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Abstract

Linguistic theory views a phoneme as a shorthand notation for a set of features which
describe the operations of the articulators required to produce the sound.

In this thesis, a representation of the speech waveform in terms of the same set of
distinctive linguistic features as is used to describe the abstract phonemes is developed.
The ultimate goal of such a representation is robust lexical access in the task of continuous
speech recognition.

The algorithm which results in the feature representation of the waveform proceeds
hierarchically. ' The first stage of the processing estimates the broad class of speech
sounds most-likely represented by each frame in the waveform. Subsequent processing,
which is dependent on the estimated broad class, proceeds in terms of local and more
global queries as to the feature composition in the neighborhood of each frame. Various
modeling choices within the general framework are possible.

The fidelity of the representation is tested on the tasks of phoneme classification and
recognition.
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1. Introduction

1.1 The Goal and Its Motivation

Linguists describe a phoneme as a shorthand notation for a set of features

which describe the operations of the articulators required to produce the meaningful

aspects of a speech sound. In this thesis we develop a method of representing the

speech waveform in terms of the same set of distinctive linguistic features, rendering

it appropriate for a linguistically-motivated method of lexical access in the task of

continuous speech recognition.

Most research in the area of automatic speech recognition has bypassed the repre-

sentation question. That is, complex systems have been devised which are appropriate

for the modeling of a large class of dynamic processes, but the fact that speech has

linguistic structure has been largely ignored. The work described in this thesis, on

the other hand, incorporates knowledge of the structure of the speech signal as well

as a linguistic feature representation of the abstract sounds of speech to pro-,ride a

representation of the speech waveform in terms of linguistic features.

Recognition is simply a representation at a certain level of abstraction. For ex-

ample, a hidden-Markov-model-based continuous speech recognition system (HMM)

with a null grammar finds the most likely sequence of lexical items to represent a

waveform, thereby representing the original signal on the word level. With a lan-

guage model, an HMM represents the waveform at the phrase level. Referring to

figure 1.1, we develop an intermediate interface (data abstraction layer) between the

physical (waveform) and application layers of speech processing, thereby adopting a

conceptually different view of the task of recognition. While this thesis is concerned
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with the transformation from the waveform to the feature representation, the motiva-

tion for the transformation comes from comparing the interfaces with the application

layer from the physical and intermediate layers.

Current automatic speech recognition systems, which correspond to the left path

in the figure, represent lexical entries in terms of a phonemic spelling and access

words in terms of sequences of phonemes. This representation, however, disregards

some of the phenomena which occur in conversational speech. In particular, relax-

ation of requirements on the production of a particular feature may occur. The

following discussion is patterned after one given by Stevens [26]. Consider the ex-

pression "did you' which, when pronounced carefully, corresponds to the phonemes

[D-1H-D-Y-UNN'j. When pronounced casually, however, the result may correspond to

the phonemes tD-1H-JH-UH]. Phonemically, a considerable change has taken place

in going from the theoretical representation of the expression and the representation

corresponding to the utterance produced. Table 1.1 provides a representation of each

of the pronunciations in terms of linguistic features, as will be described in Chapter

2. In the feature representation of the utterances, we see that the matrix entries

remain largely intact in going from the first pronunciation to the second, with only

the features anterior and strident changing in the collapsing of the D-Y to JH and the

feature tense changing in the final vowel. The task of recovering the word sequence

is more tractable from the second representation than from the first.

Related to the method of lexical access enabled by any representation is the notion

of distance between phonemes implied by it. In the feature representation, distance

reflects directly phonemic differences, while distance in the waveform space is taken

as geometric distance between spectra which may be swarnped with differences which

are not phonemically relevant. For example, while one may feel that the phonemes

"m" and "b' a-re close in some perceptual space, these sounds are quite different

spectrally. In the feature representation, however, they differ in only one feature, so

that the intuitive proximity is captured.

Furthermore, a feature representation of the speech waveform allows for a means

of including rules of assimilation and transitional representations. Features do not



I DI 1H D Y UW ID IH JH UH
VOCALIC - I + - - + - + - +
CONSONANTAL + - + - - + - + -
HIGH + + + + + +
BACK + +
LOW
ANTERIOR + - + - - +
CORONAL +1 - + - - + +

IROUND - + +
TENSE - +
VOICE 1+1 + + + + I+ + I + +
CONTINUANT - + + + + +
NASA - -
STRIDENT - - +
LABIAL

Table 1.1: Feature matrices for careful aswell as casual pronunciations of "did you."

PH YSICA L LAYER SPECTRAL REPRESENTATION

DATA ABSTRACTION FEATUREREPRESENTATION

APPLICATION LAYER STATISTICAL MODELS

Figure 1.1: The introduction of an intermediate representation in a speech processing
system.
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change simultaneously in transitions from one sound to the next, but spread in a

predictable manner through a transitional region. Therefore, it is possible to describe

the waveform. near transitions in terms of the feature configurations expected, rather

than restricting the representations to be consistent with theoretical phoneme config-

urations. In fact, Deng [7] has designed an HMM structure in which states correspond

to sets of feature configurations; states associated with transitional regions explicitly

capture the spread of features.

Finally, the linguistic feature representation of the waveform is low-dimensional,

reflecting directly the state of the speaker's articulatory system as a function of time.

The goal of this thesis, then, is to devise a means of parameterizing the speech

waveform in terms of linguistic features which relies upon physical, statistical, and

linguistic considerations, to demonstrate the efficacy of the procedure through the

applications of phoneme classification and phoneme recognition, and to review the

results of the procedure in order to gain insight into the amount of information about

individual features provided by different methods of analyzing the speech waveform.

The main contribution of the work is that it provides a representation of the

speech waveform appropriate for lexical access on the basis of features in the task of

continuous speech recoggnition.

1.2 Terminology

'We adopt the following terminology throughout the thesis:

PHONEME An abstract speech unit representing a specific mode of the speaker's

articulatory system.

(SPEECH) SOUND Equivalent to phoneme.

(LINGUISTIC) FEATURE A component of a phoneme representing a state vari-

able in the speech production system.

BROAD CLASS A set of phonemes which share the primary features listed in

Chapter 2.
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LOCAL PROCESSING FEATURE
WAVEFORM BROAD REPRESENTATION

CLASS
ESTIMATION LOBAL PROCESSI

t

Figure 1.2: A schematic overview of the processing performed in order to assess the prob-
ability of each linguistic feature being represented in the neighborhood of each time frame.

PHONE A portion of the acoustic waveform. in which all frames receive their princi-

pal influence from the same phoneme and neighboring frames receive influence

principally from a different phoneme. Thus, by our definition, phones do not

overlap in time although the manifestations of phonemes do. The region of

overlap, however, may be different for different features.

SEGMENT Equivalent to phone.

FRAME One 5ms sample of a phone.

1.3 Structure of the Thesis

The remainder of this chapter describes the TIMIT database and provides an

interpretation of its labels.

Chapter 2 describes the linguistic representation of speech in terms of production

features and provides a description of broad classes of speech sounds in terms of a

subset of these features.

Chapters 3 and 4 describe the algorithm by which we represent the waveform in

terms of linguistic features. A schematic overview of the procedure is provided in

figure 1.2. The initial stage of the hierarchical processing estimates the broad class

of speech sounds represented. Based upon this estimate, we make both local and

global inquiries as to the nature of the feature composition in the neighborhood of

each frame. The terms local and global are chosen to emphasize that probabilities of

features for a given frame are derived from narrow as well as wider windows in time

around that frame. The outputs of the two levels of processing are averaged in order
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to arrive at the final estimate of the probability of each feature being encoded in the

neighborhood of each frame.

Chapter 3 describes the broad class estimation stage of processing, as well as the

temporally-local processing scheme by which we assign probabilities of features being

encoded in the waveform in the neighborhood of each frame. The likelihood of each

linguistic feature being encoded in the waveform. at a given time is evaluated using

broad-class-specific models.

Chapter 4 describes the temporally-global stage of processing. This consists of a

transitional modeling algorithm which is top-down in the sense that feature probabil-

ities are derived from a mapping of phoneme probabilities. Transitions are defined as

points in time at which the estimated broad class changes. Explicit modeling of the

transitional regions takes into account the information about the features represented

in one region carried by frames outside of the TIMIT phone boundaries.

Implementation of a continuous speech recognition system which is consistent -�krith

our representation of speech is outside of the scope of our project. Therefore we test

the fidelity of our representation on the intermediate tasks of phoneme identification

and phoneme recognition, as described in Chapter 5.

In the final chapter the results of estimating the presence or absence of each lin-

guistic feature are analyzed and enhancements to the algorithm a-re suggested based

upon this analysis. A summary of the main contributions of the thesis is then pro-

vided.

1.4 Experimental Data

Experimentation is done using utterances from the Prototype Version (Training

Set) of the TIMIT database [30], which provides five phonetically compact sentences

("sx7) and three natural phonetic sentences ("si") from each of 290 speakers across

eight dialects.
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1.4.1 Data Partitioning

In order to compare the performance resulting from different methods of assess-

ing feature probabilities, we designated a subset of the database as a development

set. For estimating model parameters, a portion of this set was defined as the de-

velopment training set. The remainder of the set was used for evaluation of various

algorithms. The development training set consisted of the sentences from the first

third of the speakers (alphabetically) from each of the eight dialects, while the devel-

opment testing set consisted of the sentences from the middle third of speakers within

each dialect.

After deciding upon the final version of the algorithms, a final training and testing

set were defined. The final testing set consisted of the sentences from the last two

speakers in each dialect; the final training set consisted of all other sentences from

the set of TIMIT male speakers. This training set, comprised of 2194 utterances,

encompassed all of the development set. The results reported in the thesis derive

from experiments on the final testing set of 128 utterances.

1.4.2 Waveform Representation

Several initial representations of the speech waveform were considered, including

a set of attributes based on energy in various spectral bands and the time deriva-

tives. Also considered were a set of cepstra and their time derivatives, a mixture of

the two aforementioned representations, and a set of normalized cepstra and their

time derivatives. The cepstral attributes a-re motivated by the source-filter view of

speech production and tend to separate vocal tract properties from source character-

istics [21]. As the normalized cepstra and derivatives resulted in the greatest accuracy

in detecting the presence or absence of linguistic features, only the results from that

representation will be discussed further.

The bandwidth of each utterance is 8kHz. Each time frame is parameterized by

14 normalized cepstra NCO - NC13 and their time derivatives DCo - DC13- In order

to compute the normalized cepstra, the short-time Fourier transform was calculated
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using a 5ms frame rate and a 15ms Hamming window. This window duration was

chosen as a good compromise between the temporal resolution enabled by a short

window and the frequency resolution provided by a long analysis window [21]. The

squared magnitude of the transform was then mel-warped to provide greater resolu-

tion at low frequencies than at high, as is the case in the human auditory system [19].

LPC analysis was performed using 14 poles, providing smooth approximations of the

warped spectra. The inverse Fourier transform of the logarithm of the result then

provided thecepstral coefficients. Finally, the time derivative of each cepstral coeffi-

cient was approximated as the slope of the linear regression fit to the values of that

coefficient over a 50ms window centered at the frame of interest. The time deriva-

tives of the cepstra are included as a means of modeling consistent time variations of

feature manifestations. These attributes have been shown to increase performance in

other speech recognition tasks and seem less sensitive to variations between speakers

than the cesptra themselves 111].

Normalization of the cepstra consisted of finding the median of each cepstral

coefficient within the 80% highest energy frames of an utterance and subtracting that

quantity from the coefficient calculated at each time frame. The lowest 20% enerQ,

fraznes represent for the most part silence regions, which provide little normalization

benefit 111]. We interpret the subtraction of the normalization term from each frame

as the canceling of channel differences from speaker to speaker. Indeed, in the case of

a stationary channel response convolved with the input waveform, the result in the

frequency domain is a multiplication of the channel spectrum with the input spectrum.

The logarithmic operation in computing the cepstrum turns that multiplication into

an additive operation which is canceled through subtraction. Here we are assuming

that every utterance is long enough so that we have similar spectra in each utterance

and long-term differences between utterances are due only to channel variations.

1.4.3 Interpretation of Labels

Phonemes are discrete units which are arranged sequentially to form words. The

physical manifestation of the production of these phonemes, however, results in an

17



(a)

(b)

(C)

Figure 1.3: Schematic diagram of regions of influence of phonemes on the speech waveform.

overlap. Each phoneme has a region of influence in the waveform, so that the regions

of influence of all of the phonemes cover, rather than partition, the waveform. in time.

This phenomenon is depicted schematically in figure 1.3. In panel (a) we show a

sequence of dots, representing the arrangement of phonemes to form a word. In panel

(b) we show the distribution of influence on the waveform. over time for each of the

phonemes. The regions where two or more phonemes exert an appreciable influence

on the waveform. are what we refer to as transitional. In panel (c) we impose dashed

lines to indicate the regions in the waveform. in which each of the phonemes exerts

more of an influence than any of the other phonemes. This segmentation is assumed

to be consistent Aith that given by the TIMIT markings. The resulting labels do not

reflect the fact that feature spread from one phone to another will cause the spectra

to exhibit some properties associated with the neighboring sound. We make use of the

information about a sound present in the waveform outside of the TIMIT boundaries

by explicitly modeling transitional regions, as will be described in Chapter 4.
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2. A Distinctive Feature

Representation of Phonemes

2.1 Introduction

Spoken words axe composed of phonemes in the same manner that written words are

composed of letters; as handwritten script bears the characteristics of an individual

Writer, acoustic realizations of phonemes bear characteristics specific to an individual

speaker. For the sake of minimal effort in generation, both handwritten text and

continuous speech trains axe subjected to a deformation of the individual building

blocks of the message in order to smoothly link components into a unified chain.

However, in both handwriting and speech, the variations to the prototypical building

blocks must not be so large as to distort the inherent qualities of the units if the

resudt is to be understandable by other individuals. This fact suggests a description

of the characters in terms of a set of attributes which are preserved under allowable

deformations of the generic unit.

Just as letters may be described in terms of the strokes of the pen needed to

produce them or by the manifestations of these actions such as line segments and

curves, phonemes may be described in terms of the actions of a speaker needed to

produce them, as well as time-varying frequency spectra which result from these

actions. Indeed, in this thesis, the second representation is viewed as a set of observa-

tions which provide information about the first; estimates of the speaker-independent

actions required to produce a sound are derived from the speaker-dependent acoustic

ma ffestations.
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2.2 A Linguistic Feature Set

The set of features which distinguish English phonemes is not unique; several sets

have been introduced in the literature. The set which we shall adopt is, for the most

part, that of Chomsky and Halle [4]. Specifically, we consider the following linguistic

features, defined in terms of the required actions of a speaker in producing that sound

and accompanied by specific spectral characteristics:

VOCALIC Sounds produced with an unconstricted oral cavity and with vocal

cords which are positioned so as to allow spontaneous voicing. Vocalic sounds

are typically loud in relation to non-vocalic sounds and exhibit visible formants.

CONSONANTAL Includes sounds produced by forming an obstruction in the

midsagittal region of the vocal tract, resulting in a lower total energy and lower

first formant than non-consonantal sounds.

HIGH Sounds produced with the tongue body near the palate, resulting in a lowered

first formant.

LOW Sounds produced with the tongue and jaw lowered, resulting in a high first

formant.

BACK Includes those sounds produce with the tongue body toward the back of the

mouth, resulting in a lowered second formant.

ANTERIOR Sounds produced with a constriction of the vocal tract anterior to

the alveolar ridge.

CORONAL Includes those sounds for which the tongue blade is raised.

ROUND Sounds produced with rounded lips, causing all formants to lower in

frequency.

TENSE Sounds produced with a deliberate and accurate gesture. Tense sounds a-re

typically longer in duration with more extreme formant positions than non-tense

sounds.
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VOICE Sounds produced with the vocal folds vibrating, causing spectral resonances

to become visible.

CONTINUANT Includes sounds for which the primary constriction of the vocal

trad is not so narrow as to block the air flow past it, resulting in a smooth

transition between the spectra associated with its predecessor and the spectra

representing a continuant sound.

NASAL Sounds produced with the velum open. For nasal consonants in mur-

mur the second formant is low in intensity and formant bandwidths are wide.

Nasalized vowels typically exhibit an additional resonance below the first vowel

formant, and simultaneous weakening and shift up in frequency of that formant.

STRIDENT The air stream is directed against an obstructing surfaces resulting in

a noisy spectrum with substantial high-frequency energy.

LABIAL The primaxy constriction is formed at the lips, leading to a lowered first

and second formant.

2.3 Feature Configurations of Phonemes

We refer to phonemes by the typewritten symbols used for labeling the TIMIT

database; the equivalent IPA symbols are given in table 2.1. The underlined letters

in the words in the table provide sample occurrences of each of the phonemes.

Tables 2.2 through 2.4 depict the binary linguistic feature representation of each

of the vowels and the consonants distinguished in this thesis. The '+" and '-" entries

in the tables indicate the state of the corresponding articulator in the production of

the sound. For example, sounds which are formed by rounding the lips are '+ round"

while sounds which do not involve lip rounding are "- round." Note that diphthongs

have been excluded from the set of phonemes, as they consist of a transition from

one feature vector to another, and therefore are the concatenation of two phonemes

in this representation. In addition, neutral vowels have been omitted as the feature
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TIMIT IPA EXAMPLE TIMIT IPA EXAMPLE TIMIT ]EPA EXAMPLE

ix I reason iy iY beet dx If audit

Uw U shamp2o ux U new June

ey ey stay ow ow boat f f fee

aa CL hot ih I hit sh 9 she

uh U hood eh C bet dh b these

ah A rug ao 0 bought zh i garage

ae W hat ax a of kcI k' k-closure

ay ay my ax-h Q destroy tcl t1:1 t-closure

aw ow how oy :)y toy bcI b[3 b-closure

er 31 shirt axr ar- offer 9 9 go

way ch chew

I I less el I exampLR s S see

r r red hv have th 0 with

hh h how n n plan z z zoo

en n Boston nx money v v yery

em In complete M m. me pcl closure

ng ig sing k k key gC1 9 g-closure

t t too P P pay dcl do d-closure

d d day b b be q ? glottal stop

Table 2.1: The TIMIT label, equivalent International Phonetic Alphabet symbol, and a
sample word for each of the phonemes discussed in this thesis.
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configurations for these sounds are volatile and "14" has been excluded because of

its difficulty in fitting into the linguistic feature framework [9]. We include a repre-

sentation of quiet in order to represent with closures in the same frarnework as the

phonemes. We follow the TIMIT notation of treating stop gaps as separate entities

from the release even though linguistically these two units together comprise a single

phoneme.

VOWELS
IY UW EY OW AA IH UH EH AH AO AE

VOCALIC + + + + + + + + + + +
CONSONANTAL
HIGH + + + -
BACK + + + - + - + +
LOW + + - +
ANTERIOR
CORONAL
R 0 U. NND + + + +
TENSE + + + + +
VOICE + + + + + + + + + + +
CONTINUANT + + + + + + + + + + +
NAS
STRIDE'N'T
LABIAL

Table 2.2: Linguistic features for each of the vowel sounds considered in this thesis.

Modern linguistic theory has departed from the notion of each phoneme being

represented by the entire set of features. For example, since the production of vowels

does not involve blocking the air flow through the vocal tract, the use of the feature

continuant to describe vowels is unnecessary. The reduction of the representation to

the non-redundant features describing each phoneme is efficient for the purposes of

coding. However, from the viewpoint of recognition, the redundancies are desirable for

recovery from errors as well as algorithm simplicity. We include the full set of feature

descriptors for each phoneme as a sort of place keeper which will allow mathematical

manipulation of our results, in much the same way that vectors lying in the x-y plane

are specified as [x, y, 0] in three dimensions.

Furthermore, some linguists now shun the notion of "feature bundles," which
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I GLIDES LIQUIDS NASALS AFFRICATES QUIET
JYJ w L R M I N NG CH JH H#

VOCALIC + +
1CONSONANTAL + + + + + + + +
I HIGH + + - + + +
IBACK + - +
I LOW
I ANTERIOR + + + -
.,CORONAL + +1 - + +

ROUND + - -
TENSE - -
VOIC + + + + +1 + +
CONTINUANT + + +
NASAL + + +
STRIDENT +
LABIAL

Table 2-3: Linguistic features for each of the ghde, liquid, nasal, and affricate phonemes
considered, as weE as the linguistic feature description of quiet.

PLOSIVES FRICATIVES
PJB G T D K F VITH DH S Z SH ZH

VOCALIC - I- - - - - - - I - - - - - -
CONSONANTAL +1+ + + + + + +1 + + + + + +

I HIGH +1 - I - + - - - - - - + +
BACK +1 - I - + - - - - - -
LOW - I- - - I- - - - - -
ANTERIOR + + - + + - I+ + + + + +
CORONAL - - - + + - + + + + + +
ROUND - - -

-TENSE - - -
VOICE - 1+ + + - +1 + - +1 +
CONTINUANT - - + + + + 1+ +1 + +
NASA -
STRIDENT - + - - + + + +
LABIAL + - - -1 - - -A

Table 2.4: Linguistic features for each of the plosive and fricative sounds considered.
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SONORANT

CONTINUANI CONSONANTAL

STRIDENT OCALIC OCALIC
FRICATIVE

PLOSIVE AFFRICATE GLIDE VOWEL NASAL LIQUID

Figure 2. 1: Broad classes as leaves of a tree built from primary features.

connotes a lack of structure of the features, in favor of the notion of feature geome-

tries [22], [15]. Studies in geometries attempt to define hierarchical structures whose

terminal nodes axe the distinctive features. Nodes of the tree are defined so that rules

of assimilation apply to children of that node but not across nodes.

From the viewpoint of recognition, the assimilation rules could prove useful in

adjusting the training labels. That is, where we have used the one-to-one mapping

of phonemic label to feature presence or absence assimilation rules could provide

one-to-many mappings in that certain features axe assimilated to take on the value

associated with a neighboring sound. These rules axe not encoded in this thesis.

The problem of assimilation is somewhat, although not fully, addressed through the

TIMIT labeling system in that the label assigned is that actually spoken, not that

expected out of context. For example, if the nasal consonant in "can be" is labialized

by the speaker, we expect the TIMIT label to be "M" rather than "N." However,

when the assimilation does not map a set of features onto another phoneme label, the

affected feature change is missed.

For the purposes of recognition, we adopt the following model of feature organi-

zation. We include the features sonorant and instant release [9] which are redundant

given the representation shown in tables 2.2-2.4, but which aid in the definition of

broad classes in terms of features. The feature sonorant is characterized by a lack of
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pressure built up in producing a sound; the feature instant release specifies whether

built-up pressure is released immediately or through a more gradual release [1].

• P7imaryfeatums: Sonorant, Vocalic, Consonantal, Instant Release, Continuant

• Secondary features: Strident, Tense, High, Back, Low, Anterior, Coronal,

Labial, Voice, Round, Nasal

We contend that the primary features determine the gross spectral characteristics of

the resulting speech waveform; the other features modulate or make fine structural

changes to the basic pattern defined by the primary ones. Therefore sounds which are

characterized by the same primary features have similar spectra qualitatively, while

sounds which have different primary features are fundamentally different. This fact

implies that the features are encoded in the waveform hierarchically, with the mani-

festation of secondary features dependent on the configuration of the primary ones.

For example, because G and IY have different configurations of primary features,

the feature +high will be encoded differently in the wavefon-n for the two phonemes.

Consider the structure shown in figure 2.1. The broad classes we distinguish along the

tops of tables 2.2- 2.4 are the leaves of the structure, and the internal nodes branch

according to the presence or absence of the primary features. The two-stage hierar-

chical search for features which is described in Chapter 3 is essentially a search first

for the manifestations of encoding a set of primary features in the neighborhood of

each frame and then, given those features, a search for the secondary features, as well

as a verification of the primary ones. The estimation of the broad class as a whole,

as will be described, is meant to capture dependencies among the primary features.
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3. A Distinctive Feature

Representation - Local Processing

3.1 Overview of the Procedure

Chapter 2 described phonemes in terms of a set of linguistic features; the procedure

outlined in this chapter has as its aim assessing the probability that a frame of speech

represents a phoneme in which a given linguistic feature is present using information

gathered only from the neighborhood of that frame. The output of this procedure

will be combined with a more global processing scheme which will be discussed in the

next chapter. The terms Iocal" and "global" a-re chosen to emphasize that the latter

takes into account contextual information whereas the former does not, as well as

the fact that the two procedures involve processing at different time scales. Results

discussed in this chapter are those in which the global processing stage is omitted, so

that the probabilities estimated from the local stage are taken as the probabilities of

the presence of the features.

The acoustic manifestation of a linguistic feature is dependent on the broad class

of speech sounds to which the principally-represented phoneme belongs. For example,

as mentioned in the previous chapter, the feature +high will be encoded in the speech

waveform differently in the cases of the vowel IY and the plosive G. F�urthermore, all

frames of a phone which corresponds to the presence or absence of a feature need

not be spectrally similar. To capture time variations of the acoustic correlates of

the features, we model separately the beginning, middle, and ending portions of

the phones representing each broad class. A schematic representation of the local
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processing is given in figure 3.1. The oval region represents the space of all speech

frames; pie-shaped wedges represent the segregation of those frames into the broad

class most-likely represented. Time in the diagram progresses radially outward, so

that the intersection of a ring with a wedge corresponds to the time portion (in

thirds) of a broad class most likely represented. After each fraxne has mapped to

a sector of the diagram, the probability of each feature is estimated from Gaussian

models parameterized from training data which were also estimated to belong to

that region. Thus, we have 14 feature present and 14 feature absent models within

each of the 24 sections of the diagram. In order to assess the probability of a given

feature, for example round, for a a test frame estimated to represent the end of a

vowel, we form the likelihood ratio from the models for +round and -round built

from training samples also estimated to represent the final third of a vowel. We use

the estimated broad class portion rather than the true label associated with each

frame in the training set to provide a means of recovery from errors in the broad class

estimation stage. For example, if models for +consonantal in the vowel regions were

parameterized using training tokens which truly represented vowels, then the models

for this feature would be empty, as no vowel is +consonantal. However, if we use

the estimated broad class along with the true feature configuration, then we have the

opportunity to model, for examples frames corresponding to an 'U' or "R!' which

were wrongly estimated to represent vowels. Indeed, we have found experimentally

that using the estimated broad class to segregate the training data led to a slightly

higher accuracy in assessing feature probabilities than segregating the training set

according to the true broad class labels.

3.2 Gaussian Models for Broad Class Estimation

As outlined in the previous section, each time frame t in the training set is

assigned a truth label, -r(t) E f 1,. .. , 8}, reflecting the broad class of speech sounds

which that frame represents. The label is the result of a many-to-few mapping of the

TIMIT labels, as indicated in table 3.1. Sounds grouped by parentheses represent an
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Figure 3-1: A schematic representation of the local stage of processing.
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allophonic equivalence class which we treat by mapping all of the labels in the class

to the first label of the group.

TYPE OF SOUND CONSTITUENT TIMIT LABELS

VONVEL ly, UW, EY, OW, AA, IH, UH, EH, AH, AO, AE
GLIDE Y7 W
LIQUID (L, EL), (R, ER, AXR)
NASAL (M, EM), (N, EN), NG
PLOSIVE P, B, G, T, D, K
AFFRICATE CH, JH
FRICATIVE F1 V, TH, DH, S, Z, SH, ZH
QUIET/VOICE BAR (H#, PCL, TCL, KCL, BCL, GCL, DCL, EPI,

Table 3.1: Mapping from TalIT label to broad class label.

Furthermore, each frame t of the training set is assigned a section label, 0'(t) E

1, 2, 3 1, indicating whether the frame represents the initial, middle, or final third of

a phone. Each phone is divided into three pieces of equal duration in order to enable

modeling of the time variation of the manifestation of a feature within each broad

class.

The broad class and sektion labels are used to segregate the frames in the training

set for the purposes of parameterizing Gaussian models. For section i E II, 2, 31 of

phones representing broad class k E �1, 8} we estimate the model parameters as

follows:

Nki =
f tja(t)=iT(t)=k}

Akj = 1 E X(t)
Nki {tja(t)=i,-r(t)=k}

1 T(t) _ �ki�T
Eki = x (t) x ki

That is, Nk,. is the total number of frames in the training set estimated as being drawn

from the i-th third of a phone representing a phoneme in broad class k, Aki is the

sample average (vector) over those same frames, andtk, is the sample covariance of

that set of frwnes. We have that Nk. ;zz Nk� ;zz Nk., with differences arising due only
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Figure 3.2: Broad class model topology.

to roundoff errors in dividing phones into thirds.

Given that section i of a phone representing broad class k is being produced, the

N-dimensional probability density function for observations is taken as:

1 _ I (.T_,aki )Tt-1
p(xlr = k, a = i) -y e 2 ki (X-,&ki) (3-1)

(27r) N I tk.

3.3 Estimating Broad Classes

In order to estimate the sequence of portions of phones and the broad class

which each phone represents in a particular sentence, the probabilities of the observed

attribute vectors given each possibility are evaluated using equation 3.1 above.

A Ma-rkov model of broad class representation is used, as shown in figure 3.2. Each
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Figure 3-3: Topology for an individual class within the broad class model.

state in the diagram is actually composed of three states connected in a left-to-right

fashion as in figure 3.3. These substates model explicitly the beginning, middle, and

end of phones representing each broad class. To estimate the transition probabilities

among states, the number of transitions on a frame-by-frame basis among the broad

class and section labels from the training data a-re counted. If we define the number

of transitions from state si to state tj in the training set as Ti t,, then the transition

probability between these two states is estimated as the number of transitions from

state si to state tj divided by the total number of transitions from state Si:

T'i tj
&.Si tj E8 I E3=1 T,,i tj

t= i

Because each TINUT sentence begins with silence, we assign initial state proba-

bilities as:

1 s = 8 and i = 1
7r, i =

0 otherwise

Finally, dynamic programming is used to find the most likely sequence of broad

classes arising in each sentence. In the absence of known segment boundaries, for

an utterance of length M + 1, we take the estimated sequence of states to be the

most-likely trajectory through the Markov model:

M
so* SM* = arg max 7rs,, H PWO I S.) &S-, S-SO,---'SM M=1

whereS,,,Efsi:sEfl,...,8},iEfl,2,3}1 Vm-

When phonemic boundary information is provided, as is the case for the task
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of phoneme classification, the dynamic programming cost function is modified to

reflect the fact that only one broad class is represented by the set of frames between

each boundary set and that the region to the right of a boundary must represent

the beginning of a broad class while the region to the left of a boundary represents

the end of a broad class. The estimated sequence of broad class states through an

utterance in the case of known boundary information is taken as:

M
so* Sm* - arg Max 7rso 11 C(S. I B., B,,) p(x (t) I S,.) &s--, s,

so I ... Ism M=1

where the additional term C(S, I B,,,,, B,) reflects the cost of being in state S"' at time

rn given the set of boundary points marking the beginnings of phonemes, B,, and

the set of points marking the endings of phonemes, B,. Specifically,

0 rnEB,,,,SmElsi:sEfl,...,8},iE�2,311

0 rn E B,, S, E {si : s E f 1,- 7 81, i E �11 211

C(SnIB.7 B,,,) 0 rn �O B,,, U B,, S,_1 E {s, : s E 11, - - - , 8}, i E 11, 2, 31},

Sm E f tj : t E f 8}, j E f 1, 2,311, s :�- t

1 otherwise

We use the TIMIT boundary information for assigning broad class estimates to

,each training utterance, regardless of the availability of this information for the test

set.

3.4 Broad Class Accuracy

In the case of known boundaries, we obtain the confusion matrix of broad classes

shown in table 3.2, representing 84% correct classification of the frames in our final

TIMIT test set. The broad classes listed vertically represent the true labels associated

with each frame in the test set, while the classes listed across the top of the matrix

represent the estimated class assigned to each frame. Thus, diagonal entries in the

matrix correspond to correct estimates while the i, j-th entry represents an estimated
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broad class of j for a frame taken from the true class i. As shown, a large proportion

of the errors axe among vowels, liquids and glides. If we were to collapse the categories

vowel, glide, and liquid into one category such as vowel-like the broad class accuracy

would be 90%. However, we choose to maintain these as separate broad classes on the

basis of linguistic considerations as well as the fact that the larger number of classes

allows for more fle:)dble modeling of the linguistic features. The numbers indicated in

the table were derived by collapsing the labels representing the thirds of each broad

class into a single bin for that class.

Fricative Nasal Vowel Glide Liquid Aff-ricate Plosive Quiet
Fricative 0.755 0.038 0.005 0.004 0.010 0.089 0.041 0.057

Nasal 0.007 0.889 0.022 0.024 0.018 0.000 0.011 0.028
Vowel 0.001 0.019 0.843 0.057 0.061 0.001 0.002 0.015
Glide 0.000 0.019 0.038 0.855 0.064 0.000 0.018 0.005
Liquid 0.000 0.033 0.125 0.101 0.711 0.001 0.009 0.020

Aff-ricate 0.039 0.012 0.000 0.000 0.000 0.929 0.014 0.006
Plosive 0.029 0.004 0.000 0.007 0.003 0.097 0.817 0.043
Quiet 0.022 0.033 0.001 0.005 0.003 0.000 0.006 0.930

Table 3.2: Confusions among broad class estimates in the case of known boundary locations.
Class presented is listed vertically; class estimated is listed horizontally.

3.5 Gaussian Models for Linguistic Features

The clustering information provided by the broad class estimation stage is used

to build a set of estimated-broad-class-dependent feature vs. non-feature Gaussian

models. Each frame x(t) of the training set is assigned a labelrf (t) E f 0, 1} indicating

whether that frame corresponds to the absence (rf = 0) or the presence (rf = 1) of

each linguistic feature f E 11, . . -, 14} - All frames in the TIMIT training set which

are estimated to be in a given portion of a phone representing a given broad class

are divided into "feature present" and "feature absent" subgroups for each linguistic

feature to be modeled.

Gaussian models of the waveform attribute vectors are parameterized for each
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subgroup. We estimate the following model parameters:

f+
Nk'i

jtjS't=ki,-rf (t)=l}

Nf-
ki

{tjSIt=kj,7f (t)=O}

�f+ - 1

ki N f+ X(t)jki f tjS-,=k_rf (t)=11

1 X(t)
ki f- E

Nkj j {tjS't=kj,-rf (t)=Oj

tf+ 1 T(t) _ �f+�f+ 7'
ki NTf + X(t) x ki ki

-' 'ki {tIS't=ki,-rf (0=11

1 T(t) _ �f-�f- T

ki NTf X(t) x ki ki
-' ki {tjSIt=kj,-r-f (t)=O)

where Nf+ indicates the number of frames which were estimated to belong to portionki

i of a phone representing broad class k and which represent the presence of feature f

Af + and tf + represent the sample mean and sample covariance, respectively, of thiski ki

set of frames. Similarly, Nf - indicates the number of frames which were estimatedkij

to belong to portion i of a phone representing broad class k and which represent the

absence of feature f, with Pf- and tf- representing the sample mean and sampleki ki

covariance of these frames.

The N-dimensional probability density function of frames which represent the

presence of a given feature for estimated portion i of a phone representing broad class

k is modeled as:

fp(xlki,,r (27r) '2v + 1 12 e 2 ki ki ki

ki

Similarly, the density function of frames representing the absence of a given feature

35



within the estimated broad class is modeled as:

I " ( f-)Ttf-p(xlki,,r f = 0) N e- 2 .- Aki ki ki
(27r)7 k i 2

1:tf-

3.6 Dependent Modeling of Place Features

The procedure described in the previous section treats each feature independently

within each estimated broad class. In this section we describe a method for modeling

jointly the features high, back, and low as well as anterior and coronal.

For training, we divide the set of frames in each estimated broad class according

to an index I defined as:
N-1

.T E f,2n
n --O

where N is the n=ber of features in the group to be modeled dependently and f,, is

the true value of the n-th feature of the phoneme underlying the frame. For example,

in modeling the features anterior and coronal jointly, N = 2 and frames representing

the phoneme M which is +anterior, -coronal map to an index I = 0 * 20 + I * 21 = 2.

For each of the 2"' possible indices, we find the mean and covariance of the data

mapping to that index and parameterize unimodal Gaussians accordingly. The rela-

tive number of frwnes in each set serves as a prior probability estimate.

Half of the total 2' Gaussians then correspond to the presence of a given feature.

We exploit this fact in assessing the probability that the feature is encoded. If we

also define

ITM fn2-
(nE{O,-..,N-1)Jn?6m}

for a given configuration of features in the group and Rm as the set of values that TM

takes on, then we have:

PUM 'IX) Afm = 1, -TM = nlx)
{nEIZ-}

'x) p(xlfm = 1,Tm n)p(f. 1,Tm n)
P( �nE'R-}
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Note that the feature labial is redundant for the combination +anterior, -coronal

so that by modeling the dependencies of these features we automatically model the

feature labial.

Note that the feature labial is redundant for the combination +anterior, -coronal

so that by modeling the dependencies of these features we automatically model the

feature labial. However, the model for -labial is different from that of the independent

modeling under the dependent technique as it consists of a mixture of the models for

the three other configurations of anterior and coronal.

3.7 Estimating Linguistic Features

For applications of the feature representation, vectors of probabilities of features are

envisioned as the input. However, in order to assess the quality of the representation,

we estimate the presence or absence of each linguistic feature for each time frame.

The accuracy of the estimate derived from local processing, will be compared with

that of the estimate derived from a combination of local and global processing in the

next chapter.

For a given feature, each time frame in the speech waveform is associated with

a probability of that linguistic feature being present using the Gaussian class vs.

nonclass Gaussian models described above. The probabilities axe associated with a

two-state Markov model, where one state represents the encoding of a feature in the

waveform and the second state represents the absence of the feature. The transition

probabilities are fLmetions of the broad class estimate.

To estimate the transition probabilities between the states, we count the number

of each of the possible transitions on a frame-by-frame basis in the training data. If

we define the number of transitions from state i to state j for estimated portion and

broad class S* as T�(S*) for f E 14} and ij E 10, 1}, then the transition

probability between these states is estimated as the number of transitions from state
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i to state j for broad class S' divided by the total number of transitions from state i:

Tfii(S*)

1=0 T� (S-i 1-7 \

Dynamic programming is used to find the most likely feature sequence arising

in each sentence. For an utterance of length M + 1 with no segment boundary

information given, and for each linguistic feature, we take the estimated sequence of

corresponding feature presences to be:

M
Pf Pf M0*1 ... I Pf. 11 AX M I Pf '�-' S,.*) &f farg max 7 P Pf.

Pfo,-..,Pfm M=1

where Pf m E 10, II V m. If segment boundary information is given, an additional

cost term is included to reflect the fact that either all frames between the boundaries

correspond to the presence of the feature, or all the frames between the boundaries

correspond to the absence of that feature. Mathematically this is achieved by taking:

Af

Pf 0*1 ... IPf Af axg max 7rpf, II C(Pf m I Bck I Bw)
Pf O'...'Pf M M=1

(X Pf M, S.*) &f f "', Pf (Sn*)

where

C (Pf m I B., B,,) 0 m 0 B., Pf m 54 Pf,.-,

1 otherwise

3.8 Results of Linguistic Feature Estimation

Shown in tables 7.1 through 7.3 of Appendix I is an indication of the algorithm's

performance on an individual phoneme basis when phoneme boundary information is

provided. For each of the phonemes listed in the left-hand column of the tables, the

relative frequency of the frames corresponding to that phoneme which were estimated

to represent the presence of the features listed horizontally is given. The + or - follow-
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Figure 3.4: Two-alternative, forced-choice decision model.

ing each entry indicates the theoretical presence or absence of the feature. Table 7.1

indicates the results when the features high, back, and low as well as anterior and

coronal are treated dependently as described in section 3.6, while table 7.2 shows the

results when these features are modeled independently.

Tables 7.4 and 7.5 reflect the case of unknown phoneme boundaries. Dependent

modeling of the features high-back-low and anterior-coronal was used to generate this

result.

In this section we summarize the local processing performance, analyzing the

results in terms of the separability of the models as described below.

3.8.1 Method of Analysis

For a quantitative analysis of our results, we have vie,,xred feature estimates as if

they arose from a psychophysical two-alternative forced-choice decision model. Re-

ferring to figure 3.4, we find the distance d' between the means of the two conditional

density functions, p(xl+) and p(xl-), where x is some unobserved decision variable.

Hypotheses H+ and H_ correspond to the linguistic feature being encoded and not

encoded in the neighborhood of a given frame, respectively. Unit variance is assumed

for each model. This analysis, which is largely insensitive to bias, provides a measure

of separability between feature present and feature absent models.

If we define Pr+ to be the probability of estimating a given feature f to be

present given that the feature is present and Pr- to be the probability rof estimating
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the feature to be absent given that it is absent within a set of phonemes C, we have:

N+ E Pr(,O)
{OECIODf}

Pr 1 E Pr(+IO)Pr(O)+ AT
+ fOECIODfI

where Pr(+10) is the relative frequency of estimating frames representing chiefly

phoneme 0 to have the feature present and Pr(O) is the prior probability of 0. We

introduce C so that we may restrict our attention to subsets of phonemes for a given

feature; for example we may want to consider performance for the feature "tense" in

vowels only.

Then:

Pr+ fc p(xl+) dx

0 ,_ _1 , (-,�! -,. +),
27-, dx

41(c -

2X2
where 4D(y) fy' 1 e-I dx. Similarly,vr2-,,

Pr- f-00 p(xl-) dx

00 I _ I (X_,A_)2
_e 2 dx

fc 27r

Thus we have that

c - 4) -'(Pr+)

p- c - 4D-'(1 - Pr-)
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and finally,

d' = 14) -'(1 - Pr-) - 4) -'(Pr+)

To get a feel for the meaning of various values of d', we show in table 3.3 the

probability of a correct response assuming equally-likely hypotheses for various values

of d.

df Pc d 1 1 Pc d' I Pc
3.5 0.96 3.0 0.93 2.5 0.89
2.0 0.84 .5 0-771 1.0 0.69

Table 3.3. Probability of a correct response for various values of d'.

3.8.2 d' Analysis of Local Processing

In table 3.4 we show the resulting d' for each feature under various experimental

conditions. The results shown in the table take into account all of the phonemes

modeled in calculating d. Some discussions of d within a subset of the phonemes are

given in in the analysis below. Condition A represents the case of local processing

in which all features axe modeled independently. Condition B corresponds to local

processing with dependent modeling of the features high, back, and low as well as

anterior and coronal. In this experiment entries not shown are identical to the corre-

sponding value in column A. Column C indicates the resents of local processing with

unknown boundaries and dependent modeling of the place features.

Loss of boundary information caused the accuracy of detecting all features to

decrease. This is to beexpected in part because the results are presented on a frame

by frame basis; if broad class estimates do not change at the TIMIT boundary points

inappropriate models may be used to assess the probability of each feature for a few

frames at the edge of each phone. Given below is a discussion of the results for

individual features in which anomalies in performance were seen.

VOCALIC The feature vocalic was easily detected for most phonemes as evidenced
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FEATURE A B C
VOCALIC 3.807 3.010
STRIDENT 3.631 2.951
NASAL 3.503 2.910
CONSONANTAL 3.226 2.614
CONTINUANT 3.219 2.472
VOICE 2.758 2.440
ANTERIOR 2.705 2.666 2.119
ROUND 2.661 2.213
CORONAL 2.574 2.625 2.130
BACK 2.550 2.536 2.195
LOW 2.483 2.369 2.127
LABIAL 2.369 1.972
HIGH 2.278 2.442 2.038
TENSE 2.051 1.671

Table 3-4: Performance (d') for individual features using local processing. A: Independent
processing, boundaries known. B: Dependent processing, boundaries known. C: Dependent
processing, boundaxies unknown.

by the relatively large value of d' in table 3.4. Notable exceptions were Y and

W, whose vowel-like spectra caused them to be fairly frequently misclassified as

+vocalic.

CONSONANTAL The main difficulty in assessing the value of the feature conso-

nantal arose in the cases of UH, UW and L. For L, part of the problem might

stem from the fact that frwnes labeled EL were mapped to the symbol L in

determining feature labels; fraznes labeled EL in the TIMIT database act as

vowels and do not involve a constriction of the vocal tract until the end of the

sound. The vowels UH and UW were occasionally misclassified as liquids; the

large bias toward +cosonantal for frames in this estimated broad class led to

an error in assessing the feature consonantal.

HIGH Dependent processing of the features high, back, and low with known bound-

aries led to a d which was 7% laxger than that achieved by independent pro-

cessing for the feature high. On the subset of vowels, assuming each vowel to

beequally likely, the dependent modeling of the feature high with low and back
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led to a d' of 1.896, with independent modeling giving d' = 1.499. Difficulty

in assessing the value of the feature high arose mainly for UW, IH, UH, EY,

NG, K, and G. Again, as in the case of consonantal, difficulty for UW and

UH stems from misclassification as liquids; since neither L or R is +high the

bias towaxd -high is large within that estimated broad class. Difficulty for 1H

probably stems from its confusability with EH and AE, both of which a-re -high.

Difficulty with the -high EY most likely stems from its spectral similarity to the

+high IY, which is much more common. NG, K and G most likely suffer from

being relatively uncommon, so that the biases in the models within nasals and

plosives axe largely toward -high.

BACK The feature back showed a 0.5% decrease in overall d'in going from indepen-

dent to dependent local processing when boundary information was provided.

Within the set of vowels, assun-dng each vowel to be equally likely, dependent

modeling (d' = 2.133) and independent modeling (2-136) were comparable. The

phonemes which were most difficult for which to assess the value of back were

UW, UH, AH, L, NG, K, and G. Similarity to EH probably led to difficulty for

AH while the problems discussed above surfaced again for the feature back in

the case of the other anomalies.

LOW The feature low showed a 4.6% decrease in d' on the ffill set of phonemes

in going from independent to dependent local processing when boundary infor-

mation was provided. Within the subset of vowels, assuming each vowel to be

equally likely, dependent processing (d = 1.772) provided greater separability

than independent processing (d' = 1.571). Difficulty in the feature low occurred

mainly for OW and AA. Bias as well as spectral similarity to AO most likely

caused the difficulties.

ANTERIOR For the feature anterior, a 1.4% decrease in overall d' occurred in

going from independent local processing to processing anterior and coronal de-

pendently with known boundaries. Difficult�,, in assessing this feature arose

mainly in the cases of NG, TH, and V. Bias probably accounts for the problem

43



vvdth NG. Low spectral energy often caused TH to be estimated as a quiet region

rather than a. fricative; bias in the models for this broad class led to errors in

assessing the feature anterior for TH. The problems for V are more difficult to

interpret.

CORONA-L The dependent modeling of anterior and coronal led to a d' which was

2% larger than that achieved through independent modeling of these features

in the case of known boundaries. Difficulty for this feature arose mainly for

the phonemes L, N, D, DH, and TH. The allophones EL and EN probably

contribute to the problems with L and N. Low energy for DH and TH led these

sounds to be classified as quiet and bias against +coronal led to errors for these

sounds.

ROUND Difficulty for this feature arose mainly for the phonemes AA, UH, AH,

and L. In general this feature is difficult with the local processing scheme of this

chapter because the manifestation of this feature is a lowering of the formants

relative to their position when rounding is not present rather than an absolute

distinction between all +round and -round sounds.

TENSE Phonemes UW, OW, and AA led to the most difficulty for this feature. As

with the case of round, the feature tense is manifest in more extreme formant

positions than non-tense (lax) sounds but a universal distinction between tense

and lax does not exist. longer in duration than lax sounds, however, more

sophisticated durational models (rather than the exponential models implied

by the Maxkov chain) would probably improve performance for this feature.

VOICE Difficulty in assessing the value of the feature voice arose primarily for

the phonemes J and Z. The cessation of vocal fold vibration which is possible

during the middle of the production of these sounds makes the voicing difficult

to detect- incorporation of the information from the transition modeling of the

next chapter is shown to improve d significantly over that attained using local

processing alone.
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CONTINUANT Loss of boundary information caused a relatively large decrease

in d for the feature continuant, indicating the importance of transitional regions

in assessing the value of this feature.

STRIDENT Errors in assessing the feature strident arose primarily for the phoneme

V, most likely due to errors in the broad class estimation stage.

3.9 Weaknesses of the Local Processing Algorithm

The local processing algorithm has some shortcomings which be addressed through

the complementary global processing of the next chapter.

One weakness of the local processing is that decisions about the feature compo-

sition of each frame axe made based upon a small neighborhood around that frame.

Information about spectra elsewhere in the waveform is incorporated into the at-

tribute vector describing each frame only through the use of cepstral derivatives.

Context effects are not modeled, and information outside of the TIMIT markings

is not exploited in determining the feature composition within the region. Another

weakness of the local processing scheme is that all frames within an estimated broad

class portion representing a given feature state are assumed to have similar spectra.

That is, for each estimated broad class portion, a unimodal Gaussian is used to model

all frames corresponding to the presence of a given feature. This modeling technique

implies a dichotomy of frames within each estimated broad class region so that the

set of speech frames within each region fall into +feature and -feature half-planes.

This assumption could be relaxed by replacing the unimodal Gaussian modeling with

mixture models. Finally, the local processing does not fully model the interaction

among features within each phoneme. Features are modeled within estimated broad

class regions, thereby modeling the dependence of the secondary features discussed

in Chapter 2 on the configuration of primary features. We have also investigated the

joint modeling of place of articulation features within each broad class. However, the

interaction between features may be more widespread.
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4. A Distinctive Feature

Representation - Global

Processing

4.1 Introduction

The weaknesses of the the local processing discussed in section 3.9 are addressed

through the complementary global processing of this chapter. To summarize the

weaknesses of the local processing, we have that decisions about the feature composi-

tion of each frame are made based upon a small neighborhood a-round that frame. In

addition, all frames within an estimated broad class portion representing a given fea-

ture state are assumed to have similar spectra, implying a separation of frames within

each estimated broad class region into +feature and -feature half-planes. Finally, the

local processing does not fully model the interaction among features.

The processing described in this chapter is complementary to that of the pre-

vious chapter in that it specifically addresses its weaknesses. This complementary

processing takes into account the information present in the spectra associated with

one sound in describing the feature composition of a neighboring sound by explicitly

modeling transitional regions, resulting in a more global process than the procedure

described in Chapter 3. Furthermore, in contrast to the bottom-up procedure of the

previous chapter in which frames corresponding to the presence and to the absence

of each feature were modeled directly within each estimated broad class portion, we

use a top-down procedure in this chapter which relies on a mixture model rather
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than a unimodal Gaussian model to assess feature probabilities. Models here are at

the diphone level, and a mapping is performed to transform probabilities of phones

into probabilities of features. This method captures the potential interdependence of

features by modeling entire feature sets, or phonemes.

The method is shown to generally improve performance over using local processing

alone in assessing the presence or absence of features.

4.2 , TYansition Modeling

The coarticillatorv effects introduced in continuous speech warrant processing at

a global level in order to incorporate information about a sound which appears in the

spectra outside of the corresponding phone as well as the deformation of that phone

due to feature spread across transitional regions.

The procedure described in this chapter relies on models of spectra in the neigh-

borhood of transitions. To begin, we construct an attribute vector i for a transition

occurring at time. t, where

EL
k 0 X(t - k)

E3= x(t + k)
k I

and x is a 28-dimensional vector consisting of 14 normalized cepstra and their time

derivatives.

T is defined to be the set of transitions in the data set; for training, as well as for

testing in the case of a known segmentation, we take T = {t : O(t) :� O(t + 1)}, where

O(t) is the TIMIT label occurring at frame t. For testing when the segmentation is

not known, we take T = It : & (t) = 3, & (t + 1) = 1 }, where & (t) E I 1, 2, 3} is the

estimated portion of a broad class at time t.
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4.3 Dimension Reduction

The limited number of training tokens of each transition mandates the use of

reduced-order models. The problem of finding an appropriate reduced-order model

given a finite number of training examples has two components. First, we must

decide upon a system order which is small enough to allow for robust modeling in

the face of limited training yet large enough to provide adequate representation of

the attribute vectors. Having chosen a value for the order of the reduced system, we

must then find a projection from the high-order to the low-order system. A class-

specific transformation which captures principal components of all the data as well

as those directions specific to an individual class, as outlined by Chernoff [3], will be

considered.

For a given order p of our reduced system, we choose integers m and n such that

m + n = p. Here m will represent the set of dimensions derived from the covariance

data of the entire set of training tokens, and n will be the additional dimensions

derived specifically for each transitional model.

To begin, we define the covariance matrix for transitions from frames repre-

senting primarily phoneme a to frames representing primarily phoneme 0:

N,,o

E,"O i(t)j(t)T _ P.OPTQ0NcO

and the "population covariance"

E

Next, we define A,., to be the P x m matrix chosen so that the colun-ms are the
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,eigenvectors associated with the m laxgest eigenvalues of the population covariance

matrix E. We then perform the transformation E,,,3' = (I _ '4,)TE"O where 4,, is a

P x P matrix formed by adding P - m columns of zeros to A, This transformation

results in the projection of E,,,,3 onto the nullspace of A,

Finally we define A,, to be the P x n matrix consisting of the n largest eigenvalues

of and A = IAIA,,].

In our experimentation we have observed that the value of m for a given p has little

effect on performance in estimating the presence or absence of features. Therefore

we have chosen m = p, n = 0, reducing the algorithm to one of principal component

analysis. The results discussed in this chapter derive from a reduction of the original

56 dimensions to 15.

After performing the transformation x' = A'i, we evaluate the Gaussian mod-

els for each possible phone transition. The following quantities are calculated for

transitions from phoneme a to phoneme 0 for each a 0 3:

1 X'(t) = A Ty.,3

ATa,3

1 T T T
XI(OXI(t) pckoya,3 A Ec,,OA

ATc,,3

4.4 Probability of Features from Transition Mod-

els

We shall say that a 9 f if the feature f is specified as 'Y' in the vector of features

representing phoneme a. We have that the probability of feature f being encoded in

the waveform in the left neighborhood of a transition at time t is:

Pt (f I X') E PWO = a 14

P(O(t) = a, O(t + 1) = 01XI)
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X') AX110(t) = a, 0(t + 1) = 13)P(O(t) 0)
a-Df

This procedure sums over all possible right contexts for a given phone, and then sums

over all phones in which a given feature is present in order to axrive at the probability

that a feature is present to the left of the transition. We can also assess this probability

for the frames to the right of a transition by summing over left contexts. We have that

the probability of feature f being encoded in the waveform in the right neighborhood

of a transition at time r is:

p,(fjx') = Ep(O(r+1)=ajx')
QDf

= E E &(r) = 0, O(r + 1) = alx')
Ct-Df 000

1
E E p(x'l O(r) 0(r + 1) = a)&(r) O(r + 1) =,a)

P(X

The average of the probabilities derived from the left and right transitions provides

a globally-derived estimate of the probability of feature f being encoded between the

two transitions - That is, Vs : r < s < t, p, (f I X') (Pr+ (f I X') + Pt - (f I X'))2

In Order to combine this global estimate of the probability of a given feature being

encoded in the waveform in the neighborhood of each frame with the local estimate

described in the previous chapter, the average of the probabilities derived from these

two processes is taken.

4.5 Results of Global Processing

Shown in Appendices 2 and 3 are the results of the global processing alone and

of the combination of global with local processing, respectively. The cases of both

known and unknown TIMIT boundaxy locations are considered. In this section, we

summarize the results listed in the appendices and compare the performance with that
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of the local processing of the previous chapter, relying upon the d' analysis technique

described in section 3.8-1.

Table 4.1 indicates the resulting d' for each feature under various experimental

conditions. The results of the local processing alone axe reproduced here for easy

comparison to the global processing. Conditions A-D of the table represent the case

of known boundaries. Condition A represents the case of local processing in which

all features are modeled independently. Condition B corresponds to local processing

only, with dependent modeling of the features high, back, and low as well as anterior

and coronal. In this experiment entries not shown axe identical to the corresponding

value in column A. Condition C corresponds to global processing alone, while case D

represents the combined local and global processing.

Conditions FG represent the case in which phonemic boundaries are unknown.

Column E indicates the results using local processing alone, with dependent modeling

of place features. Column F shows the results with global processing alone, and case

G is the result of combining the outputs of scenarios E and F.

In table 4.2 is shown the change in performance between various scenarios of

table 4.1. In the left column is the percent change in d' encountered in going from

local only to combined local and global processing in the case of known boundaries.

The center column of the table shows the same quantity in the case of unknown

boundaries. In the right column of the table is shown the percent change in d'

resulting from the combined local and global processing when boundary information

is lost -

The agreement between local and global estimates of the probability of each fea-

ture when phonemic boundary information is given is investigated in table 4-3. The

percent in the upper left of each matrix corresponds to the frequency with which

both local and global probabilities are less than 0.5 thus rounding to zero in the

VQ indexing scheme described in chapter 5. The number in the upper right corner

of each matrix reflects the percentage of frames for which local processing led to a

probability of feature present of less than 0.5 while global processing estimated the

probability to be greater than 0.5. The lower left entry reflects the case in which the
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local processing led to a probability greater than 0.5 but that resulting from global

processing was less than 0.5. Finally, the lower right entry corresponds to the frames

for which both the local and the global probability estimates were greater than 0.5.

Shown in table 4.4 is the percentage of frames in which the local processing corre-

sponds to a correctly-estimated feature value for the cases where either the locally-

or the globally-derived probability is less than 0.5 while the other is greater than 0.5.

FEATURE A B C D E F G
VOCALIC 3.807 3.628 3.921 3.010 2.906 3.047
STRIDENT 3.631 3.545 3.732 2.951 2.666 2.981
NASAL 3.503 3.137 3.499 2.910 2.558 2.937
CONSONANTAL 3.226 3.159 3.437 2.614 2.463 2.640
CONTINUANT 3.219 2.877 3.297 2.472 2.323 2.637
VOICE 2.758 2.928 3.050 2.440 2.563 2.711
ANTERIOR 2.705 2.666 2.495 2.832 2.119 1.914 2.191
ROUND 2.661 2.576 2.655 2.213 2.366 2.356
CORONAL 2.574 2.625 2.380 2.770 2.130 1.843 2.171
BACK 2.550 2.536 2.347 2.714 2.195 1.960 2.251
LOW 2.483 2.369 2.512 2.686 2.127 2.326 2.224
LABIAL 2.369 2.257 2.972 1.972 2.097 2.355
HIGH 2.278 2.442 2.111 2.451 2.038 1.745 2.136
TENSE 2.051 2.226 2.270 1.671 2.034 1.984

Table 4-1: Performance (d') for individual features in a variety of paradigms. A: Inde-
pendent local, boundaries known. B: Dependent local, boundaries known. C: Global,
boundaries known. D: Combined global and dependent local, boundaries known. E: De-
pendent local, boundaries unknown. F: Global, boundaries unknown. G: Combined global
and dependent local, boundaries unknown.

Given below is a discussion of some anomalous results in the global processing as

well as a comparison of the global to the local processing on an individual feature

basis.

VOCALIC As was the case for local processing, the global processing had diffi-

culty in assessing the value of the feature vocalic for the phonemes Y and W.

The vowel-like structure of the spectra of these sounds as well as their relative

infrequency led to the difficulties for these sounds. Combining the global infor-

mation with the local did not improve the accuracy of determining the feature
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FEATURE A:B--4D A:E--+G A:D-G
VOCALIC 3.0% 1.2% -22.3%
STRIDENT 2.8 1.0 -20.1
NASAL -0.1 0.9 -16.1
CONSONANTAL 6.5 1.0 -23.2
CONTINUANT 2.4 6.7 -20.0
VOICE 10.6 11.1 -11.1
ANTERIOR 6.2 3.4 -22.6
ROUND -0.2 6.5 -11.3
CORONAL 5.5 1.9 -21.6
BACK 7.0 2.6 -17.1
LOW 13.4 4.6 -17.2
LABIAL 25.5 19.4 -20.8
HIGH 0.4 4.8 -12.9
TENSE 10.7 18.7 -12.6

Table 4-2: Left: Percent change in overall d' for individual features in going from local
to combined local and global processing when boundary information is given. Center:
Percent change in d' in going from local to combined local and global processing when
boundary information is not provided. Right: Percent change in d' for combined global
and local processing when boundary information is lost.

vocalic for these two phonemes.

In terms of d, combining local with global processing increased the overall

separability of +vocalic and -vocalic sounds by 3% over local processing alone

when boundary information was given and by 1.2% when not given, as seen

in table 4.2. As shown in tables 4.3 and 4.4, the local and global estimates

were consistent for 96% of the frames in the final test set with boundary infor-

mation given. For the frames in which the two methods disagreed, the global

,estimate was correct 59% of the time. Referring again to table 4.2, we see that

performance in assessing the presence of the feature vocalic degraded relatively

severely when boundary information was lost, although d remained larger for

vocalic than for any other feature under this scenario.

CONSONANTAL Difficulty in assessing the value of the feature consonantal arose

mainly in the cases of UW, UH, and W using the global technique. Confusion

of these -consonantal sounds with the more frequent L, which is +consonantal,
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VOCALIC CONSONANTAL HIGH BACK
0.59 0.02 0.28 0.05 0.73 0.10 0.81 0.0
0.02 0.37 0.02 0.65 0.04 0.13 0.07 0.09--

LOW ANTERIOR CORONAL NASAL
0.87 0.04 0.63 0.10 0.64 0.08 0.92 0.0
0.04 0.05 0.05 0.22 0.06 0.22 0.02 0.057

LABIAL ROUND TENSE VOICE
0.73 0.05 0.81 0.02 0.73 0.05 0.37 0.04
0.15 0.07 0.11 0.06 0-12_ 0.10 0.52

CONTINUANT STRIDENT
0.11 0.03 0.82 0.01
0.04 0.82 0.03 0.14

Table 4-3: Agreement of local and global processing when boundaries are known-The upper
left entry is the frequency with which both local and global probability estimates were less
than 0-5. The upper right entry is the frequency with which the local probability was less
than 0.5 but the global was greater than 0-5. The lower left entry is the frequency with
which the local processing probability was greater than 0.5 but that of the global was less
than 0-5. The lower right entry reflects the frequency with which both estimates were
greater than 0-5.

FEATURE % FEATURE %
VOCALIC 0.41 CONSONANTAL 0.44
HIGH 0.59 BACK 0.47
LOW 0.52 ANTERIOR 0.49
CORONAL 0.46 NASAL 0.49
LABIAL 0.27 ROUND 0.25
TENSE 0.31 OICE 0.53
CONTINUANT 0.43 STRIDENT 0.39

Table 4-4: Percent of frames in which the local estimate is correct when local and global
estimates disagree and boundaries are known.
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was probably responsible for the difficulties.

The difficult cases of UH and L which arose from local processing are greatly

improved through the use of combined local and global information.

Incorporation of global processing increased overall d' by 6.5% in the case of

known boundaries and by 1.0% in the case of unknown boundaries, as indicated

in table 4.2. Loss of boundary information was more devastating for the fea-

ture consonantal than for any other feature, causing a 23% decline in overall

d'. These data highlight the importance of studying the transitional regions for

assessing the feature consonantal as well as the sensitivity of the global process-

ing for this feature to precise localization of the transitional region. As shown

in tables 4.3 and 4.4, global and local processing disagreed for 7% of the frames

in the final test set when boundary information was provided, with the global

processing correct in 56% of those cases.

HIGH The global processing had difficulty with the feature high, in part because

of the large bias toward -high across the entire set of phonernes. The relative

infrequency, for example, of NG and ZH, along with their spectral similarity to

N and Z, respectively, caused the frames associated with these phonemes to be

wrongly judged to be -high. In the case of vowels, difficulty arose in the cases

of UW, EY, 1H, and UH. UW and UH were confused with the more frequent

L while similarity of EY to the more frequent 1Y and of III to EH led to the

problems in these cases.

As indicated in table 4.2, including global information along with the local

caused an increase in overall d' of 0.4% when boundary information was given

and 4.8% when boundary locations were not provided. Loss of boundary infor-

mation led to a decrease in overall d' by 12.9% for the combined local and global

processing. As shown in tables 4.3 and 4.4, the dependent-local and global esti-

mates were in agreement on 86% of the frarnes in the final test set in the case of

known boundaries, with local processing correct in 59% of the disputed cases.

BACK As with the feature high, the global processing had a large bias toward -back
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due to the relati-ve infrequency of this feature across the entire set of phonemes.

Particularly difficult to assess were the phonemes UW, UH, and NG. Again, the

infrequency of NG led to problems for this phoneme while the similarity of UW

and UH to L led to difficulties for these sounds.

Incorporation of global processing increased d' by 7.0% over local dependent

processing alone when boundaries were known and 2.6% when they were un-

known. Loss of boundary information caused a 17% decrease in overall d for

the combined local and global processing. As shown, local and global processing

agreed for 90% of the frames in the final test set when boundary information

was given, with global processing correct for 53% of the disagreements.

LOW Again, because of the low frequency of +low sounds, the global processing

was strongly biased toward -low. Paxticularly difficult to assess were OW and

AE presumably due to similarity with AO and AH, respectively.

With boundary information given, the incorporation of global processing led

to an increase in d of 13.4% over dependent local processing alone. When

boundary locations were unknown, the combined global and local processing

increased d' by 4.6% over the dependent local processing. The loss of boundary

information led to a decline in d of 17.2% for the combined local and global

processing. Local and global estimates of the feature low agreed for 92% of the

fraines in the final test set when boundary information was known, with local

processing correct in 52% of the disagreements.

ANTERIOR Difficulty in assessing the value of the feature anterior using global

processing arose primarily in the cases of SH and ZH due to their relative

infrequency and similarity to S and Z, respectively.

The combination of global processing with dependent local processing increased

the overall d' for the feature anterior by 6.2% when boundary information was

provided and by 3.4% when boundaries were unknown. Global and dependent-

local estimates of the presence of the feature anterior agreed for 85% of the

frames in the final test set when boundaries were known, with global processing
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correct in 51% of the disputed cases. Loss of boundary information led to a

decrease in overall d' of 22.6% for combined local and global processing, the

second laxgest decrease of all features.

CORONAL The most difficult phonemes for which to correctly identify the feature

coronal were TH and ZH. TH is often very low energy and therefore confused

with silence, while the infrequency of ZH makes a model for this phoneme

difficult to train.

The incorporation of global processing led to a 5.5% increase in d' over the use

of dependent processing only in the case of known boundaries and 1.9% in the

case of unknown boundaries. Global and dependent-local processing agreed for

86% of the frames in the final test set when boundary information was given,

with global processing correct in 54% of the disagreements. Loss of boundary

information led to a decrease in d' of 21.6% for the combined local and global

processing.

ROUND The global processing is strongly biased toward -round due to the relative

infrequency of this feature across the set of phonemes. Particularly difficult to

assess, however, were LTW, and UH due to their confusabihty with L.

Incorporation of the global processing led to a decline in overall d' of 0.2% rel-

ative to local processing alone in the case of known boundaries when boundary

information was provided but an increase of 6.5% when boundary locations were

not given. In the case of known boundaries, local and global processing agreed

for 87% of the fra-mes in the final test set, and global processing was correct in

75% of the disputed cases, primarily due to the strong bias toward -low. Loss

of boundary information caused a decrease in overall d' of 11 .3% for the feature

round, the second smallest decrease among the features.

TENSE Again the global processing is strongly biased towaxd -tense due to the

infrequent occurrence of this feature across the full set of phonemes. Particulax

difficulty arose for the phonemes UW, OW and AA.
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The use of global processing increased the overall d' for the feature tense by

10.7% over the local processing alone in the case of known boundaries and by

18.7% in the case of unknown boundaries. The local and global processing

agreed for 83% of the frames in the final test set when boundary information

was provided, with global processing correct in 69% of the disagreements. Loss

of boundary information led to a decrease in overall d' of 12.6%.

VOICE The global processing had difficulty with the feature voice in the cases of

G and J. A possible source of this error was the fact that information from

the two edges of these phones was averaged in order to arrive at the global

estimate, whereas the voicing evidence may be primarily evident at the release

of the burst, especially in the case of J. Using the left edge alone could improve

performance in assessing the feature voice for these phonemes.

The inclusion of global processing led to an increase in overall d' of 10.6% over

the local processing alone for the feature voice when boundary locations were

known and 11.1% when boundaries were not known. The loss of boundary

information corresponded to a decrease in overall d' of 11.1% for the combined

local and global processing, the smallest decrease of all features as indicated

in table 4.2. Local and global estimates of the presence of voicing were in

agreement for 89% of the frames in the final test set when boundaries were

given; local processing was correct in 53% of the disputes.

CONTINUANT The most difficult phoneme for which to assess the value of the

feature continuant was B. Presumably the very short nature of realizations of

this phoneme as well as the use of information from both edges of these phones

rather than just the left led to the problems here.

For the feature continuant, incorporation of global information increased the

overall d' by 2.4% over that achieved by local processing alone when boundaries

were known and by 6.7% when boundaries were unknown. Loss of boundary

information led to a decrease in d of 20% for the combined local and global

processing. Local and global processing were in agreement for 93% of the frames
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in the final test set when boundaries were known; global processing was correct

in 57% of the disputes.

NASAL The use of global processing had little effect on the estimates of nasality- in

the case of known boundaries d'declined by 0.1% over the use of local processing

alone while in the case of unknown boundaries the combined processing led to

an overall d' which was 0.9% higher than that achieved by local processing

alone. Loss of boundary information led to a decrease of 16.1% in overall d'.

With boundary information given, local and global estimates agreed for 97% of

the frames in the final test set, with the global processing correct in 51% of the

disputes.

STRIDENT Difficulty in assessing the value of the feature strident arose primarily

for V, as was the case in the local processing. The fact that vocal tract reso-

nances are often visible in the spectra for V causes confusability with the more

common nasals N and 'M

The incorporation of global processing led to an increase in overall d' of 2.8%

over the use of local processing alone in the case of known boundaries. When

boundary information was not provided, the use of global processing increased

the overall d by 1.0%. The loss of boundary information caused a decline in

d' of 20. 1% for the combined local and global processing. In the case of known

boundaries, the local and global estimates agreed for 96% of the frames in the

final test set, with the global processing correct in 61% of the disputes.

LABIAL The feature labial is redundant in the sense that sounds are +labial if

and only if they axe +anterior and -coronal. However, we found that phoneme

identification was slightly better with the redundancy included.

The incorporation of the global processing led to an increase in overall d' of

25.5% over the use of local processing only in the case of known boundaries.

When boundary information was not given, the use of global along with the local

processing increased d' by 19.4% over that achieved through local processing
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alone. Local and global processing differed in 20% of the frames in the final test

in the case of known boundaries, with global processing correct in 73% of the

disputed cases.
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5. Phoneime Classification and

Recognition

5.1 Phoneme Classification

5.1.1 Introduction

The feature representation of the waveform is developed with the ultimate goal

of le:�dcal access on the basis of features in the task of continuous speech recognition.

However, rather than implementing such a system, we test the fidelity of our repre-

sentation of the waveform on the intermediate tasks of phoneme classification and

recognition.

The task of phoneme classification consists of, given the segmentation of the wave-

forms implied by the hand-marked TIMIT phoneme labels, identifying the phoneme

label assigned to that segment. We use the procedure described in Chapter 3 in which

boundary information is incorporated in order to derive the broad class estimates for

each utterance in the test set. AR of the results listed in this chapter rely on the

combined local and global processing described in Chapters 3 and 4, where the local

processing relies upon dependent modeling of the features high, back, and low as well

as anterior and coronal.

Some work has been done by other researchers toward the use of linguistic fea-

ture representations for vowel classification. Meng [16] performed vowel classification

experiments using neural network classifiers. That work investigated the use of an

intermediate representation of vowels in terms of a set of distinctive linguistic features
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versus the direct classification from the waveform. A slight decrease in performance

by using the intermediate representation was observed. Leung & Zue [14] performed

a similar experiment and found "quite similar" performance using a direct mapping

to vowels or an intermediate feature representation.

These results illustrate that a speaker-independent feature representation is able

to retain relevant information for performing classification. Our experiments have

shown that an improvement in the accuracy of the feature representation leads to a

direct improvement in phoneme classification accuracy.

5.1.2 Baseline Experiment: Gaussian Models

It is difficult to compare results of different phoneme classification experiments,

as different training and testing sets, as well as different phoneme sets are used in

virtually every experiment reported in the literature. Therefore, we conducted a base-

line experiment with which to compare our results. Gaussian models of normalized

cepstra, and their derivatives were parameterized for each phoneme in our set using

the TIMIT training set.

In order to arrive at an estimate for each phonemic region defined by the TIMIT

labels, we evaluated the a posteriori probability of each phoneme given the obser-

vations XI, - - - , XT - Duration was modeled as third order Erlangian; the phoneme

estimate was chosen as:

0 = argmax0p(0jxj,-..,xtT)
T

= argmaxP(TI O)P(O) H Axt Io)
t=1

T
= axgmax0cf0 T-1(1 _ ao),P(O) 11 Axt Io)

t=I

The use Gaussian models of cepstral attributes trained on the development train-

ing set led to a phoneme classification rate of 58% on the development test set.

A different approach in which the observations are not assumed to be independent
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but rather thatp(Ojxj):z-,p(Ojxj)Vij E Il,...,T} and thatP(OjX1,---,XT) ��P(OjXi)

was also investigated. Under these assumptions the phoneme estimate is:

argmaxp(OIX,.... , xt, T)

axgmaxOp(TjO)p(Ojxj, XT)

T T

axgmax,,ao T-3 (10), H P(Oixt)
t=1

This revised approach, which still relies upon Gaussian models for the phoneme prob-

abilities given the observations, resulted in a phoneme classification rate of 61% on

our development test set.

5.1.3 Phoneme Classification from Feature Probabilities

In this section we describe a method of assigning a phoneme estimate to each

phonemic segment of the waveform as defined by the TEMIT labels.

Assuming a segment has duration T, we choose our estimate of the identity of the

underlying phoneme to be

� = argmax.Op(Ojfj,. _., fT, T)

where ft is the vector of linguistic feature probabilities at time t.

To begin, we define qt : R14 Z+ U 10} as:

qt E 2M-1
mE{1,.--,14jf .. (t)>O.S}

Thus, qt serves as a quantizer for the real-valued feature probability vector ft, so

that p(Olf) ;zz p(olq) where the right-hand side may be estimated as the number of

occurrences of phoneme 0 and index q relative to the total number of occurrences of
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index q. Assuming that the duration and observed features are independent,

0 = argrnaxOp(Ojfj,.. -, fT, T)

= argmaxOp(fj,..., fT, TIO)p(O)

= argmaxop(fl,..., fTjO)p(O)p(TjO)

= argmaxOp(Ojfj,..., fT)p(TIO)

= argrnaxOp(Ojqj,..., qT)p(TIO)

The first term on the right-hand side of the above is approximated by:

1
T T

P(Ojqj,---,qT)';Z:� Hp(olqtt=1
Also, we model duration as a third order Erlang, so that:

p(TIO) = aOT-I(l _ CO)l

where

a No
(P 3 + NO

and AT,6 is the number of times a frame representing phoneme 0 follows a frame

representing the same phoneme in the training set.

5.1.4 Results of Phoneme Classification

For the phonemes listed in tables 2.2 through 2.4, a classification rate of 74.3%

correct was achieved on the final test set. The correct phoneme was in the top

two choices 85.6% of the time. Detailed confusion matrices are given in tables 5.1

through 5.3, with the phoneme presented listed vertically and the relative frequencies

of responses listed horizontally.
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IY UW EY OW AA 1H UH EH AH AO ...AE I Y

IY 0.91 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
UW 0.10 0.14 0.00 0.10 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00
EY 0.22 0.00 0.61 0.00 0.00 0.04 0.00 0.09 0.00 0.00 0.00 0.00
OW 0.00 0.00 0.00 0.54 0.04 0.04 0.00 0.00 0.00 0.21 0.00 0.00
AA 0.00 0.00 0.01 0.10 0.66 0.00 0.00 0.01 0.04 0.07 0.07 0.00
IH 0.29 0.01 0.05 0.02 0.00 0.47 0.00 0.11 0.01 0.00 0.02 0.00
UH 0.03 0.00 0.00 0.00 0.00 0.28 0.00 0.17 0.07 0.10 0.00 0.00
EH 0.01 0.00 0.02 0.01 0.00 0.11 0.00 0.54 0.03 0.05 0.16 0.00
AH 0.00 0.00 0.00 0.03 0.11 0.03 0.00 0.15 0.36 0.12 0.04 0.00
AO 0.00 0.00 0.00 0.08 0.12 0.00 0.00 0.00 0.05 0.67 0.00 0.00
AE 0.01 0.00 0.05 0.01 0.01 0.01 0.00 0.10 0.01 0.00 0.79 0.00
Y 0.36 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.44
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.00 0.00
L 0.02 0.00 0.01 0.00 0.01 0.02 0.00 0.02 0.01 0.05 0.00 0.00
R 0.01 0.00 0.01 0.00 0.00 0.05 0.00 0.03 0.01 0.01 0.00 0.00
N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NG 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ZH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
V 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02

Fffv-#-jj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5-1: Relative frequency of confusions in phoneme classification. Phonemes presented
are listed vertically and phonemes estimated are listed horizontally.
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W R I N M NG I K T P D B G-

ly 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Uw 0.10 0.19 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OW 0.00 0.12 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AA 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IH 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UH 0.00 0.17 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EH 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AH 0.00 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AO 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
w 0.70 0.10 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00
L 0.03 0.70 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R 0.01 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 0.00 0.02 0.01 0.76 0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.00
M 0.01 0.01 0.01 0.15 0.68 0.00 0.00 0.00 0.00 0.00 0.03 0.00
NG 0.00 0.00 0.00 0.52 0.11 0.19 0.00 0.00 0.00 0.00 0.00 0.00
K 0.01 0.00 0.00 0.00 0.00 0.00 0.75 0.09 0.02 0.04 0.00 0.01
T 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.67 0.01 0.09 0.01 0.01
P 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.70 0.01 0.19 0.00
D 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.16 0.00 0.53 0.11 0.05
B 0.04 0.02 0.03 0.00 0.00 0.00 0.02 0.00 0.02 0.03 0.75 0.00
G 0.00 0.00 0.03 0.03 0.00 0.00 0.42 0.00 0.03 0.19 0.03 0.26
i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.03 0.00 0.00
CH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
F 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.00
S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.04 0.00 0.00 0.00
DH 0.00 0.01 0.01 0.12 0.02 0.00 0.00 0.12 0.00 0.11 0.03 0.02
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ZH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.03 0.05 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.00
0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2: Relative frequency of confusions in phoneme classification. Phonemes presented
a-re listed vertically and phonemes estimated are listed horizontally.

66



J CH F S SH TH DH Z ZH V

IY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Uw 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
EY 0.00 0.00 0.00 0.00 0.00 .0-00 0.00 0.00 0.00 0.00 0.03
Ow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
UH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
EH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
AO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
L 0. 00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.08
R 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
N 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09
M 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.08
NG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
K 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.06
T 0.01 0.05 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.05
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
D 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04
B 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.02
G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i 0.65 0.19 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00
CH 0.06 0.69 0.00 0.06 0.12 0.00 0.00 0.00 0.00 0.00 0.00
F 0.00 0.00 0.76 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.16
S 0.00 0.00 0.00 0.85 0.02 0.00 0.00 0.11 0.00 0.00 0.00
SH 0.00 0.04 0.04 0.12 0.78 0.00 0.00 0.00 0.00 0.00 0.02
TH 0.00 0.00 0.09 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.57
DH 0.00 0.00 0.00 0.01 0.00 0.00 0.24 0.03 0.00 0.00 0.25
Z 0.01 0.00 0.01 0.27 0.04 0.00 0.00 0.67 0.00 0.00 0.00
ZH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
V 0.00 0.00 0.06 0.00 0.00 0.00 0.03 0.06 0.00 0.43 0.19
H# 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.97

Table 5-3: Relative frequency of confusions in phoneme classification. Phonemes presented
a-re listed vertically and phonemes estimated axe listed horizontally.
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5.2 Phoneme Recognition

The task of phoneme recognition consists of, given an utterance, listing the

phoneme sequence which was produced. No boundary information is given.

This task has been addressed by various techniques, most notably hidden Markov

models. Lee and Hon [12] reported accuracy on the recognition task under a variety of

conditions. Their accuracies ranged from 58.8% for context independent recognition

with no grammar to 73.8% for a bigram granu-nar and context-dependent modeling.

Insertions were not counted as errors in their scoring algorithm.

5.2.1 Procedure

To perform this task we first estimate the linguistic features using the combined

local and global processing, with the features anterior-coronal and high-back-low mod-

eled dependently in the local processing.

Two means of deriving the estimated sequence of phonemes in a given utterance

are described. The first uses a first-order Markov chain to model the trajectory

through the phoneme state space for each utterance.
�N is:For an utterance of length N frames, our estimated phoneme string

�N � argMaXp(^fl,.
_tJN IX1, XN)

N

= arg max 11 P(X. I N)P(^�n 1)
n=1

N

= arg max 11 P(-Ynl-Yn-1)
N P(-Yn)I n=1

where P(7nlXn) is the probability obtained from the vector quantization described in

the previous section, p(,�n) is the prior probability of phoneme ^�n, p(^�nl^�n_,) is the

transition probability of a frame representing �, following a frame chiefly representa-

tive of -yn-1. We define p(-ynl-�o) = Irn, the probability of starting an utterance with

phoneme n.
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The second method of performing phoneme recognition assigns one phoneme label

to each estimated broad class, thus forcing acceptance of the segmentation implied by

the broad class processing. Dependence of the frames in the region is assumed. Again

the VQ scheme described in the previous section is used to find the probability of each

phoneme at each frame. In this scheme, however, the probabilities axe smoothed by

taking their average across the region. We combine this average with the three state

exponential duration model for each candidate phoneme and choose as our estimate

for the region the one having the highest score.

This procedure is identical to that used in phoneme classification, except that the

implicit segmentation rather than the TIN11T markings is used to define phonemic

regions. No grammar information, such as transition probabilities between phonemes,

is used in this procedure. This method is shown to outperform the frame-based

Markov chain method.

5.2.2 Scoring

We calculate A, the accuracy [8] of the recognition, as:

A= 1.0 - + D + S
N

where I is the insertion rate, D is the deletion rate, S is the substitution rate, and

N is the total number of symbols in the true label set.

A dynamic programming scheme is used to find the most favorable alignment of

observation and truth for each sentence; symbols such as diphthongs which occurred

in the truth but which we do not model are ignored. Thus, the occurrence of these

symbols did not increase S or N.

After finding the best alignment using the above criterion, we calculate .4. Again

we ignore substitutions involving excluded symbols, but here we also ignore insertions

and deletions attributed to the excluded symbols.
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5.2.3 Results of Phoneme Recognition

The Markov chain method led to an accuracy of 59% on our final test set. We

achieved an accuracy of 64.6% by forcing the segmentation implied by the broad

class stage. The errors for this latter experiment consisted of 2.6% insertions, 10.6%

deletions, and 22.2% substitutions.
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106, Discussion

6.1 Speech in the Context of General Pattern

Recognition

As articulated by Mun-iford, Grenander has identified some general phenomena

which arise in psychophysical pattern recognition problems [17]. Specifically, the

problems of noise and blur, multi-scale phenomena, domain warping, and missing

data surface in a vahety of contexts. Paxticulax instances of each of these general

problems may be identified in the speech domain.

The problems of noise and blur a-re manifest in speech in variations among re-

alizations of each phoneme due to speaker and channel as well as to coarticulation

effects. We use statistical models to deal with noise, and mixture models of transitions

to account for coarticulatory effects. As discussed in section 1.4-2, normalization of

cepstra through spectral subtraction cancels static channel differences.

Variations in the durations among multiple pronunciations of la given sound consti-

tute one instance of domain warping in the context of speech. This issue is addressed

in our system through modeling feature trajectories with a Markov model.

The phenomenon of scale corresponds to the fact that the features underlying

a given time frame are encoded in the waveform within a variety of time windows.

Stevens' view of landmarks [25] fits into this framework, redefining the time axis in

terms of events occurring on the segment rather than frame level. The problem of

multi-scale phenomena has been addressed in this thesis through the joint use of local

and global processing.
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The fact that vocal tract structure is partially obscured by noise during the pro-

duction of some consonants may be interpreted as an example of missing data; we

have addressed this problem through explicitly modeling transitional regions.

6.2 The Use of Non-Linguisitically-Motivated Fea-

tures

In order to get a feel for the importance of the underlying linguistic motivation

of feature sets, we have investigated the use of non-linguisitically-motivated feature

configurations for each phoneme. Specifically, we used the the feature assignments

shown in tables 6.1- 6.3, which were obtained by randomly arranging the phoneme

labels in tables 2.2- 2.4. Our models were retrained according to these feature assign-

ments on the final training set. We then evaluated the probability of each feature

being encoded near each frame of the final test set. These probabilities provided the

input to the phoneme recognition system described in Chapter 5.

NVe achieved an accuracy of 21% (569 Insertions, 5884 Deletions, 12618 Substi-

tutions out of 24116 tokens) on the phoneme recognition task using the randomized

feature assigrunents. Thus, we conclude that the linguistic features provide a set

of partitions of the acoustic space which are far superior to the randomly selected

separations. This analysis, of course, does not demonstrate the superiority of lin-

guistic features to statistically-selected separations through, for example, k-means

techniques. However, it does suggest that the speech waveform exhibits physical

correlates of the linguistically-motivated features which may be modeled reliably.

6.3 Potential Improvements Within The Existing

FYamework

We have developed a flexible framework, reflecting the inherent structure of speech,

for the parameterization of the speech waveform in terms of linguistic features. Within
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VOWELS
R F P G AO OW JH W Z CH V

VOCALIC + + + + + + + + + + +
1CONSONANTAL I- - - - - - - - - - - I

HIGH 1+ +1 - - - + + - - -
BACK I- +1 - + + - + I- + +
LOW + + - +
ANTERIOR

ICORONAL
ROUND I- + + +
TENSE 1+ + + + +
VOICE 1+ +,+ +1 + + + + + +
CONTINUANT 1+ +1+ + + + + + + + +
NASAL - - -
STRIDENT
LABIAL

Table 6-1: Assignment of non-linguistically-motivated features.

GLIDES LIQUIDS NASALS AFFRICATES QUIET
S AH TH K SH EH L H# B D

VOCALIC + +
1CONSONANTAL + + I+ + + + + +

HIGH 1+1 + 1+ + I +
BACK - + +
LOW
ANTERIOR + + + -
CORONAL + + + - + +
ROUND +
TENSE
VOICE +1 + + + + + + +
CONTINUANT + + + + - -I- - +
NASAL + + +
STRIDENT + +
LABIAL +

Table 6.2: Assignment of non-linguisticaUy-motivated features.
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PLOSIVES FRICATIVES
M U Y NG ZH AE T EY UH IH 1Y N DH AA

VOCALIC
ICONSONANTAL + + + + + + + + + + + + + +

HIGH + + - - - - - - + +
BACK + + - - - - - -
LOW
ANTERIOR + + - + + + + + + + +
CORONAL - + + + + + + + +
ROUND
TENSE
VOICE - + + + - + + + +
CONTINUANT - - + + + + + + + +
NASAL
STRIDENT + + + + + +

+LABIAL + + -1 -

Table 6.3: Assignment of non-linguistically-motivated features.

that framework, a variety of modeling choices may be made. For example, we have

built Gaussian models for each third of each broad class in order to accomplish a coarse

grouping of the speech frames for subsequent feature, analysis. The broad classes

were derived from an analysis of the role of each feature in shaping the waveform.

Once the underlying motivation for the broad class estimation stage is understood,

however, one could use alternative clustering techniques such as k-means to achieve

a segregation of the waveform space. This modeling choice could be easily adapted

into the framework laid out in the thesis. Alternative techniques such as the use of

mixture models or vector quantization for local processing could be incorporated as

well. In the remainder of this section, we investigate several specific enhancements

which could be made to the modeling choices described in Chapters 3 and 4.

6.3.1 Robust Global Processing

The transitional modeling described in Chapter 4 relies upon an accurate implicit

segmentation by the broad class estimation stage. The global processing could be

made more robust by the use of alternative or adapted modeling techniques.
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An adaptation of the Gaussian model technique to address time-alignment might

be to evaluate the Gaussians, assuming that the change in estimated broad class fell

at each frame within a small window of its actual position and sum the probabilities

for each model within that window.

One example of an alternative, robust alignment procedure is that of time-delay

neural networks [29]. Such structures could be easily adapted into our framework

by using the implicit segment boundaries from the broad class processing to center a

window, the frames in which are fed to the time-delay neural network. Each output

node in the network would correspond to a phone-to-phone transition. Rather than

choosing the output node with the largest total excitation over the window as an

estimated phone-to-phone transition, however, we would take the relative excitations

of each node to be the probability of the data given that transition. These probabilities

would then replace the Gaussian scores and the algorithm would proceed as before.

6.3.2 Combining Local and Global Information

Combining the information arising from the global and local stages of processing

was done by taking the average of the probability estimates derived from each method.

In light of the analysis given in section 4.5, we note that certain features benefit

differently from these two sources of information. Combining the estimates in a way

which reflects the reliability of each probability estimate would presumably improve

the accuracy of estimating features.

Furthermore, we have averaged the information from the left and the right edges of

each region to assign a global probability to each frame in the interior of the region.

Other methods of combining the information from the two edges which reflect the

relative accuracy of the estimate derived from each edge could improve the global

processing stage.
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Fi-u-re 6.1: Spectrog-ran-Ls, of the utterance "sh-ao- with truth labels for the feature "voice"

superimposed.

6.3.3 Database Labels

We have used the TIMIT database for our experiments because of its availability.

populaxity, phonemic labeLs. and size. However, the manner in -,N-hich the data are

labeled mav be a limitation on performance. Specifically. we have used a deterministic

inapping front phoneme label to theoretical feature values to label the data for o1ii

experiments. This mapping corresponds to viewing an utterance as the output of a

sequence of binaxy controls. where each control represents the presence or absence

of a linguistic feature at each frame and all controls change state simultaneously at

phonemic boundaries. This view is illustrated by the spectrogram in the left panel of

figure 6.1. The utterance is "sh-ao" and the vertical line indicates the point at which

the TIMIT label changes. The dots on the spectrogram illustrate the way we have

labeled this token for the feature "voice."

Phvsical manifestations of the features, however, do not follow the binary model.

nor do changes in all features occur simultaneously at the "boundary," as evidenced

in part by the lack of voicing at the beginning of the vowel. One way to adjust

our labehMl scheme to reflect the fact that the TIMIT boundaries do not necessarilv

coincide -with points in time at which a given feature chances state would be to use
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real-valued truth labels, ramping between 0 and 1 across a transition as illustrated in

the right panel of figure 6.1.

Another possibility for dealing with the labeling would be to adjust the truth labels

based on running the training data through the system and using feature probabilities

rather than theoretical values for subsequent training.

A database which is labeled according to a set of distinctive featuxes actually

produced is being amassed 124]. Our system is readily adaptable to such labels,

which would result in clean training and presumably better performance in assessing

feature probabilities.

6.4 A Potential Improvement Through Feedback

The idea of using feedback in speech processing is by no means a new one. Indeed,

the theory of analysis-by-s3rnthesis [28] involves a speech perception system in which

hypothesized speech events a-re compared with an inventory of listener templates and

phonological rules to adjust the perceived message. Implementation of such a scheme

requires a catalog of phonological rules which govern distinctive, feature trajectories.

Rather than implementing such rules, we consider modeling the simultaneous con-

tent of phoneme identity and speaker characteristics in the waveform through the use

of feedback, thereby intertwining the tasks of speech recognition and speaker identifi-

cation. The question of the level of abstraction at which the feedback is incorporated

is a valid one- the following structure is but one layer in a potentially complex stra-

tum. Referring to figure 6.2, feature analysis is performed first. The features axe

then used for estimating the sequence of phonemes uttered. The average attribute

vectors associated with that sequence of phoneme estimates axe subtracted from the

attribute vectors parameterizing the waveform. The resulting signal is rich in speaker

characteristics; the residual vectors axe averaged and the original waveform is then

normalized by these "characteristics of the speaker" and the features a-re reestimated.

This structure would enable the use of feedback at low levels of abstraction without

requiring knowledge of vocabularies and syntax.
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CHARACTERISTICS

Figure 6.2: Block diagram for the incorporation of feedback to adjust estimates based on
speaker independent properties of the waveform.

6.5 Summary

In this thesis we have described a method of parameterizing the speech waveform

in terms of a set of linguistic features. The structure of the procedure reflects the

hierarchical encoding of linguistic features in the speech waveform. Furthermore, the

processing proceeds at different time scales with the global processing complementing

the local by addressing some of its specific weaknesses.

The theoretical framework, constructed on the basis of a careful consideration of

the physical phenomena encompassed in the speech signal, is flexible enough to allow

for potential improvements through the use of more sophisticated modeling choices.

'Ale have demonstrated the ability to effectively perform phoneme classification

and recognition on the basis of the feature parameterization.

Finally, representation of the waveform in terms of linguistic features allows for

lexical access at the feature level, as discussed in the opening chapter.
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7. Appendices

7.1 Individual Results - Local Processing

Shown in the tables of this section are results of linguistic feature estimation for indi-

vidual phonemes, using the local processing scheme described in Chapter 3. Entries

reflect the relative frequency of frames representing a given phoneme estimated to

represent the presence of a given feature. The "+" or "-" after each entry signif�, the

theoretical presence or absence of the feature for that phoneme. Thus, ideal perfor-

mance would be for each entrv followed by a "+" to be 1.000 and each entry followed

by a "-" to be 0.000. Tables 7.1 through 7.3 reflect performance in the case of known

TIMIT boundaries. We show the results for features vocalic through coronal in one

table and round throu,,-h labial in a second for readability only. Tables 7.1 and 7.2

compare the dependent and independent processing of the features high, back, and

low as well as anterior and coronal. Tables 7.4 and 7.5 indicate the performance in

the case of unknown TIMIT markings.

79



VOCALIC I CONSON. I HIGH I BACK I LOW ANTERIO ONAL

IY 0.934+ 0.050- 0.874+ 0.003- 0.000- 0.015- 0.015-
UW 0.973+ 0.266- 0.471+ 0.563+ 0.000- 0.151- 0.200-
EY 0.997+ 0.003- 0.207- 0.000- 0.000- 0.003- 0.001-
OW 0.998+ 0.106- 0.000- 0.848+ 0.323+ 0.153- 0.194-
AA o-999+ 0.012- 0.000- 0.916+ 0.678+ 0.001- 0.005-
1H 0.984+ 0.045- 0.575+ 0.074- 0.022- 0.010- 0.032-
UH 0.993+ 0.418- 0.293+ 0.254+ 0.000- 0.160- 0.269-
EH 0.997+ 0.066- 0.042- 0.132- 0.190- 0.002- 0.028-
AH 0.962+ 0.083- 0.012- 0.546+ 0.075- 0.016- 0.023-
AO o.981+ 0.060- 0.008- 0.952+ 0.150- 0.025- 0.052-
AE 0.998+ 0.002- 0.001- 0.031- 0.700+ 0.001- 0.000-
y 0.404- 0.172- 0.775+ O.Ooo- 0.000- 0.004- 0.060-
NA7 0.236- 0.155- 0.680+ 0.859+ 0.001- 0.034- 0.026-
L 0.847+ 0.643+ 0-039�- 0.287- 0.056- 0.648+ 0.615+
R 0.965+ 0.828+ 0.064- 0.051- 0.008- 0.010- 0.740+
N 0.052- 0.958+ 0.007- 0.012- 0.005- 0.770+ 0.571+
M 0.048- 0.981+ 0.004- 0.011- 0-004- 0.870+ 0.070-
NG 0.162- 0.822+ 0.384+ 0.254+ 0.000- 0.597- 0.289-
K 0.000- 1.000+ 0.565+ 0.560+ 0.000- 0.092- 0.066-
T 0.000- 1.000+ 0.101- 0.021- 0.000- 0.677+ 0.684+
P 0.000- 1.000+ 0-009- 0.009- 0.000- 0.674+ 0.005-
D 0.008- 0.984+ 0.106- 0.023- 0.000- 0.624+ 0.588+
B 0.059- 1.000+ 0.021- 0.021- 0.000- 0.582+ 0.038-
G 0.000- 1.000+ 0.620+ 0.598+ 0.000- 0.145- 0.056-
i 0.000- 1.000+ 0.927+ 0.000- 0.000- 0.045- 0.952+
CH I 0.000- 1.000+ 0.908+ 0.000- 0.000- 0.085- 0.993+
F 0.000- 1.000+ 0.029- 0.015- 0.000- 0.818+ 0.038-
S 0.002- 0.999+ 0.033- 0.000- 0.000- 0.940+ 0.985+
SH 0.012- 0.988+ 0.887+ 0.000- 0.000- 0.092- 0.969+
TH 0.002- 0.998+ 0.000- 0.002- 0.002- 0.600+ 0.252+
DH 0.029- 0.996+ 0.018- 0.018- 0.000- 0.701+ 0.434+
z 0.002- 0.998+ 0.068- 0.001- 0.000- 0.899+ 0.982+
ZH 0.000- 1.000+ 0.000+ 0.000- 0.000- 0.000- 1.000+
V 0.134- 0.895+ 0.064- 0.057- 0.001- 0.582+ 9-

0.004- 0.996+ 0.001- 0.001- 0.000- 0.018- 0.007-

Table 7. 1: Performance for individual phonemes using local processing with known bound-
aries when the features high-back-lo,�&, and anterior-coronal axe modeled dependently.
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VOCALIC CONSON. HIGH BACK I LOW ANTER164q -CORONAL

1Y 0.934+ 0.050- 0.920+ 0.019- 0.000- 0.018- 0.028-
UW 0.973+ 0.266- 0.315+ 0.597+ 0.056- 0.126- 0.167-
EY 0.997+ 0.003- 0.409- 0.000- 0.026- 0.003- 0.001-
OW 0.998+ 0.106- 0.000- 0.970+ 0.883+ 0.229- 0.098-
AA 0.999+ 0.012- 0.001- 0.968+ 0.972+ 0.001- 0.005-
IH 0.984+ 0.045- 0.595+ 0.119- 0.050- 0.019- 0.044-
UH 0.993+ 0.418- 0.204+ 0.551+ 0.177- 0.160- 0.232-
EH 0.997+ 0.066- 0.077- 0.197- 0.335- 0.002- 0.055-
AH 0.962+ 0.083- 0.001- 0.777+ 0.573- 0.028- 0.034-
AO 0.981+ 0.060- 0.001- 0.969+ 0.695- 0.033- 0.058-
AE 0.998+ 0.002- 0.001- 0.168- 0.699+ 0.001- 0.000-
y 0.404- 0.172- 0.805+ 0.000- 0.000- 0.004- 0.090-
W 0.236- 0.155- 0.577+ 0.882+ 0.068- 0.055- 0.041-
L 0.847+ 0.643+ 0.070- 0.612- 0.389- 0.714+ 0.442+
R 0.965+ 0.828+ 0.073- 0.117- 0.061- 0.006- 0.811+
N 0.052- 0.958+ 0.015- 0-117- 0.009- 0.862+ 0.675+
M 0.048- 0.981+ 0.009- 0.097- 0.005- 0.906+ 0.142-
NG 0.162- 0.822+ 0.260+ 0.483+ 0.003- 0.597- 0.330-
K 0.000- 1.000+ 0.755+ 0.865+ 0.000- 0.124- 0.091-
T 0.000- 1.000+ 0.161- 0.058- 0.000- 0.729+ 0.771+
P 0.000- 1.000+ 0.036- 0.095- 0.000- 0.750+ 0.065-
D 0.008- 0.984+ 0.166- 0.114- 0.000- 0.715+ 0.661+
B 0.059- 1.000+ 0.003- 0.082- 0.000- 0.774+ 0.135-
G 0.000- 1.000+ 0.676+ 0.743+ 0.000- 0.190- 0.106-
i 0.000- 1.000+ 0.949+ 0.000- 0.000- 0.045- 0.969+
CH 0.000- 1.000+ 0.908+ 0.000- 0.000- 0.085- 0.993+
F 0.000- 1.000+ 0.049- 0.023- 0.000- 0.793+ 0.090-
S 0.002- 0.999+ 0.061- 0.000- 0.000- 0.958+ 0.993+
SH 0.012- 0.988+ 0.887+ 0.000- 0.000- 0.148- 0.884+
TH 0.002- 0.998+ 0.000- 0.002- 0.002- 0.600+ 0.286+
DH 0.029- 0.996+ 0.024- 0.032- 0.000- 0.776+ 0.562+
z 0.002- 0.998+ 0.073- 0.002- 0.000- 0.911+ 0.997+
ZH 0.000- 1.000+ 0.000+ 0.000- 0.000- 1.000- 1.000+
v 0.134- 0.895+ 0.052- 0.086- 0.010- 0.550+ 0.098-
H# 0.004- 0.996+ 0.003- 10.011- I0.001- 1 0.019- 0.010-

Table 7.2: Performance using local processing when phonemic boundaries are known and
all features are modeled independently.
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ROUND I TENSE VOICE CONTIN. I NASAL STRIDENT LABLULI

IY 0.006- 0.943+ 0.982+ 0.968+ 0.021- 0.006- 0.005-
UW 0.755+ 0.570+ 0.998+ 0.995+ 0.002- 0.000- 0.113-
EY 0.000- 0.812+ 0.999+ 0.999+ 0.001- 0.001- 0.001-
OW 0.970+ 0.551+ 0.999+ 0.998+ 0.001- 0.000- 0.001-
AA 0.456- 0.315+ 0.999+ 0.999+ 0.000- 0.001- 0.023-
IH 0.114- 0.326- 0.998+ 0.992+ 0.007- 0.001- 0.006-
UH 0.488+ 0.256- 1.000+ 0.996+ 0.000- 0.000- 0.004-
EH 0.134- 0.070- 0.998+ 0.998+ 0.001- 0.001- 0.001-
AH 0.529- 0.099- 0.965+ 0.997+ 0.002- 0.000- 0.010-
AO 0.910+ 0.237- 0.998+ 0.999+ 0.000- 0.001- 0.008-
AE 0.049- 0.084- 0.999+ 0.999+ 0.000- 0.000- 0.001-
y 0.000- 0.633- 0.985+ 0.996+ 0.004- 0.000- 0.022-
NNT 0.863+ 0.040- 0.990+ 0.987+ 0.000- 0.000- 0.0054-
L 0.582- 0.350- 0.998+ 0.972+ 0.026- 0.000- 0.047-
R 0.082- 0-089�- 0.986+ 0.993+ 0.002- 0.001- 0.066-
N 0.025- 0.016- 0.996+ 0.153- 0.844+ 0.004- 0.170-
N1 0.032- 0-014- 0.983+ 0.115- 0.874+ 0.005- 0.815+
NG 0.000- 0.197- 1.000+ 0.213- 0.819+ 0.000- 0.140-
K 0.000- 0.000- 0.093- 0.109- 0.000- 0.046- 0.033-
T 0.000- 0.000- 0.124- 0.098- 0.000- 0.138- 0.040-
P 0.000- 0.000- 0.140- 0.112- 0.000- 0.014- 0.811+
D 0.000- 0.000- 0.650+ 0.215- 0.000- 0.161- 0.119-
B 0.118- 0.006- 0.912+ 0.291- 0.003- 0.000- 0.782+
G 0.000- 0.000- 0.654+ 0.039- 0.000- 0.000- 0.017-
i 0.000- 0.000- 0.579+ 0.073- 0.000- 0.915+ 0.000-
CH 0.000- 0.000- 0.000- 0.195- 0.000- 0.966+ 0.000-
F 0.000- 0.000- 0.023- 0.958+ 0.000- 0.774+ 0.941+
S 0.000- 0.000- 0.155- 0.986+ 0.000- 0.997+ 0.025-
SH 0.000- 0.001- 0.012- 0.936+ 0.000- 0.988+ 0.102-
TH 0.002- 0.000- 0.255- 0.900+ 0.000- 0.191- 0.314-
DH 0.018- 0.037- 0.709+ 0.638+ 0.157- 0.066- 0.265-
z 0.001- 0.001- 0.630+ 0.994+ 0.002- 0.986+ 0.037-
ZH 0.000- 0.000- 1.000+ 1.000+ 0.000- 0.000+ 0.000-
v 0.103- 0.050- 0.833+ 0.940+ .05 0.371+ 0.784+

0.001- 0.006- 0.151- 0.990+ 0.008- 0.004- 0.127-

Table 7-3: Performance using local processing when phonemic boundaries are known.
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VOCALIC CONSON. HIGH I BACK I LOW ANTERIOR CO NAL

IY 0-870+ 0-124- 0-823+ 0.025- 0-006- 0-044- 0-059-
UW 0-849+ 0-293- 0.532+ 0-595+ 0-050- 0-191- 0.216-
EY 0.952+ 0-064- 0.295- 0.014- 0-022- 0-034- 0-o32-
OW 0-931+ 0.210- 0-032- 0-763+ 0.450+ 0-252- 0-264-
AA 0-964+ 0-068- 0-008- 0-822+ 0-633+ 0-032- 0.049-
1H 0-885+ 0-124- 0.554+ 0-069- 0-059- 0-063- 0.094-
UH 0-869+ 0-385- 0-311+ 0-315+ 0-004- 0-184- 0.254-
EH 0-921+ 0-134- 0.077- 0.128- 0-221- 0-066- 0.104-
AH 0.902+ 0-149- 0-038- 0-587+ 0-161- 0-079- 0-106-
AO 0-932+ 0-117- 0.049- 0-852+ 0.226- 0-078- 0.123-
AE 0.959+ 0.044- 0.028- 0.047- 0-671+ 0-019- 0.018-
Y 0.476- 0-161- 0-835+ 0-000- 0-000- 0-034- 0.101-
W 0.277- 0-165- 0-630+ 0-824+ 0-036- 0-088- 0-064-
L 0.833+ 0-549+ 0-081- 0.380- 0-130- 0-573+ 0.568+
R 0,915+ 0.772+ 0.082- 0-086- 0.025- 0-044- 0-706+
N 0.081- 0-920+ 0.043- 0.029- 0.010- 0-784+ 0-616+
Ni 0.077- 0.942+ 0.022- 0-037- 0-008- 0-838+ 0.123-
NG 0.210- 0.787+ 0-343+ 0.225+ 0-000- 0-584- 0-349-
K 0-013- 0-985+ 0-558+ 0-554+ 0-005- 0.124- 0-095-
T 0.016- 0-986+ 0-154- 0.029- 0-002- 0-629+ 0.734+
P 0.048- 0-966+ 0-064- 0.047- 0.009- 0-614+ 0-062-
D 0.057- 0-951+ 0.171- 0.078- 0-000- 0-570+ 0-611+
B 0-162- 0-876+ 0.071- 0-079- 0-012- 0-579+ 0-115-
G 0.067- 0.972+ 0-637+ 0-575+ 0-000- 0.151- 0.084-
i 0-006- 1-000+ 0-898+ 0-006- 0-000- 0.042- 0.944+
CH 0.000- 1-000+ 0-833+ 0.000- 0.000- 0.130- 0.973+
F 0.032- 0-972+ 0.042- 0-033- 0-005- 0-801+ 0-080-
S 0.003- 0-998+ 0-054- 0.002- 0.001- 0.908+ 0-947+
SH 0.020- 0-983+ 0.798+ 0.000- 0.000- 0.145- 0-930+
TH 0.034- 0-970+ 0.027- 0.011- 0-007- 0.582+ 0-330+
DH 0.121- 0-903+ 0-066- 0-031- 0-001- 0-622+ 0.444+
z 0.011- 0-991+ 0.062- 0.003- 0.000- 0.871+ 0-913+
ZH 0.286- 0-714+ 0.000+ 0.000- 0.000- 0.286- 0-429+
v 0.325- 0-774+ 0.120- 0.114- 0-018- 0.492+ 0.177-
H# o.019- 0.985+ 0.020- 0-010- 0-001- 0.069- 0.043-

Table 7.4: Performance using local processing when phonemic boundaries are unknown.
High-back-low and anterior-coronal are modeled dependently.
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ROUND TENSE] VOICE I CONTIN. J NASAL__j STRIDENTT -LABIAL

IY 0.024- 0.862+ 0.958+ 0.952+ 0.028- 0.025- 0.051-
UW 0.633+ 0.615+ 0.980+ 0.962+ 0.027- 0.007- 0.203-
EY 0.013- 0.678+ 0.987+ 0.981+ 0.015- 0.013- 0.077-
OW 0.844+ 0.419+ 0.990+ 0.964+ 0.031- 0.015- 0.116-
AA 0.473- 0.362+ 0.982+ 0.985+ 0.005- 0.006- 0.074-
IH 0.095- 0.292- 0.983+ 0.962+ 0.017- 0.048- 0.082-
UH 0.532+ 0.230- 0.987+ 0.967+ 0.011- 0.020- 0.090-
EH 0.121- 0.092- 0.981+ 0.962+ 0.029- 0.019- 0.068-
AH 0.453- 0.125- 0,968+ 0.971+ 0.023- 0.036- 0.103-
AO 0.856+ 0.291- 0.978+ 0.988+ 0.006- 0.012- 0.057-
AE 0.035- 0.106- 0.979+ 0.981+ 0.012- 0.005- 0-0305-
y 0.034- 0.652- 1.000+ 0.921+ 0.037- 0.026- 0.037-
W 0.837+ 0.126- 0.978+ 0.967+ 0.025- 0.008- 0.185-
L 0.597- 0.389- 0.976+ 0.951+ 0.032- 0.010- 0.093-
R 0.108- 0.110- 0.964+ 0.976+ 0.010- 0.020- 0.123-
N 0-069- 0.074- 0.973+ 0.205- 0.775+ 0.032- 0-245-
NI 0.135- 0.086- 0.969+ 0.172- 0.819+ 0.013- 0.792+
NG 0.149- 0.222- 0.990+ 0.273- 0.7271+ 0.000- 0.203-
K 0.040- 0.054- 0.079- 0.139- 0.000- 0.045- 0.119-
T 0.010- 0.029- 0.139- 0.188- 0.002- 0.195- 0.079-
P 0.071- 0.056- 0.214- 0.253- 0.000- 0.042- 0.687+
D 0.021- 0.047- 0.598+ 0.290- 0.028- 0.148- 0.158-
B 0.162- 0.109- 0.871+ 0.394- 0.029- 0.015- 0.694+
G 0.050- 0.017- 0.553+ 0.168- 0.011- 0.022- 0.084-
i 0.006- 0.008- 0.497+ 0.201- 0.000- 0.924+ 0.020-
CH 0.027- 0.000- 0.058- 0.290- 0.000- 0.935+ 0.0801-
F 0.053- 0.029- 0.095- 0.901+ 0.001- 0.688+ 0.863+
S 0.019- 0.011- 0.166- 0.976+ 0.000- 0.976+ 0.038-
SH 0.010- 0.009- 0.051- 0.848+ 0.000- 0.965+ 0.137-
TH 0.011- 0.009- 0.220- 0.816+ 0.005- 0.277- 0.384-
DH 0.065- 0.063- 0.697+ 0.647+ 0.154- 0.093- 0.222-
z 0.012- 0.020- 0.554+ 0.956+ 0.006- 0.947+ 0.052-
ZH 0.000- 0.000- 0.714+ 0.857+ 0.000- 0.286+ 0.000-
v 0.201- 0.139- 0.812+ 0.904+ 0.071- 0.268+ 0.695+

0.020- 0.031- 0.184- 0.945+ 0.019- 0.036- 0.154-

Table 7.5: Performance using local processing when phonemic boundaries are unknown.
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7.2 Individual Results - Global Processing

Shown in the tables of this section are results of linguistic feature estimation

for individual phonemes, using the global processing scheme described in Chapter 4.

Tables 7.6 and 7.7 reflect performance in the case of known TIMIT boundaries, while

tables 7.8 and 7.9 indicate the performance in the case of unknown TIMIT markings.
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VOCALIC CONSON. HIGH BACK LOW ANTERIOR CO NAL

1Y 0.953+ 0.040- 0.864+ 0-000- 0.000- 0.014- 0.007-
UW 0-995+ 0-374- 0-315+ 0.243+ 0-000- 0-162- 0.264-
EY 0.980+ 0.036- 0.244- 0.000- 0.000- 0.020- 0.020-
OW 0.998+ 0.235- 0.017- 0.491+ 0.133+ 0.129- 0.157-
AA 0.999+ 0-032- 0-001- 0.704+ 0-365+ 0-001- 0.021-
IH 0-966+ 0.063- 0-495+ 0.008- 0-000- 0-017- 0.021-
UH 0.919+ 0-313- 0-120+ 0.230+ 0-000- 0-088- 0.125-
EH 0-963+ 0.111- 0.126- 0.047- 0-081- 0-016- 0.052-
AH 0-997+ 0.127- 0.001- 0.478+ 0-102- 0.002- 0.125-
AO 0.957+ 0-133- 0.007- 0.704+ 0.049- 0.058- 0-080-
AE 0-970+ 0.053- 0-065- 0.012- 0-157+ 0.002- 0.002-
y 0-727- 0-180- 0.745+ 0.000- 0.000- 0.004- 0-060-
�N.7 0-342- 0.362- 0.486+ 0.598+ 0-000- 0.128- 0.202-
L 0-803+ 0-847+ 0.023- 0.120- 0.000- 0-698+ 0-694+
R 0.958+ 0.867+ 0.027- 0.018- 0.000- 0.012- 0.780+
N 0-063- 0.965+ 0.003- 0.002- 0.000- 0.822+ 0.606+
M 0-039- 0.976+ 0.007- 0.014- 0-000- 0-851+ 0.220-
NG 0-057- 0-943+ 0.098+ 0.003+ 0-000- 0-708- 0.251-
K 0.000- 1-000+ 0.632+ 0.614+ 0-000- 0.231- 0.137-
T 0.001- 0-999+ 0.122- 0.044- 0.000- 0.773+ 0-606+
P 0-003- 0.997+ 0.040- 0.028- 0.000- 0-837+ 0.045-
D 0-041- 0.959+ 0.060- 0.026- 0.000- 0.723+ 0.627+
B 0.115- 0-968+ 0.024- 0-050- 0-006- 0.659+ 0-091-
G 0.017- 0.983+ 0.486+ 0-514+ 0-000- 0-179- 0.134-
i 0-000- 1-000+ 0.653+ 0.000- 0.000- 0.144- 0.969+
CH 0-000- 1-000+ 0-546+ 0.000- 0.000- 0-184- 0-993+
F 0.000- 1.000+ 0.013- 0.000- 0.000- 0.848+ 0.116-
S 0-001- 0.999+ 0.015- 0.000- 0.000- 0.983+ 0-958+
SH 0.002- 0.998+ 0.477+ 0.000- 0-000- 0.426- 0.924+
TH 0.002- 1.000+ 0.000- 0.000- 0.000- 0-602+ 0.436+
DH 0.046- 0-969+ 0-022- 0.018- 0.000- 0.729+ 0.509+
z 0.002- 0.999+ 0.043- 0.000- 0.000- 0-937+ 0-999+
ZH 0-000- 1.000+ 0.000+ 0-000- 0-000- 1-000- 0-000+
V 0-057- 0-997+ 0.001- 0.000- 0.000- 0.759+ 0-163-
H# 11 0.002- 0.998+ 0.003- 1 0-003- 0 000- 1 0-059- 0.022-

Table 7.6: Performance of estimating features for individual phonemes when phonemic
boundaries are known, using global processing at the left and right boundaries of each
phone. The global estimate is derived from the arithmetic average of the probabilities at
the two edges.
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ROUND TENSE VOICE I CONTIN. NASAL STRIDENT -I11 LL

IY 0.000- 0.772+ 0.994+ 0.992+ 0.007- 0.001- 0.000-
UW 0.074+ 0.083+ 1.000+ 0.995+ 0.002- 0.000- 0.000-
EY 0.000- 0.501+ 0.999+ 0.999+ 0.001- 0.001- 0.000-
OW 0.228+ 0.133+ 1.000+ 0.999+ 0.001- 0.000- 0.000-
AA 0.031- 0.243+ 0.999+ 0.999+ 0.000- 0.001- 0.000-
1H 0.000- 0.089- 0.999+ 0.994+ 0.001- 0.001- 0.000-
UH 0.182+ 0.094- 1.000+ 0.998+ 0.000- 0.000- 0.000-
EH 0.004- 0.036- 0.999+ 0.984+ 0.008- 0.000- 0.001-
AH 0.014- 0.074- 1.000+ 0.999+ 0.000- 0.000- 0.000-
AO 0.399+ 0.036- 0.999+ 0.979+ 0.000- 0.001- 0.000-
AE 0.000- 0.056- 1.000+ 0.999+ 0.000- 0,000- 0.000-
y 0.000- 0.292- 0.985+ 0.996+ 0.000- 0.000- 0.000-
'"T 0.553+ 0.000- 0.992+ 0.995+ 0.000- 0.000- 0.004-
L 0.076- 0.000- 0.999+ 0.970+ 0.018- 0.000- 0.005-
R 0.004- 0.003- 0.991+ 0.994+ 0.005- 0.000- 0.002-
N 0.000- 0.013- 0.948+ 0.236- 0.726+ 0.000- 0.039-
M 0.007- 0.000- 0.972+ 0.239- 0.735+ 0.000- 0.385+
NG 0.000- 0.044- 0.927+ 0.225- 0.775+ 0.000- 0.022-
K 0.000- 0.000- 0.117- 0.044- 0.000- 0.017- 0.021-
T 0.000- 0.000- 0.135- 0.150- 0.000- 0.109- 0.009-
P 0.000- 0.000- 0.287- 0.140- 0.000- 0.009- 0.622+
D 0.000- 0.005- 0.674+ 0.158- 0.000- 0.101- 0.057-
B 0.003- 0.000- 0.806+ 0.432- 0.000- 0.000- 0.312+
G 0.000- 0.000- 0.609+ 0.134- 0.017- 0.011- 0.045-
i 0.000- 0.000- 0.520+ 0.181- 0.000- 0.794+ 0.000-
CH 0.000- 0.000- 0.246- 0.232- 0.000- 0.901+ 0.000-
F 0.000- 0.000- 0.051- 0.989+ 0.000- 0.646+ 0.553+
S 0.000- 0.000- 0.259- 0.988+ 0.000- 0.971+ 0.007-
SH 0.000- 0.000- 0.087- 0.898+ 0.000- 0.945+ 0.043-
TH 0.000- 0.000- 0.100- 0.939+ 0.000- 0.243- 0.100-
DH 0.018- 0.001- 0.672+ 0.790+ 0.031- 0.018- 0.012-
z 0.000- 0.000- 0.775+ 1.000+ 0.000- 0.975+ 0.000-
ZH 0.000- 0.000- 1.000+ 1.000+ 0.000- 1.000+ 0.000-
v .000- 0.000- 0.799+ 0.909+ 0.064- 0.396+ 0.431+

0.000- 0.000- 0.067- 0.963+ 0.011- 0.004- 0.021-

Table 7.7: Performance using global processing at the left and right boundaries of each
phone when phonemic boundaries are known.
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11 VOCALIC I CONSON. I HI ACK ILOW JANTERI LONAL]

IY 0.886+ 0.119- 0.740+ 0.011- 0.002- 0.057- 0.063-
UW 0.829+ 0.340- 0.365+ 0.214+ 0.000- 0.171- 0.252-
EY 0.927+ 0.115- 0.304- 0.017- 0.000- 0.040- 0.052-
OW 0.924+ 0.375- 0.004- 0.407+ 0.125+ 0.218- 0.287-
AA 0.959+ 0.123- 0.010- 0.543+ 0.359+ 0.034- 0.078-
IH 0.871+ 0.180- 0.522+ 0.020- 0.000- 0.087- 0.113-
UH 0.871+ 0.392- 0.271+ 0.256+ 0.000- 0.155- 0.204-
EH 0.912+ 0.211- 0.126- 0.038- 0.065- 0.072- 0.143-
AH 0.903+ 0.196- 0.04& 0.460+ 0.129- 0.092- 0.161-
AO 0.931+ 0.258- 0.018- 0.608+ 0.085- 0.107- 0.208-
AE 0.958+ 0.113- 0.061- 0.070- 0.163+ 0.026- 0.047-
Y 0.614- 0.225- 0.760+ 0.004- 0.000- 0.067- 0.169-
W 0.669- 0.396- 0.228+ 0.500+ 0.007- 0.217- 0.275-
L 0.836+ 0.700+ 0.060- 0.169- 0.043- 0.504+ 0.563+
R 0.911+ 0.790+ 0.044- 0.063- 0.002- 0.060- 0.714+
N 0.084- 0.955+ 0.022- 0.005- 0.000- 0.757+ 0.619+
M 0.074- 0.963+ 0.004- 0.030- 0.011- 0.830+ 0.259-
NG 0.200- 0.848+ 0.063+ 0.029+ 0.025- 0.651- 0.194-
K 0.017- 0.989+ 0.485+ 0.489+ 0.001- 0.320- 0.171-
T 0.013- 0.990+ 0.103- 0.019- 0.000- 0.738+ 0.545+
P 0.056- 0.974+ 0.003- 0.037- 0.005- 0.788+ 0.102-
D 0.060- 0.951+ 0.039- 0.000- 0.003- 0.627+ 0.497+
B 0.165- 0.941+ 0.021- 0.024- 0.015- 0.671+ 0.106-
G 0.067- 0.972+ 0.542+ 0.520+ 0.011- 0.212- 0.112-
i 0.000- 1.000+ 0.475+ 0.000- 0.000- 0.415- 0.969+
CH 0.000- 1.000+ 0.451+ 0.000- 0.000- 0.539- 0.922+
F 0.028- 0.976+ 0.023- 0.020- 0.004- 0.808+ 0.189-
S 0.003- 0.989+ 0.025- 0.000- 0.000- 0.919+ 0.885+
SH 0.020- 0.983+ 0.334+ 0.002- 0.000- 0.481- 0.868+
TH 0.034- 0.980+ 0.007- 0.002- 0.005- 0.625+ 0.332+
DH 0.115- 0.903+ 0.032- 0.025- 0.003- 0.674+ 0.469+
z 0.010- 0.991+ 0.026- 0.002- 0.000- 0.940+ 0.948+
ZH 0.286- 0.714+ 0.286+ 0.000- 0.000- 0.000- 0.000+
v 0.333- 0.810+ 0.043- 0.025- 0.006- 0.409+ 0.241-
H# 0.016- 0.998+ 0.017- 0.010- 0.000- 0.105- 0.055-

Table 7-8: Performance using only global processing when phonemic boundaries are un-
known.
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ROUND TENSE VOICE I CONTIN. NASAL STRIDENT LABE-LI

IY 0.009- 0.603+ 0.965+ 0.972+ 0.01& 0.018- 0.002-
UW 0.144+ 0.230+ 0.973+ 0.975+ 0.011- 0.005- 0.005-
EY 0.001- 0.350+ 0.982+ 0.977+ 0.018- 0.015- 0.007-
OW 0.205+ 0.129+ 0.982+ 0.972+ 0.020- 0.012- 0.007-
AA 0.003- 0.242+ 0.981+ 0.982+ 0.004- 0.005- 0.004-
IH 0.008- 0.143- 0.969+ 0.966+ 0.017- 0.044- 0.004-
UH 0.142+ 0.033- 0.961+ 0.965+ 0.015- 0.013- 0.002-
EH 0.005- 0.009- 0.977+ 0.966+ 0.021- 0.017- 0.009-
AH 0.066- 0.045- 0.970+ 0.973+ 0.021- 0.040- 0.005-
AO 0.316+ 0.056- 0.987+ 0.991+ 0.004- 0.010- 0.004-
AE 0.000- 0.100- 0.978+ 0.979+ 0.011- 0.008- 0.007-
Y 0.000- 0.270- 0.985+ 0.978+ 0.026- 0.015- 0.011-
W 0.401+ 0.007- 0.985+ 0.962+ 0.022- 0.001- 0.006-
L 0.091- 0.055- 0.974+ 0.946+ 0.036- 0.012- 0.006-
* 0.021- 0.012- 0.965+ 0.982+ 0.006- 0.018- 0.008-
* 0.000- 0.014- 0.937+ 0.309- 0.654+ 0.029- 0.034-
M 0.003- 0.015- 0.958+ 0.290- 0.650+ 0.009- 0.347+
NG 0.000- 0.041- 0.981+ 0.311- 0.641+ 0.000- 0.038-
K 0.006- 0.000- 0.156- 0.132- 0.000- 0.025- 0.025-
T 0.000- 0.001- 0.178- 0.170- 0.002- 0.142- 0.024-
P 0.012- 0.009- 0.310- 0.192- 0.000- 0.047- 0.521+
D 0.000- 0.010- 0.650+ 0.282- 0.021- 0.127- 0.067-
B 0.012- 0.032- 0.791+ 0.376- 0.009- 0.000- 0.409+
G 0.000- 0.006- 0.592+ 0.140- 0.011- 0.028- 0.034-
i 0.000- 0.000- 0.542+ 0.206- 0.000- 0.602+ 0.000-
CH 0.000- 0.000- 0.092- 0.208- 0.000- 0.683+ 0.000-
F 0.007- 0.003- 0.146- 0.929+ 0.003- 0.66"1'+ 0.464+
S 0.000- 0.001- 0.318- 0.951+ 0.000- 0.900+ 0.022-
SH 0.000- 0.001- 0.155- 0.886+ 0.000- 0.846+ 0.055-
TH 0.000- 0.002- 0.120- 0.818+ 0.005- 0.268- 0.141-
DH 0.018- 0.010- 0.624+ 0.756+ 0.085- 0.097- 0.019-
z 0.000- 0.002- 0.837+ 0.965+ 0.004- 0.922+ 0.000-
ZH 0.000- 0.000- 0.286+ 1.000+ 0.000- 0.000+ 0.000-
v 0.006- 0.039- 0.729+ 0.921+ 0.060- 10.1 5+ 0.138+

0.001- 0.003- 0.102- 0.924+ 0.021 0.039- 0.028-

Table 7-9: Performance using only global processing when phonemic boundaries a-re un-
know-n.
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7.3 Individual results - Combined Local and

Global Processing

Shown in the tables of this section are results of linguistic feature estimation

for individual phonemes, combining the global processing of Chapter 4 with the local

processing of Chapter 3 by averaging the probability estimates derived from each

method.

Tables 7.10 and 7.11 reflect performance in the case of known TIMIT boundaries,

while tables 7.12 and 7.13 indicate the performance in the case of unknown TIMIT

markings.
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VOCALIC I CONSON. I HIGH I BACK I LOW ANTERK DNAL

IY 0.962+ 0.047- 0.955+ 0.000- 0.000- 0.015- 0.002-
UW 0.995+ 0.288- 0.534+ 0.421+ 0.000- 0.151- 0.200-
EY 0.998+ 0.003- 0.362- 0.000- 0.000- 0.002- 0.002-
OW 0.998+ 0.046- 0-017- 0.727+ 0.568+ 0.113- 0.129-
AA 0.999+ 0.012- 0.001- 0.865+ 0.813+ 0.001- 0.005-
IH 0.984+ 0.029- 0.713+ 0.013- 0.000- 0.003- 0.016-
UH 0.993+ 0.199- 0.269+ 0.256+ 0.000- 0.101- 0.144-
EH 0.997+ 0.057- 0.084- 0.057- 0.154- 0.003- 0.021-
AH 0.996+ 0.075- 0.022- 0.557+ 0.169- 0.008- 0.040-
AO 0.982+ 0.057- 0.007- 0.939+ 0.207- 0.001- 0.015-
AE 0.998+ 0-017- 0.038- 0.021- 0.713+ 0.001- 0.001-
y 0.588- 0.139- 0.828+ 0.000- 0.000- 0.004- 0.120-
W 0-317- 0.211- 0.645+ 0.776+ 0.001- 0.068- 0.044-
L 0.862+ 0.788+ 0.041- 0.160- 0.024- 0.712+ 0.658+
R 0.975+ 0.841+ 0.066- 0.021- 0.002- 0.005- 0.787+
N 0.046- 0.977+ 0.008- 0.003- 0.004- 0.832+ 0.621+
Ni 0.028- 0.994+ 0.000- 0.003- 0.004- 0.904+ 0.064-
NG 0.130- 0.870+ 0.213+ 0.003+ 0.006- 0.660- 0.308-
K 0.000- 1.000+ 0.742+ 0.592+ 0.000- 0.135- 0.088-
T 0.000- 1.000+ 0.168- 0.000- 0.000- 0.756+ 0.679+
P 0.000- 1.000+ 0.009- 0.000- 0.000- 0.828+ 0.014-
D 0.000- 0.992+ 0.194- 0.013- 0.000- 0.671+ 0.642+
B 0.071- 0.994+ 0.021- 0.018- 0.000- 0.621+ 0.044�
G 0.000- 1.000+ 0.659+ 0.564+ 0.000- 0.201- 0.011-
i 0.000- 1.000+ 0.946+ 0.000- 0.000- 0.025- 0.969+
CH 0.000- 1.000+ 0.908+ 0.000- 0-000- 0.085- 0.993+
F 0.000- 1.000+ 0.029- 0.015- 0.000- 0.842+ 0.082-
S 0.001- 0.999+ 0.031- 0.000- 0.000- 0.981+ 0.988+
SH 0.002- 0.998+ 0.819+ 0.000- 0.000- 0.178- 0.988+
TH 0.002- 0.998+ 0.048- 0.002- 0.000- 0.559+ 0.359+
DH 0.032- 1.000+ 0.026- 0.007- 0.000- 0.784+ 0.457+
z 0.002- 0.999+ 0.056- 0.000- 0.000- 0.940+ 0.997+
ZH 0.000- 1.000+ 0.000+ 0.000- 0.000- 1.000- 1.000+
V 0.109- 0.941+ 0.052- 0.003- 0.001- 0.616+ 0.109-

0.003- 0.998+ 0.001- 0.000- 0.000- 0.013- -

Table 7. 10: Performance combining local processing with global processing when phonemic
boundaries axe known. The local estimate derives from dependent modeling of anterior-
coronal and high-back-low.

91



ROUND TENSE VOICE I CONTIN. NASAL STRIDENT LABIAL

1Y 0-000- 0.954+ 0.998+ 0.980+ 0.018- 0.001- 0.001-
UW 0-649+ 0.529+ 0.998+ 0-995+ 0.002- 0-000- 0.005-
EY 0.000- 0.778+ 0-999+ 0.999+ 0.001- 0-001- 0-001-
OW 0-817+ 0.426+ 1-000+ 0-998+ 0-001- 0-000- 0.001-
AA 0-330- 0.499+ 0-999+ 0.999+ 0.000- 0-001- 0.000-
IH 0.045- 0.347- 0-999+ 0-998+ 0-002- 0-001- 0.001-
UH 0.396+ 0-171- 1-000+ 0.998+ 0-000- 0-000- 0.004-
EH 0.078- 0-062- 0-999+ 0.998+ 0-001- 0-000- 0-001-
AH 0-209- 0.105- 0.999+ 0-997+ 0-002- 0-000- 0-003-
AO 0-887+ 0-173- 0-998+ 0-999+ 0.000- 0-001- 0.001-
AE 0.000- 0-063- 0-999+ 0.999+ 0-000- 0-000- 0-001-
y 0-000- 0-554- 0-985+ 0.996+ 0.004- 0-000- 0-004-
W 0-906+ 0.007- 0.990+ 0.995+ 0.000- 0-000- 0.004-
L 0-461- 0.142- 0-998+ 0.968+ 0.020- 0-000- 0.014-
R 0-032- 0-039- 0.991+ 0.997+ 0-000- 0-000- 0-013-
N 0.001- 0.019- 0.996+ 0.171- 0-795+ 0-004- 0. 1 1 6-
M 0-011- 0.007- 0.976+ 0.136- 0.866+ 0-002- 0-818+
NG 0-000- 0.159- 1.000+ 0.146- 0.819+ 0-000- 0-086-
K 0-000- 0.000- 0-068- 0.050- 0.000- 0.017- 0-064-
T 0-000- 0.000- 0.095- 0.106- 0.000- 0-115- 0.016-
P 0-000- 0.000- 0.161- 0.099- 0-000- 0-000- 0-905+
D 0-000- 0.010- 0.663+ 0.127- 0.000- 0-104- 0-054-
B 0-068- 0-015- 0-882+ 0-368- 0-003- 0-000- 0-706+
G 0-000- 0-000- 0-564+ 0.039- 0-000- 0-011- 0-045-
i 0-000- 0.000- 0-460+ 0.028- 0.000- 0-907+ 0-000-
CH 0.000- 0.000- 0.000- 0.195- 0-000- 0-993+ 0-000-
F 0-000- 0.000- 0-006- 0.966+ 0.000- 0-727+ 0-898+
S 0-000- 0.000- 0.202- 0.992+ 0.000- 0-997+ 0-031-
SH 0-000- 0.001- 0.012- 0-957+ 0.000- 0-988+ 0-117-
TH 0-002- 0.000- 0.025- 0.900+ 0.000- 0-323- 0-345-
DH 0.000- 0.009- 0.712+ 0.657+ 0.141- 0-018- 0-115-
z 0-000- 0.000- 0.738+ 0-981+ 0-001- 0-995+ 0.012-
ZH 0.000- 0.000- 1.000+ 1-000+ 0.000- 1-000+ 0.000-

0-020- 0.017- 0-838+ 0.914+ 0-038- 0-346+ 0.752+
H# I 0.001- 0.001- 0.083- 0-990+ 0-004- 0-003- 0-020-

Table 7.1 1: Performance combining local processing with global processing when phonemic
boundaries are known. The local estimate derives from dependent modeling of anterior-
coronal and high-back-low.
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VOCALIC CONSON. HIGH I BACK LOW ANTERIO

IY 0-898+ 0.127- 0.878+ 0.014- 0-003- 0.050- 0.045-
UW 0-858+ 0-336- 0.579+ 0.457+ 0.002- 0.185- 0.194-
EY 0-954+ 0-068- 0.370- 0-004- 0-008- 0.033- 0-036-
OW 0.940+ 0.267- 0.028- 0.611+ 0.406+ 0-235- 0.244-
AA 0-964+ 0.080- 0.011- 0.771+ 0.621+ 0.022- 0-056-
IH 0-884+ 0-132- 0.687+ 0-024- 0-026- 0.070- 0-093-
UH 0-862+ 0-383- 0.319+ 0-254+ 0-007- 0-118- 0.193-
EH 0-921+ 0.128- 0-119- 0-058- 0-168- 0.062- 0.092-
AH 0.914+ 0-176- 0.057- 0.542+ 0-189- 0.079- 0.117-
AO 0-952+ 0.143- 0.045- 0-835+ 0-192- 0.071- 0.122-
AE 0-960+ 0.044- 0.041- 0-019- 0-676+ 0-020- 0-016-
y 0-584- 0-161- 0.876+ 0-000- 0-000- 0-019- 0-124-
W 0.412- 0.212- 0-617+ 0-762+ 0.011- 0.093- 0.096-
L 0-846+ 0-656+ 0-084- 0-250- 0-059- 0.542+ 0-561+
R 0.921+ 0-778+ 0-089- 0-057- 0-019- 0.036- 0-713+
N 0-078- 0.944+ 0.037- 0.004- 0-004- 0-820+ 0-650+
M 0-067- 0-946+ 0.015- 0.021- 0-016- 0-861+ 0.116-
NG 0.200- 0-790+ 0.235+ 0-010+ 0-022- 0-641- 0-333-
K 0-013- 0-988+ 0.702+ 0-541+ 0-002- 0-152- 0.108-
T 0-013- 0-989+ 0.209- 0-005- 0.001- 0.701+ 0-725+
P 0-050- 0.971+ 0.045- 0-017- 0-005- 0-744+ 0-060-
D 0-052- 0-961+ 0.166- 0.026- 0-000- 0-585+ 0-557+
B 0.141- 0-929+ 0.059- 0-038- 0-009- 0-615+ 0.094-
G 0-067- 0-972+ 0.693+ 0-564+ 0-006- 0.123- 0-089-
i 0 -000- 1.000+ 0.944+ 0-000- 0-000- 0-056- 0-975+
CH 0-000- 1.000+ 0.802+ 0-000- 0-000- 0.242- 0-983+
F 0-032- 0.974+ 0.042- 0-031- 0-005- 0-809+ 0.094-
S 0-003- 0-998+ 0.050- 0.000- 0-000- 0.946+ 0-969+
SH 0-020- 0-983+ 0.788+ 0-001- 0.000- 0.269- 0-930+
TH 0.034- 0.970+ 0.027- 0-007- 0-007- 0-618+ 0.316+
DH 0.116- 0-906+ 0.062- 0.012- 0-003- 0.707+ 0-488+
z 0-011- 0-991+ 0.068- 0.001- 0.000- 0.912+ 0-965+
ZH 0.286- 0.714+ 0.000+ 0-000- 0-000- 0-286- 0.286+
V 0-342- 0.778+ 0.113- 0.078- 0-013- 0.477+ 0.187-

0-016- 0-993+ 0.021- 0-008- 0-001- 0-069- 0-045-

Table 7.12: Performance combining local processing with global processing when phonemic
boundaries are unknown. The local estimate derives from dependent modeling of I-Ligh-back-
low and anterior-coronal.

93



ROUND TENSE VOICE CONTIN. NASAL STRIDENT LABa-LI

IY 0.021- 0-876+ 0-966+ 0-967+ 0.025- 0.017- 0-005-
UW 0-610+ 0-505+ 0.975+ 0.964+ 0.020- 0-005- 0-061-
EY 0.010- 0.682+ 0-983+ 0.979+ 0.018- 0-014- 0.014-
OW 0-809+ 0-444+ 0-986+ 0.969+ 0.025- 0.015- 0.026-
AA 0-335- 0-403+ 0-980+ 0-982+ 0.004- 0-005- 0.027-
IH 0.051- 0-29& 0-984+ 0-962+ 0.017- 0.047- 0.019-
UH 0.431+ 0-147- 0-974+ 0-963+ 0-013- 0-018- 0.022-
EH 0.071- 0-041- 0-979+ 0-960+ 0.029- 0-017- 0.025-
AH 0-332- 0.131- 0-980+ 0.971+ 0.024- 0.040- 0.030-
AO 0.793+ 0.211- 0-986+ 0-988+ 0.006- 0-010- 0.014-
AE 0.013- 0-104- 0-981+ 0.982+ 0.011- 0.007- 0.011-
y 0.000- 0-573- 0-996+ 0.955+ 0.022- 0.019- 0-019-
W 0.848+ 0-054- 0-989+ 0.970+ 0.023- 0-005- 0-053-
L 0-488- 0-209- 0-978+ 0.945+ 0.043- 0-008- 0.026-
R 0-067- 0-051- 0-970+ 0-978+ 0.009- 0-018- 0.031-
N 0.006- 0.025- 0-970+ 0-198- 0.779+ 0.028- 0.129-
M 0.044- 0-014- 0-961+ 0.162- 0-833+ 0-009- 0.759+
NG 0.035- 0-127- 0-981+ 0.254- 0.740+ 0-000- 0.067-
K 0.009- 0-005- 0-099- 0.117- 0.000- 0-027- 0.086-
T 0.001- 0-003- 0-144- 0.164- 0.002- 0-166- 0.045-
P 0.025- 0-011- 0-209- 0.174- 0.000- 0-045- 0.736+
D 0-000- 0.021- 0-642+ 0-246- 0-016- 0-135- 0.101-
B 0-091- 0-068- 0-868+ 0-359- 0.026- 0.009- 0.703+
G 0.006- 0-011- 0-564+ 0-117- 0.011- 0-022- 0.022-
i 0-000- 0-000- 0-540+ 0.040- 0-000- 0-895+ 0.000-
CH 0-000- 0-000- 0-038- 0.188- 0-000- 0-860+ 0.034-
F 0-016- 0-011- 0-070- 0.923+ 0.002- 0-681+ 0-816+
S 0.001- 0.001- 0.239- 0.979+ 0.000- 0-969+ 0.028-
SH 0.001- 0.004- 0.061- 0.918+ 0.000- 0-972+ 0.094-
TH 0-007- 0-007- 0-193- 0-834+ 0.005- 0-216- 0-293-
DH 0.003- 0-032- 0.699+ 0.719+ 0.118- 0.084- 0.122-
z 0-000- 0-009- 0-810+ 0.962+ 0-005- 0-967+ 0-012-
ZH 0-000- 0-000- 1-000+ 1-000+ 0.000- 0-286+ 0-000-
V 0.096- 0.060- 0-762+ 0.908+ 0.074- 0-215+ 0-510+

0.004- 0.006- 0.115- 1 0.947+ 0-019- 0-031- 0-048-

Table 7.13: Performance combining local processing with global processing when phonemic
boundaries are unknown. The local estimate derives from dependent modeling of high-back-
low and anterior-coronal.
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