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Abstract

The problem of representing the edges in an image by means of a set of curves is
considered. An important point of view here is that certain types of edges should
not be recovered in the first stage of computation. More precisely, singular points
such as junctions and corners, and edges where brigthness change is small should
be recovered only at a later stage. Thus, we study the problem of inferring smooth
curves to describe edges that are far from singularities and that contain brightness
changes. A model of curvés with these properties is defined, both for the ideal and
noisy case. An algorithm is proposed which employs an intermediate representation
consisting of a set of curve fragment hypotheses, obtained by estimating the position
and orientation of the edge at every point in the image. This algorithm is proven
to detect all the curves which satisfy the worst-case noise model. Furthermore, the
reconstruction error of each curve, measured by the HausdorfF distance, is guaranteed
to vanish linearly when the upper bound on the deviation from the idea] model goes
to zero. Some experimental results are presented.
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Chapter 1

Introduction

1.1 The edge detection problem

1.1.1 Importance of global information

Detecting and representing boundaries between objects in images is a_fundamental
problem in computer vision. A good description of object boundaries can be useful
for other tasks such as object recognition and motion estimation.

The most important source of information for edge detection is that objects of
the real world often appear in the image as uniform regions with different bright-
nesses. Thus, edges between objects usually correspond to points in the image where
brightness changes abruptly.

Then, a simple way to detect edges is to estimate brightness variations at every
point in the image and declare an edge-point where brightness variation is high or
maximum. This procedure is local, meaning that each small area of the image is
processed independently from the rest of the image and the decision taken at each
point — whether or not the point belongs to an edge — depends only on the data in
a small neighborhood around it.

It is well known that this purely local method gives rise to many false positive and
false negative errors. In fact, it often occurs that an edge does not generate a change
of brightness. This can be due to occlusion by another object, a shadow, or simply
because the two objects have very similar colors. Conversely, brightness change can
occur away from edges due to noise, texture or small surface imperfections.

To overcome these problems it is necessary to make the edge detection process
more global. That is, to decide whether or not an edge exists at some point, informa-
tion from other areas of the image has to be taken into account. The distance that
this information has to travel might be very large, as the Kanisza triangle example
illustrates (figure 1-1).

1.1.2  Edge representations

An important issue which affects the capability of exploiting global information de-
pends on the representation of edges. The simplest representation is given by a
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Figure 1-1: Kanisza triangle. Left: The human visual system interprets this image as a white
triangle on top of three black circles. Edges are perceived even where there is no local clue to
their presence. Right: The edge in the left figure indicated by the arrow “disappears” when the
image is modified far away from this point. This shows that edge detection in the human visual
system combines information from distant areas of the image.

collection of points. A slightly more sophisticated one is obtained by associating the
estimated orientation of the edge to each edge-point. One has then a collection of
vectors, or tiny curve fragments. Most local edge detectors produce a representation
of this kind. Unfortunately, due to noise in the image, these curve fragments are
usually disconnected from each other.

A more powerful representation is obtained by describing edges by means of a
collection of curves. Clearly, a collection of curves rather than a collection of points
gives also information about which edge-points belong to the same edge. Typically, a
representation based on curves contains fewer primitive elements than one given by a
collection of vectors. In fact, one single curve can embody the information contained
in many vectors. A yet more high-level representation is given by a collection of
regions, possibly ordered by occlusion. A representation of this type not only identifies
the edges in the image — which are simply the boundaries of these regions — but
also contains information about the surfaces of the imaged objects.

As one moves up the hierarchy of these geometric descriptors, from points to curves
and regions, both the complexity and the spatial extent of these descriptors increases.
Since high level descriptors cover large portions of the image they provide a suitable
vehicle to carry and propagate global information. For instance, region descriptors
are capable of representing occluded (and therefore “invisible”) edges. The Kanisza
triangle example illustrates this point. The brightness of this image can be encoded
by a set of four overlapping regions — a white triangle on top of three black circles.
This is a strong indication that the edges of the triangle exist even where there is no
local evidence of their presence. This type of representation, referred to as 2.1 sketch,
was proposed in (Nitzberg and Mumford, 1990). v ,v

The fact that global information can be carried by these hlgh level geometrlc de-
scriptors suggests that edge detection can be done more effectively by using at some
stage this kind of descriptors to represent edges. Unfortunately, moving up the hi-
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erarchy of descriptors is accompanied by a combinatorial explosion of the number of
possible descriptors. In fact, whereas the number of points or pixel grows polyno-
mially (quadratically) with the size of the image, the number of possible curves or
regions grows exponentially. Thus, while exhaustive search in the space of all possi-
ble descriptors is feasible for detecting edge-points, it is not practicable for detecting
curves or regions. For example, it is not possible to match all possible curves against
the image until a good one is found. Other strategies are necessary to overcome the
intrinsic combinatorial complexity brought about by including global information into
the problem.

Many approaches and algorithms have been developed which try to incorporate
global information into the edge detection process. They can be roughly classified
into two classes: hierarchical methods and methods based on global cost functionals.

1.1.3 Hierarchical approaches

One way to exploit global information without causing combinatorial explosion of
complexity is to introduce it gradually. Namely, the overall problem is broken into a
hierarchy of subproblems_which mirrors somehow the hierarchy of geometric descrip-
tors discussed earlier. Each subproblem uses a little bit more global information than
the ones at the next lower level of the hierarchy. Hopefully, the knowledge about the
image gathered at any stage will help to guide the process in the following steps so
that combinatorial explosion can be avoided.

A typical example of a hierarchical strategy is the following. First, a local edge
detector is applied to the image. This step generates a collection of edge-points (or
vectors). In the second step, these points are linked together to form sequences of
points and a curve is interpolated through each of these sequences. At this stage, to
limit the number of possible combinations of point groupings, only nearby points are
linked together. In the third step, curves obtained in the previous step are grouped
together so that occluded boundaries can be assembled. At this step, information
about the structure of each curve can be used to guide grouping so that only a
fraction of all the possible combinations are considered. For instance, grouping can be
restricted initially to curves which are collinear or CO-circular. This makes possible

“the interaction of curve descriptors which are far away from each other. Finally,
region descriptors can be associated with closed curves constructed in this way. The
brightness inside these regions can be checked to verify that they are indeed uniform
regions.

Clearly, information is not constrained to flow bottom-up in this hierarchy. It
is also possible to have a top-down feedback which refines computation at a lower
level by taking advantage of information gathered at higher level. For instance, one
might apply the local edge detector again on the hypothetical line which connects
two collinear segments found by the linking step. Probably, the better estimate of
the edge position and orientation provided by the two collinear ‘segments can enable
the local edge detector to find edge-points that could not be detected beforehand.

More global information is progressively introduced into the process as bigger and
more complex descriptors interact with each other. For computational reasons, each
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token can interact with only a small number of other tokens at every step. In other
words, only a small number of all the possible groupings can be considered. This is
why several steps are necessary to compute very global descriptors.

The architecture of procedures necessary to compute global descriptors can be
very complex, due to the variety of phenomena which have to be taken into account.
Brightness variations across edges can occur at different scales and can have many
different shapes. Edges can exist with different degrees of smoothness and curvature.
Critical points such as corners, junctions of several curves, can complicate the prob-
lem. Parts of the edges can be occluded or invisible. Noise with different amplitudes
and characteristics can be present. Thus, a variety of procedures have to be integrated
together to cope appropriately with each of these phenomena.

Designing and implementing this architecture is a daunting task and there is very
little theory to help. It is not clear what this architecture should be, namely which
aspects of the problem should be considered first, and which ones deferred until more
information has been extracted from the image. Furthermore, to keep computational
complexity under control, it is necessary to take irreversible decisions at some point
and the timing of these decisions can be crucial.

As a consequence, research in the area has been quite fragmented. Many different
architectures and algorithms have been developed independently of each other, and
it quite impossible to integrate them together. Most of these approaches have a very
heuristic flavor and are tailored to specific applications.

1.1.4 Global optimization methods

A second class of approaches is based on cost functionals which incorporate global in-
formation right from the beginning of the problem formulation. Different constraints
and sources of information are combined into a unique model and a functional is de-
fined which measures how good each possible image description is. Then, the problem
is to find the description which optimizes this functional.

In a probabilistic setting, global information can be modeled by assigning high
a-priori probabilities to those image descriptions which have certain global properties.
The functional to be optimized is the conditional probability of the description given
the observed image. Another popular approach models edges by elastic deformable

~curves (“snakes”) embedded in a force field which pushes them toward areas where

the gradient of brightness is high (Kass et al., 1988). In (Mumford and Shah, 1989)
global information is represented by a term in the cost functional which penalizes the
total length of the edges. A similar approach uses region primitives to model occlusion
and is able to continue edges behind occluded regions (Nitzberg and Mumford, 1990).

A nice feature of these methods is that they offer a concise and mathematically
precise formulation of the whole problem with a quite simple descriptive language.
Also, many algorithms developed in these frameworks exploit global information ex-
plicitly from the beginning, whereas in the hierarchical approach global information
comes into the picture only later. However it is difficult to incorporate all the possible

constraints and sources of information into a unique and unstructured model without

making oversimplifying assumptions. As with all systems which have to operate in a
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complex and diverse environment, it is unlikely that a good system can be designed
without decomposing the problem into subproblems.

Another difficulty is that including global information right from the beginning
causes the optimization problem to be computationally very hard. In most cases one
has to be satisfied with a local minimum. Or, it might be necessary to specify a good
initial condition from outside (as in the methods based on deformable curves). Or,
information about the initial condition can be provided by the hierarchical approach.

Moreover, in many cases it is not even clear that the optimal solution of the func-
tional is a good description of the image. For instance, the formulations in (Mumford
and Shah, 1989) can not represent junctions directly, but only in an asymptotic limit
(Richardson, 1990).

In conclusion, global optimization approaches can be used successfully to solve
parts of the edge detection problem but are not flexible enough to cope by themselves
with the complexity and diversity of the overall problem.

1.2 Motivation and main ideas

The main points which motivate this thesis will be discussed briefly now. Then they
will be explained in more details in the following sections.

Due to the complexity of the problem and the diversity of situations that can
occur, a robust edge detector should rely on many models and procedures organized
into some sort of network. Thus a framework is necessary to describe the role of
each procedure and specify how the different components interact and communicate
with each other. This framework has to provide a common language to characterize
the input-output properties and performance of each procedure. Understanding what
each component can do and can not do is important to figure out how procedures
should be used together.

Unfortunately, many of the existing algorithms for edge detection, especially those
which deal with linking and grouping, are based on quite heuristic rules and their
input-output behaviors and performances are not very well understood. Moreover,
when some theoretical analysis is done, this is based most of the time on probabilistic

‘models. We claim that probabilistic evaluation of performance is not appropriate for

constructing networks of procedures. In fact, knowing the probability of error does
not say very much about what disturbances cause an error. Therefore, it is not clear
how to design other procedures to compensate for these errors.

On the other hand, worst-case design and analysis guarantee certain levels of
performance for entire collections of bounded disturbances. This knowledge allows
the designer to focus on those disturbances which cause bad performance and develop
compensating procedures. Thus, this type of framework is more suitable to deal with
a problem which requires the integration of many procedures.

In this thesis, a new method is proposed to describe the input-output properties
of procedures and assess their performance-in the worst-case scenario.” This method
is based on the idea of covering. The output of a procedure is represented by a set
of descriptors belonging to some dictionary which can be a family of points, curves,
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regions or other geometric objects. A procedure is then characterized by proving that
its output is a covering of the set of all the possible descriptors of the input under the
assumption that the norm of the disturbance is less than a threshold. In other words,
the procedure has to produce an approximation for every descriptor in the dictionary
which is “true” up to a disturbance smaller than the threshold. Note that this is a
worst-case characterization of performance. This framework will be used to design a
linking procedure for curve detection and to analyze its performance.

Because of the multi-process nature of edge detection, ambiguity in the computed
representation is not necessarily bad. This is particularly true for those procedures
which lie inside the network and whose output can be interpreted as a set of different
hypothesis or possible interpretations of the input. Instead, most existing approaches
are based on the search for the optimal description, disregarding the fact that there
might not be enough information at a given stage to take an unambiguous decision.
By resolving ambiguity at the right stage, edge detection can be done more reliably.

This point is illustrated by the relationship between local edge detection and
linking. Most local edge detector approaches formulate the problem so that exactly
one optimal estimate of edge-point position is generated in every small neighborhood
containing an edge. Efforts are made to minimize multiple responses to the edge thus
sacrificing other performance criteria. This is probably the right approach if local
edge detection is regarded as a stand-alone process. However, if local edge detection
has to be followed by edge linking then there is no need to determine edge-point
position unambiguously at this stage. Indeed, we shall argue that some ambiguity in
the edge-point representation can be useful and can make linking more robust. Most
of this ambiguity is then eliminated by the linking procedure, which is in a better
position to take hard decisions since it relies on more contextual information.

1.2.1 A network of procedures

The work on edge detection of the last thirty years shows how complex and difficult
the problem is and how many different approaches can be followed to tackle it. Many
algorithms have been developed which are successful with specific aspects of the
problem and perform optimally on different classes of images. Many different types
- of geometric descriptors have been used to represent edges: points, vectors, curves
and regions.

It is quite clear that there is no single approach or procedure which performs
satisfactorily in every circumstance. It appears then that a robust edge detector has to
rely on many different procedures designed to solve optimally each part of the problem
in each possible situation that might occur. Also, different types of representations
should be used. To use a popular metaphor, the edge detection process should look
like a “society of procedures”.

How do procedures cooperate and interact to achieve the goal 7 Two procedures

can be “connected” in two ways.  One.way (parallel connection) is when:the two . .. . -
procedures deal with the same subproblem, for instance detection of T-junctions. .

‘These procedures might be specialized to detect different types of junctions or they
might operate optimally with different types of noise. Thus they cooperate to achieve
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a more robust performance. For the connection to be successful one has to show that
whenever one procedure fails then the other does not. Also, there has to be a way to
interpret their combined output.

The other way (serial connection) is obtained when one procedure feeds its output
to the other. In this case one has to show that the data received by the second routine
is rich and precise enough for it to achieve its goal. For instance, a local edge detector
can feed a collection of curve fragments to a linking routine. If for any reason a curve
fragment is missing from the output of the local edge detector then the linking stage
will generate a disconnected curve at that point.

To facilitate the task of integrating many procedures, it is essential to have an
abstract description of the input-output characteristic of each routine in terms of a
common language. To make an analogy, the design of very complex circuits is greatly
simplified by modeling each component by means of a transfer function. This interface
separates the details of the internal implementation of the procedure from its external
functionality. The same idea is at the heart of object oriented programming.

1.2.2  Worst-case assessment of performance

How should a procedure be described ? There are basically two levels of description.
One consists in specifying all the processing steps that lead from the input to the
output (implementation level). The other way is to describe the goals of the procedure
and evaluate how well they are achieved (functional level).

As argued in the previous section, a functional characterization of procedures
which describes their input-output behaviors and their performance is very important
for integrating many procedures together. A method to get this characterization is
to construct a model of the input. This model assumes that the input consists of
an ideal “signal” corrupted by some noise or disturbance. The goal of the procedure
is then to isolate the signal from the noise and represent it in a convenient format.
How well the signal is reconstructed determines how well the goal has been attained.
For instance, in edge detection one can model the input image as a piecewise smooth
map. The goal is then to detect these smooth components or the edges between them
from a noisy image. To evaluate how well the goal is achieved one can compare the
“true” edges in the model (which represent the “signal”) with the edges generated by
the procedure.

A common approach is to seek an optimal solution which minimizes the error or
some other cost functional. However, knowing that the solution is optimal is not
sufficient in many cases. In fact, it would be useful to have some information about
the nature of the errors and what disturbances cause them. One approach would
be to estimate the errors based on some probabilistic criterion. Another approach is
to guarantee that for a given family of disturbances the errors are small (worst-case
analysis). To carry out this type of analysis one has to identify all those situations
which cause the procedure to generate large errors. For this reason, the information
provided about the functionality of the procedure is potentially more powerful than
estimating errors based on a probabilistic criterion. In fact, worst-case analysis also
specifies when failures occur, namely what disturbances cause large errors. With this

19




information available it is easier to find out ways to overcome these failures and define
the role of the procedure in the overall architecture. i

A disadvantage of worst-case analysis is that error bounds can be quite conser-
vative, namely they can be larger than what they appear to be in practice. Also,
the models proposed in this thesis do not make any distinction between model uncer-
tainty and measurement errors. Both types of uncertainty are modeled as bounded
deviations from an ideal model.

1.2.3 Divide-and-conquer strategy

A way to tackle difficult problems is to use a divide-and-conquer strategy to decom-
pose the problem into more manageable problems. Thus the problem is solved by a
network of procedures, one associated with each subproblem.

This strategy can be used to tackle some difficult issues in edge detection, namely
curve singularities (corners and junctions) and gaps caused by low signal to noise ratio
along some parts of the edge. To do this, we consider three subproblems. The first
one consists in computing curves which do not contain any singularity and which have
a large enough signal to noise ratio. Then, the other two problems are 1) recovering
curve singularities and 2) bridging the gaps. Information obtained by the solution of
the first problem can simplify significantly the two other problems. A large part of
this thesis is devoted to solving the first of these subproblems.

1.2.4 Improving local edge detection

A weakness of many existing edge detection methods is that the decision concerning
the position of edges is done on the base of very local information. The algorithms
proposed in (Canny, 1986; Haralick, 1984; Perona and Malik, 1990) determine edge
position by maximizing some local measure of “edginess” such as the magnitude of
the brightness gradient.

Due to fluctuations of the gradient magnitude and orientation, maximization of
local edginess can lead to curve disconnections and wiggly curves, as shown in figures
1-2 and 1-3. Furthermore, to limit multiple responses it 1s necessary to compromise
other performance criteria. For instance, Canny showed that the mean localization
- error might have to increase by a factor of 3 to have a sufficiently low probability of
multiple responses.

These shortcomings are due to considering local edge detection as a stand-alone
process which has to make an unambiguous decision about edge localization. On the
contrary, this is only the first step of the whole process. If some ambiguity is allowed
in the representation produced by local edge detection then the following steps (e.g.
linking) can be done more reliably. The algorithm proposed in this thesis performs
maximization in a more sophisticated way to minimize disconnections and wiggling .
curves and achieve at the same time good localization of the edge. Roughly speaking, -
‘the method consists in suppressing those edge-points whose distance from the local
maximum is in the appropriate range of values. Edge points very close to the local
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Figure 1-2: Straightforward maximization of edge strength in the direction perpendicular to the
estimated orientation, as is usually done in most existing algorithms, can cause disconnections
because of fluctuations of the vector field magnitude and orientation. In this example, the vector
V1 is suppressed by vy which is bigger. In turn, vy is suppressed by v3. Thus both v; and vy are
suppressed and a disconnection occurs when the remaining vectors are linked together.
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Figure 1-3: Similarly to figure 1-2, straightforward maximization can cause wiggly curves.

maximum are not suppressed, thus introducing some ambiguity in edge localization.
Linking then resolves this ambiguity using semi-local, more contextual information.

Similar arguments have been made in (Zucker et al., 1988; Parent and Zucker,
1989). These authors also argued that edge position should be determined only
coarsely initially, when just local information is used. The method of non-maximum
suppression they propose has some features in common with ours.

1.3 Characterization of procedures by means of
dictionary coverings

1.3.1  Descriptors

What is the nature of the output of a procedure 7 A possible point of view is that
a procedure makes explicit some properties of the input. Thus its output is a list of
properties. Another interpretation is that a procedure detects or isolates objects —
e.g. geometric objects — which are implicitly contained in the input. In this case the
output would be a set of objects. :

This distinction between properties and objects is somewhat artificial and the
output of a procedure can.be regarded as a set of descriptors where a descriptor is some
object which describes some property of the input. For instance, an edge produced
by Canny’s edge detector is a geometric object which describes the gradient of the
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input image inside some small region. This descriptor asserts that the magnitude
of the gradient has a maximum at some particular point. An example of a more
complex descriptor is the partially ordered set of regions (the 2.1 sketch) from which
the brightness of the image in figure 1-1 can be completely reconstructed.

These two examples show that descriptors can be associated with information of
very different kinds and at very different scales, from very local to very global. A
local descriptor characterizes a very small portion of the input while a global one can
code the whole input, as in the second example. Also, whereas a local descriptor
is identified by few parameters a global one usually contains several parameters.
Typically, an image can be represented either by many local descriptors (e.g. a set of
edges) or by few global descriptors (a set of curves or the 2.1 sketch).

An image representation consisting of few global descriptors is preferable in many
cases. To compute such a representation it might be necessary to use several inter-
mediate representations which cover the whole spectrum from local to global. This
requires several procedures which utilize different “dictionaries” of descriptors.

1.3.2 n-true descriptors

The output of a procedure is a set of descriptors. The set of all possible descriptors
which can be generated by a procedure  is the dictionary of the procedure and is
denoted by D,. Thus, if I denotes the input to the procedure then its output 7(/) is
a subset of D,.

A basic requirement that the descriptors m(I) should satisfy is that they represent
“true” properties of I. A descriptor can be viewed as a statement about the input
and, of course, it is desirable that only true statements be made about the input.

However, the clear-cut distinction between “true” and “false” descriptors is not
suitable when noise is present and it is useful to allow a continuous spectrum of true-
ness. To do this, a confidence parameter 7 is introduced which measures how much a
descriptor is “true” for a particular input. If = 0 then the descriptor is “crisp true”
or, in other words, it describes the input perfectly. The set of descriptors which have
conﬁdence parameter less than 7 for a given input I is denoted by Dy (I ).

As an example, let D, be the set of all unit vectors in the plane and let 0 <7 <
180° represent the confidence in the orientation of the vectors!. Consider now the
input image in figure 1-4. The set of all true descriptors Dy(I) contains the vectors
tangent to the circle. The n-true descriptors Dy (I) are those vectors whose orientation
differs less than 7 from the tangent. Notice that n; <2 => Dy, (I) € Dy,(I). Note
also that the set D, (I), n > 0 is typically very redundant. In our example, for every

point on the boundary of the circle, D, (I) contains an infinite number of vectors.

1To be more rigorous, two confidence parameters should be used, one for vector orientation and
one for the position of the vector in the plane.
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Figure 1-4: Left: An image. Center: some of the descriptors in Dgo(I). Right: some of the
descriptors in Dyso (I).

1.3.3 Complete descriptions and coverings

The other fundamental property that a good description should have is completeness.
In an ideal situation, such as in the example just described (figure 1-4), a complete
description is one which contains all the true descriptors, namely all the elements in
the dictionary which describe the data exactly. In the example, this would be the set
Dy(I) of all unit vectors tangent to the circle.

In a realistic situation where noise is present, there might be no descriptors which
match the data exactly. In this case, a complete description or, more precisely, an
approximately complete description, is one which contains an approximation to every
n-true descriptor, where 7 is fixed a priori. That is, every n-true descriptor d should
be represented in the output by some d' = d. Namely, a complete description 7(I) is
one for which

" Vd e Dy(I) 3d € n(I) such that d' ~ d (1.1)

Notice that, assuming that true-ness is a “smooth” property of descriptors, it
follows from d' = d and d € D, (I) that d’ is n/-true for some 1’ =~ 7.

The notation d’' ~ d means that some distance function on the set of descriptors
‘has been defined and that the distance between d' and d is less than some p, where
p is sufficiently small. Thus, another way to rephrase (1.1) is to say that #(I) is a
covering of D, (I) with balls of radius p. Namely, D,(I) can be written as the union
of the balls centered at the elements in 7(I) with radius p.

The definition of the distance function on the dictionary is a very critical issue. In
fact this distance specifies how errors are measured and performance assessed. The
constant p represents the approximation error of the computed description, that is,
the distance between the n-true descriptors D, (I) and the computed ones 7 ([).

In this framework, two parameters, n and p, are needed to measure performance.
The former, n, is used to identify which objects (descriptors) are detected by the
algorithm. The latter, p, specifies how accurately these objects are reconstructed.
Namely, elements of D,(I) are always detected and reconstructed with an upper
bound p on the recostruction error. For objects which do not belong to D, () nothing
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can be said.

1.3.4  Steps for characterizing a procedure

To formulate a description problem, or characterize a procedure m and assess its
performance, the following steps are necessary.

e Specify the dictionary D,

Identify the confidence parameter(s) 7

Define the sets D, (I) C D,

Give a distance function on D,

Show that the computed description 7(I) covers D, ([)

1.3.5 Connections between procedures

As discussed earlier, procedures can cooperate either by means of a serial or a parallel
connection. A parallel connection occurs when two procedures 7y, m address the
same problem independently of each other. That is, the two procedures act on the
same input and use the same output dictionary. The connection is implemented
by unioning the outputs of the two procedures so that the output of the parallel
connection is 7 (/) U ma(I). The joint system does a better job than either 7, or my
alone if 7 (I) U mo([) is a better covering of D, (I) than m(I) or mp(J).

Two procedures are connected serially when the input to the second procedure
is the output of the first one, I, = w(I;). .\ series of procedure can be useful to
insert an intermediate representation between the input dictionary and the output
dictionary when these two are too different to be “bridged” by a single procedure.
For instance, consider the problem of computing a set of curves to represent the edges
in an image. The input is the set of brightness values at every pixel and the output
is a set of curves. An intermediate representation is given by a collection of vectors,
or small curve fragments. To use this intermediate representation two procedures are
necessary. The first computes a sampled vector field from the brightness image and
the second one computes a set of curves from the sampled vector field.

1.4 Outline of thesis

The problem addressed in this thesis is that of computing curves from a brightness
image by using a vector field as an intermediate representation. Chapter 2 describes
an algorithm which generates a set of curves from a discrete vector field, namely from
a finite set of vectors.

Chapter 3 analyzes the properties of this algorithm and specifies how to derive the
algorithm parameters from the model parameters. The main result guarantees that
all the curves which satisfy the noisy model are reconstructed without disconnections
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and gives an upper bound to the localization error. This bound vanishes linearly
in the noise-free limit. The curves which satisfy the model, and therefore can be
detected accurately, must have the following properties:

(1) The curve does not contain any singularity (such as sharp corners or T-junctions)
(ii) Curvature is low

(iii) The magnitude of the vector field must decay at some distance away from the
curve

(iv) The vector field must be approximately aligned with the curve

If any of these assumptions is not satisfied at some point of the curve, then a
discontinuity (i.e. a disconnection) occurs at that point, namely the curve is broken
into two parts.

In chapter 4 the noisy model of a curve is defined in terms of the input brightness
(gray-level) image. This model assumes that the brightness across the curve is given
by a profile (e.g. a step profile) whose gradient is maximum on the curve. Noise is
additive and bounded within each block of pixels of a given size. The main result
of this chapter ensures that if noise is small compared to the brightness variation
at each point of the curve and the conditions (i), (ii) above hold, then the curve
is reconstructed without disconnections and with bounded localization error. If the
assumptions are not satisfied at some point of the curve, then a discontinuity occurs
at that point. The algorithm computes a vector for each block of pixels by fitting
a local model to the brightness data. The resulting vector field is then fed to the
algorithm described in chapter 2.
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Chapter 2

Curve reconstruction from vector
fields

2.1 Problem formulation

One way to describe the edges in a brightness (gray level) image is by means of a
set of curves. These curves can be computed in two steps. First, a discrete' vector
field ® is obtained from the input image and then curves are computed out of ®.
This chapter describes an algorithm to carry out the second step. To formulate the
problem and characterize the performance of the algorithm the approach discussed
in section 1.3 will be used.

The input to the algorithm is a discrete vector field, namely a finite collection of
vectors ® = {¢(p) : p € G} where G C R? is finite and ¢(p) is a vector with vertex
(base point) p. A simple way to obtain a vector field is to estimate the brightness
gradient at every point p of a discrete grid G and then let ¢(p) be the gradient at
p rotated by 7/2 (figure 2-1(b)). A more sophisticated way to construct the vector
field is described in chapter 4 (figure 2-1(c)). In general, the magnitude or length of
®(p), denoted |p(p)|, measures the amplitude of the brightness variation at the point
p. The orientation of ¢(p), denoted 6(p), is a local estimate of the orientation of the
edge.

2.1.1 Curve model

What curves should be computed from the given vector field ® 7 In other words,
what kind of information must the field possess about a curve for the curve to be
detectable ? First, let us consider the ideal case when there is no noise. Also, for
simplicity let us assume for now that the vector field ¢(p) is defined on the whole
plane R?. Then, a natural characterization of a curve is given by two properties (see
figure 2-2(a)):

(C1) The vector field on the curve is aligned with the curve tangent

L«Discrete” means here “containing a finite number of elements”.
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Figure 2-1: Examples of vector fields.
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(a) No noise (b) With noise

Figure 2-2: The vector field in the neighborhood of a curve.

(C2) The magnitude of the vector field is locally maximum on the curve

More precisely, the second condition says that the restriction of ¢ to a segment per-
pendicular to the curve tangent has a local maximum on the intersection with the
curve.

In the terminology of section 1.3, a curve with these properties is a “true” de-
scriptor for the input vector field ¢. The set of all these curves is denoted by Cq o(9).

With noise present, conditions (C1) and (C2) have to be relaxed. In fact, noise
has two effects on the vector field ¢. First, it displaces maxima away from the curve.
Second, it distorts the orientation of the field so that it is no longer aligned with the
curve tangent (see figure 2-2(b)). The deviation from the ideal case caused by the
noise can be characterized by two parameters w, ©. The parameter w is the distance
from the curve at which the magnitude of the vector field is guaranteed to be less then -
the value attained on the curve (both values in the noisy case). © is an upper-bound
on the difference between the orientation of the curve tangent and the orientation of
the field close to the curve.
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To understand better the meaning of the parameter w, it should be noted that for
typical boundaries in real images, the brightness variation occurs in a neighborhood of
the boundary and then decays as one moves away from it.> Consequently, |¢(p)| has
a high value in a neighborhood of the boundary and then decreases at some distance
from it. Thus one can assume that at some distance w from the curve the strength
|¢(p)| is lower than its value on the curve (or, more generally, the value at a point
very close to the curve).

The set of all curves for which the vector field ¢ satisfies the above conditions is
denoted by C, o(#) (see figure 2-3). Notice that the pair w,® corresponds to the
parameter 1 described in section 1.3. A precise definition of the sets Cuo(¢) for the
case when the vector field is discrete is given in section 3.1.

2.1.2 Goal of the algorithm

Given the discrete vector field ® and the parameters w, © the algorithm computes
a set of curves® C(®) = {%,...,9n} (n is not fixed a priori, nor is the length of
each computed curve). These curves have properties very similar to the elements of
Cu,0(¢). Namely, they pass through points where the field has higher magnitude than
regions away from the curve and is approximately aligned with the curve tangent.

Also (see section 3.2), the set of computed curves generates a covering of Cy,0(¢)
with balls of radius e(w,©) ~ w/ cos©. That is, for every v € Cy,0(¢) there exists
4 € C(®) such that

d(v,%) < e(w, ©) (2.1)

The parameter e(w, ©) represents the localization error and vanishes when w and ©
both go to zero. The distance function d for which (2.1) holds is the asymmetric
Hausdorff distance given by (see figure 2-4):

d(v,%) = maxmin||p — 7|
pey peEY

where « denotes the set of points lying on the curve +. In other words, d(vy,%) is the
maximum distance of a point in « from the set 4. :

Notice that d(7,%) can be small even when 4 is much longer than ~. Indeed, d(v, %)
is zero whenever v is a subset of 4. A distance function with this property makes
sense here because the algorithm computes “maximal” curves and the set Cy eo(9)
contains also non-maximal curves, namely sub-curves of the elements of Cy o(4) (see
figure 2-3). That the computed curves are not too long is guaranteed by the fact that
the vector field has high magnitude on each point of these curves (relative to lateral
regions away from the curve).

2The distance at which this decay takes place varies and depends mainly on the sharpness of
brightness discontinuity (that is, how much this discontinuity is “blurred”); the amplitude of this -
discontinuity; and the amplitude of the noise. . = .

3By “curve”, in this thesis, we mean a subset of R? which is the image of some smooth map
g:[0,T] — R2.
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A curve vy which does not belong to Cy, ¢(¢) because condition (C1) or (C2) on
page 27 fails at some point p € -y will not be recovered as a unique, continuous curve.
Instead, two curves will be generated which approximate each connected component
of v\ {p}. To recover v in its entirety one can interpolate between all neighboring
pairs of curve-ends and verify that the resulting curve satisfies (C1) and (C2) almost
everywhere.

2.2  Brief description of the algorithm

The algorithm contains six steps. Step 1 consists of a non-maximum suppres-
sion procedure which computes the dominant points P C G of the vector field
® = {¢(p) : p€ G}. A point p € G is said to be dominant if

o the magnitude of the vector field at p is larger than its value in two lateral
regions to be described.

o the orientation of the vector field in a neighborhood of p is approximately con-
stant ,

Step 2 computes the connected components P, ... , Px of a graph with vertices
in P. The arcs of these graph are the pairs (py,p2) € P X P such that |[p; — pol| is
less than a threshold a. If the parameters used in step 1 are chosen appropriately
then each connected component has a thin elongated shape. The remaining steps of
the algorithm are applied independently to each connected component P;. A generic
component P;, will be denoted henceforth as Q.

Step 3 assigns a longitudinal coordinate, or arc length parameter, to every every
point in P;. An important property of this coordinate map is that the distance
between two points having the same coordinate is guaranteed to be small.

Step 4 computes a set T of triples of points in @, namely Vi C @ X Q x Q. This
set contains all the “good” discrete curve fragments (paths) of three elements. It has
a natural directed-graph structure whose arcs are the pairs of triples which have two
consecutive elements in common.

It should be noted that this step eliminates isolated vectors which survived non-
maximum suppression. In fact, only vectors which belong to some triple of neighbor-
ing vectors are considered as possible curve fragments.

Step 5 decomposes T into maximal subgraphs containing a covering path, namely
a path which connects the point with lowest longitudinal coordinate with the point
with highest coordinate.

Finally, step 6 computes the path with the smallest turn in every subgraph. A
polygonal continuous curve is associated with this path.

2.3 Non-maximum suppression

Since brightness variations are typically larger in the neighborhood of boundaries,
only those points where brightness variation is high have to be considered to compute
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(b) Some maximal curves in Cy o(®) (c) Some non-maximal curves in Cyy o (®).
These curves are sub-curves of other ele-
ments of Cyy 0(®).

)/

(d) Two-curve covering of Cy, o(®)

Figure 2-3: The set Cy, o(®) and a covering of it.
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Figure 2-4: Two curves whose asymmetric Hausdorff distance d(-y, %) is €. Notice that d(%,) =

€.
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Figure 2-5: Flow chart of the algorithm to compute curves from a vector field.
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example 1:

example 2:

Figure 2-6: First step of non-maximum suppression. The figure illustrates what happens when
the suppression routine is applied to the point p. In example 1 the point p “survives” while in
example 2 it is suppressed.

curves which represent these boundaries. Many edge detectors select these points by
searching for locations where brightness change is maximum in the direction perpen-
dicular to the estimated boundary orientation. A threshold can also be applied to
reject maxima created by noise.

This maximization (or non-maximum suppression) step has to be done in the
right way since undesired effects such as curve disconnections and wiggling can occur
if some points are erroneously suppressed (see section 1.2.4 and figures 1-2, 1-3 on
page 21). On the other hand, enough points have to be suppressed so that curve
interpolation can be carried out efficiently on the remaining set of points.

The non-maximum suppression technique proposed here addresses these issues.
It will be proved that with the right choice of parameters this method allows the
reconstruction of curves with bounded curvature without disconnections if the vector
field which represents brightness variations has the properties explained in section
2.1.1 in the neighborhood of every curve.

The suppression procedure consists of two independent steps. Step one (figure
2-6) suppresses those points p € G where the field magnitude is not larger than the
magnitude in the two lateral regions Fj(p) and Fy(p) shown in figure 2-7. Namely,
if there exists p’ € G N F(p), where F(p) = Fi(p) U Fa(p), such that |¢(p')| > |¢(p)]
then p is suppressed. Also, if ' € G N F(p) and, instead, |¢(p)| > |¢(p')| then p' is
suppressed. Let o(p), p € G be a boolean variable which is initially set to zero and is
set to one whenever p is marked for suppression. Then the first part of non-maximum
suppression consists of the following procedure.

Foreverype G
For every p' € G N F(p)
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If [¢(p')| > [¢(p)| then o(p) =1
If |¢(p)| > |$(p')| then o(p') := 1

Notice that points close enough to p where the field magnitude is smaller than
|¢(p)| are not marked for suppression. This reduces the chances that a point be
erroneously eliminated because of field fluctuations caused by noise.

Figure 2-7: The lateral regions Fi(p) and Fy(p) used during the first step of non-maximum
suppression.

’ Figure 2-8: The neighborhood A(p) used during the second step of non-maximum suppression.

Step two (figure 2-9) suppresses a point p € G-if its neighborhood A(p) (shown
in figure 2-8) contains a point p' with higher field magnitude and field orientation
which differs more than a threshold © from the orientation at p. If instead the field
magnitude is smaller at p’, then p’ is suppressed. That is, '
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example 1:

example 2:

Figure 2-9: Second step of non-maximum suppression. The figure illustrates what happens
when the suppression routine is applied to the point p. In example 1 the point p “survives”
while in example 2 it is suppressed.

For every p € G
For every p' € G N A(p)
If [|6(p) - 0(p')|| > ©
If |¢(p')| 2 |¢(p)| then o(p) :=1
If [6(p)| = |6(p')| then o(p') := 1

Notice that if the field orientation in A(p) does not vary more than © then no
point is suppressed inside A(p) by step two. The set of selected or dominant points
will be denoted by P:

| P={peG : o(p) =0}

Notice that the points are not suppressed while they are scanned but just “marked”
for suppression (that is, the variable o(p) is set to one). Suppression occurs only at
the end. Therefore, the set P does not depend on the order by which the points in
G are scanned.

For every point p € P, the lateral regions Fj(p) and F3(p) do not contain any
points which belong to P (proposition 3 on page 57). Also, the orientation of the
field at the points in A(p)N P differs less than © from the orientation at p (proposition
4 on page 57).

2.4 Connected components of P

Let G be the graph whose nodes are the points in P and whose arcs are the paifs
(p1,p2) € P x P such that ||p; — py|| is less than a threshold a. This threshold is
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(a) Input vector field obtained by the template-
(b) Vector field after non-maximum suppression -

fitting method described in chapter 4
Figure 2-10: Result of non-maximum suppression.
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Figure 2-11: The set of dominant points P. This set is decomposed into connected components.
Here, only the components with at least 5 points are shown. Note that each component has a

thin elongated shape.
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Figure 2-12: A component @ and its longitudinal coordinate ).

essentially the sampling resolution of the vector field and can be made arbitrarily
small by sampling the field densely enough.

A path in G is a sequence of points py,...,p, such that ||p; —pir1]] £ a for
t=1,...,n—1. A subset of P is said to be connected if there exists a path which
connects any two points in the subset. The connected components Py, ... , Py of the
graph are the maximal connected subsets of P. The following properties hold:

d P:Uszlpk
o P,NPu=0for kK

e A path exists between two points if and only if they belong to the same con-
nected component

Step 2 of the algorithm computes the connected components Pi,..., Px of G.
A unique integer label k(p) is assigned to every point p € P which identifies the
connected component containing p. The remaining steps of the algorithm are applied
independently to each component P, denoted by Q from now on.

2.5 Arc-length parameterization

Each component @) can have either a thin elongated shape (see figure 2-12), or the
shape of a closed ring. For simplicity, we consider here only the first case. The second
case can be dealt with by introducing a few adjustments, discussed at the end of this
section.

More complex shapes, such as those shown in figure 2-13 do not occur-because of

the way non-maximum suppression is done. This will be proven (implicitly) in section
3.5.
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Figure 2-13: Some of the shapes that the component @@ can not have. Notice that these two
sets do not allow a global longitudinal coordinate.

Step 3 assigns a longitudinal coordinate, or arc length parameter A(p), to every
point p € . A coarse description of the procedure which defines the longitudinal
coordinates is as follows:

e A point sy is chosen randomly from @}

e Two sequences Sg,sT,...,s;+ and So,s7,...,S;- are constructed. Each se-
quence converges toward one of the two ends of Q.

e Coordinates are assigned to these two sequences of points such that

A(sz=) < -+ < A(8Z1) < A(s0) =0 < A(sy) < -+ < A(sfy)

e The coordinates are interpolated to all the remaining points in

An important property of the coordinate map A is that the distance between two

points with the same coordinates is small®. A rough upper bound to it is about
2d,/ cos ©.

Extraction of the two sequences The points s7, ... ,s}, are computed recur-
sively starting from sy by using the search region S*(sf") shown in figure 2-14. For
every i > 0, the point s}, is chosen randomly in S*(s}) N Q until S*(sf)NQ = 0.
Thus we have: '

° 57, €57(s)NQ

4Notice that since this coordinate map is defined from a two-dimensional domain to a one-
dimensional domain two points with the same coordinate are not necessarily identical.
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Figure 2-14: The search regions S*(p) and S~(p). For each point sj‘, the next point s;"+1
is chosen from the region S*(sf). Similarly, s7,, is chosen from the region S~(s;). Notice
that A(p) is the area between the lateral regions delimited by (and including) S*(p), S~ (p)
(compare with figure 2-8).

o S*(s74)NQR=10
The width of S*(s;) is 2d,, its height a, and its distance from the baseline 5(s;")
is (see figure 2-14)
ho = 2d; tan © (2.2)
The height of the regions A(p) used during non-maximum suppression is
hi=hg+a

so that the region S*(s]) is the top portion of A(s}) (see figure 2-14). Thus s}, €
A(s}) and therefore, by proposition 4 on page 57, -

16(sif0) —0(sHI < ® (2:3)

The sequence sg,s;,...,s;- is computed in a similar way by using the search
regions S~ (s; ). Figure 2.5 shows the sequences s;_, ... ,s}, for several components
Q. We describe the remaining steps only for the sequence s7,. .., sf,. They are done
similarly for si,...,s;_.

Coordinate assignment The coordinates A(s;) are assigned as follows. First
let A(so) = 0. Then, for i > 0, A(sj,,) is computed recursively by adding to A(s;") an
estimate of the distance between the baselines 3(sf,;) and 8(s7) in the neighborhood
of sfy, sf. If (s},;) = 6(s]) then the baselines 5(sj;,) and SB(s;") are parallel
and one can set A(sf,;) — A(sf) equal to their distance. For the general case when
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_ Figure 2-15: The sequences extracted during arc-length parameterization for 14 connected
components. Note the initial point which is the only one not belonging to a search region. It is

chosen according to some scanning order.
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Figure 2-16: Notation for the interpolation formula (2.4).

0(si1) # 6(s]) let

Nsta) = M(s2) + 5dls, Blstia)) + (s, B(s7))

where d(p, ) denotes the distance of the point p from the straight line 3.

Coordinate interpolation The coordinate map A is interpolated to other points
in such a way that the baselines 3(s;") are level curves for A\. The other level curves
are the straight lines passing through the intersection point of (s}, ) with 8(s}") and
lying between them (see figure 2-16). More precisely,

3w = (1- 22 ) o)+ 2y, (2.4
mazr mazr

By using (2.2) and (2.3) it can be proved (proposition 5 on page 58) that the in-
tersection point of B(s;;) with B(s}) lies outside A(s}) and A(s},,) and therefore
the interpolation (2.4) is well defined for all the points between the empty regions
Fy(s{) U Fi(sf,) and Fa(sf) U Fa(s,y)-

For the points lying above the most positive baseline ﬁ(s}fﬁ), the interpolation
formula (2.4) can not be used. The coordinate of these points is defined as

A(p) = Msts) + dp, B(s52)) | (2.5)

~ Notice that the interpolation formulae (2.4) and (2.5) guarantee that ) is contin-
uous. : C
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Figure 2-17: The level curves of the longitudinal coordinate A, namely the curves on which A

is constant. They are the straight lines 3(p;) perpendicular to the field ¢(p;) for every point p;
in the extracted sequence s, _, ... ;Sz+-
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2.5.1 Domain of the map A.

For this procedure to work, it is necessary that d, and hy be large enough. Section
3.9 deals with the problem of determining suitable values for these parameters and
how they depend on d;, © and a. In section 3.5 it is proved that with the right choice
of the parameters the map A constructed by the procedure is well defined on the
connected subset of R? given by the union of all segments between points p;,p; € @
such that ||p; — p2|| < a.

2.5.2 Detecting components with no ends.

To make the procedure work in the more general situation, namely when ) might
have the shape of a ring, it is necessary to introduce a few modifications. If @ is
ring-shaped the recursion which extracts sy, ... ,51}_ returns eventually to a neigh-
borhood of the starting point sg. This event can be detected by labeling the points
as they are encountered. As soon as a point is visited a second time the recursion
interrupts. Clearly, there is no need to extract the sequence in the other direction.
Also, it is impossible to construct a continuous coordinate in this case. However, the
remaining part of the algorithm can be adjusted to work also with this single point of
discontinuity. But, for simplicity, it will be still assumed that no ring-like components -
are present. ’

2.6  Graph of curve fragments

To compute curves, steps 4 through 6 of the algorithm extract one or more sequences -
of points py,...,py from every @ and then interpolate a continuous curve through
this sequence of points. The simplest way to do this interpolation is by means of a
polygonal curve, which is obtained by joining with a straight-line segment every pair
of consecutive points p;, p;+1. Higher order splines could also be used. However, to
keep the analysis simple, only polygonal curves are considered here.
What criteria should be used to extract the sequence py,... ,py 7 That is, what
- are the desired properties of the polygonal curve defined by p1,... ,px 7 One require-
ment is that the curve be as long as possible. Ideally, a single curve from one end of
Q to the other would be desirable. Also, the curve should be “smooth” or “simple”
according to some definition. For instance, the total turn — which for a polygonal
curve is just the sum of all the angles at its vertices — should be small.

To evaluate the smoothness or regularity of the curve at some point one has to
look at a neighborhood of this point. If the curve is polygonal then it is sufficient to
consider a small number of consecutive vertices. For instance, to determine the total
turn of the curve one has to consider all triples of consecutive vertices. In fact, the
angle at every vertex depends also on the preceding and following vertex.

This suggests that a curve should not be viewed as a sequence of points but,

_instead, as a sequence of neighborhoods or small curve fragments. If the curve is
polygonal then these fragments consist of n-tuples of consecutive vertices.
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Step 4 of the algorithm computes a set of triples of points to be used as fragments of
a polygonal curve. A number of constraints can be imposed on these triples (p1, p2, ps):

e Constraint on length of segments:

r<|lp1 —p2|l £ 7 +aq, r<|lpz—psl]|<r+a (2.6)

The parameter r represents a lower bound on the length of a curve segment.
The constraint says that the the length of these segments should be as constant
as possible. However, it is necessary to leave some uncertainty in these lengths
to avoid disconnections. Recall that a is the sampling resolution of the input
discrete vector field ®.

e Alignment of the points (p1, p2, p3) with the longitudinal coordinate:

Ap1) < Ap2) < A(ps) (2.7)

e Alignment of the segments p1pz, P2p3 with the vector field:

a1z — 0(p1)|] < O, lla1z — 0(p2)]| < O (2.8)
||aas — O(p2)|| < O, |z — B(p3)|] < Oz (2.9)

where a9, ao3 are the orientation of the segments p1ps, p2ps. These conditions
ensure that the orientation of computed curve is similar to the orientation 6(p)
of the vector field.

e Upper bound on the angle at vertex ps:

P1paps < O3 (2.10)

Let T be the set of all the triples satisfying these constraints. A directed graph
T with nodes T can be defined by putting an arc between any two triples (p1, pa, p3),
(p'1,7'9,0's) € T if po =p'; and p3 = p'y. Namely, all the pairs of triples of the form
(p1,p2,D3), (P2, P3,p4) are connected by an arc. A path in this graph with n nodes
specifies a polygonal curve with n + 2 vertices. Conversely, a polygonal curve with
at least three vertices and whose consecutive triples of vertices satisfy the constraints
yield a path in this graph. ‘

2.7 Maximal coverable subgraphs

In general, there might be no polygonal curve satisfying the constraints formulated . -

in section 2.6 which covers the whole component @, namely-such that

Apy) =mipA(p), Alpy) =maxA(p)
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Figure 2-20: Example where a single curve is not sufficient to cover the whole component Q).
Here, triples are allowed only if they lie on a straight line. (a): the connected component Q.
(b): the admissible triples. Notice that there is no triple connecting the left column of points to
the right one. Thus 7 does not contain any path which connects 1 to 4. (c): The two maximal
coverable graphs extracted by step 5 of the algorithm. (d): The polygonal curves computed by
step 6.

where p; and py are the vertices at the ends of the curve. Step 5 of the algorithm
extracts the maximal subgraphs of 7 for which there exists a covering path, namely
a path connecting one end of the subgraph to the other (see figure 2-20).

For any t= (plap2ap3) € Ta let

A7) = Ap), AT() = Aps)

If S is a subgraph of 7 with nodes S C T, then we say that a path t;,... ,%,in S
covers S if _
- — rin A + _ +
A7 (t1) —rtrggl/\ (t), At(tn) = I?G%x)\ (1)

S is coverable if it contains a path which covers it. The goal of step 5 is to compute
all the maximal coverable subgraphs of 7", denoted My,... , M . A description of
the procedure follows.

Step 5.1 For every t € T, let R(¢) be the set of all ¢’ reachable from ¢, that is all
t' for which a path from ¢ to ¢’ exists. Then let

* _ + (4
M (t) = max X* (1) (2.11)

A*(t) is computed by means of a dynamic programming procedure. In fact, let
N(t) be the set of elements ¢’ such that an-arc from ¢ to #' exists. - Then, consider the
equation '

XL () =max {A() - e NR)U{t}} (2.12)
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with initial condition
Ao(t) = AT (¢) (2.13)

Notice that, for any 4, A (t) < A*(t) because the max in (2.12) involves only nodes
which can be reached from ¢. Furthermore, if n(t) is the number of nodes in a path
from ¢ to a node ¢’ which achieves the max in (2.11), then A} (t) = A*(¢) for i > n(t)—1.

Therefore, for i larger than the number of nodes in 7, the equation (2.12) converges
and \*(t) = A¥(t).

Step 5.2 Let Z be the family of all intervals [\~ (¢), \*(t)] C R for allt € T. An
interval I € T is maximal if there is no I’ € Z such that I C I'. This step computes
the set I* of all the maximal intervals in 7.

Step 5.3 Each element I; = [, 3] of I* defines a maximal coverable subgraph M;
whose nodes are ' '
Mj={teT : § <X (t), \(t) <13}

Note'tha't each M; contains at least one patii t1,. .. ,tn such that A~ (£;) = l{, AT (t,) =
2. Let t],} € M; be such that A=(8]) = U], AT(t]) = 3.

2.8 Curves with minimum turn

The last step of the algorithm computes the curve with minimum turn which covers
each subgraph M. The total turn of a polygonal curve is defined as

E = Z a(ti)

where t1,... ,t, is the sequence of triples of the curve and a(t;) is the angle of i-th
triple. The following equation

3 = i i ) ] 214
Ei (1) a(t)+t,glly(1t)E(t) i>0 (2.14)

with initial condition

_alt) X () =1
Eo(t) = { oo  otherwise
can be used to find the curve which minimizes the total turn. To prove this, let n(t)
be the number of nodes in a path from ¢ to t’2 which minimizes the total turn. If
there is no such path then n(t) = co. Then, by induction, one can verify that for
-1 > n(t) — 1, E(t) is the minimum turn of a path from ¢ to 3. On the other hand,
if there is no path from ¢ to tg, then F;(t) = oo for all i. Therefore, for i larger than
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(a) Computed curves (b) Computed curves on brightness image

Figure 2-21: The final result of the algorithm on the vector field shown in figure 2-1(c).

the number of nodes in 7', the equation (2.14) converges. Since there is a path from
t] to t} by assumption, then E;(#]) < co. The node which follows ¢ in a minimizing
path from ¢ to ] is argmin, v i)

ol
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Chapter 3

Bound on localization error and
parameter setting

In this chapter the main result is stated and proved. This result says that all curves
with bounded curvature which satisfy the model defined in section 3.1 are detected by
the algorithm described in chapter 2. An upper bound to the localization error is given
which vanishes linearly when the “noise parameter” w and the sampling distance a
go to zero. Moreover, as part of this theoretical analysis, it will be explained how to
set all the parameters of the algorithm in terms of the a priori parameters w, 0,a.

For simplicity, it will be assumed that the domain G of the vector field & =
{#(p) : p € G} is a regular grid with sampling distance a (see figure 3-1).

3.1  The curve model and the sets C% (®)

An informal description of the curve model was given in section 2.1.1. A more precise

definition is given here.
Figure 3-1: The vector field ¢ is defmed on a regular grid G with samplmg distance a.  The
orientation of ¢(p) is denoted 6(p). :

/

S oy
)
o -
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Figure 3-2: Condition (C1). If v € C (@) and |jp —p'||? < d3 + hZ then |¢(p)| > |9(®')]-

Definition 1 Ck o(®) is the set of all curves v with curvature less than k which
satisfy the following two conditions:

(C1) The field magnitude at a point p close to the curve is larger than the field
magnitude at a point p' whose distance from the curve is at least w. More
precisely (see figure 8-2),

d(pv ’Y) S Wo
di',y) = w = o) > lo(p)] (3.1)
llp—pl*> < dj+h3
whe_re
® Wy = a/\/§

o dy, hy are the parameters of the lateral regions used for non-mazimum
suppression (see figure 2-7).

(C2) The field orientation 6(p) at a distance less than w from 7 is similar to the
orientation of the curve tangent at p*, where p* is the point of v closest to p.
That is (see figure 3-3),

dp,7) <w = ||6(p) - 6,(p7)]| < © (3.2)

where 0,(p*) denotes the orientation of the curve tangent at p*.
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Figure 3-3: Condition (C2). If v € Cy o(®) then the orientation of ¢(p) with respect to to
the tangent of «y at p* is less than ©.

3.2 Worst-case error bound: main result

Recall that dy, ds, h;, hy are the parameters which characterize the regions used for
non-maximum suppression (figures 2-7 and 2-8 on page 35). Also, © is the threshold
for the orientation difference used for non-maximum suppression.

The parameters d;,© are tightly related to the model parameters w,®. These
parameters, d;, ©, should be set so that the points in the discrete approximation!
of any curve v € C’;f,,@(@) must not be suppressed by non-maximum suppression. If
k = 0 and © = 0 then one can verify that d; = w + wy and © = 0 are appropriate
choices. In the more general case when « = 0 and © > 0, in section 3.7 it is argued

that appropriate values are given by:

© =20 (3.3)
_w + Wy
1= T hatan© (3.4)

If k > 0 then di,© have to be larger. Let us define €;(k), e2(k) so that di,© can be
written as:

© =20(1 + e2(x)) (3.5)
d; = (IU:::; go + hytan @) (1+e(k)) (3.6)

Notice that €;(0) = €,(0) = 0.
As it will explained in section 3.4, the parameter h; must be chosen so that the

" 1The discrete approximation of a curve is defined in section 3.6.
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interpolation formula (2.4) for the longitudinal coordinate map A is well defined. We
get then:

hy =2d,tan® +a (3.7)

The parameters dj, h, have to be chosen so that the lateral regions of each com-
ponent ¢ form two connected regions (see figure 2.5 on page 45). In the sections 3.5
and 3.9 it will be proved that the constraints on dy, hy can be written as

ds — d; > max{d, a} (3.8)

hz = dl Ez (_@—, -a“) (39)
d

Theorem 1 Let ® be a set of vectors of the form ® = {¢(p) : p € G}, where G
is a regular grid with sampling distance a. Let C(®) be the set of polygonal curves
generated by the algorithm described in chapter 2 on input ®. Let the parameters ©,
di, d2, by, ha be chosen so that (3.5)-(3.9) hold. Then, for every v € Cy o(®) there

exists 4 € C(®) such that

d(v,%) < di 4 wo (3.10)

The proof will be given in section 3.8.

Proposition 1 Ifa — ta, w — tw, t > 0, then the parameters of the algorithm can
be chosen so that (d; +wo) — t(dy +wp). Thus in the limit a — 0, w — 0, the upper
bound on d(vy,¥) vanishes linearly with a, w.

Proof. Let w,0,0,a,d;,ds,h1,hy be such that (3.5)-(3.9) are satisfied. Then, it is
easy to verify that for any ¢ > 0, the parameters tw,0,0,ta,td; tds,th ,thy also satisfy
(3.5)-(3.9). Thus, if @ — ta, w — tw, and the other parameters are scaled accordingly,
then one gets (recall that wg = a/v/2): (d1 + wo) — t(dy + wp). O

3.3 Properties of P

The following proposition follows immediately from the definition of the non-maximum
suppression procedure. Recall that P denotes the set of points in the vector field af-
ter non-maximum suppression. Let F'(p) = Fi(p) U Fa(p), where Fi(p), F5(p) are the
lateral regions used for non-maximum suppression.

Proposition 2

P=PrNP.OPsNP, 3 (3.11)
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where

Pp={peG : peF(p) = |o(p)| > o), V¥’ € G}
Pp={p'€G : peF(p) = |¢(p)| > |¢(p)|, Vp € G}
Py={peG : p e Alp),|l6(p) — 0| >0 = |6(p)| > [6(¢')], VP’ € G}
Py={peG : peA) o) -0 >0 = [6(2)| > |6(p)|, Vp € G}

Notice that

e Pr is the set of points p whose intensity exceeds the intenSity at lateral points
p' € F(p)

e Py is the set of points p’ whose intensity exceeds the intensity at any point p
such that p' € F(p)

e P, is the set of points p whose intensity always exceeds the intensity of points
p' € A(p) with different orientation

o P, is the set of points p’ whose intensity exceeds the intensity of any point p
with different orientation and such that p’ € A(p)

Proposition 3 After non-mazimum suppression, the lateral regions of each point in
the vector field are empty. That is, for any p € P

PNF(p)=0 (3.12)

Proof. By contradiction, let p,p' € P, p' € F(p). By proposition 2 we have p € Pr
and p' € P;. From p € P it follows |¢(p)| > |¢(p')|. Similarly, from p’ € P} it
follows |¢(p")| > [8(p)|- O

Proposition 4 After non-mazimum suppression, the variation of the field orienta-
tion inside A(p) is less than ©. That is, for any p,p' € P

v EAp) = 8(p)-0()|<© (3.13)
Proof. Let p,p’ € P, p' € A(p) and, by contradiction, |0(p) — 6(p')] > ©. By
proposition 2 we have p € P4 and p' € Pj. Then, from p € P, it follows |¢(p)| >
|¢(p")|. Similarly, from p’ € P} it follows |¢(p)| > |¢(p)|- a
3.4 The parameter h;
Figure 2-16 on page 43 shows that a condition which should be imposed to guarantee

that the interpolation formula (2.4) for A(p) is well defined is that the segments 6705
and 0705 do not intersect. For this to be the case, the distance hy between the region
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Figure 3-4: Proof of proposition 5

S*(p;), to which pf,, belongs, and the line #(p;) has to be large enough. Proposition
5 guarantees that the value given in 2.2 works fine. Thus, since the height of S*(p;)
is a (see figure 2-14),

hy=ho+a=2d;tan® +a (3.14)
Proposition 5 Let p,p’ € P, p € S*(p) and hy = 2d; tan©. Then,
010z N 070, = 0

Proof. Refer to figure 3-4. The segment 00} lies on the straight line 4. Thus it is
enough to prove that 6703 N B = @ or that 970; N 3" = @ where §” is parallel to §'
and contains the lower right corner of S*(p), p”. From proposition 4 it follows 6 < [¢)
so that ||g — 02|| > ||o1 — 02| and therefore 3 does not intersect 610;. O

3.5 Proof that the domain of A\ contains ()

3.5.1 The lateral regions F, /5
Let hy > a and dy — d; > a. Then define 1-':‘1, 13'2 as in figure 3-5.

Proposition 6 Let hy > a and dy — dy > a. Fiz i € {1,2}. Let p;, pa be two points
outside Fy(p): p1 € Fi(p), po & Fi(p) such that ||p; — p1|| < a. Then the segment 1Pz
does not intersect Fy(p): : )
pipz N Fi(p) =0
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(a) Case 1: 2a < dy — dy (b) Case 2: a < dz—d; £ 2a

Figure 3-5: The region Fj,i = 1,2 is a subset of F; which does not intersect any segment of
length less than a with end-points outside Fj.

Figure 3-6: The top and bottom parts of the regions B, B,

3.5.2 Set of admissible parameters 0, dy, do, hy, a

For any p € R?, 6 € [0, 27] let S*(p, 0) be the search region of a vector with vertex p
and orientation 6. Similarly for the other regions S~ (p,6), Fi(p,0), Fa(p,0), Fi(p,6),
Fz(p, 0). As before, if the orientation 6 does not appear in the notation, then the
orientation of the vector field is assumed. That is, for instance, S*(p) = S*(p, 0(p))
for any p € P. Let Ff,ﬁ‘f denote the top and bottom parts of Fy. Similarly for
F5f F5 (see figure 3-6).

Definition 2 Let A be the set of 5-tuples (©,dy,ds, hy,a) such that the following
hold:

o hy > h; =2d;tan® + a

° dz - d]_ > max{dl, (1}
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Figure 3-7: The closed curve Q(p,p’) = 010z U @a(p,p’) U 0'20'1 U 1(p,p’). In this example,
w1(p,p') = 0101 (since g1 = 01) and wa(p,p’) = 02q20'2. The coordinate map A is well defined
inside Q(p,p").

o For any p' € S*(p,8), and for any 6' such that ||0 — ¢'|| < ©:
Fip,0)nFy (¢,0) #0 (3.15)
Ff(p,0) N F5 (¢, 0) =0 (316)
Notice that (3.15) and (3.16) are equivalent to
Fyf (p,6) N F5 (¢,6) # 0 (3.17)
F(p,0)nFy (p,0) =90 (3.18)

Also notice that if (3.15) and (3.16) hold for a particular value of p, # then they hold
for all values of p, 6.

Proposition 7 Let (0,d;,dy, hy,a) € A, p,p’ € P, p' € St(p). Then, there ezist
two polygonal curves ¢1(p,p'), p2(p, ') such that (see figure 3-7):

(1) 0103 U @a(p,p') U 0’201 Upi(p,p) is a closed curve which does not self-intersect.
This curve will be denoted (p,p’).

(it) e1(p,p') C (FF (p) U FT (p’))
(iii) ¢2(p,7') € (B () U F5 (7))

(iv) The longitudinal coordinate map X is well defined and continuous in the interior
of Qp, p').- N
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Figure 3-8: A connected component @ and the set L.

Proof. From proposition 4 and S*(p) C A(p) it follows ||(p) — 6(p')|| < ©. Then,
from (3.15) there exists a point ¢, € (F;7(p) N Fy (p')). Let then ¢, (p,p') = 01¢1071,
namely ¢1(p, p') is the polygonal curve with vertices 01, ¢1,0'1. Similarly, p,(p,p') =
029202 where gz € (E;f (p) N F; (p')). Since the regions Fj7 By, F™ Fl are convex, (ii)
and (iii) follow.

Let us now prove (i). From proposition 5 it follows that 670, N 0';0'; = 0. From
(3.16) and (3.18) we have ¢1(p,p’) Np2(p,p’) = 0. Finally, ¢;(p,p') No10; = {0;} and
0;i(p, p')No'1073 = {0';}, i = 1,2 are true because the points g1, go lie between the two
baselines 3(p), B(p'). Finally, point (4v) is clear from the interpolation formula (2.4)
and (2.5). O

Let X be the union of all points which lie on a segment 7;p; where p;,p; € @ and
llp1 — p2|| < a (see figure 3-8). Notice that @ C X. Then, the following proposition
follows immediately from proposition 6 and parts (ii),(iii) of proposition 7.

Proposition 8 Let (0,d;,ds, ha,a) € A, p,p € Q, o € ST(p). Then the two
polygonal curves ¢1(p,p'), w2(p,p’) do not intersect :

o1(p,p)NZ =0
wa(p, ) NE =10

Let s1,...,sr be the sequence extracted by step 3 of the algorithm (previously
denoted s7_,...,s},). Define Q to be the closed, non self-intersecting curve shown
in figure 3-9. Let D be the domain with boundary Q2. Clearly, ) is well defined on D.

Proposition 9 Let (©,d;,ds, hy,a) € A. Then ¥ C D. Thus X is well defined on ¥
and Q.

Proof. Since D contains some points of ¥ (that is the sequence sj,...,sy), it is
enough to prove that £ does not intersect the boundary of D, namely that SN = .

That ¥ does not intersect ¢;(s;, S;+1) nor @a(s;, si+1) for any 7 is guaranteed by
proposition 8. Also, ¥ does not intersect ¢(sy) nor ¢(s1). In fact, S*(sy) NQ =
Fi(sn)N@ = Fg(sN) N Q@ = 0; the width of the regions. Fy(sn), Fa2(sn) and the
height of S*(sy) is larger than a. Therefore no segment p;p; where p1,p2 € Q and
|lp1 — p2|| = a can intersect p(sy). O
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@ (31

Figure 3-9: The domain D, on which X is well defined, and its boundary Q. The boundary of
D, Q is obtained by concatenating ¢1(s;, si+1),1 <4 < L; ¢t (sL); w2(84, si+1); and o~ (s1).
The polygonal curves ¢~ (s1) and ™ (s1,) contain 3 straight line segments.
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Figure 3-10: The discrete approximation of 7y, A,.

3.6 Discrete approximation of a curve

Recall that the set of points G on which ¢ is defined forms a regular grid with sampling
distance a. The discrete approximation of a curve v, A,, is the maximal sequence of
points (pi, ... ,p,) such that

[lpi — pinaill = @
and
7N Spi,a #* 0

where Sy, , is the square region centered at p with side of size a (see figure 3-10).
Proposition 10 The Hausdorff distance of v from its discrete approzimation A, =

(p1,...,pN) is no larger than wy = a//2. That is, for every p; in A, there isp € v
such that ||p; — p|| < wo and for every p € v there is p; in A, such that ||p; — p|| < w.

3.7 Setting the parameters d;, ©

The parameter d; has to be large enough so that the points in the discrete approxi-
mation A, of a curve v € Cf o(®) are never suppressed by part 1 of non-maximum

suppression. Similarly, © has to be large enough so that the points in A, are never
suppressed by part 2 of non-maximum suppression. First, let us consider the case
when v is a straight line, that is when x = 0.

Proposition 11 Let vy € CJ o(®) and let
d1cos© > w + hysin © + wy ' (3.19)
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Then, a point p such that d(p,y) < wq is not suppressed by part 1 of non-mazimum
SUPPTeEssIon.

Proof. See figure 3-11. Let p’ € G. First, let us assume d(p',v) < w. Then, from
(3.2) it follows # < © and, as shown in figure 3-11, p € F(p'). By a similar argument,
p € F(p). Thus, if d(p’,v) < w, then p' does not suppress p.

Then, consider the case d(p',v) > w. If ||p — p'||*> > h3 +d} then, again, p ¢ F(p')
and p' ¢ F(p). If, instead, ||p — p'||> < h2 + d3 then from (3.1) it follows |¢(p)| >
|¢(p')| and therefore p’ does not suppress p. O

Proposition 12 Let v € C) o(®) and let
0 >20 (3.20)

Then, a point p such that d(p,y) < wy is not suppressed by part 2 of non-mazimum
SUPPTression.

Proof. ? See figure 3-12. Let p be a point in A, and p’ € G. From proposition 10
we know d(p,7) < we = a/+v/2. From (3.2) it follows |f] < ©. First, let us assume
d(p',7) < w. Then, from (3.2) it follows |§'| < ©. Therefore ||§ — ¢'|| < 20 < ©, and
therefore p is not suppressed by p'.

Let now d(p',7) > w. Two cases are possible. If |[p—p||> > h? + d? then
o' & A(p), p € A(p') and therefore p is not suppressed by p'. If instead ||p — p'||* <
h? + d? < hZ + d2 then from (3.1) it follows |¢(p)| > |¢(p')| and therefore p’ does not
suppress p. O

3.8 Proof of theorem 1

To prove theorem 1 in the easiest way, we assume that, of the conditions in section
2.6, only (2.6) is used and the parameter 7 is set to zero. Thus, since the points
in P belong to a regular grid with sampling distance a, any triple (p;, ps, p3) such

that ||p1 — p2|| = ||p2 — p3s|]| = a is allowed. This ensures immediately that every
connected component () contains a covering path, namely a sequence p,, ... ,py such
that ||p; — pit1]| = @ and
Alp1) = minA(p), A(py) = max A(p) (3.21)
PEQ peQ

Let 4 be the polygonal curve with vertices p1, ... ,pny where py,...,py is the path
which minimizes the total curvature among all those which satisfy (3.21). Recall that
this curve is computed by the last step of the algorithm.

2Tt should be clear from this proof that if we let ©¢ be an upper bound to the orientation
uncertainty within a distance wo from v — namely d(p,v) < wo = [|8(p) — 6 (p*)|| < ©o; compare
with (3.2) — then (3.20) can be replaced with the weaker condition © > © + ©o. Also, 3.3 and 3.5
can be changed accordingly.
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Figure 3-12: Proposition 12. To ensure that the point p, which belongs to the discrete
approximation of 7, is not suppressed by p’ € A(p) it is sufficient to prove that |¢(p)| > lo(p")]
whenever ||8(p) — 8(p')|| > ©.
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4 ¢(pn)

PN+1
DN
PN
A A,
7ol Yol
J ) A ¢(p1)
’I
D1
D1
Do

Figure 3-13: Left: The polygonal curve 4 with vertices p1,... ,pn. Right: The polygonal curve
4' obtained by extending # in the direction of the vector field. The length of pop; and PPN +1

is dy

PN+1

Figure 3-14: Left: A curve v € O o(®) and its discrete approximation g1, ... , gu. Also shown
is the computed curve 4. Right: For every g; € A, there exists § such that A(g;) = A(D).
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Figure 3-15: An upper bound for d(g;,%). The baseline 8(g;), perpendicular to the vector ¢(g;)
intersects 4 in p*. Thus ||g; — p*|| < d1 and d(g;,¥) < di.
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Figure 3-16: How long does the segment pypn+1 have to be to guarantee that the straight
line « intersects it 7 From (3.21) it follows that A(gar) < Amax and therefore the point

g lies below the level curve where X is equal to Amax. Thus, from the geometry of the

picture, ||p* —pn|| < ||p* — qum||tantp. Let ©) be an upper bound to the angle between
the gradient of A and the orientation of the vector field. Then 9 < ©,. Also, notice that
llp* — garl] < di so that |[p* — pn|| < ditan ©). If we assume O < w/4 then ||p* — pn|| < dy
and |lpy+1 — pn|| = di makes pyBn+1 sufficiently long.
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To ensure that the upper bound (3.10) on page 56 in theorem 1 holds also in the
neighborhood of the two ends of the computed curve, it is necessary to add two short
segments, Dopr and PyPni1, to each end of 4. The length of these segments is d;.
The resulting curve, 4’ is shown in figure 3-13. The set of computed curves 4, one
for each connected component, is denoted C(®).

Proof of theorem 1 Let v € Cf o(®) and let A, = (q1,...,qum) be its dis-
crete approximation (see figure 3-14, left). From propositions 11 and 12, it follows
that no point in A, is suppressed, thus ¢; € P, 4« = 1,..., M. Furthermore, since
llgi — gix1|| = a, there is a connected component @ which contains all the points g;.

Let p1,...,pn be the discrete curve produced by the algorithm from the compo-
nent @) and let 4 be the corresponding polygonal curve. Since ¥ C L, it follows from
proposition 9 that ) is defined on every point of 4. Then, from (3.21) and the continu-
ity of A it follows that for every point ¢; in A, there exists p € 4 such that A(g;) = A(p)
(see figure 3-14). If W denotes the width of the domain of A, namely the maximum
distance between two points having the same coordinate A, then ||g; — || < W and
therefore

ﬂ%ﬁ)=g§ﬂm—pHSVﬁ i=1,...,M

Let now p be a point in . Then, from proposition 10, there is a point ¢; in A,
such that

|l — pll < wo
where wg = a/+/2 Thus, by the triangular inequality,

d(p)’?) S W—HUO

and
d(7,9) = maxd(p, 5) < W +wo

where d(7,%) is the one-sided Hausdorff distance.

To obtain the stronger and more explicit bound (3.10), consider figure 3-15. If ¢; -
is far enough away from ¢; and gy, then the straight line 3(g;) intersects 4 in p* and

llg; = p*|| < dy

On the other hand, if g; is close to one of the two tips, then the straight line B(g;)
is not guaranteed to intersect 4. However, if the added segments pop1, PnPn11 are
long enough (see figure 3-16), then [(g;) intersects one of them. Thus,

d(qm’?’)=m1},1|I%—P||§d1, 7':1: aM
PEY
and, by the triangular inequality, |
d(p,%") < di + wo
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so that _
d(v,%) < di+wo

3.9 Numerical computation of hy(©,a/d;)

To ensure that the coordinate map A is defined on every point in @ and X, the
parameters d2 and hy have to be chosen so that (3.15) and (3.16) hold for every
p' € ST(p,0), and for any ¢ such that ||§ — ¢'|| < ©.

First of all let us rewrite (3.15) and (3.16) in a more convenient way. Let Ff =
F;F(0,0) where 0 denotes the origin of R?. Similarly for the other regions F7 ,F; F;.
Let T, be the translation operator on subsets of R?:

T,F={p+p:peF}
Similarly, R, is the rotation operator:
| RyF = {(zxcosf + ysinf,ycosf — zsinf) : (z,y) € F'}
Then, (3.15) and (3.16) can be rewritten as,

T,R,F; NF} #0, peSt, 19|<6 . (3.22)
T,ReFT NFf =0, peSH |9|<® (3.23)

Since all regions involved are convex, it is enough to check (3.22) and (3.23) only
for p € V*, where V* = {uy,ug, Iy, 15} is the set of vertices of S* (see figure 3-17).

Let us start by considering the case when © = 0. Let Ag be the set of parameters
(d1, da, b1, hg, a) for which (3.22) and (3.23) hold with © = 0, that is

T,FTNFf #0, T,FINnFf =0, peV*t

It’s easy to verify that two sufficient conditions for (d, ds, h1, hg, a) to be in A
are:

dy > 2d, (3.24)
2(h2 — a) 2 h1 (325)

For (dy, dz, , hihe,a) € Ay, let ©nax(di, da, by, he, a) be the maximum value for which
(3.22) and (3.23) hold:

Omax(d1,d2, b1, ho,a) =
max {9 >0 : T,ReFI NFT #0, T,RF;NFf=0; pe V+} (3.26)
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Figure 3-17: The parameters da, ho have to be chosen so that each lateral region intersects
the corresponding lateral region for every possible vector in ST (see (3.22) and (3.23)).

72




A property of this function is that it is invariant under scale transformations:

émax(adly ad?) ah’la ah?? Ola) = é—max(dl, d2) h’17 h’27 a) (327)

The function Omax(d1,ds, b1, he,a) can be computed numerically. Figures 3-18
and 3-19 show some sections of this function.

Then let
IR (dy, dy, b1, ©,a) = min {hy : O(dy, dy, b1, hs,a) 2 O} (3.28)
and

ATR(dy, dy, ©,a) = R0 (dy, dy, 2d; tan ©,0,q) (3.29)

Because of (3.27), h§™(dy, d, ©,a) can be rewritten as

~ — —min [ —= d
h2mm(d1, dz, @, a) = d] h2 @, —a—, —2' (330)
dy dy

Figure 3-20 shows several graphs of h; as a function of ©. The parameter d, is chosen

so that the area of the lateral regions Fj(p), 2ha(dz — d1), is minimum. Thus, only
two free parameters, ©, a remain and hy can be written as:

hy = di Ty (@, i) (3.31)
dy

Notice that (3.5)-(3.9) on page 55 do not express explicitely the algorithm param-

© eters dp, dy, hy in terms of the model parameters w, ©,a. In fact, the parameter ha

appears on the right hand side of (3.6) and d; appears on the right hand side of (3.9).
However, w' = w + wy, da, ho can be explicitely written in terms of dqi,©,a. In fact,
from (3.9) it follows that h; can be obtained from dy,a and from (3.6) we have (in
the case k = 0):

w' =dycos© — hysin® - (3.32)

Table 3.1 gives the values of ©,dy, hy,w for dy = 1 and a = 0.2,0.5,1.0. Then,
by using this table and substituting w = w+ wy = w+ a/y?2, it is possible to
derive dy, da, hy explicitely from w, ©, a (table 3.2(a)). Finally, table 3.2(b) shows the
parameter of table 3.2(a) normalized by w. Recall that multiplying all the length
parameters (namely w, a, di, da, hs) by a constant yields another valid combination of
parameters.
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Figure 3-18: © versus hy for four values of dy. For ‘every graph: d; = 1.0, hg = 0.5. Top:
‘a = 0.5. Bottom a ='1.0. :
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- Figure 3-19: © versus dy for four values of hy. For every graph: d; = 1.0, hg = 0.5. Top:
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Figure 3-20: The function A" (ds; ds, 8, a).
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I a=0.2 I a=0.5 I a=1.0
g lola|lmlv]aln|v]a n|w
00 | 00 J20] 4 |10]20] s]10]20]16]10
50 | 25 [22] 4 os]22] o] o6]21]17] 9
100 ] 50 |22 6 [ 94]22] 9| 92)22]18] 54
150 | 75 | 22| 8 |80 22]12] 83]23]|190] 74
20.0 | 100 |22 10| 81 [ 24]13] 76| 24]21] 62
25.0 | 125 |22 (12 71| 2415 65| 25| 23] 48
300 | 150 | 23| 15| 58 | 24| 18] 50 | 26| 25| 32
35.0 | 175 | 2.4 | 1.7] 44| 26 20| 35 | 28] 27| .14
40.0 | 200 | 2.4 2.0 | 25 ] 26| 24| 12| 3.0 | 29 05

Table 3.1: The parameters da, ho, w' = w+wy as a function of © for d; =1, a = 0.2,0.5, 1.0.
Notice that © = 20. dy, hy have been obtained from the graphs in figure 3-20 by choosing the
value of dy for which hy(ds — d1) is minimum. w' is given by (3.6): w' = d; cos© — hysin©.

O| w di| dy | hy © Ja/w |di/w | dofw | ha/w
0.8 1/[20) 4 0 23 | 1.16 | 2.32 46
o [.80¢41 (22| 6 25 | 1.25 | 2.75 .75
10671 1(22(1.0 10 .30 | 1.49 | 3.28 | 1.49
151449112315 15 | .45 | 2.27 | 5.22 | 3.40

(a) This table is obtained from
tablle 3.1, a = 0.2, with wo =
2720 =0.14.

(b) Admissible values of the algorithm
parameters normalized to w.

Table 3.2: Some admissible values for the algorithm. _p:érameters. :
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3.10 Generalization to arbitrarily sampled vector
fields |

So far, the domain G of the input vector field was assumed to be a regular grid with
sampling distance a. The constant wy was then given by a/v/2. Theorem 1 on page
56 can be generalized to the case where G is an arbitrary discrete set, provided that
the constants a, wy and the family of curves Cy o(®) are appropriately redefined.

First, let us introduce some notation. Let v be a smooth curve with length L
and let py be one of its two end points. Then, for any p € «, let I(p) be the length
of the curve from p, to p, also called arc-length parameter (see figure 3-21). For any
[ € [0, L] let S; be the segment with length 2w, perpendicular to v which intersects
it symmetrically at the point with arc-length parameter ! (see figure 3-21).

i

%@/P ¥ /pH)o Y

Do Si(p)

Figure 3-21: Left: the arc-length parameter [(p) is the length of the curve from pg to p. Right:
the segment S; has length 2wy and intersects perpendicularly the curve at the point p with
arc-length parameter [.

Definition 3 Let C*(®;w, O, wy,a) be the set of finite curves with curvature less
than k such that:

(C1) Condition (C1) on page 54 holds. Namely, for any p,p' € G (see figure 3-2 on

page_54):
dlp,y) < wo
dip',v) > w = |s(p)| > o(p)] (3.33)
lp—p> < dd+h3

(C2) Condition (C2) on page 54 holds. Namely, for any p € G (see figure 3-8 on
page 55):

dp,7v) Sw = ||0(p) -6, <O (3.34)

(C8) The segments S;, 0 < 1 < L, are all pairwise disjoint:

l]_ # lg b= Sll n Slz = 0 C (335)
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(C4) The segments So, St contain a point in G:

SoNG#0, SLnG#0 (3.36)

(C5) Letpe S;NG, 1 # L. Then there ezists p' € G such that:

llp—pll<a (3.37)
peSy, U'>I (3.38)

Condition (C3) is locally equivalent to requiring that the curvature of v be less
than 1/wp. Condition (C4) and (C5) replace the assumption that G is a uniform grid
with sampling distance a. (C3) through (C5) are used only to prove proposition 13.
Thus they could be replaced by the condition that elements in v € C*(®; w, ©, w, a)
have the property described in proposition 13.

Proposition 13 Ify € C*(®;w, ©, wq, a) then there ezists a sequence of points A, =
{qo,... ,qm} C G such that

llgi — girall < a (3.39)
d(gi,7) < wo (3.40)
d(7y, Ay) < 6(k, wo, a) (3.41)

where

d(y, Ay) = max min {[p — &l

and 6(k,wo, a) is given by definition 4.

Definition 4 Let q1,¢, € R? be such that ||¢s — @2|] < a (see figure 3-22(b)). For
i = 1,2, let B(g;) be the ball in R* with radius wo and center ¢;. Then §(k, wo, a) s
defined as:

§(k, wo, a )— sup sup maxmin{||p—q1||,llp—Q2||}
p1€B(ql)P2€B(Q2)7€C"(P1 p2) PE7 (3.42)

where C*(py, py) is the set of all curves with end-points p1,p2; curvature less than k;
and such that the segments D1G1, and DaGa are perpendicular to the curve tangents at
its end-points.

Notice that 6(0, wo,a) < wo + a/2.
Proof of proposition 13. From (C4) it follows that there is go € SoNG. Then, by

using (C5) iteratively starting from qo, & sequence qo, g1, - - - Can be constructed such -

that (3.39) holds and ¢; € Sy, for some ;. From (C3) it follows that the [; for which
¢ € S, is unique. Thus (3.38) implies l;;1 > [; for every 7 and since G is finite, the
sequence can be prolonged until I = L for some M > 0.
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lo 1
Po "
do
(a) Existence of sequence qo, ... ,qm- (b) Definition of

6(’9) Wo, a‘)

Figure 3-22: Proof of proposition 13.

Let p; be the intersection point between S;, and <. Since ¢; € S;,, we have
llg: — pi|| < wo and therefore d(g;,y) < wo, which proves (3.40).

Finally, let us decompose 7 into M pieces 7y; with end-points p;, p;11.Then, from
definition 4,

min {d(v;, ¢), d(7i, ¢i+1) } < 6(k, wo, a)
and therefore d(v, A,) < §(k, wo, a). O

Let us assume as in section 3.8 that only the constraint (2.6) is used in step 4 of
the algorithm (section 2.6) and that 7 = 0. Then, the following result can be proved
in a similar way as theorem 1 (compare with section 3.8).

Theorem 2 Let ® be an arbitrary set of vectors. Let C’(@) be the set of polygo-
nal curves generated by the algorithm described in chapter 2 on input ®. Let the
parameters ©, di, dy, hy, hy satisfy (8.3)-(5.9) on page 55. Then, for every v €
C*(®;w, ©, wy, a) there exists 5 € C(®) such that

d(v,4") < di + 6(k, wo, a) (3.43)

Proof. From proposition 13, there exists a sequence of points A, = {qo,... ,qu} C G
such that (3.39)—(3.41) hold. From (3.40), conditions (C1), (C2) and propositions
11 and 12, it follows that the points go,..., gy are not suppressed and therefore
belong to P Furthermore, (3. 39) ensures that they all belong to the same connected
components Q.

Let 4 be the polygonal curve computed by the algorithm from Q. As explamed in
section 3.8, its vertices satisfy (3.21). By an argument similar to the one in section
3.8, we have that d(g;,4') < d; (see figures 3-15, 3-16) and therefore d(A,, %) < di.
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w dl d2 hz © a/w wo/w dl/w dg/’w hz/’w
0 .9 1120 .8 0 .56 11 1.11 | 2.22 | 1.89
8211122 .9 5 61 12 1.22 | 2.68 1.1
10,664 1124]1.3 10 .75 .15 1.51 | 3.62 | 1.96
1514001 1 24|18 151 1.25 .25 2.5 6.0 4.5
(a) The parameters do, by as (b) The parameters wy, a,d;, ds, ho normalized
. a function of w, © obtained by w as a function of © obtained from the left
withd, =1, wg =01, a = table. ’
0.5.

Table 3.3: Some admissible settings of the parameters. © = 20.

Then, by using (3.41) and the triangular inequality:

d(")’, :)") S d(fY: A‘Y) + d(A’y; ’3/)
S dl + 5(&, Wo, a’)

(3.44)
(3.45)

d

The tables 3.3 show some admissible parameters for the algorithm for wy = 0.1
and a = 0.5. Normalization is with respect to d; in the left table and with respect to

w in the right one.
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Chapter 4

Curve reconstruction from the
brightness image

In the previous two chapters, an algorithm to compute curves from a discrete vector
field has been described and analyzed. This chapter considers the problem of comput-
ing curves from a brightness image by using a discrete vector field as an intermediate
representation. That is, a vector field is derived from the brightness image and then
fed to the algorithm described in chapter 2 to compute curves. A model of the bright-
ness distribution in the neighborhood of edges is used to compute the vector field. A
result similar to theorems 1 and 2 will be proved which ensures that all curves which
satisfy the noisy model are recovered with an upper bound on localization error. This
noisy model is defined with respect to the brightness image, whereas the model of the
previous chapters was defined with respect to the vector field. The relation between
these two models is established in the proof of theorem 3 on page 93.

4.1  Curve model and brightness templates

What does the brightness distribution look like in the neighborhood of an edge 7 A
simple model is to assume that brightness is constant along the edge and changes
rapidly across the edge!. Let’s consider the case of a straight-line edge v and let’s fix
a Cartesian coordinate system (z,7') such that v lies on the y'-axis (see figure 4-2) .
Then the brightness model is given by:

I(z',y) = fuld) (4.1)

where f, : R — R is a function, called profile, which represents the brightness change
across the edge. The multi-dimensional parameter v € U identifies a specific profile
from a family {f, : u € U} of possible profiles. For example, a family of blurred step
profiles is indexed by a three dimensional parameter v = (ci, ce,0) and is shown in

figure 4-1. The amplitude of the brightness change in the profile f, will be denoted .

by A(u). For the blurred step profile, it is given by : A(cy, ¢2,0) = |e1 — ca.

1The assumption that brightness is constant along the edge can probably be removed.

83

— e w wE g —— 8 [ —




P ) 0 2 4

Figure 4-1: Blurred step profile with ¢; = —1, ¢ = 1, 0 = 1. The one dimensional brightness
distribution of this profile is obtained by convolving a step function ¢; + (cp — ¢1)6(=1) (z)
with a Gaussian smoothing filter of variance o. One gets then: f¢ ., () = ¢1 + (c2 —

c)\/1/2m0? [*_ exp(—t?/20?)dt.
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For any straight line v and profile parameter u € U let I, denote the brightness
distribution, called template, defined by (4.1). Its domain, denoted D,, is the set of
points in the plane with distance from + less than p (see figure 4-2). The constant p

is given by
) 1
p=-2-+«/d§+h§+wo+§

where § is the diameter of the regions used to compute the tangent vectors and dj,
hy are the parameters of the lateral regions used for non-maximum suppression.
The input image I is defined on the set of integer pairs Z2. For any (i, ) € Z2, let
Nui ¢ 72 denote the neighborhood of (i, 7) used to compute a tangent vector (section
4.2 describes an approach to compute tangent vectors). Let I|N%/, I, ,|N*7 be the
restrictions of I, I, to the neighborhood N*’. Let |||| be a norm on brightness
distributions and let ||-||y:; be its restriction to N*. Namely, for instance,

11]lwsa = [TIN™]|

Definition 5 For any input image I and 7 > 0, Cp(I) is the set of straight line
segments v for which there exists u € U such that

||I_ I7u| N
LN £ bl LA .
o) <n (4.2)

for every N7 C D,,.

If the ly-norm is used, then (4.2) can be rewritten as

V| > U - L, ) < nA(u)
(

i',j )ENHI

where |N%/| is the number of elements in N*/.

4.1.1 Generalization to non-zero curvature

Formula (4.1), which defines brightness templates, can be easily generalized to curves
with non-zero curvature. To do this, let’s rewrite it in the following form:

Lu(p) = fu(sign(p,7)d(p, 7)), pe D, (4.3)
where

e 7 is the curve obtained by adding two straight line segments of length p to each
end of vy

e d(p,7) is the distance between the point p and the.curve ¥
o D, isv again the set of poihts with distance from ~ less than p.

e sign(p,7) is 1 depending on which side of ¥ p lies on.
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Figure 4-3: The curve 7 is obtained by adding two straight line segments of length p to each
end of 7. The domain D, is split into two parts by 7.

Clearly, for sign(p,¥) to be well-defined, it is necessary to assume that D, is split into
two disjoint parts by 7. This is guaranteed by requiring that -y satisfy a condition
similar to (C3) on page 78. Namely, let L be the length of 7 and for any [ € [0, L] let
S; be the segment with length 2p perpendicular to v which intersects it symmetrically
at the point with arc-length parameter . Then a condition which ensures that (4.3)
is well-defined is:

Ll = S,NS,=0 (4.4)

The family of curves for which (4.4) holds is denoted C,.

Definition 6 For any input image I, £ > 0, and n > 0, Cr(I) is the set of curves v
~with curvature less than k and belonging to 6P for which there exists u € U such that

||I - I"r,uHNivJ'

A <n (4.5)

for every N“J C D,,.

4.2 Computing a vector field by template fitting

To detect and reconstruct the curves satisfying the noisy model given by deﬁnitidn _
6, a set of tangent vectors ® = {¢(p;;)} is computed and then fed to the algorithm.

(described in chapter 2. Each point p;; and vector ¢(p;;) are obtained by fitting a
local brightness template to the block of data I|N%’ for every (z,j) € Z2. The point
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Figure 4-4: The polar coordinates r,6 used to parameterize straight lines with respect to a
fixed points (4, 7). N7 is a neighborhood of discrete points around (z,7).

Figure 4-5: The vector ¢(p; ;) estimated from the neighborhood N%J.
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I

that the data in the neighborhood NI, I|N*7| is close to a brightness template I

Di; is constrained to be close to (i, 5):

DN =

1615 — () < (4.6)
To describe this local fitting operator, let’s fix some (4, j) € Z? and let’s parameterize
straight lines by means of polar coordinates r,# with respect to (7,7), as shown in
figure 4-4. Then let I, ., denote the brightness template I,, whose curve « is given
by the straight line with polar parameters r, 8. The local fitting operator, denoted F,
estimates the parameters r, 6, u by fitting I, ¢, to I|N%J so that the error

E(r,0,u) = || — g

Ni.Jj (47)
is minimized. Thus, the following optimization problem is obtained

Zin, i mip 1 = Irpullnes (4.8)

If the l3-norm is used then the problem is:

min Z [I(’i’, ]I) - I’r‘,@,’u(i,aj’)]2

|67u .o
(@5 eN™

The estimated parameters will be denoted 7, é, 4, so that the fitting operator F is
really a map: F : I|N% s (7,0,47). Notice that we are not assuming that the triple
(7,8,1) is eractly the minimizer of (4.8). The performance of F, which implicitly
describes how close (f,é, @) is to the optimal solution, is characterized by several
error measures defined in section 4.3. ,

The point p; ; is given by the intersection between the estimated line 4 and the
line perpendicular to 4 passing through (i, j) (see figure 4-5). The vector ¢(p; ;) is
parallel to 4 and its magnitude is:

. A(d) A(d)
. = — e 4-9
|¢(Pw)| Eid || — I;'é,ﬁllNi’j ( )
where E*7 denotes the fitting error:
E’i:j = HI - If.,g‘,ﬁ”Ni,j (410)

4.3 Performance of the local fitting operator

4.3.1 Fitting error and accuracy of p; ;
To define the performance of the fitting operator F : I| N7 — (7, 9, @), let’s assume

7,0,7

such that 7, namely the distance of the template’s curve from the point (z, ), is less
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than 1/2:
HI - IF,E,E”N‘J < nA(T/I), < 1/2 (4-11)

Notice that 7 > 0 is an upper bound to the distance between the data I|N*/ and
the ideal template I3, normalized by the amplitude of the brightness change A(T).
If n = 0 then the data is exactly equal to the ideal template and therefore (4.8)
vanishes for r = 7,0 = 0, u = u, which is then, in this case, the optimal solution of
the optimization problem (4.8). In general, for n > 0, (4.8) is positive but no greater
than nA(a).

The performance of the fitting operator depends on how close to T, 0,7 the es-
timated parameters 7, 0,7 are. Rather than measuring performance by means of
upper bounds on the distance between these parameters, it is more convenient to
consider other parameters, namely the residual fitting error E* normalized by A1)
and the displacement of the point p; ; from its true position p; ;. Let then 7)(n) be the
maximum normalized error over all observations satisfying (4.11):

. E* 1

7(n) = sup {— I = Lggllvis < nA@), T < 5} (4.12)
where B = ||I — I 5 |lnss. Notice that from (4.9) it follows that (4.12) implies
(4.13)

For uniformity of notation let now p = p;;, = P, ;. The error in p is measured
by the parallel and orthogonal projections of ||p — P|| onto the straight line 7. These
error measures are denoted yg and wq respectively. From figure 4-6,

Ip — B||? = 72 + 72 — 277 cos(6 — 0) (4.14)
yo = 7sin |6 — 6 (4.15)
wo = |7 — 7 cos(d — 6)] | (4.16)

Let go(n), Wo(n) be the suprema of yo, wo,

. I |
o) = s fao ¢ 1= Tzl < 04(@). 7 < 3} (4.17
_ 7.0,3,1
“ _ 1)
aoln) = swp {un = Tpalls <nd@. T3} (429
78,31

In the noise-free case, 7 = 0, if Eh e local fitting operator returns the parameters
(T, 9, u) exactly, namely 7 =7, 0 = 0, 4 = %, then '




(2,4)

Figure 4-6: The parameters 19 and wy, are the parallel and perpendicular displacements of p
from D relative to the model curve 7.

4.3.2 Decay width w(n) and orientation uncertainty ©(n)

An important issue is to determine at what distance from a curve v € C}(I) the
computed vector field is guaranteed to decay below the value achieved close to the
curve. To this purpose, we seek now an upper bound to the field magnitude at a
point p as a function of its distance w from vy (see figure 4-7).

This upper bound can be derived because y € C7(I) puts a constraint on I in the
neighborhood of p, provided that p is not too far from +.

Let’s assume that the distance of  from (i,7) € Z? is less than 1/2 (see figure
4-7). Let 4 be a straight line passing through p with orientation  with respect to
the z-axis. For some @ € U let I 5, = I55 be the brightness template with curve 4
and profile parameter 4. If p, 9, U are the parameters returned by the local fitting
operator on the neighborhood N*J then

A(t)
[T~ Iﬁ,é,aHNi-f

[#(B)| = (4.19)

Let 8 be the orientation of v with respect to 4 and.let w be the distance of p from
v. Since v € C’,? (1), definition 5 guarantees- that there exists a brightness template
I g4 such that
I = Ly gullnis < nA(w)

90



Figure 4-7: Definition of w(n).

Then, by using the triangular inequality:

||Iﬁ’é7ﬂ - I”Ni'j 2 ||Iﬁ,é,ﬁ - Iw,a,U||Ni'j - ||Iw,0,u - I“Ni,j
2 ”Iﬁ,é@ — Ly pullnii — nA(u)

so that, by using (4.19),
A(i)

)| < 4.20
O S s Tl — 7AW (4:20)
Now, by defining F'(u,w, 8,7n) as follows
A(d)
F(u,w,0,n) = max
( ) b 1550 — Twoullnii —nA(u)

one gets ' '

lp(®)] < F(u,w,8,n) (4.21)
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Figure 4-8: Proposition 14

Finally, let

w(u,n) = max{w : 36, F(u,w,8,n) > ﬁ(ln)} (4.22)

w(n) = maxw(u,n) (4.23)

O(u,n) = max{6 : Jw, F(u,w,8,n) > Al } (4.24)
A(n)

O(r) = max O(a, (425)

Proposition 14 Let v € C)(I) and N* C D,, where D, is the domain of the
template I, (figure 4-8). Let ¢(P; ;) be the tangent vector computed from I|N* and

let 0; ; be its orientation with respect to y. Similarly, let ¢(Px,;) be the tangent vector
computed from I|N®! where (k,1) is such that d((k,1),v) < 1/2. Then

d(Pij,v) > w(n) = |8(Pis)| < [é(Pr)l (4.26)
|¢(ﬁi,j)| > |¢(ﬁle)l = ||fi ]| < O(n) (4.27)
16e.4l) < ©(n) a (4.28)
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Proof. Since v € C)(I), N*J C D,, N* C D,, there is u € U such that

1 = I ullvis < nA(u) (4.29)
11 = Lyullves < nA(u) (4.30)

The upper bound (4.30) and d((k,!),v) < 1/2 imply that the two conditions inside
the brackets of the sup in (4.12) are satisfied so that (4.13) holds:

) < ¢ (Be)! (4.31)

Let w = d(pij,7), and let § = é” be the orientation of ¢(p;;) with respect to 7.
Then, from (4.21) one gets

|6(Di )| < Flu,w,0,m) (4.32)

To prove (4.26), let’s assume that w > w(n). From (4.23) we get w > w(u,n). Then,
(4.22) implies

1
Flu,w,0,n) < — 4.33
( ) fi(n) (4.3
The three inequalities (4.32),(4.33), (4.31), imply |¢(5i ;)| < |¢(Pr,)| so that (4.26) is
proved. To prove (4.27), let’s assume that |¢(p; ;)| > |#(px.)|- Then, by (4.31),

1 .
) < (i) (4.34)
and from (4.32)
1

Thus, (4.24), (4.25) imply 8 = 8; ; < ©(n), which proves (4.27). Finally, (4.28) follows -

by letting (7, j) = (k, 1) in (4.27). O

4.4 Result on worst-case error

Theorem 3 Let v € C’S(I). Let ® be the Uectorﬁeld,c-;btained by the local fitting op-

erator described in sections 4.2,4.3. Let é’(@) be the set of polygonal curves generated
by the algorithm described in chapter 2 with the parameter constraints (3.5)-(3.9) on
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Figure 4-9: Theorem 3. The points q1,... ;g belong to the regular grid Z?. They are the
points in Z? such that the unit ball Bi(gx) intersects 4. The points p; (big dots) are the
projections of gy onto 7. The points p are the estimates of py. Notice that pr, € Bi(qx),
Pk € Bi(gx). Moreover, ||gr — ge11l| < V2 and ||py, — praa]l < V2. ‘

page 55 and a,©,w, wy set as follows:

o = (V3+240(n)) +40(n) (4.36)
w = w(n) (4.37)
wo = Wo(7) (4.38)
0 =0() (4.39)

Then, there exists ¥ € C(®) such that

d(y,¥) < di + g (4.40)

Proof. The most natural proof would be to show that

Co(I) c C°(®;w, ©, 1y, a) o (4.41)
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2
Figure 4-10: For every p €  there exists pj such that |[p — px||> < (\/1/2 + ﬁo(n)> +1@2(n).

where C%(®; w, ©, 0y, a) is given by definition 3 on page 79 and then use theorem 2
on page 80. However, since this approach would require some minor modifications of
definition 3, a direct proof is given instead.

Let v € Cp(I) and let Ay = {q1,... ,Pum}, g = (i, Jk) be the sequence of points
in Z? shown in figure 4-9. Clearly,

1
d(ar,7) < 5 k=1,...,M (4.42)
llge — qeall < V2,  k=1,...,M—1 (4.43)

Let px be the projection of gx onto . Let py = p;, ;. be the estimated vertex from
I|N*, where N* = N*%J_ Since y € Cp(I), there exists u € U such that, for each ,

11 = Lyullne < nA(u)
Then, by (4.18) on page 89 and wq = wWy(7) it follows that
d(ﬁka ’Y) S Wo

Similarly, from (4.17) we have that the longitudinal displacement of Py from py is
upper bounded by ¢q(n). Then,

Bk — Pral]? < (1P — Praal] + 200(n))? + 402 (n) <

2 (4.44)
(V2+20(n)) + 423 (n) = o*
For every p € v there exists Py such that (see figure 4-10)
~ 2 ~ 2 ~2 a2
lp—84l? < (VA2 +do(m) +a3(m) == (4.45)

Now, we want to prove that the points gy belong to P. For this, it is sufficient
to prove that v € CE,,@(CD), namely that conditions (C1),(C2) on page 54 hold and
then use propositions 11 and 12 on page 65. From proposition 14 on page 92 and
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w = w(n) we get :
| d(Biyg, ) >w = |6(Bi;)| < [¢(Px)|
so that condition (C1) is satisfied. Again, from proposition 14 we get

[6(0:5)] 2 16(Be)] = 1161511 < O(n) = ©

which is slightly different from (C2) but still sufficient to guarantee that part two
of non-maximum suppression does not suppress any px. In fact, from (4.28) one has
||0k,[| < ©(n). Therefore,

6Bij)| > |6(Bk)| = [16i; — br4]| <20=0

that is, i R _
11655 — Oill > © = |@(Bi;)| < |6(Px)

The last part of the proof is the same as the proof of theorem 2. The upper bound
(4.44) ensures that p, ... ,Par all belong to the same connected component Q.

Let 4 be the polygonal curve computed by the algorithm from Q. As explained in
section 3.8, its vertices satisfy (3.21). By an argument similar to the one in section
3.8, we have that d(px,¥') < dy (see figures 3-15, 3-16)? and therefore d(A,, 4') < dy,
where A, = py,...,Py. Then, by using (4.45) and the triangular inequality:

d(1, ) < d(7,Ay) + d(Ay, 7)) S di+ 5 (4.46)

g

2The points py are denoted g; in these figures.
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Chapter 5

Experiments

Chapters 2 and 3 described an algorithm to compute curves from a brigthness image
by using a finite vector field as an intermediate representation. This chapter reports
the results of some experiments carried out with some real images. To compute the
vector field, the step-profile model described in section 4.1 and figure 4-1 has been
used with the parameter o set to 0.5. The input brightness image I has the form
I:Q — {0,1,...,255} where Q C Z% The regions {N*’ : (4,j) € Z*} used to
estimate the vectors (see section 4.2) are square blocks with 3 x 3 pixels. A vector is
computed for every such block contained in the domain of the image. The constraints
(2.6)-(2.9) on admissible triples have been used with following thresholds: r = 1,
©®, = 30°. The constraint (2.10) has not been used. The other parameters have
been set as follows: © = 15, a = 0.5 (except exp. 2 where a = 0.2), d; = 0.4,0.5,
dy = 0.92,1.15, hy = 0.76, hy = 0.96. Only curves for which the vector field magnitude
and brightness variation are above a threshold are shown.
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5.1 Experiment 1: long edges with low curvature

(b) The input image for experiment 1.

Figure 5-1: The input image (b) for experiment 1 is the portion of the image shown in (a).
Continues in figure 5-2.

[



?
| =]
N
H ;
| ¥

(a) The vector field obtained by fit-
ting an oriented blurred step-function
to each 3 x 3 block of pixels (see sec-
tion 4.2). The length of each vec-
tor is given by the amplitude of the
brightness change normalized by the
fitting error.

o avatanat

.,

(c) The connected components with
at least 10 points obtained from the
vector field in (b). Points have been
added between any two neibhouring
points so that e = 0.5.
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(b) The vector field after non-
maximum suppression. The param-
eters of the lateral regions are: d; =
0.4, d = 0.92, hy = 0.734, hy =
0.96. The threshold for orientation
difference is © = 15°.

(d) The longitudinal coorinate map
X of one connected component from
(c). Each straight line represents a
level curve for A.

Figure 5-2: Steps of the algorithm on the iﬁage in 5-1(b). Continues in figure 5-3.




(a) Curves without minimization of curva- (b) Curves with minimum curvature.
ture.

(c) Computed curves on brightness (d) Edge points computed by Canny's al-
image gorithm

Figure 5-3: Continuation of figure 5-2. Only curves for which the vector field magnitude is
above a threshold (0.3) and the brightness change is above a threshold (5.0) are shown. (d)
The output of the Canny edge detector on the same image (figure 5-1(b)).
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5.2

a | ®

(b) Curves computed by the algorithm with

®© =15° a = 0.2, d; = 0.5, dy = 1.15,
hy = 0.468, hy = 0.5.

Figure 5-4: Result of experiment 2.

curvature is too high.
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Experiment 2: short edges with high curva-
ture
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(c) Edge points computed by Canny's al-
gorithm

In this case, Canny’s algorithm seems to perform better
than the proposed algorithm. This is because the curves in the image are too short and their




5.3 Experiment .3: image of a telephone

| [ — =
K = Y
| —— N
= /[/1// -
77 D
G2 N
,JJ AN

Figure 5-5: Result of the proposed algorithm on the whole telephone image. © = 15°, a = 0.5,
d; = 0.5, dy = 1.15, hy = 0.768, hy = 0.95.
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(b) Computed curves

(c) Computed curves on brigthness image

Figure 5-6: Result of experiment 4. O = 15° a = 0.5, di = 0.5, dp = 1.15, A1 = 0.768,
ho = 0.95.
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5.5 Experiment 5: three tools on a table (detail)

(b) Vector field (before non-maximum
suppression)

Figure 5-T:
hg = 0.95.

(c) Computed curves

Result of experiment 5. © = 15°, a
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(d) Computed curves on brightness image

= 0.5, dy = 0.5, dy = 1.15, hy = 0.768,




Chapter 6
Conclusions

Computing edges by local techniques — i.e. searching for local maxima of brightness

‘change — has two limitations. First, the computed representation is often inaccurate
since edges can be present where there is no brightness change and, conversely, bright-
ness change also occurs away from edges. Second, the type of representation obtained
— namely a set of edge points or short curve fragments — is local and fragmented
and does not make explicit important information in the image which requires more
complex geometric descriptors such as curves and regions.

To improve edge detection, global information and complex geometric descriptors
(such as curves and regions) have to be introduced into the process. An important
assumption which underlies the work presented in this thesis, is that, in order to
control computational complexity without sacrificing robustness, global information
should be introduced gradually. To do so, complex descriptors should be constructed
hierarchically from simpler ones and each “step” in this hierarchy should be as small
as possible.

We have considered the problem of representing the edges in the image by means
of a set of curves. These curves are constructed by grouping together local hypothe-
ses about edge localization represented by vectors in the real plane. Two well-known
difficulties in edge detection are curve singularities (junctions and corners) and con-
tinuation of curves to regions where there is no brightness change. According to the
hierarchical strategy, these issues should be dealt with only after a good representa-
tion of the edges where these difficulties are not present has been obtained. This led
us to consider the problem of computing curves which

e do not contain any singularities

e have sufficiently large brightness change (relative to the noise level) at every
point

To formulate the problem rigorously, we defined models of ideal curves in terms
of both the vector field of local edge hypotheses and the brightness image. Then
our objective was to detect all the curves in the image whose distance from an ideal
model is below a threshold. We proved that, in the worst case, the proposed algorithm
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detects and reconstructs all these curves with an error which vanishes linearly when
the upper bound on the deviation from the ideal model goes to zero.

Further work remains to be done to employ this curve-based edge representation
to tackle the problems of junctions and edge continuation. Also, curve information
should be integrated with region information, such as brightness homogeneity, to
construct more complex, two dimensional descriptors.

106

e,




Bibliography

Canny, J. (1986). A computational approach to edge detection. I[EEE Transactions
on Pattern Analysis and Machine Intelligence, 8:679-698.

Haralick, R. (1984). Digital step edges from zero crossing of second directional deriva-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:58-68.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International Journal of Computer Vision, 1:321-331.

Mumford, D. and Shah, J. (1989). Boundary detection by minimizing functionals.
Image Understanding 1989, 1:19-43.

Nitzberg, M. and Mumford, D. (1990). The 2.1-d sketch. In Proceedings of the Third
International Conference of Computer Vision, pages 138—-144.

Parent, P. and Zucker, S. W. (1989). Trace inference, curvature consistency, and
curve detection. IEEFE trans. Pattern Anal. Mach. Intell., 11.

Perona, P. and Malik, J. (1990). Detecting and localizing edges composed of steps,
peaks and roofs. In Proceedings of the Third International Conference of Com-
puter Vision, pages 52-57, Osaka. IEEE Computer Society.

Richardson, T. J. (1990). Scale independent piecewise smooth segmentation of im-
ages via variational methods. Technical Report LIDS-TH-1940, Laboratory for
Information and Decision Systems, Massachusetts Institute of Technology.

Zucker; S. W., David, C., Dobbins, A., and Iverson, L. (1988). The organization of
curve detecion: Coarse tangent fields and fine spline coverings. In Proceedings
of the Second International Conference of Computer Vision. IEEE Computer
Society.

107



