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Abstract. We consider a family of estimation problems not admitting
conventional analysis because of singularity and measurability issues. We define
posterior distributions for the family by a variational technique analogous to
that used to define Gibbs measures in statistical mechanics. The family of
estimation problems, which arise in the asymptotic analysis of error-control
codes, is parametrized by a code rate, R ∈ (0,∞); this is shown to be analogous
to the absolute temperature of statistical mechanics. The family undergoes an
(Ehrenfest) first-order phase transition at a critical code rate C (the channel
capacity), where there is a convex set of posterior distributions. At all other code
rates, there is only one posterior distribution; if R < C, this is the Dirac measure
located at the source sequence, whereas if R > C it has infinite support. In a result
reflecting the Dobrushin construction, we show that these posterior distributions
are asymptotically consistent with those of families of finite-sequence error-control
codes.
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1. Introduction

This paper uses the techniques of statistical mechanics to define posterior distributions
in a family of estimation problems that do not admit conventional analysis because
of singularity and measurability issues. The estimation problems arise in the theory of
reliable communication, where a random binary sequence (the source sequence) has to be
communicated over a binary symmetric channel. The latter inverts any bit sent over it with
some fixed probability q ∈ (0, 1/2), and so reliable communication cannot be achieved by
the direct transmission of the source sequence but requires the use of a code. This maps
the source sequence to a binary code sequence, which is transmitted over the channel.
The code sequence typically includes redundancy, which allows the receiver to correct
the more commonly occurring transmission errors introduced by the channel. A (rather
crude) example of such a scheme is one in which each source bit is sent 2N + 1 times, and
a majority decision rule is used at the receiver.
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In his seminal paper [1], Shannon proposed the use of random block codes, in which
K-bit source sequences are mapped to N -bit code sequences for transmission over the
channel. By considering families of such systems, parametrized by K, with N = [R−1K] for
some fixed code rate R ∈ (0,∞), he showed that reliable communication can be achieved at
all code rates less than a well-defined channel capacity, C, but not at rates exceeding C. In
this context, ‘reliable communication’ means that the probability that the receiver makes
source-sequence decoding errors decreases exponentially with K. The channel capacity is
the value of the mutual information between the input and output bits in one use of the
channel, maximized over the distribution of the input bit (see, for example, [2] or [3]).
In the case of a binary symmetric channel the maximizing distribution is uniform and
C = 1− b(q), where b:[0, 1] → [0, 1] is the binary entropy function

b(θ) =

{
−θ log θ − (1− θ) log(1− θ) if θ ∈ (0, 1)

0 otherwise.
(1)

Convention on logarithms. The base of logarithms throughout this paper is 2;
information quantities are, therefore, measured in bits. The notation ‘exp’ is used for
the inverse log, i.e. exp(x) := 2x.

At the receiver, the optimal decoding strategy is to choose the K-bit sequence with
the maximum a posteriori probability of being the source sequence, based on the latter’s
prior distribution, and observation of the N -bit channel output sequence. In this sense,
decoding is a problem in Bayesian estimation.

This paper is the second part of a two-part study of this communication problem
from the perspective of variational Bayesian methods. The variational interpretation of
Bayes’ formula is developed in a very general setting in [4], and reviewed in part I [5]. The
key result, in the present context, characterizes the posterior distribution as the unique
minimizer of a quantity we call the apparent information of a probability measure P̃ . This
comprises two parts: the relative entropy of P̃ to the prior, which measures its ‘information
gain’ over the latter, and the average over P̃ of the log-likelihood function associated with
the observation.

Part I shows that Shannon’s results are connected with secondary Bayesian problems,
in which the causes of decoding errors (errors in the communication channel and poor
outcomes of the random code) are estimated on the basis of observations of the decoding
error event or its complement. This gives insight into the dominant cause of errors at
different code rates. Part I also finds (large block) scaling limits for the variational
information quantities of these secondary estimation problems, as well as those of the
primary problem of estimating the source sequence. These scaling limits exhibit critical
behaviour at particular code rates, including the channel capacity. Shannon’s ‘reliability
function’ is recovered as the scaling limit of the apparent information of one of the
secondary estimation problems, and the scaling limit of the apparent information in the
primary problem illustrates that the channel capacity is associated with an ‘information
saturation’ effect.

In part II, we study a family of infinite-sequence estimation problems (parametrized by
the code rate); these reflect the important features of Shannon’s result, and provide insight
into the fundamental connection between error-control coding and statistical mechanics.
They are based on an infinite random code whose outcomes are extremely irregular maps
between sequence spaces. This irregularity creates significant problems of analysis, since
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the code sequences it produces do not have well-defined distributions. This is an essential
feature of any good (infinite) code; it is the infinite-sequence analogue of the property that
makes random block codes so effective in error-control coding. The information from each
source bit is, in some sense, ‘spread’ across the entire code sequence. We define posterior
distributions for our infinite-sequence estimation problems in a construction that mirrors
the variational principle of statistical mechanics. Posterior distributions are analogous to
Gibbs measures, in that they minimize specific apparent information in the same way that
Gibbs measures minimize specific free energy. The prior and posterior distributions are
typically mutually singular.

We explore this analogy with statistical mechanics, showing that the code rate, R,
plays the role of absolute temperature in the estimation problems, and that the latter
exhibit (in a very precise sense) an (Ehrenfest) first-order phase transition at the channel
capacity. The variational definition gives rise to unique posterior distributions at all code
rates except the channel capacity, where any convex combination of two extremes is a
posterior distribution. At any code rate below capacity, the posterior distribution is a
Dirac measure located at the source sequence. The posterior distributions at code rates
above capacity clarify the communication possibilities in that regime.

1.1. Lattice systems in statistical mechanics

We review here some of the key ideas from the random field theory of statistical mechanics,
since they are the basis of our approach to the infinite-sequence estimation problems
discussed above. Readers interested in the full picture are referred to the book by
Georgii [6]. We restrict our review to the Ising model, i.e. a random field with index
set Zd, that takes the values ±1 only. The configuration space of this random field is
the set of all possible outcomes: Ω := {−1,+1}Zd . Rather than attempting to study the
individual microstates (outcomes) of such a field, we are often interested in its macroscopic
behaviour ‘at equilibrium’. This is associated with particular probability measures on the
configuration space called Gibbs measures. The central ansatz of this approach, which may
be taken as an axiom in the mathematical theory, is that Gibbs measures are minimizers
of free energy.

Consider, first, a random field associated with a finite lattice, having configuration
space ΩA = {−1,+1}Ad , where A is a finite, contiguous set of integers. The internal energy
of such a system is defined by a function E : ΩA → R+, which assigns an energy to each
microstate. The internal energy of a macrostate Π̃ (a probability measure on ΩA) is the
average of E over Π̃:

〈E, Π̃〉 :=

∫
ΩA

E(ω)Π̃ (dω),

and its entropy is the negative of its relative entropy with respect to a product (reference)

measure λ⊗A
d
:

S(Π̃) := −h(Π̃|λ⊗Ad),
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where h is the relative entropy (Kullback–Leibler divergence) of two measures:

h(P |Q) :=


∫

ΩA

log
dP

dQ
(ω)P (dω) if P � Q and the integral exists

+∞ otherwise.
(2)

The free energy of the macrostate Π̃ is F (Π̃) := T−1〈E, Π̃〉−S(Π̃), where T is the absolute
temperature. A straightforward calculation shows that the unique minimizer of F at
temperature T is the following Gibbs measure:

Π(B) =

∫
B exp(−E(ω)/T )λ⊗A

d
(dω)∫

ΩA
exp(−E(ω)/T )λ⊗Ad (dω)

for B ⊆ ΩA. (3)

Remark 1.1. The connection between Bayesian estimation and statistical mechanics can
be seen in its simplest form in the similarity between (3) and Bayes’ formula. If λ⊗A

d
is

a probability measure then it can be regarded as the prior distribution in a Bayesian
problem with likelihood function exp(−E/T ) and posterior distribution Π.

This approach cannot be applied directly to infinite lattice systems because of
singularity issues. The standard solution to these, pioneered by Dobrushin, Lanford and
Ruelle, uses a collection of finite-domain energy functions called a specification. For each
subset Λ ⊆ Zd, let σΛ : Ω → {−1,+1}Λ be the co-ordinate map. To each finite subset
Λ ⊂ Zd, the specification assigns an energy function EΛ : Ω → R+; this depends on
both the internal variables, σΛ(ω), and the external variables, σZd\Λ(ω). For any fixed
value of the external variables, EΛ expresses the internal energy of the finite subsystem
(with configuration space {−1,+1}Λ) as a function of the internal variables. The external
variables are considered to represent part of the environment of the finite subsystem. For
any fixed environment, a Gibbs measure for the finite subsystem can be defined as in (3).
Repeating this procedure for all finite Λ ⊂ Zd, we obtain a collection of stochastic kernels
ΠΛ : Ω → P(F), where F is an appropriate σ-algebra of subsets of Ω (for example,
the product σ-algebra). Clearly, in order for this to be useful, the stochastic kernels
must satisfy some consistency properties. One way of obtaining specifications with such
properties is by defining the energy functions EΛ in terms of an interaction potential (see
chapter 2 of [6]).

Remark 1.2. It is convenient in this construction to define the stochastic kernels as maps
from Ω to P(F), rather than as maps from {−1,+1}Zd\Λ to the set of probability measures
on {−1,+1}Λ; for any B ⊆ {−1,+1}Λ, ΠΛ(ω)(σ−1

Λ (B)) is then the equivalent of Π(B) of
(3).

A Gibbs measure for the infinite system is a probability measure Π ∈ P(F) that is
consistent with the specification in the sense that, for any finite Λ ⊂ Zd and any B ∈ F ,∫

Ω

ΠΛ(ω)(B)Π (dω) = Π(B). (4)

A Gibbs measure is thus a probability measure for which the stochastic kernels ΠΛ are
regular conditional probabilities.

This construction is closely related to the Kolmogorov extension theorem for product
spaces, the essential difference being that the finite-dimensional marginal distributions
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of Kolmogorov’s result are replaced by finite-dimensional conditional distributions in
the Dobrushin setting. An important consequence of this distinction is the possibility
of non-uniqueness of Gibbs measures. In many examples, there are temperatures at which
multiple Gibbs measures exist. One of the great successes of the random field theory is
its ability to predict and model multiple phases of statistical mechanical systems in this
way.

A feature of specifications in many applications is shift invariance. A shift operator
θK : Ω → Ω, with multi-index K ∈ Zd, is defined as follows:

θK(ω)I = ωI+K for all I ∈ Zd.

A shift invariant specification is one for which

EΛ+K(θK(ω)) = EΛ(ω) for all ω ∈ Ω, K ∈ Zd and all finite Λ ⊂ Zd.

If a specification is shift invariant then it is natural, when searching for Gibbs measures, to
restrict attention to measures sharing this property; although ‘symmetry breaking’ Gibbs
measures are sometimes also of interest.

The variational principle returns to the notion of Gibbs measures as minimizers of
free energy, and involves a quantity called the specific free energy of a shift invariant
measure Π ∈ P(F). This is defined in terms of large Λ limits of the free energies of the
finite systems of a shift invariant specification, normalized by the cardinality of the sets
Λ. Under quite relaxed conditions, a shift invariant measure Π is a Gibbs measure, as
defined by the consistency property (4), if and only if it minimizes the specific free energy
(see chapter 15 in [6]).

1.2. Overview of sections 2–5

The arrangement of material in the remainder of the paper is as follows. Section 2
introduces the infinite-sequence estimation problems we address, and shows that they do
not admit conventional analysis because of the irregularity of the code. It investigates the
use of posterior distributions for finite-sequence sub-problems as potential ‘specifications’
for the infinite-sequence problems (in the sense of section 1.1), and highlights a number
of difficulties with this approach. At code rates greater than the channel capacity,
the observation-conditional distributions of the finite-sequence sub-problems behave
erratically as the sequence length increases; their information gains over the prior manifest
themselves in ever changing dependences between the individual source bits. To overcome
this problem we introduce, in section 3, a family of one-to-one transformations of the
estimand space, thereby introducing an auxiliary estimand sequence V . The finite-
sequence estimation problems associated with V have the necessary regularity to be used
in the construction of posterior distributions by the methods of statistical mechanics.

Posterior distributions for V are defined in section 4 to be minimizers of a specific
apparent information. This definition leads to unique posterior distributions at all code
rates except the channel capacity. The nature of posterior distributions, and their
connections with those of finite block coding systems, are investigated.

Section 5 develops an alternative definition of posterior distributions based on an
asymptotic version of the consistency property (4). The ‘asymptotics’ here involve weak
convergence. We show that this definition is fundamentally less satisfactory than the
variational definition, since it gives rise to multiple posterior distributions at all code
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rates less than capacity. This is because it fails to take proper account of information on
the ‘tail’ of V .

1.3. Related work

The use of random block codes, as pioneered by Shannon, is a simple way of defining a
family of codes (indexed by source-sequence length) with some common defining feature
when studying asymptotics. As a result of the strong law of large numbers, random (K,N)
block codes have good performance in the limit of large K. However, they require very
complex decoders; even the specification of the code requires tables that are exponentially
large in K. Much of the research on coding for noisy channels carried out since 1948
has been on the development of codes that admit simpler decoders, and a major role
in this quest has been played by linear codes. Until 1993 the practice of error-control
coding was dominated by (linear) convolutional codes exploiting finite-state machines in
the encoders, and dynamic programming in the decoders [7]. However, in the last 18 years,
the important classes of turbo codes and low density parity check (LDPC) codes have
dominated the research literature since they admit simple iterative decoders, and yet are
capable of achieving reliable communication at rates close to capacity [3].

In 1989, Sourlas [8] developed a statistical mechanical interpretation of a type of
LDPC error-control code. Since then there has been much research effort to bring the
solution techniques for the so-called ‘spin glasses’ of statistical mechanics to bear on coding
theory [9]–[13], [3]. Many of these references concern LDPC codes, which correspond to
spin glasses with ‘dilute’ connectivity—the crucial property leading to low complexity
decoding. In this methodology, the spin glass system actually corresponds to the MAP bit
decoder of the error-control system, i.e. the decoder that maximizes the posterior marginal
distributions of the individual bits. The MAP sequence decoder is recovered in [8] by
the introduction of a new positive ‘hyperparameter’ β, which alters the interdependency
between the individual bits in the posterior distribution. When β = 1 no change is made to
this dependency, and the spin glass system corresponds to the MAP bit decoder; however,
in the limit of large β, the spin glass system corresponds to the MAP sequence decoder.
The interpretation of β as an ‘inverse temperature’ parameter leads to the terminology
‘high temperature’ decoding for any decoder with a modest value of β. ‘Raising the
temperature of the decoder’ above that of the MAP sequence decoder (absolute zero)
reduces long range dependences in the associated posterior sequence distribution, and so
helps to reduce decoder complexity (at the cost of accuracy).

The results of the present paper concern the sequence posterior only, and so are
somewhat different from those in [9], [11]–[13], [8]. They do not involve the hyperparameter
β, but show rather that the code rate R plays the role of absolute temperature in the
statistical mechanical interpretation of MAP sequence decoding.

1.4. Notation

We shall make use of the following notation in the remainder of the paper.

• (Ω,F ,P) is a probability space.

• N is the set of natural numbers.

• For any set Λ, |Λ| is its cardinality.

doi:10.1088/1742-5468/2012/11/P11008 7
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• X is the linear space of infinite sequences of bits (xk ∈ {0, 1}; k = 1, 2, . . .) over the
Galois field ({0, 1}, ⊕, · ) and, for each K ∈ N, XK is the linear space of K-bit
sequences (xk ∈ {0, 1}; k = 1, 2, . . . , K).

• 0 represents the zero element of X (or XK), and 1 represents the ‘all ones’ sequence.

• ‖ · ‖ is the ‘Hamming norm’ on XK :

‖w‖ = ‖w‖K :=
K∑
k=1

wk.

• For any K ∈ N, TK : X → XK and T̄K : X → X are the maps:

TKx := (x1, x2, . . . , xK) and T̄Kx := (xK+1, xK+2, . . .) .

In the context of a particular value of K, the sequences TKx and T̄Kx will be referred
to as the internal and external sequences, respectively.

• For any K ∈ N, XK is the σ-algebra of subsets of X generated by the map TK .

• X is the product σ-algebra of subsets of X, i.e. the smallest σ-algebra containing XK
for all K ∈ N.

• T is the tail σ-algebra on X:

T :=
⋂
K∈N

T̄−1
K (X ).

• For any σ-algebra B, P(B) is the set of probability measures on B.

• For each θ ∈ [0, 1], mθ is the Bernoulli measure on {0, 1}:

mθ({0}) = 1− θ and mθ({1}) = θ,

and Mθ is the product measure m⊗N
θ on X . Since it occurs so frequently, M1/2 will be

abbreviated to M .

• For each K ∈ N, µK : X → P(X ) is defined by:

µK(x)(B) := 2−K |CK,x ∩B|.

µK(x) is the uniform probability measure on CK,x, where CK,x is the set of sequences
that match x externally:

CK,x := {x̃ ∈ X : T̄K x̃ = T̄Kx}.

• For a ∈ R, a+ := max{0, a}. For a ∈ R+, [a] := max{n ∈ N ∪ {0} : n ≤ a}.

2. The infinite-sequence estimation problems

Let Z := {z : X → X} be the set of maps from X to X (no matter how irregular), and let
Z be the product σ-algebra on Z, i.e. that generated by the finite-dimensional sets

Ax,B := {z ∈ Z : z(x) ∈ B} x ∈ X, B ∈ X . (5)

Let Q be the product measure M⊗N, and e : X×Z → X the evaluation map: e(x, z) = z(x).
Let U : Ω → X, Ψ : Ω → X and Γ : Ω → Z be independent random variables having
distributions M , Mq and Q, respectively. In analogy with Shannon’s (K,N) random block
coding schemes discussed in section 1, U can be thought of as an infinite source sequence
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to be communicated across a binary symmetric channel having error sequence Ψ, and Γ
can be thought of as an infinite random code. The channel input and output sequences
are then

X := e(U,Γ) and Y := X ⊕Ψ.

Consider the problem of estimating U on the basis of its prior distribution, M , observation
of the channel output sequence Y , and knowledge of Γ.

Proposition 2.1. (i) The map e is not M ⊗Q-measurable.

(ii) M ⊗ Q can be extended to a measure η ∈ P((X × Z) ∨ e−1(X )) in such a way that,
for all A ∈ X × Z and B ∈ X ,

η(A ∩ e−1(B)) = ν(A×B), (6)

where ν ∈ P(X × Z × X ) is any probability measure having the marginal

ν(A× X) = M ⊗Q(A) for all A ∈ X × Z. (7)

Proof. See section A.1.

Part (i) of this proposition shows that X is not assigned a distribution through its
dependence on U and Γ. Part (ii) goes further to state that, provided X−1(X ) ⊂ F , we
can choose P such that the joint distribution of (U,Γ, X) is any distribution having (U,Γ)-
marginal M ⊗ Q; in particular we can choose P so that X is independent of (U,Γ). For
this reason it is impossible to carry out direct Bayesian inference between Y and U . This
is not a failing of the infinite coding system; it is a natural consequence of the irregularity
of the code, which is itself an essential feature of any good (infinite) error-control code.

Shannon’s finite random block coding schemes can be recovered from this setup as
follows. Let K,N ∈ N, and consider the (K,N) block coding system, in which the receiver
must estimate the finite source sequence TKU on the basis of the uniform prior m⊗K1/2 , the

finite channel output sequence TNY , the code Γ, and knowledge of the external source
sequence T̄KU . Since the transmitter and receiver both have access to T̄KU , they are
effectively using the finite random code (TNΓ(ω)(u), u ∈ CK,U(ω)) to communicate the
finite source sequence TKU .

When considering a family of such problems indexed by K and N , it is convenient
to define the prior and posterior distributions on the common σ-algebra X rather than
on sets of values of the internal source sequence TKU (see remark 1.2). The estimation
problem associated with the (K,N) block coding system then becomes that of estimating
the infinite sequence U on the basis of the prior µK(U), the observation TNY , and the
code Γ. The receiver’s knowledge of the external sequence, T̄KU , is then contained in
the prior. The posterior distribution is ΠK,N(ω, U(ω)), where ΠK,N : Ω × X → P(X ) is
defined by Bayes’ formula:

ΠK,N(ω, u)(B) :=

∫
B exp(−HN(ω, x))µK(u) (dx)∫
X exp(−HN(ω, x))µK(u) (dx)

,

HN(ω, x) := −ρN(ω, x) log q − (N − ρN(ω, x)) log(1− q),
ρN(ω, x) := ‖TNY (ω)⊕ TNΓ(ω)(x)‖ .

(8)

Remark 2.1. (i) Although HN(ω, ·) may not be X -measurable, it is µK(u)-measurable
since the support of µK(u) is the finite set CK,u. (The integrals in (8) are finite sums.)
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(ii) µK(u) is a regular (T̄KU = T̄Ku)-conditional distribution for U . However, we cannot
claim that ΠK,N(ω, u) is a regular (T̄KU = T̄Ku, TNY )-conditional distribution since
HN is not F ×X -measurable. In what follows, we shall call it the (K,N, u) posterior
distribution for U .

(iii) ΠK,N differs from its counterpart in part I in that it depends on the external sequence
T̄Ku.

For any code rate R ∈ (0,∞), let GR be the collection of rate R index pairs :

GR :=
{

(K,N) ∈ N2 : N = [R−1K]
}
. (9)

Our goal is to construct rate R posterior distributions for the infinite sequence U by
treating the family of (K,N, u) estimation problems

SR := {(µK(u), HN), (K,N) ∈ GR, u ∈ X} , (10)

as the specification of a random field in the manner described in section 1.1. However,
there are several important differences between SR and the specifications of statistical
mechanics.

(1) Here, the positions of bits in the sequence U have no bearing on the interactions
between them. The topology of the ‘lattice of source bits’ is determined by Γ, and this
has a distribution that is invariant under arbitrary permutations of source bits.

(2) ‘Consistency’ methods are less attractive here for a number of reasons. For example,
(4) has to be weakened to an asymptotic property.

(3) The (K,N) block coding systems are subject to random environments that change
as K and N increase. The most significant changes come from the random code
Γ. Sequences u 6= U(ω) having (by chance outcome of Γ) unusually high posterior
probabilities for one instance of K do not necessarily retain this property as K
increases; increasing K by just 1 doubles that part of Γ entering the environment
of the (K,N) system.

3. The auxiliary system

The random environment discussed in point 3 above precludes well-defined posterior
distributions for the infinite sequence U when R exceeds the channel capacity. We
overcome this problem by introducing a family of source-sequence transformations
(indexed by K and N) that permute the estimand space according to the values of the
posterior probabilities of the individual sequences. The resulting transformed posterior
distributions have the necessary regularity to enable the study of asymptotics.

For each K,N ∈ N, let FK,N : Ω × X → X be a measurable map with the following
properties:

(F1) for each ω, FK,N(ω, ·) is a bijection;

(F2) for each ω, FK,N(ω, U(ω)) = 1;

(F3) for each (ω, u), T̄KFK,N(ω, u) = T̄K(u⊕ U(ω)⊕ 1);

(F4) for each (ω, u, ũ) with u, ũ 6= U(ω) and T̄Ku = T̄K ũ

HN(ω, u) < HN(ω, ũ)⇒ ‖TKFK,N(ω, u)‖ ≤ ‖TKFK,N(ω, ũ)‖.
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A map FK,N with properties (F1–F4) can be constructed by identifying points in the
domain and range with each other as follows: (i) each subset of the domain of FK,N of
type CK,u is identified with the subset CK,u⊕U(ω)⊕1 of the range; (ii) the point U(ω) in the
domain is identified with the point 1 in the range; (iii) the remaining elements, ũ ∈ CK,u, of
each subset of the domain are arranged in ascending order of HN(ω, ũ), and the remaining
elements, v ∈ CK,u⊕U(ω)⊕1, of each subset of the range are arranged in ascending order of
‖TKv‖; (iv) domain and range points with the same positions in the orderings of CK,u and
CK,u⊕U(ω)⊕1 are identified with each other.

Let ΠF
K,N : Ω× X→ P(X ) be defined by

ΠF
K,N(ω, v)(B) = ΠK,N(ω, FK,N(ω, ·)−1(v))(FK,N(ω, ·)−1(B)). (11)

If v = FK,N(ω, u) then ΠF
K,N(ω, v) is the (K,N, u) posterior distribution ΠK,N(ω, u)

‘pushed forward’ through the map FK,N(ω, ·); it has the following properties:

• ΠF
K,N(ω, v)(CK,v) = 1;

• ΠF
K,N(ω,1)({1}) = ΠK,N(ω, U(ω))({U(ω)});

• if x, x̃ ∈ CK,v \ {1} then

‖TKx‖ > ‖TK x̃‖ ⇒ ΠF
K,N(ω, v)({x}) ≤ ΠF

K,N(ω, v)({x̃}).

ΠF
K,N(ω, v) is thus a very particular type of probability measure on CK,v. With the

exception of the sequence 1, it is biased towards sequences x ∈ CK,v for which ‖TKx‖ is
small. In what follows, we show that (ΠF

K,N(ω, v), (K,N) ∈ GR) admits asymptotic analysis
in a way that (ΠK,N(ω, u), (K,N) ∈ GR) does not. The (K,N, u) posterior distributions
ΠK,N(ω, u) can be obtained by ‘pulling back’ ΠF

K,N(ω, v) through the maps FK,N , and so

their properties for large (K,N) ∈ GR can be found from the asymptotics of ΠF
K,N . In the

design of the maps FK,N , we have been careful to separate the actual source sequence U(ω)
from other sequences with large posterior probabilities, by mapping it to the sequence 1.
This ensures that the value of the decoding error probability is not lost in the limiting
process.

In order to study the asymptotics of the distributions ΠF
K,N , we associate them with

the (K,N, v) posterior distributions of an ‘auxiliary’ error-control system. Let (Ω̃, F̃ , P̃)
be a probability space on which are defined an auxiliary source sequence, V : Ω̃ → X,
and a family of auxiliary channel error sequences, (ΦK,N : Ω̃ → X, K,N ∈ N). These have
joint distribution M⊗M⊗(N×N)

q , i.e. they are independent, V having the same distribution
as U , and the ΦK,N having the same distribution as Ψ. For each (K,N), V is encoded
for transmission across a binary symmetric channel with error sequence ΦK,N by means
of the fixed (non ω̃-random) code

ΓωK,N := Γ(ω)(FK,N(ω, ·)−1),

where FK,N satisfies (F1–F4), and ω ∈ Ω is fixed. The corresponding (auxiliary) channel
output sequence is

Y ω
K,N := ΓωK,N(V )⊕ ΦK,N .

As with the infinite system of section 2, we cannot use conventional methods to estimate
the source sequence V from the output sequences of the various auxiliary channels, because
of measurability issues. However, we can obtain finite (K,N) block coding systems from
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the auxiliary setup, just as we did in section 2. In the (K,N) system, the (auxiliary)
receiver must estimate the source sequence V on the basis of the prior µK(V ), the
finite channel output sequence TNY

ω
K,N and the code ΓωK,N . The posterior distribution

is Πω
K,N(ω̃, V (ω̃)), where Πω

K,N : Ω̃× X → P(X ) is defined, as in (8), by Bayes’ formula:

Πω
K,N(ω̃, v)(B) :=

∫
B exp(−Hω

K,N(ω̃, x))µK(v) (dx)∫
X exp(−Hω

K,N(ω̃, x))µK(v) (dx)
,

Hω
K,N(ω̃, x) := −ρωK,N(ω̃, x) log q − (N − ρωK,N(ω̃, x)) log(1− q),
ρωK,N(ω̃, x) :=

∥∥TNY ω
K,N(ω̃)⊕ TNΓωK,N(x)

∥∥ .
(12)

Πω
K,N(ω̃, v) is a ‘(K,N, v) posterior distribution’ for V in the same way that ΠK,N(ω, u)

is a (K,N, u) posterior distribution for U . (See remark 2.1(ii).) As in section 2, we would
like to construct rate R posterior distributions for V by treating the family

SωR :=
{

(µK(v), Hω
K,N), (K,N) ∈ GR, v ∈ X

}
as the specification of a random field. In general this not possible, for the reasons given
at the end of section 2. However, such a construction is possible in the special case that
the auxiliary channel output sequences take the following specific values:

TNY
ω
K,N(ω̃) = TNY (ω) for all K,N ∈ N. (13)

In this case

ρωK,N(ω̃, x) = ρN(ω, FK,N(ω, ·)−1(x)) =: ρFK,N(ω, x),

Hω
K,N(ω̃, x) = HN(ω, FK,N(ω, ·)−1(x)) =: HF

K,N(ω, x),

Πω
K,N(ω̃, v) = ΠF

K,N(ω, v),

(14)

for all (K,N), where ΠF
K,N is as defined in (11). The (K,N, v) posterior distributions of

the auxiliary system then coincide with the transformed (K,N, u) posterior distributions
of the original system, and these admit asymptotic analysis.

From this point on, we shall be interested in the auxiliary system only in the special
case that the channel output sequences satisfy (13). In view of (14) we shall use the
notation HF

K,N(ω, v) and ΠF
K,N(ω, v) for the (K,N, v) log-likelihood function and posterior

distribution of the auxiliary system, rather than the more cumbersome Hω
K,N(ω̃, v) and

Πω
K,N(ω̃, v) (with which it would be necessary to remember that ω̃ satisfies (13)). This

choice of notation also makes the connections with the original system of section 2 more
transparent.

We finish this section with a proposition that characterizes the asymptotic behaviour
of the maps (FK,N , (K,N) ∈ GR). Let τ : X → [0, 1] be defined by

τ(v) := 1G(v) lim
K
K−1‖TKv‖, (15)

where G is the set on which the limit exists. It is a standard result that G belongs to the
tail σ-algebra T , and that τ is T -measurable.

Proposition 3.1. For any R ∈ (0,∞) and any v ∈ {0,1} ∪ τ−1((0, 1)),

P
(

lim
(K,N)∈GR

N−1ρFK,N(·, v) = g(R, τ(v))

)
= 1, (16)
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where g : (0,∞)× [0, 1] → [0, 1] is defined as follows:

g(r, λ) :=


b−1((1− r(1− b(λ)))+) if λ ∈ [0, 1/2]

1− g(r, 1− λ) if λ ∈ [1/2, 1)

q if λ = 1.

(17)

Here b is the binary entropy function of (1), and b−1 : [0, 1] → [0, 1/2] is the inverse of
its restriction to [0, 1/2].

Proof. See section A.2.

For any R ∈ (0,∞), the map g(R, ·) : [0, 1) → [0, 1] is non-decreasing and has odd
symmetry about the point (1/2, 1/2). Let C(λ) be the capacity of a binary symmetric
channel with parameter λ ∈ [0, 1/2], i.e. C(λ) = 1 − b(λ). If RC(λ) ≤ 1 then g(R, λ) is
the value of the parameter of a binary symmetric channel whose capacity is RC(λ). If
RC(λ) > 1 then no such channel exists, and g(R, λ) = 0. If λ ∈ [1/2, 1) and RC(1−λ) ≤ 1
then 1 − g(R, λ) is the value of the parameter of a binary symmetric channel whose
capacity is RC(1− λ). If RC(1− λ) > 1 then g(R, λ) = 1. Because of (F2), all the FK,N
map the source sequence U(ω) to the transformed sequence 1, and this is why g(R, ·) has
a discontinuity at λ = 1.

4. The variational method

Our aim in this section is to define posterior distributions for the auxiliary source sequence
V (with the special channel output sequence values of (13)) by a method inspired by
the variational principle of statistical mechanics. We begin by reviewing the variational
version of the (K,N, v) estimation problems of (12), using the notation HF

K,N and ΠF
K,N

as discussed after (14). Let

PK,v(X ) := {P ∈ P(X ) : P (CK,v) = 1}. (18)

Let ivK,N : Ω → (0,∞) and AvK,N : Ω× PK,v(X ) → (0,∞] be defined as follows:

ivK,N(ω) := − log

∫
X

exp(−HF
K,N(ω, x))µK(v) (dx)

AvK,N(ω,Q) := h(Q|µK(v)) +

∫
X
HF
K,N(ω, x)Q (dx),

(19)

where h is the relative entropy generalizing (2), ivK,N(ω) is the full information in the

observation for the (K,N, v) estimation problem, and HF
K,N(ω, x) (for x ∈ CK,v) is the

residual information (i.e. the information remaining in the observation if we already know
that TKV = TKx). AvK,N(ω,Q) is the sum of the information gain of the measure Q over the
prior, µK(v), and the average residual information, and is thus the information apparently
possessed by an estimator that proposes Q as a posterior distribution for V (see part I
or [4] for a fuller discussion of these quantities).

Proposition 4.1. For any K,N ∈ N, ω ∈ Ω and v ∈ X,

ivK,N(ω) = min
Q∈PK,v(X )

AvK,N(ω,Q), (20)

and ΠF
K,N(ω, v) is the unique minimizer.
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Proof. See proposition 2.1 in [4].

We define posterior distributions for the auxiliary source sequence V , as minimizers
of a specific apparent information. This is defined in terms of the log-likelihood functions
HF
K,N of (14). In the variational principle of statistical mechanics, attention is usually

restricted to shift invariant measures in order to avoid infinite families of Gibbs measures
differing from one another only on finite sets of indices. For the same reason, we shall
only look for exchangeable posterior distributions for V . This restriction is justified by
theorem 4.3, below.

Definition 4.1. A probability measure P ∈ P(X ) is said to be exchangeable if
P (T−1

K ({w})) = P (T−1
K ({πw})) for all w ∈ XK , all bit permutations π : XK → XK , and

all K ∈ N. The subset of P(X ) of exchangeable measures will be denoted PE(X ).

Clearly, for any λ ∈ [0, 1], the product measure Mλ is exchangeable and, according to
the strong law of large numbers, Mλ(τ = λ) = 1, where τ is as defined in (15). In fact, all
P ∈ PE(X ) are mixtures of such product measures.

Theorem 4.1. (de Finetti) For any P ∈ PE(X ):

(i) P (G) = 1;

(i) for any B ∈ X , P (B|T ) = Mτ (B).

Proof. See, for example, [14] or [15].

It follows from this theorem that any P ∈ PE(X ) is fully determined by the
distribution, tP , it assigns to the tail variable τ :

P (B) =

∫
[0,1]

Mλ(B)tP (dλ).

The two components of the specific apparent information are the specific information
gain of P ∈ PE(X ) over the prior, H(P |M), and the specific residual information,
≺ HF

R , P �. The first of these is defined and evaluated as a special case of lemma 4.1.

Lemma 4.1. For any P ∈ PE(X ) and α ∈ (0, 1),

H(P |Mα) := lim
K
K−1h(PK |Mα,K) =

∫
[0,1]

h(mλ|mα)tP (dλ), (21)

where PK and Mα,K are the restrictions of P and Mα, respectively, to XK, and h is the
relative entropy of (2).

Proof. See section A.3.

Remark 4.1. Lemma 4.1 shows in particular that, unlike the relative entropies in the
defining sequence, the limit H(P |Mα) is linear in P . This property reflects that of the
specific entropy of shift invariant measures in statistical mechanics [6].

In the definition of the specific internal energy of statistical mechanics, the internal
variables, σΛ(v), are integrated out by the appropriate marginal of a putative Gibbs
measure. The resulting average internal energy is then divided by the cardinality of the
set Λ; sequences of such normalized average energies over increasing sets Λ are then shown
to have well-defined limits that do not depend on the external variables, [6]. Since our
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random field contains an inhomogeneity (at v = 1) the limit obtained by a procedure
of this type does depend on the external variables. Because of this we must integrate
out the internal variables in HF

K,N by their T̄K-conditional distribution under a putative
posterior, P ∈ PE(X ). After taking limits, we can then integrate out the external variables
by their marginal distribution under P . Since the internal and external variables are T -
conditionally independent under P , it is equivalent to integrate out the internal variables
by their T -conditional distribution (see proposition 2.4 in [16]). According to theorem 4.1,
the latter admits the regular form, m⊗Kτ(v). (NB. We cannot integrate out internal and

external variables before taking limits because of the measurability problems with HF
K,N .)

For any K,N ∈ N, let ζK,N : Ω× X → [0,∞) be defined as follows:

ζK,N(ω, v) := 1G(v)
∑

x∈CK,v

HF
K,N(ω, x)m⊗Kτ(v)({TKx}). (22)

Lemma 4.2. Let P ∈ PE(X ) and R ∈ (0,∞). For P -a.a. v,

P
(

lim
(K,N)∈GR

K−1ζK,N(·, v) = R−1c(R, τ(v))

)
= 1, (23)

where c : (0,∞)× [0, 1] → (0,∞) is defined as follows

c(r, λ) := −g(r, λ) log q − (1− g(r, λ)) log(1− q). (24)

and g is as in (17).

Proof. See section A.4.

Since ζK,N is not F ×X -measurable, Fubini’s theorem does not apply, and we cannot
conclude that ‘P (K−1ζK,N(ω, ·) → R−1c(R, τ)) = 1 for a.a. ω’. However, K−1ζK,N is
bounded (by −R−1 log q), and so it follows from lemma 4.2 and the bounded convergence
theorem that

P

(
lim

(K,N)∈GR
K−1EζK,N = R−1c(R, τ)

)
= 1. (25)

Here, the ω-dependence of HN not removed by the transformation FK,N is integrated out
before the limit is taken. We base the definition of specific residual information on (25).
In doing so, we are replacing HF

K,N by its ‘mean-field’ approximation, [6]. This is justified
by theorem 4.3.

For any R ∈ (0,∞), let

SFR :=
{

(µK(v),EHF
K,N), (K,N) ∈ GR, v ∈ X

}
, (26)

where GR is as in (9). SFR will be called the auxiliary rate R specification. In view of
(22) and (25), we define the specific residual information of exchangeable measures with
respect to SFR as follows:

≺ HF
R , P �:= R−1

∫
[0,1]

c(R, λ)tP (dλ). (27)

Definition 4.2. (i) For any R ∈ (0,∞) the specific apparent information of an
exchangeable measure P ∈ PE(X ) with respect to SFR is

AR(P ) := H(P |M)+ ≺ HF
R , P � . (28)
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Figure 1. The Function fq: q = 0.2, 0.1, 0.05, 0.02, 0.01 (left to right).

(ii) For any R ∈ (0,∞), an SFR -posterior distribution for V is any probability measure
P ∗R ∈ PE(X ), for which

AR(P ∗R) = min
P∈PE(X )

AR(P ). (29)

Theorem 4.2. (i) The minimum specific apparent information is as follows:

min
P∈PE(X )

AR(P ) =

{
1 +R−1b(q) if R ≤ C

R−1 if R ≥ C.
(30)

(i) If R < C, then the unique SFR -posterior distribution is M1.

(i) If R = C and P ∗R is an SFR -posterior distribution, then

P ∗R = αM0 + (1− α)M1 for some α ∈ [0, 1]. (31)

(i) If R > C, then the unique SFR -posterior distribution is Mfq(R), where fq : (0,∞) →
[0, 1/2) is defined as follows:

fq(r) := b−1((1− C/r)+). (32)

Proof. See section A.5.

Graphs of the function fq are shown in figure 1 for a few values of q between 0.01
and 0.2. fq has a first derivative at all points, and a second derivative at all points except
R = C. The second derivative grows without limit as R ↓ C.

In the analogy with statistical mechanics, the residual information corresponds to the
internal energy of the system, the information gain corresponds to the negative of its
entropy, and the apparent information corresponds to its free energy. In this analogy, the
function ER(λ) := R−1c(R, λ) of (27) evaluates the energy of the ‘mesostate’ τ(v). In order
to determine the statistical mechanical meaning of the code rate R, we need to understand
its effect on this function.

Since the channel output bits are V -conditionally independent of one another, the log-
likelihood function corresponding to a sequence of N channel output bits is the sum of the
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Figure 2. Specific information quantities: top curve AR(P ∗R); bottom curve
H(P ∗R|M) (q = 0.05).

log-likelihood functions corresponding to the individual bits. The latter take values in the
set {− log(1− q),− log q}, and so the normalized log-likelihood function N−1HF

K,N takes

values in the interval [− log(1 − q),− log q]. However, in lemma 4.2, HF
K,N is normalized

by K, not N , and this accounts for the factor R−1 in ER.
Apart from the point λ = 1, at which it makes a negative jump in value, the function

λ 7→ c(R, λ) is monotonically increasing. If it were not for this discontinuity, it might
appear that the auxiliary system was subject to an R-dependent ‘external magnetic field’
that favoured ‘down spins’ (vk = 0) over ‘up spins’ (vk = 1). (Although, even on the
sub-domain [0, 1), c(R, ·) is not, in general, linear.) However, this effect is a consequence
of the very special set of channel output values (13) that we are considering. For a generic
set of channel output values, N−1Hω

K,N(ω̃, v) behaves in a similar way to N−1HN(ω, u) as
(K,N) ∈ GR increases: it does not depend in any consistent way on the value of τ(v), and
(unless v = V ) it does not converge. That part of the R-dependency of ER arising from
the function c(R, ·) is not, therefore, a generic property of an error-control coding scheme,
but the result of a highly contrived set of channel output values. Viewed in a different way,
it is the result of ‘pushing’ the energy functions of the original system of section 2 (which
correspond to a generic set of channel output values, and therefore do not exhibit any
τ(u)-related bias) through the maps FK,N , which introduce an R-dependent, τ(v)-related
bias.

The only substantive way in which R enters the energy function ER, from the point
of view of the original system, is thus through the scaling factor R−1. In this sense, the
code rate is analogous to the absolute temperature of statistical mechanics. It controls the
number of observation bits per estimand bit, and thus controls the relative weights, in the
free energy, given to the internal energy and the entropy.

Graphs of the minimum specific apparent information,AR(P ∗R), and the corresponding
specific information gain, H(P ∗R|M), are given in figure 2, for q = 0.05. As a function of
R, AR(P ∗R) is continuous and has a derivative at all points except R = C, where its left-
and right-derivatives differ. In this sense, the auxiliary system undergoes an (Ehrenfest)
first-order phase transition at R = C. In common with problems of statistical mechanics,
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this manifests itself in the existence of more than one posterior distribution at this value
of R, [6].

It is perhaps worth re-iterating at this point that posterior distributions for V , based
on the family of channel output sequences (TNY

ω
K,N , (K,N) ∈ GR), cannot be constructed

by conventional means, since the code sequences TNΓωK,N(V ) do not have well-defined
distributions. In the absence of conventional tools, we are defining posterior distributions
for V by (29). Of course, such a definition is only appropriate if it leads to posterior
distributions that reflect the important features of Shannon’s channel coding theorem.
Theorem 4.2 shows that this is the case; in particular, P ∗R is a Dirac measure when R < C,
but has larger support when R > C. The following theorem provides further justification
by connecting the posterior distributions P ∗R with their counterparts in the finite (K,N, v)
estimation problems.

Theorem 4.3. For any R ∈ (0,∞) and v ∈ X,

P
(

lim
(K,N)∈GR

K−1ivK,N = lim
(K,N)∈GR

K−1AvK,N(·, PK,v) = AR(Pv)

)
= 1, (33)

where ivK,N and AvK,N are as defined in (19), Pv := 1W (v)P ∗R + 1X\W (v)Mfq(R), PK,v is the
unique element of PK,v(X ) whose restriction to XK coincides with that of Pv, PK,v(X )
is as defined in (18), and

W :=
⋃
K∈N

CK,1. (34)

Proof. See section A.6.

If v ∈ W or R > C then the marginal distribution of the internal sequence under
PK,v is equal to its marginal under P ∗R, and theorem 4.3 shows that this distribution is
‘first-order optimal’ for the finite (K,N, v) estimation problems of (19) and (20). If R < C
then AR(P ∗R) is strictly smaller than AR(Mfq(R)) and P ∗R({1}) = 1; however, if v 6∈W , this
global optimum is not accessible to the finite (K,N, v) estimation problems. The marginal
distribution of the internal sequence under PK,v is then equal to its marginal distribution
under Mfq(R), and theorem 4.3 shows that this is first-order optimal for the (K,N, v)
problems. The scaling limit of the full information quantities is then equal to the specific
apparent information of Mfq(R).

Theorem 4.3 shows that, to first-order accuracy, the minimum apparent information
for the (K,N, v) estimation problems is attained by the marginals of P ∗R or Mfq(R). So: (i)
the use of a mean-field approximation for HF

K,N in the definition of ≺ HF
R , P � introduces

only asymptotically insignificant errors; (ii) the use of finite-exchangeable measures in the
(K,N, v) estimation problems is asymptotically optimal; (iii) the use of finite-exchangeable
measures derived from a common element of PE(X ) is asymptotically optimal.

5. Asymptotic consistency

In this section, we examine the extent to which the consistency property of Gibbs measures
(4) can be carried over to the Bayesian problems of section 3. For any K ∈ N, 0 ≤ k ≤ K
and v ∈ X, let

BK,v(k) := {ṽ ∈ CK,v : ‖TK ṽ‖ = k}. (35)
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Theorem 4.3 shows that, in restricting attention to finite-exchangeable measures in the
(K,N, v) estimation problems, we introduce only asymptotically insignificant information
loss. This shows that the information distinguishing individual elements of the sets BK,v(k)
is small in comparison with that distinguishing the sets (BK,v(k), 0 ≤ k ≤ K) themselves.
We can eliminate this second-order information by smoothing the (K,N, v) posterior
distributions in the following way. For any K,N ∈ N, let Π̄F

K,N : Ω × X → P(X ) be
defined by

Π̄F
K,N(ω, v)(B) :=

K∑
k=0

|B ∩BK,v(k)|
|BK,v(k)|

ΠF
K,N(ω, v)(BK,v(k)).

It readily follows that

dΠ̄F
K,N(ω, v)

dµK(v)
= EµK(v)

(
dΠF

K,N(ω, v)

dµK(v)

∣∣∣BK,v
)
,

where BK,v is the σ-algebra generated by the sets (BK,v(k), 0 ≤ k ≤ K). Of course, we
can ‘pull back’ Π̄F

K,N(ω, ·) through the map FK,N(ω, ·) to obtain a smoothed version of the
original (K,N, u) posterior distribution ΠK,N :

Π̄K,N(ω, u)(B) := Π̄F
K,N(ω, FK,N(ω, u))(FK,N(ω,B)).

Since the set BK,1(K) contains only the element 1,

ΠK,N(ω, U(ω))({U(ω)}) = Π̄K,N(ω, U(ω))({U(ω)});

i.e. the smoothing operation does not alter the posterior probability of the actual
source sequence in the original (K,N) channel coding problem, it merely averages the
posterior probabilities of other sequences over sets of such sequences with similar posterior
probabilities.

Theorem 5.1. Let v ∈ X.

(i) If R < C then

P
(

w-lim
(K,N)∈GR

Π̄F
K,N(·, v) = 1W (v)M1 + 1X\W (v)M0

)
= 1, (36)

where w-lim indicates weak convergence with respect to the product topology on X, and
W is as defined in (34).

(i) If R > C then

P
(

w-lim
(K,N)∈GR

Π̄F
K,N(·, v) = Mfq(R)

)
= 1. (37)

where fq is as defined in (32).

Proof. See section A.7.

Remark 5.1. If R < C and v ∈ W , the convergence in (36) can be strengthened to
convergence in the total variation norm. (This follows directly from (A.27) in the proof,
and expresses the reliable communication theorem.)
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We cannot expect the SFR -posterior distribution(s) to be consistent with the Π̄F
K,N ,

in the sense of the Dobrushin construction; however, we can establish a property of
asymptotic consistency. For any R ∈ (0,∞), let

KR :=
{
EΠ̄F

K,N(·, v), (K,N) ∈ GR, v ∈ X
}
. (38)

Here, as in (25), the ω-dependence of Π̄F
K,N not removed by the transformation FK,N is

integrated out (see the comments following (25) on ‘mean-field’ approximations).

Definition 5.1. A probability measure P ∈ PE(X ) is said to be asymptotically consistent
with KR if

P

(
w-lim

(K,N)∈GR
EΠ̄F

K,N = Mτ

)
= 1. (39)

Corollary 5.1. (i) If R < C and P is asymptotically consistent with KR, then

P = αM0 + (1− α)M1 for some α ∈ [0, 1]. (40)

(i) If R > C and P is asymptotically consistent with KR, then P = P ∗R.

Proof. Both parts follow from theorem 5.1 and the bounded convergence theorem.

At any code rate in excess of capacity the unique asymptotically consistent measure
is the posterior distribution P ∗R of section 4, and this provides further justification for
definition 4.2. However, at code rates less than capacity, any convex combination ofM0 and
M1 is asymptotically consistent. This is because the information distinguishing between
M0 and M1 at such code rates is discarded when exp(−HF

K,N) is normalized in Bayes’
formula. This is the main reason for our preferring the variational definition of a posterior
distribution to one based on asymptotic consistency.

6. Conclusions

Consider the crude coding scheme discussed in section 1, in which each bit of the source
sequence is sent over the channel 2N + 1 times. Over an infinite sequence of source bits,
this scheme suffers the same singularity problem as the random coding scheme of section 2
(but not the measurability problem). However, since the coding scheme does not introduce
observation-conditional dependences between the individual source bits, the latter can be
independently decoded, and a posterior distribution for the infinite source sequence can
be defined as the product of those of the individual bits. This ‘Kolmogorov technique’, of
constructing a posterior distribution on X from its finite-dimensional marginals, cannot
be used with the random binary code since the latter introduces very complex observation-
conditional dependences between the source bits. In this paper, we have used a ‘Dobrushin
technique’ to construct posterior distributions from their finite-dimensional conditional
distributions.

Definition 4.2 and theorem 4.2 extend the Bayesian paradigm to a family of estimation
problems not admitting conventional analysis. Moreover, the estimation problems they
address are more than simply large-block limits of the conventional (K,N, v) estimation
problems of the specification SFR . In the latter, it is known a priori that T̄KV = T̄kv,
knowledge that becomes, in the limit of large K, knowledge of the tail variable τ(V ).
However, the estimators of section 4 must estimate τ(V ) along with the internal sequences
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(TKV, K ∈ N). (This is what estimators based on the ‘asymptotic consistency’ definition
of section 5 fail to do.)

The results of section 4 suggest that, for R 6= C and in the limit of large K, the
combination of rate R encoding, transmission over the binary symmetric channel with
parameter q, and subsequent decoding, is equivalent to the direct transmission of the
auxiliary source sequence over a binary symmetric channel with parameter p = fq(R)
(graphs of which are shown in figure 1). The information gain arising from the observation
manifests itself as information gain on the individual bits of V , which remain independent
under P ∗R. This is in contrast with the original system where all the information gain
manifests itself as a dependency between the bits of U (see proposition 3.1 in part I).
At code rates less than capacity p = 0 and the equivalent direct channel is error free. At
code rates greater than capacity p increases rapidly; it coincides with q when R = 1, and
approaches 1/2 as R → ∞.
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Appendix. Proofs

A.1. Proof of proposition 2.1

For any K ∈ N, let (wi; 1 ≤ i ≤ 2K) be the 2K distinct elements of XK and, for any
1 ≤ i ≤ 2K , let Di := (TKe)

−1({wi}). For any E ⊆ X, let XE be the σ-algebra of subsets
of Z generated by the sets (Ax,B, x ∈ E,B ∈ X ), where Ax,B is as defined in (5). Let
C ∈ X × Z; then it is a standard result (see, for example, lemma 3.5.2 in [17]) that
C ∈ X × XE for some countable E. If C ⊂ Di then, according to Fubini’s theorem,

M ⊗Q(C) =

∫
X

∫
Z

1C(x, z)Q (dz)M (dx)

=

∫
X\E

∫
Z

1C(x, z)Q (dz)M (dx)

=

∫
X\E

∫
Z

1C(x, z)1Di(x, z)Q (dz)M (dx)

=

∫
X\E

∫
Z

1C(x, z)Q (dz)

∫
Z

1Di(x, z)Q (dz)M (dx)

= 2−KM ⊗Q(C),

where the second step uses the fact that M(E) = 0, and the fourth step uses the Q-
independence of e(x, ·) and e(x̃, ·) for x 6= x̃. Thus M ⊗ Q(C) = 0, and this shows that
the outer measure (M ⊗Q)∗((X×Z) \Di) is 1. A similar argument with C ∈ X ×Z such
that C ⊂ (X× Z) \Di shows that (M ⊗Q)∗(Di) = 1, and this proves part (i).
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For K ∈ N, let

BK := (X × Z) ∨ {Di, 1 ≤ i ≤ 2K}.

It follows from a recursion on example 1.2.7 in [17] that, for any set B ∈ BK , there exist
sets (Ci ∈ X × Z, 1 ≤ i ≤ 2K) such that

B =
⋃
i

(Ci ∩Di). (A.1)

Suppose that (C̃i ∈ X ×Z, 1 ≤ i ≤ 2K) is another sequence with the same property; then,
since the union in (A.1) is disjoint, Ci∩Di = C̃i∩Di for all i. Thus Ci4 C̃i ⊂ (X×Z)\Di,
and so

M ⊗Q(Ci4 C̃i) = 0 for all i. (A.2)

Let ν be as in the statement of the proposition, and let τ1 : X×Z×X → X×Z and
τ2 : X× Z× X → X be the following co-ordinate maps:

τ1(u, z, x) = (u, z) and τ2(u, z, x) = x.

Since (X,X ) is complete and separable there exists a regular τ1-conditional distribution
for τ2, ντ2|τ1 : X × Z × X → [0, 1]. It follows from (A.2) that the following definition for
φK ∈ P(BK) is unambiguous: for B ∈ BK and Ci as in (A.1)

φK(B) :=
∑
i

∫
Ci

ντ2|τ1((u, z), e(Di))M ⊗Q (d(u, z)).

Now X× Z = ∪iDi, and so

φK(X× Z) =
∑
i

∫
X
ντ2|τ1((u, z), e(Di))M ⊗Q (d(u, z))

=

∫
X

∑
i

ντ2|τ1((u, z), e(Di))M ⊗Q (d(u, z))

= 1. (A.3)

Suppose that (Bj ∈ BK , j ∈ N) is a sequence of disjoint sets. It follows from (A.1) that
there exist sets (Cj,i ∈ X × Z, 1 ≤ i ≤ 2K , j ∈ N) such that, for each j,

Bj = ∪i(Cj,i ∩Di),

and, for j̃ 6= j and all i, Cj̃,i ∩ Cj,i ⊂ (X× Z) \Di, so that M ⊗Q(Cj̃,i ∩ Cj,i) = 0. Now

φK(∪jBj) = φK(∪j∪i(Cj,i ∩Di)) = φK(∪i(∪jCj,i) ∩Di)

=
∑
i

∫
∪jCj,i

ντ2|τ1((u, z), e(Di))M ⊗Q (d(u, z))

=
∑
i

∑
j

∫
Cj,i

ντ2|τ1((u, z), e(Di))M ⊗Q (d(u, z))

=
∑
j

φK(Bj). (A.4)

It follows from (A.3) and (A.4) that φK is a probability measure on BK .
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Let B∞ := ∪KBK ; then any B ∈ B∞ also belongs to BK for some K ∈ N. From this,
and the fact that X ×Z ⊂ B1 ⊂ B2 ⊂ · · ·, it easily follows that B∞ is an algebra and that
φ∞ : B∞ → [0, 1], defined by φ∞(B) = φK(B) for K sufficiently large, is a probability
measure. It follows from Lebesgue’s extension theorem (see, for example, Theorem 1.5.6
in [17]) that φ∞ extends uniquely to a probability measure on (X ×Z)∨ e−1(X ), and this
is the required extension. �

A.2. Proof of proposition 3.1

We begin with a lemma. Fix R ∈ (0,∞). For each (K,N) ∈ GR, ω ∈ Ω, v ∈ X, λ ∈ [0, 1]
and θ ∈ [−1, 1], let

DK(λ, v) := {x ∈ CK,v \ {1} : ‖TKx‖ ≤ Kλ},
AK(ω, θ, v) := {x ∈ CK,v \ {1} : ρFK,N(ω, x) ≤ Nθ},
θ−K(ω, λ, v) := sup{θ ∈ [−1, 1] : AK(ω, θ, v) ⊂ DK(λ, v)} ∈ [0, 1]

θ+
K(ω, λ, v) := inf{θ ∈ [−1, 1] : AK(ω, θ, v) ⊇ DK(λ, v)} ∈ [0, 1].

(A.5)

Lemma A.1. For any v ∈ X and any λ ∈ [0, 1),

P
(

lim
(K,N)∈GR

θ−K(·, λ, v) = lim
(K,N)∈GR

θ+
K(·, λ, v) = g(R, λ)

)
= 1, (A.6)

where g is as defined in (17).

Proof. If there is an x in AK(ω, θ, v)\DK(λ, v) then ρFK,N(ω, x)≤Nθ and ‖TKx‖> ‖TK x̃‖
for all x̃ ∈ DK(λ, v); it then follows from (F4) that

ρFK,N(ω, x̃) ≤ ρFK,N(ω, x) ≤ Nθ for all x̃ ∈ DK(λ, v),

so that AK(ω, θ, v)⊃DK(λ, v). If, on the other hand, there is an x in DK(λ, v)\AK(ω, θ, v)
then ‖TKx‖ ≤Kλ and ρFK,N(ω, x) > ρFK,N(ω, x̃) for all x̃ ∈ AK(ω, θ, v); it then follows from
(F4) that

‖TK x̃‖ ≤ ‖TKx‖ ≤ Kλ for all x̃ ∈ AK(ω, θ, v),

so that AK(ω, θ, v) ⊂ DK(λ, v). Thus, either AK(ω, θ, v) and DK(λ, v) are equal, or one
is a strict subset of the other. So

θ−K(ω, λ, v) = sup{θ : |AK(ω, θ, v)| < |DK(λ, v)|}
θ+
K(ω, λ, v) = inf{θ : |AK(ω, θ, v)| ≥ |DK(λ, v)|}. (A.7)

For any x 6= 1, ρFK,N(·, x) has the binomial distribution with parameters (N, 1/2) and
so, for any θ ∈ [0, 1],

E|AK(·, θ, v)| =
∑

x∈CK,v\{1}

[Nθ]∑
n=0

P(ρFK,N(·, x) = n)

=
(
2K − 1{1}(T̄Kv)

) [Nθ]∑
n=0

(
N

n

)
2−N ,
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E|AK(·, θ, v)|2 =
∑

x,x̃∈CK,v\1

[Nθ]∑
n,ñ=0

P(ρFK,N(·, x) = n, ρFK,N(·, x̃) = ñ)

≤ (E|AK(·, θ, v)|)2 + E|AK(·, θ, v)|,

and

var

(
|AK(·, θ, v)|

E|AK(·, θ, v)|

)
≤ 1

E|AK(·, θ, v)|
≤ 2N

(2K − 1)

(
N

[Nθ]

)−1

. (A.8)

Suppose that λ, θ ∈ [0, 1/2]; then(
K

[Kλ]

)
≤ |DK(λ, v)| ≤ (Kλ+ 1)

(
K

[Kλ]

)
,

(2K − 1)

(
N

[Nθ]

)
2−N ≤ E|AK(·, θ, v)| ≤ (Nθ + 1)

(
N

[Nθ]

)
2K−N ,

and so, according to lemma A.1 in part I,

limN−1 log

(
|DK(λ, v)|

E|AK(·, θ, v)|

)
= Rb(λ)−R− b(θ) + 1. (A.9)

If θ ∈ (g(R, 0), 1/2] then it follows from lemma A.1 in part I that the term on the
right-hand side of (A.8) decreases exponentially rapidly in N , with rate b(θ) +R− 1 > 0.
The infinite sequence of variances in (A.8) thus has finite sum and so, according to the
moment form of the first Borel–Cantelli lemma,

P
(
|AK(·, θ, v)|

E|AK(·, θ, v)|
→ 1

)
= 1.

Together with (A.9) and the definition of g, this shows that, for P-a.a. ω,

limN−1 log

(
|DK(λ, v)|
|AK(ω, θ, v)|

){
=b ◦ g(R, λ)− b(θ) if λ ≥ λ0

<0 otherwise,
(A.10)

where λ0 := b−1((1−R−1)+).
If θ ∈ [−1, g(R, 0)) then lemma 2.1(iii) in part I shows that

limN−1 log P
(

min
x∈CK,v\1

ρFK,N(·, x) ≤ Nθ

)
< 0.

(g(R, 0) is equal to θGV(R) of part I.) So
∑

KP(AK(·, θ, v) 6= ∅) < ∞, and the first
Borel–Cantelli lemma shows that

P

( ∞⋃
L=1

∞⋂
K=L

AK(·, θ, v) = ∅
)

= 1. (A.11)

We now claim that

P
(
lim inf θ−K(·, λ, v) = g(R, λ)

)
= 1 for all λ ∈ [0, 1/2]

P
(
lim sup θ+

K(·, λ, v) = g(R, λ)
)

= 1 for all λ ∈ [0, 1/2).
(A.12)

doi:10.1088/1742-5468/2012/11/P11008 24

http://dx.doi.org/10.1088/1742-5468/2012/11/P11008


J.S
tat.M

ech.(2012)
P

11008

Variational Bayes

If λ > λ0 then g(R, λ) > g(R, 0), and (A.12) follows from (A.7) and the equation in (A.10).
If λ ≤ λ0 then g(R, λ) = g(R, 0), and (A.12) follows from (A.7), the inequality in (A.10),
and (A.11).

Suppose, now, that λ ∈ [1/2, 1). Arguments similar to those used above, but with
CK,v \DK(λ, v) substituted for DK(λ, v) and CK,v \AK(ω, θ, v) substituted for AK(ω, θ, v),
show that, for any θ ∈ [1/2, 1− g(R, 0)) and P-a.a. ω,

limN−1 log

(
|CK,v \DK(λ, v)|
|CK,v \ AK(ω, θ, v)|

){
=b ◦ g(R, λ)− b(θ) if λ ≤ 1− λ0

<0 otherwise,
(A.13)

which shows that the equations in (A.12) are also true for λ ∈ (1/2, 1) and λ ∈ [1/2, 1),
respectively. This completes the proof. �

Proof of Proposition 3.1 . Since θ−K(ω, 0,0)≤N−1ρFK,N(ω,0)≤ θ+
K(ω, 0,0), (16) in the

special case that v = 0 follows directly from lemma A.1. Since ρFK,N(·,1) (=‖TNΨ‖) is the
sum on N independent Bernoulli random variables with common mean q, (16) in the
special case that v = 1 follows from the strong law of large numbers. Suppose, then,
that v ∈ τ−1((0, 1)), and let λ := τ(v). For any n > max{λ−1, (1− λ)−1}, there exists an
Lv,n <∞ such that v ∈ DK(λ+ n−1, v) \DK(λ− n−1, v) for all K ≥ Lv,n, and so, for all
such K and all ω,

θ−K(ω, λ− n−1, v) ≤ N−1ρFK,N(ω, v) ≤ θ+
K(ω, λ+ n−1, v).

It thus follows from lemma A.1 that P(Bλ,n,v) = 1, where

Bλ,n,v := {ω : g(R, λ− n−1) ≤ lim inf N−1ρFK,N(ω, v) ≤ lim supN−1ρFK,N(ω, v)

≤ g(R, λ+ n−1)}.

Since g(R, ·) is continuous on (0, 1)

Bλ,n,v ↓ Bλ,v := {ω : N−1ρFK,N(ω, v) → g(R, λ)},

and since P is σ-additive P(Bλ,v) = 1, which completes the proof of (16) for the cases
λ ∈ τ−1((0, 1)). �

A.3. Proof of lemma 4.1

For any K ∈ N and λ ∈ [0, 1], let QK,λ be the binomial distribution with parameters (K,λ),

and let Q̂K,λ be the distribution of the [0, 1]-valued random variable K−1Z, where Z has
distribution QK,λ. Let QK :=

∫
[0,1]QK,λtP (dλ); then

dPK
dMα,K

(x) =
dQK

dQK,α

(‖TKx‖),

and so

h(PK |Mα,K) = h(QK |QK,α) = h(QK |νK)− log(K + 1)

−
K∑
k=0

(
log

(
K

k

)
−Kbα(k/K)

)
QK({k}),
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where νK is the uniform probability measure on {0, 1, . . . , K}, and bα : [0, 1] → (0,∞) is
defined by

bα(s) := −s logα− (1− s) log(1− α). (A.14)

So

lim inf K−1h(PK |Mα,K) ≥ − lim
K∑
k=0

(
K−1 log

(
K

k

)
− bα(k/K)

)
QK({k})

= − lim
K∑
k=0

(b(k/K)− bα(k/K))QK({k})

= lim

∫
[0,1]

∫
[0,1]

h(ms|mα)Q̂K,λ (ds)tP (dλ)

=

∫
[0,1]

h(mλ|mα)tP (dλ), (A.15)

where we have used the non-negativity of h(QK |νK) in the first step, and lemma A.1 of
part I in the second step. The final step follows from the continuity and boundedness of
the map [0, 1] 3 s 7→ h(ms|mα) ∈ R+, the fact that Q̂K,λ converges weakly to the Dirac
measure at λ, and the bounded convergence theorem.

Since h(·|Mα,K) is convex, Jensen’s inequality shows that

K−1h(PK |Mα,K) ≤ K−1

∫
[0,1]

h(Mλ,K |Mα,K)tP (dλ)

=

∫
[0,1]

h(mλ|mα)tP (dλ).

Together with (A.15), this completes the proof. �

A.4. Proof of lemma 4.2

Since P ({0,1} ∪ τ−1((0, 1))) = 1, it suffices to consider only v in this set. Let bq be as in
(A.14). Now N−1ζK,N(ω, v) = bq(N

−1ρFK,N(ω, v)) if v = 0 or 1, and so (23) follows directly

from proposition 3.1 in these cases. Suppose, then, that v ∈ τ−1((0, 1)). Now

ζK,N(ω, v) =
K∑
k=0

∑
x∈BK,v(k)

HF
K,N(ω, x)m⊗Kτ(v)({TKx})

=
K∑
k=0

ĤF
K,N(ω, k/K, v)QK,τ(v)({k})

=

∫
[0,1]

ĤF
K,N(ω, s, v)Q̂K,τ(v) (ds),

whereBK,v is as defined in (35),QK,τ(v) and Q̂K,τ(v) are as defined in the proof of lemma 4.1,
and

ĤF
K,N(ω, s, v) := |BK,v([Ks])|−1

∑
x∈BK,v([Ks])

HF
K,N(ω, x).
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Now 0 ≤ N−1ĤF
K,N(ω, s, v) ≤ − log q and Q̂K,τ(v) converges weakly to the Dirac measure

at τ(v), and so, for any ε < min{τ(v), 1− τ(v)}/2 and any ω,

limN−1

(
ζK,N(ω, v)− 1

Q̂K,τ(v)(Iv,ε)

∫
Iv,ε

ĤF
K,N(ω, s, v)Q̂K,τ(v) (ds)

)
= 0, (A.16)

where Iv,ε := (τ(v)− ε, τ(v) + ε).
For any s ∈ Iv,ε and any K > ε−1, BK,v([Ks]) = DK(s, v)\DK(s−K−1, v), where DK

is as defined in (A.5), and so

bq ◦ θ−K(ω, τ(v)− 2ε, v) ≤ N−1ĤF
K,N(ω, s, v) ≤ bq ◦ θ+

K(ω, τ(v) + ε, v),

where θ±K are as in (A.5). Together with lemma A.1, the continuity of c(R, ·) on (0, 1) and
(A.16), this proves (23) for the cases v ∈ τ−1((0, 1)). �

A.5. Proof of theorem 4.2

It follows from lemmas 4.1 and 4.2 that AR(P ) =
∫

[0,1]AR(Mλ)tP (dλ), where

AR(Mλ) = 1− b(λ) +R−1c(R, λ)

= 1− b(λ) +R−1b ◦ g(R, λ) +R−1h(mg(R,λ)|mq). (A.17)

Let λ0 := (1−R−1)+. If λ ∈ [λ0, 1− λ0) then

AR(Mλ) = R−1(1 + h(mg(R,λ)|mq));

whereas, if R > 1 and λ ∈ [0, λ0) then

AR(Mλ) = 1− b(λ)−R−1 log(1− q);
if R > 1 and λ ∈ (1− λ0, 1) then

AR(Mλ) = 1− b(λ)−R−1 log q;

finally, if λ = 1 then

AR(M1) = 1 +R−1b(q). (A.18)

A comparison of these expressions reveals that the minimum value of AR(Mλ) is given
by the right-hand side of (30), and is achieved only by the values λ = 1 for R ≤ C, and
λ = fq(R) for R ≥ C. (g(R, fq(R)) = q if R ≥ C.) This completes the proof of all parts of
the theorem. �

A.6. Proof of theorem 4.3

For any (K,N) ∈ GR, λ ∈ [0, 1] and ω ∈ Ω, let

SK(ω, λ, v) :=

∫
BK,v([Kλ])

exp(−HF
K,N(ω, x))µK(v) (dx), (A.19)

where BK,v is as defined in (35). If λ = 0 then BK,v([Kλ]) = DK(0, v), where DK is as
defined in (A.5); whereas if λ ∈ (0, 1) and K > λ−1 then BK,v([Kλ]) = DK(λ, v)\DK(λ−
K−1, v). In either case, for any ε > 0 and K > ε−1,

α−K(ω, (λ− ε)+, v) ≤ −K−1 logSK(ω, λ, v) ≤ α+
K(ω, λ, v),
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where

α±K(ω, λ, v) := 1−K−1 log

(
K

[Kλ]

)
+NK−1bq ◦ θ±K(ω, λ, v),

and θ±K are as defined in (A.5). It thus follows from lemma A.1 here, lemma A.1 of part
I, the continuity of c(R, ·) on [0, 1), and (A.17) that

P(−K−1 logSK(·, λ, v) → 1− b(λ) +R−1c(R, λ) = AR(Mλ)) = 1. (A.20)

Suppose now that λ = 1. If v 6∈W and K > 1, then BK,v([Kλ]) = DK(1, v) \DK(1−
K−1, v), and arguments similar to those used to prove (A.20) show that

P
(

lim inf −K−1 logSK(·, 1, v) ≥ lim
λ↑1
AR(Mλ)

)
= 1. (A.21)

If v ∈ W and K is sufficiently large, then BK,v(K) comprises the single element 1 and
SK(ω, 1, v) = exp(−HF

K,N(ω,1)−K), and so according to proposition 3.1 with v = 1, and
(A.18)

P
(
−K−1 logSK(·, 1, v) → 1 +R−1c(R, 1) = AR(M1)

)
= 1. (A.22)

For any ε ∈ (0, 1/2), let

JR,v,ε,K :=


{0 ≤ k ≤ K : k/K ∈ IR,ε} if R > C or v 6∈ W
{0 ≤ k ≤ K − 1} ifR < C and v ∈ W
{0 ≤ k ≤ K − 1 : k/K ∈ IR,ε} if R = C and v ∈ W,

(A.23)

where IR,ε := {s ∈ [0, 1] : |s− fq(R)| > ε}, and let

ΛR,v :=


{fq(R)} if R > C or v 6∈ W
{1} if R < C and v ∈ W
{0, 1} if R = C and v ∈ W.

(A.24)

It follows from the arguments following (A.17) that

inf
K

min
k∈JR,v,ε,K

AR(Mk/K) > max
λ∈ΛR,v

AR(Mλ),

which, together with (A.20)–(A.22) shows that, for any v and any λ ∈ ΛR,v,

P

(
lim inf K−1 log

(
SK(·, λ, v)∑

k∈JR,v,ε,K SK(·, k/K, v)

)
> 0

)
= 1. (A.25)

Now

exp(−ivK,N(ω)) =
K∑
k=0

SK(ω, k/K, v),

and so it follows from (A.20)–(A.25), and the continuity of the map [0, 1) 3 λ 7→ AR(Mλ),
that

P
(
limK−1ivK,N = AR(Pv)

)
= 1.
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It thus remains to prove that

P
(
limK−1ξvK,N(·, PK,v) =≺ HH

R , Pv �
)

= 1, (A.26)

where

ξvK,N(ω, PK,v) :=

∫
X
HF
K,N(ω, x)PK,v (dx).

If R ≤ C then

ξvK,N(ω, PK,v) = HF
K,N(ω, vK,0)tPv({0}) +HF

K,N(ω, vK,1)tPv({1}),

where vK,0, vK,1 ∈ CK,v, TKvK,0 = 0, and TKvK,1 = 1. Now

bq ◦ θ−K(ω, 0, v) ≤ N−1HF
K,N(ω, vK,0) ≤ bq ◦ θ+

K(ω, 0, v),

and, if v ∈ W , HF
K,N(ω, vK,1) = HF

K,N(ω,1) for all sufficiently large K, and so (A.26) for
the case R ≤ C follows from lemma A.1 and proposition 3.1.

If R > C then

ξvK,N(ω, PK,v) =

∫
[0,1]

ĤF
K,N(ω, s, v)Q̂K,λ (ds),

where Q̂K,λ and ĤF
K,N are as defined in the proofs of lemmas 4.1 and 4.2, and λ = fq(R) ∈

(0, 1). Equation (A.26) now follows from arguments similar to those used, for the case
v ∈ τ−1((0, 1)), in the proof of lemma 4.2. �

A.7. Proof of theorem 5.1

It follows from the definition of ΠF
K,N that, for any (K,N) ∈ GR, ω ∈ Ω and λ, s ∈ [0, 1],

ΠF
K,N(ω, v)(BK,v([Kλ]))

ΠF
K,N(ω, v)(BK,v([Ks]))

=
SK(ω, λ, v)

SK(ω, s, v)
,

where BK,v and SK are as defined in (35) and (A.19). So (A.25) shows that, for any
ε ∈ (0, 1/2),

P
(
ΠF
K,N(·, v)

(
∪k∈JR,v,ε,KBK,v(k)

)
→ 0

)
= 1, (A.27)

where JR,v,ε,K is as defined in (A.23).
Let L ∈ N and EL := T−1

L ({1}), then since Π̄F
K,N(ω, v)◦T−1

K is finite-exchangeable, for
any K ≥ L,

Π̄F
K,N(ω, v)(EL) =

K∑
k=0

Π̄F
K,N(ω, v) (EL|BK,v(k)) Π̄F

K,N(ω, v)(BK,v(k))

=
K∑
k=L

k

K

k − 1

K − 1
· · · k − L+ 1

K − L+ 1
ΠF
K,N(ω, v)(BK,v(k)).

Now, for any 1 ≤ i ≤ k − L+ 1,∣∣∣∣ k − iK − i
− k

K

∣∣∣∣ =
(K − k)i

K(K − i)
≤ L

K − L
,
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and so

lim

(
Π̄F
K,N(ω, v)(EL)−

K∑
k=0

(k/K)LΠF
K,N(ω, v)(BK,v(k))

)
= 0.

Together with (A.27), this shows that, for P-a.a. ω,

lim Π̄F
K,N(ω, v)(EL) =

{
fq(R)L if R > C or v 6∈ W
1 if R < C and v ∈ W. (A.28)

Since the collection of finite-dimensional sets in X is a countable π-system that generates
the product topology, it is convergence determining (see, for example, theorem 2.2 in [18]).
This establishes (36) and (37), since all such sets can be expressed as finite unions,
intersections and complements of the sets (EL, L ∈ N). �
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