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Abstract

In part I, we reviewed how Shannon’s classical notion of capacity is not sufficient to characterize a noisy
communication channel if we intend to use that channel as a part of a feedback loop to stabilize an unstable scalar
linear system. While classical capacity is not enough, a parametric sense of capacity called “anytime capacity” was
shown to be both necessary and sufficient for the stabilization of an unstable process over that channel. The rate
required is the log of the open-loop system gain and the sense of reliability required comes from the desired sense
of stability. This is sufficient even in cases with noisy observations and without any explicit feedback between the
observer and the controller.

Here, in part II, the vector-state generalizations are established and it is the magnitudes of the unstable
eigenvalues that play an essential role. To deal with such systems, we introduce the concept of the anytime rate-
region which is the region of rates that the channel can support while still meeting potentially different anytime
reliability targets for the parallel bitstreams. All the scalar results generalize on an eigenvalue by eigenvalue basis.
For cases in which there is no explicit feedback of the noisy channel outputs, the intrinsic delay of the control
system tells us what the feedback delay needs to be while evaluating the anytime-rate-region for the channel.
We close with a numeric example involving a binary erasure channel that illustrates how differentiated service is
required in any separation-based control architecture.
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The necessity and sufficiency of anytime capacity for stabilization of a linear system
over a noisy communication link

Part II: vector systems

I. INTRODUCTION

One of Shannon’s key contributions was the idea that bits could be used as a single universal currency for
communication. For a vast class of point-to-point applications, the communication aspect of the problem
can be reduced to transporting bits reliably from one point to another where the required sense of reliability
does not depend on the application. The classical source/channel separation theorems justify a layered
communication architecture with an interface that focuses primarily on the data rate. Data rate has the
advantage of being additive in nature and so multiple applications can be supported over a single link
by simple multiplexing of the data streams. The underlying noisy channel is thus abstracted away and
considered only in terms of its capacity. This paradigm has been so successful in practice, that researchers
often assume that it is always valid.

Interactive applications pose a challenge to this separation based paradigm because long delays are not
allowed. In part I of this paper [1], we studied the requirements for a particular interactive application:
stabilization of an unstable scalar linear system with feedback that must go through a noisy communi-
cation channel.1 It turns out that data rate is not the only relevant parameter since the underlying noisy
channel must also support enough anytime-reliability to meet the targeted sense of stability. However, the
architectural implications of this result are unclear in the scalar case since there is only one data stream.
In addition, scalar control does not provide a natural setting in which to explore interactions involving
more than two parties.

To better understand the architectural implications of interactivity in a well defined mathematical setting,
it is natural to consider the stabilization of linear systems with a vector-valued state. Prior work on
communication-limited stabilization problems had also considered such vector problems, but primarily
from a source coding perspective in that the communication constraint was expressed as a rate constraint.
[2] showed that the minimum rate required is the sum of the logs of the magnitudes of the unstable
eigenvalues and [3] extends the result to certain classes of unbounded driving disturbances. [4], [5] gave
a bound on control performance in the vector case based on sequential rate distortion theory. These
sequential rate-distortion theory bounds essentially calculated what control performance is possible using
a noisy channel that is perfectly matched to the unstable open-loop system while being restricted to having
a specified Shannon capacity. Thus, the prior necessary conditions on stabilization were only in terms of
Shannon capacity and the prior sufficient conditions required noiseless channels.

In this paper, our goal is to generalize the tight necessary and sufficient conditions from the scalar case
to the vector case, and to begin exploring the architectural implications of these results. The goal is to
understand what happens in the point-to-point case with a single noisy link and thereby set the stage for
understanding multiparty interactions.2 Recently, Pradhan has investigated block-coding reliability regions
for distributed channel coding without feedback.[8], [9] Our results in this paper indicate that reliability
regions are important even in the point-to-point case.

After first briefly reviewing the main results from the scalar case in Section I-A, we introduce our
model of vector valued linear control systems in Section I-B. The generalization of the scalar results to
the vector case is done in stages. In Section II, we study the case of A matrices that are real and diagonal.
This is essentially multiple copies of the scalar case and it shows what the requirements are going to be
in the vector case with a minimum of technical difficulties. In Section III, we examine the generic case of
vector systems that have diagonalizable A matrices. Here, the issues of controllability and observability
become important, but can be addressed by treating time in the appropriate short blocks. There is also

1See [1] for more discussion of relevant prior work.
2The multiparty case has begun to be addressed in the control community [6], [7] under the assumption of noiseless channels.
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Fig. 1. Control over a noisy communication channel. The unstable system is persistently disturbed by Wt and must be kept stable in
closed-loop through the actions of O, C.

a more subtle issue regarding intrinsic delays in control systems that is dealt with in Section IV. The
remaining nongeneric case of nondiagonalizable matrices is addressed in Section V.

The significance of these results is demonstrated through a numeric example in Section VI involving
stabilization of a vector-valued plant over a binary erasure channel. For this example, we point out that
stabilization is impossible unless different bits are treated differently when it comes to transporting them
across the noisy channel. These results establish that in interactive settings, a single “application” can
fundamentally require different senses of reliability for its data streams. No single number can adequately
summarize the channel and any layered architecture for reliable communication should allow applications
to individually adjust the reliabilities on bitstreams.

There are many results in this paper and most of them involve straightforward generalizations of results
from [1]. In order not to unduly burden the reader with details and unnecessarily lengthen this paper, we
have adopted a discursive style in some of the proofs. The reader familiar with [1] should not have any
difficulty in filling in the omitted details.

A. Review of scalar system results from part I

This section just restates the key results and ideas from [1] that we will build upon here. The reader is
referred to [1] for complete proofs, motivations, and other discussion. The complete problem is illustrated
in Figure 1 and the core unstable scalar system is modeled as:

Xt+1 = λXt + Ut + Wt, t ≥ 0 (1)

where {Xt} is a IR-valued state process. {Ut} is a IR-valued control process and {Wt} is a bounded
noise/disturbance process s.t. |Wt| ≤ Ω

2
. This bound is assumed to hold with certainty. For convenience,

we also assume a known initial condition X0 = 0.
Our goal is to stabilize the system in closed loop:
Definition 1.1: (Definition 2.2 in [1]) A closed-loop dynamic system with state Xt is η-stable if there

exists a constant K s.t. E[‖Xt‖η] ≤ K for all t ≥ 0.

Definition 1.2: (Definition 3.1 in [1]) As illustrated in figure 2, a rate R communication system over a
noisy channel is an encoder E and decoder D pair such that:

• R-bit message Mi enters3 the encoder at discrete time i

3In what follows, we will often consider messages as composed of bits for simplicity of exposition. The i-th bit arrives at the encoder at
time i

R
and thus Mi is composed of the bits S

biRc

b(i−1)Rc+1.
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Fig. 2. The problem of communicating messages in an anytime fashion. The important feature is that both the encoder E and decoder D
are forced to be causal maps and the decoder in principle provides updated estimates for all past messages. We further require that these
estimates converge to the true message values appropriately rapidly with increasing delay.

• The encoder produces a channel input at integer times based on all information that it has seen so
far. For encoders with access to feedback with delay 1+θ, this also includes the past channel outputs
Bt−1−θ

1 .
• The decoder produces updated channel estimates M̂i(t) for all i ≤ t based on all channel outputs

observed till time t.
A rate R sequential communication system achieves anytime reliability α if there exists a constant K

such that:
P(M̂ i

1(t) 6= M i
1) ≤ K2−α(t−i) (2)

holds for every i, t. The probability is taken over the channel noise, the R bit messages Mi, and all of
the common randomness available in the system.

If (2) holds for every possible realization of the messages M , then we say that the system achieves
uniform anytime reliability α.

Communication systems that achieve anytime reliability are called anytime codes and similarly for
uniform anytime codes.

Definition 1.3: (Definition 3.2 in [1]) The α-anytime capacity Cany(α) of a channel is the least upper
bound of the rates R (in bits) at which the channel can be used to construct a rate R communication
system that achieves uniform anytime reliability α.

Feedback anytime capacity is used to refer to the anytime capacity when the encoder has access to
noiseless feedback of the channel outputs with unit delay.

Theorem 1.4: (Theorem 3.3 in [1]) For a given noisy channel and η > 0, if there exists an observer O
(with or without channel feedback or access to the controls) and controller C for the unstable scalar system
that achieves E[|Xt|η] < K for all sequences of bounded driving noise |Wt| ≤ Ω

2
, then Cany(η log2 λ) ≥

log2 λ bits per channel use for the noisy channel considered with the encoder having access to noiseless
feedback.

This proof proceeded by a direct reduction of the anytime communication problem to a problem of
stabilization. The key idea was to embed the messages into the open-loop uncontrolled state of the
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unstable plant by suitable choice of disturbances. The core equation was:

X̌t = γλt

bRtc
∑

k=0

(2 + ε1)
−kSk (3)

where Sk is the k-th bit to be transmitted (as either ±1),

ε1 = 2
log2 λ

R − 2 (4)

and
γ =

Ω

2λ1+ 1
R

(5)

was the scaling term to ensure we stayed within the bound for the disturbance. The key fact that enabled
all this to work was that the minimum gap between the encoded state corresponding to two sequences of
bits that first differ in bit position i is given by gapi(t) =

inf
S̄:S̄i 6=Si

|X̌t(S) − X̌t(S̄)| >

{

λt− i
R

(

2γε1
1+ε1

)

if i ≤ bRtc
0 otherwise

(6)

This allowed us to robustly recover the data at the decoder using a variation on the traditional serial A/D
algorithm.

On the sufficiency side, the core theorem is:
Theorem 1.5: (Theorem 4.2 in [1]) It is possible to control an unstable scalar process driven by a

bounded disturbance over a noisy channel so that the η-moment of |Xt| stays finite for all time if the
channel with feedback has Cany(α) > log2 λ for some α > η log2 λ and the observer is allowed to observe
the channel outputs and the state exactly.

There are a host of theorems that extend the previous result to situations with various types of limitations:
Theorem 1.6: (Theorem 4.4 in [1]) If for all Ω > 0, it is possible to stabilize a particular unstable

scalar system with gain λn and arbitrary disturbance signal bounded by Ω when we are allowed n uses of
a particular channel between when the control-system evolves, then for any Ω > 0 it is also possible to
stabilize an unstable scalar system with gain λ that evolves on the same time scale as the channel using
an observer restricted to only observe the system every n time steps.

If the channel input at time t is allowed to explicitly depend on the channel outputs at time t− v, this
permitted feedback is the same in both cases and is not changed by n.

Theorem 1.7: (Theorem 4.5 in [1]) Theorem 1.5 continues to hold if the control signal Ut is required
to depend only on the channel outputs up through time t−v where v ≥ 0. Only the constants grow larger.

Theorem 1.8: (Theorem 4.6 in [1]) If for all Ω > 0, it is possible to η−stabilize a particular unstable
scalar system with arbitrary disturbance signal bounded by Ω given the ability to apply precise control
signals, then for all Γc > 0 and Ω > 0, it remains possible to η−stabilize the same unstable scalar system
with arbitrary disturbance signal bounded by Ω given the ability to apply only Γc-precise control signals.

Corollary 1.1: (Corollary 4.1 in [1]) It is possible to control an unstable scalar process driven by a
bounded disturbance over a noisy channel so that the η-moment of |Xt| stays finite for all time if the
channel with noiseless feedback has Cany(α) > log2 λ for some α > η log2 λ and the observer is allowed
to observe the channel outputs exactly and has a boundedly noisy view of the state.

Beyond the above limitations in terms of noisy observation or delayed/noisy actions, there are a few
important results having to do with limitations on the feedback structure in which we deny the system
observer direct access to the past channel outputs:

Theorem 1.9: (Theorem 5.2 in [1]) It is possible to control an unstable scalar process driven by a
bounded disturbance over a noisy channel so that the η-moment of |Xt| stays finite for all time if the
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channel without feedback has Cany(α) > log2 λ for some α > η log2 λ and the observer has only boundedly
noisy access to the state process.

Specializing to the case of discrete memoryless channels (DMCs), we also gave a specific randomized
construction for the observer that was nearly memoryless:

Theorem 1.10: (Theorem 5.3 in [1]) It is possible to control an unstable scalar process driven by a
bounded disturbance over a DMC so that the η-moment of |Xt| stays finite for all time if the channel
without feedback has random coding error exponent Er(R) > η log2 λ for some R > log2 λ and the
observer is allowed boundedly noisy access to the state process.

Furthermore, there exists an n > 0 so this is possible by using an observer consisting of a time-varying
random scalar quantizer that samples the state every n time steps and outputs a random label for the bin
index. This random label is chosen iid from the channel input alphabet An according to the distribution
that maximizes the random coding error exponent at R. The controller is assumed to have access to the
randomness used to choose the random bin labels.

A simplified interpretation of the above theorem is given by:
Corollary 1.2: (Corollary 5.1 in [1]) If the observer is allowed boundedly noisy access to the plant

state, and the noisy channel is a DMC with Shannon capacity C > log2 λ, then there exists some η > 0
and an observer/controller pair that stabilizes the system in closed loop so that the η-moment of |Xt| stays
finite for all time.

Theorem 1.11: (Corollary 5.3 in [1]) Given a noisy channel with a countable output alphabet, identify
the channel output alphabet with the integers and suppose that there exist4 K > 0, β > 0 so that the
channel outputs Bt satisfy: P(|Bt| ≥ i) ≤ Ke−βi for all t.

Then, it is possible to control an unstable scalar process driven by a bounded disturbance over a
that channel so that the η-moment of |Xt| stays finite for all time if the channel with feedback has
Cany(α) > log2 λ for some α > η log2 λ and the observer is allowed boundedly noisy access to the
system state.

There are also analogous results for continuous time where nats are used instead of bits, and the rate is
the unstable gain itself rather than the logarithm of the magnitude of the gain. Similarly, for the case of
almost-sure stabilization5, we had a short sequence of results beginning with a key lemma:

Lemma 1.1: (Lemma 4.1 in [1] If it is possible to η ′-stabilize a persistently disturbed system from (1)
with open-loop gain λ′ when driven by any driving noise W ′ bounded by Ω, then there exists a time-
varying observer with noiseless access to the state and a time-varying controller so that any undisturbed
system (1) with initial condition |X0| ≤ Ω

2
, Wt = 0, and 0 < λ < λ′ can be stabilized in the sense that

there exists a K so that:
E[|Xt|η

′

] ≤ K(
λ

λ′ )
η′t (7)

and culminating in
Corollary 1.3: (Corollary 5.2 in [1]) If the observer is allowed perfect access to the plant state, and

the noisy channel is a DMC with Shannon capacity C > log2 λ, then there exists an observer/controller
pair that stabilizes the system (1) in closed loop so that:

lim
t→∞

Xt = 0 almost surely

as long as the initial condition |X0| ≤ Ω
2

and the disturbances Wt = 0.

4This condition is most naturally satisfied by a channel with a finite output alphabet. It is also satisfied naturally for certain channels with
quantized outputs coming from inputs with finite dynamic range —- for example, a quantized AWGN channel with a hard input amplitude
constraint.

5In which there was no disturbance and only uncertainty about the initial condition, the desired property was that the controlled state
should go almost-surely to zero.
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Furthermore, this is possible by using an observer consisting of a time-varying random scalar quantizer
that samples the state every n time steps and outputs a random label for the bin index. This random label
is chosen iid from the channel input alphabet An according to the distribution that maximizes the random
coding error exponent at log2 λ < R < C. The controller is assumed to have access to the randomness
used to choose the random bin labels.

B. Our model for vector-valued unstable linear systems

The vector-systems model follows (1) except that everything is vector-valued now:

~Xt+1 = A ~Xt + Bu
~Ut + Bw

~Wt, t ≥ 0 (8)

where { ~Xt} is an IRn-valued state process {~Ut} is an IRmu-valued control process and { ~Wt} is a bounded
noise/disturbance process taking values in IRmw s.t. ‖ ~Wt‖ ≤ Ω

2
where we can use any finite-dimensional

norm that we find convenient. For convenience, we also assume a known initial condition ~X0 = ~0.
In addition, we may restrict the input to the observer/encoder to be a linear function of the state, rather

than the state itself.
~Yt = Cy

~Xt (9)

where ~Yt is an my dimensional vector. The matrices A,Bu, Bw, Cy above are all of the appropriate
dimensionality so that the equations (8) and (9) make sense.6

Three fundamental issues arise from possible mismatches in dimensionality.
• The control vector might be of lower dimensionality than the state.
• The observation vector available to the encoder might be of lower dimensionality than the state.
These first two can be addressed using the traditional linear systems machinery. We know that even

without any communication constraint, for us to be able to stabilize the system in closed-loop, we generally
require (A,Bu) to be a controllable7 pair and (A,Cy) to be an observable8 pair. Throughout this paper,
we will not worry about the slight distinction between controllable and stabilizable here. The modes of
the linear system that are already stable are not going to be causing us trouble. If any such uncontrollable
or unobservable stable modes exist, let them.

In our context, there is another dimensionality mismatch which is not immediately apparent:
• The bounded disturbance vector might be of lower dimensionality than the state.
To deal with this, we will make an additional requirement that (A,Bw) is controllable when determining

necessary conditions for stabilization. This is a reasonable assumption as it corresponds to requiring that
the disturbance can persistently excite all the unstable modes of the system. Otherwise, in the context
of the assumption that the initial conditions ~X0 = ~0, those unstable modes may never get excited and
might as well not exist. All of these issues are discussed in Section III, but we first consider the simplest
possible case of a vector problem.

II. THE REAL DIAGONAL CASE

The simplest possible case is where the real A matrix is diagonal with eigenvalues λi for i = 1 . . . n.
The controllability and observability assumptions translate into Bu, Bw, Cy all being full-rank. As such,

6For example, when Bu is a single column and Cy is a single row, then the system with vector state is considered single-input single-
output (SISO) since U(t) is a scalar as is Y (t). It is possible to model any autoregressive moving average (ARMA) scalar system using an
appropriate (8) and (9).

7A pair of matrices (A, B) are controllable if the matrix [B, AB, A2B, . . . , An−1B] is of full rank. This condition assures us that by
appropriate choice of inputs, we can control the behavior of all the modes of the linear dynamical system.

8A pair of matrices (A, C) are observable if the matrix [C, CA, CA2, . . . , CAn−1]T is of full rank. This condition assures us that by
combining enough raw observations, we can see the behavior of all the modes of the linear dynamical system.
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we can change variables slightly by substituting ~Ut = B−1
u

~U ′
t , ~Wt = B−1

w
~W ′

t , and using Xt = C−1
y Yt

directly as our observation. In this case the problem decomposes into L parallel scalar problems:

Xi(t + 1) = λiXi(t) + U ′
i(t) + W ′

i (t) (10)

for i = 1 . . . n with the only connection between the different parallel problems i being the common
restriction ‖B−1

w
~W ′

t‖ ≤ Ω
2

. However, since all finite-dimensional norms are equivalent, we are free to
translate that restriction into a pair of restrictions:

• For the necessity part in which we need to generate ~Wt signals to carry data across the channel,
we can use an inscribed hypercube within the B−1

w mapped Ω
2

sized ball to allow ourselves to pick
appropriate disturbances to the parallel control systems without worrying about what that means for
other ones. This can be done since ∃Ω′ s.t. ‖ ~W ′‖∞ ≤ Ω′

2
implies ‖B−1

w
~W ′

t‖ ≤ Ω
2

. So, for the necessity
theorems, the scalar theorems apply directly with Ω′ playing the part of the bound.

• For the sufficiency proofs, we require a bounded range that the disturbance can take on system i.
Again, we can use the equivalency of the ∞−norm to all other finite-dimensional norms and inscribe
the B−1

w mapped Ω
2

sized ball from the original norm inside a hypercube Ω̄ on each side.

This same equivalency between norms tells us that if we have a finite η-moment of the ∞−norm of ~X ,
then we also have a finite η-moment of any other norm and vice versa.9 Furthermore, we have following
simple lemma, proved in Appendix I-A, showing that if a finite collection of random variables all have
finite η-moments, then they have a finite η-moment when collected together into a vector and vice versa.

Lemma 2.1: Let |Xi| be positive random variables. There exists a K such that E[|Xi|η] ≤ K for each
i if and only if there exists a K ′ such that E[‖ ~X‖η] ≤ K ′.

Furthermore, if E[‖ ~X‖η] ≤ K, then for any matrix L there exists K ′′ so that E[‖L ~X‖η] ≤ K ′′.

Using Lemma 2.1 and the discussion above, we can immediately translate Theorem 1.4 on a component-
wise basis. Before stating the appropriate corollary, we introduce the notion of an anytime rate region
that generalizes the notion of a single anytime capacity to a rate region corresponding to a vector of
anytime-reliabilities specifying how fast the different bitstreams have their probabilities of error tending
to zero with delay.

Definition 2.1: The anytime rate region Rany(~α) of a channel is the set of rate-tuples which the channel
can support so that each has a probability of error that asymptotically decays at least exponentially with
delay at a rate αi. There has to exist a uniform constant K such that for each i, all d and all times t we
have

P
(

M̂ t−d
i,1 (t) 6= M t−d

i,1 (t)
)

< K2−αid

where the Mi,j corresponds to the j-th message sent in the i-th bitstream.
The θ-feedback anytime rate region refers to the region when noiseless channel output feedback is

available to the encoder with a delay of θ + 1 time units. If θ is omitted, it is assumed to be zero.

The idea of the anytime rate region here is to transport parallel bitstreams across the noisy channel, giving
each one a potentially different level of reliability.

Corollary 2.1: For a given noisy channel, diagonal A with diagonal elements λi > 1, bound Ω, and
η > 0, if there exists an observer O and controller C for the unstable vector system that achieves
E[‖ ~Xt‖η] < K for all sequences of bounded driving noise ‖ ~Wt‖ ≤ Ω

2
, then for every ~ε > 0 we know

that (log2
~λ − ~ε) ∈ Rany(η log2

~λ) for the noisy channel considered with the encoder having access to
noiseless feedback.

The log2
~λ is shorthand for the vector consisting of the base two logarithms of all the components of

~λ. Similarly, we can carry over the sufficiency results for the real diagonal case to get the basic vector
corollary to Theorem 1.5:

9Whatever constant factor that bounds the norm from the ∞-norm will just be raised to the η-th power. This will change the finite
expectation by at most that constant factor and hence finite expectations will remain finite.
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Corollary 2.2: It is possible to control an unstable vector process with diagonal controllable dynamics
and unstable eigenvalues ~λ driven by a bounded disturbance over a noisy channel so that the η-moment of
‖ ~Xt‖ stays finite for all time if the channel with noiseless feedback has (log2(

~λ)+~ε) ∈ Rany(η log2
~λ+~ε)

for some ~ε > 0 and the observer is allowed to observe the channel outputs perfectly.

The same carrying over can be done for Theorems 1.6, 1.7, 1.8, 1.9, and 1.11, as well as Corollary 1.1.
In the vector context, we can also provide a looser, but more easily checked, sufficient condition that

assumes we use a feedback anytime-code that only deals with a single bitstream:
Corollary 2.3: It is possible to control an unstable vector process with diagonal controllable dynamics

and unstable eigenvalues ~λ driven by a bounded disturbance over a noisy channel so that the η-moment
of ‖ ~Xt‖ stays finite for all time if the channel with noiseless feedback has Cany(α) >

∑

i log2 |λi| for
some α > η maxi log2 |λi| and the observer is allowed to observe the channel outputs perfectly and has
boundedly noisy observations of the complete vector plant state.

Proof: Just multiplex together various scalar-stabilization bitstreams and send them over the feedback-
anytime code. Since the anytime reliability α considers delays measured in time-units and not bit-units,
they all will experience the same reliability α. The active constraint then comes from the largest unstable
eigenvalue for which α > η maxi log2 |λi| is clearly sufficient. � The detailed example worked out in

Section VI shows that Corollary 2.3 is not tight and that we really do need to consider the full anytime
rate regions in general.

The situation with generalizing Theorem 1.10 and Corollary 1.2 is slightly more interesting. Since all
we want is to have some η for which the system is stable, we do not need to differentiate the service
among the dimensions. We can operate at a rate larger than the sum of the logs of the unstable eigenvalues
and then translate the resulting anytime reliability into a particular bound η.

Corollary 2.4: For diagonal controllable dynamics, if the observer is allowed boundedly noisy access to
the complete vector plant state, and the noisy channel is a DMC with Shannon capacity C >

∑

i log2 |λi|,
then there exists an observer/controller pair that stabilizes the system in closed loop so that the η-moment
of ‖ ~Xt‖ stays finite for all time for some η > 0 as long as the observer/controller are allowed to share
common randomness.

Furthermore, this is possible by using an observer consisting of a time-varying random vector quantizer
that samples the vector state every n′ time steps and outputs a random label for the bin index. This random
label is chosen iid from the An′

according to the distribution that maximizes the random coding error
exponent at

∑

i max(0, log2 |λi|) < R < C. The controller is assumed to have access to the randomness
used to choose the random bin labels.

Proof: The simple approach is to just apply Theorem 1.10 to each of the unstable plant states and then
just multiplex the resulting sequence channel inputs across the noisy channel. The decoding and controller
actions could proceed on a sub-system by sub-system basis and everything would work. However, this does
not take advantage of the parallel channel coding advantage[10] and thereby gives up a lot of reliability
in the process. In Appendix I-A, we give a better scheme. �

III. DIAGONAL JORDAN FORMS

We next show how we can extend the results for real diagonal A matrices to the case of linear systems
that have real A matrices that have diagonal Jordan forms — i.e. those that have a full complement of
eigenvectors. This represents a generic A matrix since the matrices that do not have a full complement
of eigenvectors form a measure-zero set. The goal here is to show that the magnitudes of the unstable
eigenvalues are all that matter.

The key idea is to use a coordinate transformation to diagonalize the dynamics of the system. This
almost reduces the problem to the diagonal case of the previous section, except that we still face the
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potential dimensionality mismatch between ~X and ~W . However, by examining time in blocks of at most
n at a time, we can use the controllability of (A,Bw) to apply any desired bounded disturbance input that
we want, fully recovering the diagonal case. This gives us:

Theorem 3.1: Assume that for a given noisy channel, system dynamics described by (8) with diagonal-
izable A and eigenvalues λi, and η > 0, that there exists an observer O and controller C for the unstable
vector system that achieves E[‖ ~Xt‖η] < K for all sequences of bounded driving noise ‖ ~Wt‖ ≤ Ω

2
.

Furthermore, assume that the pair (A,Bw) is controllable.
Let |λi| > 1 for i = 1 . . . l, and let ~λ be the l-dimensional vector consisting of only the exponentially

unstable eigenvalues10 of A. Then for every ~ε > 0 we know that (log2
~λ|| − ~ε) ∈ Rany(η log2

~λ||) for
the noisy channel considered with the encoder having access to noiseless feedback. ~λ|| is our shorthand
notation for the vector whose components are the magnitudes of the unstable eigenvalues.

The same ideas can be used to extend the sufficiency result from Corollary 2.2. Once again, a change
of coordinates will diagonalize the system dynamics. In addition, we first examine time in groups of n

and use the observability of (A,Cy) to noisily-estimate ~X from n consecutive observations of ~Y . During
this period, no controls are applied. In the next period of n times, we use the controllability of (A,Bu)
to apply the desired control signal. This gives us:

Theorem 3.2: Assume that we have a noisy channel with a feedback anytime rate region for some
~ε > 0 that has (log2( ~λ||)+~ε) ∈ Rany(η log2

~λ|| +~ε) where ~λ|| consists of the component-wise magnitudes
of the ~λ.

Then we can stabilize the linear system with dynamics described by (8) with diagonalizable A, unstable
eigenvalues ~λ, controllable (A,Bu), observable (A,Cy), bound Ω, by constructing an observer O and
controller C for the unstable vector system that achieves E[‖ ~Xt‖η] < K for all sequences of bounded
driving noise ‖ ~Wt‖ ≤ Ω

2
if the observer has perfect access to the channel outputs.

It is easy to see that the exact same arguments will work to generalize most of the sufficiency results
from the scalar and diagonal case to the generic vector case. However, there is an interesting aspect to
the generic generalization of Theorem 1.10 and Corollary 2.4. In the scalar and diagonal system case, it
was possible to stabilize the unstable system for some η > 0 as long as CShannon >

∑

i log2 max(0, |λi|)
by using nearly memoryless observers that sampled the state ~X every n′ time steps. For generic vector
systems, a single sample of the observation ~Y is not enough to tell us the current state of the system.
Instead, we modify our sense of nearly memoryless encoders to instead take n consecutive samples of the
output ~Y , apply a linear transformation to them to recover an estimate for the current state ~X , and then
randomly vector quantize the result into n′ > 2n randomly chosen channel inputs. This allows us to get:

Corollary 3.1: For the linear system with dynamics described by (8) with diagonalizable A, unstable
eigenvalues ~λ, controllable (A,Bu), observable (A,Cy), and bounded driving disturbance ~W , if the noisy
channel is a DMC with Shannon capacity C >

∑

i log2 |λi|, then there exists an observer/controller pair
that stabilizes the system in closed loop so that the η-moment of ‖ ~Xt‖ stays finite for all time for some
η > 0 as long as the observer/controller are allowed to share common randomness.

Furthermore, this is possible by using an observer consisting of a time-varying random vector quantizer
that samples the observation ~Y in n consecutive time positions every n′ > 2n time steps, applies a possibly
time-varying linear transformation to those n samples, and quantizes the result by outputting a random
label for the bin index. This random label is chosen iid from the An′

according to the distribution that
maximizes the random coding error exponent at

∑

i max(0, log2 |λi|) < R < C. The controller is assumed
to have access to the randomness used to choose the random bin labels and only applies a nonzero control
signal at times disjoint from the times during which output samples are used by the observer.

The case of using indirect feedback through the plant to compensate for having no direct channel feedback
will be discussed in detail in the next section.

10Eigenvalues with multiplicity should appear multiple times in ~λ
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Finally, we state the obvious generalization of Lemma 1.1 to the vector case.
Lemma 3.1: If it is possible to η′-stabilize a persistently disturbed system from (8) and (9) with

dynamics given by (1 + ξ)A when driven by any driving noise ~W ′ bounded by Ω, then there exists
a time-varying observer with noiseless access to the observation ~Y and a time-varying controller so that
any undisturbed system (8) with initial condition | ~X0| ≤ Ω

2
, ~Wt = 0, and dynamics A can be stabilized

in the sense that there exists a K so that:

E[| ~Xt|η
′

] ≤ K(
1

1 + ξ
)η′t (11)

Proof: All that is required is to scale up the observations of the undisturbed system with dynamics A
by (1 + ξ)t before feeding them to the observer and then scaling down the controls by (1 + ξ)−t before
applying them to the undisturbed system. Since the scaled system behaves like a system with dynamics
(1 + ξ)A and is η′-stable, the actual undisturbed system will satisfy (11). �

Lemma 3.1 immediately gives almost-sure stabilization results in the style of Corollary 1.3 for vector
cases.11

IV. RELAXING FEEDBACK TO OBSERVERS AND INTRINSIC DELAY

By the strategy of the previous section of looking at the system in blocks of 2n — with controls being
applied in the second half of the block while the first half of the block is used for state estimation — the
problem of diagonalizable Jordan blocks reduces entirely to n parallel scalar problems, each one observed
with noisy observations of the exact state. As such, all of the scalar results on sufficiency generalize to
the vector case, including those that have no explicit access to the channel feedback at the observer.

However, the reduction to n scalar problems comes with a delay of as much as 2n in communication
back from the controller to the observer through the plant. Since the channel feedback will also be delayed
by 2n, the sense of anytime reliability required for sufficiency is much stronger than what is required in
Theorem 3.2. In this section, we give an example that shows that some added delay can be unavoidable
and then define what the intrinsic delay is for a linear system. We then use this concept to give more
refined necessity and sufficiency theorems that are tight and have additional delays in feedback.

Example 4.1: Consider the single input single output (SISO) system described by:

A =





2 1 0
0 3 1
0 0 4





Bu =





0
0
1





Cy = [1, 0, 0]

It controllable since [B,ABu, A
2Bu] is full rank and observable since (C,CA,CA2) also span three

dimensions. Since the eigenvalues 2, 3, 4 are all distinct, it is certainly diagonalizable as well.
For such a system, initialized to 0, the impulse response is 0, 0, 1, 9, . . .. The input is not immediately

visible at the output and takes 3 total time steps to show up at all. There is no possible way to communicate
through the plant with only unit delay.

Example 4.1 motivates the following definition:

11In particular, Lemma 3.1 shows that a disturbance-free system can be almost-sure stabilized given a DMC with capacity strictly greater
than the sum of the logs of the unstable eigenvalues. This is because an appropriately small ξ > 0 can be found so that n log2(1 + ξ) +
∑

i log2 |λi| < C. Thus, Corollary 3.1 will be satisfied and there will exist some η for which the system with (1 + ξ)A dynamics can be
η-stabilized. Lemma 3.1 tells us that the original system thus has an exponentially decaying η-th moment, and thus a finite sum of η-th
moments through time. The only way that can happen is if the state is going to zero almost-surely.
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Definition 4.1: The intrinsic delay Θ(A,Bu, Cy) of a linear system is the amount of time it takes the
input to become visible at the output. It is the minimum integer12 i ≥ 0 for which CyA

iBu 6= 0.

For SISO systems, this is just the position of the first nonzero entry in the impulse response.

A. Refined necessity theorem

This definition of intrinsic delay allows us to state a more refined version of Theorem 3.1:
Theorem 4.2: Assume that for a given noisy channel, system dynamics described by (8) with diago-

nalizable A and eigenvalues λi, and η > 0, that there exists an observer O (without access to the control
signals or channel outputs) and a controller C for the unstable vector system that achieves E[‖ ~Xt‖η] < K

for all sequences of bounded driving noise ‖ ~Wt‖ ≤ Ω
2

. Furthermore, assume that the pair (A,Bw) is
controllable.

Then for every ~ε > 0 we know that (log2
~λ|| − ~ε) ∈ Rany(η log2

~λ||) for the noisy channel considered
with the encoder having access to noiseless feedback delayed by 1 + Θ(A,Bu, Cy).

Proof: In order to generate the next simulated ~Yt+1 to feed to the observer O, we only need the exact
~U values upto time t − Θ(A,Bu, Cy) since controls after that point have not become visible yet at the
output. Thus, we can tolerate noiseless feedback that has 1+Θ(A,Bu, Cy) delay rather than the unit delay
assumed earlier in running the simulated control system at the anytime encoder. �

B. Refined sufficiency theorem

To close the gap entirely, we need to show how to communicate the exact channel output back to
observer through the plant using only θ time steps. The key idea is illustrated in figure 3. As in the scalar
case, the main applied control action will depend only on delayed channel outputs. Assuming that the
observer has already recovered those channel outputs, it can remove their effect from its observations.
The controller then applies an additional control input whose only purpose is to cause a movement in the
observed ~Y that is too big to have been caused by the bounded disturbance ~W . The observer sees these
movements with a delay of 1 + Θ and can thus recover the finite channel outputs with that delay. This
enables the observer to operate the θ-feedback anytime code and gives us:

Theorem 4.3: Assume that we have a noisy finite-output-alphabet channel such that with access to
noiseless feedback delayed by 1 + θ time units, it has a θ-anytime rate region for some ~ε > 0 that has
(log2( ~λ||) + ~ε) ∈ Rany(η log2

~λ|| + ~ε) where ~λ|| consists of the component-wise magnitudes of the ~λ.
Then we can η-stabilize the linear system with dynamics described by (8) with diagonalizable A,

unstable eigenvalues ~λ, controllable (A,Bu), observable (A,Cy), intrinsic delay Θ(A,Bu, Cy) = θ, by
constructing an observer O and controller C for the unstable vector system that achieves E[‖ ~Xt‖η] < K

for all sequences of bounded driving noise ‖ ~Wt‖ ≤ Ω
2

if the observer has access to the observations ~Yt

corrupted by bounded noise.

C. Comments

Theorems 4.2 and 4.3 show that in the vector case, there can be something fundamentally harder about
stabilizing an unstable process when explicit noiseless unit-delay feedback of the channel outputs is not
available. If the input-output behavior of the system has an intrinsic delay13 associated with it, then we

12Technically speaking, this should be a theorem rather than part of the definition, but since it is an obvious consequence of linearity, we
just put it in the definition itself for convenience.

13It is important to realize that it is only the intrinsic delay which introduces an additional reliability requirement. In particular, non-
minimum phase zeros (zeros of the transfer function outside the unit circle) do not cause any fundamental challenge unless they are at ∞
and correspond to an intrinsic delay. This is in contrast to the results based on purely linear robust control approaches, which do encounter
difficulties due to non-minimum phase zeros.[11]
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Commit to a control sequence ~Un

to begin applying in the following n timeslots
that stabilizes the system and counteracts

the effect of all prior data modulations

Commit to next set of controls

Applying next set of controls

Applying control ~Un

it is based upon

Observer timeline

Controller timeline

Knows the control sequence ~Un

Θ Θ

Know next set of controls

While applying the controls given to
the left, the controller also applies
a data modulation that communicates
the current discrete channel output back
to the observer in 1 + Θ time units

the controller is applying since
it knows all the channel outputs

and data modulations to interpret
Use knowledge of controls ~Un

observations ~Y n to understand ~X

Fig. 3. When viewing time in blocks of n, we require the controller to commit to its primary controls 1 time step before actually putting
them into effect. This way, by the time the observer can first see the effect of the control strategy, it already knows exactly what it is going
to be since it knows all the channel outputs that it was based upon.

require that the noisy channel support enough anytime-reliability at the target rates even with feedback
delayed by that intrinsic amount. Knowing the unstable eigenvalues and target moment η is not enough
to evaluate a noisy channel.

Unfortunately, we know of no existing bounds on how much the anytime reliability is reduced by
increasing the delay in the noiseless feedback path. However, it may be possible to derive such bounds
by looking at the appropriate control problem. The impact of delay in the feedback path can be studied
by constructing control systems with the appropriate intrinsic delay.

V. NON-DIAGONAL JORDAN BLOCKS

The only remaining challenge concerns non-diagonal Jordan blocks. These arise for certain non-generic
linear system structures and interfere with the straightforward diagonalization based arguments used earlier.
Controllability and observability will give us the ability to independently control all the dimensions as
well as observe all the state components with bounded noise. However, the diagonalization arguments will
only be enough to separate the problem into ones involving parallel real-valued positive Jordan blocks. To
address this challenge, it suffices to consider an n-dimensional square A matrix that represents a single
real Jordon block.

A =













λ 1 0 · · · 0
0 λ 1 · · · 0
... 0

. . . . . . 0
0 0 · · · λ 1
0 0 · · · 0 λ













There are two key observations. The first is that the dynamics for Xn(t) are the same as for the scalar
case — Xn(t+1) = λXn(t)+Wn(t)+Un(t). The second is that the dynamics for all the other components
are given by:

Xi(t + 1) = λXi(t) + Xi+1(t) + Wi(t) + Ui(t) (12)

For sufficiency with explicit or implicit feedback, recall that the sufficiency constructions were based on
having a virtual controlled process that was assumed to be stabilized over a finite rate noiseless channel
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in a manner that held the virtual state to within a box of size ∆.[1] For the case of nondiagonal Jordan
blocks, we group together (Xi+1(t) + Wi(t)) into a single disturbance term that remains bounded since
both of its terms are bounded. Induction reduces the problem to a sequence of scalar problems and we
have:

Theorem 5.1: Assume that we have a noisy channel with access to noiseless feedback with an anytime
rate region for some ~ε > 0 that has (log2(

~λ||) + ~ε) ∈ Rany(η log2
~λ|| + ~ε) where ~λ|| consists of the

component-wise magnitudes of the λi.
Then we can stabilize the linear system with dynamics described by (8) with unstable eigenvalues λi,

controllable (A,Bu), observable (A,Cy), by constructing an observer O and controller C for the unstable
vector system that achieves E[‖ ~Xt‖η] < K for all sequences of bounded driving noise ‖ ~Wt‖ ≤ Ω

2
.

It is clear that the exact same ideas can be used to generalize the finite-output-alphabet case of
Theorem 4.3 as well. The necessity part is where there is a true question. Does each unstable eigenvalue
add rate or is it only at the eigenvector level? The following theorem answers the question.

Theorem 5.2: Assume that for a given noisy channel, system dynamics described by (8) with eigen-
values λi and η > 0, that there exists an observer O and controller C for the unstable vector system that
achieves E[‖ ~Xt‖η] < K for all sequences of bounded driving noise ‖ ~Wt‖ ≤ Ω

2
.

Let |λi| > 1 for i = 1 . . . l, and let ~λ be the l-dimensional vector consisting of only the exponentially
unstable eigenvalues14 of A. Then for every ~ε1, ~ε2 > 0 we know that (log2

~λ||− ~ε1) ∈ Rany(η log2
~λ||− ~ε2)

for the noisy channel considered with the encoder having access to noiseless feedback delayed by 1 +
Θ(A,Bu, Cy).

This theorem tells us that each unstable eigenvalue, no matter whether it has its own eigenvector or
not, induces a demand to reliably transport a bitstream. Here, we just describe the encoding and decoding
algorithms. Since the only new feature is the nondiagonal Jordan block, we concentrate just on that one
block. The remaining proof ideas not presented here are in Appendix I-D.

We encode n parallel bitstreams at rates log2 λ > R = R1 = R2 = · · · = Rn using the same bit-encoder
as was used previously. At the decoder, notice that the last state is as before and only depends on its own
bitstream. However, all the other states have a mixture of bitstreams inside of them since the later states
enter as inputs into the earlier states. As a result, the decoding algorithm given in Section III.B.2 of [1]
will not work on those states without modification.

The decoding strategy in the non-diagonal Jordon block case15 will change to be successive-decoding
in the style of decoding for the degraded broadcast channel.[12] Explicitly, the procedure goes as follows:

1) Set i = n. Set Dj(t) = −X̃j(t) for all j where X̃j represents the j-th component of the system in
transformed coordinates driven only by the control inputs ~U ′, not the disturbances ~W ′. This is what
is available at the decoder.

2) Decode the bits on the ith stream using the algorithm of Section III.B.2 of [1] applied to Di(t).
3) Subtract the impact of these decoded bits from the kth value of Dk(t) for every k < i.
4) Decrement i and goto step 2.
Notice that if all the bits decoded up to this point are correct, then at the time we come to decode the

bits on the ith stream using Dk(t) as the input to the bit-extraction algorithm of Section III.B.2 of [1],
the Dk(t) will contain exactly what it would have contained had the A matrix been diagonal. As such,
the error probability calculations done earlier would apply. However, this successive decoding strategy
has the possibility of propagating errors between streams and so we need to get a better handle on how
this error propagation can occur.

Lemma 5.1: Consider a Jordan block corresponding to λ. For every ε′ > 0, there exists a K ′ > 0 so
that the maximum magnitude deviation of Dj due directly to decoding errors in stream i > j occurring
for bits corresponding to times after t − d is K ′2d(1+ε′) log2 λ

14If an eigenvalue has multiplicity, then it should appear in ~λ multiple times.
15Again, notice that all we use in this argument is that we have an upper-triangular block.



14

Lemma 5.1 shows that the error propagation can only cause a total deviation a little larger than λd.
Since that is comparable to the error propagating up from our own stream’s noise, the theorem holds.

VI. DIFFERENTIATED SERVICE EXAMPLE

In this section, we give a very simple numeric example of a vector valued unstable plant with diagonal
A matrix given by

A =











1.258 0 0 0 0
0 1.059 0 0 0
0 0 1.0585 0 0
0 0 0 1.058 0
0 0 0 0 1.0575











(13)

where the observer has noiseless access to both the state ~X and the applied control signals ~U . The
controller can apply any 5-dimensional input that it wishes. Assume that the bounded disturbance ~W is
restricted to satisfy ‖ ~Wt‖∞ ≤ 1

2
for all times t. It is easy to see that this example essentially consists of

five independent scalar systems that must share a single communication channel.
First, in Section VI-A, we show that it is possible to hold this system’s state within a finite box over a

noiseless channel using total rate R = 2
3

consisting of one bitstream at rate 1
3
, and four other bitstreams,

each of rate 1
12

. In Section VI-B, we consider a particular binary erasure channel and show that if we use it
without distinguishing between the bitstreams, then we will not get mean-squared stability. In Section VI-
C, we show how a simple priority based system can distinguish between the bitstreams in such a way as to
allow us to get mean-squared stability while essentially using the observer/controller originally designed
for the noiseless link. Finally, in Section VI-D, we discuss how this diagonal example can be transformed
into a single-input single-output control problem that suffers from the same essential limitations.

A. Design for a noiseless channel

The system defined by (13) is essentially five independent systems and so falls under the treatment
given in Section II. We notice that

1

3
> log2(1.258)

1

12
> log2(1.059)

And so by Corollary 2.2, it is sufficient to use five parallel bitstreams of rates R1 = 1
3

(for the first
sub-system) and R2 = R3 = R4 = R5 = 1

12
(for the other four subsystems).

Assume that the observer chooses to observe the first component of the plant only every three time
steps. It is immediately clear that this has dynamics given by:

X1(t + 3) = (1.258)3X1(t) +
2
∑

k=0

(1.258)kW1(t + 2 − k) +
2
∑

k=0

(1.258)kU1(t + 2 − k) (14)

The U1(t) are known at both observer and controller and so all that matters is that the noise terms behave
as though Ω1 = 4.573429512. Thus from [1], we know that by transmitting 1 bit every 3 time units, we
can keep the uncertainty for the first part of the state within a box of width ∆1 = 4.573429512

1−1.9908655122−1 ≈ 1002.
The controller for the first component also only needs to act at times that are divisible by three and applies
a zero control at all other times.

Applying the same argument to the other four streams, and looking at time in multiples of twelve, we
get for i = 2:

X2(t + 12) = (1.059)12X2(t) +
11
∑

k=0

(1.059)kW2(t + 11 − k) +
11
∑

k=0

(1.059)kU2(t + 11 − k) (15)
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Fig. 4. Forcing all the bitstreams to get the same treatment for reliable transmission

and so effectively Ω2 ≈ 16.772. Calculating ∆2 gives ≈ 3205. Repeating for the others gives: ∆3 =
1540.70, ∆4 = 1013.85, ∆5 = 755.38. Once again, the controller for each of these four sub-systems only
needs to act every twelve time steps.

Finally, over a noiseless R = 2
3

channel, we need to specify the order in which the five-bitstreams
are multiplexed together into a single bitstream. Pretty much anything reasonable will work, so we will
specify the following repeating sequence 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, . . . for the bits, or with respect to time:
1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0, 1, 2, 0 . . . with the 0 representing the 1

3
fraction of the time when we are not

allowed to send any bits for a noiseless rate 2
3

channel.

B. Treating all bits alike

Now, we will attempt to connect the observers and controllers from the previous section over a binary
erasure channel with erasure probability δ = 0.27 and noiseless feedback available to the encoder.
Following the layering design paradigm, we want to use essentially the same observer/controller pair
as before, making only the minimal set of changes required. There is clearly enough Shannon capacity
since 1 − 0.27 = 0.73 > 2

3
. To minimize latency per-bit, the natural choice of coding scheme is a FIFO

queue in which bits are retransmitted until they get through correctly.
In this section, we will not discriminate between the various bits coming out of the observer and so

there is only a single queue. When the queue is empty, we can just send a dummy bit across the channel.
If that dummy bit is not erased, the receiver knows to ignore it since it knows that it is already caught
up with the bitstream. Since the bits from the five bitstreams were multiplexed together in a deterministic
fashion, and the FIFO queue does not change the order of bits, the receiver has no difficulty in dispatching
the bit to whichever controller is waiting for it. The picture is illustrated in figure 4.

The only substantial change now is that the controller for sub-system i might receive some of the bits
in a delayed fashion. If the controller would have applied control Ui(to) if a particular data bit had arrived
on-time, then it will apply λd

i Ui(to) if that bit is delayed by d time-steps. This way, the controller is able
to compensate for the known evolution of the plant due to the unstable dynamics.

It is clear that the controlled sub-state |Xi(t)| can become big only when the bits in the i-th bitstream
are delayed. In particular, there exists a constant Ki so that P(|Xi(t)| > Kiλ

d
i ) must be bounded above

by the probability that the bits at the receiver at time t are delayed by d or more. However, since the
queue is FIFO, and the incoming rate is a deterministic 2

3
, a delay of d requires the queue to contain 2

3
d

bits in it.
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To understand the asymptotic probability of having 2
3
d bits waiting in the queue, we will group channel

uses into blocks of three so that the number of bits awaiting transmission at the end of a block is the
Markov state for the queuing system. This gives us:

p0,0 = 3δ(1 − δ)2 + (1 − δ)3

pi,i+2 = δ3

pi,i+1 = 3δ2(1 − δ)

pi,i = 3δ(1 − δ)2

pi+1,i = (1 − δ)3

The steady state distribution {πi} for the states can be calculated by looking at the local balance
equations for the Markov chain. Assume i ≥ 2 and take the cut separating the states i−1 and lower from
the states i and higher. There is only one flow going across the cut in the negative direction: (1 − δ)3πi.
There are three flows going across the cut in the positive direction: δ3πi−2 + δ3πi−1 + 3δ2(1 − δ)πi−1.
Setting them equal gives us a recurrence relation for πi:

πi =
δ3πi−2 + (3δ2 − 2δ3)πi−1

(1 − δ)3
(16)

By simple application of the quadratic formula, we then have πi ∝
(

3δ−2δ2+
√

4δ−3δ2

2(1−δ)3

)i

≈ (0.55256)i for

large i. The governing geometric for delay thus has the base ≈ (0.55256)
2
3 ≈ 0.673369. Meanwhile,

the first subsystem will grow as (1.258)d and thus the second moment will grow like ((1.258)2)
d

=
(1.582564)d. Since 1.582564 ∗ 0.673369 ≈ 1.07 > 1, the second moment of |X(t)| will diverge for the
first subsystem and hence for the plant as a whole. This particular observer/controller pair can not be
successfully connected across this particular noisy channel with feedback in an application-blind way.

It turns out that this limitation is not restricted to the rate 2
3

observer we are using here. If we multiplexed
all the bits together into a single bitstream and used a single channel-code that did not differentiate among
the substreams, then that code would give the same anytime reliability to all the constituent bits. We
know that the minimum anytime reliability required is α∗ = 2 log2 1.258 ≈ 0.6623. For the binary erasure
channel, we have an upper-bound16 on the feedback anytime-capacity which is given by:[16]

Cany(α) ≤ α

α + log2(
1−δ

1−δ2α )
(17)

Plugging in δ = 0.27 and α = 2 log2 1.258 into (17) tells us that the channel can only carry ≈ 0.65418 ≤
log[2](1.258) + log[2](1.059) + log[2](1.0585) + log[2](1.058) + log[2](1.0575) ≈ 0.65785 bits/use with
the required reliability. Thus we can not simultaneously attain the required rate/reliability pair by using
an erasure channel code that treats all bits alike.

C. Differentiated service

The main difficulty we encountered in the previous section was that the most challenging reliability
requirement came from the largest eigenvalue, while the total rate required involves all the eigenvalues.
In this section, we explore the idea of differentiated service at the reliable transmission layer as illustrated
in figure 5. In the context of the erasure channel, we use a simple priority-based scheme illustrated in
figure 6 that gives extra reliability to the bitstream corresponding to the first subsystem at the expense of
lower reliability for the other streams.

The priority scheme has a channel encoder that works as follows:

16This bound is actually achievable. A heuristic treatment of this bound is given in [13] and repeated in [14]. A more formal treatment is
given in [15] and will also be given in [16].
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Fig. 6. The strict priority queuing strategy for discrimination between bitstreams. Lower priority buffers are served only if the higher
priority ones are empty.

• Store the incoming bits from the different streams into prioritized FIFO buffers — one buffer for
each distinct priority level.

• At every opportunity for channel use, transmit the oldest bit from the highest priority input buffer
that is not empty.

• If the bit was received correctly, remove it from the appropriate input buffer.
• If there are no bits waiting in any buffer, then send a dummy bit across the channel.
We use exactly two priority levels. The higher one corresponds to the rate R1 = 1

3
bitstream coming

from the first subsystem with eigenvalue 1.258. The lower one corresponds to the multiplexed stream at
rate R2 + R3 + R4 + R5 = 1

3
corresponding to the four subsystems with eigenvalues less than 1.059.

The decoder functions on a stream-by-stream basis. Since there is noiseless feedback and the encoder’s
incoming bitstreams are deterministic in their timing, the decoder can keep track of the encoder’s buffer
sizes. As a result, it knows which incoming bit belongs to which stream and can pass the received bit
on to the appropriate subsystem’s controller. The sub-system controllers are patched as in the previous
section — they apply λd

i Ui(to) if their bit arrives with a delay of d time-steps.
All that remains to do is to calculate the steady-state distribution of the delays by looking at the

queue-length distributions and interpreting them appropriately.
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1) The high priority stream: Since the highest priority stream preempts all lower priority streams, it
effectively does not have to share the channel at all. As before, we get a simple Markov chain by grouping
time into three time unit blocks. Then, the number of high-priority bits awaiting transmission at the end
of a block is the Markov state and let pi,j represent the probability that the queue in state i will go next
to state j.

p0,0 = 3δ2(1 − δ) + 3δ(1 − δ)2 + (1 − δ)3

pi,i+1 = δ3

pi,i = 3δ2(1 − δ)

pi,i−1 =

{

3δ(1 − δ)2 + (1 − δ)3 if i = 1
3δ(1 − δ)2 if i > 1

pi,i−2 = (1 − δ)3

It is possible to calculate the steady state distribution π for this Markov chain. By examining a cut
between states i − 2 and state i−, we get the following local balance equation for i ≥ 2

δ3πi−2 = (1 − δ)2(2δ + 1)πi−1 + (1 − δ)3πi

which results in the following recurrence relation for πi:

πi =
δ3πi−2 − (1 − δ)2(1 + 2δ)πi−1

(1 − δ)3
(18)

Once again, a simple application of the quadratic formula gives us that πi ∝
(

2δ2−δ−1+
√

1+2δ−3δ2

2(1−δ)2

)i

≈
(0.023718)i for large i. The relevant rate here is just R1 and so the governing geometric for delay has
the base ≈ (0.023718)

1
3 ≈ 0.287314. Recalling that the second moment of the first subsystem will grow

with delay as (1.582564)d we check 1.582564 ∗ 0.287314 = 0.454692 < 1 and so the second moment of
the first subsystem converges to a finite value.

2) The low priority streams: Rather than doing a similar calculation for the low priority streams, we
just reuse a calculation already already performed in Section VI-B. We upper-bound the queue-length of
the low-priority queue by the combined length of the two queues. This combined queue length behaves
according to the Markov chain in Section VI-B since it behaves as a single rate 2

3
stream entering

a queue with geometric service time. Recall that this chain has a steady state distribution with πi ∝
(

3δ−2δ2+
√

4δ−3δ2

2(1−δ)3

)i

≈ (0.55256)i for large i. Therefore we have for the bits in the lower priority queue
and large delays d:

Perror(Delay = d) ≤ P (Combined Buffer State > d(R2 + R3 + R4 + R5))

≤ K

(

3δ − 2δ2 +
√

4δ − 3δ2

2(1 − δ)3

)

d
3

which for δ = 0.27 results in a probability of delay that dies at least as fast17 as ≈ (0.55256)
1
3
d ≈

(0.820591)d. Meanwhile, the second moment of the subsystems 2 through 4 can only grow at most as
(1.059)2d ≈ (1.121481)d. Since 1.121481 ∗ 0.820591 ≈ 0.92028 < 1, it is clear that the second moments
of all the subsystems converge and so the closed loop system is stable with differentiated service across
the link.

17It actually dies faster than that since many of the bits in the combined queue belong to the higher priority bitstream.
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D. Interpreting and extending the example

The diagonal system example given here is subject to two interpretations. First and most directly, it can
be interpreted as a group of five applications each representing a physically distinct control system. For
whatever reason, these distinct applications need to share a common bottleneck communication link. In
that case, it represents an information-theoretic example of how different interactive applications sharing
the same communication link can require differentiated service by the reliable communication layer even
in the context of an asymptotic binary performance objective like stabilization.

Alternatively, this example can be interpreted as a single system with vector valued state. This vector-
state valued system can be at the heart of even a single-input single output control system. Consider the
transformation matrix18:

T =











2 0 2 1 2
1 0 1 0 1
0 2 0 1 2
2 1 0 1 0
1 2 0 1 0











(19)

We use this transformation to defineÃ = TAT−1 using (19) and (13). The Bw matrix remains the identity
while Bu and Cy are given by:

Bu =











1
0
0
0
0











(20)

and
Cy = [1, 0, 0, 0, 1] (21)

In words, we can only immediately control the first dimension of the vector state and our observations
are limited to the sum of the first and last dimensions of the state. However, it is easy to verify
that [Bu, ÃBu, Ã

2Bu, Ã
3Bu, Ã

4Bu] is of full rank and thus the system is controllable. Similarly, the
observability conditions are also satisfied. Thus this unstable scalar-output system with scalar-input falls
within the parameters of Theorems 3.1 and 3.2 and the results of the previous few sections will apply
to it. In order to stabilize its second moment across a binary erasure channel with probability of erasure
δ = 0.27 using a separation architecture19, we require an observer that isolates the 1.258 eigenvalue and
then assigns the corresponding bitstream a higher priority for transport across the noisy channel.

Our final comment on this example is regarding the choice of noisy channel. This example was crafted
with the binary erasure channel in mind. Although we expect that similar examples exist for most nontrivial
discrete memoryless channels, it is also important to point out that there are special channels for which such
examples do not exist. In particular, the average power-constrained AWGN channel with feedback provides
one such example. This is because we showed in [1] that the AWGN channel had a feedback anytime
capacity equal to its Shannon capacity regardless of α. Examples illustrating the need for differentiated
service only exist when we have a nontrivial tradeoff between rate and reliability.

Even so, the results in this paper are significant in the case of Gaussian channels. They effectively show
that stabilization is possible over an adequate capacity AWGN channel with noiseless feedback even when
there is a dimensionality mismatch between the channel and the plant. Prior results involving only linear

18This T matrix was generated randomly for this example.
19Without the requirement of separating reliable communication from the underlying application, it is hard to interpret priority in a

meaningful way. For example, an observer could just operate by finding the direction in which current state uncertainty at the decoder is
greatest and then use its bit to communicate which half the state lies in. The corresponding controller just keeps track of this same uncertainty
and applies a control designed to bring the state uncertainty back to around the origin. Upon reflection, it becomes clear that this approach
corresponds to reliable communication through a longest-queue-first transmission strategy that implicitly favors the higher-rate flows from a
delay perspective.
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control theoretic techniques could not reach the capacity bound for all cases in which the dimension of
the plant was different than the dimension of the channel.[4]

VII. CONCLUSIONS

With Theorems 5.2 and 5.1, we know that the problem of stabilization of a linear vector plant over a
noisy channel is intimately connected to the problem of reliable sequential communication over a noisy
channel of parallel bitstreams in the anytime sense where the encoder has access to noiseless feedback of
the channel outputs. The anytime-capacity region of a channel with feedback is the key to understanding
whether or not it is possible to stabilize an unstable linear system over that noisy channel. The two
problems are related through three parameters. The primary role is played by the magnitudes of the
unstable eigenvalues since their logs determine the required rates. The target moment η multiplies these
logs to give the required anytime reliabilities. Finally, the intrinsic delay Θ(A,Bu, Cy) tells us the noiseless
feedback delay to use while evaluating the required anytime reliabilities when explicit channel feedback
is not available.

It should be immediately clear that all the arguments given in [1] on continuous-time models also apply
to vector-valued state spaces. Standard results on sampling linear systems tell us that in the continuous-
time case, the role of the magnitude of the unstable eigenvalues will be played by the real part of the
unstable eigenvalues. Similarly, all the results regarding the almost-sure sense of stabilization when there
is no persistent disturbance also carry over directly.

In addition, because the results given here apply for general state-space models, we know that they
apply to all equivalent linear models. In particular, they also apply to the case of control systems modeled
using ARMA models or with rational open-loop transfer functions of any finite order. Assuming that
there is no pole/zero cancellation, such results can be proven using standard linear techniques establishing
the equivalence of such SISO models to the general state-space forms considered here. In those cases,
the unstable eigenvalues of the state-space model will correspond to the unstable poles of the ARMA
model. The intrinsic delay will correspond to the number of leading zeros in the impulse response, i.e. the
multiplicity of the zero at z = ∞.

The primary limitation of the results so far is that they only cover the binary question of whether
the plant is stabilizable in the η−moment sense or not. They do not address the issue of performance.
In [17], we are able to cleanly approach the question of performance for the related scalar estimation
problem using rate-distortion techniques. The linear systems techniques of this paper apply directly to the
estimation problem there and can generalize the results naturally to the vector case.20 For the estimation
problem where the limit of large estimation delays does not inherently degrade performance, it turns out
that we require l parallel bitstreams corresponding to each unstable eigenvalue, each of rate > log2 |λi|,
together with one residual bitstream that is used to boost performance in the end-to-end distortion sense.
The unstable streams all require anytime reliability in the sense of Theorem 5.2 while the residual stream
just requires Shannon’s traditional reliability. Since there are no control signals in the case of estimation,
intrinsic delay plays no role there. In the control context, we already have results from sequential rate-
distortion theory that give us a rate bound on the total bitrate required for a target level of performance.[4]
However, there is no corresponding sufficiency result for control performance over general channels since
there is no available slack-parameter that we can let get large in order to overcome possible mismatches
between the channel and the system.

A second limitation of the results so far is that we have no good bounds on the anytime rate and
reliability regions beyond the ones that we have already for the single-rate/reliability region.[16] However,
even without such bounds, we have learned something nontrivial about the relative difficulty of different
stabilization problems. For example, consider a scalar system with a single unstable eigenvalue of λ = 8
as compared to a vector-state system with three unstable eigenvalues, all of which are λi = 2. From

20In particular, it is straightforward to apply these techniques to completely solve all the nonstationary auto-regressive cases left open in
[18].
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a total rate perspective, the two appear identical requiring at least 3 bits per unit time. However, we
can distinguish them based on what anytime-reliability they require for a given η-moment stability. The
scalar case requires anytime-reliability α > 3η while the vector case can make do with any α > η.
Since the three eigenvalues are identical in the vector case, there is also no need to prioritize any one
of them over the others and thus we can interpret the “vector-advantage” as being a factor reduction
in the anytime-reliability required. Thus, in a very precise sense21, we can say that vector-stabilization
problems are easier than the scalar-stabilization problem having the same rate requirement.22 It seems that
spreading the potential growth of the process across many independent dimensions reduces the reliability
requirements demanded from the noisy channel.

APPENDIX I
LONGER PROOFS

A. Proofs from Section II

Proof of Lemma 2.1: First we assume that E[‖ ~X‖η] ≤ K ′. Then we know by the equivalencies of
finite-dimensional norms that:

K ′ ≥ E[‖ ~X‖η]

≥ κηE[‖ ~X‖η
∞]

= κηE[(max
i

|Xi|)η]

≥ κηE[|Xi|η]
So we have E[|Xi|)η] ≤ K′

κη . To see the other direction, first assume that E[|Xi|η] ≤ K.

E[‖ ~X‖η] ≤ κ′ηE[‖ ~X‖η
∞]

= κ′ηE[(max
i

|Xi|)η]

= κ′η
∫ ∞

0

P((max
i

|Xi|)η ≥ t)dt

≤ κ′η
∫ ∞

0

∑

i

P(|Xi|)η ≥ t)dt

= κ′η
∑

i

∫ ∞

0

P(|Xi|)η ≥ t)dt

= κ′η
∑

i

E[|Xi|η]

≤ nκ′ηK

For the second part, we use the ∞-norm again and given the previous part, we just need to consider a

21Using the ideas from Section VII of [1] to make it precise.
22This vector advantage in terms of required anytime reliability is even more surprising in light of the performance bounds in terms of rate

only. [4] gives us explicit bounds on the squared-error performance using sequential distortion-rate theory. Suppose the λ = 8 scalar plant
was driven by a standard iid Gaussian disturbance while the vector plant was diagonal and driven by three iid Gaussians each of variance
1
3

. For a given rate R (in bits), the sequential distortion-rate bound on E[|Xt|
2] is 1

1−43−R for the scalar system while it is 1

1−4
1−

R

3

for

the vector system. For a given rate, the second-moment performance of the vector system is worse than the scalar one. For example, at rate
4 the scalar one gets to ≈ 1.33 while the vector one is ≈ 2.70. At high rates, the two approach each other in terms of second-moment
performance but the anytime-reliability requirements for the scalar system remain much higher.
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single term
∑n

i=1 liXi and show that its η-moment is bounded.

E[|
n
∑

i=1

liXi|η] ≤ E[(
n
∑

i=1

|liXi|)η]

≤ E[

(

n
∑

i=1

(max
i

|li|)(max
i

|Xi|)
)η

]

≤ (n‖~l‖∞)ηE[‖ ~X‖η
∞]

≤ (n‖~l‖∞)ηK ′′

which proves the result. �

Improved Proof of Corollary 2.4: The idea is to follow the same strategy as the proof to Theorem 1.10
in [1], but naturally generalized to the vector case in a way that gives us the parallel channel coding
advantage. We sketch only the modifications here since most of the details are essentially identical.
Assume23 all |λi| ≥ 1.

• We partition the unstable sub-space into evenly-sized large boxes that are ∆ on each side where ∆
is suitably large.

• We augment the partition by adding an additional box centered on each of the vertexes of the original
partition boxes. This adds at most 2n additional boxes.

• Each box is given an iid sequence of n′ channel inputs drawn from the relevant error-exponent
maximizing distribution. These sequences are also iid across the different boxes24 and at different
time instants.

• Given suitably large ∆, in n′ time units, the uncertainty in each box can grow to overlap with no
more than 2n|det(A)|n′

= 2n
∏

i |λi|n′
new boxes in the original augmented partition.

• Since the controller knows its past control signals, the channel outputs behave like they are coming

from a random trellis code with rate log2(2n
∏

i |λi|n
′
)

n′ = n
n′ +

∑

i log2 |λi| per channel use which is less
than C for large enough n′.

Everything else is as it was in the scalar case and this achieves an internal reliability of the random coding
error exponent evaluated at the sum of the log of the unstable eigenvalues. To get the η-sense of stability
that is achieved, just divide that exponent by the log of the largest unstable eigenvalue. �

B. Proofs from Section III

Proof of Theorem 3.1: We want to turn the problem into one for which Corollary 2.1, the necessity
theorem for the case of diagonal real matrices, applies.

Recall that at the encoder side, the disturbance input ~W is used to embed our data bits into the
uncontrolled state. Since (A,Bw) is a controllable pair, we know that within at most n time steps, it is
possible to take the system starting at ~Xt = ~0 and drive it to any ~Xt+n+1 = ~w′ through the choice of
disturbance inputs ~W t+n

t . Since the system is linear, given a bound on ‖ ~W‖∞, we can determine an Ω′ so
that as long as ‖~w′‖∞ < Ω′

2
we can choose an acceptable sequence of n disturbance vectors ~W to reach

it.
As such, we can use linearity and rewrite the system dynamics (8) using blocks of time of size n as:

~Xnk = An ~Xn(k−1) + ~U ′
k + ~W ′

k, t ≥ 0 (22)

where ~U ′
k just combines the net effect of the controls over the past n time-steps and ~W ′

k is now an arbitrary
n-vector disturbance with ‖ ~W ′

k‖∞ ≤ Ω′

2
.

23Basically, ignore the stable subspace since it is not going to be involved at all.
24This independence across all boxes is what is important to get the parallel channel advantage in reliability.
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Since A is diagonalizable, we know that there exists a nonsingular matrix V so that V AV −1 = Λ, a
diagonal matrix with the first l diagonal elements corresponding to the exponentially unstable eigenvalues.
Thus An = V −1ΛnV . This handles all the real eigenvalues and it is well known that we can change
coordinates using V to get diagonal dynamics.

To avoid any complications arising from the complex eigenvalues, we rely on the real Jordan normal
form.[19]. This tells us that there exists a nonsingular real matrix V so that V AV −1 is a diagonal sum of
either traditional real Jordan blocks corresponding to the real eigenvalues and special “rotating” Jordan
blocks corresponding to each pair of complex-conjugate eigenvalues. The rotating block for the pair
λ = λr + λj

√
−1 and its conjugate is a two-by-two matrix:

[

λr λj

−λj λr

]

=

[

|λ| 0
0 |λ|

] [

cos(∠λ) sin(∠λ)
− sin(∠λ) cos(∠λ)

]

which is clearly a product of a scaling matrix and a rotation matrix. Group these two-by-two blocks into
a block-diagonal unitary matrix R. So we are guaranteed to have V AV −1 = ΛR where Λ is now the real
diagonal matrix consisting of the magnitudes of the eigenvalues.

The key is to take the rotating parts and move them into a rotating coordinate frame which makes
the system dynamics real and diagonal. Transform to ~X ′

kn = (R−knV ) ~Xkn using R−knV as the real
time-varying coordinate transformation. Notice that

~X ′
k+1 = R−(k+1)V ~Xk+1

= R−(k+1)V A ~Xk + · · ·
= R−(k+1)V AV −1Rk ~X ′

k + · · ·
= R−(k+1)ΛRRk ~X ′

k + · · ·
= R−(k+1)Rk+1Λ ~X ′

k + · · ·
= Λ ~X ′

k + · · ·
since the Λ diagonal matrix commutes with the unitary block-diagonal matrix R. Thus, this time-varying
change of coordinates transforms (22) into

~X ′
nk = Λn ~X ′

n(k−1) + ~U ′′
k + ~W ′′

k , t ≥ 0 (23)

where Λn is a real diagonal matrix with the ith entry being |λi|n. The ~U ′′ and ~W ′′ are essentially the same
as they were in (22) except possibly with a smaller constant bound Ω′′ > 0 for ~W ′′ due to the rotating
change of basis. Notice that the time-varying nature of the transformation is due to taking powers of the
unitary matrix R and so the Euclidean norm is not time-varying.

Now the second part of Lemma 2.1 can deal with the change of coordinates and we can apply
Corollary 2.1 to the unstable subspace of (23). We observe that log2 |λi|n = n log2 |λi| and by expressing
both the delay in unit time rather than in steps of n and the bitrates per unit time rather than in steps of
n, we have the desired result. � Proof of Theorem 3.2: First,

we consider the case where we can observe ~Xt directly at the encoder. Using the same ideas as the proof
of Theorem 3.1, we can setup a rotating coordinate frame in which the plant behaves as though it were
real and diagonal. However, there is still the issue of choosing control signals. Once again, we can use
controllability, this time of (A,Bu) and treat time in blocks of n at a time. Since there is no constraint
on the ~Ut, we know that the controller can act in a way that completely subtracts the effect of X̂t−n from
Xt. So we have reduced the problem to that addressed in Corollary 2.2.
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Now, consider the case where ~Xt is not observed directly by the encoder and only ~Yt is available. We
use the observability of (A,Cy). This tells us that with the n observations25 (Y

n(k+1)−1
nk , ~U

n(k+1)−1
nk ) we can

determine ~Xnk, except for the linear effect of the unknown disturbances ~W
n(k+1)−1
nk . Since the disturbance

is bounded, so is the effect of the linear combination of observations used to extract ~Xnk. Consider this
a bounded observation noise and use Corollary 1.1 as straightforwardly generalized to the diagonal case.
�

Proof of Corollary 3.1: Since the corresponding control signals are zero and the system is observable,
applying an appropriate linear transformation to the n consecutive samples ~Y kn′+n−1

kn′ gives the value of
~Xkn′ plus a linear combination of the bounded disturbances ~W kn′+n−2

kn′ . This is just a boundedly noisy
estimate of ~Xkn′ . If we quantize ~Xkn′ + ~W ′

kn to a large enough box ∆′ on each side, then we know that
there exists another large ∆ sized box guaranteed to contain the diagonalized ~X ′

kn′ state obtained under the
possibly rotating coordinate transformation that diagonalizes (8). Thus, the uncertainty propagates after n ′

time steps exactly as it did earlier. Furthermore, controllability of (A,Bu) guarantees that the controller
can apply whatever correction that it wants to apply in n time steps. Since n′ > 2n, it is possible to do
this in a manner disjoint from the observations used by the observer to estimate the state. Everything else
is as before. Thus, the proof for Corollary 2.4 generalizes to the case of generic A matrices given large
enough n′. �

C. Proofs from Section IV

Proof of Theorem 4.3: We show how to patch together the proofs of Theorem 3.2 and Theorem 1.11
for this case.

In the proof of Theorem 3.2, the observer’s knowledge of the channel outputs was used for two purposes.
First, it was used in the operation of the feedback-anytime code. Second, it was used to compute the control
signal so that the observer could take it into account while observing ~Xnk. Here, we need the channel
outputs with delay 1 + θ for running the anytime code. Since θ ≤ n, by the time the observer has seen
enough ~Y to observe ~Xnk, it will also have access to the channel outputs that were used to compute the
controls applied during that period. So, it can still subtract the effect of the controls while interpreting its
observations.

To actually communicate the channel outputs from the controller to the observer, we follow the strategy
from the proof of Theorem 1.11 with the following modifications:

• The observer will use some component Yi(t+1) of ~Yt+1 that is potentially impacted by ~Ut−θ to read
off the value of Bt−θ.

• By the time t+1 (by induction), the observer knows exactly what the values were for all the B t−θ−1
1

and so it already knows all the control signals so far except that part of ~Ut−θ that will be used to
communicate Bt−θ. By linearity, it can therefore remove their entire impact from the output Yi(t+1).

• The ~Y t−1
1 and known controls so far give an estimate of ~Xt−n that differs from the true ~Xt−n by

no more than some bound Γ′ in any component. Through the linear operations of the observer, this
translates into some constant Γ′′ of prior uncertainty on Yi(t + 1) that comes from the disturbances.

• Γ′′ can thus play the role of Ω in the lattice encoding Fig. 16 from [1]. The encoder can encode the
value of Bt−θ by modulating this data on top of ~Ut−θ so that it causes a shift of an integer multiple
of Γ′′ guaranteed to be visible in Yi(t + 1) at the observer.

• At the time the controller commits to a primary control sequence ~Ukn+n
kn+1 for the next n control signals,

it can also clean up for all the past data modulations that it has done to communicate past channel
outputs. This way, the closed-loop system will stay stable since the deviations in the controls used
to communicate will not have an impact that is allowed to propagate unstably through the system.

25From the noiseless feedback of channel outputs, we can reconstruct the control signals as well.
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Everything else is as before. �

D. Proofs from Section V

Proof of Theorem 5.1: This is only a minor variation on Theorem 3.2. The state components corre-
sponding to diagonal Jordan blocks or stable dynamics are dealt with as before. For each non-diagonal
Jordan block, the final state is also dealt with as before since it is effectively a scalar system. For the
other states, we have to modify the construction in Section IV.B of [1] slightly.

To enable induction, assume that we have managed to stabilize the virtual processes corresponding to
states Xi+1, Xi+2, . . . , Xn and can hold those virtual processes to within boxes of size ∆i+1, ∆i+2, . . . , ∆n.
Since the state update equation (12) for state Xi(t + 1) has state Xi+1(t) in it as well26 as Wi(t), we just
add the ∆i+1 to the Ω to get a new disturbance W ′

i (t) that is bounded by:

Ωi = Ω + ∆i+1

Since that just makes the constant Ω effectively bigger, it does not change the asymptotic rate or the sense
of reliability required. It just results in a larger ∆i for any given rate Ri. By induction, since n is finite,
there is a maximum such ∆ over all the state components. Thus, all the sufficiency proofs from generic
case extend to the nongeneric case. �

Proof of Lemma 5.1: Assume all the rates Ri = R for simplicity. We first write the expression
corresponding to equation (3) for the states i < n. By (4), we know (2 + εi) = λ

1
Ri and so we can

write X̌i(t) =

γλt[





bRtc
∑

k=0

λ− k
R Si(k)





+





bRtc
∑

k=0

λ− k
R p1(bRtc − k)Si−1(k)





+ · · · +





bRtc
∑

k=0

λ− k
R pn−i(bRtc − k)Sn(k)



 (24)

where the pk represent polynomials. The key feature of polynomials is that for every ε, we can choose
a Ki so that pk(τ) ≤ Ki2

ετ . We will bound the maximum deviation possible by considering the case in
which we make an error on all the bits after a certain point t − d since the worst case is when every bit
that could be wrong is wrong.

26It is easy to see that this argument easily generalizes to any real-normal form that was purely upper triangular.
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In that worst case, the magnitude of the deviation in Dj due directly to decoding errors is given by:

γλt

bRtc
∑

k=dR(t−d)e
λ− k

R pi−j(bRtc − k)2

≤ 2Kγλt

bRtc
∑

k=dR(t−d)e
λ− k

R 2ε(bRtc−k)

≤ 2Kγ2(Rε+log2 λ)t

bRtc
∑

k=dR(t−d)e
2−k(ε+

log2 λ

R
)

≤ 2Kγ2(Rε+log2 λ)t2−R(t−d)(ε+
log2 λ

R
)

∞
∑

k=0

2−k(ε+
log2 λ

R
)

= K ′2(Rtε+t log2 λ)−(Rt−Rd)(ε+
log2 λ

R
)

= K ′2d(εR+log2 λ)

= K ′2
d(1+ εR

log2 λ
) log2 λ

Since ε was arbitrary, we can achieve this with any ε′ = εR
log2 λ

. �

Proof of Theorem 5.2: It suffices to consider a single nondiagonal Jordan block since the time-varying
coordinate transformation techniques of Theorem 3.1 will decompose any problem into a set of such
blocks. Similarly, the simulated control system being run at the anytime encoder only needs the channel
outputs with delay 1 + θ if the only feedback is through the plant.

The goal of the ~ε2 is to allow us to give an slightly lower sense of reliability to the early streams within
a Jordon block. From (6), we know how much of a deviation in Di(t) we can tolerate and still have no
error in decoding bits from before d time steps ago. To get a bound on the probability of error, we will
allocate that into n− i+1 equally-sized pieces. Each allocated margin will be of size γε1

(n−i+1)(1+ε1)
2d log2 λ.

The first n of them will correspond to an allowance for propagating errors from later streams. The final
piece will correspond to what we allow from the controlled state.

Using Lemma 5.1 and setting d′ to the point in the past corresponding to the first error in the other
stream, we can set the two terms equal to each other

γε1

(n − i + 1)(1 + ε1)
2d log2 λ = K ′2d′(1+ε′) log2 λ

γε1

K ′(n − i + 1)(1 + ε1)
2d log2 λ = 2d′(1+ε′) log2 λ

log2(
γε1

K′(n−i+1)(1+ε1)
)

(1 + ε′) log2 λ
+ d

1

1 + ε′
= d′

K ′′ + d
1

1 + ε′
= d′

The key point to notice is that the tolerated delay d′ on the other streams is a constant K ′′ plus a term
that is almost equal to d.

As such, the probability of error on stream i on bits at delay d or earlier is bounded by
n
∑

j=i+1

P(Stream j has an error at position K ′′+d
1

1 + ε′
or earlier)+P

(

|Xi(t)| ≥
γε1

(n − i + 1)(1 + ε1)
2d log2 λ

)

We can immediately prove what we need by induction. The base case, i = n is obvious since it is just
the scalar case by itself. Now assume that for every j > i, we have

P(Stream j has an error at position d or earlier) ≤ K ′′′
j 2

−d
η log2 λ

(1+ε′)n−j
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With the induction hypothesis and base case in hand, consider i:

P(Stream i has an error at position d or earlier)

≤ P(|Xi(t)| ≥
γε1

(n − i + 1)(1 + ε1)
2d log2 λ) +

n
∑

j=i+1

K ′′′
j 2

−(K′′+d 1
1+ε′

)
η log2 λ

(1+ε′)n−j

= P(|Xi(t)| ≥
γε1

(n − i + 1)(1 + ε1)
2d log2 λ) +

n
∑

j=i+1

K ′′′
j 2

−K′′ η log2 λ

(1+ε′)n−j 2
−d

η log2 λ

(1+ε′)n−j+1

≤ K ′′′′2−dη log2 λ + K ′′′
i 2

−d
η log2 λ

(1+ε′)n−i

≤ K ′′′′′
i 2

−d
η log2 λ

(1+ε′)n−i

where we used the induction hypothesis, the proof of Theorem 1.4 and that the sum of exponentials is
bounded by a constant times the slowest exponential. Since ε′ was arbitrary, we have proved the theorem
since we can get as close as we want to α = η log2 λ in anytime reliability. �

APPENDIX II
NOTATION

We use the shorthand at
1 = (a1, a2, . . . , at−1, at) to refer to a sequence. Vector valued variables will

usually be marked as ~X . The i-th component will be Xi. Xi(t) refers to the i-th component of ~Xt. We will
also apply scalar functions to vectors on a component by component basis so log2

~λ is simply shorthand
for the vector whose components are log2 λi. Similarly ~λ|| is shorthand for the vector whose components
are |λi|.

A. General Notation

Notation used throughout the paper is given here and symbols used only in particular sections will be
listed in subsequent subsections for easy reference.
A Channel input alphabet
A The unstable system dynamics — n × n dimensional square matrix.
Bt The random variable denoting the channel output at time t.

Bu, Bw The input transforming matrices corresponding to the control and disturbance inputs correspondingly
C The plant controller: takes the channel outputs so far and produces a control signal to apply to the

plant.
C The Shannon capacity of the channel

Cany(α) The maximum rate at which the channel supports anytime reliability α from definition 1.3
Cy The observation matrix — tells what linear combinations of the underlying state ~X are actually

available at the observer O.
D The anytime decoder: produces updated estimates of all messages M̂ t

1(t) at time t.
d The delay of interest. Measured in terms of channel uses whenever we are in discrete time.
E The anytime encoder: takes all messages and feedback information it has access to and produces a

channel input at each time step.
i, j, k Integer valued indices used in various ways.

K Some constant that we do not care about. Does not depend on delay d or time t.
O The plant observer: takes observations of the plant and any other information it has access to and

produces a channel input at each time step.
P The probability function. Unless specified, all probabilities are taken over all sources of randomness

in the system.
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n The dimensionality of ~X . Because of controllability and observability issues, it is also used to consider
time in blocks.

m{u|w|y} The dimensionalities of the control input ~U , bounded external disturbance ~W , and the observation ~Y .
Mt The message to be communicated that has arrived at time t. It consists of all bits that have arrived

so far and not already batched into Mt−1 or earlier messages.
~Ut The vector control applied to the vector system at the end of time t.
~U ′

t The transformed vector control. It acts on each component separately.
~Wt The bounded vector disturbance entering the vector system at the end of time t.
~W ′

t The transformed vector disturbance. It acts on each component separately.
~Xt The vector plant state at time t.
~X ′

t The transformed vector state so that each component has independent dynamics.
Ri For multi-stream encoding, the rate of the i-th parallel bitstream.

Rany(~α) The rate region supported by a channel when the individual bitstreams must satisfy the anytime
reliabilities αi.

Si The i-th bit-stream to be communicated. It is a function of time taking values ±1.
~α A vector of anytime reliabilities αi for different bitstreams being carried over a single noisy channel.
η The real moment of |X| that is desired to be kept finite by the control system. η > 0

λi, ~λ The i-th unstable eigenvalue and the vector of all unstable eigenvalues.
Λ A diagonal matrix consisting only of the magnitudes of the eigenvalues of A.
Ωi The effective bound on the disturbance that is used when trying to encode the i-th component of the

transformed state corresponding to a non-diagonal Jordan block.
Ω′ The inscribed bound for the ~W ′

Ω̄ The circumscribed bound for the ~W ′

B. Notation specific to Section IV

Θ The intrinsic delay of the specified linear system (A,Bu, Cy). It measures how long it takes the
output to reflect an input. It is an integer ranging from 0 to n − 1 for an n-dimensional system.

C. Notation specific to Section V

Dk(t) The stripped version of X̃k(t) in which the impact of all bits estimated from streams i > k has
been removed. This is meant to approximate what would happen if the system had a purely diagonal
Jordan block.

pk The polynomial that captures the non-exponential part of the dependence of X̌i(t) on prior data bits
in bitstreams i + k. This comes from the non-diagonal nature of the Jordan block.

X̃j(t) An open loop version of the j-th component of the system in transformed coordinates that is driven
only by the control signals ~U , but not the disturbance ~W .

X̌i(t) An open loop version of the j-th component of the system that is driven only by the disturbance ~W ,
but not the controls ~U .

γ A suitably small scaling constant chosen to meet the disturbance bound while encoding data bits into
real numbers.

∆i The size of the box that the observer attempts to keep the i-th component of the state in.
εi The slack used in encoding bits into a real number on stream i. (2+εi) is the “base” of the Cantor-set

encoding for bit stream i. It is defined by (2 + εi) = λ
1

Ri .
~ε1 The amount we back off from log2 λ in the target data rate. Because different backoffs are possible

for different bitstreams, it is considered a vector.
~ε2 The amount we back off from η log2 λ in the claimed anytime reliability. Because different backoffs

are possible for different bitstreams, it is considered a vector.
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D. Notation specific to Section VI

δ The probability of erasure in an erasure channel.
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