
1238 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 6, JUNE 2010

Spatio-Temporal Data Fusion for 3D+T Image
Reconstruction in Cerebral Angiography

Andrew D. Copeland, Rami S. Mangoubi*, Mukund N. Desai, Sanjoy K. Mitter, and Adel M. Malek

Abstract—This paper provides a framework for generating high
resolution time sequences of 3D images that show the dynamics of
cerebral blood flow. These sequences have the potential to allow
image feedback during medical procedures that facilitate the
detection and observation of pathological abnormalities such as
stenoses, aneurysms, and blood clots. The 3D time series is con-
structed by fusing a single static 3D model with two time sequences
of 2D projections of the same imaged region. The fusion process
utilizes a variational approach that constrains the volumes to have
both smoothly varying regions separated by edges and sparse re-
gions of nonzero support. The variational problem is solved using
a modified version of the Gauss–Seidel algorithm that exploits the
spatio-temporal structure of the angiography problem. The 3D
time series results are visualized using time series of isosurfaces,
synthetic X-rays from arbitrary perspectives or poses, and 3D
surfaces that show arrival times of the contrasted blood front
using color coding. The derived visualizations provide physicians
with a previously unavailable wealth of information that can lead
to safer procedures, including quicker localization of flow altering
abnormalities such as blood clots, and lower procedural X-ray
exposure. Quantitative SNR and other performance analysis of
the algorithm on computational phantom data are also presented.

Index Terms—Angiography, blood, brain, cerebral, flow, fusion,
image, reconstruction, sparse, spatio-temporal, variational, vas-
cular, 3D+T, 4D.

I. INTRODUCTION

A. Motivation and Objective

H IGH resolution time sequences of 3D images that show
the dynamics of blood flow would allow diagnostic capa-

bilities previously unavailable in cerebral angiography. These
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sequences have the potential to allow image feedback during
catheterization procedures that would facilitate the detection
and observation of flow anomalies such as stenoses, aneurysms,
and clots. Failure to detect partially or completely obstructive
clots during procedures such as carotid stenting or aneurysm
coiling could result in blood flow interruption to downstream
brain tissue leading to ischemic stroke. Unfortunately current
angiography systems do not provide the necessary sequences
of images due to insufficient volumetric sampling rates. The
methods presented in this paper employ images from current
angiography systems and achieve the goal of producing an ac-
curate time sequence of 3D blood flow intensity images.

We develop a variational energy approach, and obtain quanti-
tative performance results on computer generated phantom data.
The approach has also been applied to two real vasculature flow
cases: one with and one without the presence blood clots. The re-
sults are encouraging, indicating the methodology is promising,
and further clinical study based on real vasculature flow is now
justified before the methodology can be applied to direct oper-
ators during procedures. The emphasis of this paper is on the
3D+T reconstruction from lower dimensional 2D+T data. For
other parts of the work, such as those used to register the data,
implementation speed up, a brief description is provided.

B. Background

Current angiography systems produce high-resolution 3D
volumes by capturing a set of over a hundred X-ray images
each from a different angle, spanning a total of greater than
180 . Using a reconstruction algorithm, these projections are
combined to generate a single 3D image. The approximately 4
s it takes to capture a complete set of projections necessary for
3D reconstruction is clearly too long of a duration to observe
the advancing front of the contrast agent within the blood at
up to 100 cm/s [1]. Faster image sampling could capture time
histories of the rapid blood flow in 3D, but would also expose
patients to considerably greater X-ray doses. Currently, fusion
of the 2D time series information and a single 3D data set must
be performed mentally by skilled operators.

In [2], a method is presented for finding smoothly varying set
of skeletons that show the dynamics of contrasted blood flow
in coronary arterial trees. Additionally, [1], [3] provide an algo-
rithm that uses 3D data along with 2D time sets. First, 2D ar-
rival times are determined by using correlation with a template
time series. The 3D volume information is then distilled into
a tree-like structure that is combined with the 2D arrival times
using simple flow constraints. The result is a set of contrast ar-
rival times at discrete locations in 3D. Finally, model based flow
quantification is also found in [4].
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C. Approach

In this paper, we adopt a spatio-temporal data fusion approach
that provides a 3D time series (3D+T) reconstruction of con-
trasted blood flow based on both the 2D time series and a 3D
map. The reconstructed 3D time series provides far greater in-
formation than the 3D contrast arrival times extracted in [1], [3].
In addition to the 3D map, this approach constrains the recon-
struction to be smoothly varying off of a set of edges in time
and space and to contain sparse vasculature structures. The fu-
sion based reconstruction process is a variational approach that
can be extended by incorporating other constraints in a natural
way. This comprehensive approach provides a framework that
attempts to address the ill posed nature and associated ambigui-
ties of 3D time series reconstruction from sparse 2D time series
projections.

Specifically, these constraints are enforced by developing a
variational energy formulation similar to the one used in [5], [6].
Our formulation fuses the static 3D volume and the 2D X-ray
time series to produce a reconstructed time series of 3D vol-
umes. The data is prepared by first registering images within
each 2D time series, then segmenting the 3D volume to pro-
duce a map of the vasculature where the blood flow occurs, and
lastly by finding the relative poses of each of the 2D time series
with respect to the 3D volume. The solution of the variational
problem provides a 3D time series that can be used to estimate
additional blood flow characteristics including 3D arrival times.

We obtain results based on two time series projections from
two different poses. Furthermore, a real time implementation
of the algorithm is also a realistic goal as the algorithm can be
parallelized or implemented on a multi-GPU system.

D. Contributions

The work in this paper makes several contributions. The
methodological contributions include the following.

1) Variational Formulation. The reconstruction is made pos-
sible through an innovative variational formulation that in-
cludes a back projection model, a sparsity term, a three-di-
mensional constraint map, and a simultaneous smoothing
and segmentation framework that also provides an implicit
fluid flow model.

2) Efficient Algorithm. The spatio-temporal dynamics of the
blood flow allow for the use of a more efficient Gauss-
Seidel type algorithm for solving the Euler Lagrange equa-
tions. This algorithm provides a significant reduction in
memory usage and computation. It can also be easily par-
allelized.

New data products are made available
1) Reconstructed 3D time (3D+T) histories. A time series of

3D volumes of the estimated contrasted blood flow.
2) Contrast arrival times in 3D. Thresholding of the 3D time

history in time provides arrival times for the contrast front
at each voxel location.

3) Computational synthetic angiographic projections. The
3D time series allows the computational generation of 2D
synthetic projections from arbitrary poses.

These results combine to provide potential clinical benefits:

1) Synthetic angiographic projections. Currently, if an addi-
tional 2D+T projection perspective or pose is needed, con-
trast must be injected and new time instances captured. The
2D synthetic projections can reduce the need for additional
X-ray exposure.

2) Blood flow time of arrival 3D+T visualization. The 3D
spatio-temporal visualization provides the operator with a
3D view of the blood flow from all poses.

3) Flow-anomaly detection. The 3D+T reconstruction en-
ables the quick detection and 3D localization of life
threatening blood flow anomalies such as clots that can
compromise perfusion and health of downstream brain
tissue as demonstrated in Fig. 7

E. Organization

This paper is organized as follows. First, in Section II, we
present the core notation and a simple mathematical model for
the formation of angiographic images. In Section III, we de-
scribe the data preparation algorithms used to process the raw
data consisting of one or more 2D time series and a 3D volume.
Specifically, we provide a sketch of the algorithms used to do
the following: find the groupwise alignment of the raw 2D time
series, segment the 3D volume, and find the best 2D-3D regis-
tration consistent with the segmented 3D volume and the reg-
istered 2D time series. In Section IV, we present the mathe-
matical formulation for the spatio-temporal fusion that includes
constraints for simultaneous smoothing and segmentation, to-
mographic projections, sparseness, temporal smoothness, and
the 3D map. In Section V, we discretize the formulation and
provide a fully implementable algorithm that efficiently exploits
the spatio-temporal structure of the problem. In Section VI, we
show the results of applying the spatio-temporal data fusion al-
gorithm to both patient-derived angiographic data and computa-
tional phantom data. The clinical results are used to motivate the
application, while the phantom data are used to provide proof of
accuracy. Section VII provides additional discussion. Finally, in
Section VIII, we provide concluding remarks.

NOTATION AND IMAGE MODEL

The evolution of the three dimensional region of interest that
contains the contrasted blood flow is denoted by
in the continuous domain and in the discrete do-
main. The continuous and discrete versions of are defined
on a bounded region in and respectively. The overall 3D
volume taken while the flow of contrast is in steady state is de-
noted as and , where is similarly defined
on a bounded region in either or , respectively. Similarly,
the registered 2D time series are denoted as either ,
a function defined on a bounded region in , or , a
function defined on bounded region in .

Using a vector notation for the spatial arguments,
is written as where is a vector with components , ,
and . Similarly the vector notation is used for , ,
and . The use of is an abuse of notation that is in-
terpreted as the bilinear interpolated value [10] of the corre-
sponding function at the continuous spatial coordinate

in 3D or for a function in 2D.
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In the continuous case, the constraint map is defined to be
the set of points where the blood vessel is thought to be present
in the 3D function , while in the discrete case, is an indi-
cator function that is defined on the same domain as and is
equal to one where blood vessel is thought to be and zero oth-
erwise. The multiple registered 2D time series are also written
with the vector notation as , where is instead a 2D
coordinate vector. The time series are defined so that X-rays
from multiple views are represented as a single function. For
example, in the continuous case, if the X-rays captured from
two separate angles at a given time each have the same compact
support of , they can be written as a single func-
tion with compact support of . This defines a
single function on a larger domain in place of the two functions.
An analogous approach is used in the discrete case.

The continuous tomographic projection operator trans-
forms a function defined on (3D+T) into a function defined
on (2D+T). Following [11], the discretization of can be
described as a vector computation

(1)

where denotes the particular voxel and a particular pixel
and ray through the volume The operators and are defined
to be inverse operators of the continuous projection operator
and discrete projection operator , respectively. The inverse
is a transformation of a function defined on (2D+T) into a
function defined on (3D+T). For the continuous operator ,
one choice is the right Moore-Penrose pseudoinverse

(2)

where the superscript denotes the conjugate of the respective
operator. The norm of order of a vector is defined as

for .

II. DATA PREPARATION

The raw angiographic data from the medical procedure is
converted into a form that the spatio-temporal data fusion al-
gorithm can use. In Section III-A, we describe the data acquisi-
tion process. The data preparation begins with the groupwise
alignment of the raw time series described in Section III-B.
In a parallel step, the 3D volume is segmented using the al-
gorithm briefly presented in Section III-C. Finally, the relative
pose of the segmented volume with respect to the registered time
series is found using the fast 2D-3D registration algorithm in
Section III-D.

A. Data Acquisition

During a procedure, physician operators are able to observe
the flow of blood in the brain by releasing an X-ray opaque con-
trast agent into an artery in the neck via a femoral approach. The
effect of the contrast is then observed using a Siemens Axiom
Artis, a commercially available fluroscopy system with 3 di-
mensional rotational angiography capability. The methodology
is general and can be applied on data from other similar systems.
The measurements provide data in each of two forms: 1) a 3D

volume taken in steady state by reconstructing X-ray ex-
posures taken from more than a hundred different perspectives,
2) one or more time series of 2D X-rays taken from a
fixed angle during the injection of contrast. The 2D image se-
quences used in this work are captured from two separate angles
at rates of up to 8 frames per second.

B. Groupwise Registration of 2D Time Series

In cerebrovascular procedure where a catheter is used, the pa-
tient is conscious, so head motion is inevitable. The first step of
data preparation removes the effect of patient motions from the
time sequences using a groupwise registration algorithm based
on the least squared error metric described in [12].

C. 3D Segmentation

To fuse the two data sets, the 3D volume and the registered
2D time series, the location of the blood vessels need to be ex-
tracted from the 3D volume. Because the volumes in the study
may be as large as voxels, we use a simple threshold on
the static volume to produce the constraint map . The map
is later used in 2D-3D registration and in the variational fusion
algorithm discussed in Section IV. Clearly better segmentation
will yield better results. Potential gains from improved segmen-
tation are discussed in Section VII-D.

D. 2D-3D Registration

The final hurdle in preparing the data is to determine the rel-
ative pose of the 2D time series in relation to the 3D volumes.
This pose, which is often not accurately given a priori, can be
found by finding the projection of the volume, known as a dig-
ital reconstructed radiograph or DRR, that is most similar under
correlation to a representative image of the registered time se-
ries. The search is initialized with the angiographic system’s
measured pose information. We find the representative image by
subtracting the minimum intensity from the maximum intensity
at each pixel location within the time series. This process iso-
lates the vasculature within the time series. The rate limiting step
of the registration is the determination of the DRRs from the de-
sired geometry. The term approximate DRR is used to refer to a
projection of a symbolic 3D volume instead of the actual 3D in-
tensities themselves. This greatly reduces the complexity and in
many cases provides similar results to the standard DRR. Sev-
eral works in the literature provide efficient algorithms for deter-
mining DRR’s or approximate DRR’s [13]–[20]. Each of these,
with the exception of [20], requires a significant amount of com-
putation to transform the data into a more convenient form for
the generation of the DRR or approximate DRR.

Our proposed algorithm approximates the DRR by projecting
a triangular mesh representation of the blood vessel structure
contained within the 3D volume. It begins by first producing
a mesh using the Marching Cubes algorithm [21] on the seg-
mented data. This algorithm creates a collection of points that
combine to form a surface that is sparse in size compared to the
3D volume. Each triangle in the mesh can then be transformed
and projected to form the approximate DRR. This reduces the
computation time by a factor of one hundred over the full calcu-
lation of the DRR using sums across rays in the original volume
as in [22]. After the mesh is projected into the imaging plane,
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the pixels location within each triangle are set to one. Mesh re-
duction algorithms such as [23] and the Matlab function redu-
cepatch [24], used here, can further speed up the algorithm by
reducing the number of triangles without affecting the qualita-
tive shape of the mesh. By reducing the number of triangles by
90% we achieved a factor of 6 speedup. A more detailed descrip-
tion of this process along with results can be found in [12]. On
a 2.0 GHz Intel Core 2 Duo machine the generation of a single
DRR took 0.039 s.

III. SPATIO-TEMPORAL DATA FUSION FORMULATION

Spatio-temporal data fusion reconstructs a 3D time series that
shows the flow of blood during a medical procedure. The input
data consists of the two registered time series , that
we now denote as , the constraint map , and the accompa-
nying 3D pose information. This work builds on the variational
formulation developed in [5], [25] for smoothing images while
simultaneously finding the set that best segments the image.
In [26], [27] the edge set was replaced with the spatial edge
indicator function . Specifically, spatio-temporal data fusion
generalizes to the angiography application the stable numerical
implementation of the [26], [27] algorithm found in [28], [29].

Spatio-temporal data fusion constrains the reconstruction by
taking advantage of the structure and attributes of blood ves-
sels in the following five ways: 1) the reconstruction is con-
sistent with the time projection model, 2) the reconstruction
is smoothly varying off of edges in space [25], 3) blood flow
over time follows physical laws, 4) blood generally appears in
sparse convex structures, and 5) the reconstruction is nonzero
only within the 3D constraint map. Using these five attributes
helps resolve ambiguities and minimize the presence of artifacts
in the reconstructed 3D time series. The constraints are imposed
using energy functionals with terms that penalize the violation
of constraints.

A. Variational Formulation

The variational minimization problem used to impose con-
straints on the reconstructed 3D time series is shown in
(3) at the bottom of the page where is the spatial edge func-
tion; is the temporal edge function; and are the projection
and back projection operators respectively; is the measured
two dimensional data following registration; is the constraint
map that specifies the location of the blood vessels in 3D;
is the duration of the time sequences; and , , , and are
weights. The first term in (3) ensures that the 2D projections

of the reconstructed volume are consistent with the measured
time series of 2D projections. Note that this approach is different
from using the inverse of the projection data with the recon-
structed image in the data fidelity term, i.e., . The goal
of the data fidelity term in (3) is to match the projection of the
reconstructed data, not to match the final image to the output of
any particular inverse tomographic algorithm. The second and
third terms ensure that the reconstruction is smoothly varying
off of the edges in space and time, respectively. The fourth term
ensures that the reconstruction is sparse. The last four terms en-
sure that the spatial and temporal edge terms are both smoothly
varying and sparse.

The back projection operator of the data fidelity term is
different from [29] where Lagrange multipliers were used to
weight differences in the projections. A different approach that
instead uses level sets to solve a variational formulation of the
tomography problem is presented in [31]. Note that the func-
tional is defined on the domain and integrated
with respect to . Because the blood vessels are spatially
sparse, the knowledge of their locations can further regularize
the fusion process. Specifically, the reconstruction is confined
to the constraint map . The map takes on a value of one at the
locations in where the vasculature is thought to be and zero
otherwise.

The under determined set of measurements result in com-
monly known back projection artifacts [22]. These artifacts
can be minimized by restricting the contrast to the expected
tight convex small regions. Reconstructions of this type can be
encouraged by penalizing the or zero-norm constraint,
which represents the desired non-vanishing support of .
Under this sparsity term, the minimization is not convex and is
thus difficult to solve. To create an optimization process that is
convex with respect to while fixed and with respect to
with fixed, we follow recent work in [32]–[35] and instead
use the 1-norm constraint . Under certain conditions on the
overall sparseness, number of nonzero terms measured by the
0-norm, of the underlying data, the 0-norm and 1-norm opti-
mization problems achieve identical results [32], [36]. Unlike
the work in [37], where linear programming is used to minimize
the sparseness under a separate constraint on the projections,
the formulation in (3) minimizes the two in a single term. For
appropriate choices of the results should be similar because
both optimization techniques minimize the same two terms.

Note that the back projection operator in the first term of the
variational formulation brings all terms into the same spatio-
temporal domain, thereby facilitating the utilization of Calculus

(3)
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Fig. 1. The first row shows (a) a sample image with added noise, along with
projections in (b) the row and (c) column directions. The middle row shows
reconstruction using (d) neither map nor sparsity, (e) the� norm based sparsity
term, and (f) both the sparsity term and a map to resolve ambiguity. In the last
row, (g), (h), and (i) are the edge maps corresponding to, respectively, (d), (e),
and (f).

of Variations. Using the back projection operator defined in (2),
the resultant Euler Lagrange equations associated with the min-
imization of functional found in (3) are

(4)

for ,

(5)

for , and

(6)

for . These coupled equations are used to find the desired min-
imum of (3) that occurs when the three gradients are equal to
zero and the second derivatives are positive. Unless the func-
tion in (3) is globally convex with respect to , , and , the
minimum is not necessarily global.

B. Impact of Map Constraint and Sparsity Terms

The 4D spatio-temporal process is difficult to visualize. For-
tunately, many of the salient features of the 4D reconstruction
can be observed in a 2D spatial reconstruction problem. In fact,
the example we present in Fig. 1 can be thought of as a slice
from 3 dimensional columns extending into and out of the page.

The impact of the map constraint and the sparsity term for the
equivalent 4D reconstruction problem are similar in nature.

The first row of Fig. 1 shows a sample cylinder slice with
added noise along with projections in the row and column di-
rections. The middle row shows the reconstructions using nei-
ther the map nor the sparsity term, [Fig. 1(a)], using the spar-
sity term and no map [Fig. 1(b)], and lastly using both the spar-
sity term and the map [Fig. 1(c)]. The third row shows the edge
functions for the corresponding smoothed reconstructions in the
second row. The left and middle reconstruction show the pres-
ence of two “ghost” circles where none appeared in the orig-
inal. The “ghost” circles are however consistent with the two
projections and can be interpreted as giving an equal weighting
to each of the circles when insufficient information is available
to decide between them. The left reconstruction contains arti-
facts of back projection that are eliminated by using the sparsity
term shown in the center reconstruction. The right figures in the
second and third rows show the result of introducing the map to
resolve the “ghost circle” ambiguity. In this example, the shape
of the map is not important; it must only reject the regions con-
taining the two “ghost” circles. We examine the impact of other
terms in the energy functional and provide quantitative results
in Section VI-A.

IV. IMPLEMENTATION OF THE SPATIO-TEMPORAL ALGORITHM

In Section V-A, we present the discretization of the contin-
uous Euler Lagrange Equations shown in (4)–(6). The notation
and choice of edge function draw heavily from the 2D work
done in [29], which provides both an accurate discretization and
one of first few implementable algorithms in the literature [6].
Our works extends the 2D work in [29] into four dimensions, 3
space and 1 time, and includes different terms used in the an-
giography application. In Section V-C the discretization is ex-
tended into an algorithm that exploits the spatio-temporal struc-
ture of the problem. Lastly, in Sections V-B and V-D we present
a discussion of a few details of the implementation and a few
potential enhancements.

A. Discretization

The reconstructed volumes are defined on a rectan-
gular lattice that only includes points where the map function is
equal to one. The spatial edge function is defined on a
similar rectangular lattice produced by placing a point between
each pair of adjacent points in space of the lattice that supports

. Similarly, the temporal edge function is de-
fined by placing a point between each pair of adjacent points
in time of the lattice that supports . This discretization
provides both an accurate and simple implementation. The lat-
tice for is defined on the subset of where the map

as

(7)

The nearest neighbors of the image at point are
the points in the set

(8)
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The lattices for the spatial edge function and the tem-
poral edge function are respectively,

(9)

and

(10)

The resultant nearest neighbors for are

(11)

and for are

(12)
For a simpler implementation, the terms and are replaced

with and , respectively. The interpretation of the value
of 1 and 0 are simply reversed. The resultant discrete functional
is shown in (13) at the bottom of the page. Without loss of
generality, the term is replaced with in the discretization.

B. Discrete Implementation of Back Projection

The discrete back projection operator in (13) is difficult
to calculate directly, so we instead solve for using the con-
vergent iterative method, known as the Simultaneous Algebraic
Reconstruction Technique (SART) [38]

(14)

where, as before, denotes the particular pixel and ray and
the particular voxel. A detailed discussion on determining
and is provided in [12]. The terms and are used for the
summation over all rays (pixels) and all voxels respectively.

C. Exploiting Structure of Space-Time Constraints

This section develops an iterative numerical algorithm based
on the Euler Lagrange equations for (13) that takes advantage
of the structure of the constraints. Instead of using a Jacobi-type
descent, a Gauss-Seidel [39] type descent is used that alternates
between solving for reconstructions at an individual times and
solving for the time coupling term. This breaks the total 3D time
series reconstruction into successive 3D reconstructions. The
Gauss-Seidel-type iteration alternates between solving for the
individual 3D volumes and solving for the temporal edge term

. This decoupling allows the algorithm to use less memory by
writing variables to disk that are complete after the final iteration
on a volume and by loading needed variables from disk before
iterations are run on the next volume. By using the Gauss-Seidel
based method the memory requirements were reduced from 10
GB to 600 MB for a series of 10 volumes.

In order to represent the iterative nature of this algorithm,
the variables can be modified to denote the value at a particular
iteration by adding the additional argument to the respective
function such as in , , and . In a
typical Jacobi-type algorithm, all the variables at each spatial
location and time at iteration are saved for determining
the variables at the next iteration . This type of algorithm
requires keeping two copies of the entire state , , and , one
at iteration and another at iteration . This doubles the
memory requirements of this already demanding application.

The Gauss-Seidel type algorithm provides an in place algo-
rithm for finding the reconstruction of , , and at each time.
This process can be extended to further decouple the determi-
nation of at each time. Specifically, given for each spatial
location at time and , and

can be determined for several gradient descent

(13)
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iterations instead of just one. The number of itera-
tions can be set to a number greater than one to avoid the cost
of switching from the determination of both and to the de-
termination of . For iterations, this process
decouples the individual 3D reconstructions from the smoothing
of each spatial location across time. The reconstruction still be-
gins at time one, but now iterations are performed at each time
instead of just one. Following [29], the iterative scheme for si-
multaneously determining and is
given by

(15)

where denotes the index of a particular ray or pixel and de-
notes the index of a particular voxel, and

(16)

using the weighting terms

(17)

and

(18)

To arrive at the gradient descent equation found in (15), we ap-
proximated the matrix product with the identity matrix in
the first variation with respect to of (13). After the variables

and are obtained
using iterations of (15) and (16),

(19)

is evaluated for iterations using the weight

(20)

D. Implementation Details

The algorithm is started by initializing to one inside the
constraint map and zero outside, to one over the whole
domain, and to zero over the whole domain. The use of other
initial conditions change the algorithms speed and point con-
vergence. For example, if is set to zero instead of one, the
convergence is very slow because the term in , de-
fined in (17), makes the gradient step very small. A corollary to
this observation is that larger values of yield bigger gradient
steps. As desired, this difference in speed causes the functional
to favor regions with smaller support. Finally, the 2D time se-
ries are scaled so that the numerical values of are less than
one and greater than or equal to zero.

V. SPATIO-TEMPORAL RESULTS AND VALIDATION

This section shows results for the spatio-temporal data fusion
algorithm on both real angiographic data and computational
phantom data. Section VI-A provides a quantitative analysis of
the algorithm using computational phantom vasculature blood
flow data. In Section VI-B, results are shown for data sets taken
of two different patients: set contains a time series acquired
at a high frame rate and set contains time sequences acquired
at a lower frame rate taken both with a clot is present and after
the clot is removed.

A. Performance Evaluation on Computational Phantom Data

We use computational phantom data to evaluate our algo-
rithm. We obtain quantitative performance results based on
blood intensity residual comparison and the time of arrival
for each voxel of the contrasted blood flow front. The quality
of the 3D+T reconstruction in terms of signal to noise ratio
can be attributed to the formulation’s ability to provide simul-
taneous spatio-temporal smoothing and segmentation during
reconstruction. We continue the discussion in Section IV-B and
distill our experience in examining the effects of various terms
and weights in the energy functional (3).

1) Quantitative Results: Contrasted Blood Flow Time of
Arrival and Residual Comparison: Fig. 2(a) shows a view
from a time series of a particular blood flow in a 3D compu-
tational phantom vasculature. Gaussian noise is added to the
3D phantom time series data. The resultant values are then
clipped to be nonnegative. From the noisy phantom data, 2D
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TABLE I
QUANTITATIVE RESULTS FROM COMPUTATIONAL PHANTOM

Numerical results based on comparison of the reconstructed data and the original computer generated phantom. The first column indicates the time instances,
while the second the percentage of voxels that are assigned a correct time of arrival for each of four instances of the time series. The 3rd to 6th column gives the
percentage error based on root square mean error (RSME) in the residual of the projection from 4 different poses, as well as the improvement in dB (italic), for
the four time instances. A residual error visualization is shown in Fig. 2(e).

Fig. 2. Original and reconstructed computational phantom time series. The top
row shows (a) the truth computational 3D+T phantom vasculature flow at a par-
ticular time in the time series and (b) a 2D synthetic X-ray projection of a noisy
version of (a) from a particular pose. The middle row shows (c) the algorithm’s
3D reconstruction of (a) from a time series of synthetic projections taken from
two different poses and (d) a 2D synthetic X-ray projection from the reconstruc-
tion in (c) using the same pose as in (b). The bottom row shows the magnitude
of the 2D residual (e) = �(b)–(d)�, with the gray scale adjusted for visibility. The
residual (e) would be invisible if shown at the scale of (b) or (d). Table I presents
numerical results for additional poses and time instances.

X-ray synthetic projections are obtained for two perspectives
or poses. The effective signal to noise ratio of the synthetic 2D
X-ray projections, obtained by taking the ratio of the square
root of the power in the noiseless projection, to the square root
of the power in the noise, varies between 0.71 and 0.79 for all
projection measurements at most instances, or an equivalent of

to .
Fig. 2(b) shows a noisy 2D synthetic projection from one

pose of a noisy version of the 3D+T vasculature flow in Fig. 2.
These time series projections taken from two different poses are
in turn used to reconstruct the 3D+T time series of the flow.
Fig. 2(c) shows the algorithm’s 3D time series reconstruction
for the same pose and time instance of Fig. 2(a), with a corre-
sponding 2D synthetic X-ray projection from the reconstruction

shown in Fig. 2(d). The projections of Fig. 2(b) and (d) are taken
from the same pose at the same instance, and the residual dif-
ference is shown in Fig. 2(e), after gray scale adjustment for
enhanced visibility; the residual, which shows no significant ar-
tifacts, is not visible at the scale of either (b) or (d).

The 3D+T reconstructed image intensities are appropriately
thresholded to assign each voxel a contrast arrival time. Table I,
second column, gives the percentage of voxels that are assigned
the correct contrast time of arrival. In all cases, at least 95% of
voxels are given a correct assignment.

Next, for quantitative residual comparison, 2D synthetic pro-
jections from four poses at four time instances are obtained from
both the original and reconstructed volumes. These projections,
whose pose is different from those of the two original projec-
tions used to reconstruct the 3D+T time series, are compared at
each of the four time series instances.

For each pose’s residual at each of the four instances the root
mean square error (RMSE) is computed and normalized by the
square root of the power in the projection measurement. Table I,
third to sixth column, displays the percentage error for each pose
at each instant, as well as the equivalent dB gain. The errors
vary between 8.78% and 12.27%. The equivalent dB improv-
ment varies between 18.029 and 20.08 dB.

2) Robustness to Weight Parameter Values: We also tested
the robustness of these results with respect to the choice of the
weigh parameters , , , and in (3). On the average, results,
over about a dozen trials, were for most views at most instances
comparable. For instance, a different set of weights, gave a max-
imum error in Table I of 12.57%, and a minimum one of 2.42%,
with most errors below 9%.

3) Effects of Terms in Energy Functional: The effect of the
sparsity term and the map were investigated in Section IV-B.
The effect of the other terms on the final reconstruction is now
examined on the phantom model of Fig. 2 by setting the different
weights to zero one at a time. In sum, the edge functionals are
needed for simultaneous smoothing and segmentation while re-
construction evolves simultaneously across space and time [5],
[6].

The spatial smoothness modulated by the spatial edge terms
and the cost terms associated with the edge functional and its
gradient are needed for more accurate estimation of the bolus
front inside the vasculature. Although, due to the presence of a
prior map, its effect on vasculature segmentation is not as im-
portant. In the presence of inaccuracies in the map, however, this
term will contribute to more effective vasculature segmentation.
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Fig. 3. Raw data for patient A—The first row shows a visualization of the 3D
map generated from patient A from two views. The second and third rows show
the measured 2D projections at different times for the antero–posterior and lat-
eral views, (a) and (b), respectively. (c) Time 1. (d) Time 5. (e) Time 10. (f)
Time 1. (g) Time 5. (h) Time 10.

The temporal smoothness term modulated by the time edge
term and the cost terms associated with and its time derivative
are crucial. For instance, about four times as many pixels were
wrongly assigned in the absence of these terms.

B. Validation on Angiographic Data

1) 3D+T Time Series Reconstruction: Patient A: The top row
of Fig. 3 provides a visualization of the vasculature map of pa-
tient A that is used as an input to the spatio-temporal data fu-
sion algorithm. The map is accurate for the larger vessels, but
contains noticeable errors in the smaller vessels. In addition, a
sampling of the original 2D image sequences of patient A are
shown from the antero–posterior view (middle row) and from
the lateral view (bottom row). The algorithm fuses all the infor-
mation contained in Fig. 3 to provide the 3D+T time history of
Fig. 4.

The top two rows of Fig. 4 shows a visualization of the re-
construction of a 3D time series of real angiographic data at six
of nine different times. The figure shows the result of rendering
a mesh at an isosurface based on a particular threshold. These
panels show the outward flow of blood as time progresses. This
flow is consistent with the type of blood flow that is expected
and with what is observed in the 2D time series. Another way of
visualizing the 3D flow is using the color coded arrival times, as
shown in the third row of Fig. 4. The color coded arrival times
show the advancing front of the contrast. This allows the 3D
flow of the blood to be accessed in a single manipulatable sur-
face from a multitude of views.

Fig. 5 illustrates the impact of varying the visualized iso-level
of the reconstruction at time 8. As the threshold is lowered more
of the blood vessel can be seen, but at the same time more arti-
facts appear. Because of this trade off an appropriate threshold
needs to be carefully chosen. The figure also gives a visualiza-
tion of where the large values are in the reconstruction. This
appearance is consistent with the reconstructions within the 2D
images in Section IV.

Fig. 6 shows a few of the reconstructed (right panels) 2D
image sequences of patient A from the antero–posterior (top
row) and from the lateral (middle row). These reconstructions
can be compared to Fig. 3. As hoped, the reconstructed image
sequences are visually similar to the original measured image
sequences. This similarity was determined by Dr. Malek, an ex-
perienced Neurosurgeon. The few differences between the orig-
inal and reconstructed time series are due to vessels not ap-
pearing within the 3D map in Fig. 3, the small delay between the
acquisition times of the image pair (the antero–posterior view
had a small delay from the lateral view), and the regularization
terms used in reconstruction.

In addition to the reconstruction of 2D series from observed
views, the synthetic projections or DRRs can be produced for
the same blood flow instances from unobserved views as seen
in the bottom row of Fig. 6. This process allows surgeons to
find the best view for observing an area of interest such as one
containing a clot or an aneurysm. This capability allows angio-
graphic time sequences taken from different views to be com-
pared directly. It also enables the generation of projections from
unobservable views, such as from the top or the bottom of the
patients head. In addition, this process reduces the X-ray ex-
posure dose a patient receives by replacing actual X-rays with
synthetic X-Rays.

2) Blood Flow Anomaly Detection: Patient B: This case
highlights the ability of the proposed algorithm to visualize
changes of blood flow that may develop during procedures.
Fig. 7 shows the reconstructed data sets for patient B that were
visualized from different views. The panels on the left are for
flow in the presence of the clot while the panels on the right are
for the normal flow after the clot is removed. The arrival times
of the contrasted blood flow downstream from the blocked
artery are delayed by 1–3 frames from what they were in the
no clot case. The visualizations shown in Fig. 7 highlight the
presence of the clot and also confirm the successful removal of
the clot.

These visualization allow for straightforward comparison and
can alert the surgeon to the presence of a problem that can be
further assessed and acted on if necessary, without the need to
compare the multitude of frames from multiple 2D X-ray time
sequences. More importantly, it may help detect subtle changes
in regional blood flow that may escape detection by the visual
comparison method currently employed by physician operators.

VI. DISCUSSION

A. Variations on Algorithm

In addition to the forward Gauss–Seidel implementation, the
algorithm can be run in the reverse direction (starting at the last
time and moving backward in time) or with alternating forward
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Fig. 4. Visualization of reconstructed 3D time series for patient A. The top two rows in (a)–(f) show visualizations of the reconstructions at six of the nine time
steps. The total observed sequence took one second. The threshold of 0.01 was used to generate the isosurfaces. While the bottom row shows in (g)–(i) a 3D time
series using color to denote the arrival time of contrast at the different points on the surface of the mesh. This visualization is shown for three separate views and
are sampled at eight hertz.

and reverse sweeps. Because each volume is linked to its imme-
diate neighbor, another interesting choice is to calculate every
other volume in a single sweep (e.g., the odd times) and then go
back to calculate the volumes at the remaining times (e.g., the
even times) in a second sweep. This type of algorithm is sim-
ilar to a red-black Gauss–Seidel [40] algorithm, where every
other item is labeled red and each of its neighbors are labeled
black. Such an algorithm consists of “red” iterations followed by

“black” iterations. Determining each volume of a given color is
independent of all other volumes of that same color. An algo-
rithm of this form is parallelizable, leading to significant gains
in computational performance. Restriction of the reconstruc-
tion to the map allows for further optimizations that yield im-
proved speed and reduced memory constraints. The resultant al-
gorithm provides a memory efficient and stable method for re-
constructing the blood flow.
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Fig. 5. Effect of thresholds on visualization. Visualization of the reconstruction
for patient A at time 8 using four separate thresholds. (a) ��������� � �	�.
(b) ��������� � �	��. (c) ��������� � �	���. (d) ��������� � �	���.

B. Implicit Fluid Flow Model

The temporal smoothness constraint in (3) provides an
implicit fluid flow model. This model smoothes the intensities
through time off of a set of edges or discontinuities in the flow.
The set of discontinuities is penalized to be smoothly varying
in space and time. A higher fidelity fluid flow model would
capture a more precise numerical model for the flow. The
temporal flow of the contrast can be captured by the temporal
derivative of the intensities or . If satisfies

(21)

where enforces the Navier Stokes equation, then is a
valid flow. For such formulations to be practical, an appropri-
ately chosen operator that approximates can instead be
used. A possible functional for incorporating models of this
form is shown in (22) at the bottom of the next page where
is a penalty term that penalizes deviations from the flow model.
Note that, for simplicity, we did not include a temporal edge

Fig. 6. Reconstructed time series projections of patient A. Digital reconstructed
radiographs of the reconstructed 3D time series for patient A from the antero-
posterior (top row), from the lateral view (middle row), and from a view that
was not observed in the original angiographic sequences (bottom row) at three
different times. Compare the first and second rows to the measured data shown
in Fig. 3. (a) Time 1. (b) Time 5. (c) Time 10. (d) Time 1. (e) Time 5. (f) Time
10. (g) Time 1. (h) Time 5. (i) Time 10.

function as is used in (3). If, however, we wish to capture
abrupt changes within our model, the edge function can be in-
cluded. Finally, usage of such a model would help resolve po-
tential flow ambiguities in more complex settings.

C. Algorithm Run Time

The current algorithm runs in approximately six hours on a
single core of an Intel Xeon 5160. The structure of the proposed
algorithm contains multiple parts that can be computed in par-
allel and that rely on data that are located in 2D and 3D arrays.
These types of algorithms map particularly well to Graphical
Processing Units. Typical speedups of such algorithms in prac-
tice are on the order of 50 , [41]. Furthermore, a red black
version of the algorithm can easily be spread across multiple
GPUs. Workstations containing 4 GPUs are readily available at
the writing of the paper. Using such a system and code adapted
to NVIDIA’s Compute Unified Device Architecture (CUDA)
programing language [42], execution times on the order of a
few minutes are likely. An example from a similar application
is shown in [43].

(22)
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Fig. 7. With clot and post-clot removal 3D arrival times for patient B—Visualization of the reconstructed time series of patient B before (left) and after (right) a
clot is removed from the middle cerebral artery in two views. Color is used to show contrast arrival time. The comparison of the arrival times images (left with the
right) verified the removal of the clot. The blocked artery delays the down stream contrast arrival times by 1–3 frames (sampled at 3 Hertz) when compared to the
baseline case. (a) Clot. (b) No Clot. (c) Clot. (d) No Clot.

D. Generation of Constraint Map

The map that was generated in this work provided good re-
sults, but it was clear that if a better map were available the re-
sults could be improved. A better segmentation algorithm such
as [6] would allow finer vasculature structures to be resolved
thereby leading to a more accurate reconstruction. Additionally,
care should be taken to make sure that the entire region of con-
trasted vessels appear in the volume used to generate the con-
straint map. Other imaging modalities such as MRA or CTA can
provide constraint maps. Constraint maps from these modalities
can be enhanced through application of algorithms such as those
in [44].

The primary purpose of the constraint map is to resolve am-
biguities, while the L1 term is used to make it sparse. Conse-
quently the constraint map can be enlarged to include all regions
that do not reintroduce ambiguities resolved by the original con-
straint map. This can be found by comparing volume generated
from the image pair at the time when the vessels are fully con-
trasted using the constraint map to those without the constraint
map. Such an approach may compensate for deficiencies in the
segmentation algorithm.

E. Extension to One or More Time Series

The use of more than two time series would lead to improved
performance at the expense of additional exposure to the patient.
Angiographic systems typically accommodate only two poses
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simultaneously for the same blood flow history. To capture the
additional time sequences new equipment and/or imaging tech-
niques would need to be utilized. The temporal derivatives in the
formulation can be modified and extended to support the use of
image sequences from more than two poses if the relative timing
of the different sequences is known. If the timing information is
not known, a synchronization algorithm is needed.

In reconstructions from a single time series, the risk of ambi-
guities goes up, and operators will feel less comfortable using
reconstructed information. These ambiguities most likely can be
reduced by increasing the temporal frame rate, however, further
study would be required to verify this.

VII. CONCLUSION

Angiographic imaging is essential in clinical management
of patient-based lesions, both diagnostic and therapeutic. Ex-
tracting maximum information from raw images is paramount
to safely performing medical procedures. This research has
succeeded in extracting previously unavailable angiographic
3D+T histories from currently available surgical X-ray raw data
without requiring additional image collection and consequent
patient x-ray exposure. These time series also allow the gener-
ation of 2D projections from arbitrary views. The new images
can improve the physician operator’s procedure monitoring
and allow quicker detection of intra-procedural life-threatening
anomalies such as stroke-inducing blood clots.

The main contribution of this work is a variational formula-
tion that achieves reconstructions by incorporating a 3D vas-
culature map and the 2D time sequences along with the use of
sparsity and spatio-temporal constraints that approximate an im-
plicit fluid flow model. Our implementation provides an efficient
algorithm by exploiting the space-time structure of the problem.

This approach can be generalized to angiographic imaging in
other vascular beds such as the heart and periphery and to recon-
struction of higher dimensional ( greater than 4) phenomena
from lower (less than ) dimensional observations.
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