF (0, 0)zizj

∣∣ ≤ Cρ2.

Hence, (29) implies that

c|y|2 − Cρ2 ≤
n∑

i,j=1

∂2
ijF (0, 0)zizj ≤ C(|y|2 + ρ2).

Therefore,

c|y|2 − Cρ2/3|z|2 ≤
n∑

i,j=1

∂2
ijF (0, 0)zizj ≤ C

(
|y|2 + ρ2/3|z|2

)

for |z| = ρ2/3, and hence for all z ∈ R
n. Thus, the Hessian matrix

(
∂2
ijF (0)

)
satisfies

(
−Cρ2/3I 0

0 cI

)
�
(
∂2
ijF (0, 0)

)
�
(

+Cρ2/3I 0
0 CI

)
.(35)

That is, the matrices(
∂2
ijF (0, 0)−

[
−Cρ2/3δij + cδij1i,j>d

])
and (

C
[
ρ2/3δij + δij1i,j>d

]
− ∂2

ijF (0, 0)
)

are positive definite, real, and symmetric. If (Aij) is positive definite, real, and
symmetric, then ∣∣Aij

∣∣2 < AiiAjj

for i 
= j, since the two-by-two submatrix(
Aii Aij

Aji Ajj

)
must also be positive definite and thus has a positive determinant. It follows from
(35) that ∣∣∂2

iiF (0, 0)
∣∣ ≤ Cρ2/3,

if i ≤ d, and ∣∣∂2
jjF (0, 0)

∣∣ ≤ C

for any j. Therefore, if i ≤ d and j > d, then∣∣∂2
ijF (0, 0)

∣∣2 ≤
∣∣∂2

iiF (0, 0) + Cρ2/3
∣∣ · ∣∣∂2

jjF (0, 0)− c
∣∣ ≤ Cρ2/3.

Thus, ∣∣∂2
ijF (0, 0)

∣∣ ≤ Cρ1/3(36)

if 1 ≤ i ≤ d and d + 1 ≤ j ≤ n. Without loss of generality, we can rotate the last
n− d coordinate axes in R

n, so that the matrix(
∂2
ijF (0, 0)

)
i,j=d+1,...,n
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1010 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

is diagonal, say,

(
∂2
ijF (0, 0)

)
i,j=d+1,...,n

=

⎛
⎜⎝

λd+1 · · · 0
...

. . .
...

0 · · · λn

⎞
⎟⎠ .

For an n× n matrix A = (aij), let

‖A‖∞ := sup
(i,j)∈[n]×[n]

|aij |.

Then (35) and (36) show that

(37)

∥∥∥∥∥∥∥∥∥
(
∂2
ijF (0, 0)

)
i,j=1,...,n

−

⎛
⎜⎜⎜⎝

0d×d 0d×1 · · · 0d×1

01×d λd+1 · · · 0
...

...
. . .

...
01×d 0 · · · λn

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥
∞

≤ Cρ1/3

and

c ≤ λj ≤ C(38)

for each j = d+ 1, . . . , n.
For λj satisfying (38), let c# be a sufficiently small controlled constant. Let Ω

be the set of all real symmetric n× n matrices A such that∥∥∥∥∥∥∥∥∥
A−

⎛
⎜⎜⎜⎝

0d×d 0d×1 · · · 0d×1

01×d λd+1 · · · 0
...

...
. . .

...
01×d 0 · · · λn

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥
∞

< c#.(39)

We can pick controlled constants so that (37), (38) and (28), (30) imply that(
∂2
ijF (z)

)
i,j=1,...,n

∈ Ω(40)

for |z| < c4. Here 0d×d, 01×d, and 0d×1 denote all-zero d× d, 1× d, and d× 1
matrices, respectively.

Definition 14. If A ∈ Ω, let Πhi(A) : Rn → R
n be the orthogonal projection from

R
n to the span of the eigenspaces of A that correspond to eigenvalues in [c2, C3],

and let Πlo : Rn → R
n be the orthogonal projection from R

n onto the span of the
eigenspaces of A that correspond to eigenvalues in [−c1, c1].

Then, A �→ Πhi(A) and A �→ Πlo(A) are smooth maps from the compact set Ω
into the space of all real symmetric n× n matrices. For a matrix A, let |A| denote
its spectral norm, i.e.,

|A| := sup
‖u‖=1

‖Au‖.

Then, in particular,∣∣Πhi(A)−Πhi(A
′)
∣∣+ ∣∣Πlo(A)−Πlo(A

′)
∣∣ ≤ C

∣∣A−A′∣∣(41)

for A,A′ ∈ Ω, and ∣∣∂α
AΠhi(A)

∣∣+ ∣∣∂α
AΠlo(A)

∣∣ ≤ C(42)

for A ∈ Ω, |α| ≤ k. Let

Πhi(z) = Πhi

(
∂2F (z)

)
(43)
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TESTING THE MANIFOLD HYPOTHESIS 1011

and

Πlo(z) = Πlo

(
∂2F (z)

)
,(44)

for z < c4, which make sense, thanks to the comment following (39). Also, we
define projections Πd : Rn → R

n and Πn−d : Rn → R
n by setting

Πd : (z1, . . . , zn) �→ (z1, . . . , zd, 0, . . . , 0)(45)

and

Πn−d : (z1, . . . , zn) �→ (0, . . . , 0, zd+1, . . . , zn).(46)

From (37) and (41) we see that∣∣Πhi(0)−Πn−d

∣∣ ≤ Cρ1/3.(47)

Also, (28) and (42) together give∣∣∂α
z Πhi(z)

∣∣ ≤ C(48)

for |z| < c4, |α| ≤ k − 2. From (47), (48), and (30), we have

|Πhi(z)−Πn−d| ≤ Cρ1/3(49)

for |z| ≤ ρ1/3. Note that Πhi(z) is the orthogonal projection from R
n onto the

span of the eigenvectors of ∂2F (z) with (n− d) highest eigenvalues; this holds for
|z| < c4. Now set

ζ(z) = Πn−dΠhi∂F (z)(50)

for |z| < c4. Thus

ζ(z) = (ζd+1(z), . . . , ζn(z)) ∈ R
n−d,(51)

where

ζi(z) =

n∑
j=1

[Πhi(z)]ij∂zjF (z)(52)

for i = d + 1, . . . , n, |z| < c4. Here, [Πhi(z)]ij is the ij entry of the matrix Πhi(z).
From (48) and (28) we see that

|∂αζ(z)| ≤ C(53)

for |z| < c4, |α| ≤ k − 2. Also, since Πn−d and Πhi(z) are orthogonal projections
from R

n to subspaces of Rn, (34) and (50) yield

|ζ(0)| ≤ cρ.(54)

From (52), we have

∂ζi
∂z�

(z) =

n∑
j=1

∂

∂z�
[Πhi(z)]ij

∂

∂zj
F (z) +

n∑
j=1

[Πhi(z)]ij
∂2F (z)

∂z�∂zj
(55)

for |z| < c4 and i = d + 1, . . . , n, � = 1, . . . , n. We take z = 0 in (55). From (34)
and (48), we have ∣∣ ∂

∂z�
[Πhi(z)]ij

∣∣ ≤ C

and ∣∣ ∂

∂zj
F (z)

∣∣ ≤ Cρ
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1012 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

for z = 0. Also, from (47) and (37), we see that∣∣[Πhi(z)]ij − δij
∣∣ ≤ Cρ

1
3

for z = 0, i = d+ 1, . . . , n, j = d+ 1, . . . , n;∣∣[Πhi(z)]ij | ≤ Cρ1/3

for z = 0, i = d+ 1, . . . , n and j = 1, . . . , d; and∣∣ ∂2F

∂zj∂z�
(z)− δj�λ�

∣∣ ≤ Cρ
1
3

for z = 0, j = 1, . . . , n, and � = d+ 1, . . . , n.
In view of the above remarks, (55) shows that∣∣ ∂ζi

∂z�
(0)− λ�δi�

∣∣ ≤ Cρ1/3(56)

for i, � = d+ 1, . . . , n. Let Bd(0, r), Bn−d(0, r), and Bn(0, r) denote the open balls
about 0 with radius r in R

d,Rn−d, and R
n, respectively. Thanks to (30), (38),

(53), (54), (56), and the implicit function theorem (see Section 3 of [39]), there
exist controlled constants c6 < c5 < 1

2c4 and a Ck−2-map

Ψ : Bd(0, c6) → Bn−d(0, c5),(57)

with the following properties:

|∂αΨ| ≤ C(58)

on Bd(0, c6), for |α| ≤ k − 2;

|Ψ(0)| ≤ Cρ.(59)

Let z = (x, y) ∈ Bd(0, c6)×Bn−d(0, c5). Then

ζ(z) = 0 if and only if y = Ψ(x).(60)

According to (47) and (48), the following holds for a small enough controlled con-
stant c7. Let z ∈ Bn(0, c7). Then Πhi(z) and Πn−dΠhi(z) have the same null space.
Therefore by (50), we have the following. Let z ∈ Bn(0, c7). Then ζ(z) = 0 if and
only if Πhi(z)∂F (z) = 0. Consequently, after replacing c5 and c6 in (57), (58), (59),
(60) by smaller controlled constants c9 < c8 < 1

2c7, we obtain the following results:

Ψ : Bd(0, c9) → Bn−d(0, c8)(61)

is a Ck−2-smooth map;

|∂αΨ| ≤ C(62)

on Bd(0, c9) for |α| ≤ k − 2;

|Ψ(0)| ≤ Cρ.(63)

Let

z = (x, y) ∈ Bd(0, c9)×Bn−d(0, c8).

Then,

Πhi(z)∂F (z) = 0(64)

if and only if y = Ψ(x). Thus we have understood the set {Πhi(z)∂F (z) = 0} in the
neighborhood of 0 in R

n. Next, we study the bundle over {Πhi(z)∂F (z) = 0} whose
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TESTING THE MANIFOLD HYPOTHESIS 1013

fiber at z is the image of Πhi(z). For x ∈ Bd(0, c9) and v = (0, . . . , 0, vd+1, . . . , vn) ∈
{0} ⊕ R

n−d, we define

E(x, v) = (x,Ψ(x)) + [Πhi(x,Ψ(x))]v ∈ R
n.(65)

From (48) and (58), we have ∣∣∂α
x,vE(x, v)

∣∣ ≤ C(66)

for x ∈ Bd(0, c9), v ∈ Bn−d(0, c8), |α| ≤ k − 2. Here and below, we abuse nota-
tion by failing to distinguish between R

d and R
d ⊕ {0} ∈ R

n. Let E(x, v) =
(E1(x, v), . . . , En(x, v)) ∈ R

n. For i = 1, . . . , d, (65) gives

Ei(x, v) = xi +

n∑
i=1

[Πhi(x,Ψ(x))]ijvj .(67)

For i = d+ 1, . . . , n, (65) gives

Ei(x, v) = Ψi(x) +
n∑

i=1

[Πhi(x,Ψ(x))]ijvj ,(68)

where we write Ψ(x) = (Ψd+1(x), . . . ,Ψn(x)) ∈ R
n−d. We study the first partials

of Ei(x, v) at (x, v) = (0, 0). From (67), we find that

∂Ei

∂xj
(x, v) = δij(69)

at (x, v) = (0, 0), for i, j = 1, . . . , d. Also, (63) shows that |(0,Ψ(0))| ≤ cρ; hence,
(49) gives ∣∣Πhi(0,Ψ(0))−Πn−d

∣∣ ≤ Cρ1/3,(70)

for i ∈ {1, . . . , d} and j ∈ {1, . . . , n}. Therefore, another application of (67) yields∣∣∂Ei

∂vj
(x, v)

∣∣ ≤ Cρ1/3(71)

for i ∈ [d], j ∈ {d+ 1, . . . , n}, and (x, v) = (0, 0). Similarly, from (70) we obtain∣∣[Πhi(0,Ψ(0))]ij − δij
∣∣ ≤ Cρ1/3

for i = d+ 1, . . . , n and j = d+ 1, . . . , n. Therefore, from (68), we have∣∣∂Ei

∂vj
(x, v)− δij

∣∣ ≤ Cρ1/3(72)

for i, j = d+ 1, . . . , n, (x, v) = (0, 0). In view of (66), (69), (71), (72), the Jacobian
matrix of the map (x1, . . . , xd, vd+1, . . . , vn) �→ E(x, v) at the origin is given by

⎛
⎜⎜⎝

Id O(ρ1/3)

O(1) In−d +O(ρ1/3)

⎞
⎟⎟⎠ ,(73)

where Id and In−d denote (respectively) the d × d and (n − d) × (n − d) identity
matrices, O(ρ1/3) denotes a matrix whose entries have absolute values at most
Cρ1/3; and O(1) denotes a matrix whose entries have absolute values at most C.

A matrix of the form (73) is invertible, and its inverse matrix has the norm
at most C. (Here, we use (30).) Note also that |E(0, 0)| = |(0,Ψ(0))| ≤ Cρ.
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1014 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Consequently, the inverse function theorem (see Section 3 of [39]) and (66) imply
the following.

There exist controlled constants c10 and c11 with the following properties:

(74) The mapE(x, v) is one-to-one when restricted toBd(0, c10)×Bn−d(0, c10).

(75)

The image ofE(x, v) : Bd(0, c10)×Bn−d(0,
c10
2

) → R
ncontains a ball Bn(0, c11).

In view of (74), (75), the map(76)

E−1 : Bn(0, c11) → Bd(0, c10)×Bn−d(0,
c10
2

)

is well-defined.

(77) The derivatives of E−1 of order ≤ k − 2 have absolute value at mostC.

Moreover, we may pick c10 in (74) small enough that the following holds.

Observation 1.

(78) Let x ∈ Bd(0, c10), and let v ∈ Πhi(x,Ψ(x))Rn.

Then, we can express v in the form v = Πhi(x, ψ(x))v
#(79)

where v# ∈ {0} ⊕ R
n−d and |v#| ≤ 2|v|.

Indeed, if x ∈ Bd(0, c10) for small enough c10, then by (30), (62), (63), we have
|(x,Ψ(x))| < c for small c; consequently, (79) follows from (47), (48). Thus (74),
(75), (76), (77), and (79) hold for suitable controlled constants c10, c11. From (75),
(76), (79), we learn the following.

Observation 2. Let x, x̃ ∈ Bd(0, c10), and let v, ṽ ∈ Bn−d(0,
1
2c10). Assume that

v ∈ Πhi(x,Ψ(x))Rn and ṽ ∈ Πhi(x̃,Ψ(x̃))Rn. If (x,Ψ(x))+ v = (x̃,Ψ(x̃))+ ṽ, then
x = x̃ and v = ṽ.

Observation 3. Any z ∈ Bn(0, c11) may be expressed uniquely in the form
(x,Ψ(x)) + v with x ∈ Bd(0, c10), v ∈ Πhi(x,Ψ(x))Rn ∩ Bn(0,

c10
2 ). Moreover, x

and v here are Ck−2-smooth functions of z ∈ Bn(0, c11), with derivatives up to
order k − 2 bounded by C in absolute value.

This concludes the proof of the lemma. �

10. Constructing cylinder packets

Let R
d and R

n−d, respectively, denote the spans of the first d vectors and the
last n − d vectors of the canonical basis of Rn. Let Bd and Bn−d, respectively,
denote the unit Euclidean balls in R

d and R
n−d. Let

τ̄ := c12τ.(80)

Let Πd be the map given by the orthogonal projection from R
n onto R

d. Let
cyl := τ̄(Bd ×Bn−d), and cyl2 = 2τ̄(Bd ×Bn−d). Suppose that for any x ∈ 2τ̄Bd

and y ∈ 2τ̄Bn−d, φcyl2 is given by

φcyl2(x, y) = |y|2,
and for any z 
∈ cyl2,

φcyl2(z) = 0.
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TESTING THE MANIFOLD HYPOTHESIS 1015

Suppose for each i ∈ [N̄ ] := {1, . . . , N̄}, xi ∈ Bn(0, 1) and oi is a proper rigid
body motion, i.e., the composition of a proper rotation and translation of Rn and
that oi(0) = xi.

For each i ∈ [N̄ ], let cyli := oi(cyl), and cyl2i := oi(cyl
2). Note that xi is the

center of cyli.
We say that a set of cylinders Cp := {cyl21, . . . , cyl2N̄} (where each cyl2i is

isometric to cyl2) is a cylinder packet in C τ̄ (d, V, τ ) (or simply a cylinder packet)
if the following conditions hold true:

(1) The number of cylinders N̄ is less than or equal to V
τd .

(2) Let Si := {cyl2i1 , . . . , cyl
2
i|Si|

} be the set of cylinders that intersect cyl2i .

Translate the origin to the center of cyl2i (i.e., xi) and perform a proper
Euclidean transformation that puts the d dimensional central cross section
of cyl2i in R

d.
There exist proper rotations Ui1 , . . . , Ui|Si|

, respectively, of the cylinders

cyl2i1 , . . . , cyl
2
i|Si|

in Si such that Uij fixes the center xij of cyl2ij and

translations Tri1 , . . . , T ri|Si|
such that

(a) For each j ∈ [|Si|], TrijUijcyl
2
ij

is a translation of cyl2i by a vector

contained in R
d whose Euclidean norm is at least τ̄

3 .

(b) The set {TrijUijxij |j ∈ [|Si|]} ∩ cyl2i is a τ̄
2 net of Rd ∩ cyl2i .

(c)
∣∣ (Id− Uij

)
v
∣∣ < 2

(
τ̄
τ

)
|v − xij |, for each j in {1, . . . , |Si|}, and any

vector v.
(d) |Trij (0)| < τ̄2

τ for each j in {1, . . . , |Si|}.

Observation 4. Any point in Bd(0, (5/2)τ̄) is within τ̄ /2 of a point in Bd(0, 2τ̄),
which in turn is within τ̄ /2 of some Trjxij . It therefore follows that⋃

j

(TrijUij (oij (R
d) ∩ cylij )) ⊇ Bd(0, (5/2)τ̄).

We call {o1, . . . , oN̄} a packet of rigid body motions or simply a packet if
{o1(cyl), . . . , oN̄ (cyl)} is a cylinder packet.

11. Constructing a disc bundle possessing the desired characteristics

11.1. Approximate squared distance functions. Suppose that M ∈ G(d, V, τ )
is a submanifold of Rn. For τ̃ > 0, let

Mτ̃ := {z ∈ R
n| inf

z̄∈M
|z − z̄| < τ̃}.

Note that Mτ̃ is a tubular neighborhood of the manifold M. Let d̃ be a suit-
able large constant depending only on d, and which is a monotonically increasing
function of d. Let

d̄ := min(n, d̃).(81)

We use a basis for Rn that is such that Rd̄ is the span of the first d̄ basis vectors,
and R

d is the span of the first d basis vectors. We denote by Πd̄, the corresponding

projection of Rn onto R
d̄. Recall that

τ̄ := c12τ.
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Definition 15. Let asdf τ̄
M denote the set of all functions F̄ : Mτ̄ → R such that

the following is true. For every z ∈ M, there exists an isometry Θz of Rn that fixes
the origin and maps R

d to a subspace parallel to the tangent plane at z such that
F̂z : Bn(0, 1) → R given by

F̂z(w) =
F̄ (z + τ̄Θz(w))

τ̄2
(82)

satisfies the following:

ASDF-1 F̂z satisfies the hypotheses of Theorem 13 for a sufficiently small con-
trolled constant ρ which will be specified in Equation ( 85) in the proof of
Lemma 14. The value of k equals r + 2, where r = 2 is the degree of
smoothness of the manifolds in Definition 3.

ASDF-2 There is a function Fz : Rd̄ → R such that for any w ∈ Bn(0, 1),

F̂z(w) = Fz (Πd̄(w)) + |w −Πd̄(w)|2,(83)

where R
d ⊆ R

d̄ ⊆ R
n, and d̄ is a function of d alone.

Let

Γz = {w |Πz
hi(w)∂F̂z(w) = 0},(84)

where Πz
hi is as in Theorem 13 applied to the function F̂z.

Lemma 14. Suppose that M ∈ G(d, V, τ ) is a submanifold of R
n. Let F̄ be in

asdf τ̄
M, and let Γz and Θz be as in Definition 15.

(1) The graph Γz is contained in R
d̄.

(2) Let c4 and c5 be the constants appearing in ( 31) in Theorem 13, once we
fix C0 in ( 28) to be 10, and the constants c1 and C1 in ( 29) to 1/10 and
10, respectively. The set

Mput :=
{
z ∈ Mmin(c4,c5)τ̄

∣∣Πhi(z)∂F̄ (z) = 0
}

is a submanifold of Rn and has a reach greater than cτ , where c is a constant
depending only on d.

Here Πhi(z) is the orthogonal projection onto the eigenspace corresponding to eigen-
values in the interval [c2, C2] that is specified in Definition 14.

Proof. To see the first part of the lemma, note that because of (83), for any
w ∈ Bn(0, 1), the span of the eigenvectors corresponding to the eigenvalues of

the Hessian of F = F̂z that lie in (c2, C3) contains the orthogonal complement of

R
d̄ in R

n (henceforth referred to as Rn−d̄). Further, if w 
∈ R
d̄, there is a vector in

R
n−d̄ that is not orthogonal to the gradient ∂F̂z(w). Therefore

Γz ⊆ R
d̄.

We proceed to the second part of the Lemma. We choose c12 to be a small enough
monotonically decreasing function of d̄ (by (81) and the assumed monotonicity

of d̃, c12 is consequently a monotonically decreasing function of d) such that for
every point z ∈ M, Fz given by (83) satisfies the hypotheses of Theorem 13 with
ρ < c̃τ̄

C where C is the constant in Equation (32) and where c̃ is a sufficiently small
controlled constant. Suppose, for the purpose of reaching a contradiction, that

there is a point ẑ in Mput such that d(ẑ,M) is greater than min(c4,c5)τ̄
2 , where c4

and c5 are the constants in (31). Let z be the unique point on M nearest to ẑ.
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We apply Theorem 13 to Fz. By Equation (32) in Theorem 13, there is a point
z̃ ∈ Mput such that

|z − z̃| < Cρ < clemτ̄ .(85)

The constant clem is controlled by c̃ and can be made as small as needed provided it
is ultimately controlled by d alone. We have an upper bound of C on the first-order
derivatives of Ψ in Equation (32), which is a function whose graph corresponds
via Θz to Mput in a τ̄

2 -neighborhood of z. Any unit vector v ∈ Tan0(z) is nearly
orthogonal to z̃ − ẑ in that∣∣〈z̃ − ẑ, v〉

∣∣∣∣z̃ − ẑ
∣∣ <

2clem
min(c4, c5)

.(86)

We can choose clem small enough that (86) contradicts the mean value theorem
applied to Ψ because of the upper bound of C on |∂Ψ| from Equation (32).

This shows that for every ẑ ∈ Mput its distance to M satisfies

d(ẑ,M) ≤ min(c4, c5)τ̄

2
.(87)

Recall that

Mput :=
{
z ∈ Mmin(c4,c5)τ̄

∣∣Πhi(z)∂F̄ (z) = 0
}
.

Therefore, for every point ẑ in Mput, there is a point z ∈ M such that

Bn

(
ẑ,

min(c4, c5)τ̄

2

)
⊆ Θz (Bd(0, c4τ̄)× Bn−d(0, c5τ̄ )) .(88)

We have now shown that Mput lies not only in Mmin(c4,c5)τ̄ but also in Mmin(c4,c5)τ̄
2

.

Recall that τ̄ = c̄12τ by (80). This fact, in conjunction with (32) and Proposition 1
implies that Mput is a manifold with reach greater than cτ . �

Let

D̄τ̃
F̄ → Mput(89)

be the bundle over Mput wherein the fiber at a point ẑ ∈ Mput consists of all points
z such that

(1) |ẑ − z| ≤ τ̃ , and
(2) z − ẑ lies in the span of the top n − d eigenvectors of the Hessian of F̄

evaluated at ẑ.

Observation 5. By Theorem 13, M is a Cr-smooth section of D̄c11τ̄
F̄

and the
controlled constants c1, . . . , c7 and C and depend only on c1, C1, C0, k, and n (these
constants are identical to those in Theorem 13). By ( 83), we conclude that the
dependence on n can be replaced by a dependence on d̄.

11.2. The disc bundles constructed from approximate-squared-distance
functions are good. In this subsection, we prove that any approximate-squared-
distance function defined on a cylinder packet corresponds to a putative manifold
and a disc bundle having good properties. By Lemma 17 of the next section and
Observation 5, it will follow that every manifold in G(d, V, τ ) is achieved as the
graph of a section of a disc bundle constructed from some element of C τ̄ (d, V, τ ).
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1018 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Suppose that C ∈ C τ̄ (d, V, τ ) is a cylinder packet corresponding to
ō = {o1, . . . , oN̄}. Let A be the union over i of the discs Ai := oi(R

d ∩ cyl2).
For τ̃ > 0, let

Aτ̃ := {z ∈ R
n| inf

z̄∈A
|z − z̄| < τ̃}.

Note that Aτ̃ is a neighborhood of the set M. As before, let d̃ be a suitable large
constant depending only on d, and which is a monotonically increasing function of
d. Let

d̄ := min(n, d̃).(90)

As was the case earlier, we use a basis for R
n that is such that R

d is the span of
the first d basis vectors, and R

d̄ is the span of the first d̄ basis vectors. We denote
by Πd̄, the corresponding projection of Rn onto R

d̄.

Definition 16. Let asdf τ̄
A denote the set of all functions F̄ : Aτ̄ → R such that the

following is true. For every i ∈ N̄ and z ∈ oi(R
d)∩cyl2i , there exists an isometry Θz

of Rn that fixes the origin and maps R
d to a subspace parallel to oi(R

d) containing

z such that F̂z : Bn(0, 1) → R given by

F̂z(w) =
F̄ (z + τ̄Θz(w))

τ̄2
(91)

satisfies the following.

ASDFA − 1 F̂z satisfies the hypotheses of Theorem 13 for a sufficiently small
controlled constant ρ which will be specified in Equation ( 94) in the proof
of Lemma 15. The value of k equals r + 2, where r = 2 is the degree of
smoothness of the manifolds in Definition 3.

ASDFA − 2 There is a function Fz : Rd̄ → R such that for any w ∈ Bn(0, 1),

F̂z(w) = Fz (Πd̄(w)) + |w −Πd̄(w)|2,(92)

where R
d ⊆ R

d̄ ⊆ R
n, and d̄ is a function of d alone.

Let

Γz = {w |Πz
hi(w)∂F̂z(w) = 0},(93)

where Πz
hi is as in Theorem 13 applied to the function F̂z.

Lemma 15. Let F̄ be in asdf τ̄
A, and let Γz and Θz be as in Definition 16.

(1) The graph Γz is contained in R
d̄.

(2) Let c4 and c5 be the constants appearing in ( 31) in Theorem 13, once we
fix C0 in ( 28) to be 10, and the constants c1 and C1 in ( 29) to 1/10 and
10, respectively. The set

Mput :=
{
z ∈ Amin(c4,c5)τ̄

∣∣Πhi(z)∂F̄ (z) = 0
}

is a submanifold of Rn and has a reach greater than cτ , where c is a constant
depending only on d.

Here Πhi(z) is the orthogonal projection onto the span of eigenvectors corresponding
to eigenvalues in the interval [c2, C2] that is specified in Definition 14.
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Proof. The proof of this lemma closely follows the proof of Lemma 14.
To see the first part of the lemma, note that because of (92), for any w ∈ Bn(0, 1),

the span of the eigenvectors corresponding to the eigenvalues of the Hessian of F =
F̂z that lie in (c2, C3) contains the orthogonal complement of Rd̄ in R

n (henceforth

referred to as R
n−d̄). Further, if w 
∈ R

d̄, there is a vector in R
n−d̄ that is not

orthogonal to the gradient ∂F̂z(w). Therefore

Γz ⊆ R
d̄.

We proceed to the second part of the Lemma. We choose c12 to be a small enough
monotonically decreasing function of d̄ (by (81) and the assumed monotonicity

of d̃, c12 is consequently a monotonically decreasing function of d) such that for
every point z ∈ A, Fz given by (92) satisfies the hypotheses of Theorem 13 with
ρ < c̃τ̄

C where C is the constant in Equation (32) and where c̃ is a sufficiently
small controlled constant. Suppose, for the purpose of reaching a contradiction,

that there is a point ẑ in Mput such that d(ẑ,A) is greater than min(c4,c5)τ̄
2 , where

c4 and c5 are the constants in (31). Since ẑ belongs to Amin(c4,c5)τ̄ ⊆
⋃

i cyli, by

Observation 4 and (b) of Section 10 it is possible to choose a point z on oi(R
d)∩cyli

for some i such that 2min(c4, c5) > d(z, ẑ) > min(c4,c5)τ̄
2 and z − ẑ is orthogonal to

every vector in (z − oi(R
d)) . We apply Theorem 13 to Fz. By Equation (32) in

Theorem 13, there is a point z̃ ∈ Mput such that

|z − z̃| < Cρ < clemτ̄ .(94)

The constant clem is controlled by c̃ and can be made as small as needed provided it
is ultimately controlled by d alone. We have an upper bound of C on the first-order
derivatives of Ψ in Equation (32), which is a function whose graph corresponds
via Θz to Mput in a τ̄

2 -neighborhood of z. Any unit vector v ∈ Tan0(z) is nearly
orthogonal to z̃ − ẑ in that

∣∣〈z̃ − ẑ, v〉
∣∣ < 2clem

∣∣z̃ − ẑ
∣∣

min(c4, c5)
.(95)

We can choose clem small enough that (95) contradicts the mean value theorem
applied to Ψ because of the upper bound of C on |∂Ψ| from Equation (32).

This shows that for every ẑ ∈ Mput its distance to A satisfies

d(ẑ,A) ≤ min(c4, c5)τ̄

2
.(96)

Recall that

Mput :=
{
z ∈ Amin(c4,c5)τ̄

∣∣Πhi(z)∂F̄ (z) = 0
}
.

Therefore, for every point ẑ in Mput, there is a point z ∈ A such that

Bn

(
ẑ,

min(c4, c5)τ̄

2

)
⊆ Θz (Bd(0, c4τ̄)× Bn−d(0, c5τ̄ )) .(97)

We have now shown that Mput lies not only in Amin(c4,c5)τ̄ but also in Amin(c4,c5)τ̄
2

.

Recall that τ̄ = c̄12τ by (80). This fact, in conjunction with (32) and Proposition 1,
implies that Mput is a manifold with reach greater than cτ . �

Observation 6. By Theorem 13, the graph of any function f : oi(R
d) ∩ cyli →

oi(R
n−d)∩ cyli such that f̂ : x → (1/τ̄)f(x/τ̄) has C2 norm less than a sufficiently
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1020 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

small controlled constant (see Definition 22) corresponds to a C2-smooth local sec-

tion of the disc bundle D̄c11τ̄
F̄

(see ( 89)) and the controlled constants c1, . . . , c7 and
C and depend only on c1, C1, C0, k, and n (these constants are identical to those in
Theorem 13). By ( 83), we conclude that the dependence on n can be replaced by a
dependence on d̄.

12. Constructing an exhaustive family of disc bundles

We wish to construct a family of functions F̄ defined on open subsets of Bn(0, 2)

such that for every M ∈ G(d, V, τ ) such that M ⊆ Bn(0, 1), there is some F̂ ∈ F̄
such that the domain of F̂ contains Mτ̄ and the restriction of F̂ to Mτ̄ is contained
in asdf τ̄

M.
We now show how to construct a set D̄ of disc bundles rich enough that any

manifold M ∈ G(d, τ, V ) corresponds to a section of at least one disc bundle in D̄.
The constituent disc bundles in D̄ will be obtained from cylinder packets.

Define

θ : Rd → [0, 1](98)

to be a bump function that has the following properties for any fixed k for a
controlled constant C:

(1) For all α such that 0 < |α| ≤ k, for all x ∈ {0} ∪ (−∞,−1] ∪ [1,∞)

∂αθ(x) = 0,

and for all x ∈ (−∞,−1] ∪ [1,∞)

θ(x) = 0.

(2) for all x, ∣∣∂αθ(x)
∣∣ < C,

and for |x| < 1
4 ,

θ(x) = 1.

Definition 17. Given a packet ō := {o1, . . . , oN̄}, define F ō :
⋃

i cyli → R by

F ō(z) =

∑
cyl2i
z

φcyl2(o
−1
i (z))θ

(
Πd(o

−1
i (z))/(2τ̄)

)
∑

cyl2i
z

θ
(
Πd(o

−1
i (z))/(2τ̄)

) .(99)

Definition 18. Let A1 and A2 be two d dimensional affine subspaces of Rn for
some n ≥ 1 that, respectively, contain points x1 and x2. We define �(A1, A2), the
“angle between A1 and A2,” by

�(A1, A2) := sup
x1+v1∈A1\x1

(
inf

x2+v2∈A2\x2

arccos

(
〈v1, v2〉
‖v1‖‖v2‖

))
.
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TESTING THE MANIFOLD HYPOTHESIS 1021

Lemma 16. Let {cyl1, . . . , cylN̄} be a cylinder packet.
Then,

F ō ∈ asdf τ̄
A.

Proof. Recall that asdf τ̄
A denotes the set of all F̄ : Aτ̄ → R (where τ̄ = c12τ and

Mτ̄ is a τ̄ -neighborhood of M) for which the following is true:

• For every z ∈ Ai, there exists an isometry Θ of H that fixes the origin and
maps Rd to a subspace parallel to Ai satisfying the conditions below.

Let F̂z : Bn(0, 1) → R be given by

F̂z(w) =
F̄ (z + τ̄Θ(w))

τ̄2
.

Then, F̂z

(1) satisfies the hypotheses of Theorem 13 with k = r + 2 = 4.
(2) For any w ∈ Bn,

F̂z(w) = Fz (Πd̄(w)) + |w −Πd̄(w)|2,(100)

where R
n ⊇ R

d̄ ⊇ R
d, and Πd̄ is the projection of Rn onto R

d̄.

For any fixed z ∈ Ai, it suffices to check that there exists an isometry Θ of H which
satisfies as follows:

(A) The hypotheses of Theorem 13 are satisfied by

F̂ ō
z (w) :=

F ō(z + τ̄Θ(w))

τ̄2
,(101)

and
(B)

F̂ ō
z (w) = F̂ ō

z (Πd̄(w)) + |w −Πd̄(w)|2,

where R
n ⊇ R

d̄ ⊇ R
d, and Πd̄ is the projection of Rn onto R

d̄.

We begin by checking the condition (A). It is clear that F̂ ō
z : Bn(0, 1) → R is

Ck-smooth.
Thus, to check condition (A), it suffices to establish the following claim.

Claim 3. There is a constant C0 depending only on d and k such that

C4.1A ∂α
x,yF̂

ō
z (x, y) ≤ C0 for (x, y) ∈ Bn(0, 1) and 1 ≤ |α| ≤ k.

C4.2A For (x, y) ∈ Bn(0, 1),

c1[|y|2 + ρ2] ≤ [F̂ ō
z (x, y) + ρ2] ≤ C1[|y|2 + ρ2],

where, by making c12 sufficiently small, we can ensure that ρ > 0 is less
than any constant determined by C0, c1, C1, k, d.

Proof. That the first part of the claim, i.e., (C4.1A), is true follows from the chain

rule and the definition of F̂ ō
z (x, y) after rescaling by τ̄ . We proceed to show (C4.2A).

For any i′ ∈ [N̄ ] and any vector v in R
d, for ρ taken to be the value from Theo-

rem 13, for (x, y) ∈ Bn(0, 1), the corresponding z′ ∈ Bn(z, τ̄) belongs to some cyl2i .
Suppose without loss of generality that i = 1 and the other cylinders that con-
tain z′ are 2, . . . , t. Then, F ō is a convex combination of d(z′,A1)

2, . . . ,d(z′,At)
2.

Note that y = d(z′,A1)/(2τ̄). Thus, it suffices to prove that for each j > 1,
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1022 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

|d(z′,Aj)−d(z′,A1)| < τ̄ρ2/8. It follows from (c) and (d) of Section 10 that there
is a rigid body motion of cyl2j that maps it to an isometric image such that no

point of cyl2j is moved by more than 16τ̄2/τ , such that the image of Aj is con-

tained inside o1(R
d). It follows that |d(z′,Aj)−d(z′,A1)| < 16τ̄2/τ , which in turn

by a proper choice of c12 can be made less than τ̄ ρ2/8 as we desire. This ends the
proof of Claim 3. �

We proceed to check condition (B). This holds because for every point z in A,
the number of i such that the cylinder cyli has a non-empty intersection with a

ball of radius 2
√
2(τ̄) centered at z is bounded above by a controlled constant (i.e.,

a quantity that depends only on d). It follows from (a) of Section 10 that we can
choose Θ so that Θ(Πd̄(w)) contains the linear span of the d dimensional cross
sections of all the cylinders containing z. This, together with the fact that H is a
Hilbert space, is sufficient to yield condition (B). The lemma now follows. �

Let M belong to G(d, V, τ ). Let Y := {y1, . . . , yN̄} be a maximal subset of
M with the property that no two distinct points are at a distance of less than τ̄

2

from each other. We construct an ideal cylinder packet {cyl21, . . . , cyl2N̄} by fixing

the center of cyl2i to be yi, and fixing their orientations by the condition that
for each cylinder cyl2i , the d dimensional central cross section is a tangent disc to
the manifold at yi. Given an ideal cylinder packet, an admissible cylinder packet
corresponding to M is obtained by perturbing the center of each cylinder by less
than c12

10 τ̄ and applying arbitrary unitary transformations to these cylinders whose
difference with the identity has an operator norm less than τ̄

10τ . It is not difficult to
check that an admissible cylinder packet is a cylinder packet as per the definition
in Section 10.

Lemma 17. Let M belong to G(d, V, τ ), and let {cyl1, . . . , cylN̄} be an admissible
packet corresponding to M.

Then,

F ō ∈ asdf τ̄
M.

Proof. Recall that asdf τ̄
M denotes the set of all F̄ : Mτ̄ → R (where τ̄ = c12τ and

Mτ̄ is a τ̄ -neighborhood of M) for which the following is true:

• For every z ∈ M, there exists an isometry Θ of H that fixes the origin
and maps Rd to a subspace parallel to the tangent plane at z satisfying the
conditions below.

Let F̂z : Bn(0, 1) → R be given by

F̂z(w) =
F̄ (z + τ̄Θ(w))

τ̄2
.

Then, F̂z

(1) satisfies the hypotheses of Theorem 13 with k = r + 2 = 4.
(2) For any w ∈ Bn,

F̂z(w) = Fz (Πd̄(w)) + |w −Πd̄(w)|2,(102)

where R
n ⊇ R

d̄ ⊇ R
d, and Πd̄ is the projection of Rn onto R

d̄.
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TESTING THE MANIFOLD HYPOTHESIS 1023

For any fixed z ∈ M, it suffices to check that there exists a proper isometry Θ of
H such that

(A) The hypotheses of Theorem 13 are satisfied by

F̂ ō
z (w) :=

F ō(z + τ̄Θ(w))

τ̄2
(103)

and
(B)

F̂ ō
z (w) = F̂ ō

z (Πd̄(w)) + |w −Πd̄(w)|2,
where R

n ⊇ R
d̄ ⊇ R

d, and Πd̄ is the projection of Rn onto R
d̄.

We begin by checking the condition (A). It is clear that F̂ ō
z : Bn(0, 1) → R is

Ck-smooth.
Thus, to check condition (A), it suffices to establish the following claim.

Claim 4. There is a constant C0 depending only on d and k such that

C4.1 ∂α
x,yF̂

ō
z (x, y) ≤ C0 for (x, y) ∈ Bn(0, 1) and 1 ≤ |α| ≤ k.

C4.2 For (x, y) ∈ Bn(0, 1),

c1[|y|2 + ρ2] ≤ [F̂ ō
z (x, y) + ρ2] ≤ C1[|y|2 + ρ2],

where, by making c12 sufficiently small, we can ensure that ρ > 0 is less
than any constant determined by C0, c1, C1, k, d.

Proof. That the first part of the claim, i.e., (C4.1), is true follows from the chain

rule and the definition of F̂ ō
z (x, y) after rescaling by τ̄ . We proceed to show (C4.2).

For any i ∈ [N̄ ] and any vector v in R
d, for ρ taken to be the value from Theorem 13,

we see that for a sufficiently small value of c12 = τ̄
τ (controlled by d alone), (104)

and (105) follow because M is a manifold of reach greater than or equal to τ , and
consequently Proposition 1 holds true,

|xi −ΠMxi| <
ρ2τ̄

100
,(104)

�
(
oi(R

d), Tan(ΠM(xi),M)
)
≤ ρ2

100
.(105)

Making use of Proposition 1 and Claim 1, we see that for any xi, xj such that
|xi − xj | < 3τ̄ ,

� (Tan(ΠM(xi),M), Tan(ΠM(xj),M)) ≤ 3ρ2

100
.(106)

The inequalities (104), (105), and (106) imply (C4.2), completing the proof of the
claim. �

We proceed to check condition (B). This holds because for every point z in M,
the number of i such that the cylinder cyli has a non-empty intersection with a

ball of radius 2
√
2(τ̄) centered at z is bounded above by a controlled constant (i.e.,

a quantity that depends only on d). This, in turn, is because M has a reach of τ
and no two distinct yi, yj are at a distance less than τ̄

2 from each other. Therefore,
we can choose Θ so that Θ(Πd̄(w)) contains the linear span of the d dimensional
cross sections of all the cylinders containing z. This, together with the fact that H
is a Hilbert space, is sufficient to yield condition (B). The lemma now follows. �
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Figure 5. Optimizing over local sections.

Definition 19. Let F̄ be a set of all functions F ō obtained as {cyl2i }i∈[N̄ ] ranges
over all cylinder packets centered on points of a lattice whose spacing is a controlled
constant multiplied by τ and the orientations are chosen arbitrarily from a net of
the Grassmannian manifold Grnd (with the usual Riemannian metric) of scale that
is a sufficiently small controlled constant.

By Lemma 17 F̄ has the following property.

Corollary 18. For every M ∈ G that is a Cr-submanifold, there is some F̂ ∈ F̄
that is an approximate-squared-distance function for M; i.e., the restriction of F̂
to Mτ̄ is contained in asdf τ̄

M.

13. Finding good local sections

Definition 20. Let (x1, y1), . . . , (xN , yN ) be ordered tuples belonging to Bd×Bn−d,
and let r ∈ N. Recall that by Definition 3, the value of r is 2. However, in the
interest of clarity, we will use the symbol r to denote the number of derivatives. We
say that a function

f : Bd → Bn−d

is an ε-optimal interpolant if the Cr-norm of f (see Definition 22) satisfies

‖f‖Cr ≤ c,

and
N∑
i=1

|f(xi)− yi|2 ≤ CNε+ inf
{f̌ :‖f̌‖Cr≤C−1c}

N∑
i=1

|f̌(xi)− yi|2,(107)

where c and C > 1 are some constants depending only on d (see Figure 5).

13.1. Basic convex sets. We will denote the codimension n − d by n̄. It will be
convenient to introduce the following notation. For some i ∈ N, an “i-Whitney

field” is a family �P = {P x}x∈E of i dimensional vectors of real-valued polynomials

Px indexed by the points x in a finite set E ⊆ R
d. We say that �P = (Px)x∈E is a

Whitney field “on E,” and we write Whn̄r (E) for the vector space of all n̄-Whitney
fields on E of degree at most r.
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TESTING THE MANIFOLD HYPOTHESIS 1025

Definition 21. Let Cr(Rd) denote the space of all real functions on R
d that are

r-times continuously differentiable and

sup
|α|≤r

sup
x∈Rd

|∂αf
∣∣
x
| < ∞.

For a closed subset U ∈ R
d such that U is the closure of its interior Uo, we

define the Cr-norm of a function f : U → R by

‖f‖Cr(U)) := sup
|α|≤r

sup
x∈Uo

|∂αf
∣∣
x
|.(108)

When U is clear from context, we will abbreviate ‖f‖Cr(U) to ‖f‖Cr .

Definition 22. We define Cr(Bd, Bn̄) to consist of all f : Bd → Bn̄ such that
f(x) = (f1(x), . . . , f n̄(x)) and for each i ∈ n̄, fi : Bd → R belongs to Cr(Bd). We
define the Cr-norm of f(x) := (f1(x), . . . , f n̄(x)) by

‖f‖Cr(Bd,Bn̄) := sup
|α|≤r

sup
v∈Bn̄

sup
x∈Bd

|∂α(〈f, v〉)
∣∣
x
|.

Suppose F ∈ Cr(Bd), and x ∈ Bd, we denote by Jx(F ) the polynomial that is the
rth order Taylor approximation to F at x, and call it the “jet of F at x.”

If �P = {Px}x∈E is an n̄-Whitney field, and F ∈ Cr(Bd, Bn̄), then we say that

“F agrees with �P ,” or “F is an extending function for �P ,” provided Jx(F ) = Px

for each x ∈ E. If E+ ⊃ E, and (P+
x )x∈E+ is an n̄-Whitney field on E+, we say

that �P+ “agrees with �P on E” if for all x ∈ E, Px = P+
x . We define a Cr-norm on

n̄-Whitney fields as follows. If �P ∈ Whn̄r (E), we define

‖�P‖Cr(E) = inf
F

‖F‖Cr(Bd,Bn̄),(109)

where the infimum is taken over all F ∈ Cr(Bd, Bn̄) such that F agrees with �P .
We are interested in the set of all f ∈ Cr(Bd, Bn̄) such that ‖f‖Cr(Bd,Bn̄) ≤ 1.

By results of Fefferman (see page 19 in [24]) we have the following.

Theorem 19. Given ε > 0, a positive integer r and a finite set E ⊂ R
d, it

is possible to construct in time and space bounded by exp(C/ε)|E| (where C is
controlled by d and r) a set E+ and a convex set K having the following properties:

• Here K is the intersection of m̄ ≤ exp(C/ε)|E| sets {x|(αi(x))
2 ≤ βi},

where αi(x) is a real valued linear function such that α(0) = 0 and βi > 0.
Thus

K := {x|∀i ∈ [m̄], (αi(x))
2 ≤ βi} ⊂ Wh1r(E

+).

• If �P ∈ Wh1r(E
+) such that ‖�P‖Cr(E) ≤ 1 − ε, then there exists a Whitney

field �P+ ∈ K that agrees with �P on E.

• Conversely, if there exists a Whitney field �P+ ∈ K that agrees with �P on

E, then ‖�P‖Cr(E) ≤ 1 + ε.

For our purposes, it would suffice to set the above ε to any controlled constant.
To be specific, we set ε to 1

2 . By Theorem 1 of [23] we know the following.

Theorem 20. There exists a linear map T from Cr(E) to Cr(Rd) and a controlled
constant C such that Tf

∣∣
E
= f and ‖Tf‖Cr(Rd) ≤ C‖f‖Cr(E).
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1026 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Definition 23. For {αi} as in Theorem 19, let K̄ ⊂
⊕n̄

i=1 Wh
1
r(E

+) be the set

of all (x1, . . . , xn̄) ∈
⊕n̄

i=1 Wh
1
r(E

+) (where each xi ∈ Wh1r(E
+)) such that for each

i ∈ [m̄]

n̄∑
j=1

(αi(xj))
2 ≤ βi.

Thus, K̄ is an intersection of m̄ convex sets, one for each linear constraint αi.
We identify

⊕n̄
i=1 Wh

1
r(E

+) with Whn̄r (E
+) via the natural isomorphism. Then, from

Theorem 19 and Theorem 20 we obtain the following.

Corollary 21. There is a controlled constant C depending on r and d such that

• If �P is a n̄-Whitney field on E such that ‖�P‖Cr(E,Rn̄) ≤ C−1, then there

exists a n̄-Whitney field �P+ ∈ K̄ that agrees with �P on E.

• Conversely, if there exists a n̄-Whitney field �P+ ∈ K̄ that agrees with �P on

E, then ‖�P‖Cr(E,Rn̄) ≤ C.

13.2. Preprocessing. Let ε̄ > 0 be an error parameter.

Notation 1. For n ∈ N, we denote the set {1, . . . , n} by [n]. Let {x1, . . . , xN} ⊆
R

d.

Suppose x1, . . . , xN is a set of data points in R
d̄ and y1, . . . , yN are corresponding

values in R
n̄. The following procedure constructs a function p : [N ] → [N ] such

that {xp(i)}i∈[N ] is an ε̄-net of {x1, . . . , xN}. For i = 1 to N , we sequentially define
sets Si and construct p.

Let S1 := {1} and p(1) := 1. For any i > 1,

(1) if {j : j ∈ Si−1 and |xj − xi| < ε̄} 
= ∅, set p(i) to be an arbitrary element
of {j : j ∈ Si−1 and |xj − xi| < ε̄}, and set Si := Si−1,

(2) and otherwise set p(i) := i, and set Si := Si−1 ∪ {i}.
Finally, set S := SN , N̂ = |S|, and for each i, let

h(i) := {j : p(j) = i}.
For i ∈ S, let μi := N−1

∣∣h(i)∣∣, and let

ȳi :=

(
1

|h(i)|

) ∑
j∈h(i)

yj .(110)

It is clear from the construction that for each i ∈ [N ], |xp(i) − xi| ≤ ε̄. The
construction of S ensures that the distance between any two points in S is at
least ε̄. The motivation for sketching the data in this manner was that now, the
extension problem involving E = {xi|i ∈ S} that we will have to deal with will be
better conditioned in a sense explained in the following subsection.

13.3. Convex program. Let the indices in [N ] be permuted so that S = [N̂ ]. For
any f such that ‖f‖C2 ≤ C−1c, and |x−y| < ε̄, we have |f(x)−f(y)| < ε̄ (and so the
grouping and averaging described in the previous section do not affect the quality
of our solution); therefore we see that in order to find a ε̄-optimal interpolant, it
suffices to minimize the objective function

ζ :=

N̂∑
i=1

μi|ȳi − Pxi
(xi)|2,
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TESTING THE MANIFOLD HYPOTHESIS 1027

over all �P ∈ K̄ ⊆ Whn̄r (E
+), to within an additive error of ε̄, and to find the

corresponding point in K̄. We note that ζ is a convex function over K̄.

Lemma 22. Suppose that the distance between any two points in E is at least ε̄.

Suppose �P ∈ Wh1r(E
+) has the property that for each x ∈ E, every coefficient of Px

is bounded above by c′ε̄2. Then, if c′ is less than some controlled constant depending
on d,

‖�P‖C2(E) ≤ 1.

Proof. Let

f(x) =
∑
z∈E

θ

(
10(x− z)

ε̄

)
Pz(x).

By the properties of θ listed in Section 12, we see that f agrees with �P and that
‖f‖C2(Rd) ≤ 1 if c′ is bounded above by a sufficiently small controlled constant. �

Let zopt ∈ K̄ be any point such that

ζ(zopt) = inf
z′∈K̄

ζ(z′).

Observation 7. By Lemma 22 we see that the set K contains a Euclidean ball of
radius c′ε̄2 centered at the origin, where c′ is a controlled constant depending on d.

It follows that K̄ contains a Euclidean ball of the same radius c′ε̄2 centered at
the origin. Due to the fact that the magnitudes of the first m derivatives at any
point in E+ are bounded by C, every point in K̄ is at a Euclidean distance of at
most CN̂ from the origin. We can bound N̂ from above as follows:

N̂ ≤ C

ε̄d
.

Thanks to Observation 7 and facts from computer science, we will see in a few
paragraphs that the relevant optimization problems are tractable.

13.4. Complexity. Since we have an explicit description of K̄ as in intersection
of cylinders, we can construct a “separation oracle,” which, when fed with z, does
the following:

• If z ∈ K̄, then the separation oracle outputs “Yes.”
• If z 
∈ K̄, then the separation oracle outputs “No” and in addition outputs
a real affine function a : Whn̄r (E

+) → R such that a(z) < 0 and ∀z′ ∈ K̄
a(z′) > 0.

To implement this separation oracle for K̄, we need to do the following. Suppose we
are presented with a point x = (x1, . . . , xn̄) ∈ Whn̄r (E

+), where each xj ∈ Wh1r(E
+).

(1) If, for each i ∈ [m̄],

n̄∑
j=1

(αi(xj))
2 ≤ βi

holds, then declare that x ∈ K̄.
(2) Else, let there be some i0 ∈ [m̄] such that

n̄∑
j=1

(αi0(xj))
2 > βi0 .
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1028 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Output the following separating half-space:

{(y1, . . . , yn̄) :
n̄∑

j=1

αi0(xj)αi0(yj − xj) ≤ 0}.

The complexity A0 of answering the above query is the complexity of evaluating
αi(xj) for each i ∈ [m̄] and each j ∈ [n̄]. Thus

A0 ≤ n̄m̄(dim(K)) ≤ CnN̂2.(111)

Claim 5. For some a ∈ K̄,

B(a, 2−L) ⊆ {z ∈ K̄|ζ(z)− ζ(zopt) < ε̄} ⊆ B(0, 2L),

where L can be chosen so that L ≤ C(1 + | log(ε̄)|).

Proof. By Observation 7, we see that the diameter of K̄ is at most Cε̄−d and K̄
contains a ball BL of radius 2−L. Let the convex hull of BL and the point zopt be
Kh. Then,

{z ∈ Kh|ζ(z)− ζ(zopt) < ε̄} ⊆ {z ∈ K̄|ζ(z)− ζ(zopt) < ε̄}
because K̄ is convex. Let the set of all �P ∈ Whn̄r (E

+) at which

ζ :=
N̂∑
i=1

μi|ȳi − Pxi
(xi)|2 = 0

be the affine subspace H. Let f : Whn̄r (E
+) → R given by

f(x) = d(x, zopt) := |x− zopt|,
where | · | denotes the Euclidean norm. We see that the magnitude of the gradient
of ζ identity. Therefore,

{z ∈ Kh|ζ(z)− ζ(zopt) < ε̄} ⊇ {z ∈ Kh

∣∣2CN̂(f(z)) < ε̄}.
We note that

{z ∈ Kh

∣∣2CN̂(f(z)) < ε̄} = Kh ∩B

(
zopt,

ε̄

2CN̂

)
,

where the right hand side denotes the intersection of Kh with a Euclidean ball of

radius ε̄
2CN̂

and center zopt. By the definition of Kh, Kh ∩B
(
zopt,

ε̄
2CN̂

)
contains

a ball of radius 2−2L. This proves the claim. �
Given a separation oracle for K̄ ∈ R

n̄(dim(K)) and the guarantee that for some
a ∈ K̄,

B(a, 2−L) ⊆ {z ∈ K̄|ζ(z)− ζ(zopt) < ε̄} ⊆ B(0, 2L),(112)

if ε > ε̄ + ζ(zopt), Vaidya’s algorithm (see [53]) finds a point in K̄ ∩ {z|ζ(z) < ε}
using

O(dim(K̄)A0L
′ + dim(K̄)3.38L′)

arithmetic steps, where L′ ≤ C(L+ | log(ε̄))|). Here A0 is the number of arithmetic
operations required to answer a query to the separation oracle.

Let εva denote the smallest real number such that

(1)

εva > ε̄.
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TESTING THE MANIFOLD HYPOTHESIS 1029

(2) For any ε > εva, Vaidya’s algorithm finds a point in K̄ ∩{z|ζ(z) < ε} using

O(dim(K̄)A0L
′ + dim(K̄)3.38L′)

arithmetic steps, where L′ ≤ C(1 + | log(ε̄))|).
A consequence of (112) is that εva ∈ [2−L, 2L+1]. It is therefore clear that εva can

be computed to within an additive error of ε̄ using binary search and C(L+ | ln ε̄|)
calls to Vaidya’s algorithm.

The total number of arithmetic operations is therefore

O(dim(K̄)A0L
2 + dim(K̄)3.38L2)

where L ≤ C(1 + | log(ε̄)|).

14. Patching local sections together

This section starts by defining local sections (to be called Mi
fin later) and con-

cludes with the definition of the final manifold Mfin, which is obtained by patching
local sections together.

For any i ∈ [N̄ ], recall the cylinders cyli and Euclidean motions oi from Sec-
tion 10.

Let base(cyli) := oi(cyl ∩ R
d) and stalk(cyli) := oi(cyl ∩ R

n−d). Let f̌i :
Bd → Bn−d be an arbitrary C2 function such that

‖f̌i‖C2 ≤ 2τ̄

τ
.(113)

Let fi : base(cyl) → stalk(cyl) be given by

fi(x) = τ̄ f̌i

(x
τ̄

)
.(114)

Now, fix an i ∈ [N̄ ]. Without loss of generality, we will drop the subscript i
(having fixed this i) and assume that oi := id, by changing the frame of reference

using a proper rigid body motion. Recall that F̂ ō was defined by (103), i.e.,

F̂ ō(w) :=
F ō(τ̄w)

τ̄2

Figure 6. Patching local sections together: base manifold in blue,
final manifold in red, and local sections in yellow.
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1030 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

(now 0 and oi = id play the role that z and Θ played in (103)). Let N (z) be the

linear subspace spanned by the top n − d eigenvectors of the Hessian of F̂ ō at a
variable point z. Let the intersection of

Bd(0, 1)×Bn−d(0, 1)

with

{z̃
∣∣〈∂F̂ ō

∣∣
z̃
, v〉 = 0 for all v ∈ Πhi(z̃)(R

n)}
be locally expressed as the graph of a function gi, where

gi : Bd(0, 1) → R
n−d.(115)

For this fixed i, we drop the subscript and let g : Bd(0, 1) → R
n−d be given by

g := gi.(116)

As in (84), we see that

Γ = {w |Πhi(w)∂F
ō(w) = 0}

lies in R
d̄, and the manifold Mput obtained by patching up all such manifolds for

i ∈ [N̄ ] is, as a consequence of Proposition 1 and Theorem 13, a submanifold, whose
reach is at least cτ . Let

D̄norm
F̄ ō → Mput

be the bundle over Mput defined by (89).
Let si be the local section of D̄norm := D̄norm

F ō defined by

{z + si(z)|z ∈ Ui} := oi

(
{x+ fi(x)}x∈base(cyl)

)
,(117)

where U := Ui ⊆ Mput is an open set fixed by (117). The choice of τ̄
τ in (113)

is small enough to ensure that there is a unique open set U and a unique si such
that (117) holds (by Observations 1, 2, and 3). We define Uj for any j ∈ [N̄ ]
analogously. Next, we construct a partition of unity on Mput. For each j ∈ [N̄ ],

let θ̃j : Mput → [0, 1] be an element of a partition of unity defined as follows. For
x ∈ cylj ,

θ̃j(x) :=

⎧⎨
⎩ θ

(
Πd(o

−1
j x)

τ̄

)
, if x ∈ cylj ;

0 otherwise,

where θ is defined by (98). Let

θj(z) :=
θ̃j(z)∑

j′∈[N̄ ] θ̃j′(z)
.(118)

We use the local sections {sj |j ∈ [N̄ ]}, defined separately for each j by (117)
and the partition of unity {θi}i∈N̄ , to obtain a global section s of Dnorm

ō defined as
follows for x ∈ Ui (see Figure 6):

s(x) :=
∑
j∈[N̄ ]

θj(x)sj(x).(119)

We also define f : Vi → Bn−d by

{z + s(z)|z ∈ Ui} := {x+ τ̄ f(x/τ̄)}x∈Vi
.(120)
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TESTING THE MANIFOLD HYPOTHESIS 1031

The above equation fixes an open set Vi in R
d. The graph of s, i.e.,{

(x+ s(x))
∣∣x ∈ Mput

}
=: Mfin,(121)

is the output manifold. We see that (121) defines a manifold Mfin, by checking
this locally. We will obtain a lower bound on the reach of Mfin in Section 15.

15. The reach of the final manifold Mfin

Recall that F̂ ō was defined by (103), i.e.,

F̂ ō(w) :=
F ō(τ̄w)

τ̄2

(now 0 and oi = id play the role that z and Θ played in (103)). We place ourselves in
the context of Observation 3. By construction, F ō : Bn → R satisfies the conditions
of Theorem 13, and therefore there exists a map

Φ : Bn(0, c11) → Bd(0, c10)×Bn−d

(
0,

c10
2

)
,

satisfying the following condition:

Φ(z) = (x,Πn−dv),(122)

where

z = x+ g(x) + v

and

v ∈ N (x+ g(x)).

Also, x and v are Cr-smooth functions of z ∈ Bn(0, c̄11) with derivatives of order
up to r bounded above by C. Let

Φ̌ : Bn(0, c11τ̄ ) → Bd(0, c10τ̄)×Bn−d

(
0,

c10τ̄

2

)
(123)

be given by

Φ̌(x) = τ̄Φ(x/τ̄).

Let Dg be the disc bundle over the graph of g, whose fiber at x+ g(x) is the disc

Bn

(
x+ g(x),

c10
2

)⋂
N (x+ g(x)).

By Lemma 23 below, we can ensure, by setting c12 ≤ c̄ for a sufficiently small
controlled constant c̄, that the derivatives of Φ − id of order less than or equal to
r = k − 2 are bounded above by a prescribed controlled constant c.

Lemma 23. For any controlled constant c, there is a controlled constant c̄ such
that if c12 ≤ c̄, then for each i ∈ [N̄ ] and each |α| ≤ 2 the functions Φ and g,
respectively, defined in ( 122) and ( 116) satisfy

|∂α(Φ− id)| ≤ c,

|∂αg| ≤ c.
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1032 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Proof of Lemma 23. We would like to apply Theorem 13 here, but its conclusion
would not directly help us, since it would give a bound of the form

|∂αΦ| ≤ C,

where C is some controlled constant. To remedy this, we are going to use a simple
scaling argument. We first provide an outline of the argument. We change scale
by “zooming out,” then apply Theorem 13, and thus obtain a bound of the desired
form

|∂α(Φ− id)| ≤ c.

We replace each cylinder cylj = oj(cyl) by ˇcylj := oj(τ̄(Bd×(ČBn−d))). Since the

guarantees provided by Theorem 13 have an unspecified dependence on d̄ (which
appears in (102)), we require an upper bound on the “effective dimension” that
depends only on d and is independent of Č. If we were only to “zoom out,” this
unspecified dependence on d̄ renders the bound useless. To mitigate this, we need
to modify the cylinders that are far away from the point of interest. More precisely,
we consider a point x ∈ ˇcyli and replace each cylj that does not contribute to Φ(x)

by ˇcylj , a suitable translation of

τ̄ (Bd × (ČBn−d)).

This ensures that the dimension of

{
∑
j

λjvj |λj ∈ R, vj ∈ ǒj(R
d)}

is bounded above by a controlled constant depending only on d. We then apply
Theorem 13 to the function F̌ ǒ(w) defined in (125). This concludes the outline; we
now proceed with the details.

Recall that we have fixed our attention to ˇcyli. Let

ˇcyl := τ̄(Bd × (ČBn−d)) = ˇcyli,

where Č is an appropriate (large) controlled constant, whose value will be specified
later.

Let

ˇcyl2 := 2τ̄(Bd × (ČBn−d)) =
ˇcyl2i .

Given a packet ō := {o1, . . . , oN̄}, define a collection of cylinders

{ ˇcylj |j ∈ [Ň ]}
in the following manner. Let

Š :=
{
j ∈ [N̄ ]

∣∣|oj(0)| < 6τ̄
}
.

Let

Ť :=
{
j ∈ [N̄ ]

∣∣|Πd(oj(0))| < Čτ̄ and |oj(0)| < 4
√
2Ĉτ̄

}
,

and assume without loss of generality that Ť = [Ň ] for some integer [Ň ]. Here

4
√
2Ĉ is a constant chosen to ensure that for any j ∈ [N̄ ] \ [Ň ], ˇcyl2j ∩ ˇcyl2 = ∅.

For v ∈ R
n, let Trv : Rn → R

n denote the map that takes x to x + v. For any
j ∈ Ť \ Š, let

vj := Πdoj(0).
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TESTING THE MANIFOLD HYPOTHESIS 1033

Next, for any j ∈ Ť , let

ǒj :=

{
oj , if Š;
Trvj , if j ∈ Š \ Ť .

For each j ∈ Ť , let ˇcylj := ǒj( ˇcyl). Define F ǒ :
⋃

j∈Ť
ˇcylj → R by

F ǒ(z) =

∑
ˇcyl2j
z

∣∣Πn−d(ǒ
−1
j (z))

∣∣2θ(Πd(ǒ
−1
j (z))

2τ̄

)

∑
ˇcyl2j
z

θ

(
Πd(ǒ

−1
j (z))

2τ̄

) .(124)

Taking c12 to be a sufficiently small controlled constant depending on Č, we see
that

F̌ ǒ(w) :=
F ǒ(Čτ̄w)

Č2τ̄2
,(125)

restricted to Bn, satisfies the requirements of Theorem 13. Choosing Č to be
sufficiently large, for each |α| ∈ [2, k], the function Φ defined in (122) satisfies

|∂αΦ| ≤ c,(126)

and for each |α| ∈ [0, k − 2], the function g defined in (122) satisfies

|∂αg| ≤ c.(127)

Observe that we can choose j ∈ [N̄ ] \ [Ň ] such that |ǒj(0)| < 10τ , for this j,
ˇcylj ∩ ˇcyl = ∅, and so

∂Φ
∣∣
(τ̄−1)ǒj(0)

= id.(128)

The lemma follows from Taylor’s theorem, in conjunction with (126), (127), and
(128).

Observation 8. By choosing Č ≥ 2/c11 we find that the domains of both Φ and Φ−1

may be extended to contain the cylinder
(
3
2

)
Bd×Bn−d, while satisfying ( 122). �

Since |∂α(Φ−Id)(x)| ≤ c for |α| ≤ r and x ∈
(
3
2

)
Bd×Bn−d, we have |∂α(Φ−1−

Id)(w)| ≤ c for |α| ≤ r and w ∈ Bd × Bn−d. For the remainder of this section, we
will assume a scale where τ̄ = 1.

For u ∈ Ui, we have the following equality which we restate from (119) for
convenience:

s(u) =
∑
j∈[N̄ ]

θj(u)sj(u).

Let Πpseud (for “pseudonormal bundle”) be the map from a point x in cyl to the
base point belonging to Mput of the corresponding fiber. The following relation
exists between Πpseud and Φ:

Πpseud = Φ−1ΠdΦ.

We define the Ck−2 norm of a local section sj over U ⊆ Uj ∩ Ui by

‖sj‖Ck−2(U) := ‖sj ◦ Φ−1‖Ck−2(Πd(U)).
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1034 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

Recall that k − 2 = r = 2. Suppose for a specific x and t,

x+ fj(x) = t+ sj(t),

where t belongs to Uj ∩ Ui. Applying Πpseud to both sides,

Πpseud(x+ fj(x)) = t.

Let

Πpseud(x+ fj(x)) =: φj(x).

Substituting back, we have

x+ fj(x) = φj(x) + sj(φj(x)).(129)

By definition 20, we have the bound ‖fj‖Ck−2(φ−1
j (Ui∩Uj))

≤ c. We have

Πpseud(x+ fj(x)) = (Πpseud −Πd)(x+ fj(x)) + x,

which gives the bound

‖φj − Id‖Ck−2(φ−1
j (Ui∩Uj))

≤ c.

Therefore, from (129),

‖sj ◦ φj‖Ck−2(φ−1
j (Ui∩Uj))

≤ c.(130)

Also,

‖φ−1
j ◦ Φ−1 − Id‖Ck−2(Πd(Ui∩Uj)) ≤ c.(131)

From the preceding two equations, it follows that

‖sj‖Ck−2(Ui∩Uj) ≤ c.(132)

The cutoff functions θj satisfy

‖θj‖Ck−2(Ui∩Uj) ≤ C.(133)

Therefore, by (119),

‖s‖Ck−2(Ui∩Uj) ≤ Cc,(134)

which we rewrite as

‖s‖Ck−2(Ui∩Uj) ≤ c1.(135)

Recall the statements surrounding (120) for a definition of Vi. We will now show
that

‖f‖Ck−2(Vi) ≤ c.

By (120) in view of τ̄ = 1, for u ∈ Ui, there is an x ∈ Vi such that

u+ s(u) = x+ f(x).

This gives us

Πd(u+ s(u)) = x.

Substituting back, we have

Πd(u+ s(u)) + f(Πd(u+ s(u))) = u+ s(u).

Let
ψ(u) := Πd(u+ s(u)).
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TESTING THE MANIFOLD HYPOTHESIS 1035

This gives us

f(ψ(u)) = (u− ψ(u)) + s(u).(136)

By (135) and the fact that |∂α(Φ− Id)(x)| ≤ c for |α| ≤ r, we see that

‖ψ − Id‖Ck−2(Ui) ≤ c.(137)

By (136), (137), and (135), we have ‖f ◦ ψ‖Ck−2(Ui) ≤ c.
By (137), we have

‖ψ−1 − Id‖Ck−2(Vi) ≤ c.

Therefore,

‖f‖Ck−2(Vi) ≤ c.(138)

For any point u ∈ Mput, there is by Lemma 14 for some j ∈ [N̄ ], a Uj such that
Mput ∩B(u, 1/10) ⊆ Uj (recall that τ̄ = 1). Therefore, suppose a, b are two points
on Mfin such that |a− b| < 1/20, then |Πpseud(a)−Πpseud(b)| < 1/10, and so both
Πpseud(a) and Πpseud(b) belong to Uj for some j. Without loss of generality, let
this j be i. This implies that a, b are points on the graph of f over Vi. Then, by
(138) and Proposition 1, Mfin is a manifold whose reach is at least cτ .

16. The mean-squared distance to the final manifold Mfin

from a random data point

Let Mopt be an approximately optimal manifold in that

reach(Mopt) > Cτ,

vol(Mopt) < V/C,

and

EPd(x,Mopt)
2 ≤ inf

M∈G(d,Cτ,cV )
EPd(x,M)2 + ε.

Suppose that ō is the packet from the previous section and that the corresponding
function F ō belongs to asdf(Mopt). We need to show that the Mfin constructed
using ō serves the purpose it was designed for, namely, that the following Lemma
holds.

Lemma 24.

Ex�Pd(x,Mfin)
2 ≤ C0

(
Ex�Pd(x,Mopt)

2 + ε
)
.

Proof. Let us examine the manifold Mfin. Recall that Mfin was constructed from
a collection of local sections {si}i∈N̄ , one for each i such that oi ∈ ō. These local
sections were obtained from functions fi : base(cyli) → stalk(cyli). The si were
patched together using a partition of unity supported on Mput.

Let Pin be the measure obtained by restricting P to ∪i∈[N̄ ]cyli. Let Pout be the

measure obtained by restricting P to
(
∪i∈[N̄ ]cyli

)c
. Thus,

P = Pout + Pin.

For any M ∈ G,
EPd(x,M)2 = EPout

d(x,M)2 + EPin
d(x,M)2.(139)
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1036 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

We will separately analyze the two terms on the right when M is Mfin. We
begin with EPout

d(x,Mfin)
2. We make two observations:

(1) By (113), the function f̌i satisfies

‖f̌i‖L∞ ≤ τ̄

τ
.

(2) By Lemma 23, the fibers of the disc bundle Dnorm over Mput ∩ cyli are
nearly orthogonal to base(cyli).

Therefore, no point outside the union of the cyli is at a distance less than
τ̄(1− 2τ̄

τ ) to Mfin.
Since F ō belongs to asdf(Mopt), we see that no point outside the union of the

cyli is at a distance less than τ̄ (1−Cc12) to Mopt. Here C is a controlled constant.
For any given controlled constant c, by choosing c̄12 (i.e., τ̄

τ ) appropriately, we
can arrange for

EPout
[d(x,Mfin)

2] ≤ (1 + c)EPout
[d(x,Mopt)

2](140)

to hold.
Consider terms involving Pin now. We assume without loss of generality that P

possesses a density, since we can always find an arbitrarily small perturbation of
P (in the �2-Wasserstein metric) that is supported on a ball and also possesses a
density. Let

Πput : ∪i∈N̄cyli → Mput

be the projection which maps a point in ∪i∈N̄cyli to the unique nearest point on
Mput. Let μput denote the d dimensional volume measure on Mput.

Let {Pz
in}z∈Mput

denote the natural measure induced on the fiber of the normal
disc bundle of radius 2τ̄ over z.

Then,

EPin
[d(x,Mfin)

2] =

∫
Mput

EPz
in
[d(x,Mfin)

2]dμput(z).(141)

Using the partition of unity {θj}j∈[N̄ ] supported on Mput, defined in (118), we

split the right hand side of (141). We will soon use pieces of Mfin which we call
Mi

fin:

(142)∫
Mput

EPz
in
[d(x,Mfin)

2]dμput(z) =
∑
i∈N̄

∫
Mput

θi(z)EPz
in
[d(x,Mfin)

2]dμput(z).

For x ∈ cyli, let Nx denote the unique fiber of Dnorm that x belongs to. Observe

that Mfin ∩Nx consists of a single point. Define d̃(x,Mfin) to be the distance of
x to this point, i.e.,

d̃(x,Mfin) := d(x,Mfin ∩ Nx).

We proceed to examine the right hand side in (142).
By (144)∑

i

∫
Mput

θi(z)EPz
in
[d(x,Mfin)

2]dμput(z) ≤
∑
i

∫
Mput

θi(z)EPz
in
[d̃(x,Mfin)

2]dμput(z).
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For each i ∈ [N̄ ], let Mi
fin denote the manifold with boundary corresponding to

the graph of fi, i.e., let

Mi
fin := {x+ fi(x)}x∈base(cyl) .(143)

Since the quadratic function is convex, the average squared “distance” (where “dis-

tance” refers to d̃) to Mfin is less than or equal to the average of the squared
distances to the local sections in the following sense:∑
i

∫
Mput

θi(z)EPz
in
[d̃(x,Mfin)

2]dμput(z) ≤
∑
i

∫
Mput

θi(z)EPz
in
[d̃(x,Mi

fin)
2]dμput(z).

Next, we will look at the summands of the right hand side. Lemma 23 tells us
that Nx is almost orthogonal to oi(R

d). By Lemma 23, and the fact that each fi
satisfies (138), we see that

d(x,Mi
fin) ≤ d̃(x,Mi

fin) ≤ (1 + c0)d(x,Mi
fin).(144)

Therefore, ∑
i

∫
Mput

θi(z)EPz
in
[d̃(x,Mi

fin)
2]dμput(z)

≤ (1 + c0)
∑
i

∫
Mput

θi(z)EPz
in
[d(x,Mi

fin)
2]dμput(z).

We now fix i ∈ [N̄ ]. Let Pi be the measure which is obtained, by the translation
via o−1

i of the restriction of P to cyli. In particular, Pi is supported on cyl.
Let μi

base be the push-forward of Pi onto base(cyl) under Πd. For any x ∈ cyli,
let v(x) ∈ Mi

fin be the unique point such that x − v(x) lies in oi(R
n−d). In

particular,

v(x) = Πdx+ fi(Πdx).

By Lemma 23, we see that∫
Mput

θi(z)EPz
in
[d̃(x,Mi

fin)
2]dμput(z) ≤ C0EPi |x− v(x)|2.

Recall that Mi
fin is the graph of a function fi : base(cyl) → stalk(cyl). In

Section 13, we have shown how to construct fi so that it satisfies (113) and (145),
where ε̂ = cε

N̄
, for some sufficiently small controlled constant c,

EPi |fi(Πdx)−Πn−dx|2 ≤ ε̂+ inf
f :‖f‖Cr≤cτ̄−2

EPi |f(Πdx)−Πn−dx|2.(145)

Let fopt
i : base(cyl) → stalk(cyl) denote the function (which exists because of

the bound on the reach of Mopt) with the property that

Mopt ∩ cyli = oi
(
{x, fopt

i (x)}x∈base(cyl)
)
.

By (145), we see that

EPi |fi(Πdx)− Πn−dx|2 ≤ ε̂+ EPi |fopt
i (Πdx)−Πn−dx|2.(146)
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Lemma 23 and the fact that each fi satisfies (138) and (145) show that

EPin
[d(x,Mfin)

2] ≤ C0EPin
[d(x,Mopt)

2] + C0ε̂.(147)

The proof follows from (139), (140), and (147). �

17. Number of arithmetic operations

After the dimension reduction of Section 6, the ambient dimension is reduced to

n := O

⎛
⎝Np ln

4
(

Np

ε

)
+ log δ−1

ε2

⎞
⎠ ,

where

Np := V
(
τ−d + (ετ )

−d
2

)
.

The number of times that local sections are computed is bounded above by the
product of the maximum number of cylinders in a cylinder packet (i.e., N̄ , which
is less than or equal to CV

τd ) and the total number of cylinder packets whose cen-
ters are contained inside Bn ∩ (c13τ )Zn. The latter number is bounded above by

(c13τ )
−nN̄ . Each optimization for computing a local section requires only a poly-

nomial number of computations as discussed in Section 13.4. Therefore, the total
number of arithmetic operations required is bounded above by

exp

(
C

(
V

τd

)
n ln τ−1

)
.

18. Conclusion and future work

We developed an algorithm for testing if data drawn from a distribution sup-
ported on a separable Hilbert space have an expected squared distance of O(ε) to
a submanifold (of the unit ball) of dimension d and volume at most V and reach
at least τ . The number of data points required is of the order of

n :=
Np ln

4
(

Np

ε

)
+ ln δ−1

ε2
,

where

Np := V

(
1

τd
+

1

τd/2εd/2

)
,

and the number of arithmetic operations and calls to the black box that evaluates
inner products in the ambient Hilbert space is

exp

(
C

(
V

τd

)
n ln τ−1

)
.

An interesting question is to fit a manifold to data drawn i.i.d. from the uniform
distribution on a manifold in G(d, V, τ ). In this case an exhaustive search for an
appropriate disc bundle is unnecessary. Instead, one can use local principal compo-
nent analysis to approximately learn the tangent spaces of the manifold from which
data are being drawn. These tangent spaces can be used to produce a cylinder
packet, which in turn can be used to construct a disc bundle that has as a section
the manifold underlying the data. This manifold can be reconstructed by patching
together local sections obtained using interpolation.
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z2

z1

Γ2

Π2

Π1

Γ1

Figure 7. A patch.

Appendix A. Proof of Claim 1

The following is an easy consequence of the implicit function theorem in fixed
dimension (d or 2d).

Lemma 25. Let Γ1 be a patch of radius r1 over Π1 centered at z1 and tangent to
Π1 at z1. Let z2 belong to Γ1 and suppose ‖z2 − z1‖ < c0r1. Assume

‖Γ1‖Ċ1,1(BΠ(z1,r1))
≤ c0

r1
.

Let Π2 ∈ dPL with dist(Π2,Π1) < c0. Then there exists a patch Γ2 of radius c1r1
over Π2 centered at z2 with

‖Γ2‖Ċ1,1(BΠ(0,c1r1))
≤ 200c0

r1
,

and

Γ2 ∩BH
(
z2,

c1r1
2

)
= Γ1 ∩BH

(
z2,

c1r1
2

)
.

Here c0 and c1 are small constants depending only on d, and by rescaling, we
may assume without loss of generality that r1 = 1 when we prove Lemma 25.

The meaning of Lemma 25 is that if Γ is the graph of a map

Ψ : BΠ1
(0, 1) → Π⊥

1

with Ψ(0) = 0 and ∂Ψ(0) = 0 and the C1,1-norm of Ψ is small, then at any point
z2 ∈ Γ is close to 0, and for any d-plane Π2 close to Π1, we may regard Γ near z2
as the graph Γ2 of a map

Ψ̃ : BΠ2
(0, c) → Π⊥

2 ;

here Γ2 is centered at z2 and the C1,1-norm of ψ̃ is not much bigger than that of Ψ,
see Figure 7.

A.0.1. Growing a patch.

Lemma 26 (“growing patch”). Let M be a manifold, and let r1, r2 be as in the
definition of a manifold. Suppose M has infinitesimal reach ≥ 1. Let Γ ⊂ M be a
patch of radius r centered at 0, over T0M. Suppose r is less than a small enough
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1040 CHARLES FEFFERMAN, SANJOY MITTER, AND HARIHARAN NARAYANAN

constant ĉ determined by d. Then there exists a patch Γ+ of radius r + cr2 over
T0M, centered at 0 such that Γ ⊂ Γ+ ⊂ M.

Corollary 27. Let M be a manifold with infinitesimal reach ≥ 1 and suppose
0 ∈ M. Then there exists a patch Γ of radius ĉ over T0M such that Γ ⊂ M.

Lemma 26 implies Corollary 27. Indeed, we can start with a tiny patch Γ (cen-
tered at 0) over T0M, with Γ ⊂ M. Such Γ exists because M is a manifold. By
repeatedly applying the lemma, we can repeatedly increase the radius of our patch
by a fixed amount cr2; we can continue doing so until we arrive at a patch of radius
≥ ĉ.

Proof of Lemma 26. Without loss of generality, we can take H = R
d ⊕ H′ for a

Hilbert space H′; and we may assume that

T0M = R
d × {0} ⊂ R

d ⊕H′.

Our patch Γ is then a graph

Γ = {(x,Ψ(x)) : x ∈ BRd(0, r)} ⊆ R
d ⊕H′

for a C1,1 map

Ψ : BRd(0, r) → H′,

with Ψ(0) = 0, ∂Ψ(0) = 0, and

‖Ψ‖Ċ1,1(B
Rd

(0,r)) ≤ C0.

For y ∈ BRd(0, r), we therefore have |∂ψ(y)| ≤ C0. If r is less than a small enough
ĉ, then Lemma 25 together with the fact that M agrees with a patch of radius r1
in BRd⊕H′((y,Ψ(y)), r2) (because M is a manifold) tells us that there exists a C1,1

map

Ψy : BRd(y, c′r2) → H′

such that

M∩BRd⊕H′((y,Ψ(y)), c′′r2)

= {(z,Ψy(z)) : z ∈ BRd(y, c′r2)} ∩BRd⊕H′((y,Ψ(y)), c′′r2).

Also, we have a priori bounds on ‖∂zΨy(z)‖ and on ‖Ψy‖Ċ1,1 . It follows that when-
ever y1, y2 ∈ BRd(0, r) and z ∈ BRd(y1, c

′′′r2) ∩ BRd(y2, c
′′′r2), we have Ψy1

(z) =
Ψy2

(z).
This allows us to define a global C1,1 function

Ψ+ : BRd(0, r + c′′′r2) → H′;

the graph of Ψ+ is simply the union of the graphs of

Ψy|B
Rd

(y,c′′′r2)

as y varies over BRd(0, r). Since the graph of each Ψy|B
Rd

(y,c′′′r2) is contained in M,

it follows that the graph of Ψ+ is contained in M. Also, by definition, Ψ+ agrees
on BRd(y, c′′′r2) with a C1,1 function, for each y ∈ BRd(0, r). It follows that

‖Ψ+‖Ċ1,1(0,rc′′′r2)
≤ C.

Also, for each y ∈ BRd(0, r), the point (y,Ψ(y)) belongs to

M∩BRd⊕H′((y,Ψ(y)),
c′′′r2
1000

);
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TESTING THE MANIFOLD HYPOTHESIS 1041

hence it belongs to the graph of Ψy|B
Rd

(y,c′′′r2), and therefore it belongs to the

graph of Ψ+. Thus Γ+ = graph of Ψ+ satisfies Γ ⊂ Γ+ ⊂ M, and Γ+ is a patch
of radius r + c′′′r2 over T0M centered at 0. That proves the lemma. �

A.0.2. Global reach. For a real number τ > 0, a manifold M has reach ≥ τ if and
only if every x ∈ H such that d(x,M) < τ has a unique closest point of M. By
Federer’s characterization of the reach in Proposition 1, if the reach is greater than
one, the infinitesimal reach is greater than 1 as well.

Lemma 28. Let M be a manifold of reach ≥ 1, with 0 ∈ M. Then, there exists a
patch Γ of radius ĉ over T0M centered at 0, such that

Γ ∩BH(0, č) = M∩BH(0, č).

Proof. There is a patch Γ of radius ĉ over T0M centered at 0 such that

Γ ∩BH(0, c
) ⊆ M∩BH(0, c
)

(see Lemma 26). For any x ∈ Γ ∩ BH(0, c
), there exists a tiny ball Bx (in H)
centered at x such that Γ ∩Bx = M∩Bx; that is because M is a manifold.

It follows that the distance from

Γyes := Γ ∩BH(0,
c


2
)

to

Γno :=

[
M∩BH(0,

c


2
)

]
\
[
Γ ∩BH(0,

c


2
)

]
is strictly positive.

Suppose Γno intersects BH(0, c�

100 ); say, yno ∈ BH(0, c�

100 ) ∩ Γno. Also, 0 ∈
BH(0, c�

100 ) ∩ Γyes.

The continuous function BH(0, c�

100 ) � y �→ d(y,Γno) − d(y,Γyes) is positive at
y = 0 and negative at y = yno. Hence at some point,

yHam ∈ BH(0,
c


100
),

we have

d(yHam,Γyes) = d(yHam,Γno).

It follows that yHam has two distinct closest points in M, and yet

d(yHam,M) ≤ c


100

since 0 ∈ M and yHam ∈ BH(0, c�

100 ). That contradicts our assumption that M
has reach ≥ 1. Hence our assumption that Γno intersects BH(0, c�

100 ) must be false.
Therefore, by definition of Γno we have

M∩BH(0,
c


100
) ⊂ Γ ∩BH(0,

c


100
).

Since also

Γ ∩BH(0, c
) ⊂ M∩BH(0, c
),
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it follows that

Γ ∩BH(0,
c


100
) = M∩BH(0,

c


100
),

proving the lemma. �

This completes the proof of Claim 1.

Appendix B. Proof of Lemma 5

Definition 24 (Rademacher complexity). Given a class F of functions f : X → R

a measure μ supported on X, a natural number n ∈ N, and an n-tuple of points
(x1, . . . , xn), where each xi ∈ X, we define the empirical Rademacher complexity
Rn(F , x) as follows. Let σ = (σ1, . . . , σn) be a vector of n independent Rademacher
(i.e., unbiased {−1, 1}-valued) random variables. Then,

Rn(F , x) := Eσ
1

n

[
sup
f∈F

(
n∑

i=1

σif(xi)

)]
.

Proof. We will use Rademacher complexities to bound the sample complexity from
above. We know (see Theorem 3.2 [5]) that for all δ > 0

P

[
sup
f∈F

∣∣∣∣Eμf − Eμs
f

∣∣∣∣ ≤ 2Rs(F , x) +

√
2 log(2/δ)

s

]
≥ 1− δ.(148)

Using a “chaining argument” the following claim is proved.

Claim 6.

Rs(F , x) ≤ ε+ 12

∫ ∞

ε
4

√
lnN(η,F ,L2(μs))

s
dη.(149)

When ε is taken to equal 0, the above is known as Dudley’s entropy integral [21].
A result of Rudelson and Vershynin (Theorem 6.1, page 35 [48]) tells us that

the integral in (149) can be bounded from above using an integral involving the
square root of the fat shattering dimension (or in their terminology, combinatorial
dimension). The precise relation that they prove is∫ ∞

ε

√
lnN(η,F ,L2(μs))dη ≤ C

∫ ∞

ε

√
fatcη(F)dη,(150)

for universal constants c and C.
From Equations (148), (149), and (150), we see that if

s ≥ C

ε2

((∫ ∞

cε

√
fatγ(F)dγ

)2

+ log 1/δ

)
,

then

P

[
sup
f∈F

∣∣∣∣Eμs
f(xi)− Eμf

∣∣∣∣ ≥ ε

]
≤ δ. �
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Appendix C. Proof of Claim 6

We begin by stating the finite class lemma of Massart ([37], Lemma 5.2).

Lemma 29. Let X be a finite subset of B(0, r) ⊆ R
n, and let σ1, . . . , σn be i.i.d.

unbiased {−1, 1} random variables. Then, we have

Eσ

[
sup
x∈X

1

n

n∑
i=1

σixi

]
≤ r
√
2 ln |X|
n

.

We now move on to prove Claim 6. This claim is closely related to Dudley’s
integral formula, but appears to have been stated for the first time by Sridharan-
Srebro [51]. We have furnished a proof following Sridharan-Srebro [51]. For a
function class F ⊆ R

X and points x1, . . . , xs ∈ X ,

Rs(F , x) ≤ ε+ 12

∫ ∞

ε
4

√
lnN(η,F ,L2(μs))

s
dη.(151)

Proof. Without loss of generality, we assume that 0 ∈ F ; if not, we choose some
function f ∈ F and translate F by −f . Let M = supf∈F ‖f‖L2(Pn), which we

assume is finite. For i ≥ 1, choose αi = M2−i, and let Ti be a αi-net of F with
respect to the metric derived from L2(μs). Here μs is the probability measure that
is uniformly distributed on the s points x1, . . . , xs. For each f ∈ F , and i, pick an

f̂i ∈ Ti such that fi is an αi-approximation of f , i.e., ‖f − fi‖L2(μs) ≤ αi. We use
chaining to write

f = f − f̂N +

N∑
j=1

(f̂j − f̂j−1),(152)

where f̂0 = 0. Now, choose N such that ε
2 ≤ M2−N < ε,

R̂s(F) = E

⎡
⎣sup
f∈F

1

s

s∑
i=1

σi

⎛
⎝f(xi)− f̂N (xi) +

N∑
j=1

(f̂j(xi)− f̂j−1(xi))

⎞
⎠
⎤
⎦

(153)

≤ E

[
sup
f∈F

1

s

s∑
i=1

σi(f(xi)− f̂N (xi))

]
+ E

[
sup
f∈F

1

s

s∑
i=1

σi(f̂j(xi)− f̂j−1(xi))

]
(154)

≤ E

[
sup
f∈F

〈σ, f − f̂N 〉L2(μs))

]
+

N∑
j=1

E

[
sup
f∈F

1

s

s∑
i=1

σi(f̂j(xi)− f̂j−1(xi))

]
.(155)

We use Cauchy-Schwartz on the first term to give

E

[
sup
f∈F

〈σ, f − f̂N 〉L2(μs))

]
≤ E

[
sup
f∈F

‖σ‖L2(μs)‖f − f̂N‖L2(μs))

]
(156)

≤ ε.(157)

Note that

‖f̂j − f̂j−1‖L2(μs) ≤ ‖f̂j − f − (f̂j−1 − f)‖L2(μs) ≤ αj + αj−1(158)

≤ 3αj .(159)
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We use Massart’s lemma to bound the second term,

E

[
sup
f∈F

1

s

s∑
i=1

σi(f̂j(xi)− f̂j−1(xi))

]
= E

[
sup
f∈F

〈σ, (f̂j − f̂j−1)〉L2(μs)

]
(160)

≤ 3αj

√
2 ln(|Tj | · |Tj−1|)

s
(161)

≤ 6αj

√
ln(|Tj |)
s

.(162)

Now, from Equations (155), (157), and (162),

R̂s(F) ≤ ε+ 6
N∑
j=1

αj

√
lnN(αj ,F , L2(μ))

s
(163)

≤ ε+ 12
N∑
j=1

(αj − αj+1)

√
lnN(αj ,F , L2(μs))

s
(164)

≤ ε+ 12

∫ α0

αN+1

√
lnN(α,F , L2(μs))

s
dα(165)

≤ ε+ 12

∫ ∞

ε
4

√
lnN(α,F , L2(μs))

s
dα. �(166)

Appendix D. Proof of Lemma 6

Proof. We proceed to obtain an upper bound on the fat shattering dimension
fatγ(Fk,�). Let x1, . . . , xs be s points such that

∀A ⊆ X := {x1, . . . , xs},

and there exists V := {v11, . . . , vk�} ⊆ B and f ∈ Fk,� where f(x) = maxj mini vij ·x
such that for some t = (t1, . . . , ts), for all

xr ∈ A, ∀ j ∈ [�], there exists i ∈ [k] vij · xr < tr − γ(167)

and

∀xr 
∈ A, ∃ j ∈ [�], ∀i ∈ [k] vij · xr > tr + γ.(168)

We will obtain an upper bound on s. Let g := C1

(
γ−2 log(s+ k�)

)
for a suf-

ficiently large universal constant C1. Consider a particular A ∈ X and f(x) :=
maxj mini vij · x that satisfies (167) and (168).

Let R be an orthogonal projection onto a uniformly random g dimensional sub-
space of span(X ∪ V ); we denote the family of all such linear maps �. Let RX
denote the set {Rx1, . . . , Rxs} and, likewise, RV denote the set {Rv11, . . . , Rvkl}.
Since all vectors in X∪V belong to the unit ball BH, by the Johnson-Lindenstrauss
lemma, with probability greater than 1/2, the inner product of every pair of vectors
in RX ∪RV multiplied by m

g is within γ of the inner product of the corresponding

vectors in X ∪ V .
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Therefore, we have the following.

Observation 9. With probability at least 1
2 the following statements are true:

∀xr ∈ A, ∀ j ∈ [�], ∃ i ∈ [k]

(
m

g

)
Rvij ·Rxr < tr(169)

and

∀xr 
∈ A, ∃ j ∈ [�], ∀i ∈ [k]

(
m

g

)
Rvij ·Rxr > tr.(170)

Let R ∈ � be a projection onto a uniformly random g dimensional subspace in
span(X ∪ V ). Let J := span(RX), and let tJ : J → R be the function given by

tJ (y) :=

{
ti, if y = Rxi for some i ∈ [s];
0, otherwise.

Let FJ,k,� be the concept class consisting of all subsets of J of the form{
z : max

j
min
i

(
wij

1

)
·
(

z
−tJ(z)

)
≤ 0

}
,

where w11, . . . , wk� are arbitrary vectors in J .

Claim 7. Let y1, . . . , ys ∈ J . Then, the number W (s,FJ,k,�) of distinct sets

{y1, . . . , ys} ∩ ı, ı ∈ FJ,k,� is less than or equal to sO((g+2)k�).

Proof of Claim 7. Classical VC theory (Lemma 3) tells us that the VC dimension
of half-spaces in the span of all vectors of the form (z;−tJ(z)) is at most g + 2.
Therefore, by the Sauer-Shelah lemma (Lemma 4), the number W (s,FJ,1,1) of

distinct sets {y1, . . . , ys} ∩ j, j ∈ FJ,1,1 is less than or equal to
∑g+2

i=0

(
s
i

)
, which is

less than or equal to sg+2. Every set of the form {y1, . . . , ys} ∩ ı, ı ∈ FJ,k,� can
be expressed as an intersection of a union of sets of the form {y1, . . . , ys} ∩ j, j ∈
FJ,1,1, in which the total number of sets participating is k�. Therefore, the number
W (s,FJ,k,�) of distinct sets {y1, . . . , ys} ∩ ı, ı ∈ FJ,1,1 is less than or equal to

W (s,FJ,1,1)
k�, which is in turn less than or equal to s(g+2)k�. �

By Observation 9, for a random R ∈ �, the expected number of sets of the form
RX∩ ı, ı ∈ FJ,k,� is greater than or equal to 2s−1. Therefore, there exists an R ∈ �
such that the number of sets of the form RX ∩ ı, ı ∈ FJ,k,� is greater than or equal
to 2s−1. Fix such an R and set J := span(RX). By Claim 7,

2s−1 ≤ sk�(g+2).(171)

Therefore s− 1 ≤ k�(g + 2) log s. Assuming without loss of generality that s ≥ k�,
and substituting C1

(
γ−2 log(s+ k�)

)
for g, we see that

s ≤ O
(
k�γ−2 log2 s

)
,

and hence

s

log2(s)
≤ O

(
k�

γ2

)
,

implying that

s ≤ O

((
k�

γ2

)
log2

(
k�

γ

))
.
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Thus, the fat shattering dimension fatγ(Fk,�) is O
((

k�
γ2

)
log2

(
k�
γ

))
. We indepen-

dently know that fatγ(Fk,�) is 0 for γ > 2.
Therefore by Lemma 5, if

s ≥ C

ε2

⎛
⎜⎝
⎛
⎝∫ 2

cε

√
k� log2(k�/γ2)

γ
dγ

⎞
⎠

2

+ log 1/δ

⎞
⎟⎠ ,(172)

then

P

[
sup
f∈F

∣∣∣∣Eμs
f(xi)− Eμf

∣∣∣∣ ≥ ε

]
≤ δ.

Let t = ln
(√

k�
γ

)
. Then the integral in (172) equals

√
k�

∫ ln(
√
kl/2)

ln(Ck�/ε2)

−tdt < C
√
kl
(
ln(Ck�/ε2)

)2
,

and so if

s ≥ C

ε2
(
k� ln4

(
k�/ε2

)
+ log 1/δ

)
,

then

P

[
sup
f∈F

∣∣∣∣Eμs
f(xi)− Eμf

∣∣∣∣ ≥ ε

]
≤ 1− δ. �
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