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Abstract—We examine linear stochastic control systems when
there is a communication channel connecting the sensor to the con-
troller. The problem consists of designing the channel encoder and
decoder as well as the controller to satisfy some given control objec-
tives. In particular, we examine the role communication has on the
classical linear quadratic Gaussian problem. We give conditions
under which the classical separation property between estimation
and control holds and the certainty equivalent control law is op-
timal. We then present the sequential rate distortion framework.
We present bounds on the achievable performance and show the
inherent tradeoffs between control and communication costs. In
particular, we show that optimal quadratic cost decomposes into
two terms: A full knowledge cost and a sequential rate distortion
cost.

Index Terms—Certainty equivalent control, communication
constraints, networked control, separation, sequential rate distor-
tion, stochastic linear systems.

I. INTRODUCTION

RECENT advances in technology have led to increased ac-
tivity in understanding and designing networked control

systems. In this paper, we examine a stochastic control problem
where there is a communication channel connecting the sensor
to the controller. This problem arises when the plant and the con-
troller are geographically separated and there is a band-limited
and possibly noisy communication channel connecting them. In
addition, communication constraints can arise when there is no
major geographical separation between the controller and the
plant, but there is a shared communication medium that is being
used along with other users in the same local area, or as a part
of the larger system. Although we do not explicitly examine
the networking issues per se in this paper, we believe that a
fundamental understanding of the role of communication con-
straints will be essential to a more complete theory of networked
control.

The system we consider consists of a plant, an encoder, a
channel, a decoder, and a controller. The plant and the channel
are given to us. Our task is to design the encoder, decoder,
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and controller to satisfy some given control objectives. Since
we have a distributed system the choice of information pattern,
[26], can have a dramatic effect on what control performance
is achievable. We discuss the effect that the choice of informa-
tion pattern at the encoder has on the communication require-
ments needed to achieve the control objective. In particular,
we examine the role communication has on the classical linear
quadratic Gaussian (LQG) problem. To this end we present the
sequential rate distortion (SRD) framework. We derive bounds
on the achievable performance and show the inherent trade-
offs between control and communication costs. In particular, we
show that the optimal LQG cost decomposes into two terms: a
full knowledge cost and a sequential rate distortion cost.

There are two classical notions of separation that we examine
in this paper. The first notion is the control-theoretic separa-
tion between state estimation and control. We present conditions
that insure the optimality of the certainty equivalent control law.
These build on the work of Bar-Shalom and Tse [3]. The second
notion is the information-theoretic separation between source
encoder and channel encoder. In particular, in the limit of long
delays, it is known that one can, without loss of generality, de-
sign the source encoder and the channel encoder separately [11].
This separation is known to hold quite broadly, [25], but, in gen-
eral, fails for both short delays and for unstable processes. In the
limit of large delays, [18] showed that the estimation of unstable
processes can be covered by a suitably modified separation the-
orem, but this information-theoretic result does not extend to
the case of limited delay. Since delay is an important issue in
control applications we cannot apply the information-theoretic
separation results to our problem. To deal with this delay issue,
we present the sequential rate distortion framework first intro-
duced in [13] and further developed in [19], [20], and [23].

Bansal and Basar examine the simultaneous design of the
measurement and control strategies for a class of stochastic
systems [2]. Borkar and Mitter introduced the present problem
of LQG control under communication constraints [6]. There
they looked at stable systems and noiseless digital channels.
They introduced the innovations coding scheme. Unfortunately,
their scheme does not work for unstable systems. We generalize
these results to unstable systems and noisy channels. Moreover,
we give conditions under which our coding scheme is optimal,
the separation principle holds, and the certainty equivalent con-
troller is optimal. Nair and Evans [17] examined mean-square
stabilizability over a noiseless channel. In contrast, we examine
the LQG performance over both noisy and noiseless channels.
Reference [7] examines the role of nonclassical information
patterns for Markov decision problems. We extend those results
to the LQG problem with differing information pattern at the
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encoder. The design of optimal sequential quantization schemes
for uncontrolled Markov processes was examined in [8].

Recently, there has been a good deal of work studying deter-
ministic systems under communication constraints: [10], [19],
[21], [22], [15], [1], [27], and [28]. In [21] and [22], we exam-
ined deterministic systems over both noiseless and noisy chan-
nels. Our work here differs in that we treat stochastic systems,
provide a general separation result, apply the SRD [23] frame-
work to the LQG problem, and discuss conditions under which
the plant is matched to the channel. The work in this paper first
appeared in preliminary form in [24] and represents a portion of
the first author’s Ph.D. dissertation [19].

In Section II, we formulate the problem. In Section III, we
examine the LQG problem under different information patterns
and in different communication channels. In Section IV, we
introduce the sequential rate distortion framework and give
closed form solutions to the sequential rate distortion function
for Gauss–Markov sources. In Section V, we examine some
particular scenarios.

II. PROBLEM FORMULATION

Here, we present the different components of our problem.
a) Plant: We consider the following discrete-time, sto-

chastic, linear system:

(1)

where is a -valued state process, is a -valued
control process, and is an independent and identically dis-
tributed (IID) sequence of Gaussian random variables with zero
mean and covariance . The initial position is Gaussian
with zero mean and covariance . Let

and assume is a controllable pair. The decoder
output process is a -valued process. The output rep-
resents the decoder’s estimate of the state of the system at time
; see Fig. 1.

Upper case variables, like , represent random variables and
lower case variables, like , represent particular realizations.
Throughout this paper, “log” refers to logarithm base two. Let

.
b) Channel: The channel input and output alphabet

spaces are denoted and , respectively. In this paper, we
restrict ourselves to time-invariant memoryless channels which
can be modeled as stochastic kernels: . Specifically,
for each realization of the conditional probability
of given is denoted by . At time the en-
coder produces a channel input symbol and the
channel outputs the channel output symbol according to
the probability . The Shannon capacity is defined
as where is the mutual
information between the channel input and output. See the
Appendix for a review of mutual information. In this paper we
study two particular channels.

Noiseless digital channel with rate The channel input
and output alphabets are the same: . The alphabet size is

where is called the rate of the channel. The channel
is noiseless and memoryless: (where
is a Dirac measure.) In this case .

Fig. 1. System.

Memoryless vector Gaussian channel: The channel input
and output alphabets are: . The channel is memo-
ryless: where is an IID sequence of Gaussian
random variables with zero mean and covariance . The input
symbols satisfy the power constraint: .
This channel is often used as a simplified model of a wire-
less channel. The supremizing input distribution can
be shown to be a zero mean, vector-valued, Gaussian random
variable. Hence, . See [9] for more details.
The capacity is given by

where denotes the determinant of .
c) Information Pattern: Our task is to design an encoder,

decoder, and controller to achieve given control objectives. Thus
we need to specify the information pattern of each of these com-
ponents [26]. There are five types of signals: state , channel
input , channel output , decoder output , and control .
The following time-ordering represents the causal ordering in
which the events of the system occur:

(2)

Encoder: We model the encoder at time as a stochastic
kernel: . Deterministic en-
coders are modeled as Dirac measures. Note that, in general,
there are five potential kinds of feedback to the encoder. We
will examine three different information patterns.

A) : This informa-
tion pattern represents full knowledge at the encoder.

B) : In this information pattern,
the channel output and decoder output are not available
to the encoder.

C) : In this information pattern, only the cur-
rent state is available to the encoder.

Information pattern B), along with time-ordering (2), im-
plies that is independent of conditioned on

. Similarly information pattern C implies is
independent of conditioned on .

Decoder: We model the decoder at time as a stochastic
kernel: . The information pattern here
along with the time-ordering (2) implies that is independent
of given . As we will see later, the
output of the decoder can be taken to be an estimate of the state
of the plant.
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Controller: We model the controller at time as a sto-
chastic kernel: . The information pattern here along
with the time-ordering (2) implies that is independent of

conditioned on . Note that we are
assuming the controller takes as input only the decoder output.
Thus, there is a separation structure between the decoder and
the controller. We will give conditions under which this separa-
tion structure can be assumed without loss of generality.

Clearly, more information available at the encoder will lead
to better control performance. Information pattern A) can be
viewed as the best scenario and information pattern C) can be
viewed as the worst scenario. There are many information pat-
terns in between these two extremes and information pattern B)
represents one such information pattern. As we will see later, the
important feature of information pattern A) is that the encoder
knows the decoder’s state. We will discuss scenarios where this
naturally occurs. The important feature of information pattern
B) is that the encoder has access to the previous control signals

. Here, we are envisioning situations where the encoder is ge-
ographically collocated with the plant and, hence, can observe
both the state of the plant as well as the control actions applied
to the plant. Finally, information pattern C) is useful for mod-
eling situations where the control signals are not observed at
the encoder. This information pattern can be used for scenarios
where we want to model encoders that need to be simple and
memoryless.

d) Interconnection and Performance Objective: In order
to consider a performance objective, we need to insure that there
is a well-defined joint measure over the variables of interest. We
are given the plant and channel. For each encoder, decoder, and
controller satisfying the required information patterns we can
interconnect the different stochastic kernels together to produce
the following joint measure:

Note that this joint measure preserves the dynamics of
the plant and the channel as well as maintains the in-
formation patterns of the encoder, decoder, and con-
troller. Let denote the set of all such joint measures:

.
Our performance objective is the LQG cost

(3)

where and S are positive definite. Our goal is to minimize the
LQG cost (3) over the set of all measures in that are consis-
tent with the given plant, channel, and information pattern. We
are also interested in understanding how the properties of the
channel, like rate and power, and the choice of information pat-
tern at the encoder can effect the minimum LQG performance
cost.

e) Sequential Rate Distortion: One role of the feedback
link from the encoder to the decoder is to convey information
aimed at reducing the controller’s uncertainty about the state
of the system. At time the evolution of the state is given by

. Since the decoder has
access to the control signals the uncertainty in is determined
by the primitive random variables , and . The decoder’s
estimate of the state is given by

The information transmitted across the channel should
only be relevant for determining and . Hence,
it makes sense to examine the uncontrolled dynamics:

. We will examine the
uncontrolled dynamics in Section IV where we introduce the
sequential rate distortion framework. This turns out to be the
appropriate framework for understanding what information,
relevant to the control objective, should be transmitted over the
communication channel.

III. LQG PERFORMANCE OBJECTIVE

Here, we consider conditions that insure the optimality of
the certainty equivalent controller. We then show that the LQG
cost can be decomposed into a full knowledge cost and a partial
knowledge cost.

Recall our goal is to minimize the long term average cost
given by (3). Under full state observation, it is well known that
the optimal steady state control law is a linear gain of the form

where

(4)

and satisfies the Riccati equation

(5)

The optimal cost is given by

(6)

Furthermore, these results continue to hold for the LQ problem
where the process disturbances in (1) are no longer
Gaussian but are uncorrelated with zero mean and common
covariance matrix . That is the separation result continues
to hold if only second-order statistics are specified. These
results are standard and can be found in [5].

The addition of a communication channel converts the fully
observed LQG control problem shown previously into a par-
tially observed LQ control problem. The structure of the obser-
vation is determined by both the communication channel and
the choice of encoder and decoder.
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A. Certainty Equivalence

We now present conditions that insure the optimality of
the certainty equivalent control law: . Where

is the decoder’s estimate of the state of
the plant. To that end, we discuss the no dual effect property [3].

Fix a memoryless channel , an information pat-
tern for the encoder, and an encoder . Let the
state estimation error be .
We know that for any control sequence we have

. Define
to be the uncontrolled state. Similarly,

let denote the channel output when all the controls are set to
zero. Specifically for each particular realization of the primitive
random variables: , and (the latter is included if
the channel is the Gaussian channel) represents the channel
output under the control sequence and represents the
channel output when all the controls are set to zero.

The control has no dual effect if for all and

The condition of no dual effect essentially states that the error
covariance is independent of the control signals applied. The
term “dual” comes from the control’s dual role: Effecting state
evolution and probing the system to reduce state uncertainty. If
the control has no dual effect, the latter probing property will
not be in effect.

Proposition 3.1: The optimal control law for system (1) is a
certainty equivalent control law if and only if the control has no
dual effect.

Proof: Bar-Shalom and Tse [3] prove this result for the
case when the output measurement model, , has
the following functional form where is
a given sequence of functions and is an IID sequence
of random variables that are independent of the process.
For our case, depending on the information pattern of the
encoder and the memoryless channel, we have a more general
output measurement model,

, with the following
functional form . The proof
for this more general output measurement model is a straight-
forward generalization of the proof given in [3].

We now give a necessary condition insuring no dual effect.
Lemma 3.1: If the sigma-fields are nested,

, and then
there is no dual effect.

Proof: Note that

The last two equalities holds by hypothesis. Thus,
is independent of the control sequence

applied.

We now use Lemma 3.1 to give conditions for the control
to have no dual effect for the noiseless digital channel and the
memoryless Gaussian channel.

Noiseless digital channel: Because the channel is noiseless
the encoder information patterns and are equivalent (they
define the same sigma-field.) Also, for information patterns
and , both the encoder and decoder have access to the control
signals hence they both can subtract out the effect of the control.
Furthermore, as shown in [8], the optimal encoder will have
the form of a quantizer applied to the innovation:

,
where is a quantizer.

We will show that and forms a
Markov chain and, hence, .

Clearly, . Note that because
conditioned on the control is independent of and .
This implies because .
Hence, . Now because is a
function of and and is independent of .

By the induction hypothesis, assume that and
for . Note that

because, conditioned on , the control is indepen-
dent of and . Now, by the induction hypothesis and the
fact that is independent of , we have

. Therefore, . This implies
because . Hence,

. Now, because is
a function of and and is independent of . Hence,
there is no dual effect.

Memoryless vector Gaussian channel: Here, we re-
strict ourselves to encoders that are deterministic and linear:

where the
’s are matrices of appropriate dimension. Some of the ’s

may be set to zero depending on the information pattern of
the encoder. (We show in the next section that we may choose
linear encoders without loss of generality.) Due to the Gaussian
channel we have .

Since the plant dynamics, the encoder, and the channel are
linear we can rewrite in terms of the primitive random vari-
ables and the controls:

where the ’s are matrices of appropriate dimension.
Similarly, the “uncontrolled” channel output can be written as

with the same matrices.
Hence we can write for appropriate ma-
trices . The information in relevant to estimating

is summarized by . Thus, for linear encoders the control
has no dual effect; see [5, Lemma 5.2.1] for more details.

We have shown that for any linear encoder the no dual effect
condition holds. We have also shown that no dual effect can hold
for certain nonlinear encoders. In particular, it holds for those
nonlinear encoders that first remove the effect of the control
before applying the nonlinearity. This was done for the noiseless
digital channel with information pattern .

B. Reduction to Fully Observed LQ Model

We now reduce our partially observed control problem
into a fully observed LQ control problem. As before let

be the decoder’s estimate of the state of
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the system and let be the state estimation error.
The running cost at time can be written for every

where the last equation holds because
. Note that if the control has no dual

effect the last term of the running cost, ,
will not depend on .

We now define a new “fully observed” process with the de-
coder’s estimate of the state, , as the new state

with “process disturbance:” .
Our new system has the dynamics

(7)

The term represents the new information being transmitted
from the encoder to the decoder. To see this, note that

. At time , the decoder’s prediction error in estimating
the state at time is . After receiving the
error reduces to . The difference,
represents the new information sent to the encoder.

To complete the formulation of the fully observed LQ
problem we need to show the process disturbances, , in
(7) are uncorrelated.

Lemma 3.2: The random variables are uncorrelated.
Proof: We need to show that for all

. We will prove . The general case
will then follow. First, note that is uncorrelated with
because the error in estimating is uncorrelated
with the estimate . Second, note that is uncorrelated
with because the process disturbance at time is
independent of everything that occurs before time . Now,

. Where the second equality follows because is
measurable with respect to .

We can now put all the pieces together. Let be
the covariance of the state estimation error . As stated before,
the cost is

(8)

If there is no dual effect then the second term,
, is independent

of the control actions chosen. This term represents the cost due
to the encoder and channel. We have shown previously that the

process is uncorrelated. Therefore, the dynamics (7) with
cost given by the first term of (8) is an LQ control problem.
Hence, the optimal control law is the certainty equivalent
control.

Note that . If we further assume
that for all , then we can directly apply the results
described in (4)–(6) to get

We see that the optimal cost decomposes into two terms. The
first term is the cost under full state observation and the second
term is a cost that depends only on the steady state estimation
error covariance. Thus, we have reduced the problem of com-
puting the optimal cost to that of minimizing

for a given information pattern and channel.
We have presented conditions under which the certainty

equivalent controller is optimal. In the next section, we discuss
the encoder and decoder design.

IV. SEQUENTIAL RATE DISTORTION

We first review traditional rate distortion theory and the con-
cept of “separation” between the source encoder and the channel
encoder. We then describe the failings of the traditional theory.
These failings have to do with the long delays, noncausality,
and the failure of separation to hold for traditional rate distor-
tion theory in sequential settings. To correct for these failings we
review the notion of source-channel matching [19], [12], and in-
troduce the SRD framework [13], [23].

Given a source and a channel
our job is to design an encoder and decoder that can transmit the
source over the channel while maintaining a given end-to-end
distortion criterion; see Fig. 2. For our source, we consider the
Gauss–Markov system (1) with the controls set to zero

(9)

We will focus on the weighted squared error distortion measure.
For , let

where the weight matrix is positive definite.
The channel capacity theorem [11, Th. 5.6.4] states that any

rate can be transmitted over the channel with proba-
bility of decoding error decreasing to zero exponentially with
the number of channel uses. Specifically, there exists a channel
encoder that can transmit messages, equivalently bits,
by using the channel times and incurring a small probability
of decoding error.
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Fig. 2. Source-channel coding.

The source-channel separation theorem gives us conditions
under which we can separate the encoder into two pieces: a
source encoder that encodes the source into bits and a channel
encoder that converts those bits into channel symbols. Similarly
the decoder is split into two pieces: a channel decoder and a
source decoder; see Fig. 2.

The rate distortion function for horizon is
where

.
The next theorem follows from [11, Th. 9.6.3].
Theorem 4.1: We are given a Gauss–Markov process as de-

scribed in (9), , and a channel with capacity . If
, then there does not exist a coding scheme that

achieves distortion over channel uses. If
for sufficiently large then there exists a coding scheme that
can achieve a distortion arbitrarily close to .

This theorem shows that there exists a coding scheme that
achieves the rate distortion bound. Specifically, we can con-
struct a source encoder that quantizes our source into
bits. We can then design independently a channel encoder that
will transmit these bits over a noisy channel with small
probability of channel decoding error. Hence, one can design
the source encoder and the channel encoder separately so as to
achieve the required end-to-end distortion [11].

There is another coding scheme that can sometimes achieve
the end-to-end distortion bound over a channel. Note that the
definition of the rate distortion function involves an infimiza-
tion over stochastic kernels . These
stochastic kernels can be viewed as channels connecting the
source to the reproduction . If the true communi-
cation channel equals the rate distortion infimizing channel,
then we say the channel is matched to the source [19], [12].
Specifically, for all , we have , and

. Note that the
communication channel may need to have memory.

In the source-channel matching case, we do not need to sep-
arately design the source encoder and channel encoder. In fact,
we can send the source over the channel in an uncoded fashion.
Here, there is no explicit separation between the source and
channel encoding.

A. Causality and Sequential Rate Distortion

Unfortunately, under the source-channel coding scheme,
there is a delay of at least time units in computing
the reconstruction of . Specifically, at time , we observe

. It then takes steps to observe the remainder of the
source, . At this point the channel input sym-
bols, , are produced. It takes another time steps until
all the channel output symbols are received. Then the

decoder can compute the estimate of . The time-ordering
is

(10)

In our control situation, this delay is unacceptable. The natural
causal time-ordering we require is

(11)

In time-ordering (10), the random variable is the th
event whereas in time-ordering (11) is the second event.

Similarly, in the source-channel matching scheme there
is a delay. Note that the rate distortion infimizing stochastic
kernel in Theorem 4.1 can be viewed as a channel that fac-
tors: . Under
the time-ordering (10) this is a causal channel. Under the
time-ordering (11), this is a noncausal channel because the
reconstruction depends on future ’s.

We now define the sequential rate distortion function. This
function involves an optimization of the mutual information
over all causal, with respect to time-ordering (11) channels.

Definition 4.1: The sequential rate distortion function is

with
. Note that in the definition we are expected to achieve a

distortion at each time step .
We provide a necessary condition on the channel capacity to

achieve a given end-to-end distortion causally. To that end, we
state the data-processing inequality [9].

Lemma 4.1: Let be a Markov chain.
Then, .

Proposition 4.1: A necessary condition on a given memo-
ryless channel with capacity to achieve the distortion
causally as described in Definition 4.1 is .

Proof: Let be any
joint measure which satisfies the distortion and channel re-
quirements. Then

where the second inequality follows from the data-processing
inequality.

Finding sufficient conditions on the channel to achieve the
SRD end-to-end distortion is more difficult. The source-channel
separation principle does not generally hold in situations where
delay is an issue. But there do exist channels with capacity

over which an end-to-end distortion can
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be achieved causally [23]. This can occur when the communi-
cation channel is matched to the sequential rate distortion in-
fimizing channel .

Definition 4.2: We say a channel is
matched to the SRD infimizing channel if
there exists an encoder and a decoder

such that

Here, is the joint
measure determined by interconnecting the source ,
the encoder , the channel

, and the decoder .
In words, a communication channel is matched to the SRD

infimizing channel if we can find an encoder and decoder for this
communication channel such that the source-to-reconstruction
behavior behaves like the SRD infimizing channel.

B. Computations

Here, we compute the sequential rate distortion function and
determine the structure of the infimizing channel law for the
Gauss–Markov source described in (9). We first review the
solution for a single Gaussian source. Then, we describe the
sequential situation.

1) Gaussian Source: Let our source be .
First, we present a simplifying lemma.

Lemma 4.2: Let . Then,
1) , and 2)
where is the identity matrix. Let be the unitary matrix that
diagonalizes . Let . Then,
3) , and 4) .

Proof: (1) holds because mutual information is invariant
under injective transformations (see Appendix.) To see (2) note

Both (3) and (4) hold because mutual
information and squared error distortion with weight matrix
are invariant under unitary transformations.

Thus, without loss of generality we can restrict our attention
to the case where and the source covariance is diag-
onal. In practice, the encoder would preprocess the observation
by applying and to it. Similarly the decoder would post-
process its output by and .

Let and . Then, [4], [9]

where

if
(12)

where is chosen so that . This is the so called
water-filling solution. It is useful to view
as the rate, or channel capacity, allocated to reconstructing the
th component of .

The error covariance is given by

. . .
. . .

For the formula (12) reduces to
. Specifically, the distortion accrued on

each component is the same: .
The rate used for each component may be different though.

We now characterize the infimizing channel. Following
[11], we first define the backward channel, , be-
fore defining the forward channel, . The back-
ward channel is given by where the error

is zero mean with covariance . The channel
output is Gaussian with zero mean and covariance

. Thus, we can compute the joint Gaussian mea-
sure . The forward channel
is given by where
and is a zero mean Gaussian vector with covariance

. The optimal channel
has the property that .

There are many ways to realize the channel .
One such way is to let be an invertible transformation such
that . Let and . For
this case, we say the channel with power constraint

is matched to the source .
2) SRD for Gauss-Markov Sources: We now compute the

sequential rate distortion function for the Gauss–Markov source
described in (9). We first present some results on the structure
of the optimal sequential rate distortion infimizing channel in
Definition 4.1. In the previous section, we showed that the static
Gaussian source is matched to a memoryless Gaussian channel.
Here, we show that the source (9) is matched to a Gaussian
channel with memory. Furthermore, this Gaussian channel can
be realized over a memoryless channel with feedback [23].

See the Appendix for the proof of the following.
Lemma 4.3: The optimal SRD infimizing channel for the

Gauss–Markov source (9) is a Gaussian channel of the form
.

This lemma states that the channel output at time only de-
pends on the current channel input and not on the previous
channel inputs. Specifically, it has the form

(13)

where , and is an indepen-
dent sequence of Gaussian random variables. This channel has
memory due to its dependence on the past channel outputs.

This channel can be realized over a memoryless Gaussian
channel with feedback. To see this, note

The channel outputs are available to the encoder via feed-
back. The encoder first computes the scaled innovation

and then transmits over the channel
. The decoder upon receiving can then com-

pute . The memoryless “A-B” channel has power constraint:
where
is the error covari-

ance in estimating from .
For this realization, the total mutual information separates

into a sum of mutual information terms:
. To see this, first note that
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. The second
equality follows because we can restrict ourselves to channels
of the form (13). Now, each addend can be written as

The second equality comes from the fact differential entropy is
invariant under translations. The third equality follows by noting

is independent of . Since we may con-
clude that is independent of .

We are now ready to compute the SRD function and the SRD
infimizing channel for the Gauss–Markov source (9). We first
address the scalar case. Let be a sequence of
scalar memoryless Gaussian channels that realize, under noise-
less feedback, the sequential rate distortion infimizing channel.
Let be the mutual information for the th
channel use.

As we have shown, one can reconstruct a scalar Gaussian
source with variance over a matched Gaussian channel
of capacity within a distortion . For the scalar
Gauss–Markov source, we know that the encoder first com-
putes the innovation:

where the error is . It
then scales this innovation and transmits it over the “ ”
channel. The distortion at time is . Hence,
the variance of the innovation is . Then, the
reconstruction has distortion

and

To compute we require each
hence and

for . Now
. Thus

(14)

If the source is unstable , then by Proposition 4.1 and
(14) a necessary condition to insure a bounded distortion at each
time step is that the channel capacity be at least .

We now treat the -dimensional vector valued Gauss–Markov
source. Let be the covariance of the distortion
error . At time the encoder first computes the innovation,

which has covariance . Let
be the unitary matrix that diagonalizes .

That is .
By our discussion, for the single Gaussian source we see
that for a distortion we need a rate:

where

if
(15)

and is chosen so that . The error covariance
at time is then given by

. . . (16)

and that . The interpretation
of (16) is as follows. First the covariance of the innovation

is diagonalized. Each component is then
transmitted at a rate of . The decoder receives the channel
output and then computes the state estimate. This state estimate
has error covariance given by .

Note that in (15), for low enough distortion, specifically
, we get for each that
where diagonalizes

. Here, represents the
th eigenvalue of . Thus, (16) becomes

. . .

Hence, the rate required on the th component is

The total rate required at time is

We have reduced the sequential rate distortion problem for the
Gauss–Markov process to a standard rate distortion problem for
a single Gaussian source. For small enough to satisfy the
previous condition, we have

(17)

Note that
. This result relating the

channel rate to the eigenvalues of the open-loop system is
related to the stability requirements presented in [21]. In
particular, is the minimum rate
required to insure bounded state estimation error.

For the Gauss–Markov source we have shown that if the
communication channel is matched to the SRD infimizing
channel then the SRD distortion can be achieved. In many sit-
uations the communication channel is not matched to the SRD
infimizing channel. In the case when the channel is Gaussian
but not matched to the source, Lee and Peterson [14] derive
the optimal linear encoder and decoder. For the unmatched
case, though, the optimal encoder and decoder are generally
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nonlinear and difficult to characterize. The problem of joint
source-channel coding with small latencies is currently an
active area of research.

C. Noiseless Digital Channel and Operational SRD

We have computed the SRD function for the Gauss–Markov
source. We have also shown that if the communication channel
is a memoryless Gaussian channel with noiseless feedback
matched to the source then the SRD function can be achieved.
Here we examine the situation where the communication
channel is a digital noiseless channel and hence not matched
to the source. In this case the encoder must quantize the infor-
mation it wants to transmit (as opposed to scaling and rotating
as it did in the case of the Gaussian channel with noiseless
feedback.)

Definition 4.3: A sequential rate distortion quantizer is a
sequence of measurable functions such that

where the range of each function is at most count-
able. Specifically takes .

In the following, the superscript “o” represents “operational.”
Definition 4.4: The operational sequential rate distortion is

where .
It is easy to see that . Specif-

ically let be any sequential quantizer such
that . Then

.
Computing can be difficult. However, some structural

properties are known. In [8], it is shown that the optimal quan-
tizer for the Gauss–Markov source is itself Markov. Unfortu-
nately, designing optimal sequential quantizers is difficult. In the
limit of high rate (low distortion) more can be said. The quan-
tizer can be chosen to be a uniform quantizer (see Appendix.)
Also, the difference between the operational SRD function and
the SRD function becomes negligible. Thus, the SRD function
is a useful approximate measure for the rate required to achieve
a given distortion [23], [16]. See the Appendix for a proof of the
following.

Proposition 4.2: .
In summary, with the difference

becoming negligible as . The sequential rate distortion
function can be considered a relaxation of the operational
SRD function where the relaxation comes from extending the
class of deterministic quantizers to the class of random quan-
tizers. In the SRD framework the random quantizers are repre-
sented by the infimizing channel laws. The randomization can
be viewed as coming from the noise in the infimizing channel
law. Hence for the matched case the randomization comes from
the true channel noise.

V. EXAMPLES

In this section, we apply the results of Sections III and IV to
four different scenarios. We compute or bound the cost in each
scenario.

A. Noiseless Digital Channel

As stated before, for the noiseless digital channel, the infor-
mation patterns and are equivalent. For these two infor-
mation patterns let be the operational SRD function
for the uncontrolled dynamics with weight
matrix .

Recall that the optimal LQG cost has the form:
. The cost can be achieved over a

noiseless digital channel with rate .
As discussed earlier , hence,

is a good approximation to the channel
rate needed in the low distortion regime.

There is a tradeoff between the channel rate and the control
performance. Notice that if we are interested in engineering the
total cost to within some percentage of the optimal value, then
beyond a certain point it is no longer worth trying to lower
by increasing the quality of communication since the full knowl-
edge cost, , will dominate the total cost.

B. Memoryless Gaussian Channel With Information Pattern A

In this case, the encoder has access to the past channel out-
puts. There are many ways to realize this in practice. One pos-
sibility is that there is a direct noiseless feedback path for the
memoryless Gaussian channel. Another possibility is that en-
coder can infer the channel output from the observation of the
previous control signals and knowledge of the controller policy
and decoder policy. The encoder also has access to the previous
controls as well.

Let be the SRD function for the uncontrolled
process with weight .
Then the LQG cost can be achieved over
a memoryless Gaussian channel if that Gaussian channel is
matched to the SRD infimizing channel law.

Following Lemma 4.2, we can redefine the dynamics. Let
, and .

Then .
We first examine the scalar case. For Gaussian channels

with capacity , we have shown that
the steady state distortion is

. Thus, the optimal LQG
cost equals

Note that if then the LQG cost equals infinity.
For the vector case, we can get an explicit solution in the low

distortion regime. To achieve an LQG cost of ,
we need a memoryless Gaussian channel matched to the source
with capacity . Recall from before that for

small enough we have

In the case when the Gaussian channel is not matched
to the source the expression is a lower
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bound on the optimal LQG cost for a channel with capacity
.

C. Memoryless Gaussian Channel With Information Pattern B

In this case, the encoder has access to the past controls. We
are assuming that the encoder is collocated with the plant and,
hence, can observe both the state and the control actions applied
to the plant.

Computing the SRD function for this information pattern is
difficult because encoder does not know the decoder’s state.
One potential suboptimal encoding scheme consists of first
computing the encoder’s innovation and then transmitting that
across the Gaussian channel. This innovations coding scheme
was introduced in [6].

At time the encoder computes the innovation using
the encoder’s information: .
Specifically, and for we have

. Note that the innovation com-
puted by the encoder is different than the innovation computed
by the decoder: . This is because the
encoder does not have access to the channel outputs .

This innovation coding scheme only works for systems with
a stable matrix. To see this, we examine the scalar case.
Let the Gaussian channel have capacity . Then, at time zero,
the estimation error at the decoder is . For
general times , the decoder upon receiving the channel output

will compute the estimate of the state as follows:
. Hence, the error variance satisfies

the recursion . If is unstable then
. In the case when is stable we can com-

pute the steady state error variance: .
Hence, the LQG cost is

Note that even over a noiseless digital channel this innova-
tions coding scheme will not be stable if is unstable. This
is because the innovations are quantized. This quantization
error leads to errors in the decoder’s state estimate. The new in-
formation sent to the decoder will never correct these previous
errors. Because is unstable, this error will grow.

We now examine the vector case. At each time step we
only transmit information about . This is nothing more
than the standard rate distortion problem discussed be-
fore. Let be the decoder’s reconstruction of and
let be the error in reconstruction. Let

be a unitary matrix that diagonalizes . Specifically,
. Let be a

choice of rates for each component. Then

. . .

. . .

where . If all the then error
covariance . The rate required to achieve this

distortion for the reconstruction of is given by
.

The state estimation error covariance evolves as:
. For stable this Lyapunov equation has the

steady state solution . In the case when
all the we get . See [6]
for more details on this innovations encoding scheme including
a discussion on coding versus delay.

For the noiseless digital channel with information pattern A)
and B) and for the memoryless Gaussian channel with informa-
tion pattern A) we are able to treat unstable systems. However,
for the memoryless Gaussian channel with information B), we
are not able to treat unstable systems. This difference arises for
information pattern B) because the encoder is using different in-
formation than the decoder’s information to base its decisions.
This asymmetry in information can cause the filters employed
by the encoder and the decoder to lose synchronization with
each other. In the stable case such errors in synchronization will
decay away. However, in the unstable case they can grow in an
unbounded fashion. The problem with encoder’s employing in-
formation pattern B) and transmitting over a noisy channel is
that the encoder is not made aware of the channel noise cor-
rupting the signal received by the decoder.

The failure of innovations coding in the unstable case does
not mean that it is impossible to design control systems faced
with information pattern B). More complicated coding is neces-
sary to insure synchrony between the encoder and decoder. It is
unclear what the fundamental penalty is in terms of rate for this
situation.

For the cases treated so far, the channel input symbols, ,
transmitted over the channel have been uncorrelated. This is
consistent with the source coding idea that we should only
transmit new information. But due to channel noise the encoder
may lose synchronization with the decoder. Hence, the natural
idea is to add error correction, or redundancy, to the channel
coding. In the next section, we discuss this in the context of
information pattern C).

D. Memoryless Gaussian Channel With Information Pattern C

Here, the encoder’s information pattern at time consists only
of . The only linear encoder is one that scales and trans-
mits it across the channel: where
for some gain . Note that this is the standard LQG problem
with linear observation equation except that the ’s need to be
chosen so as to satisfy the channel power constraint.

In the previous settings, the channel input symbols have
been uncorrelated. They represented “new” information about
the source. We saw that for information pattern B) if the system
is unstable and there is channel noise then we can lose synchro-
nization due to the fact that the encoder no longer knows the
decoder’s state. In such settings, it makes sense to add redun-
dancy to the channel input symbols . For the classical LQG
problem the input symbols are correlated because
the process is correlated.

Assume we have (1) with a linear observation equation of the
form where is an observable pair. As is
well known, the optimal control law is the certainty equivalent
control law as described in (4)–(6). Let be the steady state
covariance of the process under this control law. Then, in
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steady–state the capacity of the memoryless Gaussian channel
should be at least .

We have a new interpretation for the classical LQG problem
with linear observation model. The linear observation model
adds redundancy to the information about the innovation to
combat channel noise. This is required because the encoder is
not able to compute the decoder’s state estimate.

APPENDIX

The mutual information between two random variables
and is defined as

else

where and is the Radon–Nikodym
derivative.

If is a discrete random variable then its entropy is
defined as:
and its conditional entropy is defined as:

. If is a
random variable admitting a density, , then its differential
entropy is defined as:
and its conditional differential entropy is defined as:

.
The following useful properties can be found in [9].

a)

if is a discrete random variable
if admits a density for each

This implies conditioning reduces entropy.
b) .
c) is a Markov chain if and only if

.
d) Mutual information is invariant under injective transfor-

mations. In particular, let be an injective function. Then,
.

e) The differential entropy of a -dimensional Gaussian
random variable is

where is the determinant of
.

f) The differential entropy is invariant under translations
.

Lemma 4.3: The optimal SRD infimizing channel for
the Gaussian source (9) is a Gaussian channel of the form

.
Proof: We first show the optimal channel is Gaussian.

Let be a jointly Gaussian source admitting a density
. Let be a channel. Call the resulting

joint measure . Let be a jointly
Gaussian measure with the same second-order properties as

. Then

a) is a Gaussian channel;
b) has the same independence properties as

;
c) .

Part a) follows because is jointly Gaussian.
Part b) follows from noting that independence or conditional
independence of some random variables implies that those
same random variables are uncorrelated or conditionally uncor-
related. has the same second-order properties
as thus it inherits the same independence prop-
erties. For c), note

The second equality follows because has the same second-
order properties as and because .

For the weighted squared error distortion measure we see
that the distortion is the same under and . Thus, for the
Gaussian source the best channel that minimizes mutual infor-
mation while maintaining a given squared error distortion is the
Gaussian channel.

Now, we show the optimal Gaussian channel can be chosen
of the form . Let be any
Gaussian channel. Once given the Gauss–Markov source (9) we
can determine the joint measure . Now de-
fine a new channel: .
As before once given the Gauss–Markov source (9) we can
determine the joint measure .

We will prove It is straight-
forward to verify that holds for all

. Assume the result holds for all . We now prove
the induction step. For any , we have

Thus, the distortion under is the same as under . We now
show that the mutual information under is less than or equal
to that under

.
Proposition 4.2: For any the limit

.
Proof: We sketch the proof for the scalar source given

in (9): . Following [16], let repre-
sent a scalar quantizer defined as follows:

if . Let
denote
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the componentwise application of to each component of
. Note that the entropy is an upper

bound to because the squared error distortion
under the quantizer is at most .

Now, for with finite-differential entropy it can be
shown that [16]

(18)

By the previous results, we know that for small enough

. Since is jointly Gaussian, we can write the
differential entropy as

Using (18) with , we get

where a) follows because .
Thus . See
[16] and [19] for details.
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