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Abstract

Polygonal random fields (PRFs) are random fields which map a region of the

plane into a finite set such that the mapping's edges divide the region into polygons.

Because PRFs provide a probability measure for the set of polygonal colorings of

a region, they can be used to form a model for a Bayesian approach to the image

segmentation problem. Previously, Markov random fields have been used in Bayesian

formulations of the segmentation problem, but such formulations confine the problem

to a discrete lattice.

In this thesis, PRFs are defined and their properties are discussed. Models are

formulated to reconstruct piecewise constant functions and piecewise smooth func-

tions. In each case, an algorithm is presented to generate sample realizations from

the posterior distributions of the models. The algorithms are then implemented to

demonstrate the performance of each model.
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Chapter 1

Introduction

To segment an image is to partition the image into coherent regions; the purpose of

an image segmentation problem is to produce such partitions. A physical example is

the problem of dividing an image into regions corresponding to objects in the region.

A political segmentation problem, marked by internecine solutions, is the partition of

land masses into nations. In this thesis, we will be concerned only with segmentation

of an image based on intensity. Specifically, given a set of noisy measurements of the

intensity of an image, we are concerned with reconstructing a piecewise constant or

piecewise smooth approximation of the image. The principal contribution of this the-

sis is to address this problem through Bayesian models based on the use of polygonal

random fields (PRFs).

Image segmentation problems have previously been addressed both through Markov

Random Field (MRF) formulations and through variational formulations. Variational

formulations are based on the minimization of energy functionals. For example, Mum-

ford and Shah [13] proposed a variational formulation based on minimizing a cost

functional over a set of boundaries with smooth functions within the boundaries. Un-

der this formulation, if the image is on a region T and the observation is g, then a

reconstructed image f and its edges P are found by minimizing
E(fr) = c, f g)2 dA + C' f dA + c�,L(F)

T(f T" I JVf 112
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where L(r) is the length of r and C1, C2, andC3 are constants.

A MRF approach to the reconstruction of piecewise continuous functions is dis-

cussed in Geman and Geman [7] and in Marroquin [111. This formulation is described

more fully in chapter 4. Unlike the variational formulation, it is a probabilistic ap-

proach and takes place in a discrete setting. The MRF formulation is Bayesian.

The prior distribution is modeled with two coupled MRFs: one MRF represents the

function intensity, and the other represents the presence or absence of edge segments

between adjacent sites of the function intensity lattice. The prior distribution is then

a Gibbs distribution with a potential which includes terms which reflect the cost of

edge segments and the cost of discontinuities in the intensity at adjacent sites not

separated by an edge. Suppose the measurement of an image at the sites of the in-

tensity lattice is modeled by the image's intensity plus some Gaussian error term.

Then the posterior distribution is also a Gibbs distribution; its potential includes the

terms of the prior distribution plus a term which reflects the cost of differing with

the measurements. A segmentation of the image can be obtained by sampling from

or by minimizing the posterior distribution.

Both the variational and the MRF formulation are based on functionals which

include three terms. One is a fidelity term which ensures that segmentations will

reflect the data. One is a smoothing term which requires that segmentations be

piecewise smooth off the set of edges. The final term limits the edges included in the

segmentation. The PRF formulation of this thesis will also include these three terms.

Polygonal random fields are random fields which map a region of the plane into a

finite set such that the mapping's edges divide the region into polygons. A large class

of PRFs possess a spatial Markov property. Because PRFs provide a probability

measure for the set of polygonal colorings of a region, they can be used in image

segmentation problems in a manner similar to the use of MRFs described above.

However, unlike the discrete MRFs, PRFs are defined as continuous functions on the

plane. They can model discontinuities in arbitrary directions, and they can be chosen
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to be invariant under translations and rotations. In some situations, these features

make PRFs more natural models for segmentation problems than MRFs.

This thesis explores the use of PRFs in a Bayesian formulation of the segmentation

problem to reconstruct piecewise smooth functions. In chapter 2, we define PRFs

and discuss their important mathematical properties. We show how the probability

measure for PRFs is constructed from the Poisson line process, and we show that a

large class of PRFs has the spatial Markov property. In chapter 3, we formulate a

Bayesian model for the image segmentation problem to reconstruct piecewise constant

functions. We then present an algorithm to generate sample realizations of PRFs,

and we discuss the problems involved in implementing the algorithm. We then use

the algorithm to generate sample realizations of PRFs, including the PRFs of the

piecewise constant segmentation problem. In chapter 4, we formulate a Bayesian

model for the reconstruction of piecewise smooth functions. This model couples

a PRF which represents the edges of an image with a MRF which represents the

intensity of the image at a set of sites on a lattice. We then present an algorithm to

generate sample realizations for this model. Finally, we present experimental results

of the algorithm to reconstruct piecewise continuous functions.

The mathematical development of PRFs is due to Arak and Surgailis [2], and

Clifford and Middleton [41 suggested a Monte Carlo type algorithm for the generation

of PRFs. A different approach to the segmentation problem can be found in Mitter

and Zeitouni [12]. The principal contribution of the thesis is the dual PRF-MRF

model for the reconstruction of piecewise continuous functions and the algorithm

to reconstruct piecewise continuous functions. Other contributions here include a

more detailed discussion of the issues involved in the implementation of Monte Carlo

algorithms for the generation of PRFs and the presentation of experimental results

of PRF generation algorithms.
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Chapter 2

Polygonal Random Fields

2.1 Introduction

Polygonal random fields are random fields which map a region of the plane T into a

finite set J such that the mapping's discontinuities divide the region into polygons.

The elements of J can be thought of as colors. A sample realization of a PRF is then

a partition of T into colored polygons; hence, realizations are generally referred to as

colorings. Figure 2.1 shows a possible coloring of a PRF which takes on three values.

Figure 2.1: Sample coloring of a PRF taking on three values.

PRFs provide a probability measure for the set of polygonal colorings of a region,

and they can be used as a model for reconstruction problems in a manner analogous
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to MRF models. In fact, PRFs share many of the features which make MRFs useful

for reconstruction problems:

1. The probability density for PRFs can be specified explicitly. This feature makes

PRFs analytically tractable, so it is possible to apply Bayes' theory to PRF

reconstruction problems.

2. Because the probability density can be specified explicitly, there is a clear re-

lationship between the model and the characteristics of the sample colorings of

a PRF. For example, the density can include terms which directly affect the

length of a coloring's edges, the angles formed by the coloring's edges, and the

coloring's particular color at individual points.

3. The class of PRFs is broad enough to model a wide variety of situations.

4. Sample colorings from PRFs can be generated through Monte Carlo procedures.

5. PRFs have a spatial Markov property which makes parallel implementation of

PRF algorithms possible.

Polygonal random fields also have characteristics which distinguish them from

Markov random fields. PRFs are defined on the plane; MRFs are defined on the

nodes of a graph. For certain kinds of images, the continuous formulation of PRFs

seems to be a more natural model than the discrete formulation of MRFs. For exam-

ple, images containing artificial objects often have discontinuities along line segments

with arbitrary orientations. To model such images with MRFs, the images must

be discretized into pixels, and the images' discontinuities can only be modeled in a

few fixed directions. Certain intrinsic properties of an image, like the total length

of its discontinuities, are lost through this discretization process. In contrast, the

PRF model includes such discontinuities directly, and the total length of an image's

discontinuities is preserved. Of course, modeling image segmentation problems with

PRFs also has disadvantages. The continuous nature of PRFs can make them difficult
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- though certainly not impossible - to handle computationally. We will discuss the

computational problems of PRFs in the next chapter, when we begin to discuss the

use of PRFs in reconstruction problems.

The development of PRFs is largely due to the work of Arak and Surgailis. Arak[l]

first noted that the trajectories in space-time of a system of particles moving in one

dimension could yield a partition of a two-dimensional region with a spatial Markov

property. Such a system is called an Arak process, and we will discuss it at the

end of this chapter. Expanding on this notion, Arak and Surgailis[2] developed the

mathematical basis for more general PRFs. Clifford[51 and Clifford and Middleton[4]

suggested an algorithm for the generation of sample colorings of PRFs.

In this chapter, we define PRFs and explore their important mathematical prop-

erties. We begin by reviewing the Poisson fine process, the fundamental building

block from which PRFs are constructed. Next, we define PRFs, and then we discuss

conditional probabilities and the Markov property for PRFs. Finally, we examine

Arak's particle model for the generation of PRFs. Although the particle model does

not play an important role in reconstruction problems, it will provide insight into the

generation of PRFs and their Markov property.

2.2 The Poisson Line Process

The Poisson line process is the basic process through which PRFs are defined and

their sample colorings are constructed. A Poisson line process generates random

sets of lines which intersect a given region. Because the Poisson line process is so

important to the development of PRFs and the generation of sample colorings, we

will review its characteristics and describe a procedure to simulate it.

Throughout this chapter, let T be a bounded convex region in the plane. The

homogeneous Poisson line process on T with intensity A has the following properties:

1. Given a convex region S C T with perimeter Ps, the number of lines intersecting
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S has a Poisson distribution with mean APS.

2. The distribution of the lines is invariant under Euclidean transformations.

To choose random lines on T, we will parameterize the lines which intersect T; each

line will then correspond to a point in a two-dimensional parameter space. Choosing

random points from the parameter space is thus equivalent to choosing random lines

which intersect T. The two properties above will then follow from results of geometric

probability theory.

First, fix some point 0 in T as the origin. Any line I which intersects T can

be parameterized I = I(p, 0), where p > 0 and 0 C- [0, 2ir) are the polar coordinates

of the intersection between the line and the perpendicular to the line through the

origin. Given the region T, this parameterization produces a set T' = f (p, 0) : I(p, 0)

intersects Tj in the p - 0 parameter space, where each point in T' corresponds to a

line which intersects T. For example, if T is an open disc of radius r with its center

at the origin, then T' is the rectangle T' = f (p, 0) : p E [0, r), 0 E [0, 27r)j. Figure 2.2

illustrates the correspondence between T and T'.

Figure 2.2: A unit disc and the corresponding parameter space.
The line L intersecting the disc corresponds to the point L'.

.1Y

00

LF0 P.

01 2?t

The region T. The region T' in the parameter space.

We wish to select lines intersecting T such that properties I and 2 above are
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satisfied. From geometric probability theory (Kendall and Moran[9], p. 56), dpdO is

the area measure in T' which yields a distribution of lines in T which is invariant

under Euclidean transformations. Hence, the distribution of lines intersecting T is

invariant under Euclidean transformations if we sample uniformly from T'. Geometric

probability theory (Kendall and Moran[9], p. 58) also yields another important result:

for any convex region S, the area in the parameter space of S' is

is IdpdO = Ps.

These results suggest that we run a Poisson point process with constant intensity

A on T' in the parameter space. This means that from a subset S' of T' with area

A, the number of points chosen has a Poisson distribution with mean AA, and that

those points are distributed as if they were sampled independently from a uniform

distribution over S'. Thus, the distribution of the corresponding lines is invariant

under Euclidean transformations, and property 2 is satisfied. Furthermore, given a

convex S C T, the area of S' is Ps. Thus, the number of lines intersecting S has

a Poisson distribution with mean APs, so property I is satisfied. Therefore, this

sampling procedure produces a homogeneous Poisson line process on T.

Using this procedure, it is easy to simulate a Poisson line process of intensity

A on a disc of radius r. First, generate n, the number of lines to be drawn, by

sampling from a Poisson distribution with mean 27rrA. Then, for each of the n lines,

sample independently from a uniform distribution on the corresponding rectangle

f (p, 0) : p CE [0,,r), 0 E [0, 27r)j. Finally, draw the lines corresponding to the points

chosen in the parameter space.

To simulate a Poisson line process with intensity A on an arbitrary convex bounded

region T with perimeter PT, again generate n by sampling from a Poisson distribution

with mean APT. The task is then to choose n points by sampling uniformly from the

corresponding region T'. T'is no longer a rectangle, as it was when T was a disc. This

problem is minor: simply sample from a uniform distribution on a larger rectangle

containing T' and disregard points chosen which correspond to lines which do not
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intersect T. Again, draw the lines corresponding to the n points chosen from T'.

The Poisson line process induces a measure on finite sets of lines intersecting T,

and this measure is the basis for the construction of PRFs. Let L be the set of all

lines intersecting T, and let f =fll, 12, ... , Q be a finite set of distinct lines with each

Ii E L. Let LT be the set of all. f, so LT contains all finite sets of lines intersecting T.

The empty set of lines is also considered to be an element of LT. Then the Poisson

line process with intensity A on T induces a measure it on LT; we call ft the Poisson

line measure. For example, y(O) = e- APT.

2.3 Polygonal Random Fields

A Poisson line process on T divides T into convex polygons (except along the bound-

ary of T, which does not necessarily consist of line segments). Assigning an element

of a finite set J to each polygon creates a coloring of T. This assignment can be made

in many different ways, and each method induces a probability distribution on the set

of colorings of T. A simple method would be to color each polygon independently:

coloring each one black or white with probability 1/2, for example.

Although this independent coloring process has a Markov property along lines

crossing T (Switzer [141), it does not have a spatial Markov property. The problem

arises because a given line may contribute more than one edge to the coloring, leaving

the line "invisible" between the segments. (A line segment which forms a discontinuity

of a coloring is called an edge). Given a region S C T, a line which is visible on the

exterior of S may not be visible on the boundary of S. Such lines will, of course affect

the coloring on the interior of S. Figure 2.3 illustrates this situation.

The problem of invisible line segments can be avoided by requiring that each line

contribute only one edge to the coloring, for then there can be no invisible gaps

between two edges from one line. This requirement is fundamental to PRFs. But,

as we shall see, this requirement makes the development of PRFs more complicated
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than the simple independent coloring process described above.

Figure 2.3: An independent coloring process does not have the spatial
Markov property. The dashed lines are invisible on the boundary of S.

T

....... ....

Recall that PRFs are random fields which map a convex region of the plane

into a finite set J such that the mapping's discontinuities partition the region into

polygons. To define PRFs, some notation must be introduced. Here, we largely follow

the development of Clifford and Middleton[5], which is somewhat simpler than that

of Arak and Surgailis[2].

Again, let T be a convex bounded region of the plane, and let J be a finite set.

A coloring of T is a function of the form X : T --+ J. For a given fine 1j, a segment of

ii is denoted by [1j]. Also recall that LT is the set of all f, where each f is a finite set

of lines which intersect T. For each f Cz LT, with f 11, ... , 1,1, let Q1 be the set of

colorings X satisfying:

1. For each i = 11 21 ... In, there is a segment [1j] C 1i such that [1j] is an edge of X.

n2. Uj=j [1j] is the set of discontinuities of X.

With the requirement that each line of i must contribute exactly one edge to the

coloring, O' is the set of polygonal colorings on T given a finite set i of lines. TheT

union of all f2t I for all f E LT, is called QT- It is the set of all polygonal colorings onT

T. Figure 2.4 shows a set of lines f, a coloring in Q1 , and a coloring which is not in

15



Pt . (Actually, it shows the discontinuities of a coloring in 91 , not the coloring itself.T T

For convenience, this is how we we will usually display sample colorings of PRFs. In

general, we will be concerned only with binary PRFs, for which the cardinality of J is

two. For these PRFs, there are exactly two possible colorings corresponding to each

set of discontinuities.)

Figure 2.4: A set of lines,, a valid coloring, and an invalid coloring.

1

2

2 5

2

4
7

3 3

4
4

3

7

6 A valid coloring contains Coloring is invalid because
The lines. one segment from each of it contains two segments from

the seven lines. line 4 and none from line 5.

Technically, the above definition does not uniquely define a polygonal coloring

along its edges. For example, an edge in a black and white coloring could be black,

white, or a mixture of both. To ensure the uniqueness of colorings, the elements of

J could be numbered, and the value of a coloring at a point of discontinuity could

be defined to be the lim Z'nf at the point. This is a minor detail, and it will not be

addressed further.

We are now ready to define a probability measure PT for PRFs. For simplicity,

the probability measure is defined through a two step process.

First, let A C PT. For example, A could be the set of colorings of T containing
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two colors and seven edges. Define the polygonal coloring measure -Y by

(A) JA n Qt I (di) (2.1)
_,T T

where is the number of elements in a set. The polygonal coloring measure can be

interpreted as the expected number of colorings in set A which can be formed from

the lines obtained from a realization of the Poisson line process on T.

The probability measure for a PRF has a density of the form e-'(11) with respect

to -y, where the function F : QT --+ R U oo is called the potential. The probability

measure for a PRF will thus have the form:

fA e-F(x) -y(dX)
PT (A) = fo Te-F(x),y(dX)' (2.2)

Note that the density function simply adds a weighting term e-F(X) to the polygonal

coloring measure. To summarize this development, the Poisson line process induces

a measure on sets of lines intersecting T. Each finite set of lines i determines a set of

allowable colorings Q' , and the density term gives a coloring X G Qt an additionalT T

weight e-F(,<). Thus, the measure reflects the likelihood of obtaining sets of lines

weighted by both the number of colorings which can be created from those lines and

the value of the density function for those colorings.

In order for PT to be a probability measure, the denominator of equation 2.2 must

be -finite. Therefore, the definition of PRFs is restricted to potentials F(X) which

yield a finite denominator. Unfortunately, it is not known precisely which potentials

satisfy this criterion. However, Arak and Surgailis[2] show that that the PRF induced

by the Arak process (see section 2.6) does have a finite denominator. For the Arak

processi F(X) is infinite if any two edges cross each other, so there are no T-shaped,

X-shaped, or more complex intersections of edges. Otherwise F(X) = 2r, where r

is the total length of an image's discontinuities. This result is sufficient to guarantee

the existence of a great number of PRFs: if a potential F is greater than or equal

to the potential for the Arak process, the denominator of equation 2.2 will be finite,
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and the PRF will exist. In this thesis, all potentials will satisfy this criterion, so all

the PRFs here will be well-defined.

The spatial Markov property is extremely important for reconstruction problems

involving PRFs, but we have not yet shown that PRFs have this property. In fact,

not all PRFs have a spatial Markov property. For example, for a black and white

PRF, let

F(X) = 21' if there is exactly one black triangle in X

= 00 otherwise.

Clearly, for this potential, the coloring outside a subregion S C T affects the coloring

inside the subregion. If there is a black triangle outside of S, there cannot be one

inside S. Furthermore, the information on the boundary of S is not sufficient to

determine whether or not there is such a triangle outside S. Therefore, this PRF is

not Markov.

There is, however, a large class of PRFs which do have the spatial Markov prop-

erty. We will address this issue in the next two sections. First, we develop the notion

of conditional probability for PRFs, and then we show that PRFs with additive po-

tentials have the Markov property.

2.4 Conditional Distributions for Polygonal Ran-

dom Fields

Conditional probability is fundamental to a Markov property, so we must discuss

conditional probability for PRFs before we can discuss their spatial Markov property.

In addition, conditional probability plays an important role in our reconstruction

problems, as we will use our ability to sample from local conditional probabilities to

generate colorings on the whole of T. Our development here of conditional probability

is similar to our development of PRFs: first, we define a conditional polygonal coloring

measure, and then we define a conditional probability measure. Both have essentially
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the same form as the polygonal coloring measure and the probability measure of

equations 2.1 and 2.2, but they add the requirement that the colorings be consistent

with the conditional information given.

Additional notation is needed to define conditional distributions, though much of

it is similar to the notation already introduced to define PRFs- For any U C T, let

XU : U -+ J be a coloring of U, let ftu be the Poisson line measure on U, and let

LU be the set of all finite sets of lines intersecting U. These terms are, of course,

analogous to Xi 11, and LT-

Let S be an open convex subset of T, and let aS S. Qs is the set of

polygonal colorings of S, defined as PT was defined for T. Given a finite set of

lines f 1,1 intersecting S, let 91 (XT\ S) be the set of polygonal colorings XsS

satisfying:

1. Xs is consistent with the coloring of X T\S on 9S.

2. For each 1 = 1, 2,..., n, there is a segment [Ij] C Ii such that [Ij] is an edge of Xs.

3. Let fit I ... IV I denote the lines of X T\S which are visible on 9S. For each V.1 m j
Sthere is a segment [I'] C I� such that [1�] is an edge of X3 3 j

4. Un 1 [1,] U U"" 1 [1'.] is the set of discontinuities of X'.j=

f2lS J\S) is the set of polygonal colorings of S consistent with X T\' and using the lines

of f. The additional edges f[I�]JT 1 must be added to Xs to enable it to be consistent
.7 J =

with X T\S I because the edges of X T\S which intersect 9S must continue into S along

these segments until they leave S or until they intersect some other edge. Figure 2.5

gives an example of a coloring X, a set of lines f intersecting S, and a new coloring of

X in which the old coloring of S is replaced by an element of PI (XT\S). In the figure,S

the element of PI (XT\S) contains seven edges. Three come from the fines of f, andS

four come from the lines necessary to retain consistency with the coloring on aS.
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Figure 2.5: A coloring of T, a set of lines intersecting S, and
a consistent polygonal coloring using segments from the set of lines.

T T

S S S

................. ....

g.

Now, let As C Qs. For example, As could be colorings of S with exactly three

edges. Define the conditional polygonal coloring measure 7s by

7S(As I X,\S) jAs n DI (x"'s) I ys(dl). (2.3)S

This measure can be interpreted as the expected number of colorings xs in set As

which can be formed from the lines obtained from a Poisson line process on S, with

T\Sthe condition that the colorings be consistent with the coloring X

The conditional polygonal coloring measure can now be used to define the condi-

tional probability measure. Let

Ps(As T\S) _ fAS e-F(X) IYS(dXs XT\S) (2.4)
fo, e-F(X) _yS (dXs XT\S)

Here, the potential F(X) is a function of the entire coloring X on T. X is composed

of the partial colorings X T\S and Xs. Note that XT\s remains constant, while Xs

varies over As and Qs. This measure has essentially the same form as the probability

measure for PRFs, except that the integrals are restricted to colorings of T which

agree with the given coloring X T\S on T \ S.
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The conditional probability measure Ps has been defined separately from the PRF

probability measure PT. Therefore, we have not actually shown that Ps is the true

conditional probability measure for PT. However, this fact is intuitively clear from a

comparison of the two probability measures in equations 2.2 and 2.4. Equation 2.4

is essentially the same as equation 2.2, except the integrals are restricted to colorings

which are consistent with the given coloring X T\S . A rigorous proof that Ps is the

proper conditional probability measure for PT can be found in Arak and Surgailis[2].

2.5 The Markov Property for Polygonal Random

Fields

A PRF has the spatial Markov property if the interior coloring of a region S C T is in-

dependent of the exterior coloring, given the information along the region's boundary.

For PRFs with the Markov property, this localized probabilistic dependence makes

the PRFs amenable to the computation necessary for image segmentation problems.

In this section, we define additive potentials and the Markov property for PRFs, and

we show that PRFs with additive potentials have the Markov property.

A potential F(X) is additive if its value for a coloring equals the sum of its values for

the components of a partition of the coloring. That is, if S1, S2,..., S, partition T, then

is additive if F(X) F(Xsi). This property holds for a wide range of useful

potentials, including the total length of a coloring's discontinuities and functions

of a coloring's color at particular points. Because of the importance of the Markov

property, we restrict ourselves from now on to the consideration of PRFs with additive

potentials.

We have said that a PRF has the Markov property if the interior coloring of a

region S C T is independent of the exterior coloring, given the information along

the boundary. This boundary information must include both XOS and fas, where f8s

is the set of lines which contribute discontinuity points to the coloring X'S. There
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is an intuitive explanation for why it is necessary to include i8s in the boundary

information. The coloring X'\s determines x8s. But each discontinuity point of X8S

corresponds to an edge of X which intersects both X T\S and Xs. (This holds unless

the edge ends on 9S, an event with probability 0.) The direction of this edge can be

determined from X T\s but not from X's. The lines of f's provide this information:

they specify the direction of the edges which pass from T \ S into S.

Before we can define the spatial Markov property, we must define boundary con-

ditional probability for PRFs with additive potentials. That is, we define Ps(As J

X as 1 fas), where As C Qs. As with our previous development of conditional proba-

bility, this definition is a two step process, and we first define a conditional polyg-

onal coloring measure. Here we define the boundary conditional polygonal coloring

measure -�s(As I x8s, fas). Recall that the conditional polygonal coloring measure

7S(As I XT\S) depends on XT\S only through Xas and f's. This is because the con-

ditional polygonal coloring measure is the expected number of colorings in As which

can be formed from a Poisson line process on S, with the condition that the color-

ings be consistent with the coloring of X T\S . A coloring xs is consistent with X T\S

if and only if it is consistent with the boundary information X-9s and f8s. Therefore,

the boundary conditional polygonal coloring measure is the same as the conditional

polygonal coloring measure. That is,

I�S (As I Xas, fas) = ys (As I XT\S). (2.5)

Mirroring our previous development, we use the boundary conditional polygonal

coloring measure to define the boundary conditional probability measure for additive

functions. Let

Ps(As I X as 1f8s) e-F(xl) -ys(dXs Xes, fas) (2-6)
fa, e-F(x") IYS (dX S Xas I jas)

The form of this probability measure is similar to the conditional polygonal coloring

measure of equation 2.4. The difference is that the potential here is a function only

of the coloring on S, rather than of the entire coloring on T.
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Two separate conditional probabilities have been defined: Ps(As I X'\S) and

Ps(As I XI', fIs). A PRF has the spatial Markov property if, for As c Qs,

Ps(As I X T\S) = Ps(As I x8s, f8s). (2.7)

This definition has the obvious explanation: a PRF has the Markov property if the

interior coloring of S is independent of the exterior coloring, given the information

on the boundary.

It remains to show that PRFs with additive potentials have the Markov property.

From equation 2.4, recall that:

T\S fA. e-F(x) IYS(dXs XT\S)
Ps(As I X fo, e-F(x) _yS (dXS XT\S)'

Note that Xs and XT\S partition X. Therefore, if F is additive, F(X) = F(XS) +

F(,XT\S so that:

f e-F(X')-F(x'\S) 7s(dxs I XT\S
Ps(As T\S AS (2.8)

fo, e-F(xl)-F(xl\') -IS (dXS I XT\S)'

Both the integrals in equation 2.8 are over colorings of the subregion S. Therefore,

e-F(x T\S) is a constant term in both integrals, so it cancels. This cancellation reduces

equation 2.8 to:

S i XT\S fA. e-F(xs) /S(dXs I X T\S
Ps(A -F(xl) IS S T\S)'

fos e (dX I X

Finally, since -ys(As I XT\S) = 7s(As I Xasfas), it follows from equation 2.6 that

Ps(As I XT\S) = Ps(As I X&S, OS). Thus, PRFs with additive potentials have the

Markov property.

It is instructive to note why PRFs without additive potentials do not necessar-

ily have the Markov property. The interaction between the coloring on S and the

coloring on T \ S is simple for additive potentials: they contribute the independent

factors e- and F(x' ' -F(,T\ to the density. However, for non-additive potentials, the
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interaction can be more complex, and the coloring of T \ S can influence the poten-

tial on S. In other words, non-additive potentials do not necessarily have localized

probabilistic dependence.

2.6 The Arak process

In the previous sections, we have defined PRFs and discussed some of their proper-

ties. However, we have not generated any sample colorings from PRFs, nor have we

mentioned any procedures to generate them. Naturally, such a procedure is essential

to reconstruction problems. Unfortunately, the general problem of producing sample

colorings from PRFs with arbitrary additive potentials is somewhat complex. It re-

quires a Monte Carlo simulation procedure, and it will not be introduced until the

next chapter. In this section, we discuss the Arak process, a simple process which

generates sample colorings from a PRF with potential F proportional to 2r, where

r is the total length of the discontinuities of the partition.

The Arak process is discussed here because it demonstrates the existence of many

PRFs, and because it provides insight into the generation of sample colorings of PRFs

and their Markov property. Also, it is historically important: its discovery by Arak[l]

in 1982 led to the development of PRFs. However, because the Arak process and other

closely related processes are only useful in generating realizations of PRFs with very

specific potentials, they do not play an important role in the reconstruction problems

we address in this thesis. Thus, we will not analyze the Arak process in depth here.

A more complete treatment of the process can be found in Arak and Surgailis[2].

The Arak process is based on the evolution of a system of particles moving with

piecewise constant velocity in one dimension. Arak noted that the space-time trajec-

tories of such a system could give rise to a Markov polygonal partition of a convex

region of the plane. Here, we will describe the system and show that it clearly yields

a polygonal partition with the Markov property.
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First, consider a single particle moving in one dimension with piecewise constant

velocity v. Its path can be plotted as position y versus time t, where the slope of the

line is v.

Let the particle makes jumps in velocity such that the length of each line segment

in space-time is exponentially distributed. That is, given that a particle is travel-

ing with velocity v, the length of time between jumps is exponentially distributed

with parameter proportional to 0�1+ �V2)- Furthermore, when the particle's velocity

changes, let the new velocity v' be distributed such that tan(V') has uniform distri-

bution between -7r/2 and ir/2. This means that the direction of each line segment

in space-time will be uniformly and independently distributed. Figure 2.6 shows the

possible evolution of a particle.

Figure 2.6: Particle moving with piecewise constant velocity.
The length of each segment is exponentially distributed.

Y^

t

The evolution of this particle is Markov: if the position and velocity of the particle

at some time is given, its future is independent from its past. This follows from the

fact that the time between jumps is exponentially distributed based on the velocity,

and the fact that the jumps in velocity are independent and identically distributed.

The Arak process generates a Markov polygonal partition of a convex bounded

region T through the birth, evolution, and death of a system of particles, with each
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particle evolving like the particle above. We must also describe the "birth" and

"death" of the particles. Particles may be born either on the boundary of T or in

the interior of T. Particles are born on the boundary of T according to the measure

induced by a Poisson line process with parameter A on T. The number of lines induced

will thus have a Poisson distribution with mean APT, where PT is the perimeter of T.

For each line intersecting T, the initial position of a particle is the leftmost intersection

of the line with T, and let the initial velocity be the slope of the line. Pairs of particles

are born on the interior of T according to the measure on the intersection of two lines

induced by the product of two Poisson line processes with parameter A on T. From

probabilistic geometry, the number of particles born on the interior of T win have a

Poisson distribution with mean proportional to 27rA 2 A, where A is the area of T. The

initial position of each particle will be the point of intersection of the lines, and the

initial velocity of each particle will be the slope of the corresponding line.

Particles are created and evolve as described above. It remains to be noted that

they "die" at the moment of their first intersection with the boundary or with another

particle. They are then annihilated. Figure 2.7 shows an example of the birth,

evolution, and death of a system of particles.

The Arak process creates a polygonal partition of the region T. Let the number of

colors in J be two, so that there are only two possible colorings for a given partition.

Assigning equal probabilities to the two colorings induces a measure on QT, the set of

polygonal partitions of the region. Furthermore, the process can intuitively be seen

to have the spatial Markov property. Let S C T. The coordinates of any particles

"born" in S are independent of the birth coordinates of particles external to S, since

all births are induced by Poisson line processes. Also, the evolution of each particle

is Markov, with the state including both its position and velocity. Furthermore, the

state of all particles entering and exiting S can be determined from X&S and t9s.
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Figure 2.7: The birth, evolution, and death of a system of particles.
Solid lines indicate the position of a particle y vs time t. Dashed
lines indicate the system's evolution if the death of the particles is
neglected. IBI indicates.a birth; 'DI indicates a death.
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Thusl Xas and fas provide as much information about the coloring Xs as does the

coloring XT\S . Therefore, the partition will have the Markov property.

The partitions created by the Arak process never have more than two edges meet

at a point, so the potential FA(X) of the Arak process is infinite for colorings with

nodes of degree higher than two. Arak and Surgailis[2] show that the potential FA

is otherwise proportional to 2r, where r is the total length of the coloring's dis-

continuities. Figure 2.8 shows a computer generated partition for an Arak process.

Because the reconstructions discussed in the following chapters do not rely on the

Arak process, we will not review this analysis. However, two addition points should

be mentioned now. First, particle models with more complex interactions between the

particles also yield PRFs with the spatial Markov property, and this issue is addressed

in Arak and Surgailis[3].
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Figure 2.8: Partition of a circle of radius 3 produced by an Arak process.
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More important for our purposes, the Arak process shows that the denominator

of equation 2.2 is finite for the potential FA. Therefore, for any potential F satisfying

F(X) > FA(X) for all X E QT, the denominator of equation 2.2 win also be finite.

Therefore, such PRFs will be properly defined. In order to use this result, the PRFs

which we consider must have F(X) = oo for all colorings with T-shaped, X-shaped,

or more complex intersections of edges. From now on, we will make this assumption

for all of our potentials.
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C hapt er 3

Reconstruction of Polvwonal

Random Fields

3.1 Introduction

A Bayesian formulation for reconstruction problems requires a number of elements:

a prior probability distribution for the functions to be reconstructed, a probabilistic

model for the observations, computation of the posterior distribution for the functions

to be reconstructed, and methods to produce samples from the posterior distribution.

PRFs provide a probability distribution on the set of polygonal colorings of a region.

They are therefore a somewhat natural basis for a Bayesian approach to partitioning

a region. In the next two chapters, we examine the use of PRFs in Bayesian models

for image segmentation problems. That is, we will be attempting to restore and

segment an image degraded by noise. In this chapter, we will formulate a model for

partitioning the plane into piecewise constant regions. In the next chapter, we win

use a coupled PRF and MRF model to reconstruct piecewise smooth functions.

We will begin this chapter by formulating a stochastic model for the Bayesian im-

age segmentation problem, where we use PRFs in the model to reconstruct piecewise

constant functions. A PRF with an additive potential will serve as a prior distribu-
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tion for this model, and the measurement process will consist of noisy observations

of an image taken at a finite number of locations. Under these circumstances, the

resulting posterior distribution is also a PRF with an additive potential.

Since both prior and posterior distributions are PRFs with additive potentials,

we must then develop a method to produce sample realizations from PRFs with ar-

bitrary additive potentials. In the second section of this chapter, we discuss a Monte

Carlo type algorithm which generates such samples, and then we discuss the issues

involved in implementing the algorithm. In this chapter's final section, the measure-

ment and reconstruction of images are carried out through computer simulation using

the algorithm we have developed, and we discuss the results of these simulations.

It should be stressed that the problems in this and the next chapter are closely

related. In the next chapter, we will need to partition a region and then interpolate

over the subregions to reconstruct a piecewise smooth function. The algorithm we

develop here to partition a region will be a necessary part of the algorithm developed

for that problem.

3.2 A Model for Reconstructing Piecewise Con-

stant Functions

In this section, we formulate a model for reconstructing piecewise constant images

with polygonal discontinuities. That is, we are reconstructing polygonal colorings X :

T --+ J, where again T is a bounded convex region and J is a finite set. One potential

application for such a model is object recognition in an industrial environment. The

problem formulation has three components: the prior distribution, the stochastic

measurement model, and the posterior distribution. We will begin with an artificially

created piecewise constant image on T, and we will take noisy measurements of the

image at a set of sites in T. Then, we will attempt to reconstruct the initial image

from the measurements. The model here has been suggested in Clifford[5] and Clifford
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and Middleton[4].

For the sake of clarity, we will discuss a specific example in detail throughout

this section. For the example, let T be a square with side of unit length, and let

J = f - 1, 11. That is, we will reconstruct a binary image in a square region. Fix A

= 2, where A is the intensity of the Poisson line process which induces the Poisson

fine measure ft. (Recall that the polygonal coloring measure -Y of equation 2.2 is con-

structed from it. Although A does not appear elsewhere, it is an important parameter

in all reconstruction problems here, as it affects the scale of the reconstructions. For

a Poisson line process on T, doubling A is equivalent to doubling the side length of

T.)

3.2.1 Prior Distribution

PRFs with additive potentials shall serve as prior distributions for our model. The

prior potential will be denoted by F(X), where F is an additive function. Equation

2.2 therefore gives the probability measure for the prior distribution. The PRFs of

the prior distribution are required to have additive potentials because of the impor-

tance of the Markov property for reconstruction problems. However, it should be

stressed that this is not an especially restrictive requirement: the class of PRFs with

additive potentials is sufficiently large to model a wide variety of situations. For ex-

ample, an additive potential can include terms which affect the length of a coloring's

discontinuities, the number of its edges, and its coloring at individual sites.

For our specific example, we will choose the prior distribution induced by the Arak

process. That is, let

F(X) = 2r

This potential is isotropic and tends to limit the total length of an image's disconti-

nuities. Recall that we assume that F(X) = oo for any coloring which has T-shaped,

X-shaped, or more complex intersections of edges. Also, because this is the potential

induced by the Arak process, the PRF exists.
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3.2.2 Stochastic Measurement Model

There are obviously many ways that a stochastic measurement model could be formu-

lated to represent observations of a given coloring X. For example, observations could

be modeled by measurements of X at specific points in T, where the measurements

are blurred according to a point-spread process. However, the resulting posterior

distribution would no longer have the Markov property, and the Markov property is

important for generating sample colorings of PRFs. We will require a measurement

model which yields posterior distributions with additive potentials.

For our model, we shall consider measurements of a given image X at a fixed set

of points ti E T, where i = 1, 2, ... , n. The measurement at each point tj shall be a

function of the color of the image at tj plus an independent noise term. Let X(ti)

be the color of the image at ti, let g : J --+ R, and let f vil be a set of independent

identically distributed Gaussian random variables with mean 0 and variance 0". For

each point ti, we will obtain a measurement yi, where

Yi = 9(0i) ) + Vi. (3.1)

Thus, the measurements y- are normally distributed with mean g(X(ti) ) and variance

O'2. Here, g can be interpreted as a function which assigns a real valued intensity to

a color.

Let the measurement y be y = (Y1, Y2, ... , y.). The measurement likelihood func-

tion, L(ylX), is the density of y given the image X. Clearly, given X, the measurement

y has a Gaussian distribution. Therefore, the measurement likelihood function is

I E[ Y, _ g(X(t,)) ]2L(ylX) = c - exp -_ (3.2)
20,2

where c is a constant.

For the specific example of this section, J 1, II. Thus, we can simply let g be

the identity function. (If we had chosen J = f white, blackj, we could have assigned
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g(white) = -1 and g(black) = 1.) Let the sites of ti be a 21 by 21 grid, spaced at

0.05 intervals. Thus, the likelihood function for the example is:

441 X(t ) )2
L(yjX) oc exp Y' (3-3)

In the next subsection, we will see that this measurement yields a posterior dis-

tribution with an additive potential. However, it should be noted that other mea-

surement models would also have this property. Clifford and Middleton[4] suggest an

observation process in which the measurement y is an inhornogeneous Poisson point

process with intensity f (X(t)). Alternatively, the measurements could be modeled as

a binary symmetric channel with error rate e at the sites ti. Both of these methods

yield additive posterior densities. However, for our purposes, we will be concerned

only with the observation process formulated above. This fixed grid, real valued for-

mulation is used here because it is compatible with the sampling we will do in chapter

4 when we reconstruct piecewise smooth functions.

3.2.3 Posterior Distribution

Given a measurement y = (YI, Y2, ---7 Y,), we wish to compute the posterior distribu-

tion. Let the prior density be e-F(x) , and again let A C PT. Let e-F'(x) denote the

probability density of the posterior distribution.

From B ayes' rule, -F(x)

e-F*(x) - L(yjX) e (3.4)
MY)

where fy(y) is the unconditioned probability density for the measurements. For a

given set y of measurements, fy(y) is simply a constant. Combining this with equation

3.4 yields

.F'(x) Y, _ g(X(t,)) ]2e- =C.exp exp [-F(X)]
2a2

where c is a constant. The proportionality constant in the above density function will

cancel out in the probability measure. The important feature of the above density is
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that

e-F'(x) oc exp -F(X)
�0-4 Yi - g(x (ti))

and so the posterior distribution has potential:

F*(X) = F(X) + I E [ Y, _ g(X(t,)) ] 2. (3-5)
2C2 i

The summation above is a sum over a fixed grid of points in the region T, and

it is thus an additive function. Furthermore, the prior potential F(X) is also an

additive function. Therefore, the posterior potential is an additive function. Thus,

this problem formulation will always produce posterior distributions with the spatial

Markov property.

Finally, note that each term [ y, _ g(X(t,)) ]2 in the sum of equation 3.5 is non-

negative. Therefore F*(X) > F(X), and so the PRF with potential F* exists.

For the specific example of this section, the prior potential is F(X) = 2F, and the

measurement likelihood function is given in equation 3.3. Combining these terms, the

posterior distribution for this example is therefore

1 441
F*(X) = 2r + Y _ X(t,) )2. (3.6)

20,2 jy,

This potential has a simple explanation. In the prior distribution, the likelihood of a

coloring was less if it had extensive discontinuities. A coloring was penalized by a term

proportional to e-2r , and this penalty is also present in the posterior distribution.

However, the posterior distribution also includes a penalty based on the difference

between each measurement yj and the coloring at each measured point X(ti). Thus,

colorings which disagree with the measurements will be penalized. Also, when 0,2 is

small, meaning that the measurements are accurate, the penalty for disagreeing with

the measurements will be large.

The full model for image segmentation problem of this chapter has now been

presented: the prior distribution, the fixed grid stochastic measurement model, and
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the posterior distribution. We have seen that an additive prior potential gives rise

to an additive posterior potential, so that the posterior PRFs win have the Markov

property. However, we do not yet have a method to generate sample colorings from

the posterior distribution. This is the problem which we now address.

3.3 Obtaining Realizations of PRFs with Addi-

tive Potentials

So far, the only procedure to generate sample realizations of PRFs which we have

discussed is the particle model of the Arak process. Yet although the Arak process is

simple and intuitively appealing, it is also very limited: it can only produce realiza-

tions from a PRF with density F(,X) = 21'. The reconstruction problem formulated

in this chapter has a much more general posterior distribution:

I
F* (k) = F(X) + I Yi - Xx(ti)) I'

where F(X) is an additive function. To sample from the posterior distribution, we

therefore need to generate sample configurations from PRFs with arbitrary additive

potentials.

In this section, a Monte Carlo procedure which generates sample colorings of

PRFs with additive potentials is discussed. The procedure is similar to Monte Carlo

procedures used to generate realizations of Markov random fields. The key to the

algorithm is to create a Markov chain on QT, the set of polygonal colorings of T,

whose equilibrium is the density from which we wish to sample. The algorithm is a

variation of an algorithm proposed by Clifford[5], which in turn is based on a class of

algorithms discussed by Hastings[8].

We begin this section with a simple Monte Carlo algorithm which is similar to

the algorithm for generating sample colorings. Next, we present the algorithm which

generates sample colorings, and then we show that it produces colorings sampled from

35



the correct distribution.

For reconstruction problems based on the use of MRFs, one generally seeks an

optimal estimate: for example, the sample configuration which maximizes posterior

probability. However, as we shall discuss, such estimates for the PRFs of this chapter

will not be useful. Therefore, we are now simply concerned with creating sample func-

tions from PRFs with additive potentials. The question of the choice of appropriate

statistics as estimates remains to be investigated.

3.3.1 Monte Carlo Method Preliminaries

In this subsection, the principles underlying the PRF algorithm are discussed, in-

cluding the "detailed balance" criterion for Markov chains and a simple Monte Carlo

procedure for sampling from a discrete probability density p(x). This simple algo-

rithm is presented because it closely parallels the algorithm for PRFs presented in

the next subsection.

First, let us review the detailed balance criterion. Let a regular Markov chain

have transition probabilities P(X Y), and let p(X) be a probability distribution

for its states. Recall that if

P(X) - P(X Y) = P(Y) - P(Y , X)

for all states X and Y, then p(X) is the steady-state probability distribution for the

Markov chain (Gallager [6], p. 5.21).

The detailed balance criterion is fundamental to the algorithm which produces

sample colorings of PRFs. However, the inherent complexities of PRFs make that

algorithm somewhat complicated. Therefore, we will begin by demonstrating how a

similar algorithm can be used to sample from a probability distribution with prob-

ability mass function p(X) on a set P. The steps of the PRF algorithm will closely

follow the steps of this algorithm. The algorithm is as follows:

1. Starting from a state X E Q, choose a new candidate state Y according to a
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probability mass function qx(Y), where qx(Y) > 0 for all Y E Q.

2. Accept new coloring Y with probability

AX) qx (Y)
+ p(Y)qy(X)

If the new state is not accepted, retain the old state.

3. Return to step 1.

The algorithm specifies a regular Markov chain for which the elements of Q are the

states. Furthermore, note that the transition probability P(X --+ Y) equals qx(Y)

times the acceptance probability for Y, assuming X :� Y. Therefore, for X :� Y,

(Y) I + P(X)qx ( -1
AX) - P(X - Y) = P(X)qx P(Y)qy(x)

p(X)qx(Y)p(Y)qy(X)

P(Y)qy(x) + P(X)qx(y)

p(Y)qy(x) - I + P(Y)qy(
P(X) qx (Y)

P(Y) - P(Y , X)

Thus, the algorithm meets the detailed balance criterion, and its equilibrium distri-

bution will therefore be p(X).

Finally, note that this algorithm has several characteristics which make it an

appropriate basis for developing an algorithm for generating sample colorings of PRFs.

This algorithm does not require that we sample directly from the distribution p(X)l

but it does require both that we sample from some distribution qx (Y) and that we can

compute the ratio p(X)lp(Y). These features take advantage of several characteristics

of PRFs with additive potentials. It is not possible to sample from an arbitrary

PRF with an additive potential in a direct way. However, it is easy to compute

the ratio of the value of a PRF's density for two sample colorings, F*(X,)/F*(X2)-
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Further, it is possible to sample from a PRF's local conditional distribution to choose

a new candidate coloring for the PRF. These features will form the essential part

of the algorithm for generating sample configurations of PRFs presented in the next

subsection.

3.3.2 Algorithm for the Generation of PRFs with Additive

Potentials

In this subsection, we present an algorithm to generate sample colorings from PRFs

with additive potentials F*(X) and with underlying Poisson line process intensity A.

For simplicity, let the region T be a rectangle. At each step in the algorithm, we

will choose a rectangular subregion S of T. We will then make a transition along

a Markov chain with states in QT whose equilibrium is the conditional probability

distribution Ps(As IXT\S) with density F*(X). To make matters more concrete, we

will begin by presenting the algorithm. The algorithm will then be analyzed in the

next subsection.

Algorithm to generate a sample coloring of a PRF with potential F*(,V):

1. Randomly select a rectangular subregion S in T, where the current coloring of

T is X. Let f,, be the set of fines which contribute segments of discontinuity

to Xs , the current coloring of S.

2. Run a Poisson line process with intensity A on S. Let fS\'9S be the set of lines

generated by the Poisson line process.

3. Let OS be the set of lines which form the existing discontinuities of the coloring

X on aS. Combine this set of lines with the lines generated in step 2: let

f7leW = 'S\8S U 'aS'

4. The set fw and the coloring X T\S determine 91- (XT\S), the set of coloringsS
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X S consistent with XT\S and having segments of the lines of inew for their edges.

Similarly, icur and XT\ ' determine the set f21c., (XT\S). (See section 2.4 for theS

definition of f2' (X'\S).)S

Sample uniformly from the finite set Qine,(XT\S ) and combine this coloring withS

the current coloring of X T\S to choose a new candidate coloring Xnew of T.

5. Accept the new coloring Xnw with probability

exp[-F*(X)] jf21new(XT\S)j-1 -1
I + S (3-7)

,,.)] jf21-(XT\S 1exp[-F*(Xn S W

where denotes the cardinality of the set. If the new coloring is not accepted,

retain the old coloring X.

6. Return to step 1.

The first four steps of this algorithm correspond to the first step of the simple algo-

rithm of the previous subsection. In these steps, we choose a new candidate coloring

for T. Furthermore, the fifth step here corresponds to the second step of the simple

algorithm, when we decide whether or not to accept the new coloring. The additional

complexity of the PRF algorithm is largely due to the complexity of the process of

choosing a new candidate coloring and the fact that this is a generalization of the

previous algorithm to the continuous case. Figure 3.1 on the next page illustrates the

steps of the algorithm for a particular coloring.

3.3.3 Analysis of the PRF Sample Coloring Algorithm

In this subsection, we show that the algorithm of the previous subsection generates

samples from the PRF with density F*(X). This argument has two parts. First,

that an iteration of the algorithm is a step along a Markov chain whose equilibrium

is the conditional distribution PS(ASIX'\S); that is, the equilibrium distribution is

the conditional distribution with density F*. Second, that iterating on successive

subregions S of T leads to the proper distribution on the whole of T.
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Figure 3.1: The steps of the algorithm to generate sample colorings of PRF9.

T T

S

Begin with a coloring of the region T. Step 1: Choose a subregion S in T

S S

Expanded view of subregion S. Step 2: Lines from a Poisson line
process on S.

S S

Step 3: Lines from the edges which Step 3: The combined set of lines.
cause discontinuity points on the
boundary of S.

S
T

S

Step 4: A possible new candidate coloring. Step 5: The new coloring of region T,
It uses one segment from each line and is assuming the old coloring is replaced on S.
consistent with the boundary conditions.
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There is one difficulty in the argument here. The argument relies on use of the

detailed balance criterion to show that the algorithm reaches the proper equilibrium

distribution. But the detailed balance criterion holds for a Markov chain with a

countable number of states, while a PRF has a continuous distribution. More work

would be necessary to address the question of whether the detailed balance criterion

holds for the continous distribution of PRFs. Though we assume that we can use the

detailed balance criterion here, we will not actually have fully proven the convergence

for the algorithm.

Assume that the subregion S has been chosen, and consider a single iteration of

the algorithm. We will show that the detailed balance criterion is satisfied for the

conditional distribution on S with potential F*.

Given the current coloring Xi, the algorithm induces a probability distribution

on the candidates X2 to be the new coloring (Colorings consistent with -kl on

YT\S may become the new coloring.) The algorithm runs a Poisson line process with, 1

intensity A on S. Those lines are augmented with the lines which form discontinuities

on the boundary of S to produce the set of lines inew, The algorithm then chooses

at random from the acceptable colorings of S which can be obtained from those lines

- that is, it samples with uniform distribution from the set Ql"-(X T\S) . Thus, eachS 1
T\S T\S)I-lelement of Qt-e-(,X ) is chosen with probability XS 1 S 1

Recall now that the conditional polygonal coloring measure Is is simply the ex-

pected number of colorings IQ1,,_(XT�s)I which can be obtained from this procedure.S 1

Let q, (,X2) be the density of the new candidate coloring distribution induced by the al-

gorithm. We will denote fnewbyf2 to emphasize the association betweenfnLlwand X2-
From this argument, we see that the density q, I Q�2 (XT\S)

,(X2) is proportional to

with respect to the measure ys.

The new candidate coloring x,,,, is influenced by the old coloring Xi only through

the dicontinuities along the boundary of S, which remain unchanged in an iteration.
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Therefore, for any colorings X1, X2, and X3 which are compatible on the boundary of

S,

qx,(X3) = qx,(X3)-

The density for the new candidate colorings X2 will hence be written as q(X2), keeping

in mind that it is dependent on the current coloring outside of S.

Let P(X1 --+ X2) be the probability density with respect to -Ys that we move from

coloring X, to coloring X2- Since this is simply q(X2) times the acceptance probability,

we have
Q12 (XT\ S)

P(X1 - X2) = q(X2) + exp[-F*(Xi)] S
exp[-F*(X2)] IQ'S'(X T\S)I-l

Now we are finally ready to verify that the detailed balance criterion holds for the

local conditional distribution. Since the conditional probability density of a coloring

X is exp[-F*(X)], we have

exp[-F*(Xi)] P(Xi - X2) = exp[-F*(Xi)] q(X2) I + exp[-F*(Xi)] IQ'2(XT\S)I- 1
IQ', (XT 1exp[-F*(X2) S \S)I-

Substituting IQ12(XT\S)I-l for the density q(X2) and a little algebra yields:

exp[-F*(Xi)] P(Xi - X2)

+ exp[-F*(Xi)] JQ12(XT\S)I-1 -1
exp[-F*(Xi)] IQ12(XT\S)I-1 SS

exp[-F*(X2)] IQ', (XT\S) -1S I

exp[-F*(Xi)] IQ12(XT\S)I-1 exp[-F*(X2)] I Q11 (XT\S) I - 1S S
exp[-F*(Xi)] IQ'2(XT\1)1-1 I fill (XT\S) I - 1S + exp[-F*(X2)] S

1 + exp[-F*(X2)] JQ1,(XT\S)I-1Q1, (XT\ S) I - 1 Sexp[-F*(X2)] S
exp[-F*(Xi)] Ifl12(XT\S) -1S I

exp[-F*(X2)] P(X2 - X1)

Thus, an iteration of the algorithm satisfies the detailed balance criterion. There-

fore, under the assumption that the detailed balance criterion is sufficient to show

that the algorithm converges, the equilibrium distribution for the Markov chain on S

is the conditional distribution with density F*.
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The fact that each iteration of the algorithm is a step along a Markov chain

whose equilibrium is the local conditional distribution is sufficient to guarantee that

the algorithm generates samples on all of T with the proper distribution. This re-

sult is analogous to the result for Markov random fields. Again, let Xi and X2 be

two colorings of T. Note that it is possible to go between any two colorings in a

finite number of steps, so the Markov chain on OT has only one class. As usual,

to prove our result we need to use the detailed balance criterion and argue that

exp[-F*(Xi)] P(XI - X2) = exp[-F*(X2)] P(X2 --+ Xi) on the whole of T. But this

is simply a repeat of the argument above, because a transition can take place from Xi

to X2 only on an appropriate subregion S which supports the transition. This com-

pletes the proof that the equilibrium distribution of the given algorithm is a sample

coloring of a PRF with additive potential F*.

Before turning to the practical considerations involved in implementing the algo-

rithm, it is worthwhile to mention two possible variations of the algorithm. First, the

algorithm is amenable to parallel implementation. Because PRFs have the Markov

property, an iteration of the algorithm on a subregion S depends only on the bound-

ary of S. Therefore, we could choose multiple subregions Si and make transitions on

all of them concurrently. The only restriction on this procedure is the obvious one:

the subregions Si cannot intersect each other.

Finally, we could adapt the algorithm to produce sample colorings with maximum

posterior probability. The algorithm currently produces samples from the posterior

distribution with density F*(X). By adopting a procedure similar to simulated an-

nealing, it would be possible to instead produce realizations with maximum posterior

probability. To do this, we would add a time-dependent temperature term to the

potentials. That is, we would let our potential be F*(X)IT(t), where T(t) -- * 0. How-

ever, the cooling schedule and the convergence properties of this procedure are not

clear. Furthermore, the value of maximum posterior probability estimates for recon-
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struction problems using PRFs is dubious. For the example of the previous section,

with the posterior density given by equation 3.6, we could draw arbitrarily small poly-

gons around each of the measurement sites. Then, the length of the discontinuities

would be arbitrarily small, the sum of equation 3.6 would be minimized, the posterior

density would be maximized, and our partition would be trivial and useless.

3.4 Implementing the PRF Sample Coloring Al-

gorithm

Implementing the algorithm for generating sample colorings of PRFs is significantly

different than implementing an algorithm to generate sample realizations of a Markov

random field. For a Markov random field, a sample realization can be stored in a

computer simply as a matrix of the field's values at each of its sites. Such a simple

method cannot work for the continuous PRF. In this section, we discuss the practical

considerations necessary to implement the PRF algorithm on a computer. We win

begin by mentioning the general structure for storing PRFs, and then we win discuss

what is required to implement each step of the algorithm. Except for step 4 of the

algorithm, there are no great theoretical difficulties here, and we will not spend much

time on these matters. However, in the case of step 4, we will see that the PRF

algorithm presents formidable computational difficulties.

First, we mention a possible computer storage structure for binary PRFs. Obvi-

ously, we cannot store the color at each point. Note, however, that a binary polygonal

coloring is fully defined by its edges and by its coloring at a single point. Furthermore,

it has a finite number of edges. Thus, a binary PRF can be stored as an array of the

coordinates of the endpoints of its edges along with its coloring at a particular point.

A non-binary PRF could be stored as an array of its edges along with an array of its

colors on each component of the partition.
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We now consider the computations involved in implementing the algorithm to

generate sample colorings. Step 4 will be considered last, as it is the only step which

will take any time to discuss.

Step 1, choosing a random subregion S in T, can be carried out in many ways.

The only requirement is that each point in T must repeatedly be included in the

chosen subregions. An algorithm for step 2, which requires us to run a Poisson line

process on S, has been discussed in Section 2.2. For step 3, we must find the lines

which cause discontinuities along the boundary of S. This can be done by checking

to see if the edges of the coloring x intersect the segments which form the border of

S, a simple and straightforward computation. And once we have done step 4, step

5 simply requires that we evaluate the function of equation 3.7 and compare it to a

random number between 0 and 1.

Now we are ready to examine step 4. There is a significant computational diffi-

culty involved in implementing this step of the PRF algorithm. The difficulty is the

following: given the set of lines and the coloring XT\S , we must determine the

set gl-.-(XT\S). This is, of course, the set of colorings Xs which satisfy:S

1. Xs is consistent with XT\S on the boundary of S.

2. For each line 1i in there is a segment [1j] C 1i such that [1j] is an edge of

SX

3. Uj[1j] is the set of discontinuities of xS.

In figure 3.1, we chose a coloring from the nine lines of which fit these criteria.

However, figure 3.1 did not address the question of how many other such colorings

could have been chosen. To sample uniformly from Q1ne-(XT\S) and to computeS

1f2tnew(xT\S)j-1' this question must be answered.S

We will show that it is possible to enumerate fllne- (XT\S) through an associationS

between the lines Of in,,,, and the nodes of a graph. The key observation is the
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following. The lines of f,,, can be divided into three sets: those generated by the

Poisson line process on S, those which contribute a single discontinuity to OS, and

those which contribute two discontinuities to OS. To form a valid coloring of the

subregion S, an edge from a line that was generated by the Poisson line process must

have as its endpoint5 its points of intersection with exactly two of the other lines in

ine,,,. Further, the edge from each line ininew that contributed a single discontinuity

point to OS must have that discontinuity point as one of its endpoints, and it must

have its intersection with one of the other lines inine,.,, as its other endpoint. Finally,

lines which contribute two discontinuity points to OS must have both of those points

as its endpoints.

Figure 3.2: Choosing line segments to form a new coloring of S.

Ll L S L6 S

L2

7 LS

The lines from the Poisson line Lines which form a single point of

process on S. of discontinuity on the boundary of S.

L S S
L6

L4
L9 L5 L9

L

2

LS LS

The combined set of lines A possible new candidate coloring.

To illustrate this principle, consider figure 3.2. In it, we return to the examples

from figure 3.1. Note that there are five lines from the Poisson line process on S,

labeled Ll through L5. In the new candidate coloring, each contributes an edge
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which is entirely within the interior of S. Thus, the endpoints of each of these edges

come from the edge's intersection with one of the other lines. For example, the edge

from L4 intersects L6 and L9. Furthermore, there are four lines which contributed a

single discontinuity to the 9S. These lines are labeled L6 through L9. Each of these

edges intersects with only one edge in the interior of S. For example, L7 intersects

L2. Note that there are no lines which contribute two discontinuity points to the

,9S. However, edges from these lines would have to remain unchanged in S, and they

would not intersect any other edges.

Using this observation, we are ready to turn the enumeration of Q'-n,--(XT\S) into

a combinatoric problem by associating the elements of Ql-,-(XT\S) with a graph. LetS

each line from which formed a single point of discontinuity on 9S be associated

with a single node of a graph. Also, let each line from f,,, which was generated by

the Poisson line process be associated with a pair of nodes of the graph. Finally,

if two edges of a coloring from f2I_-(XT\S) intersect in S, let this intersection beS

associated with an arc connecting the nodes corresponding to the two edges. Under

this association, every element of 91- (XT\I) will be associated with a graph in whichS

each node is connected by an arc to exactly one other node. Here, a graph in which

each node is connected to exactly one other node is called a node-pairing graph.

Figure 3.3 shows the lines of figure 3.1, a node-pairing graph graph corresponding to

those lines, and the element of Ql,,.-(XT\S) which corresponds to the graph shown.S

Of course, given a set of lines fneW9 not all node-pairing graphs corresponding to

these lines will correspond to elements of QI_.- (XT\S). But the converse is true: everyS

element of Qlne- (,T\S) will correspond to a node-pairing graph. Thus, to enumerateS

Qtne.(XT\S), we have the following algorithm: for a set of lines inew, determine theS

corresponding set of nodes. Then, for each node-pairing graph of the set of nodes,

check to see if the corresponding coloring is valid. These checks include ensuring that

the boundary conditions are not violated, ensuring that no node is connected to a

node corresponding to the same line, and ensuring that no edges cross each other.
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There is, however, a problem with this algorithm. Computationally, it is extremely

expensive. If there are n nodes, where n is even, there are (n - 1) -(n - 3) -(n - 5)....,(3)

different node-pairing graphs. For the example of figure 3.3, where there are 14 nodes,

the algorithm requires checking 13-11-9.7 -5 -3 = 135135 possible colorings. Even for

this fairly simple case, this would take a considerable amount of time. There are some

techniques which could be used to shorten the algorithm. For example, in figure 3.3,

the line L9 can only be connected to L4 or L5, so node-pairing graphs which do not

have one of these connections would not have to be checked. However, such techniques

cannot avoid the basic difficulty: IQ'--(X'1')j apparently grows exponentially withS

the number of lines in fn,,,, . Thus, in order for the algorithm to run in a reasonable

amount of time, it is necessary to choose the region S to be small, so that the number

of lines ininew remains small.

Figure 3.3: Associations between a set of lines, a graph,
and a coloring

L6 L S S

L L6

L9 L5 L9

L7 L� 3

8 L8

L7

The combined set of lines The corresponding coloring

7

Ll L L3 L5

L9

Each pair of nodes connected by a dashed line represents
a line from the Poisson process on S. Each single node
represents a line which formed a point of discontinuity
on the boundary of S. Each node is connected to one other
node by an arc. Such an arc means that the line segments
from the two corresponding lines have endpoints at the two
lines' point of intersection.

It may also be possible to make a reasonable approximation which avoids the dif-
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faculty in enumerating pl-em (XT\S). The algorithm does not require that we calculateS

Jf21n,,_(XT\S)J; it just requires that we calculate

1f21new(XT\S)J-1
S

IQICA,(XT\S)I-l
S

If we assume that JQI (XT\S) I is proportional to the number of node-pairing graphsS

which can be formed from the nodes corresponding to the lines of t, or that it is

proportional to some other easily calculated approximation, the ratio above would be

easy to calculate.

3.5 Experimental Results

We conclude this chapter with a few results from the algorithm to generate sample

colorings from PRFs. We will begin with a pair of examples designed to illustrate

the versatility of PRFs as prior potentials, and then we will present the results of

a pair of simulations based on the image segmentation model of section 3.2. We

will use a binary PRF on the unit square for our model. In each case, the sample

colorings shown are taken from the PRF sample coloring algorithm once it achieves

equilibrium.

3.5.1 Prior Potentials

We have previously stated that the class of PRFs with additive potentials is suf-

ficiently broad to model a wide variety of situations. This versatility enables us to

choose our prior distribution in a manner which reflects our prior knowledge about the

nature of the images with which we are dealing. In this subsection, we present a pair

of examples which show how the choice of prior potentials affects sample colorings.

We begin by illustrating how the Poisson line process with intensity A affects the

scale of the images reconstructed. Again, recall that the Poisson line measure it is

induced by this Poisson line process, and that for a Poisson line process on T, doubling
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A is equivalent to doubling the side length of T. Figure 3.4 shows sample colorings

from a PRF with F(X) = 2r when the intensity A is 2, 4, 8, and 16. The figure shows

that as A increases, sample colorings tend to have more edges, and the edges tend

to be shorter. The connection to the notion of scale is clear: sample colorings with

A = 2 resemble subregions of sample colorings with A = 16.

Figure 3.4: Varying the intensity of the PRF's underlying Poisson line process.

Here, F(X) 2r and A = 2,4,6,8.

Intensity = 2 Intensity 40.5 - 0.5

0 - 0

-0.5 - -0.5
-0.5 0 0.5 -0.5 0 0.5

Intensity 8 Intensity 160.5 0.5

0 - 0

-0.5 -0.5
-0.5 0 0.5 -0.5 0 0.5

Although the choice of A helps determine the scale of the sample colorings, it is the

choice of F(X) which best enables us to influence the sample colorings. Clearly, the

class of additive potentials is quite large, enabling us to affect the length, orientation,

coloring, number of segments, and many other characteristics of our sample PRFs.

Here, we give an example to show how F(X) can be chosen to promote the formation
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of obtuse angles for the intersections between edges. Let A = 2, and consider the

potential
Oj 3F(X)=o.ir+3E I--

Oi 7r

where the sum over Oj means to sum over the angle 0 formed whenever two segments

meet, where 0 < 0 < r. Note that this potential is additive. The term ur means

that there will be only a slight length penalty. (1 - Oi/r)3 terms are designed to

penalize heavily colorings with small angles between segments, while only mildly

penalizing colorings with obtuse angles. For example, if Oi = -7r/6, the penalty is 1.74;

if Oi = ir/2, the penalty is 0.38; and if Oi = 5-xl6, the penalty is 0.014. Figure 3.5

shows a pair of colorings sampled independently from this potential. Comparing these

to the PRFs shown in figure 3.4, it is clear that these sample colorings have a much

higher ratio of obtuse angles to acute angles than the previous sample colorings.

Figure 3.5: Two sample colorings generated from a PRF with density

o, 3
F(X)=o.lr+31: 1--

0.5 0.5

0- 0-

-0.5
-0.5 0 0.5 -0.5 0 0.5

3.5.2 The Image Segmentation Problem

We are now ready to discuss simulations based on the image segmentation model

of section 3.2. In this subsection, we will present two examples. For the first, we



reconstruct a simple artificially created image which includes a triangle and a par-

allelogram. For the second, we reconstruct a particular image sampled from a PRF

with F(X) = 21P and A =: 2. Although both of these images are fairly simple, the

results are indicative of the performance of the PRF image segmentation model for

more complex images, since these simple images could simply be subregions from a

larger, more complicated image.

We begin by reviewing the general framework for these two reconstruction prob-

lems. The images we attempt to reconstruct are binary PRFs; we will let the colors

have values -1 and 1. The measurements yi are taken of the images X on a fixed grid.

For this section, the grid will be an evenly spaced 21 by 21 grid, so the measurements

are made at 0.05 intervals. For each image, we will make three separate measure-

ments: one with o- 2 = 0.1, one with 0,2 = 0.5, and one with 72 = 0.7. For the prior

probability distribution, we will let F(X) = 2r and A = 2. Given this prior density,

from section 3.2 we know that the posterior distribution will have the potential
1 441

F*(X) = 2r + �� 1:(Y, _ X(t,))2 (3-8)
i=1

The first image is a triangle and a parallelogram with "color" I on a background

with "color" -1. Figure 3.6 shows the edges of the image, as well as a three dimensional

plot of a set of perfect measurements of the image. The three dimensional mesh is

shown for comparison with the noisy measurements now made of the image.

Figure 3.6: The initial image, a triangle and a parallelogram.

The background color has value -1; the figures' color has value 1.

0.5

0 -

-0.5,
-0.5 0 0.5
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Figure 3.7 on the next page shows the results of the image segmentation algorithm

applied to this image. Measurements of the initial coloring of figure 3.6 are taken with

error variances o-' = 0.1, 0.5, and 0-7. On the left side of figure 3.7 is a plot of these

measurements. (The base in these plots has value -1.) On the right of figure 3.7 are

sample colorings generated by the PRF algorithm using the posterior density given

by equation 3.8.

For the three colorings shown in figure 3.7, the posterior density F*(X) has value

434, 395, and 417. In comparison, the initial image for these three sets of data has

value F* = 433, 433, and 474. In other words, when the measurements are noisy, the

sample colorings tend to be better than the initial image with respect to the potential

function. When the measurements are very good, the sample colorings generated by

the algorithm are forced to agree with the initial image at every single measurement

point, and then the total edge length of the sample colorings tends to be a small

amount larger than the total edge length of the initial image.
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Figure 3-7: Measurements with three different variances

and sample colorings from the corresponding posterior distributions.

F is the value of the potential for the realization shown.

Measurements when variance = 0. 1 Sample realization. F = 4340.5

A

0 -

-0.5
-0.5 0 0.5

Measurements when variance 0.5 Sample realization. F 3950.5

0 -

\,y

-0.51-
-0.5 0 0.5

Measurements when variance 0.7 Sample realization. F 4170.5

0 -

-0.5
-0.5 0 0.5
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Our second image is slightly more complicated than our first image. It is a partic-

ular binary PRF sampled created by the PRF generation algorithm with F(X) = 2r

and A = 2. Figure 3.8 shows the image and a three dimensional mesh plot for a set

of perfect measurements of the image. Again, the base in the plot has value -1, and

the height of the plot is 1.

Figure 3.8: The initial image, generated from Arak density with A = 2.

0.5

0 -

-0.5
-0.5 0 0.5

Repeating the same process as before, figure 3.8 shows the results of the image

segmentation algorithm applied to this image. Measurements of the initial coloring

of figure 3.8 are taken with error variances o,, = 0.1, 0.5, and 0.7. Figure 3.9 shows

the measurements and sample colorings generated by the PRF algorithm using the

posterior density given by equation 3.8 and the corresponding measurements.

For the three colorings shown in figure 3.9, the posterior density F*(X) has value

458, 387, and 429. In comparison, the initial image for these three sets of data

has value F* = 4W 432, and 471. As before, when the measurements are noisy, the

sample colorings tend to be better than the initial image with respect to the potential

function.
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Figure 3.9: Measurements with three different variances

and sample colorings from the corresponding posterior distributions.

F is the value of the potential for the realization shown.

Measurements when variance = 0. 1 Sample realization. F = 4580.5

0 -

-0.5,
-0.5 0 0.5

Measurements when variance 0.5 Sample realization. F 3870.5

0 -

-0.5
-0.5 0 0.5

Measurements when variance 0.7 Sample realization. F 4290.5

0

-0.5
-0.5 0 0.5
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Chapter 4

Reconstruction of Piecewise

Continuous Functions

4.1 Introduction

In this chapter, we discuss an application of PRFs to the problem of restoring and

segmenting a piecewise smooth function which has been degraded by noise. In our re-

construction, we will be concerned both with locating the boundaries between smooth

regions and interpolating the function over the smooth regions.

Problems of this nature have previously been addressed through both variational

formulations and discrete MRF formulations. For example, Mumford and Shaw[12]

proposed a variational formulation based on minimizing a cost functional over a set

of boundaries with smooth functions within the boundaries. Under this formulation,

if the region is T and the observation is g, then a reconstructed function f and its

edges F are found by minimizing

E(fr) Ty _ g)2 dA +C2 jjVfj 12 dA + cL(r) (4.1)

where L(r) is the length of r and C1, C2, andC3 are constants.

A MRF approach to the reconstruction of piecewise continuous functions is dis-
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cussed in Geman and Geman [7] and in Marroquin [I 1] - We will describe this approach

more fully later, as it is similar to the PRF formulation we develop in this chapter.

The MRF formulation is Bayesian. The prior distribution is modeled with two cou-

pled MRFs: one MRF represents the function intensity, and the other represents the

presence or absence of edge segments between adjacent sites of the function intensity

lattice. The prior potential for this coupled model then includes terms which reflect

the cost of edge segments and the cost of discontinuities in the function intensity for

adjacent sites not separated by an edge.

One limitation of the coupled MRF model is that it can only model image discon-

tinuities in a few arbitrary directions. For example, in the binary case, all edges are

either vertical or horizontal. This limitation is significant: as a result, the coupled

MRF model fails to preserve certain intrinsic properties of an image, like the total

length of its edges. In contrast, a PRF model for the discontinuities of an image

would not have this limitation. Certainly, PRFs seem to be more natural than MRFs

for modeling the edges of an image.

These considerations motivate a different coupled model for the reconstruction

of piecewise continuous functions: a MRF to represent the function intensity, and a

PRF to represent the edges between the smooth regions. The purpose of this chapter

is to develop such a model. We will begin by reviewing MRFs and the MRF coupled

model, and then we present a PRF-MRF coupled model for reconstruction problems.

Next, we discuss a Monte Carlo algorithm for the generation of sample realizations

from the coupled model. Finally, we present experimental results from the model for

the reconstruction of piecewise continuous functions.

4.2 Markov Random Fields

Because MRFs play an important role in the reconstruction problems of this chapter,

we begin with a brief discussion of their properties. For a more extensive discussion,

58



see Marroquin[11] or Kinderman and Snell[10].

Let G = (Z, E) be an undirected graph, where Z is a set of n sites and E is a

set of edges. Two sites connected by an edge are called neighbors. A subset of Z is

a clique if it contains a single site or if each element of the subset is a neighbor of

each other element. In this chapter, the graphs we consider are 4-connected lattices,

so the cliques are single sites or adjacent pairs of sites.

With each site zi, associate a random variable Fi taking on values in some finite

set Q. Let F be the family of random variables f Fil. A sample configuration of F

has the form f = (fi, f2,.--,fn), where fi C Q. Let P be a probability measure on

the set of configurations. Then F is a MRF if

1. P(F f) > 0 for all configurations f.

2. P(Fi filFj = fj,]' 7� 1) = P(Fi = filFj = fjineighborsi) for all i.

Given the definition alone, MRFs would not be particularly useful, as they are

difficult to specify or analyze in the above form. There is, however, a result which

makes MRFs easy to specify and amenable to analysis: the Hammersley-Clifford

theorem. It states that the probability distribution P for a MRF always has the form

P(f) = C - exp[- E VC(f)]
C

where c is a constant and the sum is over the cliques C of the graph. A proof of this

theorem can be found in Clifford[5]. Finally, note that P is a discrete probability mass

function on the finite number of configurations f. Therefore, Monte Carlo algorithms

using the detailed balance criterion can be used to generate sample configurations of

MRFs.
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4.3 A MRF Model for the Reconstruction of Piece-

wise Continuous Functions

Marroquin [11] suggests a formulation for the reconstruction of piecewise continuous

functions using a coupled MRF model. In this section, we briefly review this model.

This model is discussed here because it is similar to the coupled PRF-MRF model we

develop in this chapter, and because part of the algorithm developed by Marroquin

is applicable to the coupled PRF-MRF problem.

In the coupled MRF model, one MRF represents the function intensity at a lattice

of sites. Let this lattice have n sites, and let the intensity at site i be fi, where fi is

real valued. A second lattice has sites located between adjacent sites of the intensity

lattice. These are the sites for the random variables of the "line process" MRF. At

each of these sites, a binary random variable indicates the presence or absence of an

44 edge" segment between the two adjacent sites of the intensity lattice. If the adjacent

function intensity sites are i and j, then let the associated "edge" random variable

be lij, where Ii. = I if there is an edge segment between the two function intensity

sites, and lij = 0 if there is not an edge segment. Figure 4.1 shows the dual lattice of

function intensity and edge segment sites.

To reconstruct piecewise continuous functions, Marroquin proposes a prior poten-

tial U(f, I) for the coupled MRF model on this dual lattice, where U(f, I) is given

by:

UY I 1) = E Dfi - fi), (1 - lij) + E VC. (1) (4.2)
i Ni Cl

Here, the sum over i is a sum over the sites of the intensity lattice, and Ni represents

the horizontal and vertical nearest neighbors of those sites. Also, C1 is the set of

cliques for the line process, and the function VC, is the potential function for the line

process. For our purposes, we will not bother to specify the Vc, terms explicitly, but

they can be chosen to affect both the number and the orientation of edge segments.
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Figure 4.1: Dual lattice of function intensity and edge element sites.
Each circle represents a site in the function intensity lattice and takes
on real values. Each square represents a site in the line process MRF
and takes on a binary value indicating the presence or absence of a line
segment separating the two adjacent intensity sites.

0 13 0 11 0 El 0 11 0

11 0 13 0 13

0 0 0 00 0 0 0 0

11 0 13 0 13

0 0 0 00 0 0 0 0

13 0 0 0 13

0 0 0 00 0 0 0 0

The terms of this potential have asimple interpretation. The (f, _ f )2(I

terms penalize discontinuities over the smooth regions where there are no edges,

since Iij = 0 over these regions. However, there is no discontinuity penalty for sites

separated by an edge, since Iij = I in such cases. Finally, the VC, terms discourage

excessive discontinuities in a function; otherwise, letting Iij = I for an i and j would

minimize U. Thus, the potential is chosen to strike a balance between the penalties

for discontinuities within smooth regions and the penalties for the boundaries between

the smooth regions.

The same observation process can be used for this coupled model as was used for

the PRF model in Chapter 3. Specifically, let a piecewise smooth function f have

intensity fi at site 1 of the intensity lattice. Then let the measurement yi at site i of

the intensity lattice be

Yi A + Vi

where the vi are independent identically distributed Gaussian random variables with

mean 0 and variance a2 . This measurement process results in a posterior distribution
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with potential

= E Eyi _ fj),(, _ lij) + E VUPY, 11y) C' (I) + 1 Ey, _ Y,)2. (4.3)
20,2

i Nj Cl

Using this coupled MRF model, Marroquin discusses the computation of opti-

mal Bayesian estimates for the reconstruction of piecewise continuous functions. A

computational difficulty of the model prevents the direct application of Monte Carlo

methods which produce optimal estimates for MRFs: because the intensity fi takes

on continuous values, the complexity of the algorithms Marroquin discusses becomes

excessively large when the fi are discretized sufficiently finely. However, Marroquin

points out a way to avoid this problem, and this method will be useful in the PRF-

MRF coupled model discussed in this chapter. The key to this method is to note that

for any fixed realization of the line process MRF, the posterior potential of equation

4.3 has the quadratic form:

UP(fjj'Y)=E E (f,_fj)2+C+�1'2 Ey, _ Y,)l (4.4)
i Ni:lij=O i

where c is a constant. The global minimum for this potential can be found efficiently

through simple deterministic minimization procedures. We will discuss a method to

find this minimum later, when it is used in the coupled PRF-MRF model. Here,

simply note that we are able to use a deterministic procedure to find the minimizer of

the conditional potential of equation 4.4, thereby avoiding the computational difficulty

caused by discretizing the continuous valued fi.

4.4 A PRF-MRF Model for the Reconstruction

of Piecewise Continuous Functions

In the coupled MRF model for the reconstruction of piecewise continuous functions,

one MRF is used to model image intensity, and the other is used to model the edges of
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the image. In many cases, however, a PRF seems to be a more natural model for the

edges of an image than a MRF. In this section, we formulate a coupled PRF-MRF

model for the reconstruction of piecewise continuous functions. A MRF is again

used to model function intensity, but a PRF is now used to model the function's

discontinuities. The model formulated in this section has three components: the

prior distribution, the stochastic measurement model, and the posterior distribution.

4.4.1 Prior Distribution

We are concerned both with finding the edges of a piecewise smooth function on a

bounded convex region T and with reconstructing the function's intensity at a set of

sites in T. The edges can be modeled with a binary PRF with additive potentials, and

the intensity function can be modeled with a continuous valued MRF with nearest

neighbor potentials. Let the PRF have colorings X on T, and let the MRF have

sample configurations f = (fl, f2,..., f,) on a lattice of n sites in T, where fi is the

intensity at site i. Furthermore, let Q denote the set of all pairs of polygonal colorings

X and sample configurations f . That is, an element of S2 is a pair (X, f ). We seek

a probability distribution for Q which serves as an appropriate prior distribution for

the reconstruction of piecewise continuous functions. Figure 4.2 shows an example of

a coloring X of a region T and a set of lattice sites in T.

Figure 4.2: A polygonal coloring for the region T and a set of lattice
sites in T. Each lattice site takes on a real value representing
function intensity, and the coloring's edges represent the function's
discontinuities.

------ --- ----
.. .................... ...... . ... T
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For the PRF, any additive potential F(X) could be chosen to serve as a prior

potential. For the sake of simplicity, let F(x) = cir, where cl > 0, andris again

the total length of the edges of X. (We continue to assume that F(X) = oo for any

coloring which has T-shaped, X-shaped, or more complex intersections of edges.) An

edge of X will of course be associated with an edge of the piecewise smooth function.

In defining the potential for the MRF, it is necessary to choose a potential which

reflects the requirement of piecewise continuity. Thus, the potential must depend

both on the difference in intensity between neighboring sites of the lattice and also

on whether or not an edge of the coloring X separates the neighboring sites. Given a

coloring X and two adjacent lattice sites i and define

lij = 1 if i and j are separated by an edge of X

= 0 otherwise.

(An edge of X separates sites 1 and j if the segment from i to i intersects an edge of

X.) Because lij is dependent on the coloring X, the potential for the MRF will also

be dependent on X. We can now choose a prior potential for the MRF. For a given X,

the requirement of piecewise continuity for the MRF can be modeled by a potential

of the form

UXW = C2 E E(A - fj)'(1 - lij)
i Ni

where C2 > 0 is a constant, and Ni represents the nearest neighbors j to site i. The

motivation for this choice of potential is clear: it penalizes the difference in intensity

between adjacent sites in smooth regions, but not between adjacent sites separated

by an edge. Also, this potential has the same form as the potential for the intensity

lattice of the coupled MRF model given by equation 4.2.

Combining the potential F(X) for the PRF with the potential U'Jf) for the MRF

yields the prior potential for the PRF-MRF model:

_ fU(X, f C1 r + C2 E 1: (fi j)2(l _ 1,j). (4.5)
i Ni
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This potential determines the probability distribution on Q in the obvious manner.

For A C f2i -U(xl) df ^/(dX)
P(A) = fA e (4.6)

fa e-u(xf) df -y(dX)'

As cl and C2 vary, there is a tradeoff between penalties for total edge length and for

the discontinuities over the smooth regions. These constants must be chosen to reflect

prior information about the functions to be reconstructed. Also, as C2 grows large, f

is essentially required to remain constant over smooth regions.

4.4.2 Measurement Model and Posterior Distribution

We will consider the same measurement model for the PRF-MRF model for the re-

construction of piecewise continuous functions as we described in the previous section

for the coupled MRF model. Again, other measurement models could be used here;

the primary requirement is that the posterior distribution have the Markov property.

Specifically, let f be a fixed piecewise continuous function on T. At each of the n

sites of the MRF lattice, let a measurement be

Yi = fi + Vi

where the vi are independent identically distributed Gaussian random variables with

2mean 0 and variance 7 . Writing the measurement as y = (YliY2� ... i Yn)i the mea

surement likelihood function is

I Y,)2
L(YIf) = c - exp, (4-7)

20-2

Using equations 4.5, 4.7, and Bayes'rule, the posterior distribution for fl has potential

EE(f, _ fU* (X, f C1 F + C2 j)2(l _ Ij) + 20-2 E(f, _ Y,)2. (4.8)
i Ni i

This potential shares with the PRF model of chapter 3 the difficulties which

arise from combining a continuous model for the discontinuities with discrete mea-

surements. Note that equation 4.8 can be minimized by drawing arbitrarily small
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polygons in X about each of the sites of the MRF. Thus, this model cannot produce

meaningful MAP estimates.

Finally, note that the combined PRF-MRF distribution will have the Markov

property. This observation follows simply from the fact that both the PRF and

the MRF individually have the Markov property. However, because the PRF and

the MRF are Markov in somewhat different senses, the PRF-MRF must incorporate

what may be called the "boundary information" from both the PRF and the MRF.

Consider a region S C T containing a set of lattice sites SI for the MRF. For the PRF,

the boundary information must include X .9s and f8s (as defined in section 2.5). For

the MRF, the boundary information must include fi for sites i 0 S1 but neighboring

sites in S1, and it must include lij for sites 1 � S1 and sites j E S1.

4.5 Monte Carlo Algorithm for the PRF-MRF

Model

In this section, we describe a Monte Carlo procedure to produce sample realizations

from the coupled PRF-MRFs. For simplicity, we will concentrate on PRF-MRFs

with a potential U* (X, f ) of the form given by equation 4.8. However, the algorithm

is suitable for any coupled PRF-MRF with an additive PRF potential. The algo-

rithm creates a Markov chain on Q , the set of pairs (X, f ), whose equilibrium is the

distribution from which we wish to sample.

Recall that the PRF algorithm of section 3.3 produces samples from a PRF with

an additive potential F(X). Essentially, that algorithm produces a candidate coloring

on a region of T, and it accepts the new candidate coloring with a probability de-

signed to ensure that the chain has an equilibrium distribution with potential F(X).

We could develop a similar algorithm to sample from the distribution on Q with

potential U*(Xf). Such an algorithm would select a region S C T, generate new

candidates for X and f on S, and then accept the new X and f with the necessary
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acceptance probability. However, because f is continuous valued, there are additional

convergence questions for such an algorithm, and it would certainly be computation-

ally expensive.

Instead, we will use the fact that for a given X, equation 4.8 has a global minimum

and this minimum can be calculated deterministically. The algorithm will run

a Markov chain on pairs of the form (X, Let Q* C Q be the set of all such

pairs (X, f,*,). Rather than producing samples from the full set Q, the algorithm will

produce samples from Q* . It is apparent that the algorithm win not simply sample

at random from the PRF-MRF with potential U*. In fact, we shall see that the

algorithm produces samples from the distribution that the potential U* (X, f ) induces

on W.

Although the algorithm restricts the Markov chain to W partly for computational

reasons, the restriction is also appealing: for a given X, the algorithm considers

only the maximum a posteriori (MAP) estimate to f. Although the overall MAP

estimate for U* (X, f ) cannot serve as a useful estimate for the reconstruction problem

considered here, this limitation does not hold for the MAP estimate to f given X. In

this section, we will first present the algorithm, and then we will show that it samples

from the distribution on Q* induced by the potential U*(X, f).

4.5.1 Algorithm for the Generation of PRF-MRF Sample

Realizations

In this subsection, we present the algorithm to generate sample colorings X and in-

tensity functions f given the potential U* (X, f ) of equation 4.8. The algorithm win

then be analyzed in the next subsection. Let the region T be a rectangle, and assume

we begin with some PRF coloring X and MRF configuration f. For a region S C T,

the algorithm generates a new candidate coloring Xnew on S, calculates * on S,
�Xnew

and then chooses to accept or reject Xnw and fx* ne. . The algorithm is similar to the

PRF algorithm of section 3.3, and it uses the same notation for the PRF.
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Algorithm to generate a sample realization from Q* with potential U*(X, f):

1 - Randomly select a rectangular subregion S in T, where the current polygonal

coloring of T is X, and the current MRF configuration is f. Let feur be the set

of lines which contribute edges to Xs I the current polygonal coloring of S.

2. Run a Poisson line process with intensity A on S. Let fS\'9S be the set of lines

generated by the Poisson line process.

3. Let Os be the set of lines which form the existing discontinuities of the coloring

X on 9S. Combine this set of lines with the lines generated in step 2: let

fnew = f"S U OS-

4. The set in,, and the coloring XT\ S determine Qln.- (XT\I), the set of coloringsS

XS consistent with XT\S and having segments of the lines of f,,�w for their dis-

continuities. Similarly, fur and XT\ S determine the set Q'cur (XT\S). (See sectionS

2.4 for the definition of Q1 (XT\S).)
S

Sample uniformly from the finite set Q1.e- (XT\ S) and combine this coloring withS

the current coloring of XT\S to choose a new candidate coloring Xnew of T.

5. Calculate fXnew) a minimizer of the potential U* (Xnw, f ) given Xnew -

6. Accept the new polygonal coloring Xnw and the new MRF configuration fXn..

with probability

[_U*(Xf)] JQ1,ne,,,(XT\S)1_1 -1
+ exp S (4.9)

IQI,,r(XT\S)I-lexp[-U*(Xn,-w, S

where denotes the cardinality of the set. If the new coloring is not accepted,

retain the old X and

7. Return to step 1.
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The description of the algorithm will not be complete until we discuss a method

to calculate For a given Xnew, the task is to find the f which minimizes

1: E (f, 1U*(f IX) = C + C2 j)2(l _ Jj) + - Ey, _ Y,)2. (4.10)
i Ni �0-2 i

Here, the Iij are now known constants. This equation is non-negative and quadratic,

so it has a global minimum f1*1neu,. This minimum can be found through a number of

deterministic methods. For example, the gradient of equation 4.10 is given by

,YU*(f IX) = 4C2 D A - fj)(1 - Iij) + (A - O. (4.11)
,gfi Ni

Since the gradient must be 0 at f *n., it follows that the components fi* of fXne- Must

satisfy

4C2 �7 fi* (I - lij) + I fi* = 4C2 E fj* (I - lij) + 1
Ni 92 Ni T2 Y'

for all i. Therefore, f,*,_ is a fixed point of the system

�k+l) =4C2 ENi A')(1 + ' Yi
fil 1 OT (4.12)

4C2 ENi (I - Iij) + 12

where we let fi(k+l) = fi(k) if the denominator is 0. Furthermore, (Marroquin[11], p

133), the system is stable and converges to

4.5.2 Analysis of the PRF-MRF Algorithm

We now show that the algorithm of the previous subsection samples from the dis-

tribution on Q* induced by the potential U*(Xf). This is the distribution given

by
P(A) -_ fA e 7(dX) (4.13)

-U*(xf*)fo. e- X 7 (dX)

for A C W. As in chapter 4, we shall show that the algorithm satisfies the detailed

balance criterion. Again, because the PRF is continuous valued, this is not fully

sufficient to prove the the algorithm's convergence.
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Assume that the subregion S has been chosen, and consider a single iteration of

the algorithm. It is clear that the algorithm creates a Markov chain on W. Given

the current coloring and intensity (Xi, fl), the algorithm induces a probability distri-

bution on the candidates (X2, f2) to be the new coloring X,,,,, and function intensity

Note that the new candidate coloring is chosen in this algorithm in exactly

the same way that the new candidate coloring was chosen in the PRF algorithm of

section 3.3. Also, the candidate function intensity f2 is dependent only on X2 and

the measurements, since f2 must be fx*2. Thus, both X2 and f2 are dependent on Xi,

but not on fi. Furthermore, letting q(X2, f2) be the density induced by the algorithm

on the new candidate colorings, we see that q(X2, f2) has precisely the same value as

q(X2) in section 3.3. Therefore, q(X2, f2) is again proportional to IQ12 (X T\S 1S 1 W

Let P[(xi, fl) - (X2, f2)] be the transition probability density for moving from

(Xi, fl) to (X2, f2)- Since this is q(X2, f2) times the acceptance probability, we have

exp[-tT*(Xjfj)] IQ'2(XT\S)I-l

P[(XI, fl) - (X2, MI = q(X2, f2) + S
f2)] If211(XT\S)I-1exp[-U*(X2, S

Now we are now ready to verify that the detailed balance criterion holds when the

distribution on the states of Q* has potential U*(Xf). Since the density for a pair

(X, f) is then exp[-U*(X, f)], we have

exp[-U*(Xl, A)] P[(XI, fl) - (X2, f2)]

[_U*(Xlfl)] IQ'2(XT\S)I-l
=exp[-U*(Xjfi)]q(X2,)'2) 1+ exp S

Q4 (XT\S -1
exp[-U*(X2,f2)] I S )I

Substituting jQ�2(XT\S)I-1 for the density q(X2, f2) yields:S

exp[-U*(Xl, fl)] P[(Xl, fl) - (X2, f2)]

[_U*(Xlfl)] If212(XT\S)I-1
exp[_U*(Xl, fl)] IQ'2(XT\S)I-l 1 + exp S

S f2)] IQII(XT\S)I-l
exp[-U*(X2 S

exp [_U*(Xlfl)] jf212(XT\S)I-1 - exp[- U* (X2, f2) IQ" (X T\S)Ii
S S

eXp[_U*(X1,f1)] IQ'2(XT\S)I-l + exp[-U*(X2,f2) IQ', (XT\S)1-1
S S
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exp[-U*(X2,f2)] IQ"(X"S)I-exp[-U*(X2, f2)] IQI,(XT\S)I-l I + S
S 'fl)] IQ'2(XT\S)I-l

exp[-U*(xi S

exp[-U*(X2, f2)] P[(X2, f2) - (X1, fl)]

Thus, an iteration of the algorithm satisfies the detailed balance criterion. There-

fore, the equilibrium distribution for the Markov chain on Q* has density U*(X, f�*,),

and the algorithm produces samples from the probability distribution given by equa-

tion 4.13.

Finally, note the similarity between the probability distribution of equation 4.13

and the probability distribution for a PRF given by equation 2.2. This similarity arises

because of the simple one-to-one correspondence between the PRF of the coupled

model and the elements of Q*: for each X in f2T of the PRF, there is one (x, f,*) in W.

In fact, the distribution of equation 4.13 is the distribution for a PRF. The potential

U*(X, f,*,) in equation 4.13 is actually a function only of X: since f,*, is determined by

X, U*(X, f,*) could be written as U*(X), and it is therefore the potential of a PRF on

QT. Thus) this algorithm reduces the problem of producing samples from the coupled

PRF-MRF model to the problem of producing samples from a PRF. However, the

PRF potential here is not additive, as the boundary information of the MRF is still

required to compute U*(x).

4.6 Experimental Results

We end with a pair of examples in which we use the algorithm to segment and restore

a piecewise smooth function. For each example, we begin by choosing a piecewise

smooth function on the unit square. Two sets of noisy measurements are then taken

of the function. For each set of measurements, the algorithm of the previous section

is used to generate a sample coloring X and intensity function f,* from the resulting

posterior distribution with potential U* (X, f,*,) on W.

For each initial function, the measurements yj are taken on an evenly spaced 21

by 21 grid. One set of measurements has 0,2 = 0.1, and the other has o,' = 0.7. We
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then choose the prior distribution to have el = 7, C2 = 2, and underlying Poisson

process intensity A = 2. From equation 4.8, the posterior distribution from which the

algorithm samples has potential

441 441
U'(Xf) = 7r + 2 E E(f, _ fj)2(l _ 1,j) + Y,)2. (4.14)

i Nj

Some care must be taken in choosing el and C2 in order for the algorithm to obtain

reasonable results. If el is too large compared to C2, the algorithm tends to find no

edges in X. If it is too small, the algorithm finds an extensive set of edges, and the

reconstructed function simply mirrors the measurement.

Our first piecewise continuous function is shown in figure 4.3. It is a tower with

height (or function intensity) 0 at the base, 3 at the peak, and 2 around the top edges.

Figure 4.3: The initial piecewise continuous function.

At each site in the grid, measurements of figure 4.3 are taken with error variances

012= 0.1 and q2 = 0.7. These two sets of measurements are shown in figure 4.4.
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Figure 4.4: Measurements with two different variances of the initial function.

Measurement when variance = 0. 1 Measurement when variance = 0.7

For each of these sets of measurements, the algorithm generates a sample PRF

coloring X and the corresponding optimal intensity function fx*. Figure 4.5 shows

the reconstructed PRF coloring and intensity function for the measurements with

a2 = 0.1. For this set of measurements, in which there is relatively little error, the

algorithm is effective in locating the edges and restoring the initial function.

Figure 4.5: Reconstructed PRF and intensity function when 0'2 = 0.1.

Reconstructed PRF Reconstructed intensity function0.5

0 -

-0.5.
-0.5 0 0.5

Figure 4.6 shows the reconstructed PRF coloring and intensity function when

012 = 0.7. Although the shape of the top of the tower is lost due to the considerable

amount of error in the measurements, the algorithm is still able to locate the edges

of the function.
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Figure 4.6: Reconstructed PRF and intensity function when O" = 0.7.

Reconstructed PRF Reconstructed intensity function0.5

0 -

-0.5
-0.5 0 0.5

Our second piecewise continuous function is shown in figure 4.7. It consists of

four separate regions: a base with height (or function intensity) 0, a triangle with

height 3, a sloping triangle with height ranging from 1.6 to 4.4, and a square tower

with height ranging from 4.3 to 5.

Figure 4.7: The second piecewise continuous function.

Measurements of figure 4.7 are taken on the 21 by 21 grid with variance 0-, = 0.1

and o,2 0.7. These sets of measurements are shown in figure 4.8.
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Figure 4.8: Measurements with two different variances of the second function.

Measurement when variance = 0. 1 Measurement when variance = 0.7

Given the measurements of figure 4.8, we again use the algorithm to generate

sample PRF colorings X and function intensities f,*. Figure 4.9 shows a sample

reconstructed PRF coloring and intensity function for the measurements with O"

0.1. The reconstructed coloring finds the edges of the initial function, and it also

includes some additional edges. The reconstructed intensity is similar to the initial

intensity function. The addition of extra edge segments is not surprising: in regions

where the measurement error happens to be large, additional edge segments will tend

to reduce the value of the potential.

Figure 4.9: Reconstructed PRF and intensity function when q2 = 0.1.

0.5 Reconstructed PRF Reconstructed intensity function

0 -

-0.5'
-0.5 0 0.5

Figure 4.10 shows a sample reconstructed PRF coloring and intensity function

when,7 2= 0.7. In this case, the reconstructed coloring includes the edges of the initial
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function, except for the low edge of the sloping triangle. From the measurements,

it is clear that the low edge of the sloping triangle cannot be distinguished from the

base because the measurement error is large relative to the height of the edge. In

the reconstructed intensity function, the upward slope of the triangle is still clear; it

simply begins from the region's base.

Figure 4.10: Reconstructed PRF and intensity function when a 2 = 0.7.

Reconstructed PRF Reconstructed intensity function
0.5 1

0

-0.5
-0.5 0 0.5
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