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Controllability, Observability, Pole Allocation,
and State Reconstruction

JAN C. WILLEMS, MEMBER, IEEE, AND SANJOY K. MITTER, MEMBER, IEEE

Abstrect—In this paper we discuss the concepts of controllability,
reachability, reconstructibility, and observability and attempt to
show why these concepts are important in linear systems theory.
We show how the above concepts allow us to solve the existence
problem of closed-loop regulation of a linear time-invariant finite-
dimensional system. The main results related to this are Theorems
4 and 5. Similar but less sharp results are also presented for time-
varying systems. The discussion then proceeds to the precise
relationships that exist between input-output and state descriptions
of systems. Finally, the question of equivalence of internal and
input-output stability is discussed.

I. INTRODUCTION

HE most innovative aspect of modern system theory

is undoubtedly the prevalence of state-space models
for dynamical systems. This has provided a framework
which is at the same time extremely general, offers many
advantages of a conceptual and philosophical nature, and
yields concrete and specific practical results much more
directly than other methods were able to provide.

In treating dynamical systems described by state-space
models, it was recognized at a very early stage that
certain regularity assumptions on the models were of
essential importance for the validity of the various
synthesis and analysis techniques which were being em-
ployed. These assumptions originally appeared as purely
mathematical devices [1], [2]. However, it was soon
recognized that these properties were of importance in
their own right and related to the very possibility of
achieving the desired degree of control and obtaining the
desired information about the system. These notions were
hence termed controllability and observability.

Reference [3] appears to be the first! fundamental
study of controllability (in the context of finite-dimen-
sional linear systems) and it is mainly the early work of
Kalman and Bucy [4] and Kalman [5] which introduced
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these concepts in the now familiar synthesis techniques
for linear systems. In fact, all of the results of this paper
(if not of this issue) are directly or indirectly consequences
of Kalman’s pioneering work. Other authors who have
made important contributions in this area are Gilbert
[7] and Luenberger [8].

The concepts of controllability and observability are of
particular importance in the design of linear feedback
controllers and linear filters for linear stationary systems
in the presence of white Gaussian disturbances. It is an
important fact that if the system is controllable then the
linear feedback system obtained by using the theory of
optimal control with a quadratic cost is asymptotically
stable. Similarly, if the system is observable the linear
filter obtained by using Kalman filtering theory is asymp-
totically stable. The concepts of controllability and
observability are also important in the context of mathe-~
matical model building. Indeed, although wanting to use
a state-space model to carry out the analytic design task,
one often starts with an input-output model which may
have been obtained experimentally. In realizing a state-
space model which produces the desired input—-output
relation, one may make an excellent case for requiring this
realization to be minimal; that is, to be an accurate
representation which does not introduce any phenom-
ena which were not accounted for at least implicitly
in the input-output deseription. It turns out more or less
accidentally? that this minimality is intimately related to
the cirele of concepts including controllability and ob-
servability.

The purpose of this paper is to introduce the concepts of
controllability and observability for linear systems for-
mally. In doing this we will consider several related con-
cepts, e.g., those of reachability and reconstructibility,
which are of equal importance, but whose relevance is
not as widely appreciated. We feel, moreover, that it is
conceptually advantageous to start the discussion by
considering these notions in their generality and then to
specialize to finite-dimensional linear systems.

We then consider the regulator problem for finite-
dimensional linear stationary systems. We first prove that
for such systems it is possible to locate the closed-loop
poles using state feedback if and only if the system is
controllable. We then show that is is possible to build a

z We are not implying that there is no simple intuitive explanation
as to why this should be the case. What we mean is that there does
not seem to be any o prior: reason why the possibility of achieving
control and observation is related to this aspect of model building.
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state reconstructor (using input and output measure-
ments) with arbitrary error dynamics provided the sys-
tem is observable. By combining these two results
we are able to demonstrate that a feedback compensator
can be designed such that the closed-loop system has any
preassigned poles provided the system is controllable and
observable. The existence question for linear regulators is
thus answered. It should be pointed out that the structure
of the resulting feedback compensator that is obtained by
using the above theory is exactly the same as that ob-
tained by invoking the separation theorem of stochastic
optimal control for the design of linear feedback systems
with a quadratic performance criterion and in the presence
of Gaussian disturbances.

The discussion then turns to time-varying systems,
where we consider the questions of stabilizability and
state reconstructibility. We consider qualitative aspects of
input—output descriptions versus state-space descriptions
and find that minimality of the state space is equivalent
to controllability (reachability) and observability.

Finally we demonstrate the equivalence of internal
Lyapunov stability and input-output stability for uni-
formly controllable and uniformly observable linear sys-
tems.

II. DYNAMICAL SYSTEMS

We first introduce the notion of a dynamical system
in state-space form. The formal definition attempts to cap-
ture the essential properties of finite-dimensional smooth
linear systems. We have chosen our input and output
funetions to be continuous functions of time. This avoids
various technical difficulties and simplifies questions re-
lated to the existence and uniqueness of solutions for
finite-dimensional linear differential systems.

The following definition of a dynamical system is con-
venient for this discussion. More general concepts may be
found in [9].

Let U, Y, and X be normed linear spaces, and let AL,
Y denote the space of continuous functions defined on
R = (—®, o) with values in U, Y, respectively. U
is termed the nput space, Y the output space, U the set
of input values, Y the set of output values, and X the state
space.

Let &, € R and let 5 = {t € R|t > t}. Consider the
mapsp:I X EX X XU—-»XandrE XX XU—->Y
termed the stale evolution.map and read-out map, respec-
tively.

Definition 1: A dynamical system is a quintuple {<u,
Y, X, ¢, r} satisfying the following axioms, for all 1, 4 €
cu,,xoeX,to,tbtzER,toS tls tg

a) Causality: ¢(t, to, xo, 1) = ¢{t1, to, To, U2) Whenever
w(t) = w(t) fortp < t < 4.

b) Consistency: ¢(ty, to, 2o, ¥) = Zo.

¢) Semi-group property: ¢(bs, to, 2o, u) =
¢(t27 tl; ¢'(t17 t07 Lo, u): u)

d) Smoothness: The functions ¢ and r are continuous
functions of £, £ > .
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A dynamical system in state-space form thus views the
generation of outputs from inputs and initial states as
oceurring via the mechanism of composition of the state
evolution map and the output reading map. The state
evolution map takes into consideration the memory of the
system while the output reading map is memoryless and
depends only on the current value of the time, the state,
and the input.

Notation: The function r(t, ¢(i, t, xo, u), u(f)) defined
for ¢ > & will for convenienee be unambiguously denoted
by y(te, o, ).

The most prominent example of a dynamical system in
state-space form is the finite-dimensional linear system
(FDLS) deseribed by the ordinary differential equation

& = Atz + B(Du y=Clz (FDLS)

with X = BR* U = R™ and Y = R?. The matrices A(%),
B(t), and C(f) are throughout assumed to have compatible
dimensions and (again, mainly for technical reasons) to be
continuous and bounded on (— o, + »). It is well known
that the above differential equation then defines a dy-
namical system in the sense of the above definition with the
state evolution map given by the so-called variation of
constants formula:

o) = 606, el + [ ot DBEY) dr

where the transition matriz ¢ (i, 7) is defined as the solution
of the matrix differential equation ¢(t, 7) = AQ@)¢(, 7),
¢(7, 7) = I. The transition matrix satisfies the composition
law o(ts, t)@ (6, bo) = ¢t o). See [10] for more details.

The above dynamical system has a very convenient
additional property not expressed by the basic axioms of
Definition 1; namely, the state evolution map is defined
for all t and not only for ¢ > ¢,. Such dynamical systems are
said to have the group property. Most systems described
by partial differential equations and delay differential
equations do not have the group property. Discrete sys-
tems and even time-varying systems for which the A(f)
matrix does not satisfy the smoothness properties stated
above also need not have this property.

Of particular importance in practice are the so-called
stationary dynamical systems in which ¢ and y commute
with the shift operator, i.e., if S; denotes the map from
U (respectively <) into itself defined by (Spyu)(®) =
u(t + T), then Spo(Z, to, o, w) = ¢t + T, & + T, z,
Szu) (respeetively, Szy(to, o, ) = y(to + T, 2o, Szut)).

Stationary linear finite-dimensional systems (SFDLS)
are described by the differential equation

& = Az + Bu y = Cz (SFDLS)
which corresponds to a system with transfer function
matrix G(s) = C(Is — A)~B, where s is a complex
variable.

The state-space description of dynamical systems will
be contrasted with the input—-output description in Sec-

tion VI.



ITI. SomE FUNDAMENTAL PROPERTIES OF
StatE-SPacE MobnELS

In this section the basic concepts related to control-
lability, observability, and Lyapunov stability are intro-
duced. The properties of controllability and observability
of a dynamical system refer to the influence of the input
on the state and of the state on the output, while Lyapunov
stability refers to the asymptotic behavior of undriven
systems. These notions will be introduced in the context
of general dynamical systems as introduced in Section II
and then, in the following section, specialized to finite-
dimensional linear systems.

The first series of definitions refers to possible transfers
in the state space which may result from applying inputs.
The concept of controllability refers to transferring an
arbitrary initial state to a desired trajectory. This desired
frajectory is often an equilibrium point. We will assume
this to be the case and take the zero element to represent
this equilibrium.

Assumption: It will be assumed that for all ¢{, € R,
o(,4,0,0) = Ofor¢ > tyand r(t, 0, 0) = 0.

Definition 2: Let t, be an element of the real line. The
state space of a dynamical system is said to be reachable
at fif, given anyx € X, there exists a {3, < fhhandau & U
such that 2 = ¢(f, t_y, 0, v). A dynamical system is said
to be controllable at i, if, given any 2y € X, there exists
at = f and au € AU such that ¢(ty, ¢, %, 4) = 0. The
state space of a dynamical system is said to be connected
if, given any 2o, 21 € X, there exist {p < hand auv E U
such that o(t, to, x, ) = 1.

Observability refers to the possibility of reconstructing
the state from output measurements. As remarked by
Kalman et al. in [9], there are however two separate state
- reconstruction problems which one should consider. One
refers to deducing the present state from past output
observations and the other refers to deducing the present
state from future output observations. It is the first
property which is essential in filtering. There is also
the question of what happens to the inputs in this process.
Fortunately this is of no consequence for linear systems,
but for nonlinear systems one should distinguish three
cases, depending on whether the input is a priorz known,
is arbitrarily assigned, or may be selected in the experi-
ment. This leads us to consider the following series of
definitions around the theme of deducing the state from
output observations.

Definition 3: Let {, & R. A dynamical system is said to
be zero input observable at t, if knowledge of the output
y(to, T, 0) for ¢ > & uniquely determines xo. A dynamical
system is said to be observable at ¢, if for all x, € X and
% € U knowledge of the observed output y(t,, o, u) for
t > t; determines x, uniquely. The state space of a dy-
namical system is said to be #rreducible at i, if for all x, €
X there exists a ¥ & U such that knowledge of the output
y(to, 2o, u) for t > ¢ uniquely determines .co.

The difference between irreducibility and observability
is that in the former case the u which yields the initial
state x; may be a function of wx, itself, whereas in the
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latter case any u will do. Any unobservable irreducible
system is thus highly unsatisfactory from the viewpoint
of state reconstruction. This seems to have been over-
looked in the literature.

The analogous definitions referring to reconstructing the
present state from past observations become as follow.

Definition 4: Let &) be an element of the real line. Then
the state of a dynamical system is said to be zero tnput
reconstructible at &, if knowledge of the output corre-
sponding to an input ¥ = 0 for ¢ < £ uniquely determines
zs & X. Thus the output due to some initial state at
“ty = — =’ ig observed and the present state z, is to be
reconstructed. The state of a dynamical system is said to be
reconstructible at & if or all w € U, knowledge of the
output for ¢ < & uniquely determines z, € X.

Note that connectedness implies reachability and con-
trollability, and that observability implies zero-input
observability, which in turn implies irreducibility. These
notions are in general not equivalent unless, as will
be shown in the next section, the system is linear and
finite dimensional. The simplest example of a nonlinear
system for which this equivalence does not hold is the
system & = A zu; y = Cz, where s € R, u & R, and
y € R? and the matrices A and C are compatible. It
should also be noted [11] that reachability, control-
lability, connectedness, observability, irreducibility, and
reconstructibility are preserved under (output) feed-
back, but that zero-input observability and zero-input
reconstructibility are in general not unless the system is
again linear and finite dimensional. If a system is not
irreducible, then there exist two initial states such that
the output to any input will be the same on the interval
[to, ). These two states are thus completely indistinguish-
able under experimentation and the state space may thus
be reduced by eliminating one of these two states from the
state space. Note that although the observability defini-
tions ask for the reconstruction of the initial state, this is
equivalent to reconstructing the state on the whole
interval [f, «). It may in fact be more logical to demand
this in the very definitions.

It should be remarked that the above definitions might
not be appropriate for certain applications. In particular,
for distributed parameter systems it is sometimes more
convenient to make definitions of controllability which
require that every state can be driven arbitrarily close
to the origin rather than exactly to it.

It is important for many applications to have somewhat
stronger controllability and observability properties than
merely those implied by the basic definitions. These are
now introduced. With linear systems in mind we will
norm the input and output spaces by means of an Ly-type
norm,

Definition 5: A dynamical system is said to be uniformly
controllable if there exists a T > 0 and a continuous
function «:R — R such that for all z € X and {, € B
there exists a u € U with ST |lu(®)||o? dt < a(|lwo|)) such
that ¢(ty + T, ty, xo, w) = 0. The state space of a dynamical
system 1s said to be uniformly reachable if there exists a
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T > 0 and a continuous function «:RF — R such that for
all 2 € X and # € R there exists a u & U with fr_;
[lu@®lo? dt < a(||zoll) such that é(ts, to — T, 0, u) = zo.

A dynamieal system is said to be uniformly zero-input
observable if there exists a 7' > 0 and a monotone increasing
function 8:R — R with 8(0) = 0 such that for all z,,
nEXandt €ER

to+ T
ﬁ byt 6, to, 70, 0), 0)

- Z/(t; ¢(t7 tU; Z1, 0)7 O)H2 di 2 ﬁ(”xo - xl“)-

A dynamical system is said to be unzformly zero-input
reconstructible if there exists a 7 > 0 and a monotone non-
inereasing function 8: R — R with 8(0) = 0 such that for
allze, 21 ER,and b E R

to
‘I;_T”y(t: ¢(t: tO - T, Zo, O), O)

- y(t) d’(t’ lg — T, Z1, 0), 0)“2 dt
> B([le(tots — Tyzo, 0) — oltots — Ta, 0)[]).

The next notions refer to the zero-input stability of
dynamical systems in state-space form. Since only the
notion of exponential stability will be used in the sequel,
attention will be limited to this concept. For a more de-
tailed discussion of Lyapunov stability concepts see [12].

Definition 6: A dynamical system in state-space form is
said to be exponentially stable if there exist constants M,
A > 0 such that

H¢(t17 tO: Lo, 0)“ S Me_)‘(h_to)' “xOH
forall zo € X and & > .

IV. FiNiTE-D1MENSIONAL LINEAR SYSTEMS:
AvgEBraIc CoNDITIONS FOR CONTROLLABILITY
AND OBSERVABILITY

It is usually quite difficult to obtain specific algebraic
conditions for controllability and observability. The one
class of systems for which such explicit tests may be
obtained is the linear finite-dimensional system. The
proof of the basic result which states these conditions in
terms of invertibility of the W and 3 matrices given
here is based on abstract vector space concepts. Although
this approach is not standard and although the conditions
may be obtained using much more modest means, it is felt
that the results follow more naturally in this framework.
In order to keep the discussion on an elementary level,
topological notions will be avoided as much as possible.

Definition 7: Let V be an inner product space and let
S be a subspace of V. Then the orthogonal complement
of S, denoted by S*, is defined as S* = {v € V|, s) = 0
for all s & S}. If S is a closed subspace (and thus in
particular if § is finite dimensional) then V = S @ St;
ie., any element » € V has a unique decomposition into
v = 21 + 2 with z; € S and 22 € S*. Let L be a linear
operator from V; into V, with ¥y and V. inner product
spaces. Then the null space (L) and the range space
®R(L) of L are the subspaces of Vi and V., defined re-
spectively by
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I

N(L) = {n € Vi|Loy = 0}
®RIL) ={mET,

The adjoint of L, denoted by L*, is the operator from V,
into Vi which satisfies (v, L)y, = (L%, v1)y, for all
v & Vi and v, € Ve. The adjoint is linear and uniquely
defined whenever it exists. It exists when ®&(L) is closed or
whenever L is continuous and V; and V., are Hilbert
spaces. In particular L* exists whenever V; and/or V
are finite dimensional. It is this case which will be of
interest in the sequel. If L* exists, then so does (L*)*
and, in fact, (L*)* = L, and if L, and L, are linear operators
from V7 into Vs and V. into V3 which have an adjoint,
then L,L; has an adjoint and (L.L;)* = Li*L,*. Consider
now the following lemma which is proven in most texts on
linear algebra [13].

Lemma 1: Let L be a linear operator from Vy into V;
with V3 and/or V, finite dimensional. Then L* exists,
L) = &IL¥L, &IL) = LMY, s(L) = WL*L), and
®(L) = ®R(LL¥).

There are two types of linear operators which will be of
particular interest in the sequel. Let R™ denote real
FEuclidean n-space with the usual Euclidean inner product
{21, Ty = 3'x2 and let Cy™(ty, i1) denote the inner-product
space of all continuous B™valued functions on [f,, #] with
the inner product (x1, z2) = fia'(D)x2(f) dt. Let F(f) be a
real (m X n) matrix-valued continuous function on [fo,
4] and consider now the operators I; and L; from E* into
Co™(, t1) and from Cy™(4, &) into R™, respectively, defined
by:

v, = Lvy, some v; & V4.

Lz = F()z

and

Loz = f P d.
o

It is easily verified that L; = L.* and hence that L, = I;*.
Notice that Lyl = L*L; = LyL,*is the linear transforma-
tion on R” induced by the matrix f5 F/()F(t) dt.

Turning now to the question of controllability and ob-
servability, observe that it follows from the variation
of constants formula for the finite-dimensional linear sys-
tem (FDLS) that the state zy & E* at & will be trans-
ferred to the state z; € R™ at #; by the continuous control
u(t) if and only if

2%
$(to, l)x1 — X0 = ¢(to, T)B(T)u(r) dr £ Fu.
to
Similarly it follows that the output on [t #] due to the
initial state ; at {; and the control u(¢) satisfies

y(o) — f COB(, Dulr) dr = COBG o 2 Ha,

where ¢, < ¢t < ¢,.

It is immediately clear from the above that the finite-
dimensional linear system (FDLS) is controllable at %
in some finite time interval [t, ] if and only if the linear
operator F:Cy"(ty, t) — K™ is onto R™ and is observable
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in the interval [t, 4] if and only if the linear operator
H:R™ — (,%(f, %) is one—one on R* Consequently
controllability on [f,, &] requires that ®(¥) = R™ and
observability on [l 4] requires that 9U(H) = {0} These
characterizations are, however, somewhat unsatisfactory
in the sense that they require knowledge of the range
space and null space of operators defined from or into
infinite-dimensional spaces. If one considers Lemma 1,
it becomes apparent that these conditions can be stated
as requiring, respectively, that ®(FF*) = E" and 9-
(H*H) = {0}. Since, however, FF* and H*H both map
R™into R*, these linear operators will be characterized by
matrices. It is thus entirely natural to rephrase the con-
ditions in terms of FF* and HH*, This leads to the fol-
lowing theorem.

Theorem 1: The finite-dimensional linear system (FD-
LS) is controllable at %, if and only if det W{t, ) = 0
for some # > &, its state space is reachable at ¢, if and
only if det W(t_1, &) # 0 for some t_; < f, and its state
space is connected if and only if det W (i{_y, t1) 5 0 for some
t_1, 1. Itis observable (zero-input observable, irreducible) at
fo if and only if det A7(%, &) # 0 for some t; > ¢ and its
state is reconstructible (zero-input reconstructible) at
if and only if det M (¢, ) > 0 for some {_; < f. The
(n X n) matrices W and A7 are defined by

lI>

i1
W (b, ) t d(to, T)B()B' ()¢’ (lo, 7) dr

i1
Mo b) = | ', )C'(C(7)8(r, b) dr.

Proof: The operator FF*:R" — R® corresponds to
the matrix W(t, %) and the operator H¥*H:R* — R®
corresponds to the matrix M (&, ). Since a linear operator
mapping a finite-dimensional space into a space of the
same finite dimension is one-one if and only if it is onto, it
follows that invertibility of these matrices is equivalent
to, respectively, controllability and observability in the
interval [&, &]. Since however ®R(W (&, 4)) is monotone
nondecreasing (in the set theoretic sense) with 4 and
since (M (t,, #)) is monotone nonincreasing with #, the
controllability and observability claims follow. The other
cases are proven n a similar way.

It remains to determine a control which makes the
desired transfer in the case of controllability and to give
an algorithm to compute the initial state in the case
of observability or reconstructibility. In fact, u*(1) =
B/(6)¢’ (to, YWty 1) (¢(ko, 1)1 — wo) transfers the system
from 2z, at f, to x; at &, while minimizing J7|u(®]]® dé,
and @y = M=k, t)Jid' (7, to)-C'(r)v(7) dr, where v(f) =
y(&) — [iC®eét, m)u(+) dr, is the unique state at &
which will yield the output y(@) ontp < t < 4 (or ; <
t < ty) when the input is u(f).

The minimizing property of the above control leads im-
mediately to the following conditions for uniform controll-
ability and uniform observability.

Theorem 2: The finite-dimensional linear system (FDLS)
is uniformly controllable (uniformly reachable) if and only
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if for some 7 > 0 there exists an & > 0 such that W (i,
b+ T) 2 el for all iy € R; it is uniformly observable
(uniformly reconstructible) if and only if for some 7 >
0 there exists an e > 0 such that M (&, &0 + T) > el for
all{ € R.

Notice that, in view of the boundedness assumption
on A(f), uniform controllability is equivalent to the exis-
tence for some T > 0 of constants e, e > 0 and 3,, M,
such that

0< e <K Wl 8o+ T) < MI
and
0<L I <olto+ T, to) Wk, 8o+ T)d'(bo + T, 1) < Mol

for all {4, & K. Thus for the systems under consideration
the present definition is equivalent to the one originally
proposed by Ialman [5]. The same holds for observability.

Theorem 1 suffers from the drawback that it does not
give controllability and observability conditions in terms
of the original model which involves the matrix A(%),
but instead in terms of the associated transition matrix
¢(t, 7). It is, however, possible to remedy this situation,
at least for sufficiently smooth systems. In the case of
stationary systems, controllability and observability
turn out to be determined by the following well-known
conditions.

Theorem 3: The stationary finite-dimensional linear sys-
tem (SFDLS) is controllable (reachable, connected) at
if and only if rank {B, AB, 4B, -+, A""1B} = a. It is
observable (reconstructible, irreducible) at f if and only
if rank {C’, A Cl, -, (A’)"—lC’} = n.

Proof: See, for instance, [10, p. 79].

Silverman and Meadows [14] and Chang [15] have
developed algebraic conditions which are applicable to
linear time-varying dynamical systems. These results re-
quire that the matrices A(7), B(t), and C(£) be sufficiently
smooth.

Remark: For finite-dimensional stationery linear systems,
if the system is controllable in finite time, then it is con-
trollable in an arbitrarily small time. This result is in
general no longer true for infinite-dimensional stationery
linear systems.

A very useful concept is that of dual systems. Dual
dynamical systems have the intriguing property that
control problems of one become observation problems for
the other, and vice versa. Optimal control problems thus
lead to optimal estimation problems. It is fair to say that
the concept is so far not understood in any degree of
generality. It is analogous, but not identical, to the con-
cept of reciprocal systems: one strongly suspects these con-
cepts to be relevant for general nonlinear systems.

We begin with a simple identification of two adjoint
operators. It is easy to show that if L;:Cy"(f, t) = R" is
defined by z(#;) = ILyu with

% = AWz + B()u, z(t) =0

then I,*:R™ — Cy™(&, #) is given by y() = L*p(),
t < t < 4 with
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p=—A'()p, vy = B@p.

Similarly, if Ly:R® — C:?(f, #) is defined by y() =
inl?(to), o S t _<_ tl, with

&= AWz, y = Oz,
then Ly*: CoP (b, tz) — R™is given by p(t) = L.*u with
p=—A'(t)yp — C'(Du, p(Ty) = 0.

These formulas are easy to verify after noticing that the
transition matrices of £ = A(H)z and p = —A'()p are
related by ¢(¢, 7) = ¢'(7, 1).

By Lemma 1, it follows that there exists a very simple
relation between the null spaces and the range spaces of
Ly, Ly and their adjoints. These associations give a relation-
ship between controllability and observability concepts.
The difficulty, however, is that the operators In* and L.*
are defined backwards in time (the appearance of —A’(¢)
strongly suggests that this better be the case if these are
to be concepts of any degree of generality). Thus, in order
to associate controllability properties with observability
properties of the mathematical adjoint, one would have to
introduce the concept of a dynamical system which runs
backwards in time or reverse the time direction of the ad-
joint and consider the dynamical system thus obtained.
Thus one associates with the system

£ =A@z + Blu, y=C@x
its so-called dual defined by
5 = A:(t)z + B, w = Cy(f)z
where
Alto +8) = A'(ts — ©)
Bi(ty + ) = C'(te — )
Ci(to + £) = B'(ty — ©).

In view of the above remarks it is now very simple to
prove the following correspondences between a dynamical
system and its dual: controllability at # <> reconstructi-
bility at t, and reachability at ¢, <> observability at #,.

Remark: Any finite-dimensional linear dynamical system
may be decomposed into four subsystems: (1) a control-
lable and observable subsystem; (2) a subsystem which
is controllable but not observable; (3) a subsystem which
is observable but not controllable; and finally, 4) a sub-
system which is neither controllable nor observable.This
is Kalman's canonical structure theorem (see the paper by
Silverman, this issue).

V. PoLE ALLOCATION, STATE RECONSTRUCTION, AND
CrosEp-Loor REGULATION

The following questions about the contreol of dynamical
systems are of fundamental importance in mathematical
system theory—how to: 1) design a state feedback law
which regulates the closed-loop response; 2) design a
state recomstructor, i.e., a system which deduces the
current state from past observations of the output; and
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3) design an output feedback compensator which regulates
the closed-loop response.

In this section we will treat these questions for the
stationary finite-dimensional linear dynamical system
introduced in Section II.

%= Av + Bu, y = Cx. (SFDLS)

We assume as before that the input (?) is a continuous
function of £, The problems of regulation and state re-
construction discussed above will be “solved” in the same
class of dynamical systems, i.e., we will only use stationary
finite-dimensional linear systems to achieve a possible de-
sign procedure.

Consider first the question of regulation under state
feedback and assume that the feedback —Kz is being
applied to the system. The closed-loop response is then
governed by the dynamical equations:

% = (A — BK)x + Bu, y = Cr,

A representative feature of the response of this closed-loop
system is given by the location of its poles, i.e., by the
zeros of det (Is — A + BK). The question thus arises of
under what conditions is it possible to assign the poles of a
dynamical system arbitrarily by suitably choosing the
feedback gain matrix K. More precisely, given an arbitrary
polynomial

7(s) = 8" + Toas™ 1+ -+ 1

with real coefficients, when does there exist, for given
matrices A and B, at least one (m X n) matrix K such
that det s — 4 + BK) = r(s)? The possibility of pole
assignment turns out to be equivalent to controllability.
This property of state feedback appears to have been
known for a long time in the single-input case (see [6] for
historical comments), but has only recently come to the
foreground for the multiple-input case.

In the multi<input case the first results in this direction
are due to Langenhop [16] and Popov [17]. They proved
that, given an arbitrary polynomial r(s) with coefficients
in the field of real or complex numbers, there exists a
matrix K (possibly complex) such that det (Is — 4 +
BK) = r(s) if and only if the system is controllable. The
proof given by Popov [17] makes interesting use of Kal-
man’s canonieal structure theorem and is different from
Langenhop’s. Wonham [18] gave a different proof and fur-
ther showed that, if the polynomial has coefficients in the
field of real numbers, then the matrix K can be chosen to
be real. In our context, Wonham’s appears to be the first
complete proof. A different proof and algorithms for pole
assignment was presented by Simon and Mitter [19]
and Simon [34]. The proof given in this paper uses a
lemma due to Heymann {20]. The lemma also appears in
Popov [31, p. 261, proposition 2, appendix A].

Theorem 4: There exists a real m X n matrix L such that
det Is — A — BL) = s" + r,s® 1 4 ---+ r for
arbitrary real coefficients {ro, T1,° 0", 7',,_1} if and only if
the system % = Aa + Bu is controllable; i.e., if and only
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if the (nm X n) matrix [B:4B: - -+ : A" 'B] is of rank
n.
The proof of the theorem will proceed via several
propositions.

Proposition 1—Sufficiency for the Case where B s a
Column Vector: Let A be an n X n matrix and let b be an
n X 1 matrix. If the system is controllable, then thereis a
k&’ (1 X n) such that the characteristic polynomial A — bk’
is an arbitrary preassigned polynomial (of degree n).

Sketch of Proof: Since the system is controllable, the
controllability matrix H = (b, 4b, - - -, A1) hasrank n.
Therefore the n columns of H span R” It is then well
known that there exists a basis of the state-space X = R*
such that the system % = Az -4 bu may be brought in the
standard controllable form [10] 2 = A2 + bju where

0 1 0--- 0
o o0 1--- 0
4 - . . . .
0 0 -0 1
Gy O Q1

It is then easy to see that the characteristic polynomial
of 4 + bk’ may be chosen to have any preassigned form.

Remark: The proof of the above proposition consists of
first putting the system in standard controllable form,
and once this is done, the pole assignment becomes trans-
parent. The two parts of this algorithm may be combined
to give the following direct algorithm for pole assignment
[16]. Let

p(8) = 8" + Paas®™ 1 4 -+ 4 po = det (Is — A)
and
7(s) = s"+ rpus” M =

be the open-loop and desired closed-loop characteristic
polynomials, respectively. Form the matrix

det (Is — A + bk

1 0 « . 0
Pn—a ’

P —
Y2 1
Do P Paa

then the vector & is given by

b’ Fal — Dn

b’AI Pp—go — Pn—
b= -

b,(A')n_l To — Do

We will now show that the case when B isn X m may
be reduced to the case that m = 1 by first applying state
feedback.

Proposition 2: If the system % = Az + Bu is control-
lable, then there exist matrices L(m X n) and bi(m X 1)
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such that the system % = (A — BL)x + bw is controllable
and b;® is in the column space of B.

Proof: Let b; denote the zth column of B and let £,
be the subspace spanned by the vectors b, 4b, ---,
A", Since [B:AB: ---:A"'B] is of full rank =,
there are n vectors of the form A%, which form a basis
for R™. Let {ei, e, ..., e, denote this basis. Thus any
z € R™ may be written as )7 ia.;. Bute, € E,and thus
the linear combination 2 .r.,a; may be rearranged as
otz + o+ v, withe, & E,.

In general the subspace £; will not be independent in
the sense that E; N £, # {0} for ¢ # j. However there
are subspaces S; of E, such that S; N S; = {0} for s = j
and such that B* = 81 + 8; + - - - + 8, To see this,
let S, = E:. Then S has a basis by, Aby, -+, A%
where K, is an integer >1.* Let b.* be the first column of
B not in S; and let 7 be a subspace of B* containing b,*
such that B* = S; @ 71.> This may be done by extending
the basis for S; to a basis for R™ containing b;*. Let S,
be the subspace spanned by by*. Ab*, .-, A% lp*
with k. the largest integer such that these vectors are
linearly independent in 7. Then S; @ S: is a subspace of
R® with basis b, Ab, - -, A" b, B¥ Ab* -,
A*~,* moreover, S; N S; = {0}.

Now let b3* be the first column of B not in S; @ 8S,.
By the same process as above, there is a subspace T
containing b;* such that E = S; @ 8: @ T.. Also, thereisa
number k; so that bs* -+, A® 'b* are linearly in-
dependent in 7. Let S: be the subspace spanned by
by*, - -+, A¥ 1p* Then S; @S, @ S;is a subspace of B”
with basis &y, - - -, A* 7 'bs*; moreover, (S @ Sy) N S; =
0.

Since R*is finite dimensional and equal to £; @ E; - - -
@ E,, this process terminates at some stage. Hence B* =
S @8 + - @ Sn as indicated, and a basis for & is
obtained by combining the bases for the subspaces. By
rearranging the columns of B (hence, the coordinates of
the control) it can be assumed that the first 7 columns of B
were in this process. Hence, the basis is by, - - -, 477
bl) ) br; Tty Akr—lbr; and Z£=1ki =n. Let@ = [bl;
coe ARy oo B, o, AT 0] be the matrix whose
columns are these basis vectors. Hence @ 1s invertible.

Define an m X n matrix S = [si, - - ', 8,] where each
column is an m-vector defined as follows: s;; = €42 ™
ifr; = >di_tkyandj = 1, -, 7 — 1; 8 = O otherwise,
where ¢, is the 7th standard basis vector of B™. Finally,
let L = 8Q-% then LQ = 8. Consider LA*~'b; since
A*¥~1p, is the rth column of @, LAY ', = ¢1™ for
eachj = 1, -,r — 1. Similarly, LA%; = 0 for all other
powers of A.

Let Ay, = A — BL, then Hy = [by, * * -, A1"7b;] is the

3 Any nonzero vector in the column space of B will do for b;.

¢ The reader may find it useful to look up the notion of a cyclic
subspace of a vector space V with respect to a linear map 4 in a
book on matrix theory. See, for example, [33, p. 185].

5 @ indicates direct sum;ie., B» = 8, @ T, and S, N 7, = {0}.
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controllability matrix of the pair (A4;, b:1). Consider the
following columns of H;.

b1 = bl-
A1b1 = Ab]_ - BLbl = Abl
A12b1 ) = A2b1 —_ BLAbl = Azbl.

Al Ty,

A*p + BLA® %, = b, + linear combina-
tion of previous vectors,

A"t = Ab, + linear combination of previous vec-
tors.

A1k1 — lbl —
A1k1b1 —

A*; = A¥ ', + linear combination of previous
vectors.

Thus the jth column of H; is the jth column of @ plus a
linear combination of the previous j — 1 columns. Hence
the columns of H; are linearly independent so rank of H;
is n. Clearly b, is in the column space of B. Proposition 1
can now be applied to the controllable system & = (4 —
BL)x 4+ b to complete the proof of the theorem.

Proof of Theorem 3—Necessity: Let ay, - * -, a, be distinet

scalars such that det (4 — a,f) # O0fori = 1,2, -, n.
By hypothesis, there is an L such that det (4 + BL —
sI) = (@1 — s) - -(a, — s), that is, @, * - -, a, are the

eigenvalues of A + BL. Then for each a; there is a v, &€
R”such that (A + BL)v; = aw; and v; # 0. Since (a,J —
A) is invertible, this can be written as

(an - A)_IBL'UZ' = Uy 1=1,2-" P

For each a;, there are scalars b;(a;) such that
(@ — A7 = Y b(a)A
i=1

To see this, let d = 2.7 od.s* be the characteristic poly-
nomial of &,/ — A. Then since dy = det (¢, — 4), I =

((I,iI - A)(’—(dl/do)I'—': Ty _(dn/do)(aJ - A)n—l).
This shows the above, noting that (a.] — A)* = 25,
(% )ady—rye-ass
J
Combining the above,
ZAj_lB(bj(ai)Lvi) =V (1
i=1

fori =1,--+,n. :
Let H = (B, AB, -+, A*'B) and consider Hy for
some y & R™. If y is written as n blocks, each of length

m, i.e, y = (g, -, y.’) where each y; is an m-tuple,
then
n n
Hy = (B, AB,---, A" B){ - | = 2. A""'By,.
Jj=1
Yn

Letting y; = b;(a;)Lv, (1) becomes
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Hy* = v, 2

where y,* = (bi(a)Lv;, -« -, by(a) L),

Since the eigenvalues of 4 + BL are distinct, the
eigenvectors oy, -+, v, are linearly independent and
form a basis for B”. Then any » &€ R™ can be expressed as
v = 27 ik so, using (2), v = 2ok, = 2k Hyp* =
H(3 kq1%). Then the range of H is R”, so H has rank n.
Therefore, the system is controllable,

Theorem 3 provides a method for approaching a large
class of control problems. Other design procedures based
on optimality criteria are treated elsewhere in this issue.

Remaorks: Theorem 4 has been generalized in several
directions. A generalization to periodic systems may be
found in [35]. For a restricted class of time-varying
systems a pole-allocation result has been proved in [29].
The theorem is also true for discrete~time finite-dimensional
linear systems defined over an arbitrary field [36].

The pole-allocation result of Theorem 4 states that the
characteristie polynomial of the closed-loop system matrix
may be chosen at will by the use of state feedback. More
generally, one would like to answer the question as to
what Jordan forms of the system matrix can be realized
using state feedback (in fact it is clear from the single-
input case that this Jordan form cannot be chosen at
will since A — bk’ will always have the same characteristic
as minimal polynomial). This aspect of the state feed-
back problem has been studied by Rosenbrock [32]. It
turns out that for a Jordan form to be possible certain o
priort inequalities have to be satisfied. From an algebraic
point of view, the results of Rosenbrock appear to present
pretty much the definitive story as to what can be achieved
using state feedback.

We will consider the second question raised in the
introduction to this section, namely, the design of a state
reconstructor. A natural approach for such a design is to
attempt to discover a dynamical system whose state will
be an estimate of the state to be reconstructed. The
system to be designed has knowledge of the input and
output of the dynamical system for which we are designing
a state reconstructor.

Consider as a possible choice for such a system the
n-dimensional linear system

$=F3%+ Lu-+ Hy

where % and y represent the input and output of the
systems (SFDLS) and where % represents the estimated
state. Since one would like the dynamics of the original
system and the state reconstructor to be compatible,
it is natural to choose L = B and F = 4 — HC such that
the estimator dynamies become

4=A%+Bu—H@# —y)

with § = CZ. The estimator is thus driven by the error of
the estimated output and the observed output through the
feedback gain H. The error ¢ = £ — z is governed by the
differential equation
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¢ = (4 — HO)e.

A possible criterion for the quality of the state recon-
structor are the eigenvalues of the matrix governing the
error equation, i.e., the zeros det Is — A + HC). The
question thus arises of under what conditions on A and C
can one make the zeros of det (Is — A 4+ HC) arbitrary
by appropriately choosing H. This question is precisely
the dual of the pole-alloeation question, and this observa-
tion immediately leads to the following theorem.

Theorem 5: There exists an (n X p) matrix H such that
the error dynamics of the state reconstructor are governed
byé = (A — HC)e wheree = £ — z withdet (Is — 4 +
HC)y = s 4+ r,a8®™! 4 -4 1 for arbitrary real
coefficients {7'0, S TIRICICIN rn_l} if and only if the system & =
Az + Bu, y = Cux is reconstructible (observable); i.e., if
and only if the (np X n) matrix [C": A'C’; - - - 1 (A1)
is of full rank n.

Proof: Since & = Az 4+ Bu, y = Cx is reconstructible,
% = A’z 4+ C'v is controllable. Hence H’ may be chosen
such that det (/s — A’ 4+ C’H’) is preassigned. Since det
(Is — A" + C'H’) = det (Is — 4 + HC), the result
follows.

Remark: The above state reconstructor is sometimes
called an observer. It suffers from one fundamental draw-
back; namely, that in reconstructing the state from the
outputs ¥ we ignore the fact that we know y = Cx exactly
and thus that it would be logical to choose Z such that
C% = y. In other words, rather than estimating the whole
state x, it suffices to estimate the components of z in the
null space of C. This problem has been studied by Luen-
berger [8] who showed that there exists a state reconstruc-
tor of order (n — p) whose state in combination with the
observed output results in an error vector which has p
components identically zero and whose (n — p) remaining
components are governed by a stationary linear dynamical
system of order (n — p) with preassigned eigenvalues of its
system matrix. For a more complete account of this see
Wonham [22].

The regulator design baséd on pole allocation explained
in the first part of this section is based on exact knowledge
of all the states. For technological reasons it is often very
difficult and inefficient to measure the complete state
vector, and one only has access to the output for measure-
ments. The question thus arises whether it is possible to
use the above ideas to design a compensator which has
as its input the output of the system to be controlled. A
logical and intuitive procedure in obtaining such an out-
put compensator is to separate the task of state recon-
struction and feedback regulation by first designing a
state reconstructor and then using the estimated value of
the state (instead of the actual value of the state) in the
feedback controller. This approach is a prelude to the
separation theorem for stochastic optimal control. In the
present context it should be considered as a reasonable
first approach to the design of an output feedback controller.

Using this idea we obtain the following closed-loop
dynamical system:
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%= Az 4+ Bu

y = Cx

&= A%+ Bu — H(j — y)
g = C&

u = —KZ.

Written in terms of z and ¢ = £ — , this closed-loop
dynamical system may be written as

(4 — BK)x — BKe
(4 — HC)e

% =

é =
or
—BK

ad (.z:) (A — BK (m
di\e 0 A-—-H C) e)'

The above representation shows that the poles of the
closed-loop system are the zeros of det (Is — A + BK)
det (Is — A + HC) and may hence be allocated at will
by choosing K and H if and only #f the system (SFDLS)
is both controllable and reconstructible (observable);
ie., if and only if the (nm X n) and (np X n) matrices
[B:AB; -+ -: A 'Bland [C": A’C’; - - - : (A")"'C’] have
full rank ».

One may of course replace the state reconstructor in
this compensator by a Luenberger observer. This in fact
yields a simpler design which specializes to the state feed-
back case.

The state feedback regulator, the state reconstructor,
and the output feedback regulator are shown in Fig. 1.

Remark: The structure of the feedback compensator
shown in Fig. 1 is precisely the same as that obtained by
invoking the separation theorem of stochastic control and
designing the feedback compensator for a linear system
with Gaussian disturbances on the basis of deterministic
optimal control theory for a quadratic cost and Kalman
filtering theory.

VI. STABILIZABILITY AND STATE RECONSTRUCTIBILITY
7OR TIME-VARYING SYSTEMS

It was shown in Section III that the control
u(f) = —B' ()¢ (ty, YW ~(f, )20, h<t<th

will transfer the state of a controllable linear finite-
dimensional system from state x, at time # to state 0 at
time #. Implemented in a feedback form, this would lead
to the feedback control law

u = —B' (W1, )z

which, since lim,_,||W 1, 751)“ = o, calls for unbounded
feedback gains. This is not surprising since it amounts to
driving a linear system to zero in finite time. The problem
thus arises as fo whether it is possible to design a con-
tinuous bounded feedback control law which makes the
closed-loop system exponentially stable. It will be shown
that under suitable controllability assumptions this is in-
deed possible.
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(b)

(e)

(a) State feedback controller. (b) State reconstructor.

Fig. 1.
(c) Output feedback controller.

Theorem 6: Assume that the system (FDLS) is uni-
formly controllable. Then there exists a bounded con-
tinuous matrix G(f) such that the feedback system % =
Az + B(Hu; v = —G()x is exponentially stable.

The proof is based on the optimal control results of [5].
The details of the proof may be found there and only an
outline will be included. '

Outline of the Proof: Consider the Riccati differential
equation Ky = —A'(#)Ky — KA@M) + KrB()B' (DK, —
I with Kz(T) = 0. Then limy_,, Kz({) = K. (t) exists for
all ¢ This limit is approached monotonically from
below and also satisfies the above Riceati differential
equation [K.(Y) is thus differentiable and hence con-
tinuous]. Moreover K.(f) is bounded on any half line
[ts, ) by uniform controllability. The result follows if it
is proved that the system # = (A(f) — B@)B'()K..())x is
exponentially stable. This, however, follows by considering
'K .(f)z as a Lyapunov function. For details see [5].

1t was shown in Section III that one may reconstruct
the present state from past observations of the input and
the output. This problem is the dual of the control problem.
The control nature of the state reconstruction problem
may be brought out as follows.

Suppose we consider a state reconstructor governed by
the equations

§=AWWs+BOu+r §=C00z

with Z the state of the state reconstructor, u the input to
the plant, and r a correction signal (which is to be de-
signed). The error e = # — z is then governed by the
equation

e = A(e + r.
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In choosing the correction input r in a feedback form it
should be realized that one has incomplete information of
e in that only z and Cz are known. Assume, however, that
7 is chosen to be the dual of the feedback control law
considered in the beginning of this section, i.e.,

r= —M-1, t)C(H)e = M, t)(y — ).

* This correction signal is admissible since it only depends on

y and leads to the error equation
¢ = (A@® — Mt t)C(D)e

which is such that e(fy) = 0. This state reconstructor,
however, asks for unbounded gains and will be unac-
ceptable in most situations. By dualizing Theorem 6 one
obtains a procedure for designing a state reconstructor for
which the error approaches zero at an exponential rate.

Theorem 7: Assume that the system (FDLS) is uni-
formly observable. Then there exists a bounded con-
tinuous matrix H (¢) such that the system

2= AMZ + Blu — HOG — y)

with § = C(£)Z is a state reconstructor such that the error
equation ¢ = (A(Y) — H({)C(t))e is exponentially stable.

The combination of the stabilizing control law with the
above state reconstructor in a loop for which the state
reconstruetion and control function are separated leads to
the following result

Theorem 8: Assume that the system (FDLS) is uni-
formly controllable and uniformly observable. Then there
exist bounded continuous matrices G(¢) and H(f) such
that the closed-loop system

% = Az + B)u

y = C(t)z

£=AWM2 — Bu+ HOY — 9
§ = CHz

u = —GOE

is exponentially stable.

VII. Inpur-OvuTPuT DESCRIPTIONS OF
DyNAMICAL SYSTEMS

There are two (fundamentally different but essentially
equivalent) possible deseriptions of dynamical systems.
One is the so-called state-space description. An appropriate
set of axioms for a large class of such systems has been
introduced in Section II. The other is the input-output
description. An axiomatic framework for the study of a
class of systems described in terms of input—output data
and which possesses all of the essential properties of
finite-dimensional linear systems will now be introduced.

As before, let U denote the collection of all continuous
U-valued functions on (— =, -+ ). The spaces ¥ and Y
are similarly defined. We agsume again that U and Y
are normed vector spaces.
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Consider® now the subset U+ of U defined as
Ut = {u € alu(t) = 0 for t < , some #, € R}

and assume that Y+ is similarly defined. Consider now a
mapping F from U+ into Y+. Then F is said to be causal
on UTif uy, e € UT with w() = we(t) for ¢t < & implies
that (Fu)(t) = (Fus)(t) for ¢t < .

Definition 8: A dynamical system in input-output form
is a map from U* into Y+ which is causal on U,

The problem of realization is to construct a dynamical
system in state-space form such that it generates the same
input-output pairs as the dynamiecal system in input-
output form. The question thus reduces to construecting an
appropriate state-space X and suitable maps ¢ and r.

The problem of realization is trivially solved if one
requires no additional properties of the state-space model.
Indeed let X denote the set of all continuous U-valued
functions on [0, «) which vanish for sufficiently large
values of their argument. Consider now a dynamical
system in input—output form and let us take the state
space at time f to be the element of X which satisfies
2(s) = u(t — s) for t > 0. This element of X will indeed
qualify for a state since, in trying to satisfy the require-
ment that the state should summarize the essential
features about the past input, we in fact decided to store
the complete past input. It is in fact a simple matter
[11] to induce the appropriate state transition map and
readout map to go along with this choice of the state. This
shows that every input-output dynamical system has a
state-space realization and vields a rather interesting
decomposition of a dynamical system into a linear station-
ary reachable dynamical part and a memoryless part. Of
course one can essentially never expect this system to be
observable. This realization is indeed extremely inefficient.

A much more interesting realization is the minimal
realization for which the state-space X has as few elements
as possible, This realization is always reachable and
irreducible. It is logical to consider as the state at time ¢
the equivalence class of inputs up to time ¢ which yield
the same output after time {, no matter how these inputs
are continued after time ¢. In other words, the inputs
w & U and % € U will result in the same state at time ¢
if any v, v, € U with ni(s) = w(s) and v:(s) = us(s) for
s < tand w(s) = w(s) for s > ¢ yield outputs (Fu) () =
(Fuo)(f) for ¢ > s. One may then proceed to induce the
maps ¢ and r from there. This realization procedure works
well for stationary systems. The difficulty with time-
varying systems arises from the fact that usually the above
equivalence class idea will result in a state space which is
itself time varying. This difficulty is basically a conse-
quence of a deficiency in the axiomatic framework for

6 There is no real need to restrict attention to U*. The difficulty
with inputs which extend to — « is that is is usually difficult to
prove well-posedness of typical mathematical models. This problem
is completely avoided by considering U™ as the class of admissible
1nputs.
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dynamical systems in state-space form in that these
axioms do not allow for systems with a time-varying
state space. For most applications this inconsistency is of
no consequence, but in order to obtain in a simple manner
an abstract solution to the minimal realization problem
for time-varying systems, this problem proves to be a
stumbling block. This difficulty may be overcome by a
suitable modification of the axioms of dynamical systems.

The input-output dynamical system which will be
studied in this paper is described by a Volterra integral
equation. Let w(t, 7) be a (p X m) matrix defined and
continuous for { > 7, and consider the input-output
system defined with U = R™ and ¥ = R? as follows.
Consider v & Ut and let ¢ be such that u(f) = 0 for
t S ta. Then

0, ) fort < tp

A ¢ .
WO Z NV [wt u ar, toreza 19
4]
This system will in short be denoted by y = Wu.
The next section is concerned with the realization of a
system (LS) by means of a system (FDLS).

VIII. MiNIMAL REALIZATIONS OF LINEAR SYSTEMS

The question of state-space realizations of the system
(LS) has been actively investigated in recent times, par-
ticularly as a result of the work of Kalman, Youla, and
Silverman. The present section is devoted to one special
aspect of this problem, namely, the relationship of mini-
mality and controllability and observability. The full
implications and the algorithmic questions related to this
realization theory may be found in the paper by Silverman
in this issue.

It is clear that the input—-output system (LS) is realized
by the state-space model (FDLS) f and only if w(t, 7) =
CHo(t, 7)B(7) for all t > . Furthermore the system (LS)
has a finite-dimensional linear realization (FDLS) if and
only if there exist continuous matrices ¢ and H such that
w(t, ) = HE)G(r) for t > 7.

Definition 9: Assume that the state-space model (FDLS)
is a realization of the input—output system (LS). Then it is
said to be a minimal realization of (IS) if every other
realization of the type (FDLS) has a state space of greater
or equal dimension.

It is important to note that minimality of the realization
does not preclude the existence of nonlinear state-space
realizations with a lower dimensional state space. In fact,
such lower dimensional (indeed, one-dimensional) nonlinear
realizations will always exist. It suffices, therefore, to
consider space-filling curves which map RE” one—one and
onto B. In order to ensure that every finite-dimensional
realization requires a state space of a dimension at least
that of the minimal (linear) realization, one has to require
some smoothness on the maps ¢ and 7.

One may expect from the discussion in Section VIII that
the problem of constructing 2 minimal realization will (at
least in principle) be simple for stationary systems, but
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will cause some difficulties for time-varying systems. We
will thus consider the stationary case first.

Theorem 9: The linear system (LS) is realizable by a
state-space model (SFDLS) if and only if: 1) the kernel
w(t, 7) is separable, i.e., there exist matrices H and G
such that H#)G(7) = w(i, 7) for ¢t > 7; and 2) w(t, ) =
w({t — 7, 0).

Proof: The “‘only if” part of the theorem is obvious.
To prove the “if”’ part we need to identify a triplet of
matrices 4, B, € such that Cet'B = w(t, 0) fort > 0.

We will first identify the state space. Let U_ be the
functions in AL restricted to (—«, 0] and let Y, be
the functions in Y restricted to [0, «). Consider now the
mapping from U_ to Y.. defined by

y(t) = fi)mw(t, Du(r)dr,  t>0

and denote this mapping by y,. = Wtu. Since w(t, r) =
H(®G(r), W+ may be viewed as the composition W+
= HG with G:U — R?and H:R?— 9, defined by Gu =
J2 G()u(r) dr and Hz = H(t)z, t > 0, where ¢ denotes
the number of rows of G (= the number of columns of H).
Consider now the quotient space X = ®(G)/91(H). This is
clearly a finite-dimensional (say n-dimensional) vector
space.

We will now identify the A matrix. To do this, observe
that the space X qualifies as a state space by viewing the
state at ¢ = T corresponding to the input » & U as the
element in R(G)/N(H) corresponding to uy € U, with
ur() = w(T + ) fort < 0. It is an easy matter to formalize
the linear maps ¢ and r associated with this choice of the
state space. Let ¢(¢)xo, ¢ > 0, be the zero-input response
resulting from 2(0) = x,. Then ¢(¢) is an (n X n) matrix
which satisfies ¢(0) = I and ¢(t)o(k) = ¢t + &) for
t, & 2 0. Thus ¢(t) = e’ for some matrix A.

The matrix C is then the linear mapping form R™ into
R? which takes xp into (0). To identify the B matrix,
notice that by properly redefining G and H we may assume
that H(t) = Ce* and 2, = f° .G(0)u(s) do. Then B =
G(0) satisfies w(t, 0) = H@GO) = Ce''B for t > 0,
which shows that w(t, o) = Ce*®~ "B for ¢ > o and that the
triplet {4, B, C} is indeed a realization. Notice that
this realization is in fact a minimal one.

Extensions and more details of the ideas invoked in the
proof of the above theorem may be found in [6] and in the
paper by Silverman in this issue.

The following theorem is an immediate consequence of
the proof of Theorem 9 and yields the desired relation-
ship between minimality and reachability—observability.

Theorem 10: A realization A, B, C is minimal if and
only if the system & = Az + Bu; y = Cz is observable
and has a reachable state space. Moreover a minimal
realization always exists and any two minimal realizations
Ay, By, €7 and A, B,, Cs are related via the similarity
transformation A; = TAT!, By, = TBy, (o, = C/T!
for some invertible matrix 7.
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Proof: Let G(o) = ¢ B, ¢ < 0, H{) = Ce4,
t 2> 0, and let the operators G and H be as defined in the
proof of Theorem 9. Since minimality is equivalent to
R(G) = R" (= reachability) and N(H) = {0} (= ob-
servability) the first part of the theorem follows, Existence
of & minimal realization follows from the proof of Theorem
9 and the similarity transformation follows since in every
minimal realization the state space must be isomorphic
(in the vector space sense) to the quotient space R(G)/
F(H).

The realization theory for stationary linear systems
thus presents in principle no difficulties. The time-varying
case is much more involved, however. Indeed assume that
w(i, 7) = H({)G(7) [which is a necessary condition for a
realization (FDLS) to exist], and let G and H7 be defined
as Gpu = fZ .G(c)u(o) do and Hyz = H(l)z for ¢ > T.
It is then natural to consider Xy = R(Gr)/N(H;) as the
state space at time T and to define the maps ¢ and 7
from there. There is, however, one basic difficulty with
this idea, namely X is in general an explicit function of
T, and in order to account for this it becomes necessary to
start from a new axiomatic framework for treating
dynamical systems. A second difficulty is that even if
X is always a subspace of, say, B", it may not be possible
to construct an n-dimensional realization exhibiting the
required smoothness for the parameters A(¢), B(t), C(z).
This situation is illustrated by trying to obtain a one-
dimensional realization of the system # = by, % =
ba(Du, y = aa®)m + co(zy with 5()) = () = 0fort >
0 and &(f) = () = 0 for ¢ < 0. Thus, although reach-
ability and observability at some time are certainly
sufficient conditions for minimality, they are not neces-
sary.

There is, however, another (somewhat artificial) pro-
cedure for achieving a certain amount of structural
invariance for time-varying systems. This procedure is
based on considering anti-causal systems in association
with the causal systems considered so far. This requires
the state transition map to possess the group property
and the input—output maps to be defined as a causal map
when time runs in the usual forward direction and an
anticausal map when time runs backward. The state of a
state-space realization of such an input-output dynamical
system is this alternatively required to summarize past
and future inputs. This then yields the required invariance
properties.

This device has been successfully applied to dynamical
systems described by

[, Dute) ar

for t > ¢ when ¢ runs forward and for ¢ < ¢, when ¢ runs
backwards. Finite-dimensional realizations are then re-
quired to satisfy the equality w(t, 7) = C(@®)e¢(t, 7)B(r)
for allt, + € R. In this context one may in fact prove that a
realization is minimal if and only if the resulting system is
reachable and observable at some time. These notions are
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of course to be extended to dynamical systems which
possess the group property. For details see Weiss and
Kalman [23], Youla [24], and Desoer and Varaiya [25].

IX. StaBInLITY

Another interesting application of controllability and
observability in connection with deducing internal from
external properties of systems and vice versa is the equiv-
alence of internal stability and input-output stability.
This is the subject of the following theorem. First, how-
ever, we will define input—output stability.

Definition 10: Let @ be a dynamical system in input—
output form and assume that Go = 0. Then it is said to
be’ Linput-oulput stable, 1 < p < o, if there exists a
constant K < o such that all v € U, v € L,, yield
Gu € L, and ||Gul|z, < K|ju|lz,

It may be shown [26, sec. 2] that for systems of the
class (FDLS) and for any system of the class (IS) when
p = o [27] the existence of the K follows from the fact
that ¥y & L, whenever u & L,, i.e, if G is a map from
L, 1 A into L, then it is automatically bounded. It is
interesting to note [18] that L,-stability, 1 < p < o, is
equivalent to the existence of a constant K such that for
all ¥ & A the inequality

R (T

is satisfied.

Theorem 11: Assume that the system (FDLS) is uni-
formly reachable and uniformly observable. Then ex-
ponential stability and L,-input-output stability, 1 <
p < ®, are equivalent.

Proof: If the system is exponentially stable, then
there exists M, a > 0, such that |jw(t, 7)|| < Me =¢"7
for ¢ > 7 (recall that we assumed B(f) and C(¢f) to be
bounded). Hence [ly()| < M Sfie ** ”|'u(s)|| dr. The
convolution of the I, -function Hu(t)“ against the Lj-
kernel e, ¢ > 0, maps L, into itself by Minkowski’s
inequality and defines a bounded linear transformation
with bound by M fge * di = M/a. This establishes
that exponential stability implies L,-stability. The
converse will now be shown in the case p = 2. The method
of proof works equally well when 1 < p < = and the
case p = = is well documented in the literature (see e.g.,
[8] and [10, sec. 30, theorem 3]. Assume that the system
(LS) is Le-input—-output stable and that (FDLS) is a
uniformly reachable and uniformly observable realization.
Consider the real-valued function defined on B® X R
by Vizo, to) = Sully(t, 6, to, @, 0), 0)]]2 dt. It will now
first be shown that V is well defined. Let T be as in the
definition of uniform reachability and uniform observ-
ability, and let % be the control which minimizes fi_ 7
“u(t)!!2 dt subject to £ = A(Y)z + B(®w, y = C(Hz, and
z(to — T) = 0, 2(ts) = zo. By L,input-output stability

7 The space L, is the collection of those (U- or Y-valued) functions
for which jlullz, = (fl_:”u(t)ﬂp dt) Ur < o whenl < p < « and
with ||lu]| z, = essential super|lu(t)] < « whenp = .
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there exists a constant K < o such that f7_p
ll(t, B2, to, 20, 0), 0)||2 dt < K ST_¢|[u@®|)? dt. Thus V(z, )
is well defined and by uniform reachability and uniform
observability there exist constants € > 0 and B such
that ¢|z|2 < V(z, ) < RB|[z|]>. By uniform observability
Vg, t) — V(g(te + T, to @, 0), & + T) = fot7
lly(t, d(t, to, 20, 0), O)||2 d¢ > e]|z||2. Since Vigp(ts + T, to, o,
0), 5+ T) < (1 — ¢/R)V(xy, ), exponential stability is
established as claimed.

Note that the above theorem states as a side result the
equivalence of L, input—-output stability forall 1 < p < =
for systems (LS) with a uniformly controllable and uni-
formly observable state-space realization. Theorems along
the line of Theorem 10 for nonlinear systems may be found
in [10].

X. CONCLUSIONS

In this paper we have attempted to give a broad-based
review of what we consider the most important applications
of the controllability—observability circle of ideas. We
have tried to emphasize concepts, but also discussed some
specific results in the context of finite-dimensional linear
systems. One of the things which may have come out of
this treatment is that (for linear systems) one should
properly be discussing four concepts, namely, reachability
and controllability (input <> state) on one hand and
reconstructibility and observability (state < output) on
the other. Problems of control face the question of control-
lability, problems of state reconstruction and filtering
face the question of reconstructibility and problems of
output-feedback control will face both the questions of
reconstructibility and controilability. On the other hand,
questions related to deducing internal properties from
input-output properties, such as minimality and stability
of the state-space realization, face the questions of reach-
ability and observability. (The question then is: What did
the input do and what will the output be?) By considering
dynamical systems defined backwards in time, one may
also drag the questions of controllability and reconstruecti-
bility in the minimality question in a somewhat artificial
way.

Many problems in this area remain to be investigated.
First among these is to find conditions and structure
theorems for classes of nonlinear systems and systems
defined via algebraic structures which do not involve
the usual vector space assumptions. Some results in
this vein are presented in [30).
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