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Controllability, Observability, Pole Allocation, 

A b ~ t r ~ ~ t - h  this paper we discuss  the concepts of controllability, 
reachability,  reconstructibility, and observability and  attempt to 
show why these concepts are  important  in  linear  systems theory. 
We show how the above concepts allow us to solve the existence 
problem of closed-loop regulation of a linear time-invariant h i t e -  
dimensional  system. The main results  related to this are  Theorems 
4 and 5. Similar but  less  sharp  results  are also presented  for time- 
varying systems.  The discussion then proceeds to  the  precise 
relationships that exist  between input-output and  state descriptions 
of systems. Finally, the question of equivalence of internal  and 
input-output  stability is discussed. 

I. INTRODUCTION 

T HE most innovat.ive aspect of modern  system  theory 
is undoubtedly  the prevalence of st.ate-space models 

for dynamical syst.ems. This  has provided  a  framework 
which is  at  the same  time  extremely general, offers many 
advantages of a. conceptual  and philosophical nature,  and 
yields concrete and specific pract,ical results  much  more 
directly  t,han  other  methods were able to provide. 

In  treating  dynamical  systems  described  by  st,ate-space 
models, it was  recognized at a very  early  stage  that, 
certa.in regularity  assumptions  on t,he models  were of 
essentia.1 importance for the  validity of the various 
synthesis  and ana.lysis techniques  which were being  em- 
ployed.  These  assumptions originally appeared as purely 
mat,hematical devices [l], [2]. However, it. was soon 
recognized that these  properties were of importance  in 
their own right  and  related to the  very possibility of 
achieving the desired degree of control a.nd obtaining  the 
desired information  about  the syst.em. These  notions were 
hence t,ermed controllability and observability. 

Reference [3] appears to be the first' fundamental 
study of controllability (in t,he context. of finite-dimen- 
sional linea,r systems) and  it  is  mainly  the  early work of 
Kalman  and  Bucy [4] and  Iialman [5] which  introduced 
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these concepts in  the now f a m i l i a r  synthesis  techniques 
for linear  systems. In  fact,  all of the  results of this  paper 
(if not of this issue) a.re directly or indirectly  consequences 
of Kalnmn's  pioneering  work. Other  a.uthors who have 
made  importa.nt  contributions in this area  are  Gilbert 
[7] and Luenberger [SI. 

The concepts of controllability  and  observability  are of 
particular  importance  in  the  design of linear  feedback 
cont.rollers and  linear filters for linear  stationary  systems 
in t.he presence of white  Gaussian  disturbances. It is an 
import,ant  fact  that if the  system is controllable then  the 
linear  feedback  system  obtained by using the  theory of 
optimal  control  with  a  qua.dratic cost is asymptotically 
stable. Similarly, if the  system  is observa.ble the  linear 
filter obtained  by using Iialman filtering theory  is  asymp- 
totically st.a.ble. The concepts of controllability  and 
observability  are also important  in  the  context of mathe- 
matica.1 model building. Indeed,  although  wanting to use 
a  state-space  model to carry  out  the  a.nalytic design task, 
one  often starts  with  an  input-out.put model  which may 
have been  obt,ained  experimentally. In  realizing a state- 
space  model  which  produces the desired input-output 
relation,  one  may  ma,ke an excellent case for requiring this 
realizat,ion to be  minimal;  t,hat  is,  to  be an accurate 
representa,t,ion which does not. introduce  any phenom- 
ena which  were not, accounted for a t  least  implicitly 
in  the  input-output. descript,ion. It turns  out  nore or less 
accident.a.llf that t.his minimality is intimately relat.ed to 
t,he circle of concepts  including  controllability  and ob- 
servabi1it.y. 

The purpose of this pa.per is  to introduce  the concepts of 
controllabilit,y and  observability for linear  systems for- 
mally. In  doing t.his we will consider several  relat,ed con- 
cepts, e.g., those of rea.chability  and  reconst,ructibility, 
which are of equal  importance, but whose  relevance is 
not  as widely a.ppreciated.  We feel, moreover, that  it is 
conceptually  advant,ageous to  start  the discussion by 
considering  these  notions in their  generality  and  then to 
specialize to finite-dimensional linear  systems. 

We then consider the regulator  problem  for finite- 
dimensional  linear st.ationary  systems. We first prove that 
for such syst,ems it, is possible to 1ocat.e t.he closed-loop 
poles using  st,at.e  feedback if and only if t.he system  is 
controllable. We then show that is is possible to build  a 

as t.o why t.his should be  the w e .  What we mean  is that  there does 
We are  not implying that  there is no simple intuitive  explanation 

not seem to be any a priori reason  why the possibilit,y of achieving 
control and observation  is related  to this aspect of model building. 
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state reconstructor (using input  and  output measure- 
ments)  with  arbitmry  error  dynamics provided the sys- 
tem is observable. By combining t,hese two results 
we are  able  to  demonstrate  that a feedback  compensator 
can  be designed  such that  the closed-loop system  has  any 
preassigned poles provided the  system  is controllable and 
observable. The existence question for linear  regulators  is 
thus answered. It should  be  pointed out  that  the  structure 
of the  resulting  feedback  compensator  t.hat is obt.a.ined by 
using the above  theory  is exact.ly the sa.me as  that ob- 
tained  by  invoking  the  separation  theorem of st,ochastic 
optimal  control  for the design of linear feedback  systems 
with a quadratic performa.nce crit.erion and  in  the presence 
of Gaussian  disturbances. 

The discussion then turns to time-va.rying systems, 
where m-e consider the questions of stabilizability  and 
state reconstructibility.  We consider qualit.ative  aspects of 
input-output  descriptions  versus state-space descriptions 
and find that  minimality of the  state space  is  equivalent 
to  controllability  (reachability)  and observa.bility. 

Finally we  demonst,rate the  equidence of internal 
Lyapunov stabi1it.y and  input-output  stability for uni- 
formly controllable and  uniformly  observable 1inea.r sys- 
tems. 

11. DYNAMICAL SYSTEMS 

We fist introduce  the  notion of a dynamical  system 
in state-space  form.  The  formal definition att,empts to cap- 
ture  the  essential  properties of finite-dimensional smooth 
linear  systems.  We  have  chosen  our  input, a.nd output 
functions to be  continuous  functions of time.  This avoids 
vaiious  technical difficult.ies and simplifies questions re- 
lated to the existence and uniqueness of solut,ions for 
finite-dimensional linear different.ia.1 systems. 

The following definition of a  dynamical  system  is  con- 
venient for this discussion. More general concepts ma.y be 
found  in [9]. 

Let U ,  Y,  and X be normed  linear spaces, and  let U, 
y denote  the  space of cont,inuous funct,ions defined on 
R = (- a, a) with  values in U,  Y ,  respectively. %. 
is termed  the input  space, y the output  space, U the set 
of input  values, Y the set of &put  values, and X the state 
space. 

Let to E R  and  let 3 = { t  E Rl t  2 t o ] .  Consider the 
maps+:3 X R X X X % + X a n d r : R  X X X 17-Y 
termed  the state  euolution. n m p  and read-out map, respec- 
tively. 

DeJinition 1: A dymntical  system is a quintuple { %, 
y, X ,  4, r ] satisfying  the following axioms, for all ul, a E 
U, XO E X, to, t1, tz E R, to 5 tl 5 h. 

a )  Causality:  4(tl, to, 20, ul) = 4(tl, to, zo, uz) whenever 
ul(t) = uz(t)  for t o  5 t 5 tl. 

b )   C o n S i ~ t a ~ y :  4(to, to, 2 0 ,  U )  = xO. 
c)  Semi-group  property: 4(h, to, xo, u) = 

4 4 2 ,  tl, 4@l, to, x07 4 ,  4 .  
d)  Smoothness: The functions 4 and r are  continuous 

functions of t, t 2 to. 

A dynamical  system in state-space  form  thus views the 
generation of outputs from inputs  and  init,ial  states  as 
occurring via the mechanism of composition of the  state 
evolution  map  and  t,he  output  reading  map.  The  state 
evolution  map  takes  into  consideration  the  memory of the 
system while the  output  reading  map is memoryless and 
depends  only  on the  current  value of the  time,  the  state, 
and  the  input. 

Notation: The  function r(t ,  4(t, to ,  a ,  u), u ( t ) )  defined 
for t 2 t o  will for convenience be unambiguously  denoted 
by y(tol t o ,  u). 

The most  prominent example of a  dynamical  system in 
state-space  form  is the finite-dimensional linear syst,em 
(FDLS) described by  the  ordina.ry different.ia1 equation 

3i. = A(t)z + B ( t ) u  y = C(t )x  (FDLS) 

n;it,h X = R", i7 = R", and Y = RP. The ma.t.rices A(t), 
B(t) ,  and C(t) are throughout assumed to  have  compatible 
dimensions a.nd (again,  mainly for technical reasons) to be 
continuous  and  bounded on (- m , + m ). It is well known 
that  the above different.ia1 equat,ion t,hen defines a dy- 
namica.1 syst.em in t,he  sense of the  above definit,ion with  the 
state evolution ma.p given by t.he so-called variation of 
constants  formula: 

Pt 

= 4(t, to>x(to> + J 40, T ) B ( 7 ) U ( T )  CET 
tu 

where the transition nzutrk 4 ( t ,  7) is defined as the solution 
of the mat,rix  differential  equation d(t ,  7) = A(t )$( t ,  T), 
4 ( ~ ,  T )  = I .  The  transition  matrix satisfies t.he composition 
law 4(&, tl)d(tl,  to) = 4(&, t o ) .  See [lo] for more  details. 

The above  dynamical  system  has a very  convenient 
a.dditiona1 property not, expressed by  the basic axioms of 
Definit.ion 1; namely,  the  stat,e  evolution  map  is defined 
for all t a.nd not  only for t 2 to. Such  dynamical  systems a.re 
said to have  the group  property. Most  systems  described 
by  partial differential equations  and  delay differential 
equations do not have  the  group pr0pert.y. Discret,e sys- 
tems  and even time-va.rying systems for n-hich the A(t )  
matrix does not  satisfy  the smoot.hness  properties stated 
above also need not  have  this  property. 

Of particular  importance in pra.ct,ice are  the so-called 
stationary  dynamical systems in which 4 and y commute 
with the  shift  operator, i.e., if ST denotes t.he map  from 
% (respectively y) into itself defined by ( S T u ) ( t )  = 

u( t  + TI, then ST4( t ,  to, 20, u) = 4 ( t  + T ,  to + T ,  20, 

STu) (respectively, STy(tO, zo, u) = y(to + T ,  zo, STu)). 
St.ationary  linear finite-dimensional systems  (SFDLS) 

are described by  t,he  differential  equation 

3 i . = A x + B u  y = C z  (SFDLS) 

which  corresponds to a. system  with  transfer  function 
matrix G(s) = C(1s - A)-lB, where s is a complex 
variable. 

The state-space descript,ion of dynamical  systems will 
be contrasted  with  the  input-output  description  in Sec- 
tion VI. 
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111. SONE FUND?lMENTAL PROPERTIES O F  

STATE-SPACE MODELS 

In  t,his section the basic concepts rela.t.ed t.0 control- 
lability,  observability, a.nd Lyapunov stabi1it.y are  intro- 
duced. The properties of controllabiliby and observability 
of a  dynamical syst,em refer to the influence of the  input 
on  the  state  and of the st.ate on  the  output, n.hile Lyapunov 
stability refers to  the  asymptotic behavior of undriven 
systems.  These  notions  nil1 be introduced in  the context, 
of general  dynamics1 syst.ems as  int,roduccd in Sect,ion I1 
and  then,  in  the follon-ing sect,ion, specialized to finite- 
dimensional linear  syst,ems. 

The  f ist  series of definit,ions refers t.0 possible t.ransfers 
in  the  state space which may result. from a.pplying inputs. 
The concept of controlla.bility refers t.o t,ransferring an 
arbit.rarg init,ial st,at,e t.0 a  desired  trajectory.  This desired 
t.raject,ory  is  often an equilibrium  point. R e  nil1 assume 
t.his t,o be the case and  take  the zero element, t.0 represent 
this equilibrium. 

Assumptian: It mill be assumed that for all to E €2, 
+(t, t o ,  0, 0) = 0 for t 2 to and r(to,O, 0) = 0. 

DeJn i t im  2: Let t o  be  an element of t.he real  line. The 
state space of a  dynamical  system  is  said to be wachable 
a t  if,  given any m E X, there exists a L 1  5 to and a u E u 
such t.hat X = + ( t o ,  t-1, 0, u). A dynanlical  system  is mid 
to be controllable a.t to if, given a,ny mo E X, there  exists 
a tl 2 to a.nd a I L  E U such that +(tl, to, xo, u) = 0. The 
siate space of a  dynamical  system  is  said t.0 be connected 
if, given any .xo, X I  E X ,  there  exist to 5 tl and a u E U 
such t.hat +(&, to, zo, u) = 21. 

Observabilit,y refers to  the possibility of reconstructing 
the stat,e from output measurements. As remarked  by 
Iialman et al. in [9], there  are however two separate state 
reconstruct.ion problems which one  should consider. One 
refers to deduc.ing the present  sta.te  from  past, output, 
observahions and t,he  other  refers to deducing the present 
st.at,e  from future  output observat,ions. It, is the first 
property which is essential in filtering. There is also 
the question of what happens to t,he inputs  in  this process. 
Fortunately t,his  is of no consequence for linear  systems, 
but for nonlinear systems  one  should dist,inguish t,hree 
cases, depending  on u-hether the  input,  is a priori known, 
is arbitrarily assigned, or may be selected in t.he cxperi- 
ment.  This lea.& us to consider the folloxving series of 
definitions around the theme of deducing t.he st.ate  from 
output observations. 

DeJinition 3: Let to  E R. A dynamical  system is said t,o 
be zero input  observable at  to if knodedge of the  output 
y(f0, xo, 0) for t >_ t o  uniquely  determines x,,. A dynamical 
system  is  said  to be obseraable a t  t o  if for all xa E X and 
u E U lmon-ledge of the observed output y(to, mo, u )  for 
f 2 to determines x. uniquely. The  state space of a dy- 
namical  system  is  said to be irreducible at  t o  if for all x0 E 
X there exists a. u E % such that knowledge of the out,put 
y(to, xo, u) for t 2 to uniquely  determines .co. 

The difference between  irreducibility  and  observability 
is  t,hat  in  the former case the u which yields t,he  initial 
state x. may  be a function of xo itself, u-hereas in  the 

latt,er case any u will do. Any unobservable  irreducible 
system  is  thus highly  unsatisfactory  from the viewpoint 
of state reconstruction. This seems to have been over- 
looked in t,he literature. 

The analogous definit.ions referring to reconstructing the 
present  st.ate  from  past  observa.tions become as follow. 

Definition 4: Let t o  be an element of the real line. Then 
the  state of a  dynamical  system is  said to be zero input  
recon.structible a t  to  if lmon-ledge of the  output corre- 
sponding to a.n input u = 0 for t < t o  uniquely  deternunes 
x0 E X .  Thus  the  output.  due  to some  initial state at 

t-1 = - m "  is observed and t,he  present state x. is to be 
reconstructed. The  state of a dynamical syst.em is said to be 
reconstructible a.t to if or  all u E U, knowledge of the 
output for t I to uniquely  determines .xo E X. 

Note  that connectedness implies  reachability  and con- 
trollability,  and t.hat. observability implies zero-input 
observabilit.y, which in  turn implies  irreducibility.  These 
not,ions are  in genera1 not  equivalent unless, as will 
be shon-n in  the next  section, the system  is  linear  and 
finit.e dimensional. The simplest. example of a nonlinear 
system for which this equivalence does not hold is the 
sgst.em R = A 5 u; y = Cx, n-here x E R", u E R, and 
y E RP, and  the matrices A and C a.re compatible. It 
should also be  noted [ll] t,hat rea.chability, control- 
labilit.y, connectedness, observabilit,y,  irreducibility, and 
reconstructibility a.re preserved  under  (out,put.) feed- 
back, but  that zero-input observabi1it.y and zero-input 
reconstructibilit,y are  in general not unless the system  is 
aga.in linear  and  finite dimensional. If a  system is not 
irreducible, then  there exist tn-o initial  states  such  t,hat 
t,he  out,put to  any  input will be the same  on the  interval 
[to, ). These two sta.tes  are thus compleOely indistinguish- 
able  under  experimentation a,nd the st.ate  space  may  thus 
be  reduced  by  eliminating one of these two states from  t,he 
state space. Note  that  although  the observability defini- 
tions  ask for the reconst.ruction of the init,ial st,at.e, this is 
equivalent  to  reconstructing the st.at,e on the whole 
interval [to, m ). It. may  in  fact  be more logical to  demand 
this  in  the  very definitions. 

It should be  remarked  t,hat  the  above definitions might 
not be  appropriate for certain  applications. In particular, 
for distributed  parameter  systems i t  is  sometimes  more 
convenient to make definit,ions of controllability which 
require  that,  every  state can be driven arbitmrily close 
to  the origin  rat,her than exactly to it. 

It is  important for many  applications to have  somewhat 
stronger  cont,rollability and observability  properties than 
merely t,hose implied  by the basic definit.ions. These  are 
now int,roduced. With linear syst.em  in mind \?.-e nil1 
norm the  input  and  output, spa.ces by means of an  LAype 
norm. 

Dejinition 5: -4 dynamical  system is said  to be unifolmly 
controllable if there exists a T > 0 and a  continuous 
function au:R + R such that for all x0 E X and t o  E R 
t.here exists a u E % with fi$Tllu(t) l l u 2  dt 5 a(IIroll) such 
t,hat +(to + T, to, xo, u) = 0. The  state space of a dynamical 
system  is  said  to  be uniformly reachable if t,here exists a 

L C  
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T > 0 and a  continuous  function QI : R - R such that for 
all 50 E X and to E R there exists a u E U with .fi-~ 
Ilu(t) l l u z  dt 5 a(llxol))  such  that +(to, to - T ,  0, u) = 20. 

A dynamical  system  is  said to be uniformly  zmo-input 
observable if there exists a T > 0 and a  monotone  increasing 
function p :  R - R witlbh p(0) = 0 such  that, for a.11 20, 
x1 E X and to E R 

J;+TllY(t, 40, to, x09 O ) ,  0) 

- y( t ,  +@, to, 21, 01, 0)1l2 dt 2 P(llZ0 - 2111). 

A dynamical  system  is  said  to be uniformly  zero-input 
recmlstructt%le if there exist.s a T > 0 and a  monotone non- 
increasing  function 6 : R  + R with p(0) = 0 such that for 
all 5 0 ,  51 E R, and to E R 

Jo:TllY(t, 4 4 ,  to - T ,  x02 O), 0) 

- Y(t, +(t, to - T ,  $1, 01, 0)1l2 dt 

2 B ( l l ~ ( t o , t O  - T,zo, 0 )  - cp(to,to - T,z, 0)II). 
The next, notions  refer to  the zero-input  st,abilit,y of 

dynamical  systems in sta.te-space form. Since only the 
not,ion of exponential stability mill be used in  the sequel, 
attention will be  limited t.o this concept,. For a more de- 
tailed discussion of Lyapunov stabi1it.y concepts see [12]. 

Dejini t im 6: A dynamical  system  in  st,ate-space  form  is 
said  to  be exponentially stable if there exist, constants Jf, 
X > 0 such that 

Il+(tl, to, 5 0 ,  0) ( 1  5 M e -  X(t1--tO). I lxo l J  
for d l  xo E X a.nd tl 2 to. 

IV. FINITE-DIMENSIONAL LINEAR SYSTENS : 

AND OBSERVABILITY 
ALGEBRAIC c O h 9 I T I O N S  FOR CONTROLLABlLITY 

It is usually quite  diacult to obtain specific a.lgebraic 
conditions  for  controllabilit,y and observabilit,y. The one 
class of systems for wbich such explicit, tests  may be 
obta.ined is  the linear finite-dimensional system.  The 
proof of the basic result which states these  conditions in 
terms of invertibility of the W and 171 matrices given 
here is based on abstract.  vector space concepts. Alt.hough 
this a.pproa.ch is  not  standard  and  although  the conditions 
may be  obtained using much more modest, means,  it.  is  felt 
that  the results follow more  naturally  in t.his framework. 
I n  order to keep the discussion on a.n elementary level, 
topological notions will be  avoided  as  much as possible. 

Dejinition 7: Let V be an inner  product  space  and  let 
S be  a  subspace of V .  Then t,he orthogonal  complement 
of X, denot,ed byS'-, is defined as S'- = {v E Vl(v, s) = 0 
for all s E 8) .  If S is a closed subspace  (and t,hw  in 
particular if X is finite dimensional) t,hen V = S @ SI; 
i.e., any elenlent v E V has a unique decomposition into 
v = XI + x2 with X I  E S and xz E SI. Let L be  a  linear 
operator  from VI into V z  wit,h V I  and V 2  inner  product 
spaces. Then  the null  space X(L)  and  the range  space 
R(L) of L are t.he  subspaces of V I  and V z ,  defined re- 
spectively  by 

X ( L )  = {VI E VllLUl = 01 

CR(L) = {vz E V Z ~ V ~  = L V ~ ,  some v1 E I)'~). 

The adjoint of L, denoted  by L*, is  t,he  operator from T', 
into V I  which sa.tisfies (v2, Lal)r.72 = {L*vz, E ~ ) ~ ,  for all 
v1 E VI and u:! E Vz. The  adjoint  is linear and uniquely 
defined whenever it exist,s. It exist,s n-hen @(L) is closed or 
whenever L is  continuous and VI a,nd V2 are  Hilbert 
spaces. In  pa.rticular L* exists whenever V1 and/or 8 2  

are finite dimensional. It. is  this case which will be of 
interest, in  the sequel. If L* exists, then so does (L*)* 
and,  in  fact, (L*) * = L, and if L1 and Lz are  linear  operators 
from VI into V Z  a,nd V 2  int>o IT3 which have  an  adjoint, 
then LzLl has  an  adjoint  and (LzL1)* = L1*Lz*. Consider 
now the following lemma which is proven in most. texts  on 
linear  algebra [13]. 

L e m n a  I :  Let L be  a  linear  operator  from VI into V 2  

1vit.h V1 and/or V2 f i d e  dimensional. Then L* exists, 
%(L) = &(L*)'-,  @(L) = X(L*)', X(L)  = X(L*L), and 

There  are two t,ypes of linear  operators which will be of 
part.icular  interest in  the sequel. Let R" denote  real 
Euclidean  n-space  with the usual  Euclidean  inner  product, 
( X I ,  x?) = ~ 1 ~ x 2  and  let Cz"(t0, tl) denote t,he inner-product 
space of all  continuous R"-valued funct,ions on [ to ,  t l ]  with 
the inner  product (XI, xz) = f$xl'(t)xz(t) dt. Let F( t )  be a 
rea.1 ( m  X n) matrix-valued  continuous  funct,ion  on [to, 
t l ]  and consider now the operators L1 and L,2 from R" into 
Czrn(tO, tl) and from Czrn(tO, tl) into R", respectively, defined 
by : 

CR(L) = CR(LL*). 

LIZ = F(t)z 

a.nd 

It is  easily verified t,ha.t L1 = Lz* and hence that, Lz = L1*. 
Notice t>hat LzL1 = Ll*LI = L2Lz* is the linear  transforma- 
tion on R" induced by the mat.rix fib' F'(t)F(t)  dt. 

Turning now t.0 the question of controllabilit,y and ob- 
servability,  observe that it. follows from the variat.ion 
of constants  formula for the finite-dimensional linear sys- 
t,em (FDLS) that t,he statme x0 E R" at  t o  nil1 be trans- 
ferred to t,he st-ate x1 E R" at  tl by the cont.inuous control 
u ( t )  if and only if 

+(to, t1)zl - 5 0  = +(to, T ) B ( T ) U ( T )  d7 Fu. lof' 
Similarly it follows that t>he  output.  on [to, t1] due  to  the 
init.ial st,ate x. at to  and the control u(t) satisfies 

y(t) - Jtc(t)+(t, r )u(r )  dr = C(t)+(t, t0)zo Hz0 
t o  

where to I t I tl. 
It is immediately clear from the above t,hat  the finit,e- 

dimensional linear  system (FDLS) is cont.rollable at to 
in some  finite time  interval [ to ,  t l ]  <f m z d  ody i f  the linear 
operat.or F:Czm(to, tl) - R" is  onto R"  and  is observable 
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in t.he interval [ to ,  t l ]  if and only i';f the linear  operator 
H:R" 4 CZp(tO, t 1 )  is oneone on R". Consequently 
controllabi1it.y on [ to ,  t l ]  requires  t>hat, @(F) = R" and 
observability  on [ t o ,  t l ]  requires that. Z ( H )  = (0 ) .  Thesr 
characterizations  are, however, somen-hat, unsatisfactory 
in  the sense t,hat, they require knowledge of the range 
space a.nd null space of operators defined from or into 
infinit>e-dimensional spaces. If one considers Lemma 1, 
it becomes appa,rent,  t,hat.  these condit.ions can be st-ated 
as  requiring, respect.ively, that @(FF*) = R" and X- 
(H*H) = (0 ) .  Since, however, FF* and H*H b0t.h map 
R" into R", these 1inea.r operators u-ill be  cha,racterized  by 
mat.rices. It is t,hus  entirely nat.ura1 t.0 rephrase the con- 
dit,ions in  terms of FF* and H H " .  This leads to t,he fol- 
loviing theorem. 

Th.eorenz 1: The finit.e-dimensional 1inea.r system (FD- 
Ix) is cont,rollable at. to if and only if det, W ( t o ,  f l )  # 0 
for some tl 2 t o ,  its  stlate space  is reacha.ble at to if and 
only if det. W ( t - 1 ,  t o )  # 0 for  some f-1 5 f o ,  and  its  state 
spa.ce is connected if a.nd only if det. W ( f - 1 ,  fl) # 0 for some 
t l ,  tl. It is  observable (zero-input observa,ble, irreducible) at 
t o  if and only  if  det d l ( t o ,  t l )  # 0 for some f l  2. to and  its 
state is  reconstructible (zero-input, reconst.ruct,iblc) at to 
if and only if det M ( t - 1 ,  tq) Z 0 for some t-1 5 io. The 
(n X 1%) ma.trices W and d l  are defined by 

W(t0, t l )  J:+(~O, T ) B ( T ) B ' ( T ) + ' ( f O ,  7 )  d T  

df(t0, t l)  l i ' ( T ,  tO)C ' (T )C(T)+(T ,  t o )  d T .  

Proof: The operat.or FF*: R" ---f R" corresponds to 
the  matrix W ( t o ,  t l )  and  the  operator H*H : R" ---f R" 
corresponds t.o the  matrix M ( t 0 ,  t1). Since a  linear  operator 
mapping  a finite-dimensional space into a spa.ce of the 
same finit.e dimension is  oneone if and only if it  is  onto, i t  
follows that,  invertibility of these mat,rices is  equivalent 
to, respect,ively, controllability and observabilit,y in  the 
interval [to, t l ] .  Since however ( R ( W ( f , , ,  t l ) )  is monotone 
nondecreasing (in the set, theoretic sense) with tl and 
since (M(t, t l ) )  is monotone nonincreasing ni th  t l ,  the 
controllability and observability claims follon-. The ot>her 
cases are proven in a  similar way. 

It remains to determine  a  control which makes  the 
desired  transfer  in  t,he case of controllabi1it.y and  to give 
a.n algorithm to compute t,he init,ial  staate  in the case 
of observabi1it.y or reconstruct.ibilit,y. In  fact, u.*(f) = 
B'(t)$'(to, t)TV-l(to, t~)(+(lo,  t1)t l  - $0) transfers the system 
from zo at to to x 1  at  tl, while minimizing J:dlJu(t.)112 dt, 
a.nd 50 = A / - ' ( t o ,  t l )J i :+'(~,  t o )  .C'(T)V(T)  d7, n-here y( t )  = 
y( t )  - J:nC(t)+(t, T)u.(T) d T ,  is the unique state at  t o  
which will yield t.he output y( t )  on to 5 t 5 tl (or tl 5 
t 5 t o )  when t.he input  is u(t). 

The minimizing property of the above  control  leads  im- 
mediately  to  the following conditions for uniform controll- 
ability  and uniform  observability. 

Theorem 2: The finite-dimensional linear syst,em (FDLS) 
is uniformly  controllable  (uniformly rea.chable) if  and only 

if for some T > 0 there exist.s an el > 0 such  t,hat W (to, 
l o  + T )  2 QI for all ta E R; it is  uniformly  observable 
(uniformly  reconstructible) if and  only if for some T > 
0 there exists an e2 > 0 such that. J P ( t 0 ,  t o  + T )  2 gI for 
all to  E R. 

Sot.ice that,  in  vim- of the bounde.dness assumpt.ion 
on A ( t ) ,  uniform cont>rollability  is  equivalent, to  the exis- 
tence for some T > 0 of const.ants €1, €2 > 0 and M I ,  iif2 
such that 

0 5 E J  5 T V ( t 0 ,  to + T )  5 J f 1 l  

a.nd 

0 5 E ~ I  5 +(to + T ,  to)W(tq, fq + T)+'(to + T ,  t o )  M J  

for all t o  E R. Thus for the systems  under  consideration 
the present definit.ion is  equivalent to the one  originally 
proposed by Kalman [SI. The same holds for observability. 

Theorem 1 suffers from  t,he  drawback that. it does not 
give cont.rollability and  obserrability conditions in  terms 
of the original model which involves t,he mat.rix A(t),  
but  instead  in  terms of t.he associated  t,ransition matrix 
+ ( f ,  T). It is, hoxever, possible to remedy  t,his sit.ua.t,ion, 
a.t least. for sufficiently smooth  systems. In  the case of 
stationary  systems, cont.rollabilit,y and observa.bility 
t,urn  out  to be determined  by  the following well-lulown 
conditions. 

Theorem 3: The st,ationa.ry finite-dimensional linear sys- 
tem  (SFDLS)  is controllable (reacha.ble, connect,ed) a t  to 
if and only if rank ( B ,  AB, A2B, . . . , A"-IB) = n. It is 
observa,ble (reconstruct.ible, irreducible) a t  to if and only 
if rank (c', A' c', . . . , ( A ' ) n - ~ ~ ' }  = n. 

Proof: See, for inst.ance, [lo, p. 791. 
Silverman and Meadows [14] and  Chang [15] have 

developed algebraic conditions which are applicable to 
linear t,ime-varying dynamical  systems.  These  results re- 
quire  t,hat, t.he matrices A(t ) ,  B(t),  and C( t )  be sufficiently 
smooth. 

Renmrk: For finit,e-dimensional st.a.tionery  linear  systems, 
if the system  is  controllable in finite t h e ,  t,hen it is con- 
trollable in  an  arbit,rarily small  time. This result  is in 
general no longer true for infinite-dimensional st,ationery 
linear  syst,ems. 

A very useful concept is  t.hat of dzud systems. Dual 
dynamical  systems have the  intriguing  property  that 
cont,rol problems of one become observation problems for 
the other,  and vice versa.  Optimal  control  problems  t.hus 
lead to  optimal  estimation problems. It is  fair  to  say  t.hat 
the concept is so far not. understood in  any degree of 
genera1it.y. It, is analogous, but not, ident,ical, to t.he con- 
cept of reciproca.1 systems:  one  strongly  suspects  these con- 
cepts t.0 be relevant for general nonlinear  systems. 

MTe begin 1vit.h a  simple  identification of two adjoint 
operators. It is easy t.0 show that if L1: CZm(to, t l )  R" is 
defined by x(&) = I;lu nith 

33 = A(t)z  + B(t)u, L(to) = 0 

then I;l*:R" + CZm(t0, t l )  is given by y( t )  = LI*p(t l ) ,  

t o  5 t 5 tl wit.h 
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p = -A'(t)p,  y = B'(t)p. 

Similarly, if L2:R" - CZp(tO, t l)  is defined by y(t) = 
Lzz(to),  to 5 t 5 tl, with 

d = A(t)z, y = C(t)z, 

then Lz*: G p ( t 0 ,  tl) + R" is  given  by p( to )  = Lz*u with 

p = - A ' ( t ) p  - C'(t)u, p(T1) = 0. 

These  formulas are easy to  verify  after not,icing t,hat  the 
t.ransition matrices of d = A(t)z and p = -A ' ( t )p  are 
related by #( t ,  7) = +'(T, t ) .  

By Lemma 1, it follows that  there exists a  very  simple 
relat.ion between the  null spaces and  the  range spaces of 
L1, L2 and  their  adjoint,s.  These associations give a  relation- 
ship beheen cont.rollabilit,y and observabilit,y c0ncept.s. 
The difficulty, however,  is that  the operators Zi* and L2* 

are defined backwards in t,ime (the a.ppearance of -A'(t) 
strongly suggests that  this  better be the case if these a.re 
to be concept,s of any degree of generality).  Thus,  in  order 
to associate controllabilit,y properties  with observabilit.). 
properties of the  nmthematical  adjoint,  one would have to 
int,roduce t,he concept, of a  dynamical syshem which runs 
backwards in  time  or reverse t,he time direct>ion of t.he ad- 
joint  and consider the  dynamical  system t,hus obtained. 
Thus one associates with  the  system 

d = A ( t ) Z  + B(t)u, y = C(t);t: 

its so-ca.lled dual defined  by 

i = Al(t)Z + B1(t)v, w = C,(t)z 

where 

Al(t0 + t )  = A'(t0 - t )  

& ( t o  + t )  = C'(t0 - t )  

C,(h + t )  = B'(t0 - t ) .  

In  view of the  above  remarks  it  is now- very simple to 
prove t,he following correspondences  between a. dynamical 
syst,em and it.s dual: cont,rollability a t  to - reconstructi- 
bilit,y at. to, and  reachability at  to - observability at  t o .  

Remark: Any finite-dimensional linear dynamical  system 
may  be  decomposed into four subsystems: (1) a. control- 
lable  and  observable  subsyst,em; (2) a. subsystem  which 
is controllable but  not  observable; (3) a  subsyst,em  which 
is observable but  not controllable; and finally, 4) a, sub- 
system  which is neit,her controllable nor observable.This 
is Kalman's canonica.1 structure  theorem (see the paper by 
Silverman, this  issue). 

3) design an  output feedback  compensator which regulates 
the closed-loop response. 

In  t,his  section we  mill trea.t t,hese quest,ions for the 
st,ationary finite-dimensional linear  dynamical  system 
introduced in Section 11. 

d = AX + Bu, y = CZ. (SFDLS) 

We assume as before that  the  input u(t) is  a  continuous 
function of t. The problems of regulation a.nd state re- 
construction  discussed  above will be "solved" in t.he same 
class of dyna.mica.1 systems, i.e., Jve will only  use  st.ationary 
fmite-dimensional  linear  systems to achieve a.  possible de- 
sign procedure. 

Consider first t>he  question of regulation  under  state 
feedback and assume t,ha.t the feedback -Kz is  being 
applied  to  the  system.  The closed-loop response is  then 
governed  by t.he dynamica.1 equations: 

d = ( A  - BK)x  + Bu, ?J = CX. 

A represent,at,ive feature of the response of this closed-loop 
system  is  given  by t,he location of its poles, i.e., by t.he 
zeros of det ( I s  - A + BK) .  The  question  t>hm arises of 
under wha.t condihions is it possible  t.0 assign the poles of a 
dgnamical  system  arbit,rarily  by  suitably  choosing the 
feedback  gain matrix K .  More precisely, given  an arbitrary 
polynomial 

~ ( s )  = sn + ,r,-lsn-l + . . . + ro 

rn-it.h real coefficients, when  does there exist, for given 
matrices A a.nd B, at least  one (m X n) mat.rix K such 
t.hat  det (Is - A + B K )  = ~ ( s ) ?  The possibility of pole 
assignment  turns  out t o  be equivalent  to  controllability. 
This  property of stat.e feedback  appears to have  been 
knon-n for a  long t.ime in  the  single-input case (see [6] for 
historical  comments),  but,  has only recently come t o  the 
foreground for t,he multiple-input case. 

In  t,he multi-input case the first results  in  this  direction 
are  due  to Langenhop [16] and  Popov [l'i 1. They  proved 
t,hat, given an  arbitrary polynomial ~ ( s )  with coefficients 
in t.he field of real or complex numbers?  there exists a 
mat.rix K (possibly complex)  such t.hat det. ( I s  - A + 
B K )  = ~ ( s )  if and  only if the  system  is controllable. The 
proof given  by Popov [17] makes  interesting use of Kal- 
man's  canonical structure  theorem  and  is different, from 
Langenhop's. W-onham [18] gave  a different proof and  fur- 
ther shorn-ed that,  if  the polynomial  has coefficients in  the 
field of rea.1 numbers, then t,he matrix K can  be  chosen to 
be real. In our cont,ext, Wonham's appears  to be the first 

V. POLE ALLOCATION, STATE RECOXSTRUCTIOX, AKD 

CLOSED-LOOP  REGULATION 

complete proof. ,4 different proof and algorit.hms for pole 
assignment was presented bp Simon and  Mitter [19] 
and Simon [34]. The proof given in  this  paper uses a 

The following  questions  about, t,he control of dynanlical lemma due  to  Heymann [20]. The lemma also appears  in 
systems  are of fundamental import.a.nce in ma.t.hemat,ical Popov [31, p. 261, proposition 2, appendix A]. 
system  theory-how to: 1) design  a state feedback  law Theorem 4: There exists a rea.lm X n matrix L such that 
which regulat.es t,he closed-loop response; 2) design a det (Is - A - BL) = s" + T,-~s"-' + . . . + ro for 
st.a.te reconst,ructor, i.e., a  system  which  deduces t,he arbit,rary  real coefficients {yo, .rl, . . , rn-l ] if and o d y  if 
current  state from past  observations of the  output;  and the system 2 = A x  + Bu is controllable; i.e., if and only 
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if the (nm X n) matrix [B:  AB: - : A"-'B] is of rank 
n. 

The proof of the t.heorem will proceed via several 
propositions. 

Proposition  1-Suficiency for the Case where B i s  a 
Column  Vector: Let A be an n X n ma.trix and  let b be an 
n X 1 mat,rix. If the  system  is cont.rollable, then  there  is  a 
k' (1 X n) such that  the  characteristic polynomial A - bk' 
is  an  arbit.rary  preassigned  polynomial (of degree n). 

Sketch of Proof: Since the  system  is controllable, the 
controllability  matrix H = (b, Ab, . . . , A"-%) has rank n. 
Therefore  the n columns of H span R". It is  then \yell 
known that  there  exists a basis of the st,ate-space X = R" 
such  t,hat t,he system li. = Ax + bu may  be  brought  in t.he 
standard cont.rollable form [lo] i = Alz + blu where 

0 1 0 . s .  
0 0 1 . m .  0 

It is  t,hen  easy  to see that  the chara.cteristic polynomial 
of A + blk' may be  chosen to  have  any preassigned  form. 

Remark: The proof of the above  proposition consists of 
first putting  the  system  in sbandard controllable form, 
and once this  is done, the pole assignment becomes t.rans- 
parent,.  The two parts of this  algorithm  may be combined 
to give t.he following direct  algorithm for pole assignment 
[16]. Let 

p ( s )  = S" + pn-lsn--l + * . * + po = det ( I s  - A )  

a.nd 

r(s) = S" + T,-~S"-~ + . . + ro = det ( I s  - A + bk') 

be the open-loop and desired closed-loop chara.cteristic 
polynomials, respectively. Form  the mat,rix 

\Po PI 

then  the  vector 

k =  

k is given  by 

b' 

- 

We m i l l  now show that  the case when B is n X may 
be  reduced to  the case that m = 1 by first applying state 
feedback. 

Proposition 2: If the  system R = Ax + Bu is control- 
lable, then  there exist matrices L(m X n) and bl(m X 1) 
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such  that  the  system 3i: = ( A  - BL)x + blv is  controllable 
and bI3 is  in  the column  space of B. 

Proof: Let 6, denote  the i th  column of B a.nd let E ,  
be the  subspace  spanned  by  the  vectors b,, Ab,, . - , 
An-%,. Since [B:  AB: . . * :A"-'B] is of full rank n, 
there  are n vectors of the form Ajbi which  form  a basis 
for R". Let ( e l ,  ez, . . . , e,)  denote  this basis. Thus  any 
x E R" may be written  as latei. But ei E Et a.nd thus 
t.he linear  combination xin_laiei may be  rearranged as 
x1 + x2 + . . + zm u-it.h x i  E Ei. 

In genera.1 the subspac.e E ,  will not be  independent in 
the sense  t,hat. E< fl E, # (0) for i # j .  However there 
are subspaces Si of Ei such  that S i  n Sj = {O} for i # j 
and  such that R" = SI + 8 2  + * * . + S m .  TO see this, 
let SI = El. Then 81 has  a basis bl, Abl, . . . , Ak1-'b1 
where K1 is an integer 2 l.4 Let b2* be the fist. column of 
B not  in SI and  let T1 be  a  subspace of R" containing b2* 
such that R" = SI @ Tl.j This may  be  done by extending 
the basis for SI to a basis for R" containing bz*. Let SZ 
be the  subspace  spanned  by b2*.  Ab2*, . . . , 
with k2 the largest  integer  such that these  vectors  are 
1inea.rly independent  in TI.  Then SI @ SZ is a  subspace of 
R" with basis bl, Abl, . - e ,  

A"-%~*; moreover, s1 n SB = {o). 
Now let b3* be the first column of B not in SI @ SZ. 

By the  same process as above, there  is a. subspace T2 
containing b3* such that E = SI @ S2 0 Tz. Also, t,here  is a 
number k3 so that  b3*, . * , b3* are  linearly in- 
dependent in Tz.  Let. St be the subspace  spanned  by 

m<th basis b ,  - . , moreover, (81 @ S2) n Sa = 
0. 

Since R" is finite dimensional and  equal  to E1 @ E2 . . * 
@ E,, this process termina.t,es a t  some  stage.  Hence R" = 
X I  S2 + - . . 0 X, as indicat.ed, and a. basis for E is 
obtained  by combining the bases for the subspaces. By 
rearranging the columns of B (hence, the coordinates of 
the control) i t  can  be assumed that  the first. T columns of B 
were in t,his process. Hence, the basis is bl, . . * , Ak'-'- 
bl, . . , b,, - . . , ALr-'b,, and C i e I k i  = n. Let Q = [bl, 

columns are  these basis vectors.  Hence Q is  invertible. 
Define a.n m x n mat,rix S = [ S I ,  . . * , s,] where  each 

column is an m-vector defined as follows: sr j  = q+l('@ 

if rj = z i = l k ,  a.nd j = 1, . - , r - 1; sj = 0 otherwise, 
where ei(*) is the  ith  st,andard basis vector of R". Finally, 
let L = SQ-1; then LQ = S. Consider LAki-Ibi since 
Aki-'bj is the rjth column of Q,  LAki-'bj = ej+1(*) for 
each j = 1, . . , T - 1. Similarly, LA'bJ = 0 for  all  other 
powers of A. 

Let AI = A - BL, then H I  = [bl, * * , A1"-&] is the 

A"- 1 
b2 * 

Ah-1 bl, b2*, Abz", . . . , 

b3*, . . . , AkJ-1 b3*. Then SI @ S2 0 S3 is a subspace of R" 

. . .  Akl-lbl, . . . l b T J . ' * 7  Ah-1 b,] be the  matrix whose 

The reader may find it useful to  look up  the notion of a cyclic 
subspace of a vect.or space V with respect to  a linear map A in a 
book on matrix theory. See, for example, [33, p. 1851. 

5 @ indicates  direct sum; i.e., R n  = S1 @ T1, and SI Il TI = 01. 

3 Any nomero  vector in the column space of B will do for bl .  
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controllability  matrix of the  pair (AI, bl). Consider  t,he 
following  columns of HI. 

bl = bl. 
Alb1 = Ab1 - BLb1 = Abl. 
Al2b1 = A2bl - BLAbl = A'bl. 

Albl-lb - Abl-1 
1 -  bl . 

Alklbl = A"b1 + BLAX"-'bl = bz + linear combina- 

Atl+'bl = Ab2 + linear  combination of previous vec- 
tion of previous vectors. 

tors. 

Aln-lbl = A"'-' b, + linear  combination of previous 
vectors. 

Thus  the  jth column of H1 is the  j th  column of Q plus a 
linear  combinat,ion of the previous j - 1 columns.  Hence 
the columns of H1 are 1inea.rly independent so ra.nk of H ,  
is n. Clearly bl is  in  the column  space of B. Proposition 1 
can now be  applied t.o the controllable system 2 = ( A  - 
BL)z + blv to complete t,he proof of t,he theorem. 

Proof of Th.eorem  3-Necessity: Let al, * . . , a ,  be distinct. 
scalars  such  tha.t.  det ( A  - a i l )  # 0 for i = 1, 2, . . . , n. 
By hypothesis,  t,here is an L such that det, ( A  + BL - 

eigenvalues of A + BL. Then for each ai  there is a u, E 
R" such  t>hat ( A  + BL)ui = a,vi a.nd v i  f. 0. Since ( a i l  - 
A )  is  invertible, t.his can  be writ,t,en as 

SI) = (a1 - s) . . . (a, - s), that is, a!, * . . , a, are  the 

(ail  - A)-'BLvi = v i ,  i = 1,  2, . . . , .TL. 

For each a,, there  are  scalars bj(ai) such  t,hat 
n 

( a i l  - A)-l = bj(aJAj-l. 

To see this, let d = x:=&* be the cha.racterist>ic poly- 
nomial of aiI - A.  Then since d o  = det (ai l  - A ) ,  I = 
(air - A )  (- (ch/do)I - ,  . . . , - (d,/do) ( a J  - A )  "-I).  

This shows t.he above,  noting that (aJ  - A)k = x;=o 
(:)(a,l)j(- l)k-jAk-j. 

j =  1 

Combining the above, 
n 

Aj-'B(bj(ai)LUi) = ui (1 )  
j =  1 

Hyi" = vi (2) 

where yi" = (bl(ai)Lvi, . - . , b,(ai)LvJ'. 
Since the eigenvalues of A + BL are  distinct,, the 

eigenvectors V I ,  * . . , v, axe linearly  independent  and 
form  a basis for R". Then a.ny v E R" can  be  expressed  as 
v = Cr=llkivi; so, using (2 ) ,  u = xiiipi = ~ ,k ,Hy l*  = 
H(Cikiyl*). Then  the  range of H is Rn, so H has rank n. 
Therefore, the  system  is  controllable. 

Theorem 3 provides  a  method for approaching  a hrge 
class of cont.ro1 problems.  Other  design  procedures  based 
on  opt,imality  criteria  are  t,reated  elsewhere in  this issue. 

Remm*ks: Theorem 4 has  been  generalized in  several 
directions. -4 generalizat,ion to periodic syst,ems may be 
found  in [35 ] .  For a. restricted class of time-varying 
syst.ems a. pole-allocat.ion result  has  been  proved  in [29]. 
The  theorem  is also true for discret.e-time finite-dimensiona.1 
1inea.r syst,ems defined over an  a.rbitrary field [36]. 

The pole-allocation result of Theorem 4 states tha.t. the 
characteristic  polynomial of t.he closed-loop system  matrix 
rimy be  chosen at  will by  the use of state feedback.  More 
generally, one would like to  ansn-er tlhe quest,ion as to 
what. Jordan forms of the syst,em ma.t,rix can  be realized 
using stat,e feedback (in  fact it, is clear from the single- 
input case that  this  Jordan form  cannot  be  chosen a t  
will since A - bk' will all\-ays have t,he same  characteristic 
as minima.1 polynomial). This aspect of the  state feed- 
back  problem  has  been studied  by  Rosenbrock  [32]. It 
turns  out  t.hat for a  J0rda.n  form  to be possible certain a 
priori inequalities  have t,o be satisfied. From  an  algebraic 
point of view,  trhe  results of Ilosenbrock  appear to  present 
pretty  much  the definitive story  as t.0 what. can be achieved 
wing  stat.e feedback. 

We will consider the second questmion raised in  the 
introduction  to  this section, namely, the design of a  st,ate 
reconstructor. A nat.ura1 approach  for  such  a  design  is to 
attempt to discover a. dynanlical  system whose st,ate will 
be an est.imate of the  st.ate to be  reconstructed. The 
system  to be  designed  has  knowledge of the  input a.nd 
output. of the  dpamica.1  system for which we are designing 
a  state  reconstructor. 

Consider as  a possible choice for  such  a  system  the 
n-dimensional  linear  system 

L = F? + LU + H y  

where u and y represent the  input,  and  output. of the 

for i = 1, . . , n. syst,ems (SFDLS)  and  where 2 represents the estima.ted 
state. Since  one  would like the dyna.mics of the  original 
system  and  the  state reconst.ructor t.0 be compat.ible, 

t,he estimator  dynamics become 

Let H = (23, AB, . . . , A"-'B) and consider Hy for 

m, i.e., y = (yl', . . . , y,') where  each g i  is an ,m-t,uple, 
then 

Some y E Rnm' If Y is x*tten as each Of length  it, is na,t,ural t,o choose L = B and F = A - H C  such  tha,t 

b = A2 + BU - H ( i  - y )  

H y  = (B, AB, . . . , A"-'B) with $ = C2. The  estimator  is  t,hus  driven  by t,he error of 
j= 1 t.he est.imated  out.put  and the observed output  through  the 

feedback gain H .  The  error e = 2 - z is governed  by the Y n  

Letting y j  = bj(at)Lv,, (1) becomes differential equation 
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k! = ( A  - HC)e. B = AX + Bu 
A possible criterion for the  quality of the st.at,e recon- 
st.ructor  are the eigenvalues of t,he matrix governing the i = A? + Bu - H ( $  - y) 
error  equation, i.e., the zeros det ( Is  - A + H C ) .  The 
question  thus arises of under what conditions on A and C 
can  one  make the zeros of det ( Is  - A + H C )  arbitrary u = -KP. 

y = cx 

jj = CP 

by appropriately choosing H .  This question  is precisely 
the  dual of the pole-allocation question, and  this observa- 
tion  immediately leads to  the follouing  theorem. 

Theorem 5: There exists an (n X p )  matrix H such that 
the error  dymmics of t-he state reconstructor  are governed 
by b = ( A  - HC)e  where e = P - x vith  det ( I s  - A + 
H C )  = an + ,rn-lsn-l + . . + TO for arbitrary  real 
coefficients  TO, TI, . . . , rn-l] if and  only if t.he system 3i: = 
Ax + Bu, y = Cx is  reconstructible  (observable); i.e., if 
a.nd only if the (np X n) matrix [C”: A‘C’: . . : (A’) ‘+lC‘] 
is of full rank n. 

Proof: Since i = A z  + Bu, y = Cz is  reconstructible, 
i = A’z + C’v is controllable. Hence H’ may  be chosen 
such  t.hat  det (Is - A’ + C’H’) is preassigned. Since det 
( Is  - A’ + C’H’) = det. ( I s  - A + H C ) ,  the result. 
follo\vs. 

Remmk: The above state reconst,ruct>or is  sometimes 
called an obsewer. It suffers from one  fundament.al draw- 
back; namely, that,  in  reconstructing  the  state  from  the 

- 0ut.put.s y x e  ignore the fact. t.hat, Jve lmou- y = Cx exactly 
- and  thus  that it. would be logical t.0 choose 2 such that 

C2 = y. In  ot.her words, rather  than  estimating  the whole 
st.ate x, i t  suffces  to  estimate  the components of z in the 
null space of C. This problem has been studied  by Luen- 
berger [SI lvho showed that  there exists a. stat.e  reconstruc- 
tor of order (n - p )  n-hose st.ate  in combination  n-ith the 
observed output  results  in  an error  vector which has p 
components  identically zero and whose (72 - p )  remaining 
components  are governed by a  st,at.ionary  linear  dynamical 
system of order ( n  - p )  with preassigned eigenvalues of its 
system matxix. For a more complete account of this see 

Written  in  terms of x and e = f - x, this closed-loop 
dyna.mica1 system  may be mit ten as 

3i: = ( A  - BK)x - BKe 

I! = ( A  - HC)e  

or 

”) = ( A - BK -BK 
dt e 0 A - H C  >(”>. e 

The above  representation shows that  the poles of the 
closed-loop system  are  the zeros of det ( Is  - A + BK) 
det ( Is  - A + H C )  and  may hence be allocated at will 
by choosing K and H if and only if the system (SFDLS) 
is both controllable and reconstructible  (observable) ; 
i.e., if and only if t,he (nm X n) and ( n p  X n) matrices 
[B: AB: . . :A”-’B]  and [C’:A’C’i . . . : (A’)”-’C’] have 
full rank n. 

One may of course replace the  stat.e  reconstructor in 
t,his  compensator  by  a  Luenberger observer. This in fact 
yields a  simpler design n-hich specializes to the  state feed- 
back case. 

The stat.e  feedback  regulator, t.he state reconstructor, 
and t.he  out.put  feedback  regulator  are shown in Fig. 1. 

Rwlzark: The  structure of t,he feedba.ck compensator 
shown in Fig. 1 is precisely the same as  t,hat  obtained  by 
invoking the separat,ion  theorem of stochastic  control and 
designing the feedback  compensator for a  linear  system 
\tilth Gaussian  dist,urbances on  the basis of deterministic 
optimal cont,rol theory for a quadratic cost and  Kalman 
filtering  theory. 

Wonham ~221.  
The regulator design based  on pole allocation explained 

in t.he first p u t  of this sectmion is based on exact, knowledge 

VI. STABILIZABILITY A h 9  STATE RECONSTRUCT~BILITY 
FOR TIME-VARYING SYSTEMS 

of all the st.ates. For technological reasons i t  is  often  very It was shoqn  in Section I11 that  the control 
difficult, and inefficient to measure the complete st.at.e 
vector,  and one only  has access to  the out,put  for measure- 
ments. The question thus a,rises whet.her i t  is possible to 
use the above  ideas to design a  compensator which has 
as  its  input  the  output, of the syst.em to be controlled. A 
logical and  intuitive procedure in obt.a.ining such an out,- 
put compensator  is to  separate  the  task of stat,e recon- 
st,ruc.tion and feedback  regulation  by first designing a 
&ate  reconstructor  and  then using t.he estimated  value of 
the  state (instead of t,he act.ua1 value of the st.ate)  in the 

’ feedback  controller. This  approach  is a  prelude to t,he 
separation t.heorem for stochadc optima.1 control. In  tmhe 
present, context. it, should  be considered as a reasonable 
first approach to the design of an output feedback cont,roller. 

Using t.his idea we obtain  the follon-ing closed-loop 
dynamical  system : 

u(t) = -B‘(f)$’(to, t)W-l(t,, t&O, t o  5 t I 11 

will t,ransfer  t,he state of a  controllable  linear finite- 
dimensional syst,em from state x0 at  time t o  to state 0 at 
time tl. 1mplement.ed in a  feedback  form, this would lead 
to  the feedback  control law 

u = -B’(t)W-l(t, t1)s 

which, since limt,t,lIW-l(t, 51)11 = 00, calk for unbounded 
feedback ga.ins. This  is not, surprising since i t  amounts to  
driving  a  linear  system to zero in finite time. The problem 
t.hus arises as to whether it is possible to design a con- 
t.inuous bounded  feedback cont.ro1 law which makes the 
closed-loop system  exponentially  stable. It will be  shown 
that. under  suitable  cont,rollability  assumptions this is in- 
deed possible. 
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Fig. 1. (a.1 State feedback controller. (b) State reconstructor. 
(c) Output feedback controller. 

Theorem 6: Assume t,ha.t. t,he system  (FDLS)  is uni- 
formly cont>rollable. Then  there exists a  bounded  con- 
t.inuous matrix G(t) such  tha.t  the feedback  system 2 = 
A(t)z + B(t)u,; u. = -G(t)z is  exponentially  stable. 

The proof is based on  the  optimal  control  results of [j]. 
The  details of t.he proof  ma.y be  found t,here a.nd only a.n 
out.line will  be included. 

Outline of the PPOO~: Consider the  Riccati differentia,l 
equation k, = - A ‘ ( ~ ) K ~  - KTA(t) + K,B(t)B’([)K, - 
I with K,(T) = 0. Then limT,, KT(l) = K,(t) exists for 
all t .  This  limit  is  approached monotonically  from 
belox  and also sat,isfies the  above  Riccati differential 
equation [K,(t) is  thus differentiable and hence con- 
tinuous]. Moreover KT(t)  is  bounded  on  any half line 
[to, a) by uniform cont.rollability. The result. follom if it 
is  proved that,  the  system 2 = (A(t)  - B(t)B’(t)K,(t))x is 
exponentia,lly stable.  This,  however, follova by considering 
z’K,(t)z as a  Lyapunov  function.  For  details see [5]. 

It was  shonm in  Section I11 t,hat one may reconshruct 
the present, state from past  observations of the  input  and 
the  output,.  This problem  is the  dud of the control problem. 
The cont.rol nature of the st.a.te reconstruction  problem 
may be brought  out.  as follows. 

Suppose we consider  a state reconst,ruct.or governed by 
the  equations 

i = A(t )2  + B(t)u + r $ = C(t)2 

1vit.h 2 the  state of t,he st.ate  reconstructor, u the  input  to 
the  plant,  and T a correction signal (which is  to be de- 
signed). The  error e = 2 - r is then governed by  the 
equation 

e = A(t)e  + r.  

59 1 

In choosing the correction input r in a feedback  form it 
should  be realized that one  has incomplet,e information of 
e in  that only x and Cx are known. Assume,  however, that  
r is  chosen to be the  dual of the  feedback contxol lam 
considered in  the beginning of this  section, i.e., 

r = -&I-l(t, to)C(t)e = M-l ( t ,  to)(y - 9).  
This correction signal is  admissible  since it only  depends on 
y and leads to  the error  equation 

k! = (A(t) - M-l(t, to )C(f ) )e  

which  is  such that e(to) = 0. This state reconstructor, 
however, asks for unbounded  gains and will be  unac- 
ceptable  in  most  situations. By dualizing Theorem 6 one 
obtains a procedure for designing  a st,ate  reconstructor for 
which the error approa.ches zero at   an exponential  rate. 

Theorem 7: Assume that  the system  (FDLS) is uni- 
formly observable. Then  there exists a  bounded con- 
tinuous  matrix H ( t )  such  that  the syst,em 

i = A(t)2 + B(t)u - H(t ) ($  - y) 

witrh $ = C(t)? is a state reconst,ructor  such that  the error 
equation e = (A(t)  - H(t)C( t ) )e  is exponent,ially stable. 

The  combination of t.he stabilizing  control  law with the 
above  state  reconstructor in a loop for which  t,he state 
reconstruct.ion and cont.ro1 funct,ion a.re separated lea.ds to 
the following result 

Theorem 8: Assume that  the system  (FDLS) is uni- 
formly cont,rolla,ble and uniformly observa.ble. Then  t,here 
exist bounded  continuous  matrices G(t) and H ( t )  such 
that  the closed-loop syst,em 

2 = A(t)x + B(t)u 

y = C(t)z 

b = A(t)f - B(t)u + H ( t ) ( y  - $) 

9 = C(t)2 

u = -G(t)P 

is exponentially  stable. 

VII. INPUT-OUTPUT DESCRIPTIONS OF 
DYNARfICAL SYSTEMS 

There  are  two (fundament.ally different but,  essentially 
equiva,lent,) possible descript.ions of dynamical syst,ems. 
One  is the so-called state-space  description. An appropriate 
set of a.xioms for a large class of such  systems  has  been 
introduced in Sec.tion 11. The ot.her is  the  input-output 
description.  An  axiomatic  fra.mework for t,he st.udy of a 
class of systems  described in  terms of input-output  data. 
and which possesses all of the essential propert,ies of 
finite-dimensional linear  systems will now be  introduced. 

As before, let U denot,e the collection of d l  cont.inuous 
U-valued  functions  on (- a, + a). The spaces Y and ’y 
are  similarly defined. m e  aasume  again tha.t I: and Y 
are normed  vector spaces. 
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Consider6 now the subset U+ of U defined as dynamical  systems in state-space  form in  that these 

U+ = { u E +(t) = o for t I to, some to E R }  

and assume that + is similarly defined. Consider now a 
mapping F from %+ int.0 y+. Then F is  said  to be ca.usal 
on %+ if UI, u2 E %+ with ul(t) = ~ ( t )  for t 5 to implies 
that (Ful ) ( t )  = (Fu2)(t)  for t 5 to. 

Dejinit im 8: A dynamica.1 system  in input-out.put form 
is a map  from U+ into y+ xhich  is causal on %+. 

The problem of realization  is to construct a dynamical 
system in stat,e-spa,ce form such that it generates the same 
input-out,put.  pairs as  the dynamical  system  in  input- 
output form. The question  thus reduces to constructing  an 
appropriate  stat,e-space X and  suitable  maps 4 and I'. 

The problem of realization  is  trivially solved if one 
requires no additional  properties of the state-space model. 
Indeed  let X denote the  set of all  continuous Lr-valued 
functions  on [O, m )  which va.nish for sufficiently large 
values of their  argument. Consider now a  dynamical 
system in  input-output form and  let  us ta.ke t.he state 
space a t  t,ime t to  be the element of X svhich sat.isfies 
z(s) = u ( t  - s) for t 2 0. This element of X will indeed 
quaIify  for  a  st,at,e since, in  trying  to  satisfy  the require- 
ment  that,  the  state should summarize the essential 
feat,ures about t.he past  input, we in fact. decided to store 
the complete past  input. It is  in  fact a  simple  matt.er 
[ll ] to induce the  appropriate  state t.ransit.ion map  and 
readout. map to go along with  this choice of t,he state.  This 
shows t,hat every  input.-output  dynamical syst.em has a. 
state-space realizat.ion and yields a rather int.erest,ing 
decomposit,ion of a  dynamical  system  into a. linear  stat.ion- 
axy reacha.ble dynamical part  and a memoryless part. Of 
course one  can  essentially  never expect this system to be 
observable. This realization  is  indeed ext,remely inefficient. 

A much more interesting  realization  is t,he minimal 
realizat,ion for which the stat,e-space X has as feu- elements 
as possible. This realizat,ion  is always reachable and 
irreducible. It is logical to consider as the  state at. time t 
the equivalence class of inputs  up to time t which yield 
the same  output a.fter t,ime t, no matter how these inputs 
are continued  after t.ime t .  In  other words, the  inputs 
UI E 21 and u2 E % will result. in  the same  stat.e at  time t 
if any V I ,  u 2  E % with v1(s) = u1(s) and zlz(s) = u2(s) for 
s I t and v l ( s )  = v2(s) for s 2 t yield out.puts ( K 1 ) ( t )  = 
(Fv2)(t) for t > s. One may  then proceed t.o induce the 
maps 4 and T from  there.  This realization procedure works 
well for stationary  systems.  The difficulty with  time- 
varying  systems arises from the fact tha.t. usually the above 
equivalence class idea will result in a state space which is 
itself time varying. This difficu1t.y is basically a conse- 
quence of a deficiency in  the axiomatic  framework for 

There is no real  need to restrict  att.ention to  %+. The difficulty 
with  inputs which extend t.0 - is that is is usually difficult to 
prove well-posedness of typical  mathematical models. This problem 

inputs. 
is  completely avoided by considering % +  as the class of admissible 

axioms do  not a,llow for systems  with  a t,ime-varying 
stat.e spa.ce. For most, applications this inconsistency  is of 
no consequence, but  in order to obt,ain in a  simple  manner 
an  abst>ract solution to  the minimal  realization problem 
for  time-varying syst.ems, this problem proves to be  a 
st.umbling block. This difficulty may  be overcome by  a 
suit,able modification of the a.xioms of dynamica.1 systems. 

The input-output  dynamical  system which will be 
studied  in this paper  is described by a. Volterra  integral 
equation.  Let w(t ,  T) be a ( p  X nz) matrix defined and 
continuous for t 2 7, and consider the input-output 
system defined with U = R" and Y = R P  as follows. 
Consider u E %+ a.nd let to be such that u(t) = 0 for 
f 5 to .  Then 

This system \vi11 in short,  be  denoted  by y = Wu. 

system (LS) by  means of a syst.em (FDLS). 
The next- section  is concerned Tvith the realization of a 

VIII. ~IININAL REALIZATIONS OF LIKEAR SYSTEMS 
The question of state-space  realizations of the system 

(LS) has been actively  investigated  in  recent  times,  par- 
ticularly as a  result of t.he work of Iialman, Youla, and 
Silverman. The present, section  is  devoted to one special 
aspect, of this problem, namely, the relationship of mini- 
ma1it.y and controllability and obsenrability. The full 
implications and  the algorithmic quest.ions related to t.his 
realization  theory may be found in  the pa.per by  Silverman 
in  t,his issue. 

It is clear that.  the input.-output.  system (LS) is realized 
by  the state-space model (FDLS) if and onby if w ( f ,  7) = 
C(t)+(l,  T)B(T)  for all t 2 T. Furthermore  the system ( I S )  
has  a finite-dimensional linear realizabion (FDLS) if and 
only if there exist  continuous mat.rices G a.nd H such  t,hat 
w(t ,  7) = H ( ~ ) G ( T )  fort 2 T .  

De j in i f im  9: Assume t.hat  t,he  state-space model (FDLS) 
is a realizat,ion of the input-output syst,em (LS). Then  it is 
said  to be a minimal realizatimz of (IS) if every other 
realization of t,he  t.ype (FDLS)  has a state space of greatw 
or equal dimension. 

It is  important t.0 note that minimality of the realization 
does not preclude the existence of nonlinear state-spa.ce 
realizations  with  a lower dimensional state space. In  fa.ct, 
such lower dimensional (indeed, one-dimension.al) nonlinear 
realizations will always exist.. It sufFIces, therefore, to 
consider space-flling  curves which map R" oneone a,nd 
ont,o R. In  order to ensure that every finite-dimensional 
realization  requires  a state space of a dimension at. least 
that of the minima.1 (linear)  realization, one has t.0 require 
some  smoothness on  the  maps 4 and T .  

One may expect from the discussion in Section VI11 that 
the problem of constructing  a  minimal  realization will (at 
least in principle) be simple for stationary syst.ems, but 
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 ill cause  some difEculties for  timevarying  systems.  We 
will thus consider the  stationary case first. 

Theorem 9: The linear  system  (LS)  is realizable by a 
state-space  model  (SFDLS) if and only if: 1) t,he kernel 
w(t, T )  is  separable, i.e., t,here  exist mat,rices H and G 
such that H(t)G(7) = w(t, T )  for t 2 T; and 2) w(t, T )  = 

Proof: The "only if" part of t-he theorem  is obvious. 
To prove the "if" part we need to ident,ify  a  triplet of 
matrices A ,  B, C such that C 8 ' B  = w(t, 0) for t 2 0. 

We will first identify  the  state space. Let. %- be the 
functions in % restricted to (- 03, 01 and  let y+ be 
t,he  functions  in y restrided  to [0, a). Consider now t,he 
mapping from X- to y+ defined by 

w(t - 7, 0). 

y(t)  = S_Onw(t, T)U(T)  d7, t 2 0 

and  denote  this  mapping  by y+ = W+u. Since w(t, T )  = 
H ( ~ ) G ( T ) ,  W +  may  be viewed as  t,he composition W +  

= HG with G :U + Rq a n d  H : Rq 3 y+ defined by Gu = 
~'! ,G(T)u(T)  dr  and H z  = H ( t ) x ,  t 2 0, where q denot,es 
t.he number of rows of G (= t.he number of columns of H )  . 
Consider  now t.he quotient, spa.ce X = a ( G ) / X ( H ) .  This  is 
clearly a finite-dimensional (say  n-dimensional)  vector 
space. 

We d l  now ident,ify the A matrix.  To do t.his, observe 
that  the space X qualifies as a st,ate  space  by viewing the 
st.ate a.t. t = T corresponding to  the  input u E % as the 
element in R ( G ) / N ( H )  corresponding to u., E %+ wit,h 
u,(t) = u(T + t )  for t 5 0. It is an easy  matter to formalize 
the linear  maps 4 a.nd r associat,ed with this choice of t,he 
state space. Let 4(t)zo, t 2 0, be  the zero-input, response 
result,ing  from z(0) = xo. Then 4(t) is an (n X n.) matrix 
which satisfies 4(0) = I and 4(tl)4(tz) = 4(tl + tz) for 
tl, t 2  >_ 0. Thus +(t) = ea' for some  matxix A .  

The  matrix C is  then  t,he  linear  mapping form R" into 
RP which t.akes x. into y(0). To ident.ify the B mat,rix, 
notice  t.hat,  by  properly redefining G and H we may assume 
t,hat H ( t )  = CeAL and x0 = j?,G(u)u(u) du. Then B = 

G(0) sa.tisfies w(t, 0) = H(t )G(O)  = Ce"'B for t >_ 0, 
which shows that w(t, U )  = Ce"(lPu)B for t 2 u and  t,hat  the 
triplet { A ,  B ,  C) is  indeed  a  realization. Notmice t,hat 
this  realization  is  in  fact a minimal one. 

Extensions a.nd more  details of the  ideas  invoked  in  the 
proof of t,he  above  theorem  may  be  found in [6] and  in t.he 
paper  by  Silverman in t,his issue. 

The following  theorem is a.n immedia.t,e consequence of 
the proof of Theorem 9 and yields the desired rela.tion- 
ship between  minima.litp  and reachability-observability. 

Th.eorem IO: A realization A ,  B, C is minimal if and 
only if the  system 2 = Ax + Bu; y = Cz is observable 
a,nd has a reacha.ble st.ate  space.  Moreover  a  minimal 
realization  always exists and a,ny two  minimal  realizations 
AI ,  B1, C1 and A*, B2, C2 are  related via. the similarity 
t,ransformation A2 = TAT-I, B2 = TBI, C2 = CIT-l 
for some  invertible  matrix T.  

Proof: Let G(u) = e-AuB, u 2 0, H ( t )  = CeAt, 
t 2 0, a.nd let  the  operators G and H be  as  defined in  the 
proof of Theorem 9. Since  minimality  is  equivalent to 
R(G)  = R" (= reachability)  and N ( H )  = { O ]  (= ob- 
servability) the first pa.rt of the  theorem follows. Exist,ence 
of a minimal  realization follows from the proof of Theorem 
9 and  the  similarity  transformation follows since in  every 
minimal  realization  the  st,ate  space must, be  isomorphic 
(in t.he vector  space sense) to  the quotient. spa.ce @(G)/  

The  realization t.heory for stationary 1inea.r systems 
thus  presents  in principle no difficulties. The time-va,rying 
case is much  more  involyed,  however.  Indeed  assume t.hat 
w(t, 7) = H(t)G(7)  [which is  a necessary  condition  for  a 
realization  (FDLS) to exist,], a.nd let G, and HT be defined 
as GTu = j?,G(u)u(u) d u  and H,z = H ( t ) x  for t 2 T.  
It is then  natural t.0 consider X ,  = R(GT)/N(HT) as the 
stat,e  space at time T and t,o define the  maps 4 and P 
from t.here. There is, however,  one basic difficulty with 
this idea,  namely X ,  is  in general an explicit function of 
T ,  and  in  order t.0 account for this it, becomes necessary to 
start from  a new axiomatic  framework for t,reat,ing 
dynamical  systems. A second difficu1t.y is t.ha.t even if 
X ,  is  always  a  subspace of, say, R", it may not, be possible 
to  construct  an n-dimensional  realization exhibit,ing t.he 
required  smoothness for t.he parameters A(t),  B(t), C( t ) .  
This sit,uation  is  illustrat.ed by trying tJo obt,ain a. one- 
dimensional  realization of the  system & = bl(t)u, & = 
b2(t)u., g = cl(t)zl + c2(t)z2 with bl(t) = cl(t) = 0 for t 2 
0 and bz(t) = ~ ( f )  = 0 for t 5 0. Thus,  a.lthough  reach- 
ability  and  observability  at some time  are certa.inly 
sufficient conditions for minimality,  they  are  not neces- 
sary. 

There  is, however, another (somewhat, artificial) pro- 
cedure for achieving  a  certain  amount of structural 
inva,riance for timevarying systems. This procedure  is 
based on considering ant,i-causal systems in association 
with  the  causal syst,ems considered so far.  This  requires 
t.he state tsa.nsition  map t o  possess the  group propert,y 
and  the  input-output  maps  to be  defined  as  a causal map 
when time  runs  in t,he usua.1 fonvard direct,ion and  an 
anticausal  map  when  time runs bacltrmrd.  The sta.t.e of a 
state-space rea1izat.ion of such an  input-output  dynamical 
system  is  this  alternatively  required  to  summarize  past 
and  future  inputs.  This  then yields the  required  invariance 
properties. 

This device has been successfully applied  to  dynanlical 
systems  described  by 

x ( H ) .  

for t 2 t o  when t runs  forn-ard  and for t 5 t o  when t runs 
backwards.  Finite-dimensional rea1iza.tions are  then re- 
quired t.0 sat,isfy the equalit,y w(t, 7) = C(t)4(t ,  T)B(T) 
for all t ,  T E R. In  this cont.ext. one  may in  fact  prove  that  a 
realiza,t,ion is  minimal if a.nd only if t.he result.ing syst,em is 
reachable  and observable at  some  time.  These  notions  are 
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of course to be  extended  to  dynamical  systems which 
possess  t.he group  propert,y. For details see Weiss and 
Kalman [23], Youla 1241, and Desoer and  Varaiya [25]. 

E. STABILITY 
Another  interesting  application of controllability  and 

observability  in  connection  with  deducing  int,ernal  from 
external  properties of systems  and vice versa  is t-he equiv- 
alence of int,ernal  stability  and  input-output.  stability. 
This is  the  subject of the following theorem.  First, how- 
ever, \\-e m i l l  define input-output  stability. 

Dejinitim 10: Let, G be  a  dynamical  system  in  input- 
out,put,  form  and  assume that Go = 0. Then  it  is  said t.o 
be’ L,-input-ouLput stable, 1 5 p I m ,  if there  exists  a 
constant K < m such that  all u E U, u E L,, yield 
Gu E L, and l l G ~ l l ~ ~  I KIIuIIL~. 

It may be shonm [26, sec. 21 tha,t  for  systems of the 
class (FDLS)  and for any  system of the class (LS)  when 
p = 03 [27] the existence of the K follows from the  fact 
t,hat y E L,  whenever u E L,, Le., if G is  a  map  from 
L, fl U into L, t>hen it. is  automat.ically  bounded.  It.  is 
int,erest,ing to note [lS] that L,-stability, 1 5 p 5 m ,  is 
equivalent  to t,he existence of a. constant K such that for 
all u E % t,he inequa1it.y 

is satisfied. 
Theorem 11: Assume  t,hat, t.he syst.em (FDLS) is uni- 

formly  reachable  and  uniformly observable. Then ex- 
ponential  stability  and L,-input.-output. stabilit*y, 1 I 
p 5 03 , are  equivalent. 

Proof: If the  system  is exponentially st.able, then 
there exists M ,  CY > 0, such that Ilw(t, .)I1 I 
for t 2 T (recall that we assumed B(t) and C(t) to be 
bounded).  Hence Ijy(t)II I fioe-“(f-r)~~u(~)~~ dr. The 
convolut.ion of t.he L,-funct.ion I/u(t)II against  the L1- 
kernel e-“‘, t 2 0, maps L,, into itself by  Minkowski’s 
inequa1it.y and defines a bounded linear transformation 
wit.h bound  by M fre-“f  dt = I V / C Y .  This est.ablishes 
that exponent,ial stabilit,y implies L,-stability. The 
converse nil1 nox be  shown in  the case p = 2. The  method 
of proof works equally well when 1 2 p < 03 and  the 
case p = m is well documented in  the  literahre (see  e.g., 
[SI and [IO, se.c.. 30, t.heorem 31. Assume  tha.t t,he syst.enl 
(LS) is L2-input-output stable  and  t,hat (FDLS) is  a 
uniformly  reachable and uniformly  observable realization. 
Consider the real-valued function defined on R” X R 
by V(Q,  t o )  = &/ly(t, 4(t, to, 2 0 ,  0), 0)(l2 dt. It will now 
first. be shown that V is well defined. Let T be  as in  the 
definition of uniform reacha.bi1it.y and  uniform  observ- 
abilit,y, and  let u be the control which  minimizes J’l-T 

l / ~ ( t ) \ \ ~  dt subject t o  2 = A(t)x + B(t)u., g = C(t)s, a.nd 
a(to - T )  = 0, s(t0) = 2 0 .  By L,-input-output st,ability 

there  exists a constant K < m such that 

is well  defined a.nd by  uniform  reachability  and  uniform 
observability  there exist constants E > 0 and R such 
that ~ 1 1 x 1 1 ~  5 V(z ,  t )  I R ( ( c ~ ( ~ .  By uniform  observability 

I l ~ ( t ,  +(t, to ,  50, 01, 0)II’ dt 2 ~ll.11’. Since v(4(lo + T ,  20, 
0), to + T )  i (1 - E/R)V (Q, t o ) ,  exponential  st.ability  is 
established as claimed. 

Note  t,hat  the  above  theorem  states as a side result  the 
equivalence of L,  input-output  stability for all 1 _< p _< 
for systems (LS) with  a  uniformly controllable and uni- 
formly  observable state-space realization. Theorems  along 
the line of Theorem 10 for nonlinear  systems may  be  found 
in [lo]. 

Ily(tJ +(t, ‘0,  ‘0, ‘ 1 1  11’ dt 5 Jz-Tllu(‘)112 at. Thus v(zJ f) 

v(X0, h) - v($(tO + TI 6, 2 0 ,  0)~ f 0  + T )  = J;+’ 

X. CONCLUSIONS 
In  t.his paper we have  attempted  to give a broad-based 

review of what me consider t.he most  importa.nt  applications 
of the controllabilit,y-observability circle of ideas. We 
have  tried  to emphasize concepts, but also discussed  some 
specific results  in t.he cont.ext of finite-dimensional linear 
systems.  One of t.he things which  ma.y have come out of 
this  treatment  is  t,hat (for linear  systems)  one  should 
properly be discussing four concepts, namely,  reachability 
a,nd controllability  (input, t, state)  on one hand a.nd 
reconstructibility  and  observability  (stat.e f--f output)  on 
the  other.  Problems of control  face  the question of control- 
lability,  problems of state reconst.ruction and filtering 
face the question  of  reconstructibility  and  problems of 
output-feedback  control will face both  the  questions of 
reconstructibility  and cont,rollability. On the other  hand, 
questions  related to deducing  int,ernal  properties  from 
input-out,put  properties,  such  as  minimality a,nd stability 
of the stat.e-space realization, face the questions of reach- 
ability and  observability.  (The quest,ion t,hen is: What,  did 
the  input do and n-hat, will the  output  be?)  By considering 
dynamical  systems defined backwards in  time, one may 
also drag  the  questions of controllability  and reconst.ructi- 
bilit,y in  the  minimalky  question  in  a  somen-hat art>ificial 
way. 

Many problems in this area  remain to be  investigated. 
First among  these is  to find conditions and  structure 
theorems for classes of nonlinear  systems and  systems 
defined via algebmic  st.ructures  which do not involve 
the  usual  vector space  assumptions.  Some  results in 
t,his  vein  are  presented  in 1301. 
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