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Abstract
A dynamical system can be modeled from observations of its behavior

over time, assuming that the states are observable in the outputs. This
modeling problem can be recast as the on-line approximation of a smooth,
bounded, quasi-stationary function, in which the values of a set of free
parameters are adjusted to accommodate the observed behavior of the system.
However, given little or no information regarding the complexity of the
system, it is difficult, if not impossible, to determine a priori the number of
free parameters required to describe the relevant system dynamics.

To complicate matters, operating conditions may not be conducive to
inferring system dynamics from observations of its behavior: measurements
of system inputs and outputs may be corrupted by noise; or it may be difficult
to drive the system into areas of its operating envelope where its dynamics
are of interest.

The class of spatially localized network architectures addresses these
difficulties by decomposing the global function approximation problem into
local subproblems. Since the local approximations can be adjusted relatively
independently of one another, their number can be increased on-line to yield
better local approximation capability without disrupting performance in other
areas. In addition, this type of architecture tends to be robust to nonuniform
coverage of the operating envelope.

Spatially localized networks, in tandem with a novel algorithm for
adjusting network structure on-line in the presence of noise, are used to
construct predictors for two nonlinear dynamical systems: an aeroelastic
oscillator, and the Mackey-Glass chaotic time series. Beginning with
networks of small size, the algorithm increases the number of free network
parameters on-line, as well as adjusting parameter values, to meet a mean
prediction error target.
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1 Learning and Dynamical Systems

1.1 Introduction

1.1.1 Statement of Problem

A model for a dynamical system can be inferred from observations of

its behavior over time, assuming that the system dynamics are observable in

the system outputs [17]. For example, one could build a predictor for a system

by constructing a mapping from recent operating conditions (i.e., inputs and

outputs) to future outputs. This and other methods, which acquire

permanent knowledge of system behavior through prolonged observation,

can be said to learn features of the system.

In recent years, various types of network parameterization structures

have been successfully employed in the modeling of dynamical systems and

other related applications in control and estimation [2, 4, 12, 15, 18, 19, 21, 22,

30]. Their status as universal approximators [6, 9, 29], as well as the ability to

be trained incrementally with streams of data generated in real-time by the

dynamical systems of interest, has promoted their use in such learning tasks.

The first step in applying such a network to a modeling task is to

initialize the network structure, in particular its size (i.e., number of nodes, or

units). The network must possess a sufficient number of free parameters to

capture the complex behavior of the actual system; falling short results in the

inability of the model to accurately predict or emulate behavior following

from observed operating conditions. In contrast, an excessively high number

of free parameters, while allowing high model accuracy under observed

conditions, can enable the model output to deviate drastically for even



slightly novel conditions-the model does not generalize well. From the

standpoint of computation, a larger set of parameters typically means greater

CPU time and storage requirements. This trade-off between accuracy on the

one hand, and generalization and computational efficiency on the other, is an

important factor in the success of learning-based applications.

However, assuming no information is available a priori regarding the

dynamical system, one cannot hope to appropriately initialize the network

before learning begins. A tedious, time-consuming, and possibly unreliable

cycle of trial and error with networks of different sizes is the design engineer's

only recourse to attaining optimal performance.

This thesis presents a novel learning algorithm that enables networks

of a specific class to adaptively alter their structures (i.e., increase their size)

while being trained. Such a network may be initialized with as few as a single

unit; as training proceeds, new units are allocated to alleviate persistently

high errors in the network output. Structure adaptation can occur in the face

of noise and adversely ordered training data. In addition, a parameter

training algorithm has been developed that complements structure

adaptation by facilitating rapid incorporation of newly created units into the

existing network model.

The performance of the adaptive structure algorithm is evaluated by

using it to construct predictors for two nonlinear dynamical systems from

observations of their behavior over time.



1.1.2 Thesis Overview

The remainder of Chapter 1 explores the meaning of and requirements

for effective learning as performed in applications involving dynamical

systems. Section 1.2 discusses the general topic of learning from examples

applied to a variety of potential problems, and introduces the special case of

learning as function approximation, in which a mapping is constructed to fit

a set of input/output examples. Section 1.3 then addresses particular

problems encountered when such learning is implemented on-line with

dynamical systems under non-ideal conditions.

Chapter 2 delves into the selection of approximation structure for

learning tasks involving on-line function approximation. The properties of

different types of network structure are compared/contrasted in light of their

desirability for learning applications. A class of structures is introduced,

basis/influence function networks, that form approximations of unknown

functions by interpolating among local approximations constructed during

learning (i.e., approximations that are valid within a particular neighborhood

of input space). Two interpolation methods are discussed in detail: the first,

based on Gaussian functions, is familiar from the literature; the second,

which relies on inverse square functions, is novel and possesses some very

interesting properties that are potentially useful for learning.

Chapter 3 presents ideas, both new and old, that deal with methods of

training network parameters to form an adequate approximation to the

function that describes the observed data. Specifically, various gradient

methods are discussed that seek to reduce approximation error for each

example. A hybrid approach, combining features that both reduce

approximation error directly and organize network resources to better

respond to errors that accompany the training examples, serves as the basis

15



for the learning algorithm developed in this thesis, to which new features are

added to improve learning results in on-line scenarios involving dynamical

systems.

In Chapter 4, the idea of adaptive structure learning is introduced and

an algorithm developed. It is suggested that approximation structures need

not be fixed and invariant during learning, but rather that the structure may

be augmented or reduced as is deemed necessary to obtain a more accurate or

more streamlined approximation. Previous attempts to solve similar

problems are summarized and discussed in light of the particular problem

posed in this thesis. An algorithm is proposed that operates on the structure

of a basis/influence function network during learning, in parallel with the

hybrid parameter adjustment algorithm mentioned previously: situations are

recognized in which a local approximation is insufficient to provide the

desired level of accuracy in its vicinity, and in response additional network

resources are allocated there.

The adaptive structure algorithm, along with the improved hybrid

training algorithm, are used to train basis/influence function networks to

predict future states of two nonlinear dynamical systems. Chapter 5 reports

results obtained from networks trained to predict the future position of a free-

running aeroelastic oscillator simulation given only its current position and

velocity. A similar task is performed in Chapter 6 for a quasi-periodic chaotic

system described by the Mackey-Glass equation.

Finally, Chapter 7 summarizes the successes and failure of the adaptive

structure hybrid algorithm, and recommends further avenues of relevant

research in this area.



1.2 What Is Learning?

Webster's Ninth New Collegiate Dictionary gives the following

definitions-

learn: (1) to gain knowledge or understanding of or skill in

by study, instruction, or experience;

(2) MEMORIZE

knowledge: the fact or condition of knowing something with

familiarity gained through experience or association

Both definitions emphasize interaction with the environment as a

prerequisite for acquiring knowledge, or learning, about that environment.

From a technical viewpoint, the following definition seems appropriate-

learning: to infer properties or features of a system,

function, procedure, group, or class from a

collection of specific examples

Implicit in this view of learning is the assumption that the potentially

complex set of examples is generated or characterized by a comparatively

simple set of rules; if we can determine what these rules are, then we

essentially know everything there is to know about the domain of interest. In

the situation where the examples are arbitrary, the best we can do is to

memorize the entire set of examples, an inelegant and often impractical

recourse.

There are a variety of potential "domains of learning", i.e., things we

would like to learn; for example1 :

1Thanks to Prof. Ron Rivest for these examples, taken from his class 6.858J Machine

Learning.



concept "zinnia"
device "VCR"

technique "juggling"
function "sonar 1- distance"

environment "floor plan"
language "Greek"

family of similar "face recognition" or
phenomena "character recognition"

Table 1.1. Learning examples

We may want to distinguish zinnias from other kinds of flowers; teach a

robot to juggle or to navigate across a cluttered room; or recognize the face of

a friend. In general, the learning system (or learner) constructs an internal

representation, or model, of the phenomenon of interest that is capable of

capturing or emulating certain salient features or behaviors.

1.2.1 Supervised and Unsupervised Learning

Given a particular learning task, the most natural approach to take will

depend on the type of features we must learn, as well as the type of

information made available for learning.

Instance from
Learning Don
("rose")

Learner's
Answer
("yes"/"no")

Figure 1.1. Supervised Learning

Type of domain Example



Perhaps the most straightforward learning method, known as

supervised learning [7], assumes that each example presented to the learner

includes both the input and its corresponding "correct answer", or target,

which the learner is expected to reproduce or approximate upon future

presentations of that input. For instance, if we are learning to distinguish

zinnias from other flowers (Figure 1.1), the target for the instance "rose" is

"no"; if learning the function f(x) = sin(x), the target for "x = n" is "0.0". In on-

line learning scenarios, there may be a teacher that receives the same

instances from the learning domain as the learner and generates the targets

for the learner-it "supervises" the learning.

Supervised learning methods are appropriate for any learning task in

which the learner must infer a mapping from inputs to targets, both of which

are available for learning. However, in some cases we seek rather to discover

interesting features in a set of numerical data, i.e., whether or not a set of data

exhibits self-organization and in what way.

For example, imagine a pair of random processes, each of which

generates vectors in a normal distribution about its own distinct mean vector.

A plot of such a set of vectors will reveal two distinct clusters centered about

the means of the random processes (Figure 1.2). The goal of some learning

task might be to determine the means of the two random processes based on

the positions of the vectors generated.

This is an unsupervised learning problem [7]: since the cluster centers

are unknown a priori, there can be no clear targets associated with the input

vectors. The learner must discover the cluster centers itself solely from

vectors generated by the random processes.
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Another unsupervised learning problem is that of the efficient

encoding of input vectors [7] (Figure 1.3): representing a set of vectors in

fewer dimensions without significant loss of information. The learner is

required to project an input vector onto a lower-dimensional space and then

to recover a reasonable approximation of the original vector. This is

equivalent to equipping the learner with relatively scant resources and then

training the learner using each input vector as its own target. Once the

learner becomes able to satisfactorily recreate the set of vectors, its internal

structure is examined to determine the encoding/decoding mechanism.
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1.2.2 Batch and Incremental Learning

If the learner has access to the entire set of training examples

simultaneously, it is possible to learn in batch mode [7]: updates to the

learner's internal model are made only after every example has been

presented; thus, performance improvements more likely occur evenly over

the entire training set. Alternatively, examples may occur as a stream and

appear in any order. In this case, learning may have to be done incrementally

[7]: updates are made after each example, improving performance for that

example only. Hybrid modes are possible, wherein examples are collected

from a stream into batches, upon which batch learning is performed; or

incremental learning may occur using a stream of individual examples

selected arbitrarily from the entire training set.

On-line learning of dynamical systems will be primarily incremental,

exploiting real-time (actually simulation time) observations of the system in

operation.

1.2.3 Evaluating the Quality of Learning

What does it mean to claim that the learner has been successful in

some learning task? Some measures of performance are necessary to gauge

the accuracy and dependability of learning. The choice of these will depend

on the nature of the learning task and the goals of learning.

We would like the learner to give specific outputs (the targets) in

response to specific inputs-we require low error from the learner. In

addition, we generally would like unfamiliar yet similar inputs to yield

relatively accurate outputs-the learner should exhibit good generalization of

its knowledge to unlearned but closely related areas of the learning domain.

It is also important that the learner be robust to the order in which training



examples are presented, such that it does not forget information learned from

past examples in favor of that from current examples. 2

1.2.3.1 Training Error and Generalization

During the training phase of supervised learning, the learner adjusts

its internal model of the phenomenon of interest so that the outputs it

generates in response to inputs chosen from the learning domain are more

similar to the targets. The cumulative difference between the targets and the

learner outputs over the training set can be represented by a cost function that

decreases as the learner outputs become closer to the targets (See Chapter 3).

The goal of learning can be recast as a minimization of this cost function.

Depending on the nature of the problem, different types of cost

function are appropriate. For example, for the zinnia classification problem

presented earlier, the current number of misclassified flowers from the

training set could represent the cost associated with the current state of the

learner. For learning of numerical information, i.e., function approximation,

cost can be measured as some norm of the difference between the target and

the learner output over the training set.

But very often the training set does not cover the entire set of possible

inputs-after the training phase, the learner may be expected to give accurate

outputs to inputs not encountered during training. The actual cost associated

with the state of the learner is that taken over the entire set of possible inputs,

and may differ dramatically with the training cost. The goal of learning,

therefore, is to minimize this actual cost, not just the training cost.

2 This assumes that the target function or concept is stationary; in cases where the target

is slowly time-varying, some amount of "forgetting" (of out-dated knowledge) may be

desirable.



It would be unreasonable to expect the learner to perform well on

inputs that are significantly different from those appearing in the training set;

for example, by extrapolating far outside the training domain in a function

approximation problem. However, it is reasonable to assume, in some cases,

that similar inputs should yield similar outputs.3 (This is especially true for

approximation of smooth functions.) A learner is said to generalize well if it

is able to maintain a low actual cost in this manner.

To some extent, decreasing the training cost may also decrease the

actual cost, but it is possible to minimize the training cost at the expense of

the actual cost. The learner has at its disposal some amount of

representational resources (a.k.a., degrees of freedom, adjustable parameters,

weights) with which to construct an internal model of the phenomenon

being learned. Some, but perhaps not all, of this representational power will

be needed to accommodate the training set examples-that which is leftover

is virtually unconstrained and can create wild deviations in the learner

output for areas of the learning domain sparsely represented in the training

data. The longer training proceeds, the more the training cost may decrease,

but the greater the potential for adverse effects caused by unconstrained

representational power. The resulting model may represent the training

examples well, but may be highly erroneous everywhere else. Actual cost has

increased and generalization has suffered. This phenomenon is sometimes

known as overfitting to the training data. A simple example appears below of

the approximation of a function f 91 i-4 91 with low training error but bad

generalization (Figure 1.4a).

3 One notable exception is the class of logical parity functions, where bit strings that

differ by only one bit yield different outputs.
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It should be emphasized that the large swings of Figure 1.4a are a result

of unconstrained degrees of freedom. Even if the target mapping contains

such large deviations itself, there is no way to know what those deviations

are-in all likelihood, Figure 1.4a is erroneous for inputs that are between the

training examples. The bottom line is that unconstrained degrees of freedom

are to be avoided.

Generalization can sometimes be improved by smoothing away large

deviations, but even this is no guarantee, especially in the case of noisy

training data. Figure 1.4b shows an a much smoother approximation for the

set of training examples of Figure 1.4a. If the training data were noise-free,

then this could be considered an approximation that generalizes well.

However, if the target mapping were actually linear (represented by the

dashed line), with the training data corrupted by noise, then the

approximation would be the result of overfitting to that noise, and

generalization would actually be poor.

Overfitting can be combated in either of two ways: empirically,

through cross-validation; or by taking steps to reduce the effects of

unconstrained degrees of freedom. For cross-validation, a portion of the

available data is reserved as the training set before training begins; the

remainder will be used to validate the learning as training proceeds.

Periodically throughout the training phase, an estimate of the actual cost is

calculated over both the training set and the validating set. Training ceases as

soon as this estimate begins to increase rather than decrease. Alternatively,

the estimate could be calculated only over the validating set, and training

stopped when this estimate began to grow significantly larger than the cost

taken over the training set. Cross-validation is a useful way to signal the



onset of overfitting, but is only as effective as the validating set is

representative of the set of possible examples.

The training cost need not represent only training error-it may also

reflect the undesirable contribution of excess learning resources. Thus, it may

be possible to improve generalization by minimizing such an augmented

training cost. A simple approach that is effective with some kinds of learning

architectures (e.g., backpropagation networks [11]) is to add terms to the cost

function that are proportional to the squares of the magnitudes of all the

adjustable parameters; to minimize the cost, then, the sum of these terms

must also be minimized. This is known sometimes as weight decay. In some

cases, relatively unimportant or unused resources will tend to be minimized

more than resources needed for learning; thus, their contribution to the

learner output, and their deleterious effect on generalization, is reduced. 4

Note that weight decay is only appropriate for parameters whose contribution

to the output increases with its magnitude.

In the case of approximation of smooth functions, weight decay can

enhance generalization by promoting an increase in the smoothness of the

learner's output function (cf. Figure 1.4) by reducing the magnitudes of swings

in the network output that occur between training examples [11]. On the

other hand, indiscriminate adjusting of parameters may undermine learning

by "erasing" acquired knowledge.

4 Parameters whose magnitudes fall below a certain threshold could be removed

completely from the learner's approximation structure. This brings us into the realm of

adaptive structure, one of the major themes of this thesis.
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1.2.3.2 Remembering What Has Been Learned

Incremental learning is the most natural learning mode for a number

of scenarios, but significant forgetting can arise as a result of updates being

made only to improve performance for the current example. On each update,

any of the learner's internal parameters might be adjusted to accommodate

the current example, and yet may undo previous adjustments made to

accommodate other examples, most likely those most dissimilar to the

current example. If examples are presented with enough uniformity over the

input space, with sufficiently gradual parameter updates, then forgetting may

not be a problem; however, these conditions are by no means guaranteed.

Training may remain fixed in a certain region of input space for extended

periods, possibly eliminating anything learned in other regions. Incremental

learning minimizes local training error, with the possibility of increasing

global training error.

Forgetting can be reduced by careful selection of learning structure and

algorithm. This will be covered more extensively in later chapters.

1.2.4 Learning as Function Approximation

The larger part of this thesis will be concerned with learning tasks in

which the target concepts are functions that map numerical inputs into

numerical outputs: f: 9in _> 91m (Figure 1.5). For simplicity, target functions

are assumed to be smooth (i.e., once differentiable) and bounded over the

domain of interest. The learning mode is assumed to be incremental,

performed using streams of training examples (input/output pairs).
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Figure 1.5. Supervised Learning Structure
for Function Approximation

From a geometric perspective, each training example is simply a point

in the m x n input/output space. The goal of learning is to construct a

multidimensional surface that approximately intersects all points closely

enough to yield low error over the space, while varying as little as possible

between points to preserve generalization. In other words, learning may be

viewed as the identification of a manifold that minimizes a cost function

based on approximation error and surface energy over a set of vectors.

Since no assumptions are yet made about the unknown target function

other than smoothness and boundedness, the choice of approximation

structure used by the learner is rather unconstrained-any approximation

structure that is known to converge uniformly to any target function as

described above is sufficient for learning, e.g., a polynomial approximation.

However, there are other considerations that guide the choice of structure,

most notably the convenience of incorporating prior knowledge of the

otherwise unknown target function into the approximating function before

training commences, and robustness to the forgetting that might occur as a

result of uneven ordering of examples in the training stream.



1.3 On-Line Learning

The discussion will focus now on scenarios in which incremental

learning is carried out under more realistic conditions. Specifically, it will be

assumed that training examples are generated in real-time by an actual

dynamical system, such that: training examples may appear in the training

stream in any order consistent with the (possibly uncontrolled) dynamics of

the system of interest; and training data is subject to corruption by noise. Of

particular interest is learning in the context of control and modeling of

unknown dynamical systems.

Previously, a broad range of functions seemed appropriate for use as

learning approximation structures. The assumption of on-line learning,

however, further constrains the choice of approximation structure and

learning algorithm.

1.3.1 Motivation: Application of Learning to Control

Conventional control methodologies generate control laws based on

dynamic models of the plants to which the resulting controllers will be

applied. The availability of such models may make it possible to design

controllers that meet realistic specifications for performance and stability of

the closed-loop systems.

But what is "realistic" is determined in large part by the accuracy of a

particular plant model over the operating range of the actual plant. For

example, if pole-placement techniques are used to design a controller for a

nonlinear plant based on a linearized model of that plant, the accompanying

modeling errors may result in instability due to misplaced closed-loop poles.

However, as long as performance specifications can be relaxed, such instability

can be avoided without changing plant models if the modeling error can be

bounded as a function of the operating point of the system and the control



law is then designed according to worst-case scenarios. In the above case, this

approach might result in the selection of target poles situated farther than

necessary in the left half-plane, yielding a more stable but less responsive

closed-loop system.

Model inaccuracy may be unavoidable for practical as well as analytical

reasons: more accurate models are often complicated and unwieldy and thus

not suitable for practical applications, but simplification of a model inevitably

introduces more error. Even when a usable and accurate nominal model is

available, actual model parameters may deviate significantly from nominal

values-a type of model uncertainty that cannot be eliminated as long as

controllers are designed exclusively off-line without reference to the

particular system of interest.

Adaptive control strategies have arisen in response to limitations in

modeling accuracy, and also as a way to combat the effects of unknown or

unpredictable disturbances [1]. As with nonadaptive controllers, an adaptive

controller is initially designed off-line using a nominal plant model, but has

the added ability to generate on-line adjustments to its control law based on

the recent observed behavior of the closed-loop system. Adaptive control

thus provides some recourse for problems caused by modeling error and

plant parameter uncertainty, and may improve system performance.

However, adaptation is essentially a reactive dynamic process; as such,

time is needed for an adaptive system to reach a fully adapted state. One can

imagine an adaptive controller continually bombarded by extraneous

disturbances or unfamiliar dynamics and continually trying to adapt, yet

never being completely adapted to the current situation. The effectiveness of

the adaptive approach has its limits; but it is possible to improve performance



even further by relieving some of the burden from the adaptive component

of the system.

"Disturbances" to the adaptive system may be separated into two types:

those that are a function of the operating condition of the plant, i.e.,

"predictable" disturbances (plant parameter variation, unmodeled time-

invariant dynamics); and those that cannot be predicted from the operating

condition of the plant (time-varying dynamics, random noise and

disturbances). Predictable disturbances can be observed over periods of

prolonged interaction with the system and eventually be associated

(implicitly) with the operating conditions under which they occur. This

enables the controller to anticipate predictable disturbances as they happen-

rather than simply recognizing them after the fact-and hence respond more

quickly than an adaptive system could. By augmenting a purely adaptive

control system with a learning component to map operating conditions to

appropriate adjustments to the control system, a significant portion of the

adaptive burden may be eliminated, along with associated performance

limitations and overhead. This approach is known as learning-augmented

adaptive control [3].

Learning-augmentation requires the addition of a learning system,

consisting of a learner and a facility for generating training data from

information within the adaptive system. In learning-augmented direct

adaptive control (Figure 1.6a), the learning system supplies the controller

with a set of control parameters s k as a function of plant output 6 y. The

5 The learning system could be initialized either with a zero mapping, in which case

the adaptive component would provide all initial control parameters in the form of corrections;

or with a nominal control law. This will depend on the approximation structure used by the

learner and its ability to be so initialized.
60bservability of all relevant plant states is conveniently taken for granted.



adaptive component compares plant behavior (in response to a reference

input r) to that of a reference model, and adjusts the control parameters by Ak

for that time step in such a way that the difference in behavior e should be

decreased for future time steps. The learning system trains the learner to

generate control parameters (as a function of plant output) that are more

consistent with the observed parameters after adjustment by the adaptive

component; posterior learning adjustments 6k, derived from past (and

possibly future) values of Ak, are used to construct targets for the learner.

Over time, the learner becomes better able to provide "correct" control

parameters, so that the contribution of the adaptive component is reduced. In

the limit and under ideal conditions (i.e., no noise or unpredictable

disturbances), adjustments by the adaptive component would fall to zero as

the learner's mapping of plant output to control parameters more closely

approximates the ideal mapping.

Note that the effects of noise and disturbances that are not correlated

with plant output can be effectively averaged out by the learner and not

necessarily assimilated into the control mapping; the adaptive component

will be more likely to attempt to compensate for these. Note also that there

are no time constraints imposed on learning that would dictate that learning

proceed in sync with adaptation. The learning system may take time out to

construct its own posterior estimates of the "correct" control parameters for a

particular operating point (e.g., via smoothing) before actually training the

learner. The learning system may thus take a view of the system that is more

global in time, whereas adaptation is local in time. In addition, to minimize

potential interference of the learning system with normal adaptation, the

learning system dynamics should be constrained to be much slower than



those of the adaptive component, so that adaptation may operate under quasi-

static conditions with respect to learning.

Figure 1.6a. Learning-augmented direct adaptive control

Learning-augmented indirect adaptive control is similar to direct

adaptive, but the learner is required to associate plant model parameters

rather than control parameters with plant output (Figure 1.6b). In this case,

the adaptive component estimates the model parameters p based on observed

plant inputs u and outputs y. The learner then must make the association

between plant output and model parameter values. Estimates from both the

learning system (pi) and the adaptive estimator (Pa) are made available for on-

line design of the control parameters k-depending on the assumed

reliability of either parameter estimate, the control design may use one or the

other or some combination of the two. As with the example of direct

adaptive control, the learning process may be delayed relative to adaptation.



The learner is trained on posterior estimates of the model parameters Ppost

derived from the other estimates.

SController Plant

k

Control Law Adaptive
Design Pa Estimator

Pl Learning
System

Figure 1.6b. Learning-augmented indirect adaptive control

Learning and adaptation can be viewed as complementary: where

learning serves to enable the controller to deal with predictable disturbances,

adaptation can be used to handle the remaining unpredictable disturbances;

where adaptation reacts immediately to undesirable conditions, learning may

proceed gradually and out of sync with adaptation.

Learning-augmented adaptive control is one example of how learning

can be used to circumvent common design problems by allowing the

controller to mold itself to the actual plant with which it is coupled. In the

next section we discuss how learning may be applied to predict the behavior

of dynamical systems.

1.3.2 Prediction

Dynamical system behavior can be modeled in different ways. At one

extreme, a full-blown dynamic model of the system can be constructed. A



somewhat simpler problem is to predict future outputs of the plant given a

set of recent outputs.

A learner can be trained incrementally and on-line in parallel with the

plant (or a plant model) (Figure 1.7a).

Plant
plant P o plant
input Mel output

Learning I predicted
System W output

Figure 1.7a: Learning as prediction

At each time step, the learning system (Figure 1.7b) collects past and present

inputs and outputs into an information vector that the learner is trained to

associate with the plant output some number of time steps in the future.

Two conditions are necessary for learning to be successful: i) the plant state

must be observable in the outputs used for learning; and ii) the "plant

history" carried by the information vector must be sufficiently extensive to

convey future plant behavior. If either condition is not met, then the learner

will not be provided with enough information to infer a precise relationship

between past and future outputs.
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Figure 1.7b. Learning system for prediction

Predicting what the plant outputs will be n time steps hence (or n-step

prediction) may be better accomplished via this direct mapping than by

calculating from a parameter mapping for the simple reason that the direct

mapping subsumes all effects on plant outputs that may be caused by

variations in plant parameters in the interval between the present and future

times. However, unlike direct n-step mappings, parameter mappings may be

used to make predictions for any value of n.

1.3.3 Requirements for Effective On-Line Learning

Crucial to the success of on-line learning applications is the robustness

of the learning system to unavoidable real-world conditions. In every

example presented, measurements of plant output used as learner input must

be assumed to be noisy. Since it is clearly undesirable for the learner to

incorporate noise into its mapping, some sort of filtering must occur as a

feature of learning.

A stream of training examples is generated by the system as it wanders

through its operating envelope. It may not be possible to cause the system to
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remain in particular regions of the envelope for extended periods of time, or

at all-in fact, in many cases the system will tend to remain near a set point

(e.g., regulated systems). This disparity in the amount of training that occurs

over the envelope is a potential cause of "forgetting" in the more sparsely

covered regions unless a suitable learning structure and algorithm are

selected.

We must also allow for the possibility that a reasonable off-line

approximation of the target mapping of the learner is available before on-line

training begins. The ability to incorporate such prior knowledge into the

learner in a straightforward manner provides a "head start" on learning that

can significantly decrease learning time. In addition, a learning structure that

allows convenient incorporation of explicit knowledge prior to learning may

also allow convenient extraction of explicit knowledge after learning.

In light of these issues, the selection of an approximation structure and

parameter training algorithm is addressed in Chapter 2 and Chapter 3,

respectively. Chapter 4 discusses the idea of learner structure adaptation:

adding or deleting resources from the learning structure in order to achieve a

better balance between error and generalization. Similar to learner parameter

adjustment, learner structure is adjusted when it is determined that the

training data are not well represented by the current structure. In contrast to

parameter adjustments, which generally occur gradually, structure

adjustments are discrete and potentially dramatic. Therefore, it is important

that structure changes not be made in response to noisy individual training

examples, but rather to overall trends in the training data.

1.4 Summary of Chapter 1

It was suggested that more high fidelity models of dynamical systems

may be obtained by applying on-line learning methods to the problem. One
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of the main contributions of this thesis, adaptive learning structure, was

motivated. Special requirements of learning structures and algorithms for

training structure parameters were presented. After a discussion of general

topics in learning, the focus was narrowed to learning features of real

dynamical systems under on-line conditions, accompanied by the

presentation of a few examples.



2 The Learning Architecture

Selection of a learning architecture is an important first step in

designing a learning system that meets the requirements of on-line learning

applications. In addition to possessing a suitably broad approximation

capability, the architecture should allow learning from adversely ordered

training data, as well as allowing straightforward initialization and

subsequent interpretation of the learned mapping.

2.1 Global vs. Localized Representations

Many classes of approximation structures are capable of representing

continuous functions with arbitrary accuracy over a finite domain. For

example, a polynomial of sufficiently high order can approximate any

continuous function arbitrarily well over some interval [28]-

f(x) = C,jx (2.1)

Alternatively, a function may be approximated by a weighted sum of

Gaussian functions [25, 29]-

f(x) = c, exp( (2.2)

These two types of approximation form representations of functions in

distinctly different ways. The polynomial approximation is an example of a

global representation of the target function (Figure 2.1a), whereas the

Gaussian approximation is a spatially localized representation (Figure 2.1b).
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The terms "global" and "spatially localized" characterize the scope or

"influence" of individual approximation parameters over the input space. If

a parameter value of a global representation (e.g., a polynomial coefficient) is

changed, the value of the approximation may change significantly over the

entire input space. More precisely, for parameter changes Ac, in response to

inputs x from the learning domain X,

E[Ac, Af (x)] >> 0, all x e X (2.3)

In contrast, changing a parameter value of a spatially localized representation

(e.g., the magnitude, center, or width of a Gaussian function) will change the

approximation significantly only near a specific local region (e.g., near the

center of that Gaussian function) and very little far away; thus, the influence

of individual parameters is localized with respect to input space.

E[Ac, -Af(x)] = 0, Vx X s.t. Ix-x, >>0 (2.4)

Either approach has potential advantages and drawbacks depending on

the application. Global representations may be capable of approximating

certain functions over large regions of input space using relatively few

parameters; for example, three parameters (amplitude, frequency, phase) are

sufficient to represent any sinusoid over any interval. Global representations,

if implemented in hardware, in some cases offer robustness to individual

component failures-sever one wire at random, and the resulting error will

be spread over the entire mapping, more likely preserving the functionality

of the circuit than if error were concentrated in a local region of input space.

On the other hand, the correspondence of certain parameters to certain

input regions that is afforded by spatially localized representations allows the

approximation problem to be decomposed to some extent into local



subproblems-this facilitates the incorporation of prior knowledge of the

target mapping and subsequent extraction and interpretation of learned

knowledge. In the example above, each individual Gaussian function can be

set to approximate the target function about its center, such that the

superposition of all Gaussian functions then serves as a reasonable initial

approximation that can be refined and augmented through subsequent

learning.

Localized influence of parameters results in a decreased tendency to

forget during learning. With many learning algorithms, spatially localized

parameters tend to be updated only slightly or not at all in response to

"remote" training examples, i.e., examples for which they have small

influence. If training becomes fixed in one particular region, only parameters

local to that region will be updated significantly-other parameters will

remain mostly unchanged until training recommences in their respective

regions. This feature can be exploited to defray the cost of computation by

training only those parameters that contribute significantly to the current

network output.

Whereas global representations may require few parameters, spatially

localized representations may require many more parameters due to the

limited scope of those parameters. Since every region of the input space may

require a set of spatially localized parameters to represent the mapping there,

the total number of parameters required increases with the size of the input

space. In particular, the number of parameters generally increases

exponentially with the dimension of input space. Thus, the potential for

representational inefficiency may be great, depending on the target mapping.

There are obvious trade-offs that must be considered when deciding

between global and spatially localized representations. In the context of on-



line learning applications, however, the advantages of spatial localization are

more appealing than those offered by global representations. The next section

covers spatial localization in more detail, and introduces a class of

approximation structures with this property.

2.2 Spatially Localized Representations

Spatial localization is a feature of a number of architectures that can be

viewed as extensions/variations of the Gaussian example presented

previously. This section discusses them in detail.

2.2.1 Radial Basis Function Networks

The Gaussian example can be generalized to functions in higher

dimensions. Any scalar function of the vector x whose output is non-

negative and monotonically decreasing as the (Euclidean) distance from some

center x' may be used in place of a Gaussian function. Such functions are

known as radial basis functions (RBFs), or RBF units, and their weighted

superposition yields a radial basis function network (RBFN) [25]:

f(x) = c,R, (lx - xclI) (2.5)

x-x = x-x,) (x-x) (2.6)

RBFs need not be radially symmetric-distance from center may be calculated

with respect to a symmetric positive definite weighting matrix V,:

li) ( XiCII = (X - xi i x 1 (2.7)

As well as having all the desirable features of spatial localization, RBFNs

have been shown to be universal approximators of continuous functions [29].



2.2.2 Basis/Influence Function Networks

2.2.2.1 General Description

The idea of local approximations, a feature of spatial localization, can

be exploited further if a few changes are made to the simple RBFN

architecture, to yield new architectures known as basis/influence function

(B/I) networks [3, 12, 30].

Rather than combining network units via superposition, as is done

with RBFNs, it is more appropriate (and intuitive) to interpolate among the

local approximations they represent. The weight cj of an RBF unit may be

thought of as a local approximation that is represented as a constant-refer to

this as the basis function; the RBF itself defines the scope of this basis function

over the input space-call this the influence function for the local

approximation. The network approximation is then the sum of the local

approximations weighted by their relative influences at each point in space.

The relative, or normalized, influence function of a local approximation is

simply its fraction of the total cumulative influence of all units over input

space; this value varies from 0 to 1.

iC (II x - x1) (x(2.8)y(x) = B,(x- x ) = i x B,(-x )Ix -(2.
k

where

x = input vector

y(x) = scalar output

xC = center of unit j

Bi = basis function for unit j

il = influence function for unit j

I, = normalized influence function for unit j



(Note that normalization changes the effective influence functions,

and in some cases may affect spatial localization. Overall, though, the

desirable features are retained with respect to interpolation as opposed to

extrapolation. This is discussed further in the next subsection.)

Basis functions need not be constrained to constant functions; indeed,

ny function may serve as a basis function, as long as spatial localization is

preserved (i.e., as distance from input to unit center increases, the influence

function decreases faster than the basis function increases). Preferably, each

basis function is evaluated about the center of its influence function, i.e., as a

function of x-x'. Constant or affine functions make suitable basis functions,

although in some cases a larger set of adjustable parameters may be required

to construct good local approximations.

The choice of influence function dramatically affects the nature of the

interpolation performed by the network. The next subsection discusses two

possibilities.

2.2.2.2 Influence Functions: Gaussian vs. Inverse Square

Gaussian functions are frequently employed as influence functions in

B/I networks [3, 12, 30]-

i(x) = c, exp (x - x) (x - x)] V, symmetric positive definite (2.9)

where the weighting matrix V is symmetric, positive definite. (Unless stated

otherwise, assume c = 1.0 always.) Since Gaussians decrease exponentially

with distance squared, there are many possible types of basis function with

which they may be paired without losing spatial localization, e.g., polynomial

functions of any degree, or sinusoidal functions [3, 30].



This thesis introduces an influence function with interesting

properties, the inverse square function-

i,(x - x)= [(x -c)TV(x - xc)] Vi symmetric positive definite (2.10)

A remarkable feature is created by the singularity in this influence function:

the normalized influence of a particular unit is always 1 at its own center, and

is 0 at the centers of other units. In other words, at the center of a unit, the

network approximation is exactly equivalent to the local approximation (basis

function) corresponding to that unit. In fact, it can be shown that the first

derivatives are also equivalent, and that the resulting network mapping is

smooth (i.e., once differentiable), assuming smooth basis functions (Appendix

A). Thus, the choice of inverse square influence functions allows values and

first derivatives of the network approximation to be initialized exactly and

arbitrarily as desired.

Consider a 2-input, 1-output network comprised of nine identical units

arranged in a 3x3 array. Examples of normalized influences for center, corner,

and side units are presented for Gaussian (Figure 2.2) and inverse square

influence functions (Figure 2.3).

A few things are readily apparent from the figures: a) the Gaussian

influences are smoother than the inverse square influences, whose values are

fixed at either 1 or 0 at each unit center; b) influences for both networks are

localized (for the most part) within the array of units, but not (as much)

outside the array; c) the influences of the corner and edge Gaussian units

reach maximum values at inputs far from their centers. These and other key

distinguishing features of the two types of influence functions are discussed

below.
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Figure 2.2. Normalized Influences for 3x3
Array of Identical Gaussian Units



Figure 2.3. Normalized Influences for 3x3
Array of Identical Inverse Square Units



For simplicity, now consider 1-input, 1-output networks of units whose

influence functions have identical weighting matrices V = vI = 2I1, where a

is unit width. Figure 2.4 shows the normalized influences for Gaussian and

inverse square networks, respectively, whose units are centered at -4, 0, and 4,

with a = 1. Similar networks with a = 3 appear in Figure 2.5. A number of

important features are illustrated in these figures.
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Figure 2.4. Normalized influences for Gaussian (top) and
inverse square (bottom) B/I networks with three identical
units at -4, 0, and 4. Width a = 1.

Increasing the width from 1 to 3 creates more overlap of influence

between neighboring units in the Gaussian network. This means that units

exert influence more uniformly over the space relative to one another, so
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that normalized influences are flatter and smoother. A similar effect can be

achieved by moving the unit centers closer together to increase the overlap.

Either way, it is clear that the quality of the combination of local

approximations depends on the widths of influence functions relative to the

proximity of neighboring units. The smaller the overlap between adjacent

units, the more abrupt the transition from one local approximation to the

next. Figure 2.6 shows influences of units with centers at -7, 1, 5, 7, and 8,

where a = 3 for all units. Scanning from left to right, as the overlap between

adjacent units increases, normalized influences flatten and spread out for the

Gaussian network.
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Figure 2.5. Normalized influences for Gaussian (top) and
inverse square (bottom) B/I networks with three identical
units at -4, 0, and 4. Width a = 3.
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Transitions between inverse square units, however, depend on the fact

that the normalized influence of a unit is fixed at 1 at its center and 0 at other

centers, and its first derivative is fixed at 0 at all centers [Appendix A]. By

satisfying these conditions, the normalized influence functions adjust

themselves to yield smooth transitions between units. In Figure 2.6, the

influences transition nicely between units despite the fact that a = 3 for them

all and despite their uneven spacing. However, notice the small "humps"

between distant units in the preceding figures: there is no constraint on the

influence to fall to 0 and remain there. As a result, inverse square
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normalized influences are somewhat less localized and less smooth overall

than those generated by Gaussian units, and may take on significant values at

points between units at whose centers their value is 0-i.e., "humps" and

"ridges" may exist between/among unit centers.

Inverse square influences are not affected by uniform scale changes in

the widths of all units-normalization cancels them out (cf. Figures 2.4 and

2.5). However, changes in the widths of individual units (for both inverse

square and Gaussian networks) makes a difference in the relative rate of

transition between local approximations; i.e., increasing the width of a single

unit expands the region in which its basis function dominates with respect to

neighboring basis functions.

At points far away from all unit centers, the Gaussian and inverse

square influences behave quite differently. Assuming all units have the same

width, normalized influence(s) of the nearest border unit(s) will dominate in

the case of Gaussian networks; for inverse square influences, all units will

tend to share equally. These effects become more pronounced as distance

increases. The preceding figures clearly demonstrate this point.

The weighting matrices of individual units can be allowed to vary

independently of one another. This extra representational power makes it

possible to achieve better results from either type of network, but may also

create undesirable features in the network.

The problem of broader, flatter normalized Gaussian influences (Fig.

2.6) could be remedied by using narrower widths for more closely positioned

units, resulting in more uniform heights from the different normalized

influence functions.
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Figure 2.7. Normalized influences for Gaussian (top) and
inverse square (bottom) B/I networks with three units at
-4, 0, and 4, with widths a of 3, 3, and 0.25.

However, this disparity of width could also lead to a loss of localization, as

illustrated in Figure 2.7, where a "narrow" unit dominates in a small region

inside the larger region dominated by a "broader" unit. Similar problems can

occur with inverse square networks: in Figure 2.7, the largest normalized

influence to the far right belongs not to the nearest unit, but rather to the

middle unit, due to the relatively small width of the rightmost unit

compared to that of the middle unit.
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For distant inputs, Gaussian units with large widths tend to dominate,

due to the slow rate of decay of their influence functions. Inverse square

units will share in proportion to their variance values.

Ultimately, the choice of influence function depends on what is

expected from the network. Normalized Gaussian influence functions tend

to be smoother than inverse square influences and thus will create smoother

combinations of local approximations. Inverse square influences guarantee

that each local approximation predominates in some region of the input

space without the possibility of becoming overwhelmed by neighboring local

approximations, but at the expense of smoothness. (This trade-off is

reminiscent of that between error and generalization discussed in Chapter 1.)

One must also weigh the benefits of extra parameters (e.g., fully adjustable

weighting matrices for each independent unit) with the responsibilities of

training them. To take full advantage of Gaussian units, individual width

values must be set to yield good interpolation between arbitrarily positioned

units, whereas inverse square units seem to be more robust to these values,

and may be able to perform adequately with units of equal width.

A note on normalization: It has been demonstrated how localization

may not strictly hold after localized influences have been normalized.

However, the proximity of an input to different unit centers remains the

chief criterion for computing the network output from the set of basis

functions; in this sense, each basis function remains localized for purposes of

interpolation. As for extrapolation, it is unclear how to proceed as the

distance from all units becomes very large: whether to fall to zero (RBFNs);

to combine weighted local approximations (normalized inverse square

influences); or to neglect some basis functions in favor of others (normalized

Gaussian influences). In any case, this is a secondary issue, since the validity



of the network approximation should be expected to decline outside the

region of space populated by units, and under no circumstances should

extrapolation be relied upon to produce accurate mappings. Proper

utilization of spatially localized networks implies that unit coverage should

extend throughout the entire region of space for which a mapping is being

constructed.

As a method of knitting together local approximations, normalization

appears to perform better than simple superposition (as done with RBFNs).

In Figures 2.8a, 2.8b, and 2.8c, a planar surface is approximated using a RBFN,

a B/I network with constant basis functions and Gaussian influence

functions, and a similar B/I network using inverse square influence

functions. The local approximations were simply the values of the target

function at the unit centers. Most notable is the difference in smoothness

between the RBF and B/I networks, the latter of which yield a much more

"planar" surface. The variance of the Gaussian influence functions was

chosen so that the transitions between local approximations are rather abrupt,

making the local approximations themselves distinguishable. Note that the

inverse square network yields a slightly more gradual interpolation.

One point of interest: if the basis functions are upgraded to be affine

functions1 , the local approximations can be set to match the target function

exactly; subsequent interpolation would yield an exact network

approximation. In fact, only one unit is necessary to represent the linear

target function. If the target function were of higher order-say, a quadratic

1 A function is said to be affine if its value for some input x minus its value for an input of

zero varies linearly with x:

f(x) = f(O) + Ax, A is linear (2.11)



function-each such basis function, properly initialized 2, could be regarded as

a first-order Taylor approximation of the target function about the center of

that unit.

2.2.3 Training the Parameters

Networks using the B/I architecture have performed well in a number

of practical applications involving function approximation for control and

estimation of nonlinear dynamical systems [12, 16, 19, 20, 24]. But just as

important as architecture selection is the choice of a learning algorithm with

which to adjust the network parameters to fit the observed training data.

Chapter 3 discusses relevant issues and presents an algorithm for on-line

training of basis/influence function networks.

20ffset value set equal to the value of the target function at that unit center; gradient

vector set equal to gradient vector of target function at that unit center.
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Figure 2.8a: Gaussian RBF

Figure 2.8b: Constant/Gaussian B/I
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3 The Learning Algorithm

Given an adequate approximation structure, an algorithm is required

that is able to adjust the values of the free parameters to yield a mapping that

closely fits the training data and generalizes well when presented with

unfamiliar inputs. The problem presented here is to perform this task on-

line, in real-time, from noisy, arbitrarily distributed examples appearing in an

order constrained only by the dynamics of the system that generates them.

In general, the quality of the learned mapping is calculated with respect

to a cost function, or objective function, typically consisting of some measure

of the approximation error over the domain of interest, perhaps with

additional constraints that should be met. The goal of the learning algorithm

is to minimize this objective function by adjusting the network parameter

values.

Learning from a stream, rather than a batch, of training examples is

necessarily incremental-minimization of the objective function must be

done piecemeal from available training data, rather than minimizing over

the entire set of examples all at once. The best that can be done in this case is

to adjust .the parameter values so that the cost associated with the current

example (or set of examples, if a hybrid batch/incremental method is

employed) is minimized. Such adjustments for different examples may

actually work counter to each other, so that adjustments for later examples

may negate adjustments made for previous examples. Hence, if training is

not performed correctly, the parameter values may not converge and little

learning will occur.



Gradient learning methods, a favorite in the literature and relatively

well-understood, will be introduced in the next section as a starting point for

further enhancements to this basic approach, which will be outlined in later

sections. Finally, the algorithm developed and evaluated in this thesis will be

presented.

3.1 Gradient Learning Algorithms

Given a network (parameterized by a vector p), a target function, and

an objective function J that quantifies how well the network approximates

the target function based on available data, a gradient descent algorithm seeks

to minimize J by making successive adjustments to p in response to training

data, such that J decreases after every adjustment [7, 31]. If the objective

function is visualized as a surface over p-space, the value of J can be seen to

move "downhill" along the surface after each adjustment, or along the

negative gradient at the current point. Hopefully in this way J eventually

reaches its global minimum, as a result of p attaining its optimum value,

yielding the "best" network.

The next subsection discusses selection of the objective function. Later

subsections will cover different approaches to gradient descent and potential

problems that must be addressed.

3.1.1 The Objective Function: Batch vs. Incremental

The objective function (or cost function, as it is also known) serves as

an indicator of network performance by measuring the extent to which the

goals of learning are being satisfied. Typically, some norm of the

approximation error serves as the objective function, although additional

measures reflecting the desirability of other features (e.g., smoothness of the



mapping, configuration of the units relative to the training data) are often

factored in.

Here are some examples of possible error norms:

infinity norm: Jy= sup Ytarg(X) - yne(x) (3.la)

2-norm (squared): Jy = fYtar.(X) -Yne (X)2 dx (3.1b)

expected squared error: Jy = xPx(xo). Ytar(Xo) -Ynet (Xo) 2 dxo (3.1c)

Selection of an error norm depends on the goals of learning. For example, if

the trained network is subsequently used in an application in which a large

error in response to any single input could have disastrous consequences,

then the infinity norm is appropriate. In other scenarios, only average error

may be important, allowing the use of one of the other norms.

In order for training to reduce this cost directly, it would be necessary to

compute the cost before each parameter adjustment. This is not always

possible, due to the unavailability of the target mapping over the entire

learning domain at each adjustment, or practical, in light of the huge

computational effort entailed.

An alternative to directly minimizing the true cost is to minimize the

contribution of the current (kth) example to the cost. In effect, the global

objective function is traded for an incremental objective function. Instead of

the equations above, we would have, respectively:

absolute error: Jy(xk)= Ytar (Xk)- Yet (xk)l (3.2a)

squared error: Jy (k) [Ytarg (Xk)-Ynet (xk)]2 (3.2b)

squared error: Jy (xk) = [Yt.r(k)- Y.et (k )]2 (3.2c)



A significant drawback with the incremental approach is that

parameter updates for individual examples are now decoupled and may work

counter to each other. Training on some examples can actually undo

previous training for others. This means that the quality of the learning can

depend significantly on the ordering of examples in the stream of training

data.

Note that incremental training tends to implicitly minimize the

expected error of the network over the distribution of training examples,

unless steps are taken to alleviate nonuniformities in that distribution.

For certain linear network problems, it can be shown that incremental

supervised learning methods yield convergence to the global optimum

solution [27]; however, there is no guarantee of convergence for most

problems.

3.1.2 The Objective Function Topology

The mapping of the objective function over parameter space may

contain hills, valleys, crests, troughs, and saddle points; there may be many

local minima in addition to a global minimum that we wish to locate. The

manner in which the parameters are adjusted "downhill" can result in

convergence that is either slow, oscillatory, or "just right"; parameter

adjustments that are too large often result in divergent behavior.

initial p \

Figure 3.1. Oscillatory convergence of
gradient descent to local minimum



Consider a simple update rule that moves the parameter vector p by a

negative fraction of its gradient at each step. Assume that the initial value of

p lies near the end of an elongated trough (Figure 3.1).

Adjustments move p directly downhill at each step. Due to the

elongated shape of the trough, p is adjusted more across the trough than

down it, so that rather than approaching the minimum point (center "x")

head on, p experiences a fast oscillation across the width of the trough plus

slow travel down its length towards the minimum.
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parameter

Figure 3.2. Gradient learning can be sensitive
to initial conditions. In this example,
initial parameter values greater than 5.0
result in convergence to the rightmost
minimum, a suboptimal solution.

This example demonstrates the dependence of the final solution on the

landscape of the objective function and the initial value of p. This local

nature of gradient methods makes it impossible to place any guarantees on

the quality of the final solution: the algorithm is prone to converge to

whatever minimum lies nearby, whether deep and nearly optimal, or

2



shallow and highly suboptimal (Figure 3.2). This presents practical problems

for learning algorithms that must be addressed.

3.1.3 Variations on Gradient Descent

An excellent discussion of gradient learning methods may be found in

Chapter 6 of [7]. A brief summary of different methods is presented here.

The simplest way to move down the gradient is to take steps of a

constant, predetermined step size ,P, in the direction opposite the gradient:

Ap = - , (3.3)

This may eventually find a minimum, if it exists, but will limit cycle about

the minimum unless landing exactly on it, since the size of the update is zero

only when the gradient is zero.

Another method in common practice instead adjusts p an amount

proportional to the gradient:

Ap = -AP, VJ (3.4)

The constant coefficient A, is often called the learning rate in learning

applications. In contrast to the constant step size method, this algorithm is

able to converge completely, since the updates shrink in size as the gradient

magnitude approaches zero. However, this convergence is not guaranteed.

Better performance can be obtained if the learning rate, rather than

being constant, is linked to the curvature of the objective function. For small

enough adjustments, each step must result in a reduction of the objective

function; however, since the objective function can be curved, any

adjustment may overshoot and actually increase the objective function for

that training step. In fact, subsequent adjustments may likewise overshoot,



causing oscillations in the parameter values and slower convergence.

Reducing the learning rate may eliminate oscillations, but convergence time

may then be significantly increased.

One alternative is to make the learning rate adaptive by sensing

overshoot. If the objective function consistently decreases (say, for the past n

steps) in response to an update, then the learning rate is increased, usually

linearly; if the objective function increases, the learning rate is decreased,

usually exponentially (to prevent learning rate blow-up and subsequent

divergent behavior); otherwise, it is unchanged:

+ a if AJ < 0 consistently

Ap = 1-bAp if AJ > 0 (3.5)

0 otherwise

Decreasing the learning rate serves to damp out oscillations that accompany

persistent overshoot; increasing it should speed convergence when overshoot

is not a problem. (Consult [4, 10] for discussions of similar techniques.)

Newton's method is derived from a second-order Taylor series

approximation of the objective function with respect to p, which results in

this update rule for p:

Ap = -H-1 -VpJ (3.6)

The scalar learning rate A, is replaced by the inverse of the square Hessian

matrix H, the second derivative of the objective function J with respect to p.

This method accounts for the curvature of the objective function in all

directions, yielding faster learning rates where curvature is small, and vice

versa. Unfortunately, a matrix inversion is required at each step, making this

approach computationally expensive and impractical in most cases. One



variation, the pseudo-Newton method, works from approximations of the

Hessian (e.g., neglecting off-diagonal elements).

The steepest descent method, rather than relying on some a priori

notion of step size, actually calculates the distance that must be traveled along

the gradient direction to achieve the smallest value for J. The related method

of conjugate gradient descent helps prevent a zig-zag approach to the

minimum by calculating the direction of descent as a combination of the

gradient and the previous direction followed.

Each method outlined above has advantages and disadvantages. The

choice will depend on the problem at hand.

The different update methods presented so far are concerned mainly

with speeding convergence to a minimum, any minimum; they are still

liable to converge to a local rather than the global minimum. Ironically,

though, imperfections in these methods may make the algorithm less prone

to converge to relatively shallow local minima-for example, an overshoot

of a local minimum may allow the algorithm to escape that region of

parameter space. In general, deviating from the exact gradient direction may

make shallow local minima avoidable, as may noise in the training data.

The technique of momentum is a relatively straightforward way both

to avoid local minima and to dampen oscillations in subsequent updates.

Rather than adjusting p along the update calculated, a combination of the

calculated update and the previous update is used:

Apk+1 = -p . (1-u).VpJk +1" Apk (3.7)

O<1<1

This is simply a discrete-time first-order filter applied to the gradient updates.

Oscillations will tend to cancel, and persistent updates in the same direction



be preserved. In addition, as p reaches the bottom of a shallow basin,

momentum may at first cause an overshoot, providing an opportunity for

escape from shallow local minima. However, momentum may also slow

convergence by enabling escape from global minima.

3.1.4 Comments

The previous discussion of various gradient algorithms has assumed

that the objective function remains the same for each training step. This is in

fact true only for batch learning; during incremental learning, the objective

function changes with each new training example. This tends to drive p

towards an average value that roughly minimizes the objective functions of

all examples; it may also aid convergence to the global minimum by creating

training "noise" due to the changing objective function. However, if the

learning rate is too high, and instantaneous objective functions too

dissimilar, the value of p will tend not to converge to the batch solution, but

rather to adapt itself to the most recent examples presented-the network will

forget what it has learned about previous examples.

It has been tacitly assumed that all adjustable parameters affect the

network mapping in essentially the same way, and should therefore be

viewed as equivalent for training purposes. This assumption is often false

and precludes exploiting parameter differences to achieve better training. In

the case of B/I networks, influence function parameters affect the output

differently than do basis function parameters; potential improvements in

learning may be afforded by an algorithm that exploits these differences.

Gradient descent is purely local-it incorporates absolutely no global

information, and is prone to converge to locally optimal solutions. Although

the primary objective of the learning algorithm is to minimize the error

norm, perhaps the objective function can be augmented to encourage the
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network to organize itself such that the globally optimal solution is more

likely found. For instance, a secondary objective of the algorithm can be to

arrange the network units to most efficiently represent the training data,

leading eventually to a more accurate approximation.

The next section explores the idea of hybrid learning algorithms that

employ both supervised and unsupervised learning techniques to achieve the

objectives of low error and optimal unit arrangement, respectively.

3.2 An Introduction to Hybrid Algorithms

The operating philosophy for the remainder of this thesis is that a well-

trained network can be more readily obtained if the objective function that

guides training incorporates more than just error criteria.

The ability of a B/I network to approximate some function varies with

the center locations and widths of the network units. A learning algorithm

derived from a purely error-based objective function (say, a pure error

gradient algorithm) can adjust centers and widths, and may even result in

unit configurations that resemble a priori common sense notions of the

"correct" final network layout. But why not address these ideas of proper

layout and overlap of units directly, rather than hoping that things come out

in the wash?

The following discussion presents methods of building additional

constraints into the objective function that directly encourage unit

positioning and overlap that best match the organization of the training data.

Section 3.2.1 presents relevant work by Moody and Darken [20] involving

unsupervised training of unit centers; the following section introduces a

novel yet analogous method of training unit widths; and finally, the

implementation of weight decay as a method of promoting smooth network

mappings is discussed.



3.2.1 Center Training via Clustering

Section 1.2.1 introduced the idea of unsupervised learning and

presented the learning of input cluster centers as an example. It is exactly this

approach that has been adopted by Moody and Darken [20] to train network

unit centers, in parallel with gradient training of basis functions. Their

approach is summarized below.

The algorithm seeks to maximize coverage of the training inputs by a

fixed number of network units. The rationale is that to get the best

performance from the network, the unit centers should be placed such that

the cumulative squared distance from all training inputs xk to their nearest

centers Xwck is minimized:

global cost: Ix = lxk - I (3a)
k

This equation is incrementalized and used as the objective function of an

unsupervised center training algorithm:

incremental cost: JI = 1x - c 112  (3.8b)

incremental update: Axi = c. (x - xi)

0 < ,C <1 (3.8c)

XC constant

For each example, a "winner" unit is selected, i.e., that unit whose

center xc, lies nearest the example-only the center of that unit is updated

on that example. This algorithm is known as incremental k-means

clustering, and for small enough learning rate is known to cause the set of

centers to converge stochastically to a corresponding set of local "centroids",

i.e., each center is placed at the average position of the set of inputs for which



that center is the nearest [13]. Moody and Darken train the networks by

cycling through a predetermined batch of examples, rather than using a

stream of indefinite length determined on-line. (Note that this is essentially

a gradient algorithm that may not yield the globally optimal solution.)

Center locations are initialized with random values within the

training domain. Training then proceeds in two phases: centers are trained,

and once they have converged, widths are set heuristically to achieve a

desirable overlap between neighboring units; basis functions (constant

functions) are trained via gradient descent to satisfy a squared error objective.

Moody and Darken report faster convergence with this hybrid

algorithm than with a purely supervised algorithm. The improved

performance is attributed to the linearity of the unsupervised center update

rule, contrasted with the nonlinearity of the supervised rule.

3.2.2 Unsupervised Width Training

The clustering approach to center training, which seeks to locate unit

centers near the means of the local sets of inputs, suggests an analogous

method for training unit widths: that is, setting unit widths to approximate

the standard deviations of the local sets of inputs.

global cost: Ji = r2,k 2 (3.9a)
k

incremental cost: J = l2 - 2 (3.9b)

incremental update: Aoc. in Ac (r2 2- ) (3.9c)

Such a method, if successful, would enable the widths of the units to

shrink or grow according to the distances between neighboring units, thus

accomplishing implicitly what heuristic methods must do explicitly. In



addition, this type of training should be much faster than a supervised

approach by virtue of its linearity. It may also be possible to train an entire

weighting matrix to approximate the sample covariance of the local inputs,

allowing for the creation of influence functions with more complex shapes:

AVw - x [(X- xC). (x - XCin)T - Vwin (3.10)

3.2.3 Smoothness Constraints

As discussed in Chapter 1, the ability of a network to generalize to new

examples from those experienced during training is related to the extent to

which the mapping varies at points away from the training data.

Generalization tends to improve as the smoothness of the mapping increases

(assuming that the target mapping is smooth).

The desire for maximum smoothness can be expressed in the objective

function as a norm of the second derivative (e.g., the Hessian matrix) of the

network mapping [14]; for example,

Js J dx dx = IIHII dx (3.11)

Minimizing this norm will smooth the mapping. But clearly the analytical

evaluation of such a norm is intractable, and even a close numerical

approximation would be computationally impractical.

Alternatively, one could compare the linear basis functions of

neighboring units and adjust them so that the interpolation from one to the

other is more gradual. This approach requires that neighboring units be

identified and compared; unless the current set of relevant units is somehow

pared down, the computational overhead increases combinatorially with the

number of units.



In contrast to creating smoothness constraints based on second

derivative information, a more indirect-and computationally cheaper-

method increases smoothness by encouraging smaller parameter values. The

objective function is augmented with a norm of some subset of the parameter

values themselves, resulting in the process of weight decay:

j, = pT. p (3.12a)

Ap = -Ap p (3.12b)

At each training step, these parameter values are decreased slightly;

thus, the final mapping may be somewhat higher in error due to this

interference, but the smaller parameters should yield a smoother mapping. Ji

and Psaltis [11] train a feedforward sigmoidal network using backpropagation

and weight decay on all parameters, with favorable results. For

implementations with B/I networks, weight decay would make sense only for

basis function "slopes" and inverse weighting matrices, since offset and center

values do not directly affect the smoothness of the network mapping.

3.3 Learning Rules

The parameter training algorithm developed and evaluated in this

thesis is similar to the hybrid algorithm of Moody and Darken, with a few

novel enhancements:

Adaptive learning rates for influence function parameters.

Learning rates are increased/decreased depending on the error

associated with individual examples, and on the relative density

of training examples in different regions of the domain, in order

to speed convergence of units towards erroneous regions, and to

make coverage less sensitive to the distribution of examples.



* Unsupervised width training. Rather than setting unit widths

heuristically to achieve the desired overlap, widths are adjusted

to approximate the size of the area in which corresponding units

predominate.

* Simultaneous training of both basis function and influence

function parameters. All parameters are trained in parallel;

however, adjustments to influence parameters are more gradual

than to basis function parameters.

* Heuristic learning rates. Learning rates are calculated based on

an estimate of the number of examples that must appear in the

training stream before an accurate picture of their distribution

may be inferred.

The algorithm is applied to B/I networks having affine, rather than constant,

basis functions [19, 30].

Training examples are assumed to appear as a stream generated by a

free-running dynamical system, rather than selected randomly from a

predetermined batch. Whereas the Moody and Darken approach presumes a

fixed network structure, these modifications anticipate the implementation of

adaptive structure (Chapter 4), where the number of units may change at any

moment, requiring that the algorithm always be ready to incorporate and

accommodate new units into the network arrangement.

3.3.1 Basis Function Training

Basis function parameters are trained using gradient descent to satisfy

an incremental error objective. Recall the output equation for a B/I network

with affine basis functions:



Yne(X)= B,(x-x;)(lx-x )
) (3.13)

- (- w O (- xC 1)

x = input vector

x s = center of unit j

Ynet = scalar output

Bj = basis function for unit j

wT, WO = basis function parameters for unit j

I, = normalized influence function for unitj

The incremental cost is simply the squared error associated with the current

example:

Jy = [Yarg - Yne t]
2  (3.14a)

Calculating the gradients with respect to the basis function parameters yields

the parameter update rules:

Aw = b j (Yr - Ynet(X- X) (3.14b)

Awoj = Ab * Ij (Ytarg - ynet) (3.14c)

0 < < 1, b constant

With spatially localized networks, it is usually the case (by design) that

only a few units contribute significantly to the output for any particular input.

It is therefore not necessary to train every unit on every input. Some useful

alternatives are to train only the k nearest neighbors of an input; to train the

k most influential neighbors; or to train the set of most influential neighbors,

the sum of whose normalized influences exceeds some threshold value less

than 1 [19]. For this implementation, the Heapsort algorithm is used [26].
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Heapsort is fast as sorting algorithms go, arranging a list of N elements into

ascending order in Nlog2N time.

3.3.2 Influence Function Training

Centers are trained using clustering methods in essentially the same

manner as Moody and Darken (section 3.2.1), with the exception that the

nominal learning rate A is scaled by two parameters, SI and 6n (section 3.3.3),

according to the error associated with the current input and the frequency

(relative to other units) with which the current unit "wins", respectively.

l = llx-x,,,211 (3.15a)

wXin =c .3 Jn w X - Xn, )

0 < 8, ,, 1 (3.15b)
0 < Ac <1

Ac constant

Clustering (as described herein) is equivalent to setting the center of a

particular unit equal to a first-order filtered version of the stream of inputs

belonging to that unit:

x,,n[k + 1] = (1- ,c -5 -,) xc,,[k] +Ac -" 8-. 6n-x[k] (3.16)

Varying the learning rate for different inputs amounts to weighting some

inputs more heavily than others. Since this filtering scheme is stable (for

0,5 Ac S -in 1), centers are guaranteed to lie within the bounds of the

training inputs, a feature not guaranteed by a purely supervised, error-based

center training algorithm.

Width training proceeds according to similar rules, as described in

Section 3.2.2. The same nominal learning rate, ac, is used, and is likewise

scaled:



10=- lr 2 w.2 (3.17a)

Aw2 in = ic n (2 - win)

0 S, -s n < 1 (3.17b)
0< 1, <1

A constant

By departing from a purely supervised algorithm, where all learning

rules are derived from the same error-based objective function, we have

decoupled the training of basis function parameters from that of influence

function parameters. This makes it less clear that the algorithm will

eventually converge; but with prudent selection of learning rates, the

likelihood of some foreseeable problems can be reduced.

3.3.3 Adaptive Learning Rates

3.3.3.1 Error weighting

The clustering algorithm of Moody and Darken places units in the

regions most densely populated with training inputs. This is a good rationale

for arranging the set of units, given no knowledge of how well the network is

performing on those examples; but that knowledge is available

(incrementally) and can be used to place the units where they are likely to be

most able to reduce approximation error.

Some examples will be poorly represented and will generate large

errors from the network. Others will generate small errors. It makes little

sense to rearrange the network as much for small-error examples as for large-

error examples-small errors warrant little or no rearrangement compared to

large errors. Therefore, the magnitude of the error associated with each

example can be used to determine the current learning rate for that example.



Learning rates for influence function training are scaled by this error-

weighting function 61 (Figure 3.3):

S= J (3.18)
-y + Jwc

0.9
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current error/characteristic error

Figure 3.3. Training inputs that generate very large errors
relative to the winner's characteristic error are learned at
nearly the full rate; inputs with smaller errors are learned
at a roughly proportionally scaled down rate.

The magnitude of the current error is judged relative to some characteristic

error Jc for the current winner unit; relatively large errors receive the full

learning rate, whereas errors comparable to or less than J', are scaled down

roughly linearly. The net effect is decreased learning effort applied to

examples with relatively small errors.

But how large is large? For the error-weighting function to be able to

discriminate meaningfully between large and small errors, the characteristic

error should reflect either: i) the magnitude of "typical" error encountered

recently by the current winner; or ii) the magnitude of the target error for this

learning task. The latter is purely subjective on the part of the engineer

directing the learning. For the former, "typical" error translates to filtered

error:



(J)win [k+1]= a -(Jy)win [k] + (1- a)- Jy[k] (3.19)

This equation calculates the average local error (iy)w, for the winner unit.

The filter constant, or age weight a , should be set small enough to allow the

average local error to remain relatively current; if this average lags,

convergence could be slowed.

The results appearing later in this thesis were generated using a

constant value for the characteristic error, rather than average local error.

However, we shall see in Chapter 4 that the calculation of average local error

for all network units is an important step in the adaptive structure algorithm.

3.3.3.2 Training density weighting

Uneven distribution of training examples can bias center placement

away from more sparsely populated areas. Consider the case where most

inputs lie in one particular region (neglect error weighting for the moment).

The centroids of all units will be shifted towards that region, at the expense of

the approximation capability of the network in other regions.

Training can be made more evenly distributed by reducing the learning

rates for examples that occur in over-represented regions. More precisely,

learning rates are scaled down in inverse proportion to the amount of

overtraining in that region.

Assuming that a "fair" training distribution would divide no,, total

examples equally among N, units, learning rates are scaled down according to

the number of examples nw, with which the current winner unit has been

trained in excess of the "fair" amount. The learning rates of undertrained

units are not scaled down (Figure 3.4).

0



S= min 1.0, ntNu (3.20)
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Figure 3.4. The learning rate for the center of a particular unit
is scaled down in inverse proportion to the number of
updates that unit has undergone relative to the "fair"
number of updates, i.e., units sharing equally.

The motivation for adaptive scaling of learning rates is the

improvement of the clustering algorithm for on-line learning, so it is

appropriate to apply adaptive scaling only to the training of influence

parameters, i.e., centers and widths.

3.3.3.3 Learning rate heuristics

Basis functions are trained to give the best (smooth) fit to the training

data given the current centers and widths of units. If centers and widths are

trained too quickly, otherwise well-trained basis functions will be dragged

through input space more quickly than they can adjust, thereby increasing the

error of the mapping in those regions.

In addition, error-weighting assumes that the basis function training

has mostly converged, given the current configuration of units, so that the

errors generated approximate the lowest errors that can be achieved with the
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current arrangement. For these reasons, it is important that the learning rates

for centers and widths be smaller than those for basis function parameters.

(However, no matter how slowly the centers and widths are trained, some

additional error is unavoidable.)

If some knowledge is available regarding the distribution and ordering

of training inputs, an effective pseudo-batch size can be determined and

provided to the algorithm, from which learning rates for basis functions and

influence functions and an age weight (for local error filtering) can be

derived. For example, if the distribution of inputs in the training data stream

can be described by a probability density function, a suitably large pseudo-batch

would contain inputs distributed roughly according to that PDF; the larger the

pseudo-batch required, the smaller the learning rates should be to encourage

robustness to adverse ordering of inputs in the training data stream.

Learning rates and age weight can be set individually, but it is

convenient to link their values heuristically; for example-

influence function learning rate: c =  pseudo - batch size (3.21a)

basis function learning rate: b = Crel .2c (3.21b)

age weight for average local error: a = 1- Ab (3.21c)

Influence function parameters (centers, widths) are trained at the same

rate at which a full pseudo-batch is encountered in the data stream; basis

functions are trained faster than influence functions by a relative factor crel, to

yield more fully trained basis functions for each instantaneous unit

configuration; and averaging of local error occurs at a rate comparable to the

rate at which that error is changing through basis function training.



3.4 Adaptive Structure: Automating Network Design

In general, the greater the complexity of the target function, the more

units that will be required to construct an accurate approximation. Since this

complexity is assumed to be initially unknown, and training data is

unavailable until training actually begins, we have no knowledge with which

to determine a priori a sufficient number of units.

If memory and machine cycles were cheap, and the engineer

unconcerned with the elegance of the network design, the training domain

could be populated densely enough with units to handle any potential target

function. Unfortunately, neither is the case. In addition, over-

parameterization can negatively affect generalization. A practical goal of

learning, therefore, is to construct an accurate approximation of the target

function with as few units as possible.

The optimum number of units can be sought through trial and error

experimentation with different networks, but this can be tedious, time-

consuming, and in the end ineffective. It is far more desirable to automate

the process of network redesign, so that the learning algorithm not only sets

parameter values, but also varies the network structure to achieve better

results.

Chapter 4 discusses further the idea of adaptive network structure. A

method for modifying network structure on-line is presented that meshes

nicely with the preceding training algorithm to perform parameter training

and network structure adaptation in parallel.





4 The Adaptive Structure Algorithm

4.1 The Adaptive Structure Approach

One could argue that for a particular target function there exists an

optimum number of B/I units (of a predetermined type) that maximizes the

efficiency of the approximation realized by the network. Given little or no a

priori knowledge of the target function, this optimum number cannot be

known and utilized at the outset of learning when the network is being

constructed and initialized.

This thesis investigates and develops an approach that gives a B/I

network the ability to modify its own structure on the fly, with the same

freedom that parameter values are adjusted to meet the objectives of on-line

learning. Beginning training with a modest number of units (perhaps only

one), the algorithm essentially identifies local regions of the learning domain

that lack the network resources (i.e., units) to construct adequate local

approximations, and seeks to increase the population of units in those

regions1 . In effect, the algorithm allocates units over the domain according to

the complexity of the target mapping in different regions.

A few attempts at adaptive structure have been made in this vein, and

are summarized in the next subsection. Unlike this thesis, however, the

success of these algorithms depends on the absence of noise in the training

data, and does not consider the effects of adverse ordering and distribution in

1 Adaptive structure could also be realized by modifying structures of individual units;
e.g., the approximating power of a B/I unit can be increased by upgrading its basis function from
affine to quadric. It will be assumed here that the structure of an individual unit is fixed thus,
network structure can be changed only by varying the number of units.



the training data stream. This thesis presents an improved algorithm more

robust to such conditions, and assesses its performance when applied to

learning tasks involving prediction of future states of nonlinear dynamical

systems. Specific, novel features of this algorithm include:

* Proliferation of new units via splitting of old units in regions of

large average error, rather than allocation of new units in order

to correct errors associated with individual examples, which

enables training to be done in the presence of both input and

target noise.

* A simple quantitative measure of the extent of convergence of

the parameters of individual units.

* Operation in parallel with a parameter training algorithm

designed to facilitate structure changes.

4.2 Previous Attempts at Adaptive Structure

Three recent attempts to design adaptive structure B/I networks

proceed along very similar paths [12, 16, 24]-each approach is presented

below. The basic idea is to recognize large error-causing training examples

that do not lie squarely within the sphere of influence of any existing network

unit, and to improve performance on such poorly represented examples by

adding units to the network.

Neither low influence nor large error alone are sufficient to require the

addition of new units: errors that accompany examples that lie well within

the influence of existing units should be reduced via further parameter

adjustments, if possible; and outlying examples for which the network

nonetheless yields correct outputs do not warrant additional units.

Although these algorithms perform well when trained with noise-free

examples, they may fail in the presence of significant amounts of training

noise: at any time, any example could appear to lie outside the influence of



existing units (due to noise at the network input), or to be poorly fit by the

current parameter values (due to noise at the network output), or both.

After discussing these three algorithms in the remainder of this

subsection, the adaptive structure algorithm developed for this thesis is

presented, which addresses the issue of training noise directly.

4.2.1 A Gaussian Potential Function Network With Hierarchically

Self-Organizing Learning -[Lee & Kil, 1991]

The network is composed of B/I units with constant basis functions

and un-normalized spherical Gaussian influence functions. Training is done

incrementally from noiseless examples generated uniformly at random from

the input domain. Magnitude, center, and width are adjusted using a

gradient update rule to satisfy a squared error cost function.

The adaptive structure algorithm is summarized below-

* start network with no units;

* present training examples to the network;

* if an example is presented that yields large error, and for which
there is no unit that has large influence at that point in the input
space, then create a new unit centered at that point, with basis
function set equal to the target output for that example;
otherwise, adjust parameters;

* if the overall network error stops decreasing before it falls below
its target value, then increase the likelihood that new units will
be created by requiring even greater influence values for each
training sample;

* training proceeds until the overall error falls below its target
value.

The required influence begins as a small value and is increased every

time the network error levels off, in order to allow more units to be created



which will allow network error to decrease even further. The error criterion

for new unit creation is a preset constant value.

Good results were obtained for a set of classification and function

approximation tasks. In each case, the estimated "ideal" number of required

units was compared to the actual number after training, showing that these

numbers tended to be similar.

4.2.2 A Resource-Allocating Network for Function Interpolation-

[Platt, 1991]

This is essentially a B/I network with constant basis functions, and

influence functions that are polynomial approximations to spherical

Gaussians. A global bias is also included. All adjustable parameters (basis

functions, centers, global bias) are trained via gradient descent to minimize

square error. The squared value of influence function width is proportional

to the squared distance to the nearest neighboring center at the time a new

unit is created; it is not subsequently updated. (The pseudo-Gaussian

influence functions are trained using the update rule for actual Gaussians.)

New units are created in a fashion similar to that of Lee & Kil-

* start network with no units;

* present training examples to the network, randomly selected

from a batch;

* if an example is presented that has large error, and for which

there is no unit whose center is near that example (note: the

criterion is distance, not influence), then create a new unit at

that centered on that example; otherwise, adjust the network

parameters.

The nearness criterion is initially set to be relatively lax (i.e., large), so

that the network will first form a coarse representation of the training

example set. This criterion decays exponentially with training time, so that



the training inputs are required to lie closer and closer to units in the

network. Thus, as training progresses, narrower units are added to fill in gaps

and thus create a finer representation of the data.

Unlike Lee & Kil, Platt does not pace his network-building with the

leveling off of network error: units are created as necessary until the nearness

criterion reaches its minimum value, after which time no more units are

added. This nearness criterion can be lowered to achieve the required

precision in the approximation.

A network was trained to predict the Mackey-Glass chaotic time series,

with favorable results.

4.2.3 Representing and Learning Unmodeled Dynamics With Neural

Network Memories-[Johansen & Foss, 1992]

This paper focuses on modeling the behavior of dynamical systems

using B/I networks; specifically, storing a priori knowledge of the system of

interest in a "first principles" network, and then training a second network

(called the "black box" network) to correct/refine/augment the information

stored in the first. The B/I architecture can be viewed as a set of models (basis

functions), each paired with a validity function (influence function) that

describes to what region of the input space that model pertains. Such an

architecture readily lends itself to the straightforward incorporation of

existing models of a dynamical system into a "first principles" network prior

to training.

The networks are trained in parallel on examples generated on-line by

the dynamical system. Whenever an example is found to have large error

and low influence for both networks, a new unit is created in the "black box"

network centered on that example. In general, the adaptive structure



approach here is similar to the previous two, except that there are two

networks rather than one.

Johansen & Foss demonstrate in one application how new units are

allocated to account for differences between system model behavior and that

of the actual system; units tend to be created where the model deviates most

from reality. In another application, a self-tuning controller is implemented.

4.3 The Adaptive Structure Algorithm

The above cases pertain to situations in which noise is absent from the

training examples, and in which perfectly valid network structure

modifications may be made in response to poor performance on individual

examples. With the addition of noise, though, decisions of when and how to

alter network structure cannot be made this way; rather, trends in network

performance in different areas of the input domain must serve as the

criterion for structure change.

As a general rule, if the current network performs poorly, on average,

for examples that occur in a particular region of the input space even after the

relevant network parameters in that region have converged to (quasi)static

values, then it will be necessary to augment existing network resources in

that region to obtain better performance. Ideally, a complete statistical

representation of the current network error over the entire training domain

would be constructed as training proceeds, and used to determine precisely

where to allocate new units, i.e., which regions contain large persistent error.

Realistically, though, this would amount to learning yet another mapping in

addition to the target, significantly compounding the time and effort spent to

train the network. A viable alternative used in this thesis is to keep track of

the recent average error local to each existing unit (recall characteristic error



from Chapter 3). If it is determined that the local error of some unit has not

yet decreased to an acceptably low value (after unit parameters converge),

then that unit is split into two identical, independent units, yielding an

increase in local approximating power.

Here is a brief statement of this approach to adaptive structure:

For some unit-

IF parameter values have CONVERGED

AND average local error is still TOO LARGE

THEN SPLIT UNIT

The winner unit of the current training example is tested for the

splitting criteria and is split if appropriate. Once a unit has been split, it is up

to the training algorithm to rearrange the network in order to accommodate

and exploit the added resources.

The following subsections discuss parameter convergence criteria,

average local error calculation, and the mechanics of splitting units,

respectively.

4.3.1 Measuring Convergence of Unit Parameters

A unit should not be split whose parameters are still converging to

steady-state values. However, in on-line, incremental training scenarios,

convergence can only occur in a stochastic sense: parameter values migrate to

some region of parameter space in which they may vary slightly over time,

but without ever really leaving that region. It is this condition that must be

achieved and detected before splitting can occur.



To illustrate, Figure 4.1 shows successive updates of a parameter vector

p for some unit. In the first case, p is actually migrating through parameter

space-it cannot be considered to have converged. The following case shows

p after it has become confined to a particular region of space. Updates to p

tend to cancel each other, preventing p from moving away from this region,

on average.

successive updates don't successive updates
cancel -> not converged cancel -> converged

Figure 4.1. Convergence of parameters

The two types of behavior can be distinguished (or, rather, tendencies

towards one or the other can be quantified) by measuring the extent of update

cancellation. Let

det[n] = IJAp = length of time - averaged update vector at time n (4.1a)

dot[n] = IlApl = time - averaged length of update vector at time n (4.1b)

The quantity dnet[n] reflects the size of the average net change in p, taking

cancellations into account, while do,,[n] measures the average size of the

changes made to p. Time-averaging is performed as in Eq. 3.19 for average

local error:

Apk+l = ad A-k + (1- ad). APk (4.2a)



IIApllk = ad IApllk + (1- ad) llAPk (4.2b)

where Apk is the k-th update of p. Solving the difference equations gives

Ip11 = i ck[n] Apk = d,et[n] (4.3a)

n

D1APll, = Xck[n] .Apk 11 = do,[n] (4.3b)
k=1

where

Ck[n]= .(-a (-
4.4)

0 5 ad 1

From the triangle inequality, we know that

05 dnet[n]= I[n] Apk EIlCk[n] Apk l. = ~ck[n] APk1 = do,[n] (4.4)
k=1 k=1 k=1

If there is very little cancellation among the parameter updates,

dne[n] = . 0

dtot, [n ]  (4.5a)

which indicates that p is actively migrating through parameter space. If the

amount of cancellation is high,

dnet[n] _ 0.0

dtot,[n] (4.5b)

and p has converged. In practice, this ratio is compared to a constant

threshold Ocon, (selected empirically-0.1 or 0.2 seem to work)-

d,,[n]< (4.6)
dto[n] < con v (4.6)



When the ratio falls below this threshold, convergence is signaled for that

unit.

Convergence depends on scale, in both training time and parameter

space. Age-weighting of parameter updates must extend far enough into the

past to avoid signaling convergence in response to short-term biases in the

training data distribution. This algorithm simply uses the learning rate for

influence parameters to compute the time constant of the filter that performs

the age-weighting:

ad = 1- C(4.7)

This ensures that convergence is measured on a scale comparable to the

slowest learning rates.

The nominal magnitudes of individual parameters may vary greatly.

Large parameter changes will tend to dominate the values of d,,, and d,, so

that the failure of smaller parameters to converge may have little effect on

this form of convergence detection. One recourse would be to monitor

convergence for all parameters individually; another, to rescale each

parameter (e.g., by dividing by its maximum observed value) before testing

for convergence. Both methods require additional computation.

A simpler, and less expensive, way to counter the ill effects of scaling is

to use only the center parameters to detect convergence. (In fact, this is exactly

what was done to generate the results in this thesis.) Scaling of the input

space, wherein centers reside, is usually known a priori to some extent, so

that rescaling before training is possible if necessary. In addition, since centers

are trained at a very slow rate which allows the basis function parameters to

maintain a "mostly trained" state, it is reasonable to assume that when the



center of a unit has converged, so have its remaining parameters (if, in fact,

the basis functions remain "mostly trained").

4.3.2 Rating Local Error

A unit should not be split if the local approximation has already

achieved an acceptable level of accuracy. That is, if the average local error

computed by that unit is sufficiently small, the unit should be left alone.

The simplest approach, which is taken in this thesis, compares average

local error to the desired average global error (provided at the outset of

training): units that exceed this error are candidates for splitting. This way,

regions lacking sufficient resources to meet the error goal receive new units

as soon as possible. An alternative approach would be to use the actual,

rather than desired, average global error, to split units that perform badly

relative to the current overall network performance. This possibly would

lead to more gradual, uniform training over the input domain.

4.3.3 Splitting Units

If the current winner unit meets the convergence and local error

criteria, that unit is split.

To "split" a unit means to replace it with two similar units, thus

doubling the effective number of parameters available to construct and

augment the local approximation. Splitting should seek both to preserve

information gained through prior training, and to facilitate the assimilation

and utilization of the extra approximation capability by the network.

A seamless transition from old network structure to new can be

achieved if the network output function after splitting is identical to the

previous one. This is the case when the two new units retain the same basis

a



and influence parameters as the old unit, with the influence functions each

scaled down by half:

B,(x- x) -(ix x- xC l)+-
y(x) = (x- x

[1(x-x; 1. 1
split xx) - ). llx- x() + /1 ( X- +l

y() = (Ix - x I)+ -i,(x - x)+... (4.8)
2 21

Ba(x - x:C).i, (llx - xca l) + Bb (X - Xb). ilb X - Xb ll)b

ia (1X - xaI) + i1b(IIX - X b 1)+"

The drawback is that the new units are "weaker" (in an influence sense) than

their predecessor. Over many generations, a significant disparity in influence

would come to exist between older and more recently created units. It may be

possible to train influence magnitudes to eliminate this problem. However,

avoiding it altogether is preferable.

If inverse square influence functions are used, halving the influence

magnitude is equivalent to scaling down the width by the square root of 2-

the transition is made seamless by making the new units narrower. Reducing

unit widths introduces another potential benefit for training: more units in a

given region implies a finer-grained approximation, which in turn implies

narrower widths-so automatically narrowing the unit widths can be seen as

giving the new units a head start on assimilation into the network. This

head start can be given to Gaussian units by a similar narrowing of widths,

although without affording a perfectly seamless transition. This algorithm

gives the option of halving unit widths during a split. This effectiveness of

this width reduction strategy is investigated in this thesis.



Immediately after a split, the clustering algorithm will separate the

new units, so that the region that was previously represented by a single basis

function is now represented by two independent basis functions. Note that a

gradient descent center training algorithm (or any non-"winner-take-all"

approach) would not separate the new units, but rather would move them

around together-after all, the new units are identical. This illustrates how

nicely the training algorithm and adaptive structure algorithm work together.

The error, "win", and convergence statistics of new units are initialized

based on those of the old unit. Average local error is passed on unchanged.

The number of "wins" (i.e., the number of past examples for which the unit

has been selected winner-used for distribution weighting) is divided equally

between the new units. Values for net distance and total distance traveled are

reinitialized-the new units must converge to new locations.

4.4 Recap: The Complete Learning Algorithm

Now that every aspect of the algorithm has been covered in detail, a

concise summary is in order. This section outlines the steps that must be

taken to initialize the network and algorithm before training commences,

and presents a flow chart of algorithm function during training.

4.4.1 Initialization

Before training begins, the specific learning problem must be stated, the

network structure must be initialized, and training parameters must be

provided to the algorithm (Figure 4.2).

Information regarding the training domain, as well as any a priori

knowledge of the target mapping, can help determine the initial structure and

parameter values of the network. As a bare minimum, input and output

dimensions must be specified. The initial number of units, as well as the type



of influence function used (Gaussian or inverse square) can be specified.

Bounds on the training domain can be used to initialize the centers and

widths of units so that they cover the domain completely.

Target error, pseudo-batch size, and the basis function scale factor c,r

are used to compute learning rates and age weights for the algorithm. The

user must provide values for the convergence threshold 0con,; and the

minimum required cumulative normalized influence of the set of most

influential units that are actively evaluated and trained on the current

example.

4.4.2 Training

Given the above network set-up and a stream of training examples,

network parameters and structure are modified on an example-by-example

(incremental) basis (Figure 4.3):

1) Distances, and then influences, from the current input to all

units are calculated. The winner unit is determined based on

either proximity or influence (proximity is the criteria selected

for these results).

2) Units are sorted according to influence, and the set of N most

influential units is determined such that the cumulative sum of

their normalized influences exceeds some threshold value.

Only this "active" set of units is subsequently used by the

algorithm for network output computation and training.

3) Basis functions are evaluated and network output calculated.

4) Basis function parameters of all active units are updated;

influence parameters only of the winner are adjusted.

5) Winner statistics are updated: average local error and

convergence statistics.

6) If all splitting criteria are met, the winner unit is split.



7) Average global error (global RMS error) is updated. When this

value falls below the target error, the algorithm may be stopped.

(Alternatively, training could proceed until all average local

errors become less than the target error, which is an even more

stringent objective accompanying the cessation of new unit

allocation).

8) The resulting network is evaluated on a stream of new examples

generated by the same process (having the same distribution)

from which it was trained. The true average error (rather than

filtered error) is calculated for a large set of examples and is

compared with the target error for purposes of rating learning

performance. Measuring error in this way yields an estimate of

the expected error of the network on the given data stream.

4.4.3 Performance Expectations

The algorithm as presented thus far is not chiseled in stone-there are

a number of options available that may or may not enhance learning

performance. Subsequent chapters will report results of learning tasks

undertaken by the algorithm, and will comment on the effectiveness of these

various features.

The algorithm will be considered successful if it consistently

demonstrates the ability to achieve target errors through the allocation and

training of B/I units in response to a stream of training examples distributed

arbitrarily over the training domain.

Assuming that a given target mapping may be approximated within a

given target error with a finite number of units, the algorithm should allocate

units until a sufficient number have been created, at which point average

global error should approach target error, and allocation of new units should

level off. This halt in network growth implies that the average local errors of

all units have fallen below the target error, in turn implying that the average



global error must have done likewise. Starting from a single unit, the

algorithm will require some time to "grow" to a size sufficient to achieve the

desired accuracy; the higher the accuracy, the larger the network needed, and

the longer the training time. Initializing the network with more than one

unit (randomly placed within the envelope of interest) might possibly

abbreviate training by beginning with a network nearer the final size

required. However, if the training envelope is incorrectly specified, it is

possible for some units to lie in areas devoid of training examples, so that

these units never "win" and thus are never trained-they may become

stranded and superfluous.

Approximation error should decrease on average as training proceeds

and the network size increases. However, due to the potentially uneven

distribution of training inputs and the unsupervised influence training

algorithm, error may actually increase sporadically over small time intervals

as the training data wander through space. One can also expect the temporary

increase of average network error following the splitting of a unit

accompanying the subsequent reordering of the network. If training is finally

successful, the expected error of the network, as measured on a set of

examples from the training stream, should be less than the target error,

although the error for some individual inputs may exceed the target error.

In the absence of any facility for removing units from the network, i.e.,

"pruning", and with the possibility of creating "stranded" units, it is possible

that the final number of units will be greater than necessary in some cases,

particularly if the criterion for parameter convergence is too lax. In addition,

it may take quite a bit of training before unit allocation ceases; one would

expect relatively small target errors to require relatively many units, leading

to prolonged training times.
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5 An n-Step Predictor for an Aeroelastic

Oscillator

A set of networks are trained to predict future states of a (simulated)

nonlinear dynamical system from observations of its behavior over time.

Performance of each of the resulting networks is then evaluated by

measuring the average error associated with predictions of future state made

by the network as it again observes the system in the same manner as during

training.

5.1 Position Prediction for an Aeroelastic Oscillator

Specifically, the problem is to predict the future position of an

aeroelastic oscillator (see Appendix B for details) from current position and

velocity information (Figure 5.1).

The adaptive structure network is trained with a stream of examples

(i.e., the current state and the resulting future position) formed from

observations of the oscillator as it evolves along state-space trajectories of

fixed duration, starting with initial velocities of zero and random positions

within the interval [-0.5, 0.5]. Once the oscillator has been given an initial

state, no control is exerted over its travel through state-space-the ordering of

training examples in the data stream and the distribution over the training

envelope are allowed to be non-uniform. Thus, training tends to become

fixated along the two stable limit cycles. In a few cases noise is added to the

inputs and targets given to the network.
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(constant)

predicted
position

Figure 5.1. Training Set-up for Prediction

The goal is to construct a mapping from the current position and

velocity to the position n time steps hence (Figure 5.1). Equivalently, we can

predict the net change in position over these n time steps:

Ynet[k] = pos[k + n] - pos[k] = f(pos[k], vel[k]) (5.1)

Since changes in position may be much smaller in magnitude than absolute

position, training the network to predict net position change rather than

absolute position eliminates some of the coarse information the network

otherwise would have had to learn, and allows it to better focus on the finer

details of the mapping.

The specific problem has been fixed at n = 10, yielding a target mapping

represented by the surface shown below (Figure 5.2a). Even after restricting

the target mapping to position change rather than position, there still exists a

significant linear component that predominates over the nonlinearities in
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the mapping. It is reasonable to assume that changes in velocity over the 10

time steps are too small to cause position changes that deviate greatly from

those that would be observed in a purely linear system. Thus, the target can

be analyzed into two components representing linear behavior (Figure 5.2b)

and nonlinear behavior (Figure 5.2c), as described by Eq. 5.2:

linear component nonlinear component

ynet[k] = vel[k] -n -At + g(pos[k], vel[k]) (5.2)

The domain for these plots is restricted to the region of input space in

which training occurs. Referring to Figure B.3 of Appendix B, the outer limit

cycle, within which all training examples are confined, is tightly bounded by

positions on [-0.65, 0.65] and velocities on [-0.45, 0.45]; all plotting is

performed over the corresponding rectangle.
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behavior of the system, i.e., the change in position that
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5.2 Evaluation of Adaptive Structure Hybrid Algorithm

The effects of different features of the adaptive structure hybrid

algorithm are evaluated. First, benchmark results are obtained by training a

network with noise-free examples generated from state-space trajectories,

using a version of the algorithm with an arbitrary set of active features (e.g.,

error weighting). In subsequent runs, features of the algorithm are varied,

training parameters are changed, and/or training conditions are altered; the

different predictors that result are then evaluated and compared.

5.2.1 Benchmark Run

5.2.1.1 Training set-up

The network was initialized with a single Gaussian unit of width

a = 0.2 centered at the origin. All added units were also Gaussian.

One pseudo-batch was set to equal roughly the number of examples

occurring during two cycles of the aeroelastic oscillator, or 1257 examples.

The network was trained with 800,000 examples = 637 pseudo-batches.

Network validation used 200,000 examples = 159 pseudo-batches.

The training algorithm ran with these features/parameters:

error weighting: ON

distribution weighting: ON

variance halving on split: ON

input noise variance: 0.0

target noise variance: 0.0

target error: 0.0005

characteristic squared error: = (target error)2 = 2.5x10 7

convergence threshold: 0.2

cumulative norm. influence: 0.95

basis function relative learning rate scale: 5
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The resulting network was evaluated using a stream of examples

generated as during training. Validation error is simply the true RMS error

over the set of N validation examples:

Evalid= j(Ytarg [k]- ynet [k])2Nk=1 (5.3)

5.2.1.2 Results

Some important training results are presented for the benchmark run

by Figure 5.3 (similar figures will summarize the results of later runs):

1) Final network configuration-The set of units at the

termination of training is represented by circles whose radii

represent unit widths and whose centers coincide with unit

centers.

2) Network growth over time-The number of units over the

course of training is contrasted with the size of the set of "active"

units, i.e., those units of greatest influence at the current

example, whose cumulative normalized influence meets the

desired threshold.

3) RMS training errors-RMS error is simply the square-root of

low-pass filtered squared error. Maximum and minimum RMS

local errors over all units are plotted, as well as RMS global error

for the network as a whole.

Referring to the first plot, the most striking feature of the network

configuration is the way in which nearly all the units have aligned

themselves along the two limit cycles, with just a few units located in areas

corresponding to the initial arcs of trajectories (cf. Figure B.3). Widths have

been adjusted according to relative distances between neighboring units, so

that coverage among these units is fairly efficient. Cases in which a pair of

units overlap a great deal can be attributed to a recent splitting-in fact, one
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can see pairs of units in various states of post-split separation, where pairs

that overlap greatly tend to be very similar. Most of the splitting still in

progress appears to occur where "filling in" is required, or in areas along the

limit cycles adjacent to underrepresented initial arcs.

Addition of new units to the network initially occurs on the order of

every 10,000 examples, later becoming more infrequent as the local errors of

individual units begin to fall below the target error, thus making them

ineligible for splitting. Transient errors accompanying these structure

changes can be observed in the error plots as brief rises or humps. The

number of active units stays well below the total number of units for the

duration of training, and in fact appears to stabilize to a roughly constant

value.

Notice that the error plots initially rise before finally beginning to

decrease. This is due to the fact that these errors are derived from the outputs

of low-pass filters, which require time to "charge up" from zero. Once this

has occurred, the progress of learning becomes apparent. After approximately

13,000 examples, the first unit splits, and distinct maximum and minimum

local errors appear. These then separate, with the maximum increasing and

then generally leveling off, while the minimum tends to decrease

throughout the remainder of training. Global error remains between the two

and decreases on the whole.

The final values of local RMS error, when plotted in order of creation

of the corresponding units (Figure 5.4), shows that older units tend to be more

"well-trained", having lower local errors than newer units. Presumably, if

training were to continue for a long enough period, more units would

achieve the target error, and unit allocation would level off, eventually

plateauing at a constant network size.
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The network reaches a size of 47 units by the time training is stopped.

The validation error (4.79 x 10-4) falls within the jitter of the final global

training error. A plot of the final network mapping (Figure 5.5), subtracting

away the linear portion of the target and compared with the nonlinear

component of the target (Figure 5.2c), reveals that training has captured the

general tilt of the target mapping, but the two large ripples are not apparent.

10-2
Final local RMS errors compared to target error

x

X XXX X

X X X X

XX
X XX

X X X X

X

X

5 10 15 20 25 30 35 40 45 50

units

Figure 5.4. Final local errors of individual units of benchmark
network (in order of creation)

The mapping in the corners, corresponding to areas that lie outside the

training domain, are particularly erroneous; for example, the upper left

corner of the network mapping rises steeply when it should fall. (This

illustrates the fact that extrapolation cannot and should not be performed

with networks such as these.) Overall, the network mapping is much less

smooth than the target.
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Figure 5.5. Final network mapping obtained from benchmark run.
Maximum/minimum values are approximately ±0.0063.

5.2.1.3 Discussion

Consecutive training inputs, as they appear within trajectories of the

aeroelastic oscillator, are correlated such that inputs that occur at neighboring

positions in the stream are also neighbors in input space. This makes possible

the condition in which training inputs remain temporarily confined to a

particular region of space, potentially causing forgetting of previously learned

information in more distant regions of the input space.

The network units reach a quasi-steady arrangement (allowing for

creation of new units) despite uneven ordering of examples, which might be
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expected to cause the network to "converge" to a series of different temporary

solutions rather than to a single solution. Apparently, the spatially localized

architecture, combined with judicious choice of pseudo-batch size (and thus

learning rate) is robust to example order.

As well as being unevenly ordered, the majority of training examples

occur along limit cycles, so that they are also unevenly distributed over the

space-some regions (limit cycles) receiving more training than others

(initial arcs of trajectories not along limit cycles). This uneven distribution

has a pronounced effect on the eventual unit arrangement, causing units to

be more densely populated in regions of heavier training. This gives good

coverage of the most frequently visited regions, at the expense of coverage in

less frequently visited regions. From the standpoint of minimizing expected

error, this may be fine; however, if other error norms are targeted for

minimization-say, a 2-norm taken uniformly over the space-failure to

cover some regions may make it impossible to meet the learning goals.

Distribution weighting was employed to make training more uniform

over those portions of space where examples occur, and thus to yield more

even coverage. Clearly this goal has not been met here, although the

weighting approach might eventually prove successful in some other form.

In no case, however, could distribution weighting account for the complete

absence of examples from some region, as in the outlying regions of this

training envelope.

Validation error was comparable to final training error, i.e., it lay

within the "jitter" of training error at the close of training. This confirms that

the network is retaining what it has learned, rather than just quickly adapting

to the current training situation at the expense of knowledge gained

previously. Since the validation example set was generated according to the
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same distribution as the training set, the validation error is an approximation

to expected prediction error of the trained network, and thus a meaningful

measure of future performance for operating conditions similar to those

under which it was trained.

In a sense, the network generalizes well, since as long as examples are

drawn according to the training distribution, average performance errors are

no worse than final average training error. However, in another very

important sense, generalization is bad: if the distribution is changed so that

inputs are frequently chosen from previously unfamiliar regions,

performance error will increase. A successful approach to distribution

weighting should help alleviate this problem. From a smoothness

standpoint, generalization is not good at all. This may be an indication that

unit widths should overlap more, and thus produce smoother transitions

among neighboring basis functions.

Restricting training to the set of most influential units has resulted in

an enormous decrease in the amount of adjustments that must be done at

each time step, the only trade-off being the amount of time necessary to sort

the current set of units according to normalized influence. As the network

size increases, it appears that the net gain in computational efficiency also

increases, since the number of active units remains fairly constant as the total

number continues to grow. Thus, there is some relief from the "curse of

dimensionality" that can plague spatially localized network architectures.

5.2.2 Variations on Benchmark Run

Except for the noted differences (and different random training

trajectories), all of the following runs were identical in every respect to the

benchmark.
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5.2.2.1 Architecture: Inverse square influence functions

Inverse square influence functions were used in place of Gaussian

influence functions (Figure 5.6). The final validation error (3.82 x 10-4 ) was

less than the benchmark using fewer units (38). However, despite the

appearance of more efficient training, the number of active units was much

higher than with Gaussian units: as the network size increased, so did the

average number of units trained on each example, in contrast to the

benchmark run, where the number of active units was limited to two or

three, on average. This translates into a potentially enormous computational

cost, a big strike against this type of architecture.

5.2.2.2 Algorithm

Pre-allocated units, no splitting (Figure 5.7)

The network was initialized with 47 units (i.e., the final size of the

benchmark run), randomly placed within the training envelope with widths

of 0.17. Splitting was disabled.

Only 16 units were eventually repositioned and resized by the

algorithm, the others lying too far away from the training inputs. This

underutilization of units drastically reduced the approximating power of the

network, resulting in an especially high validation error (1.97 x 10-3).

Had the units been initialized in a grid rather than at random, it would

be reasonable to expect a similar case of unused units. The point illustrated by

this run is that the adaptive structure algorithm facilitates more efficient

placement and subsequent utilization of units by creating them only where

needed.
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Fully supervised training algorithm (Figure 5.8)

A network was initialized with 49 identical Gaussian units arranged in

a 7x7 grid to fill the envelope [-1,1] x [-1,1]; width was set equal to one-half the

distance between adjacent centers. Centers and widths were trained by

making adjustments down the gradient of the error (see Chapter 3); neither

error nor distribution weighting were used. Unit splitting was disabled.

After undergoing the same amount of training as the benchmark

network with approximately the same number of units, this network failed to

achieve a validation error as low (6.44 x 1074). Training error decreased more

smoothly with less jitter, but did not fall as far. The unit centers hardly

moved, and widths changed only slightly, if at all. The number of active

units averaged approximately five, as compared to two or three for the

benchmark run, indicating that the supervised algorithm required more

computation per example than the adaptive structure algorithm. The

preallocated grid of units, with its thorough covering of the envelope, was

better able to capture the outlying curvature of the nonlinear component of

the target than was the benchmark; its mapping was also smoother (Figure

5.9). However, its crude features do not match those of the target mapping as

well as do those of the adaptive structure benchmark.

Similar results were obtained for a network composed of 100 units

arranged in a 10x10 grid; however, this time the validation error was

somewhat better than the benchmark (4.45 x 10-4).

The adaptive structure hybrid algorithm achieved lower error from a

network using a comparable number of units as the supervised algorithm,

but required less computation time and minimal preconfiguring of the

network units. No training time appears to have been saved by the

supervised algorithm by beginning training with a complete set of units;
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rather, initializing the structure in such a way seems to have biased the

algorithm towards a suboptimal configuration in which many units lie away

from the training inputs and thus do not contribute significantly to the

solution. Starting with a finer grid of units gave better results, but with a

significant increase in network size.
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0.01

0

-0.01
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Figure 5.9. Final network mapping after fully supervised
training of 49 preallocated units. Maximum/minimum values
are approximately ±0.027.

120



r . a-. --~

final centers and widths

.. . . .. ...-........ ..........

T..... . ......... • ." .... ...

... ::.. .....

. .. ..... ,." ..... . .... .. . . .....

............. .... .... ......

1-0.5 0 0.5: ::: ." ..... .'." """..i" :: ...::I" ~ .. .. """ ""~:r::'' : ' ": : i::. ...::

r"r:: ....... : '::.".. " .. :: . .. ................. ... ....:c : : :: .... :; .. .

........... "";::c; ....... :{. : .... < ....: ........... .....; :
.. : ... ... .. ... . : " . >
........ :i. '::~; ..... :""' .... ]":'........

.." .. ... ".. : ":... .... " '.... '

S-0.5 0 0.5

position

Network size vs. time

0 1 2 3 4 5 6 7 8

# examples x10

max/min local RMS training errors, global RMS error vs. time

105 106

# examples

Figure 5.10. Supervised algorithm: 100 units

121

-0.2

-0.4

-0.6

-0.8

-1

100

80

60

40
.. ....... ......... --- : -i ""~~:
... .. . . . . . .. .. . . . . . ... . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . ... . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . ... . . . . . . .. . . . . . . . . . . . . . . . .. . . . .. . . . . . . .i.. .. . . . . . . . ... . . . .

. .......................................... . . ....................
. . .. ... . .. . . . . .. . .... .. .. .. .. ..

1 0-2

10-3

10-4
102

................... ............. .. ~... .. . . .. . ...... .... ... . .. ... .. ... .. ..

. .... .......... . ....................

~ ic~t ~ (.:.. ....... ..... ...................-
-.. ........ .....

... ... . . . . . .

............ .... ....... ....... ::: 1::::
............. ........... ............. : :::::

; -- -- -- .............. .... i~~:
- i~i I : :::.::::i:: :: ::::: .:.... .. . ......... ... ... :...:. ......... :

............ I ..... ...... . . : 1 1 1 1

' I . . . . .. . . . . . .



No error weighting (Figure 5.11)

The absence of error weighting resulted in a network with significantly

more units than the benchmark run (73), and smaller validation error (3.94 x

10-4). It is unclear whether the decrease in validation error accompanying the

larger number of units was a net improvement, i.e. whether the resulting

network is a more efficient approximation in terms of resources used.

The number of units along the outer limit cycle was slightly greater

than in the benchmark, whereas there were almost four times as many units

allocated in the inner region without error weighting than with it. The

simplest explanation for the difference in unit configuration is that errors

generated by inputs in the inner region were low enough for error weighting

to effectively reduce the learning rate there; with the elimination of error

weighting, the nominal maximum learning rate was used, leading to the

creation of more units.

No distribution weighting (Figure 5.12)

Results were very similar to those of the benchmark. Validation error

was slightly higher (5.01 x 10-4 ) and network size slightly lower (45 units).

Distribution weighting seems to have speeded convergence marginally, but

the difference is not significant enough to warrant a strong conclusion.

No width reduction during split (Figure 5.13)

The pair of units resulting from a split are identical to the parent-unit

widths are not reduced as in the benchmark run. The effect is quite

pronounced: whereas the size (51 units) and configuration of the network is

very similar to the benchmark, validation error (6.40 x 10"4) is significantly

higher.
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Width reduction appears to cause a less drastic modification to the

network than simply duplicating the parent unit. Whenever a unit splits,

some transient error should be expected; reducing the widths of the new units

eliminates some of that transient error.

5.2.2.3 Training parameters

Larger pseudo-batch size/Extended training time (Figure 5.14)

Doubling the size of the pseudo-batch is equivalent to halving the

learning rates for all adjustable parameters. In order to do a more meaningful

comparison, the training time (i.e., number of examples) was also doubled.

The network achieved lower validation error (4.29 x 10-4 ) with a

network of similar size (48 units) and configuration of units. More gradual

training has yielded more efficient learning in terms of network size vs. final

validation error.

Smaller basis function relative learning rate (Figure 5.15)

The learning rate for basis function parameters was reduced from five

times to twice the influence learning rate. The results were similar to those

obtained by eliminating error weighting, but worse: validation error was

higher (7.39 x 10-4); number of units was greater (65); and network

configuration was similar to the benchmark, except that there were three

times as many units in the region inside the outer limit cycle.

As with the elimination of error weighting, the increased number of

units is probably the result of higher influence function learning rates; in this

case, the lower basis function learning rate caused an increase in local errors,

from which error weighting in turn increased the influence function learning

rates.
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Stricter convergence parameter threshold (Figure 5.16)

Decreasing the convergence threshold served to decrease the number

of units allocated at the end of training, but since the resulting validation

error was also higher (5.64 x 10-4) it is unclear whether anything was gained.

Certainly training was slowed, but unless a much more efficient network is

eventually obtained, the previous threshold value is preferable.

5.2.2.4 Training conditions

Additive noise at inputs and targets (Figures 5.17, 5.18, 5.19)

Three networks were trained, where random zero-mean training noise

was added to both inputs and targets: the standard deviation of the input

noise was approximately 10% of the envelope width, or 0.2; that of the target

noise was approximately 10% of the maximum target value, or 0.0045. The

only difference among the networks was pseudo-batch size: 1 trajectory, 5

trajectories, and 10 trajectories, respectively. The networks were evaluated

using noise-free examples.

Since the training noise is random and thus unlearnable, it dominates

the plot of training error and maintains it at a value slightly higher than the

standard deviation of the target noise. The validation error (1.86 x 10-3 , 1.10 x

10- 3, 1.08 x 10- 3, respectively), however, is free of the extra error introduced by

noise and is therefore much less than the training error.

The addition of noise has led to an increased unit creation rate (final

number = 131 units), which indicates that the splitting criteria are being

satisfied after shorter periods of time. This in turn suggests that the unit

centers are behaving sooner as if they have converged, i.e., center updates are

cancelling to a greater degree earlier in the lifetime of a unit. This makes

sense when one considers that noise added to the training examples should

129



cause successive parameter values to become more sporadic and less directed,

increasing the likelihood that centers appear to have converged, and allowing

the unit to split sooner.

Decreasing the learning rate by increasing the pseudo-batch size yields a

roughly proportional decrease in the number of units created (24 units and 14

units), but the validation errors achieved with the smaller networks are

significantly lower. Since the noise is zero-mean, and therefore cancels on

average, it is possible to learn at least a course representation of the target

mapping at some scale; but the greater the variance of the noise, the more

pronounced the training jitter in the parameter values, and thus the less

detail that can be distinguished and eventually learned in the target. In short,

noise obscures the finer details of the target. But lowering the learning rate

decreases the noisy parameter jitter, enabling the network to converge to a

more precise, and more "correct", solution.

Despite the fact that unit creation and basis function training are

sensitive to noise, center and width training are much more robust. The

algorithm produces unit configurations similar to those obtained during

noise-free runs. This is quite an improvement over the expected behavior of

a unit creation algorithm which makes structure modifications based on the

performance of the network on a single example: every apparently outlying

example that appeared to yield high error would elicit a new unit, and the

network would grow out of control. In this case, turning down the learning

rate certainly would not help, and further restricting the criteria for unit

creation would hamper normal network growth.
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Shorter trajectories (Figure 5.20)

This run illustrates the effect of training distribution on the network

configuration. By cutting the length of the state-space trajectories in half, the

training distribution is biased away from the limit cycles, in favor of other

areas of space.

In the final network configuration, the outer limit cycle is still very

well defined, but units in the inner region are distributed more evenly-the

inner limit cycle is barely distinguishable. The network achieves a low

validation error (3.80 x 10 -4), but at the expense of many additional units (final

size = 96), which are required to construct better local approximations in those

areas that are now more heavily represented in the training data.

5.2.3 Summary of Aeroelastic Oscillator Results

A network composed of B/I units having affine basis functions and

normalized Gaussian influence functions was trained to predict future

positions of an aeroelastic oscillator simulation, using the adaptive structure

hybrid algorithm and a stream of examples generated by the free-running

simulation. The first such network served as a benchmark to which the

slightly modified training of subsequent networks could be compared and

evaluated.

Gaussian influence functions resulted in a somewhat higher

validation error with more units than inverse square influence functions;

however, with training restricted to only the most influential units, the

greater localization (i.e., decay away from center) of Gaussian influences

yielded fewer units trained and therefore significantly less computation.
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Allocating all network units up front (with random centers and zero

basis functions) and then training without subsequent splitting was not

sufficient to achieve validation error comparable to the benchmark-some

units lay too far away from the training examples to be utilized efficiently. A

similar phenomenon was observed when networks were initialized with

square grids of units and then trained using a fully supervised algorithm; in

this case, the unit configurations hardly changed, and it was necessary to

increase the number of units allocated to decrease final error. However, the

networks with initial grid configurations were better able to capture features

of the target mapping in regions where the distribution of training examples

was sparse.

Training without error weighting resulted in increased proliferation of

units overall, particularly along the inner limit cycle, with a large increase in

final network size and a decrease in validation error. It is unclear whether

the final network is more efficient than the benchmark in terms of size vs.

error, but in any case convergence was faster. Distribution weighting seemed

to speed convergence somewhat, but the effects were minimal. Reduction of

unit widths during splitting led to lower validation error after the same

amount of training with a modest increase in network size.

Lower error was achieved when the pseudo-batch size was larger (and

thus the learning rates smaller) and training time longer. A large basis

function learning rate relative to the influence function learning rate

performed better than a smaller rate. A stricter convergence threshold slowed

learning without any apparent benefit.

In the presence of noise, the adaptive structure algorithm was able to

place units in the more heavily trained areas, but overproliferation of units

and high error were problems. Increasing the pseudo-batch size offered more
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robustness to noise, enabling the network to capture more detail in the target

mapping, but with increased training time.

Training the network with shorter trajectories significantly changed

the distribution of the examples, decreasing the probability that an example

lay along a limit cycle. Consequently, the network configuration created by

the adaptive structure algorithm shifted to reflect this change in distribution.

Final network sizes and validation errors are summarized in Figure

5.21.
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6 Prediction of a Chaotic Time Series

We now measure the performance of the adaptive structure hybrid

algorithm at training a B/I network to predict future values of a chaotic time

series generated by the Mackey-Glass equation (see Appendix C) from a set of

past values. Results obtained here are then compared with those from a

previous such attempt (reported in the literature) that uses a similar, fixed-

structure B/I network and an off-line hybrid training algorithm.

6.1 Previous Work

Prediction of time series generated by the Mackey-Glass equation has

been used to measure the performance of several other algorithms [5, 15, 20,

30]. The approximation structure selected and evaluated by Stokbro et al is

exactly the B/I network (affine basis functions, normalized Gaussian

influence functions) that appears in this thesis; for this reason, the results of

the adaptive structure hybrid algorithm are compared with those of Stokbro.

The parameter training algorithm of Stokbro is similar to the hybrid

algorithm used here, in that influence function training is unsupervised and

decoupled from basis function training. As with Moody and Darken, the

network is trained on a fixed set of examples, from which centers and widths

are determined prior to basis function training. However, no "training" is

done per se; rather, clusters and their centers are identified explicitly, and

widths computed to achieve a suitable overlap among N adjacent units.

Stokbro continues to exploit the off-line nature of the problem as fully

as possible. Once influence parameters have been computed, basis functions

are initialized to give best local fits to examples that lie within the
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corresponding clusters. Finally, genuine "training" of basis function

parameters occurs, using a supervised gradient algorithm that minimizes a

batch cost that has been revised to reduce redundant computations.

In Table 6.1, the algorithm of Stokbro is compared to the adaptive

structure hybrid algorithm developed in this thesis.

Network architecture

Training examples

Center determination

Width determination

Basis function
parameter

determination

Network
initialization

Table 6.1. Comparison of Stokbro, Thesis Algorithms
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Thesis Stokbro

linear basis functions linear basis functions

normalized Gaussian influence normalized Gaussian influence
functions functions

number of units varies to meet number of units chosen based on
target error number of training examples

stream, generated on-line batch, generated off-line

trained on-line to minimize computed off-line to minimize
cumulative squared distance cumulative squared distance
from examples to nearest center from examples to nearest center

trained on-line to reflect computed off-line for each
"typical" distance of a center center based on proximities of N
from examples in region in nearest centers
which it predominates

supervised gradient updates to supervised gradient updates to
minimize incremental error minimize batch error

center of first unit initialized calculation of all centers and
randomly within training widths
domain

basis functions set to yield best
width set based on size of local fit
training domain

basis function parameters set to
zero

subsequent units inherit para-
meters from parent units



The off-line results obtained by Stokbro should serve as a reasonable

example of the performance attainable by this particular type of B/I network

on this particular problem, despite the major differences in approach from

the adaptive structure hybrid algorithm.

6.2 Prediction Results

The adaptive structure hybrid algorithm is used in two different

scenarios to train a B/I network (affine basis functions, normalized Gaussian

influence functions) to predict future values of the Mackey-Glass chaotic time

series. First, training is performed off-line by iterating through a fixed set of

examples generated prior to training. Second, the network is trained on-line

using a stream of examples generated by the free-running Mackey-Glass

system (see Section C.3 and Figure 5.1). Prediction error in both cases is

measured over a stream of examples from the free-running system.

The resulting networks are compared to those of Stokbro in terms of

prediction error, the number of training iterations, the number of distinct

training examples used, and the size of the final network.

6.2.1 Off-line Training

A set of 500 examples (10 quasi-periods) was generated and stored prior

to training. The adaptive structure network was trained by iterating

randomly through the training set a total of 1600 times. The training

algorithm and parameters were the same as for the aeroelastic oscillator

benchmark run, except that distribution weighting was turned off, c,r = 10,
• -2

and target error = 0.01. The normalized prediction error, E2 (Eq. 6.1), was

measured on a new set of examples (200 quasi-periods) in the manner of

Stokbro. (The evaluation set was much larger than the training set so that

generalization to novel inputs could be measured.)
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2 rg[k]- [k]) 2  mean squared error (6.1)

S((targ[k]- (ytr[k]) variance of target set

Referring to Figure 6.2, global training error and both maximum and

minimum local error decrease fairly smoothly (compared with that observed

previously for the aeroelastic oscillator). A steady proliferation of units

generates a thorough covering of regions of the attractor (Figure 6.1)

represented in the training set.1 The number of active units maintains a very

low relative value throughout training. When evaluated on a stream of

examples, RMS validation error (i.e., unnormalized prediction error) was

found to be quite a bit higher (0.0208) than the final RMS training error

(0.0115), indicating mediocre generalization.

The final size of the network, as well as the training effort required to

achieve the resulting normalized prediction error, was compared with a

network from Stokbro that yielded similar prediction error (Table 6.2).

Normalized prediction error

Size of final network

Size of training set

Number of training examples

Table 6.2. Results of off-line training

lIf it appears that the overlap among units is excessive, keep in mind that the figure

shows a projection of a four-dimensional space onto two dimensions; thus, units that appear to

overlap in this subspace do not necessarily overlap in the full space.
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Off-line Results Stokbro Results

0.0083 -0.007

216 units 25 units

500 examples 500 examples

= 10 quasi-periods = 10 quasi-periods

800,000 examples 100,000 examples

= 16,000 quasi-periods = 2000 quasi-periods



It has taken the adaptive structure network roughly 8 times as many

units and training examples to achieve results approximating those of

Stokbro. It may be that premature proliferation of units, i.e., splitting units

that are not yet fully trained, has caused significant inefficiency in the final

network. Otherwise, training has proceeded nicely, giving a sensible covering

of the training domain and steadily decreasing error.

1.21

0.8-

0.6-

0.4 0.6 0.8 1 1.2
x[t]

Figure 6.1. A two-dimensional Poincard map of the time series
generated by the Mackey-Glass equation. The current state
is plotted vs. the state 6 time steps in the past, over a total
of 10 quasi-periods.
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Figure 6.2. Off-line Training
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6.2.2 On-line Training

Another network was trained, but this time using examples generated

on-line. The total number of examples presented to the network was the

same (800,000 examples = 1600 quasi-periods), but rather than repeated

presentations of the same set of quasi-periods, each quasi-period was different,

providing a more thorough exploration of the Mackey-Glass attractor. The

convergence threshold co,,,, was changed to 0.1 (from 0.2 in the previous run)

to possibly reduce any overproliferation of units.

On-line training has made it possible to construct a more thorough

covering of the attractor than was done off-line with an example set of fixed

size (Figure 6.3). The quality of training as manifested by the smoothly

decreasing error plots has been preserved. Prediction error was measured in

the same manner as before. Generalization is excellent: RMS training error

(0.0142) is practically the same as unnormalized prediction error (0.0144),

which has decreased significantly from the off-line case despite a reduction in

network size (159 units).

A network from Stokbro having similar normalized prediction error

was chosen for comparison (Table 6.3).

Normalized prediction error

Size of final network

Size of training set

Number of training examples

Table 6.3. Results of on-line training
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On-line Results Stokbro Results

0.0039 -0.0045

159 units 100 units

800,000 examples 2000 examples

= 16,000 quasi-periods = 40 quasi-periods

800,000 examples 400,000 examples

= 16,000 quasi-periods = 8000 quasi-periods



The gap in performance seems to have narrowed somewhat. A 59%

increase in network size, accompanied by twice as much training, has yielded

a modest decrease in prediction error, as contrasted with the previous eight-

fold disparity resulting in higher prediction error.

6.3 Discussion

On-line training has produced a better predictor than off-line training

performed for the same length of time. The unit configuration is more

efficient (more thorough covering, fewer units) and prediction error is lower.

This outcome makes sense when one considers that the set of on-line

training examples is virtually identical (for a large enough set) to the set of

examples eventually used to measure prediction performance. In contrast,

the fixed set of off-line examples represents only a segment of possible

prediction inputs; hence, the network is biased towards those examples to the

detriment of performance on other examples, leading to poor generalization.

On-line training with a stricter convergence threshold significantly

improved network performance relative to the Stokbro results, though this

performance remained inferior. The excessive network size might be caused

by a convergence threshold that is still too lax, allowing units to split before

they have been fully trained, and yielding an inefficient use of network

resources. Overproliferation can also account for the increased number of

training examples required, since the winner-take-all influence training

algorithm effectively divides up the training set among all units, requiring

more examples to achieve the same level of training for a larger network.
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7 Conclusion

7.1 Overall Performance of the Network and Algorithm

The objectives of this thesis were to develop a network approximation

structure capable of increasing its size in order to achieve a closer fit to on-line

training examples generated in accordance with the dynamics of some

unknown system, while being robust to noise, adverse ordering, and

nonuniform distribution associated with the training data stream. In light of

these goals, the successes and failures of this thesis are assessed below.

7.1.1 Evaluation of Results

The unsupervised center training algorithm performed well under on-

line conditions, as distinct from the off-line training investigated by Moody

and Darken. Unit center organization corresponded very closely with the

training input distribution, even in the presence of significant amounts of

input noise, and did not appear to be affected by the ordering of examples.

Distribution weighting did not appear to affect center placement

substantially-the unit configuration was very sensitive to local frequencies

of examples, leading to sparse covering of areas where examples occurred less

frequently. The addition of error weighting led to the proliferation of fewer

units in some regions but did not necessarily improve final network

performance. The new incremental width training algorithm was very

successful at adjusting the overlap of neighboring units.

Simultaneous training of basis functions and influence functions

(centers and widths) yielded adequate results: training error decreased overall

despite possible interference from the unsupervised influence training.
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However, the addition of training noise to the targets substantially increased

the validation error of the final network.

The adaptive structure algorithm meshed very well with the hybrid

parameter training algorithm. Newly created units were quickly incorporated

into the network structure without introducing devastating transient errors.

Reducing the widths of new units relative to the old unit served to facilitate

their speedy incorporation. Structure adaptation yielded more flexible and

complete utilization of available units than did fixed structure networks

trained with either the hybrid or fully supervised algorithm. In addition,

structure adaptation did not appear to increase the training time required to

achieve a particular error, compared to training times and errors of the fixed

structure networks.

There seemed to be a problem with overproliferation of units, perhaps

due to the frequent splitting of units before basis functions had achieved

minimum local errors. Not only did this cause inefficient use of network

resources, but generalization may have been compromised as well as a result

of a decrease in smoothness of the network mapping.

By evaluating and training only those units ("active" units) that

contributed significantly to the current network output (according to the

desired cumulative normalized influence), the computational cost of training

was dramatically reduced for networks constructed of Gaussian units. Not

only was the set of active units much smaller than the network as a whole,

the number of active units actually stabilized to a small constant value. This

reduction in computation is an extremely important feature of the algorithm,

allowing "the curse of dimensionality" inherent in spatially localized

networks to be circumvented to a large extent.
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Inverse square influence functions were shown to be a viable

alternative to Gaussian functions for use in basis/influence function

networks. They afford the advantages of exact interpolation and sensible,

automatic transitions between neighboring units, and can be trained to yield

networks of similar quality to those constructed from Gaussian units.

However, since inverse square functions decrease polynomially away from

center rather than exponentially, they are essentially less localized than

Gaussian functions; this accounts for the higher number of active units

observed for the inverse square network and the corresponding rise in

computational cost, which introduces an important trade-off between

representational convenience and computational efficiency.

7.1.2 Overall Assessment

In comparison to the fully supervised algorithm and that of Stokbro et

al, the adaptive structure hybrid algorithm performed adequately for a first

effort. As discussed in the next section, there are a number of additions and

modifications that can be made to the algorithm that should both decrease

convergence time and lead to more efficient usage of network resources.

A future, improved adaptive structure algorithm will be useful in the

design of systems for control, estimation, and prediction of dynamical

systems, by effectively automating network design with a subsequent

reduction in development cost.

7.2 Recommendations for Further Work

7.2.1 Parameter Training Algorithm

Learning rate decay. The variance of a parameter about its

"ideal" value is related to the size of its learning rate, and places

a lower limit on the average error that can be attained through
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training. As a parameter reaches the vicinity of its "ideal" value,

its learning rate should be decreased to reduce the parameter

variance, likewise allowing the mean approximation error to be

reduced. This learning rate decay could be linked to the

convergence measure currently used to indicate when unit

splitting should occur.

* Recursive Least Squares for basis function training. RLS is

known to converge quickly for quasi-stationary target mappings

[1, 31]. Therefore, basis function training might be improved by

replacing the current Least Mean Squares algorithm with an age-

weighted version of RLS, to allow for unit migration and

corresponding changes in the local target mapping.

* Improved distribution weighting. It may still be possible to

achieve a more uniform mapping over those areas of input

space in which examples appear by adjusting learning rates for

centers and widths to account for relative densities of examples

in different areas. In particular, center and width training could

be turned off for overtrained units. Hopefully, the

disproportionate effects of limit cycles, set points, etc., on the

unit configuration could be reduced.

* Smoother network mappings. Better generalization might be

attained by increasing the overlap among neighboring units, i.e.,

training the unit width to extend beyond the standard deviation

of the local set of inputs, which would yield smoother

interpolation. In addition, basis functions of the current set of

active units could be compared and adjusted to increase local

smoothness.

* Confidence measure for network outputs. In addition to

providing an approximation to the target mapping, the network

could provide an additional output that indicates the estimated

accuracy or validity of the network output as a function of the

current input. For instance, outputs generated primarily by

units having large local errors should be accompanied by a

correspondingly low measure of confidence; outputs given in
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response to relatively novel or unfamiliar inputs should

likewise be identified as unreliable.

7.2.2 Adaptive Structure Algorithm

* Improved measure of parameter convergence. The current

measure of convergence of a unit's parameter vector is prone to

domination by individual parameters that receive relatively

large adjustments, so that convergence is signaled if and only if

these dominant parameters have converged. This disparity

might be avoided or reduced by: i) computing convergence

separately for individual parameters, and then combining the

results in a total convergence measure; ii) weighting individual

parameter updates (according to prior knowledge of typical

parameter magnitudes, or observed past magnitudes) before

calculating the convergence measure.

* More efficient basis function training before splitting units.

Splitting undertrained units leads to increased network size,

inefficient utilization of available network resources, and

increased computation costs. Basis functions must be

guaranteed to be fully trained (i.e., have nearly the lowest

possible local error) before units are split. This may be achieved

by using learning rate decay or by improving the convergence

measure (as described previously); it may also be helpful to

measure local error convergence, and to split only when

parameters and local error have all converged.

* Removal of redundant/underutilized units (i.e., pruning).

There will always be the possibility of adding units to the

network that are not subsequently needed or used. By

eliminating these extra resources, network representational and

computational efficiency can be increased. Redundancy might be

detected by comparing the basis functions of neighboring

(currently active) units to determine whether their contribution

to the network output could be adequately approximated using a

smaller number. Under-utilized units could be identified
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simply by setting thresholds for training activity, and those units

that are seldom trained or evaluated would be removed.

7.2.3 Meta-Learning

On-line structure adaptation is fundamentally distinct from on-line

parameter training, and there is no reason why the two should be performed

in synchrony, especially given the time constraints imposed on the learning

algorithm when the network is evaluated and updated at each time step. It

may be more appropriate to view and to treat structure adaptation as a process

that is performed independently of parameter training, on its own time scale

and according to its own objectives. As parameter training proceeds as usual,

a meta-learning system would observe and evaluate the progress of learning

given the current network structure, making modifications along the way to

improve the ability of the network and algorithm to meet the learning

objectives of low error and good generalization.

The list of additional tasks that might be undertaken by a meta-

learning system is extensive. In addition to structure augmentation and

reduction, meta-learning might involve the selection of alternative basis

functions to achieve better local approximations (e.g., sinusoidal, quadratic).

Learning rates could be regulated, or learning simply turned on and off in

different regions of space. Graduated learning (i.e., the sequential

construction of crude approximations followed by finer-grained corrections)

could be implemented. Networks could be constructed of global as well as

spatially localized components, where appropriate.

The idea of meta-learning is simply another way of thinking about

solutions to the same set of problems. As novel paradigms often do, it may

lead to new, improved methods of solving those problems.
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A Inverse Square Networks

In this appendix, we will show the following properties for networks

that are constructed from units composed of pairs of inverse square influence

functions and affine basis functions that share the same center:

* The network performs exact interpolation. For inputs that

coincide exactly with the center of any unit, the network output

is equivalent to that unit's basis function value at its center,

which in the case of affine basis functions is just the offset wo-

y(xc) = B,(x;) = wT - (X - x;)+ wo = w0j (A.1)

* Basis functions are local 1st-order approximations. Likewise, the

first derivative of the network output is equivalent to the first

derivative of the local basis function, i.e., the weight vector w-

for x = x y _B = w T  (A.2)
Sdx dx =

Thus, each basis function is the 1st-order Taylor approximation

to the network mapping about the corresponding unit center-

B(x)=yx)+ .(x- x) (A.3)

* The resulting network mapping is smooth. Basis functions,

normalized influence functions, and their first derivatives exist

and are bounded over bounded regions-

- = -Bk Ik(x) + Bk(X). dIk(A.4)

Therefore, the first derivative of the network output exists over

the entire training domain, and the mapping is smooth.
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A.1 Network Definition

A.1.1 Network equations

Below are the equations necessary to evaluate the network output

given an input x and a set of basis function and influence function

parameters, all of which are assumed to be bounded. Unit widths are

assumed to be greater than zero. For analytical convenience, all unit centers

are assumed to be distinct; however, this assumption is later shown not to be

necessary.

Where it is convenient and unlikely to result in confusion in the

derivations, the dependency on x is omitted from expressions.

Network output:

Basis function:

Normalized influence:

Unnormalized
influence:

Squared distance from
input to center of j-th

unit:

Units have nonzero
widths:

Assume all centers are
distinct (for now):

y(x) = Bk(x) Ik(x)
k

BI(x)= w (X-x)+w

ik (x)

I ( = k X
k

2

i1(x) - o'x
r i(x)

2( IIx-) _ x -= (x- x) (x -x )

OU > 0, Vj

x xk, Vj,k, j k
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A.1.2 Useful Relations

The following three relations will be used to simplify complicated

expressions and to eliminate infinite quantities from equations.

Sum of normalized
influences:

Relations between
normalized and

unnormalized influences:

k = Y , k i k
k k Ym m

1 IL , i 0

k

i=m .i =m,, . 1 = - k im • j Vj, m

(A.14)

A.2 Exact Interpolation

The values of normalized influences are computed for inputs that

exactly "hit" unit centers. Finally, it is shown that in these cases, the network

output equals the basis function offset value of the "hit" unit.

Normalized influence of unit j at its center-

ii(x;) _ 1
I (x;) = ik(X)

kik(Xj
k 1+ 1

kj i (x)

1kj rk %jj

1 -

1+0

(A.15)
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A.2.2 Normalized influence of unit j at center of unit m, m j-

i1(x )

_XCM_ - (i (Xm) m (X)

k~mlm(Xm)k m m m

2 2 2 0I m

1+ I y 1+ 2 2

kam~ r k  k~m cm r k

0
S =0
1+0

A.2.3 Network output at center of any unit j-

y(x;)= IBk( X).Ik(xc) =B (X)
k

= w (x -x,)+wo

= Wj
= WOj

(A.16)

(A.17)

A.3 Local 1st-order Approximations

It is shown that basis function slope vectors w, are equivalent to the

first derivatives of the network output evaluated at corresponding unit

centers.

A.3.1 First Derivatives w.r.t. Input

Network output: dy
dx

(A.18)
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dB TBasis function: = wT
x (A.19)

di. di dr2  2 T
Unnormalized influence: i= i 2 2 ( -X)

dx dr dx (A.20)

dr2

Squared distance: dr 2(x- x)T
8x (A.21)

Normalized influence:

Ij 1 C di " i. k
I 1 ( i ; . d .i

k

k_1 i [(_ 1  dik

(xk (x;)N(xx)N1j(A.22)
k

Skdi 1 di2k

= -2 Ij k - I(xXk k-j 1k (A.22)k

A.3.2 Derivatives Evaluated at Unit Centers

Substitutions are made to eliminate infinite-valued influences

resulting from inputs at the centers of units. It is shown that the first

derivatives of all normalized influence functions evaluate to zero at the
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center of every unit. Consequently, the first derivative of the network

mapping equals the slope vector of the "hit" unit.

for x = x':

dl0 j i11 c

1 1i 1 x x)T
1 i o 0 "1 ik " X - Xk Tk (A.23)

= OT

forx = xm , m j:

I - )T 1 ,d -2 2 jk j.( Xc -X 2)T  1k j I* .(x- X)lX kk

1 T  1  M

k* j, k k\

k*m

= -2- 1 0-1-i . x C x 2 j -1.0

+for x = 1dX F.ki. _)T .B .(x T (A.24)

= Ok

for x = xc: dy d Bk k k dBi T (A.25)
dX k kX
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A.3.3 Smoothness of Network Mapping

For inputs that do not coincide with unit centers, unnormalized

influences have finite non-zero values, and normalized influences fall in the

open interval (0,1). Since all widths are non-zero, all other parameters are

finite, and all inputs are bounded, the first derivative of the network

mapping exists over the entire (bounded) learning domain. Therefore, the

mapping is smooth (i.e., all components of Eq. A.18 are well-behaved).

A.4 Distinctness of Unit Centers

The previous analysis assumed that all unit centers were distinct-in

fact, this is an unnecessary condition. A similar analysis may be performed

for networks containing concentric units if the unnormalized influences of

units that share the same center are grouped together.

For example, imagine that some network contains a subset of units, p,

that share a common center; call the remaining set of non-concentric units q.

When calculating normalized influences, the members of p may be grouped

together, effectively forming a new unit whose variance is the sum of the

variance of all members of p. Members of q are dealt with as usual. A similar

analysis may now be performed using this slight modification.

2 2 02
i I I

r 2 r r

ij 2 . (A.26)

k rk p q r P r
k p q p p q q
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Note that the normalized influence of a unit at its own center is no

longer equal to 1-influence must be "shared" among the concentric units

according to variance:

I (x)= if jep (A.27)

p

However, the normalized influences still sum to 1.
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B The Aeroelastic Oscillator

B.1 Aeroelastic Galloping

(A thorough treatment of aeroelastic galloping can be found in the

paper by Parkinson and Smith [23]. A brief description is presented here.)

When a steady wind flows across a flexible elastic structure, small

oscillations of the structure in the direction transverse to air flow may be

amplified, resulting in the phenomenon of aeroelastic galloping. Such

behavior can be observed in airplane wings, bridges, or power lines on a

windy day.1

The oscillation reaches a steady-state amplitude that varies nonlinearly

with the velocity of the incident wind-i.e., the wind determines limit cycles

in system state to which motion becomes constrained over time. Very large

or very small wind velocities create limit cycles whose amplitudes generally

increase with wind speed. However, bifurcations occur for wind velocities in

between, yielding multiple limit cycles, any of which may capture the system

states; in such cases, the steady-state behavior of the oscillator depends on

both wind velocity and initial state.

The aeroelastic oscillator presents an interesting problem for prediction

of future states from current state and wind velocity. The following sections

describe the dynamics of the system and the method of constructing a

predictor.

1 Perhaps the most notorious example of aeroelastic galloping is the violent shaking,

bucking, and eventual collapse of the Tacoma Narrows Bridge in the state of Washington one

blustery day.

165



B.2 System Model

B.2.1 Equation of Motion

The aeroelastic oscillator is simply a flexible structure with incident air

flow transverse to the direction of oscillatory motion. The physical system is

modeled as a mass-spring-dashpot with an aerodynamic forcing term-

tY
V

14 2t

Figure B.1. Aeroelastic Oscillator Model

The equation of motion is

myi + r + ky = CF pV2hl (B.1)

where

m = mass of beam

k = spring constant

r = damping constant

y = displacement of beam from equilibrium

V = velocity of incident wind

p = density of air

h,l 1= dimensions of beam (square cross - section)

CFy = aerodynamic force coefficient
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The coefficient CFY determines the magnitude of the aerodynamic force

(in the direction of y) which results from the interaction of the wind with the

moving object. This coefficient is an odd function of the angle-of-attack, a:

a = tan (B.2)
V (B.2)

For suitably small values of a

lal < a.,, = 160 (B.3)

CF can be approximated by a seventh-degree polynomial:

CF = A( -B 3 + 5 - D 7  (B.4)

A = 2.69 B = 168 C = 6,270 D = 59,900

For more convenient nonlinear analysis, Parkinson and Smith make

equation B.4 dimensionless by dividing through by kh and redefining terms:

S+ Y = nA- (U-Uo)Y- B )3 + D (B.5)
AU AU3 AU

Y = nondimensional position

U = nondimensional wind velocity

r
U0 = critical wind velocity =

nAmo

ph2ln = mass parameter 2
2m

k
m

This nondimensionalized model is completely and conveniently specified by

assigning arbitrary values to the critical wind velocity and mass parameter.
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We shall therefore opt to implement simulations using this model rather

than the original, dimensional version.

B.2.2 Simulation

Integration of the equation of motion is performed using a fourth-

order Runge-Kutta algorithm with a step size of 0.01 seconds. In

nondimensional time units, a single period of the oscillator has a length of

roughly 2r, approximately equal to 628 simulation time steps.

The two free oscillator parameters-critical wind velocity and mass

parameter-are both arbitrarily set to 1.0. This choice results in a system that

converges quickly (within a few periods) from initial states to odd-shaped

limit cycles (Figure B.3). The limit cycles themselves are determined by the

velocity of the incident wind (Figure B.2).

For wind velocities less than critical, no galloping behavior is

observed-the system always converges to the stable equilibrium point at the

origin. As wind velocity increases, the system progresses through three

distinct types of behavior:

1) one small stable limit cycle-The equilibrium point at the

origin becomes unstable, and a limit cycle forms around it,
whose amplitude increases with wind velocity.

2) two stable limit cycles-The system bifurcates, and the

small stable limit cycle is joined by a larger stable limit

cycle and an unstable limit cycle in between. The unstable

equilibrium at the origin remains. The stable limit cycle

amplitudes increase with wind velocity.
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Figure B.2. Limit cycles of aeroelastic oscillator

3) one large stable limit cycle-The small stable limit cycle

and the unstable limit cycle merge and cancel, leaving

only the large stable limit cycle and the unstable

equilibrium. The amplitude of the remaining limit cycle

grows as wind velocity increases.

For this thesis, the incident wind velocity is set to a constant value of U = 1.6,

which places the oscillator in the mode of most complex behavior.

Because the polynomial approximation to the aerodynamic force is

valid only for small values of the angle-of-attack, initial states must be chosen
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such that the velocity always remains small relative to the incident wind

velocity; namely, that

I1 < =t = tan l6= 0.29

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

State trajectories of aeroelastic oscillator

i I.!

i.....r i........... i ...... i

-,.

.. . . ....... ..../.

............
............

.............
............

.......

-0.5 0

position

(B.6)

0.5

Figure B.3. State-space trajectories

Perhaps the safest approach is to set initial velocities equal to 0.0 while

selecting initial positions never much larger than the amplitude of the largest

limit cycle. In fact, this is the manner in which initial states shall be chosen
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when using the simulation to provide training examples for learning

prediction.

B.3 Constructing a Predictor

The aeroelastic oscillator simulation is used in the configuration below

(see Chapter 1) to train a network to predict future positions y given the

current position and velocity of the oscillator, and assuming an invariant

incident wind velocity.

wind
velocity

(constant)

predicted
position

Figure B.4. Training an n-step predictor

The stream of training examples is constructed from observations of

the state-space trajectories followed by the oscillator simulation after being

initialized with random initial positions (and zero initial velocities). A single

training examples consists of a system state (position and velocity) and the

corresponding position n steps in the future. After setting the initial state of
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the oscillator, the system is allowed to evolve along the resulting trajectory

for a fixed length of time before the state is reset to another random value.

(Obviously, for n-step prediction, each trajectory must evolve for n+1 time

steps before training examples begin to be generated.)

Initial positions are confined to the interval [-0.5, 0.5], which lies

entirely within the outer limit cycle-hence, the system state remains

bounded, and instability due to excessively large velocities is not a concern.

By choosing initial states for which position is random and velocity is zero,

we are doing the equivalent of pulling up (or pressing down) on the beam a

random distance, holding it there, and then letting go, allowing the beam in

this case to converge to a steady-state oscillation corresponding to one of the

two limit cycles.

Note that as trajectory lengths increase, the amount of time the system

spends traveling along limit cycles becomes significantly greater than time

spent in other regions, especially regions near the unstable limit cycle and

unstable equilibrium point. Long trajectories produce a stream of examples

biased toward the limit cycles, and tend to focus training, and thus increase

unit population density, in those regions.
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C The Mackey-Glass Equation

(Material contained in this summary is based on information taken

from [20, 30]. For a more thorough presentation of chaotic systems, please

check your local library for literature on nonlinear dynamical systems [32].)

C.1 The Mackey-Glass Delay Differential Equation

A challenging prediction problem would be to attempt to predict future

behavior of an "unpredictable" system. So, a fitting method of evaluating the

quality of a learning algorithm is to measure its success at predicting future

states of chaotic systems.

The Mackey-Glass delay differential equation gives rise to such a

chaotic system. That is, when fully initialized and allowed to evolve over

time, future states becomes increasingly difficult to predict solely from

observations of past states.

The Mackey-Glass equation is fully deterministic: its unpredictability

relies not on any "randomness", but rather on its infinite dimensionality and

the potentially large influence past states may exert on future states.

x(t - ")x(t)= -b- x(t)+a t 0 (C.1)
1+ x(t - T)

To determine the value of x(t) for t > t0, one must specify exactly the value of

x(t) on the interval [to - r,to]. This amounts to having perfect knowledge of

each member of an infinite set. Unless these values are somehow known

exactly by some means other than observation, e.g., by explicitly setting the

initial conditions, x(t) cannot be calculated very far into the future with

accuracy greater than chance.
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Figure C.1. Two series generated by the Mackey-Glass equation
from slightly different initial conditions. Divergence
becomes apparent after approximately four characteristic
time periods.
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C.2 Simulation

The Mackey-Glass equation is integrated using a 4th-order Runge-Kutta

algorithm with a step size of 1 and the same parameter values as in [30]:

a = 0.2, b = 0.1, r = 17. Initial values of x[t] for integer values of t on [-17, 0]

were chosen at random from [0, 1]. The resulting chaotic series is quasi-

periodic with a characteristic period of tc, = 50 (i.e., the reciprocal of the

mean of the power spectral density). Both the quasi-periodicity and the

sensitivity of the system to initial conditions are manifested in the following

plot of two such series (Figure C.1).



C.3 Prediction

Using the Mackey-Glass simulation to generate training data in a

fashion similar to that of the aeroelastic oscillator problem (see Appendix B),

an adaptive structure network is trained to predict the state of the system

steps in the future, where

T=6 (C.2)

Four past state values are provided as inputs to the network:

x[t+T]

target

x[t]

x[t-A] adaptive
inputs structure > prediction

x[t-2A] network

x[t-3A]

Figure C.2. Training an n-step predictor

where A = 6. The simulation is initialized once and allowed to run for the

duration of training.
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