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Abstract

Under the usual assumptions of normality, the recursive estimator known as the Kalman Filter
gives excellent results and has found an extremely broad field of application -- not only for estimating
the state of a dynmamic system, but also for estimating model parameters as well as detecting abrupt
changes in the states or the parameters. It is well known, however, that significantly non-normal noise,
and particularly the presence of outliers, severely degrades the performance of the Kalman Filter. This
results in poor state estimates, non-white residuals, and invalid inference.

Several attempts have been made in the literature to mitigate the effects of non-normality on the
Kalman Filter. These range from the ad hoc practice of routinely discarding observations that yield
excessively large residuals, to more formal approaches based on non-parametric statistics, Bayesian
methods, or minimax theory. While some of these techniques have been found empirically to work
well, their theoretical justifications have remained scanty at best. Many, moreover, are based on
heuristic approximations with ill-understood characteristics.

This thesis aims at providing sufficient theoretical foundations for certain robust recursive
estimators to justify their use for state estimation as well as inference for linear dynamic systems. It is
based on the minimax robustness concept of Huber, and the recursive estimation ideas of Martin and
Masreliez. Existing results are first reviewed and standardized, not only ensuring notational consistency
but also making modeling assumptions consistent with each other and correcting omissions and errors.

In particular, resuits pertaining to the existence and derivation of a minimax optimal robust
estimator of a location parameter are reviewed in detail. This is followed by a review of stochastic
" approximation recursions of the Robbins-Monro form, their convergence, asymptotic normality, and
asymptotic efficiency. The multivariate and time-varying cases are also described in detail.

The main results of the thesis are a first-order approximation to the conditional prior distribution
" of the state of a discrete-time stochastic linear dynamic system in the presence of a certain class of
heavy-tailed observation noise, and a first-order approximation to the conditional mean (minimum-
variance) estimator based on it.
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If the observation noise distribution can be represented as a member of the €-contaminated normal
neighborhood, then the conditional prior is also, to first order, an analogous perturbation from the
normal distribution whose first two moments are given by the Kalman Filter. Moreover, the perturbation

is itself of a special form, combining distributions with moments given by banks of Kalman Filters and
optimal smoothers.

This form makes it possible to derive an approximate conditional mean estimator which is a
weighted sum of stochastic approximation-like terms. This estimator, while somewhat complex, is very
well suited to parallel computation. It also has an intuitively appealing form, the zeroeth-order term of
which is shown to be analogous to the filter of Masreliez and Martin.

Some simulation results are also presented, describing the behavior of the robust estimator for
several observation noise distributions, and comparing it to that of a standard Kalman Filter as well as
other published robust recursive estimators.

Thesis Supervisor:  Dr. Sanjoy K. Mitter
Title: Professor of Electrical Engineering
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1. Introduction

Time-dependent data are often modeled by linear dynamic systems. Such representations assume
that the data contain a deterministic component which may be described by a difference or differential
equation. Deviations from this component are assumed to be random. and to have certain known
distributional propertes. These models may be used to estimate the "true" values of the data
uncorrupted by measurement error, and possibly also to draw inference on the source generating the
data.

A method that has found an exceptionally broad range of applications -- not only for esimating
the state of a dynamic system, but also for estimating model parameters, choosing among several
competing models, and detecting abrupt changes in the states, the parameters. or the torm of the model
-- is the recursive estimator known as the Kalman Filter (Kalman. 1960: Kalman and Bucy. 1961).
Originally derived via orthogonal projections as a generalization of the Wiener filter to non-stationary
processes, the Kalman Filter has been shown to be optimal in a variety of settings (e.g. Jazwinski, 1970,
pp-200-218). It has been derived as the weighted least-squares solution to a regression problem, without
regard to distributional assumptions (e.g. Duncan and Hom, 1972: Bryson and Ho, 1975, pp.349-364);
as the Bayes estimator assuming Gaussian noise, without regard to the cost functional (e.g. Harmrison and
Stevens, 1971: Meinhold and Singpurwalla, 1983). and as the solution to various game theoretic and
other problems. Indeed, Morris (1976) is led to conclude that the Kalman Filter is therefore "a robust
estimator,” and proceeds to demonstrate its minimax optimality "against a wide class of driving noise,
measurement noise, and initial state distributions for a linear system model and the expected squared-
error cost function.”

One condition under which the Kalman Filter is most assuredly not robust is heavy-tailed noise.
i.e. the presence of outliers. It is well known that even rare occurrences of unusually large observadons
severely degrade the performance of the Kalman Filter. resuiting in poor state esumates. non-white
residuals, and invalid inference. There is no contradiction between this fact and the findings of Morris
and others. It is by now well-established that the mean-squared error criterion is extremely sensitive to
outliers (Tukey, 1960:. Huber. 1964), for reasons that are intuitively easy to grasp. Squaring a large
number makes it even larger, so that an outlier is likely to domunate all other observatons in an
algorithm that depends on squaring. In other words. optimality relative to the mean-squared error
criterion must nor be sought when the noise distribution is heavy-tailed.

Past efforts to mitigate the effects of outliers on the Kalman Filter range from ud hoc practices
such as routinely discarding observadons tor which residuals are “"too large.” to more formal approaches
based on non-parametric statistics, Bayesian methods. or minimax theory. Many. however. include

heuristic approximations with ill-understood characteristics. While some of these techniques have been

-empirically found to work well, their theoretical justifications have remained scanty at best. Their

nonlinear forms, coupled with the difficulties inherent 1n dealing with non-'normal distributions, have
resulted in a strong preference in the literature for Monte Carlo simulations over analytical rigor..It is
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the goal of this thesis to provide sufficient theoretical foundations for certain types of robust recursive
estimators to justify their use for both state estimation and inference.

It is important to bear in mind that routinely ignoring unusual observations is neither wise, nor
statistically sound. Such observations may contain valuable information as to unmodeled system
characteristics, failures, measurement errors, etc. But detecting unusual observations is only possible by
comparison with the underlying trends and behavior; yet, it is precisely these that non-robust methods
fail to capture when outliers are present. The purpose of robust estimators is thus twofold. To be as
nearly optimal as possible when there are no outliers, i.e. under "nominal” conditions; and to be
resistent to outliers when they do occur, ie. to be able to extract the underlying system behavior
without being unduly affected by them.

This thesis is organized as follows. The problem is formally stated in Section 1.1: Equations are
given for the linear dynamic system and the Kalman Filter, and a context is proposed for deriving the
robust recursive estimator. This is followed by a review of the literature in Section 1.2.

Huber’'s argument for a theory of robust estimation based upon minimax principles is
reconstructed in Section 2.1: The asymptotic variance as measure of performance, as well as its
relationship to the Fisher Information, are discussed first, followed by some properties of the Fisher
Information, and conditions for the existence of a solution to the minimax probiem. In Section 2.2,
Huber’s minimax robust estimator of location is rederived, to lay the groundwork for the development
of recursive estimators of location, in Section 3. '

Recursive estimators based upon the stochastic approximation method of Robbins and Monro and
others are reviewed in Section 3.1, where proofs are given for convergence, asymptotic normality, and
asymptotic efficiency. The muitivariate generalization is discussed in Section 3.2, and these results are
further generalized in Section 3.3 to the case of a time-varant locaton parameter, whose evolution is
modeled by a deterministic linear dynamic system.

The problem of estimating the state of a stochastic dynami¢ system is introduced in Section 4.
First, a first-order approximation is derived in Section 4.1 for the conditional prior distribution of the
state given all past observations. In Section 4.2, this conditional prior is used in a generalization of a
theorem due to Masreliez, to derive a first-order approximation to the conditional mean estimator.
Further approximations are discussed in Section 4.3, followed by a brief review of the minimax aspects
of this problem, in Secdon 4.4.

Numerical examples are discussed in Section 5. where various robust filters are simulated under
different observation noise distributions. The latter are described in Section 3.1, and the former in
Section 5.2; performance measures are discussed in Section 3.3, and the simulation results are analyzed
in Section 5.4. A brief assessment of these results follows.

A summary is provided in Section 6.1, and some possible directions for future research are
suggested in Section 6.2.

The contribution of this thesis is twofold. First, an attempt is made to standardize existing results
on minimax robust recursive estimation, not only ensuring notational consistency but also making
modeling assumptions consistent with each other and correcting numerous omissions and errors. Much
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of the past work on robust recumsive estimation has been disparate and insufficiently formal: results
from minimax robustness, stochastic approximation, and recursive estimation have been used with little
regard for comsistency. Thus, a self-contained presentation is given of existing results on minimax
robust recursive estimation theory within a single unified framework. '

Second, a robust recursive estimator is derived formaily, in an effort to bridge the gap between
appealing heuristics and sound theory. Since its distributional pfoperties are known -- at least
approximately -- it is possible to use this estimator for statistical inference, such as fault detection and
identification. In this regard, the principal contribution of this thesis is methodological: it is shown how
an asymptotic expansion may be used to derive a nonlinear filter that approximates a conditional mean
estimator. The resulting estimator is shown to have good performance characteristics both under
nominal conditions and in the presence of outliers.

1.1 Problem Statement

Below, the notation L(x) denotes the probability law of the random vector x, N( 4, Z) denotes a
multivariate normal distribution with mean w and covariance Z, and N( z; i, ) is its Radon-Nikodym
derivative with respect to the Lebesgue measure.

Consider the model
zZ = H, 8, + D, v, " (1.1)
where
€1 = Fr 8, + w,, ‘ (1.2)

n denotes discrete time; 8, € R? is the system state, with a random initial value distributed as
L(8y) = N(8y, Zo); z, € R? is the observation (measurement); w, € R? is the process (plant) noise
distributed as L(w,)=N(0, Q,) v, € R? is the observation (measurement) noise distributed as
L) =P, with E[v,] =0 and EWw,v,J1=R; {F,}, {Hy}, (Do}, {Qa ) Zo and R are known matrices
or sequences of matrices with appropriate dimensions; 8, € R? is a known vector; and finally 8,, w,,
and y, are independent for all 7.

A well known estimator of the state 9, given the observations {z,, - - -z, } is the Kalman Filter,
given by the recursion

_é_lH-l = Fn én + Kn+! In-i-l’ (13) )
where
Yari = Zast — Hawi Fa 8, (1.4)

is the innovation at ime n+1 and
rn+l = Hn+1 Mn+1 anl + Dn+1R Dnzi (15)

is its covariance,

Ky = My H,5 T3 . (16)
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is the gain,
M,y = F, L, FuT + O 1.7

is the a priori estimation error covariance at time n+1 (i.e. before ﬁpdating by the observation z,.,),
and

et = (I = Knsg Hyt ) Moy ‘ (1.8)

is the a posteriori estimation error covariance at time n+1 (ie. after updating). The inital condition is

8 = & 19

As is clear from equations (1.3)-(1.4), the estimate is a linear function of the observation, a
characteristic that is optimal only in the case of nomally distributed noise (Goel and DeGroot, 1980).
Similarly, equations (1.6)-(1.8) show that the gain and covariance are independent of the data, a
property related once again to the assumption of normality. Finally, in the Gaussian case P = N(0, R ),
the residual (innovation) sequence {¥; , - - -, Y, } is white and is distributed as L(y;) = N(0, T ).

When P is not normal, on the other hand, the state estimation error can grow without bound
(since the estimate is a linear function of the observation noise), the residual sequence becomes colored,
and residuals become non-normal. Thus, not only is the estimate poor, but furthermore invalid inference
would result from utilizing the residual sequence in the case of significant excursions from normality.

Figure 1.1 illustrates the behavior of the Kalman Filter in the presence of an outlier: the estimate
tracks the state very closely until the outlier, which occurs at time n = 20, at which time the estimation
error increases sharply; moreover, the effects of the outlier persist for some time.

A robust estimator should at the very least have the following characteristics:
° The state estimation error must remain bounded as a single observation outlier grows arbitrarily,

. The effect of a single observation outlier must not be spread out over time by the filter dynamics,
i.e. a single outlier in the observation noise sequence must result in a single outlier in the residual
sequence. .

. As a corollary, the residual sequence should remain nearly white when the observation noise is
normally distributed except for an occasional outlier.

It is assumed in the sequel that P, the distribution of the observation noise, is non-normal but
spherically symmetric with respect to the origin, and that it belongs to a neighborhood of perturbations
(in a sense to be defined) from the normal distribution. It is also assumed that the observation noise is
white, i.e. that outliers occur independently. While this assumption may be seen as limiting (other
models have been proposed, e.g. by Martin and Yohai, 1986), it is justified by the principal goal of this
effort, which is to derive a recursive estimator that can be used for inference on the linear dynamic
model in the presence of heavy-tailed noise: clearly, if outliers were allowed to occur i "patches,” the
distinction between model changes and sequences of outliers would become rather arbitrary, and might
indeed be reduced merely to a decision based on the duration of the excursion from the predicted
trajectory. This is not to say that patchy outliers do not constitute a probleni Worthy of study -- on the
contrary, time series outliers do sometimes occur in patches, and this problem is briefly touched upon in
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Section 6.2.

The same justification as above also applies to the assumption that outliers only occur in the
observation noise: process noise outliers (also known as "innovational outliers,” as opposed to
observation or "additive" outliers) would cause abrupt state changes that would not immediately be

_distinguishable from fauits (except by observation of the subsequent behavior of the model, i.e. non-

| causally). Moreover, large enough process noise outliers can be utilized to determine the impulse
response of the system, which makes them rather less interesting than observation outliers. Nevertheless,
dealing with process noise outliers in real time is a problem for which satisfactory solutions remain
unavailable, and is also briefly discussed in Section 6.2.

1.2 Survey of the Literature

Conscious of the deleterious effects of spurious observations on the Kalman Filter, engineers have
long had recourse to ad hoc methods aimed at downweighting the influence of outliers on estimates.
The simplest way employed is simply to discard observations for which the residual is "too large” (e.g.
Meyr and Spies, 1984). Thus, the g priori estimate F, 9, of the state 9,,, would not be updated by
Zn 4 if, for example,

I (Y5 1 > aN[Tanli (1.10)

or

A_{n'l;l Fu:-‘l lni-l > B (111)
for some thresholds o and . This is equivalent to rewriting the Kalman Filter in Equation (1.3) as

énﬂ = Fnén + Koyt Wt (Yo )s ) (1.12)

where , ., is an influence-bounding function that is linear between some possibly time-dependent (e.g.
as a function of the covariance) thresholds, and zero elsewhere. There are several disadvantages to this
approach, notably the absence of a firm theoretical basis or justification, as well as the lack of a
rigorous way to choose the vthxesholds. (Three standard deviations are sometimes used, but more for
historical reasons than due to statistical considerations.) Moreover, no use whatsoever is made of
information contained in the observations if they fall outside the thresholds, which may in some cases
result in decreased efficiency: if something is known about the statistics of the outliers. then it might be

~ possible to extract some information from outlying observations as well, and discarding them outnght
may not be appropriate. Finally, sharply redecending influence-bounding functions of this type give rise
to non-robust covariances, since smail changes in the values of the observations in the neighborhood of
the thresholds may result in large variations in the value of the estimate (Huber, 1981, p.103).

Somewhat more sophisticated approaches have also been advanced to preprocess the data prior to
its use in updating the Kalman Filter. In general, these techniques consist in replacing non-robust
statistics by their robust counterparts. Thus, for instance, Kirlin and Moghaddamjoo (1986) use the
median instead of the sample mean, while Hewer, Martin, and Zeh (1987) use Huber’s M-estimator.
Both papers report on applications to real data (target tracking in the case of the former, glint noise in




-13 -

that of the latter), where outliers were found to adversely affect the performance of the Kalman Filter.

In recent years, a great deal of work has been published, investigating more formal techniques for
“robustifying” recursive estimators. Broadly speaking, these methods can be grouped in three
categories:

(i) Bayesian methods. When the noise is non-Gaussian, but its statistical properties are known and
not excessively complex, estimators can be derived in a Bayesian framework, whereby
observations are used to update modeled prior information. The parameters of these estimators are
often chosen in accordance with some performance criterion, such as the risk.

(ii) Non-parametric methods. There are cases of practical importance where the statistical properties
of the noise are either entirely unknown, or known only partially, or possibly known but very
complex. In such cases, distribution-free estimators are sometimes sought that remain valid in a
relatively broad class of situations.

(iii) Minimax methods. Another way of dealing with incomplete or absent knowledge of the statistical
properties of the noise is to choose a class of distributions and derive the estimator whose worst-
case performance is optimal. If a saddle-point property can be shown to hold, such estimators aye
refered to as minimax robust. -

A review of the literature follows. It is worth noting that the recent literature on robust statistics is vast,
and a broad survey is not attempted here. Indeed, even indirectly related works, such as those on robust
regression or outlier detection, are not discussed, except when they specifically focus on the robust
estimation of the state of a dynamic system. Published reviews include Ershov (1978b), Stockinger and
Dutter (1983), Kassam and Poor (1985), and Martin and Raftery (1987).

McGarty (1975) proposes a method to maximize the Bayes risk, eliminating outliers and
concurrently computing the estimate. His model assumes that the state is totally absent from the
observation when an outlier occurs, i.¢. that observations are occasionally pure noise and contain no
information at all. It would appear that this approach can conceptually be reduced to a simple
hypothesis test to decide whether or not to update the estimate at the time of each observation. It
differs considerably from the model assumed here, where the state is always observed, although the
nbise may occasionally contain outliers. Moreover, McGarty’s method is non-recursive, as well as
computationally burdensome.

A Bayesian setting is also employed by Sorenson and Alspach (1971), Alspach (1974), and Agee
and Dunn (1980), who use a Gaussian sums approximation for the prior distributions. There is some
similarity between this approach and the derivation of the conditional prior in Section 4.1. However,
while the number of components in the approximating sum grows exponentially with time in these
papers, the formulation adopted in the present thesis (which exploits the exponential asymptotic stability
of the Kalman Filter, as well as the fact that only one component in the mixture is of O( 1)) results in
a bounded number of terms. Although the option of truncating the mixture sums to reduce complexity
has been raised in the literature, little is known about the consequences of such a move in the general
case.




-14 -

A simple way to decrease the influence of outliers is to adjust the noise covariance matrix used in
the filter to reflect the greater variance due to them. Suppose for instance that outliers occur with
probability €, and that the covariances of the nominal (underlying) and outlier models are denoted by
R..m and R,,,, respectively. Then, using the inflated covariance

R = (1-€)Rum + ERou (1.13) .

in the Kalman Filter recursion results in the deflation of the gain K, and hence a reduction in the
influence of outliers. Unfortunately, of course, this also results in a reduction of the influence of all
other observations as well, with the consequence that very inefficient use is made of measurement
information when no outliers are present.

Guttman and Pefia (1984, 1985) propose a more refined version of (1.13): they assume a
distributional model for the observation noise, and compute a posterior observation noise covariance by
using the posterior probability that an outlier has occurred, conditioned on the measurement. Similar
appmacﬁes are discussed by Harrison and Stevens (1971, 1976). One problem with this method is the
need for an explicit model for the noise: Guttman and Pefia use a two-component Gaussian mixture
(scale contamination) model, which is sémewhat limiting — although frequently used in the literature.
Another problem is that this approach also tends to overestimate the covariance under nominal
conditions, even though it does perform much better that (1.13). When the respective domains of the
bulk of the probability masses for the underlying and outlier distributions are not sufficiently disjoint,
the probability that an observation is an outlier does not decrease fast enough in the neighborhood of
the mean, yielding inflated covariances and poor performance at the nominal model. Consider for
instance the scalar case, with the fraction of outliers € = 0.1 (as discussed in the paper), and the
nominal and outlier models respectively given by N( 0, 1) and N( 0, 3) (as often assumed in the
literature). Suppose that the innovation is y =0 -- i.e. the case where an outlier is least likely. Using
Bayes’ rule,

p{yY=0 | nominal ) p( nominal )

p(nominal | y=0) = 2(1=0) (1.14)
T (-¢) N((lot,_g,) ?g 0; 0; 11\:3 0:0,3) (413
= 0.94. (1.16)
Thus, the effective covariance is given by
R = (094) (1) + (1-0.94)(3) (1.17)
= L12, (1.18)

implying that even in the best of all cases, the covariance is overestimated by 12%. This results in loss
of efficiency at the nominal model -- as illustrated in Section 5, where the performance of this estimator
is'éalculated for different values of € and R,,,. This problem carries over to virtually any model where
the overlap between the nominal and outlier distributions is not negligible, such as any symmetric
unimodal distribution.
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A related method is that proposed by Ershov and Lipster (1978) and Ershov (1978a), where the
framework is very similar to that of Guttman and Peifia, but a hard decision is made at each step as to
whether or not the observation is an outlier. This approach-has the distinct advantage of superior
performance at the nominal model, since the effective covariance is either R,,, or R,,, but not a
weighted combination of the two. Indeed, simulations performed in the early stages of this thesis
showed this filter to have excellent performance when the true noise distribution matches the modeled
one. Furthermore, although the published derivation is for the scalar case, the multivariate extension is
straight-forward. The difficulty with this formulation is that the problem of choosing an outlier model
remains: Ershov and Lipster only consider the Gaussian mixture case. In addition, it is probable that
such hard decisions result in non-robust covariances, in view of the fact that smail deviations in the
neighborhood of thresholds can yield large differences in the value of the estimate. Indeed, abrupt
switching of covariances introduces transients in the filter dynamics which have apparently not been the
object of study. ‘

It is worth noting that both the Guttman and Pena and the Ershov and Lipster filters can also be
formulated in the form of Equation (1.12) -- the first with a sigmoidal and the latter with a piecewise
linear y-function. Neither function is bounded, implying that the performance of these estimators is
poor when the observation noise is heavy-tailed. ‘

Mixture models are also used by West, Harrison and Migon (1985) in the context of generalized
linear models for nonlinear time series in the presence of outliers. Their discussion is brief, however,
and their proposal rather sketchy.

A Bayesian framework is also used by Kitagawa (1987), who proposes to approximate non-
Gaussian distributions by piecewise linear functions, and select the best among a set of competing
models by means of the Akaike Information Criterion (AIC). The main difficulty with his approach,
aside from the considerable computational burden it entails, lies with the mechanical and indiscriminate

use of a criterion derived for another, very particular application, and not even universally accepted for

that one. The well-known problems of AIC relative to order over-estimation and inapplicability to non-
nested models are not addressed; as with an earlier paper by the same author on outlier detection, AIC
is taken as an article of faith.

Another attempt at representing a distribution by simpler functions is that of Tsai and Kurz
(1983), where a piecewise polynomial approximation is used to adaptively derive the influence-
bounding function. Some connections between this approach and AIC are discussed in Tsai and Kurz
(1982). While adaptive methods are very appealing when modeling information is incomplete, this
particular application raises a problem: since outliers are rare occurrences by definition, very large
samples are likely to be required for even moderate levels of confidence, particularly in the tails where
accuracy matters most. Furthermore, the derivation presented in the paper is for the scalar case only
(or, more precisely, for the case where the elements of each observation vector are uncorrelated), and
the multivariate extension is quite arbitrary; yet, such correlation could provide crucial information in
the event of an outlier that affects some measurements more than others.

The need to select probabilistic models for the noise is entirely circumvented by the use of non-
parametric, distribution-free estimators such as the median (Nevel’'son, 1975; Evans, Kersten, and Kurz,
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1976; Guilbo, 1979; Gebski and McNeil, 1984). Medians and other quantiles have very useful

properties, such as strong resistance to transients (such as outliers) but perfect tracking of abrupt

changes (such as step inputs or slope changes). Furthermore, the development of recursive methods for

estimating them has eliminated the computational burden and memory requirements commonly

- associated with such statistics. However, their performance remains ill-understood, as do their statistical
properties. Yet, estimators are often used not merely to smooth, filter, or predict, but also for inference

- (e.g. model parameter estimation, jump detection, etc.), in which case knowledge of statistical properties
is crucial. Finally, some¢ non-parametric estimators may actually be special cases of more general
formulations (such as the median as a limiting case of Huber’s M-estimator), and should perhaps be
studied in a more general framework.

A final class of robust filters is based on a minimax approach. Here, a class or neighborhood of
situaticns {e.g. noise distributions) is selected, and the estimator with the best performance under the
least favorable member of that class is sought -- where best and worse are defined in a certain sense.
This paradigm is very appealing, since, in view of the absence of precise knowledge of the noise
distribution, the essence of robust estimation is a quest for methods that perform satisfactorily under a
relaﬁvelyvbroad range of conditions. Since the least favorable situation may in fact not represent reality,
and since estimators could conceivably be found that perform better under some other conditions, this
approach is necessarily conservative. However, it has the important advantage of providing a lower
bound on the performance of the estimator. This is the approach taken in the present thesis, and details
of the history of minimax robust estimation are provided throughout the text. Thus, only papers that
specifically concern recursive state estimators are discussed here.

Ore group of papers (VandeLinde, Doraiswami, and Yurtseven, 1972; Doraiswami, 1976;
Yurtseven and Sinha, 1978; Yurtseven, 1979) assumes bounds on covariances and obtains a minimax
estimator under various conditions. Unfortunately, these papers are opaque and contradictory, making
their complicated methods less acce_ssible still. Moreover, their non-recursive nature makes them
unsuitable for the present problem. '

The literature most pertinent to this thesis (Masreliez, 1974, 1975; Masreliez and Martin, 1974,
1977; Tollet, 1976; Stankovi¢ and Kovacevi¢, 1979; West, 1981; Stepifiski, 1982) uses stochastic
approximation of the Robbins-Monro type to get a recursive approximate conditional mean (minimum
variance) estimator having the form of (1.12), with the influence-bounding function y,,, given by the
score of the conditional distribution of the observation, i.e.

Z;MIP(L:H!EO’ T ) L19
s () = = P(Zan 1 200 " 02 ) (1.19)

This estimator has been found to perform well in simulation studies, but its theoretical basis has
remained inadequate. Moreover, a crucial assumption, that of a nomal ¢onditional prior for the state at
each time step, is insufficiently justified and remains controversial. The present thesis extends these
results and provides rig{)rous statistical derivations that will enable the use of this estimator for
inference.
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Similar filters are investigated by Agee and Tumer (1979) and Agee, Turner, and Gomez (1979),
who eliminate the explicit relationship between the influence function and distributional assumptions in
the interest of versatility. As a result, however, these filters are not minimax and the choice of
influence-bounding function remains arbitrary. MatauSek and Stankovi¢ (1980) also study related filters
for the case of non-linear, conﬁmious—time, discretely-sampled systems; their discussion of influence-
bbunding functions does not appear to be statistically motivated either. Shirazi, Sannomiya and
Nishikawa (1988) consider models where both the process and the observation noises contain outliers;
astonishingly, they too make the assumption of Gaussian conditional prior, and only offer simulation
results to support their algorithm. Levin (1980) investigates methods for analyzing the accuracy of
filters of the form (1.12) with bounded wy-functions, including notably the minimax robust estimators
described above.

Tsaknakis and Papantoni-Kazakos {1988) start out from a rather different definition of robustness,
based on the Prokhorov distance and on what they call "asymptotic outlier resistance,” and construct a
minimax robust estimator that is insensitive to bursty outliers of fixed duration. Their algorithm is not
strictly recursive, however, since it is based on processing all the elements of a moving window at each
time step. Furthermore, while their scalar estimator is minimax, its multivariate generalization is ad ~
hoc and does not obviously share this property. ‘

Lastly, Boncelet and Dickinson (1983) describe a minimax filter obtained by applying a known
robust regression technique to the Kalman Filter reformulated as a regression problem. However, the
results are incomplete, and the crucial problem of updating the covariance is not addressed; further
results do not appear to have been published as of this writing.
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2. Minimax Robust Estimation of a Location Parameter

It has long been recognized that spurious observations can totally offset even the soundest
statistical practices, and early attempts at dealing with this problem were recorded at least as far back
as the early nineteenth century (Huber, 1972; Hampel, 1973; Stigler, 1973). Nevertheless, the various
methods for mitigating the effects of outliers in statistical analysis remained disparate and for the most
part heuristic until Huber’s landmark paper (1964). There, he proposed a new approach to robust
estimation justified by minimax theory. This section attempts to reconstruct his argument, and is based
mainly on Huber’s own writings (1964, 1969, 1972, 1977, 1981).

The traditional approach to estimation is predicated upon a precise knowledge of the form of the
probability distribution governing the random process under investigation -- if not the values of its
parameters. Thus, commonly used estimators maximize or minimize some functional which derives
from the. distribution, as is the case with mavimum likelihood or maximum a posteriori probability
estimation. Alternately, a functional may be chosen for its simplicity, as is the case with least squares
or minimum modulus estimation, but here again acceptance of the methodology depends on its
justification through probabilistic arguments. In the case of the former, the normal (Gaussian) density,
and in the case of the latter, the Laplacian. (double-exponential) density, provide that justification.
Indeed, Gauss formulated his density as having the form e’ precisely to justify his choice of
quadratic functional (Gauss, 1821, p.98).

Robust estimation answers the need raised by the common situation where the distribution
function is in fact nor precisely known. In this case, a reasonable approach would be to assume that the
density is-a member of some set, or some family of parametric families, and to choose the best estimate
for the least favorable member of that set -- in a sense to be discussed. While such an approach is
bound to be OVérly pessimistic, since the true distribution may well not be the least favorable, it at least
has the advantage of providing an optimum lower bound on performance. Consisting of Bayes solutions
with respect to least favorable a priori distributions, minimax theory had been used earlier as a
conservative approach to hypothesis testing and decision problems in the presence of statistical
indeterminacy (see for instance Wald, 1950. pp.18, 89-99: Lehmann, 1959, pp.326-341; Blackwell and
Girshick, 1954, pp.27. 195-199, 290-291), but Huber was apparently the first to formulate a minimax
theory of robust estimation.

As a suitable performance measure for the robust estimator, Huber suggests its asvmproric
variance. There are a number of pros and cons about this choice, including the following:

(i) The reason for having recourse to robust procedures is the lack of precise information about the
distribution of the random variable(s); if the best one can do is think in asymptotic terms, why
not estimate the distribution? The answer is that since outliers -- by definition -- are rare
occurrences, it would take an enormous number of observations to obtain such estimates with any
degree of confidence. (Nevertheless, some researchers have in fact opted for this approach, as
briefly discussed in Section 1.2.) Thus, the minimax approach can be useful when the sample size
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is large enough to indicate deviations from the assumed model, yet not large enough to establish
the precise nature of these deviations.

(ii) Since, by their very nature, outliers are infrequent, asymptotic results may not be applicable to
small samples. This is a very valid criticism. At the same time, however, the probability that an
outlier is present in a very small sample is remote, so that it is only in moderately large samples
that outliers are likely to truly become problematical. Monte Carlo studies conducted so far
suggest that asymptotic results become applicable quite rapidly.

(ili) As is usually the case, asymptotic analytical results are considerably easier to obtain than small
sample results. Furthermore, under certain conditions, the estimator can be shown to be
asymptotically normal. This has the added benefit of allowing its use in hypothesis testing and in
the computation of confidence intervals. Seeking the distributional properties of robust estimators
for small samples seems quite hopeless, in view of their complex and inevitably non-linear forms.

(iv) The sample variance is strongly dependent on the tails of the distribution. Indeed, for any
estimator whose value is always contained within the convex hull of the observations, the
supremum of its actual variance is infinite: Thus, the asymptotic variance is a better performance

measure than the sample variance. Moreover, especially if the estimator is asymptotically normal, .

the "central part” of the distribution (which is of greatest importance) can better be approximated
in terms of the asymptotic variance than the actsal variance, yielding more accurate intervals for
moderate levels of confidence.

For these and other reasons, all discussions here are based on using the asymptotic variance as measure
of performance.

Huber’s argument for a theory of robust estimation based upon minimax principles is
reconstructed in Section 2.1, where conditions for the existence of a minimax robust estimator of a
location parameter are derived. The robust estimator of location itself is rederived in Section 2.2: this
result is subsequently generalized to the cas¢ where the location parameter is not constant.

2.1 Existence of the Estimator

Choosing the asymptotic variance as performance measure, it is necessary to obtain the least
favorable distribution in the set, i.e. the distribution for which the minimum attainable asymptotic
variance is maximum over the set. The estimator attaining that minimum asymptotic variance will then
be the best robust estimator for this set of distributions. It is shown that under certain conditions, the
least favorable distribution is that for which the Fisher information is minimized While this is quite
inwitive, in view of the Cramér-Rao lower bound. a more formal treatment is presented below.

Let ( X, B ) be a measurable space, and P '= { Py : 0 € © } a family of probability measures on
( X, B ) such that for some o-finite measure u on ( X, B ), Py absolutely continuous with respect to i
for all 8 € O, dPy(x)/ dulx) = fo(x) a.s. (W) is a probability density in accordance with the Radon-
Nikodym theorem (Halmos, 1964, pp.128-130; Loeve, 1963, p.132). Sdppose furthermore that
df o{x) / 90 = f§(x) exists a.e. (u) forall & € ©.
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Definition 2.1 The Fisher information of the density fq(x) at 6, @ € ©, is defined as

2
Ifo = E, [ [-a% log fa(x)} ] @
a 2
= | [-&;lozfe(x)] folx) dpix) C 22)
fox) |’ ;
= | T folx) du(x) 23)

provided these expressions exist. (Kendall and Stuart, 1979, vol.2, p.10.)

The Fisher information is related to the asymptotic variance of an estimator by the following well-
known relation, which is stated and proved for completeness:

Lemma 2.1 (The Cramér-Rao lower bound) Let T : X — © be an estimator of the parameter  for the
family of distributions P = { Py : 0 € © }. Assume the distributions admit densities f o such that f ¢'(x)
exists and is finite for all 6 € © and all x € X. Let the bias of the estimator T be given by b(8), i.e.
Efe [T 1=0+ b(0). Then the variance of T (x) obeys

(1+b®) )

vary [T] 2 ¢ (2.4)
Proof Note first that

[ foxydux) = 1 . | . @.5)
so that

5%— [ fobx)ydux) = 0. (2.6)

Now, since f g is assumed to be differentiable with respect to 0, and f ¢ < = by hypothesis, there is for
each 9 a &©) > 0 such that

%{fem-fe]<°° : 2.7
for 0 < 1h | < &(0). Hence, taking the limit as 4 — 0,
-585] folx) du(x) = j 335 falx) dudx) (2.8)

-0 , 2.9)

where (2.8) follows from the Lebesgue dominated convergence theorem (Love, 1963, pp.125-126), and
(2.9) from (2.6).
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By definition,
Efe[T ]=0+b(0) (2.10)

= [ TG) folx) dptx) @1

Differentiating with respect to 0 and once again using the dominated convergence theorem, it follows
that

L+5®) = | T() 2 fole) dute) @)
= [(Tx)-0-b(8)) '53'6 folx) dptx) (2.13)
_ fox)
= [ (Tx)-6-b(®)) {fe(x) }fe(x)d!l(x) (2.14)
where (2.13) follows from (2.9). Squaring, the Cauchy-Schwarz inequality yields

fax)
folx)

Recognizing that the first integral on the right hand side of (2.15) is the variance of T and the second
defines the Fisher information, and dividing both sides of the inequality by the latter, proves the lemma.
(See, for instance, Cox and Hinkley, 1974, p.254.) ' m

2
(1+b6°@) ) < [ (TG)-8-b(®) ¥ folx) dnix) | { } fox)dux).  (2.15)

The least favorable distribution is that for which the best estimator (i.e. the one minimizing the
asymptotic variance) has the worst (highest) asymptotic variance over the entire class of distributions.
Since the Cramér-Rao inequality (2.4) provides a lower bound on the asymptotic variance of an
estimator, a reasonable approach might be to seek the distribution for which this lower bound is highest
-- especially if assurances can be given that an estimator achieving that bound always exists.
Unforturiately, dealing with bias in the minimax framework presents some difficulty, because there is no
single expression for it that is valid over the entire set of probability distributions. This makes the use
of (2.4) far from straightforward. If, however, it can be assumed that the estimator is unbiased, then
b'(8) = 0 and the bound reduces to

.
I(fo)

Then, the least favorable distribution is simply the one minimizing the Fisher information, and the

var; [T ] 2 (2.16)

problem is considerably simplified. In the present application, robust estimators are sought for location
parameters. In that special case, provided some restricions are made on the class of probability
distributions, it can be shown that Huber’s robust estimator is unbiased so that (2.16) is indeed valid.
This is assumed in the sequel.

As will become clear in the discussion of robust recursive estimators for linear dynamic systems
(see Section 4), the principal case of interest here concerns estimators of a location parameter. Thus, it
is assumed henceforth that X is the real line R, B the Borel c-algebra, and u the Lebesgue measure,
and that fo(x) '=f(x-9) as.
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To determine the least favorable distribution in the manner discussed above, it is first necessary to
prove the existence and uniqueness of a distribution minimizing the Fisher information. To this end, an
alternative  definition is proposed by Huber to incorporate situations where Definition 2.1 is
inappropriate, in which case I(f ) := o is chosen.

Definition 2.2 Let C be the set of all continuously differentiable functions with compact support, such
that for all W € C, [ y%(x) dP(x) > 0. Then, the Fisher information for location of the distribution P
on R is given by

dP 2
PPy = sup (] ¥x)dP(x)) .

veC [ yP(x)dP (x)

2.17)

It is shown in Theorem 2.1 that these definitions are equivalent when the expressions in equations (2.1-
2.3) are well-defined. As becomes clear later, Definition 2.2 has certain features that are useful in
proofs of existence and uniqueness. The following theorem is due to Huber.

Theorem 2.1 Let { P3:6€ ©} be a location family. Then, the following two statements are
equivalent:

(i) I*Pg)<oe
(ii) Pg has an absolutely continuous density fq, and I(f g) < eo.

In either case, I(f g) = I*(Py), and the asterisk is dropped in the sequel.

Proof Assume first that Py has an absolutely continuous density fg(x) = f(x ~0), and that I(f o) < .
Then, integrating by parts, noting that W(x) = 0 at x = oo, and that

9 =9 s,
&'f(x-e)- aef(x 8), . (2.18)
it follows that
2 2
[J‘V(—’C)fe(x)dx } = [“).W(X)fe'(X)dx } (2.19)
2
Cfetx)
= (J- W(x) ) folx) dx } (2.20)
felx) 2
< J Wi fewrds | [fe(x) } folx) dx @.21)

where (2.21) holds by the Cauchy-Schwarz inequality. Dividing by the first term on the right hand side
of (2.21) (which is positive by definition), it then follows from (2.17) that

r*(Pg) < I{fo) 2.22)

< o ' (2.23)
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by assumption. This proves (ii) — (i).

Conversely, assume that *(Pg) < o, and define by
AW) = - [ ¥&) dPex) (2.24)

the linear functional A : C — R on the dense subset C of the Hilbert space L(Pg) of square integrable
functions with respect to Pgo. Noting that 1| A 112 =*(P) (from k2.17) and the definition of the
norm), it follows that A is bounded, and can therefore be extended by continuity to the entire Hilbert
space Lo(Pq). By the Riesz representation theorem (Conway, 1985, pp.12-13; Bachman and Narici,
1966, p.15), there is a gg € L,(Py) such that for all y € L,(Py),

AW = | Wx) golx) dP o(x). 2.25)
Define the function f g(x) as
fodoy = | gey) dPey) 2.26)
yax

a.e., and proceed to prove that this yields the density associated with P,. Squaring (2.26) and using the
Cauchy-Schwarz inequality,

i) < | aPy) [ 830)dP4O) @.27)
yax yex
= Pox) | 230)dPe0) (2.28)
Yy X .

a.s., whence it follows that f (x) is bounded a.s., and fo(x) — O for x — —oe. Furthermore, since from
(2.24) and (2.25), j golx) dPy(x) = A(l) = 0, equation (2.26) implies that fgo(x) = 0 for x — +oo,
Thus,

[ W) ferax = - | wix) i ge(y) dPo(y) dx (2.29)
= [ w0) ge0) dPo) (2.30)
= AY) 2.31)
= - j Yix) dPo(x) (2.32)

where the order of integration is interchanged by virtue of Fubini’s theorem (Halmos. 1964, p.148),
(2.31) follows from (2.25), and (2.32) from (2.24). Thus, fg(x) dr and dPgy(x) define the same linear
functional on the set { ' : v € C |} which is dense in L,(Pg); they therefore define the same measure,
proving that f 4 is the density associated with the probability measure Py, and (differentiating 2.26)
ge(x)= fa'lx) / folx) as.

From the Cauchy-Schwarz inequality,

2
(] vw gae)dPot) | [ W dPetr) [ gdc)dPoce) (2.33)

with equality only if W(x) = o g4(x) a.e. for some real-valued scalar a. It follows therefore that
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(| wix) go(x) dPo(x)

I*(Pqg) = sup (2.34)
veC [ Yx) dPe(x)
= [ 83&x)dPox) 2.33)
fow) | ‘ _
= ) folx) dx . (2.36)
= I(fg). (2.37)

which is finite by hypothesis, proving the theorem. (This proof follows those inspired by T. Liggett in
Huber (1969, pp.78-81; 1977, p.30; 1981, pp.77-79), Huber (1964) provides a somewhat more
cumbersome proof of the same theorem.) ]

The existence of a least favorable distribution for minimax problems has been investigated by
several researchers; indeed, one of the primary tasks of minimax theory is deriving sufficient conditions
for the existence of such distributions. Wald (1950, pp.96-97) formulated necessary conditions for a
least favorable distribution to exist, which included the restriction that the parameter set be compact.-
Lehmann (1952) provided some conditions under which this requirement could be relaxed, for tests
involving a finite number of decisions. In general, however, proofs of existence involve some
topological restrictions which are problematical since in many cases the sets of probability distributions
of interest are not tight, so that their closures are not compact in the weak topology.

To circumvent these difficulties, Huber proposes to endow the set P with the vague topology,
defined as the weakest topology such that maps P — f\y dP are contingous for all continuous
functions y with compact support. This implies that some measures may be of mass less than unity, i.e.
they may place nonzero mass at te-. According to Huber, such substochastic measures may in general
be viewed as providing for "infinitely bad outliers”, and the fact that they may have mass less than
unity formalizes the practice of routinely discarding such grossly invalid data. In the present context,
however, only location families are considered; since they always have the 0 measure as a limit, P can
be assumed not to contain substochastic measures. In this framework, existence and uniqueness are
proved in Theorem 2.2 using the following lemma, due to Huber.

Lemma 2.2 The Fisher information for location [(P) is a convex function of P.

Proof Noting that, by linearity,

2
—5‘},; [ weyapx) =0 (2.38)

and |
& )20
=57 | v P =0, - (2:39)
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it'is easy to show that

# (] w&)dPx) )
#* [ yHx) dP(x)

2
3 | v dPx)
2] yi(x) dP(x) 5 m (2.40}

]

v
(=]

(2.41)

Thus, the quotient on the left hand side of (2.40) is a convex function of P, so that by (2.17) I(P) is

the supremum of a set of convex functions of P, and is therefore itself a convex function of P. (See
Huber, 1981, pp.79-80.) ]

The following theorem is due to Huber.

Theorem 2.2 If P is vaguely compact and convex, then there is a P, € P minimizing I'(P). If,
furthermore, 0 < /(Po) <o and the support of the corresponding denmsity f, is convex, then P, is
unique.

Proof Since P is vaguely compact, then from (2.17), the Fisher information I/(P) is the pointwise
supremum of a set of vaguely continuous functions; consequently, it is lower semi-continuous as a
function of P, and attains an infimum on P. This proves the existence portion of the theorem.

Assume now that P, and P, both minimize /(P ). Then, by convexity (Lemma 2.2), 7(P,) must
be constant over the subset of P defined by 0 < A < 1, so that

aZIP 2.42
oz [@Y = 2.42)

Since [(P;) < o= by hypothesis, it follows from Theorem 2.1 that P, has an absolutely continuous
density f,. Then, it is easy to show by straightforward differentiation that (for f 5 # 0)

# D 5 (fi'fo=-Ffo F1 )
—— = 2 2.
N fa fa @43

v
<

(2.44)

for 0 < A <1 (where £, = 9f,/ 90, and 6 is the location parameter). It follows that (f,)°/ f1 is a
convex function of A, and

1 H(fx’)z [ m’f}
h Iy fa

is monotone in 4. Thus, from (2.3), the limit as # — 0 is taken and

9 (fx')

Y I(P = = j dx ' (2.45)
= | aax fo;) de : (2.46)

s
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by the monotone convergence theorem (Logve, 1963, p.124). Furthermore, (2.44) and monotonicity
imply that

1 3 (F? 3 }
L= - = > 4
h{[a;\' fa ]m A fa 0 (2.47)
so that taking the limit as 4 — 0,
? 9 9 WP
el W T >
P
2l @249
=;2£_fl-f.____°‘3f°__fl)2dx (2.50)
fa
20 | 2.51)

where (2.49) follows from Fatou’s lemma (Halmos, p.113-114), and (2.50) from (2.43). Thus, from
(2.42),

j 5 (f ' fo=Ffd f1 ) e

=0 (2.52)
fi
It follows that
fi fo
—_— = — 2.53
i = Fo @33

a.c.

Integrating (2.53), since the support of f, is convex and therefore connected, it follows after
exponentiation that '

fir=0afo (2.54)
for some constant o.. But from (2.3),
Fix) 2 )
IP) = dx : 255,
®y = | [Nx) } file) dx (2.55)
_ of o'(x) :
= | {afo(x) ] of olx) dx (2.56)

al(Py) 2.57)

whence, since /(Po) and I(P,) are both minima and hence equal by hypothesis, & = 1, and uniqueness
is-proved. (See Huber, 1964, pp.86-90; 1969, pp.81-85; 1981, pp.79-81.) o n
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Theorem 2.2 proves that under suitable conditions, there is a distribution in P that minimizes the
Fisher information. The question remains as to whether or not an estimator can be found that achieves
the Cramér-Rao lower bound, i.e. an estimator whose asymptotic variance is the inverse of the Fisher
information. It is well known that under suitable conditions, the maximum likelihood estimator achieves
this bound. Specifically, if it is consistent, then it is asymptotically efficient, i.e. it is asymptotically
normal with mean equal to the true parameter and variance equal to the inverse of the Fisher
information. (See for instance Akahira and Takeuchi, 1981, p.58). Le Cam (1953) discusses the history
of the maximum likelihood estimator as well as issues relating to its comsistency and asymptotic
efficiency (see also Le Cam, 1956). Wald (1949) provides a proof for consistency, which Huber (1967)
modifies to hold under weaker conditions; furthermore, Huber also proves asymptotic normality under
these weaker conditions. Many of the relevent regularity conditions (though not those of Huber) are
further discussed m Le Cam (1970). Proofs of these results are involved and will be ommitted here.

This suggests that the maximum likelihood estimator based upon the least favorable distribution
in a given set of distributions may yiéld the best robust estimator for that set. This is not immediate,
however. It can be shown to hold -- at least for some cases -- by explicit verification of the saddle
point condition: i.e. given a set C of allowable estimators and a set P of distributions, both defined on
(X, B ), and a gain function J: C x P — R to be maximized over C and minimized over P, the pair
consisting of the estimator W, and distribution P, are such that

J(WPo) < J(WoPo) < J(V¥o, P) (2.58)

for all w e C and all P € P. In other words, the pair ( o, Po ) is a solution to the minimax problem.
It must be noted that although such a saddle point solution yields the optimal robust estimator, the
converse does not necessarily hold -- i.e. a least favorable distribution and the corresponding optimal
estimator do not necessarily constitute a saddle point solution. Theorem 2.3, due to Verdd and Poor
(1984), provides sufficient conditions such that every least favorable distribution forms a saddle point
with its corresponding optimal estimator. The following definition and lemma are needed:

Definition 2.3 Given the minimax problem defined by the sets C and P and the function J,
(Y., P, )e CxPis a regular pair if and only if for every P such that P, :=(1-A) P, + AP € P,
0<sA<l,

JOW* (P, Po) = J(wL, Py) = o(h) (2.59)

 where y* (P ) € C denotes the optimal estimator for the distribution P € P.

Lemma 23 Let g : [0,l] > R be a convex function. Then, g(0) < g(A) for every A € [0,1] if and only
if ‘

0 = lim - [5(7\-)"8(0)]- (2.60)

Proof From the definition of convexity,
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g(dx +(1-9)y) < dz(x) + 1-Bg®») (2.61)

where 0 < 8 < 1. Let {A, } be a strictly decreasing sequence, 0 <A, <1 for all n. Substituting x = A,
y =0,and § =24,/ A, in (2.61), it follows that

g (Mns1) — 2(0) < g(A)-2(0)

' 2.62
" . (2.62)
for all n. In particular, this implies that
3(1)—§(0) (263)
T .

is an increasing function of A, and its limit as A { O exists. Suppose g(0) < g(A) for every A € [0,1].
Then, (2.63) is non-negative, and therefore so is the limit. Conversely, suppose that (2.60) holds. Since
(2.63) decreases with decreasing A, it follows that for every A € {0,1];

1 1 ‘
x (g -g®] 2 }}ﬂ » [gA)-2g(0)] (2.64)
20 (2.65)

by hypothesis, so that g (0) < g (A) for every A € [0,1], and the lemma is proved. n

Theorem 2.3 Consider the minimax problem defined by the sets C and P and the function /. If P is

convex, and if J(y, P ) is convex on P for every ¥y € C, then the following two statements are
equivalent:

(i) Py is a least favorable distribution

(i) The regular pair ( ¥, Py ) is a saddle point solution.

Proof Let P, be a least favorable distribution, and let ( Yo, Py ) be a regular pair. Choose P = P, in
the statement of Definition 2.3, so that P, = P, for all A. Then, letting A =0 in (2.59), regularity
implies that

J(w*(PO)7PO)=J(w09PO) (2'66)

Le. Y is the optimal estimator for the distribution P, and satisfies the left hand inequality in (2.58).
This proves the first half of (i) — (ii); it remains to show that the right hand inequality in (2.58) is also
satisfied.

For Py, P, € Pand 0 €A <1, let Py, := (1-A) Py + A P,. Then by definition,

JCW* (P, Pr) = sup J( v, Py) (2.67)
yeC
yeC
<

(1-A) sup J(W,Po) + A sup J(wy, Py) (2.69)
yeC yeC :
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= (1-M) J(W*Po), Py) + AJ(Y*(P)), Py) (2.70)

where (2.68) follows from the convexity (by hypothesis) of J(y, P )on P given any ¥y € C. This
proves that J( y* (P), P ) is also convex on P.

By definition, P, is a least favorable distribution if and only if
J(W*(Po), Po) < J(W*P)P) - 2.71)

for all P & P. In particular, setting P = P, and using Lemma 2.3, it follows that P is a least favorable
distribution if and only if

e n 1
0 < lim - [J(‘l’*(Px),Px) = J(y*(Po), Po) ] (2.72)

Similarly, setting P = P, and using Lemma 2.3, the right hand inequality in (2.58) holds if and only if
. 1
0<lm % [ 7(¥vPr) = J(woPo) | @m)
Note that -

JCW* (P, Py) — J(W*(Po), Po)

JCY* (P, Pr) — J( o, Po)
+ J( Yo, Pr) — J( W0, Py) (2.75)

where (2.74) follows from (2.66). Dividing (2.75) by A and taking the limit as A | 0, and noting that

1 . _ ] -

tim 1+ [ Oy, Pa) = J(¥o Pa) | = 0 2.76)
from the regularity assumption (2.59), a comparison with (2.72) and (2.73) shows that P, is a least
favorable distribution if and only if the right hand inequality in (2.58) holds. This establishes that
{1} &> (i1), and completes the proof. (See Verda and Poor, 1984.) o

Remark In the present context, the minimax problem consists in finding the estimator minimizing the
asymptotic variance for the least favorable distribution. Instead of using the asymptotic variance as cost
function, however, it is more convenient to utilize its inverse, the Fisher information, as gain function.
This is because, as shown earlier (Lemma 2.2), /(P) is convex on P. Thus, if P itself is also convex,
~ then the conditions of Theorem 2.3 are satisfied, subject to the regularity condition, eliminating the need
to verify that any given pair consisting of a least favorable distribution and the corresponding optimal
estimator is a saddle point solution to the minimax problem. It has thus been established that the
maximum likelihood estimate corresponding to the distribution minimizing the Fisher information is the
optimal robust estimator in the minimax sense, provided that it is contained in C and that P satisfies
certain conditions.

JCW* (P2, Py) = J(Wou Py) Q4
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2.2 Derivation of the Estimator

Consider the measure space ( X, B, p ) defined earlier, and let { x;, - - -, x, } be a sample of
independent random variates taking values in X, with a common distribution function P. Let
Pi={Py:0€ O} be a family of probability measures on ( X, B ) such that for all 0 € ©, Py is
absolutely continoous with respect to p and admits the density fq in accordance with the Radon-
Nikodym theorem.

Let X" be the product of n copies of X, and let T, : X" ~» © be an estimator for the parameter
6. A broad class of such estimators are solutions to maximization problems of the form

2% E palx;). 2.77)
For instance, if pg(x) = log f4¢(x), then the solution of (2.77) is the maximum likelihood estimatc; i
pex) = - llx-0 112, it is the least squares estimate; if pg(x) :=— Ix—0 1, it is the minimum modulus
estimate, i.e. the median. Huber calls these M-estimators. Since the optimal robust estimator described
in Section 2.1 is a maximum likelihood estimator (for a certain appmpﬁately chosen family of
distributions), it is also of the form (2.77). h

An alternative way of stating (2.77), provided that pg is differentiable and that © is an open set,
is

Y Welx) =0 : (2.78)

i=1

where Yg(x) i= dpg(x)/ 90 ae., and o is an arbitrary constant. For the minimax robust estimator,
o = —1 is chosen for aesthetic reasons (as will become clear below), and

W) =~ log for) 2.79)
4

a.s., where f ¢ is the density corresponding to the least favorable distribution as described in Section 2.1.

Since the minimax robust estimator is a maximum likelihood estimator, it has the properties
known to hold for such estimators in general. Specifically, under rather mild conditions, it is consistent
as well as asymptotically efficient. (In this context, it is useful to recall that Huber (1967) proves the
" consistency and asymptotic normality of the maximum likelihood estimator for the case where the true
distribution f* underlying the observations does not necessarily belong to the parametric family
{fo:0 € ©} defining the estimator. In that case, convergence is to 8o € @ satisfying
Enllog folx) 1< Ep[log f 9% ] for all 8 € O, 0 # 0,.) As discussed later, however, the minimax
estimator is not always the most appropriate for any given application. so that Huber’s more general
results concerning a class of M-estimators are reviewed below.

As before, it is assumed here that f o(x) = f (x-9); the same follows, of course, for y and p.'

Let p be a continuous, convex, real-valued function of a real variable, whose derivative y exists
ae. and takes both negative and positi\}e values. Let the estimator of locaton 7,( x, - ', x, ) be the
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solution of

T wx-T)=0 2.81)

i=l

(as with equation (2.78)), and let

§T) = | wx-T)dP(x) ) 2.82)
denote the expectation of Wy  with shift T. It is clear, from (2.81), that
T,(x1+¢c, ", Xp+t¢c )=T,(xy, "+ ,Xs Y+ ¢, ie. T, is translation invariant. This fact is used in
the sequel..

The following lemma, due to Huber, establishes the existence of the expectation in (2.82), and the
fact that it crosses zero.

Lemma 2.4 If there is a T* such that §(T*) < o= exists, then &(T') exists for all T (though it is not
pecessarily finite), is monotone decreasing with T, and takes both positive and negative values.

Proof Since p is convex, ¥ is a monotone increasing function of its argument. (This is easy to
demonstrate and is analogous to Lemma 2.3 -- see Royden, 1968, pp.108-109.) Thus, y(x-T) is
monotone decreasing in T, so that for T* < T, -

Yo -T*) - yx-T) = 0 ‘ (2.83)
a.s., and consequently

| [\y(x-r*) - y(x-T) ] dP (x) (2.84)
exists (though it is not necessarily finite). But by hypothesis,

ET*) = [ wx-T*)dP(x) (2.85)

also exists and is finite; taken together, (2.84) and (2.85) imply that §(T') exists for T* < T (though it is
not necessarily finite). A symmetric argument for T < T* extends the result to all T. Moreover, since
y(x-T) is monotone decreasing in T, so is §T).

Decompose  into its positive and negative parts, i.e. let y = y* — y~, where
Yx) = max (y(x),0) (2.86)
and
Y(x) = —min (y(x),0) , (2.87)
a.s. For any given xg, W(x,-T) is monotone decreasing in T and takes both positive and negative values

by hypothesis. It follows that for large enough T, W*(xo~T) = 0 and Yy~ (xo~T) > 0, so that

lim &T) = lim [ [ ve-TydP () - [ wx-T) dP ) ] (2.88)

<0, - : (2.89)
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where both integrals in (2.88) exist since &(T) is defined for all T, and the limit exists since both y*
and Y~ are monotone in T, and therefore so are the integrals. A symmetric argument for T — —oo
completes the proof. (The proof of existence is suggested in Huber, 1981, p.48; the remainder follows
Huber, 1964; 1969, pp.64-65.) ]

The following theorem is due to Huber.

Theorem 2.4 If §(T') exists and there is a 7* such that 0 < §(T) for T <T* and §(T) <0 for T* < T,
and if

[ ix-T)1dP(x) < =, (2.90)
then T,(xy, - -,x, ) > T* as n — o almost surely and in probability (i.e. T, is consistent).

If, moreover, ET*)=0, &T) is continuous, differentiable and strictly monotone in a
neighborhood of T*, and if

0< [ Yx-TdPkx) < = (2.91)
~ is continuous in a neighborhood of T*, then

| ¥e-T*)dP(x)
(§@*) 7

Lvn (T,-T*)) - N|O, 2.92)

as n -> o (i.e. T, is asymptotically normal).
Proof Let 8§ > 0. If (2.90) holds, then the Kolmogorov strong law of large numbers (Lotve, 1963,
p-239) implies that as n — oo,

L3 Wx-@-8) - g9 < 0 ' 2.93)
i=l

as. and i.p., where the inequality holds by hypothesis. Similarly, as n — oo,

1 Zn: Wx —(T*+3) ) — ET*+8) > 0 ' (2.94)

noiz

a.s. and ip. Since §(T) is monotone in T, it follows that for each 8 > 0, there is an n(8) such that for
all n > n(d),

T* —8 < T,(xy, """ ,%xp) < T*+3, A (2.95)
(recall that T,( x;, - - -, x, ) solves (2.81)), and similarly, as n — o,
probl T* =8 < T,(xq, "~ ,%, ) < T*+8] —» 1. (2.96)

Letting 8 — O proves the first assertion.

Because of translation invariance, it can be assumed with no loss of generality that T* = 0. Since
Y(x-T) is monotone decreasing in T and T,(xy -, X, ) solves‘ (_2.81), it follows that
- T,(xy, * - ,x, )<Tif and only if

3 wx-T) < 0. | @.97

i=l
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as., for any given T. Rewriting (2.97) to center the sum on its expectation and bound its variance,

n~1? Z (\P(xs—T)-é(T)] < -n'2YT) (2.98)
i=l

a.s. (from (2.82)), so that

mb[ﬁTn(xla Ty X )<T]

= prob{n‘“z i [w(x,—n-mr)—g(n-"zr)] < - n2 En-12T) ] (2.99)

i=1
Thus, showing that the right hand side of (2.99) tends towards a nommnal distribution would establish the
asymptotic nommality of Va T,(xy, * -, X, )

Note first that since { x; } are independent and identically distributed,

| i-1 . '
var | yo,;-n""2T) | Y \v(x,,-—n‘mT)] = var] y(x;-n""?T) | (2.100)
| k=1 A
for all i, so that
n | | i=t |
Y El: | var[\v(x,-—n‘mT) |y Wire—n"1T) ]-—var[ Yo-n?TY11 | =0 (2.101)
isl | | k=1 |

identically. Moreover, by independence,

var{ y(x;—n""?T) ] = j Wi(x-n""2T) dP(x) - E*n~'2T) (2.102)
for all i, so that

va 7% (ye=n™T) = 80T ] = [ Wie-n PN dP(x) — E7T) 2.109)

i=1

) < oo, (2.104)

at least for large n (i.e. for n~'2T near 0), where (2.104) follows from (2.91), the continuity of &T) in
a neighborhood of 0, and &(0) = 0 (by hypothesis). Finally, define

A(n,3,T) = {x: n~1? :q;(x-n-“zr)—g(n“ﬂr)} 2 5} (2.105)

for some given § > 0. Then, by independence,

; [ﬂ“"z [W(x,-—n'“zT) - &(n717T) J }2 dP (x;)

i=l A@ST)

) _
= j (w(x—n*‘”zr)-g(n-mr)] dP(x)  (2.106)
A(n3T)

- 0 ) 2.107)
as n — oo, since, as with (2.103)-(2.104) and from (2.90),

:\p(x—n"’zr)—g(n-mr): < o (2.108)

-
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a.s., so that

lim A(n,8,T) =0 (2.109)

n—yoa

(or possibly a set of measure 0). Thus, Lindeberg’s conditions (Lotve, 1963, pp.377-378) for
asymptotic normality are satisfied, and the right hand side of (2.99) tends towards a normal distribution.

Since £(0) = 0 and &(T') is differentiable in a neighborhood of 0 by hypothesis,

T) = T &©) + 0T? (2.110)

so that
~ R EEATY = — 2 (A TEQ) + 0 (7Y ) @.111)
- ~TE(©) 2.112)

as n — oo, Thus, recalling that &(T) is strictly monotone (decreasing) in a neighborhood of 0 by
hypothesis, so that £'(0) < 0, the limit of (2.98) can be written as

o p & W) - EaT) |
lim n é ol <T (2.113)
so that, comparing with (2.99),
n - —l/2T - —Il?q-
n-uz Z ‘y(x' - 'él()o) lg(n ) '4_-' “I; Tll(xb T »xu ) (2.114)
i=1

asymptotically. This establishes the asymptotic normality of Vn T,(xy, -+, %, ), and it only remains
to derive its limiting variance. Once again by independence,

. -112 < W(xi_n—“zT) - g(n-mT)
va’[f‘.‘i > E0)]
_ . Wx-n"V2T) — E(n~V2T)
= varbx_r’nﬁ Bon 2.115)
- yx) ‘
ar[l&,.’(())l } (2.116)
| W) dP(x)
= ——————e 2.117
(&) ( )
where use is made of the fact that E[ y(x) ] = §(0) = 0, concluding the proof. (See Huber, 1964; 1969,
pp.66-72; also 1981, pp.45-50.) n

Corollary 2.1 For a given family of symmetric distributions with location parameter 9, let the least
favorable density f ¢ be such that /(fg) < <o for all 8, let the corresponding influence-bounding function
Ve (given by equation (2.80)) satisfy the conditions of Theorem 2.4, and let T,,( x;, ***, x, ) be the
minimax robust estimator of 6, i.e. the solution of (2.81). If the true underlying distribution is f g,
then '
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1
L(Yn (T,-0*)) - N[o,m] | (2.118)

as n — oo (i.e. T, is asymptotically efficient).

Proof Because of translation invariance, it can be assumed with no loss of generality that 6* = 0. Note
first that since f, is symmetric with respect to 0, it follows that

folx) = fol=x) ' (2.119)
and similarly,
folx)
= - 1
Vo) folx) @120)
fo(=x)
= 121
fol=x) @121)
= — Yo(—x). ' 2.122)
Thus,
O = | wox) folx) dx @)
0 =
= | wotr) folx) dx + J Wo(x) folx) dx @.124)
(1] oo
= - | wo(=x) fol-x) dx + ! Yolx) folx) dx @.125)
= - [ Wob) folx) dx + [ wolx) folx) dx . (2.126)
0 1]
.= 0, 2.127)

" where (2.123) holds by definition, (2.125) follows from a change of variable (replacing x by —x), and
(2.126) follows from (2.119) and (2.122). It is furthermore easy to show that &(7') has a unique root, at
0: suppose &(T';) = 0 also, for T > 0, and define Ty, = AT for A € {0,1]. Then,

~ T,) — &(0)
g0 = Im -é(—k-%g—- (2.128)
T, - &0
= {i{‘}, E(—-L)f;—é(—)- (2.129)
= 0, . (2.130)

where (2.129) follows from the fact that £(T) is monotone decreasing and T, = T by definition, and
(2.130) holds identically since T, and 0 are both roots of §(T'). But this is a contradiction, since
£’(0) < 0 by hypothesis (see Theorem 2.4). Thus, there can be no root T| > 0. A similar arguniem‘for
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T, < O establishes unicity. Thus, by Theorem 2.4, ¥a T,(x,, * ‘-, x, ) is normally distributed with
mean 0. :

Note next that
ET) = | wolx-T) folx) dr @.131)
= | wol®) folx+T) dx ' 2.132)

by a change of variable, so that

ET) = | wolx) fo/(x+T) dx. (2.133)

Equation (2.133) is justified (via the Lebesgue dominated convergence theorem) by the boundedness
and differentiability of f,, implicit in the assumption that /(f ) < =o; the change of variable in (2.132)
thus allows the proof to proceed without making any further assumptions as to the differentiability of
Wo. Substituting for y, yields

g = - f,‘;((;)) fo&+T) dx (2.134)
and thus,
E0) = -I(fo). (2.135)
But
» 2
j W) foxyax = [- ’;Z((;)) } folx) dx (2.136)
= I(fo) 2.137)

Comparing (2.135) and (2.137) with the asymptotic variance in (2.92) proves the assertion. (See also
Huber, 1969, pp.72-73.) n

Remark The condition in Theorem 2.4 that &(T') be differentiable in some neighborhood of T* is
restrictive. It is often not met, in which case weaker statements can be made -- concerning the
asymptotic normality of Ya &(T,), but not that of Va T,. Corollary 2.1 shows that the minimax robust
estimator is asymptotically efficient under certain conditions -- specifically, when the mue underlying
distribution is in fact the least favorable one, and has finite Fisher information. On the other hand, small
sample theory on the distributional properties of M-estimators is unfortunately very limited; their non-
linearity and the rather uncooperative forms of least favorable densities make such results very hard to
obtain.

A specific case is now treated in some detail. This case has been investigated in the literature, and
forms the basis of a considerable part of what follows.
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Definition 2.4 A convenient model of indeterminacy, proposed by Huber (1964), is the &-contaminated
normal neighborhood

= {(1-e)®P+eH: He S}, 2.138)

where @ is the standard normal distribution, S is the set of all probability distributions symmetric with
respect to the origin (ie. such that P(—x)=1-P(x)), and 0<e<1 is the known fraction of
"contamination.” The location family (of neighborhoods) generated by P, is then defined as

P, = {P(x-0):PeP,0ec0O]} (2.139)

The presence of outliers in a2 nominally normal sample can be modeled here by a distribution H
with tails heavier than normal. Note that symmetry ensures the unbiasedness of the maximum likelihood
estimator, making the expression for its asymptotic variance considerably simpler as discussed -earlier.
Although this restriction obviously precludes cases where outliers are grouped on one side of the mean
of the nominal ("underlying™) distribution, the model is general enough to represent many realistic
. s1tuauons (The assymetric case has been studxed by Jaeckel (1971) and Collins (1976).) Note also that.
allowing H to be substochastic would ensure vague compactness.

Lemma2s P ¢ is a convex set.

Proof Let Py, P, € P, be two distributions respectively corresponding to Hy and H, € S. Then, for
A e [0,1],

Py = (1-A) Py + A P, (2.140)
= (1) [(-e) @+eHo] + A[(1~0) ®+eH, ] . (2.141)
= (1-6)® + e[(I-A)Ho+AH,] | (2.142)
= (1-e) ® + ¢ H,, : (2.143)
€ P, (2.144)

since, being a weighted sum of two symmetric distributions, with weights summing to unity, Hy € S
also. ’ : |

From Lemma 2.2, I(P) is a convex function of P, and from Lemma 2.5, P, is convex. It
follows by Lemma 2.3 that P, minimizes /(P) if and only if

. 1
< 1)‘1}’:‘1) X [I(PY-I(P®] 2.145)
for all P, € P,, where P, is defined by (2.140). Equation (2.46) yields
9. _ 3 ()
{‘éi‘“” Lﬂ = | [ax - } dx A (2.146)

, ‘ 2 .
= | {2 {% }(f{-f&) - {’;—‘;} (fl—fo)}dx (2.147)
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20, (2.148)

where £, is the Radon-Nikodym derivative of Pj, A € [0,1], and f, " :=dP(x -8)/ 006. Moreover,
(2.148) follows from (2.145) and must hold for all P, € P,. Integrating by parts, and assuming that
fo” exists at all but a countable number of points,

¢ R ” _ 2
[ %}(fl'—fo')dx=—f&%7@(fl‘fﬁ)dx (2.149)
L 0

so that (2.147) may be rewritten as

I ’ ’ 2
f 2 {‘fl}(fx'-fo') - [&‘} (fl'fo)}dx

fo fo
- | [_zﬂ";‘;ﬁ - [%]Z}(fl-fo)dx BRT
= | (f°72’f23f°f°" (fi—fo)dx (2.151)
= _4J' (‘/‘;33" (f1-Ffo)dx (2.152)
>0 2.153)

where (2.152) can easily be shown to reduce to (2.151), and (2.153) follows from (2.148). Note,
furthermore, that the minimizing distribution f; can be assumed not to be substochastic, so that

[ (fi-forax <0 (2.154)
and (2.153) holds if
(_\/’f—o')n s } B
o | (fi—=fo)de £ 0 2.155)
J‘ ‘/}.—0 fl fO

for some real-valued constant ot

Huber does not provide details as to how this problem can be solved in the geperal case, i.e. how
to find a P, such that (2.153) holds for all P, given any family of distributions. Rather, in the case of
~ the e-contaminated normal neighborhood, he draws upon heuristic arguments -- as well as some
analogies to the Schrﬁdihger equation for an electron moving in a given potential -- to propose a
solution, and proceeds to show that it satisfies (2.153) (1969, pp.82-89; 1981, pp.82-86). That approach
is taken below.

The problem essentially consists in finding fo minimizing I (f ) subject to the constraints
Folx) 2 (1-€) o(x) (2.156)
a.e., and
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| fomyax =1, @.157)

where ¢ is the Radon-Nikodym derivative of @, (2.156) follows from Definition 2.4, and (2.157) once
again assumes f, is not substochastic (otberwise, equality must be replaced by <). Given this
formulation, it is more than likely that there is some region where the inequality constraint (2.156) is
active, i.e. '

Folx) = (1-€) &(x) (2.158)
for x in some X < X. In that region, f 2 f, for all P, € P, (compare (2.138) and (2.158)), so that
(47()- (4
-o? ~fo)dx €0 2.159
i [ s } (f1=fo) (2.159)
only if
D
-a° <0 : 2.160)
VFo ¢

for x € X. It is not hard to verify, by substituting (2.158), that (2.160) holds in some neighborhood of
0, i.e. in the "center” of the distribution. If, on the other hand,
folx) > (1-8).¢(x) (2.161)

for x € X\X, then ( f, — fo ) may be either positive or negative, depending on f,. In that case, to
ensure that ' .

~Nfo)”
-o? - dx <0 2.162
x [ m } (fl fo) ( )

for all P| € P, one may require

(‘Jf())” 2
-a° = 0. (2.163)
o

for x € X\ X. This, in tum, implies that for x € X\ X -- the regions away from the center, i.e. the

"tails" - f o has exponential form. All these arguments lead to the following least favorable distribution,
due to Huber.

Theorem 2.3 For the set P, of e-contaminated normal distributions, the least favorable distribution (i.e.
the distribution minimizing the Fisher information /(f)) is given by

(1-¢) k) =+ x < —k
ey =19 (1-¢)ok) k<x<k (2.164)
(1-¢g)&k) e™*  k<x

where k is related to the fraction of contamination ¢ by

) ety | = —E
2[ e~ Ok — (2.165)
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Proof It is first shown that f* € P, ie. there is an A* € S such that
frx) = (1-¢)6x) +ehn*(x) (2.166)
It follows from (2.164) and (2.166) that

1-¢ 2
. [q;(k) e+ —¢(x)} x <k |
)y =1 0 —k <x<k (2.167)
1'5'5 [(b(k)e“"**z—q)(x)] k<x

which is clearly symmetric with respect to the origin. Furthermore, substituting for ¢, it follows that
for x < -k, '

1-¢ [ 22 ke +k? ~x2fz] > 5
- 2 A
ame L° ¢ ¢ 0 @169

if and only if

2, 2 )
e—k/‘zeb# > exfz

s (2.169)
or equivalently (taking logarithms and rearranging)

Tt 2 ——"-2-, (2.170)
Ol‘v
(k+x )P 20, 2.171)

which holds for all x € X, and for x < —k in particular. Since #* is symmetric with respect to 0, it
follows that 0 < A* (x) for all x. Finally, again by symmetry,

-k

[ mxyde =2 1;8 f [¢(k)e’°‘**l—¢(x)]dx 2.172)
o l-e k) .
= 2= {——k D(-k) (2.173)
=1 (2.174)

from (2.165). Thus, 4* € S, so that f* € P..

Next, it is necessary to show that f* minimizes /(f), i.e. that it satisfies (2.153). Note first that
fork < lxl,

G*P -2 frfr

I =~ k% (2.175)
while for Ix! <k,
*\2 ) FR FR” v
¢*D f*f =1-x% (2.176)

f*?
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Thus, (2.151) may be rewritten as
At T ab it

o2 (f1—f*)dx
-k k
= -k [ (fi-f*rdx + [ (1-22)(fi-f*)ax
—o0 -k
- & I (Fi=f*)dx @177
k
= [ (R+1=22)(fi-f*rde - & [ (F1-f*)dx (2.178)
% .
=20 (2.179)

for all f,e& P, Here, (2.179) follows from the fact that for Ix!| <k, 0s(k*+1-x%) and
0<(f1—-f*), and furthermore

[(fi-fryaxso (2.180)

since f, may be substochastic, but f* is not. This proves that f* minimizes I (f ).
Finally, it must be shown that f* is unique. Note first that for k < Ix |,

r f 7’ \2
= k%, (2.181)
\ f* J
while for x| <k,
r %’ 32 )
ff* = x% (2.182)
It follows that "
. .Y ,
I*) = | {ff* } f* dx (2.183)
& k )
=jk2f*dx+j.r2f*dx+jk2f*dx ' (2.184)
-0 . -k k
=(l-e)[2®k)-1] (2.185)

whence 0 < I[(f*) < e for 0 < k£, which is consistent with (2.165). Moreover, the support of f* is R,
which is convex. Thus, the conditions of Theorem 2.2 are met, and f* is unique. This concludes the
proof. (Outlines of this proof can be found in Huber, 1969, pp.87-89; 1981, pp.84-85.) n

Remark It is, in retrospect, somewhat surprising that the least favorable distribution has tails that do
not descend slower than exponentially. One explanation is provided by the following qualitative
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argument: if the tails were very heavy, then it would be "too easy” to discriminate outlying observations
from those due to the underlying (normal) distribution. Thus, the least informative situation occurs
when tails are "just heavy enough” for outliers to be most difficult to discriminate.

It follows from (2.80) and (2.164) that

-~k x < -k
Yelx) = X -k <x<k - (2.186)
k k<x

as., where & is related to € through (2.165). Thus, the transformation W.(x) leaves its argument
unaffected if it is within some predefined range, and truncates it if it goes beyond that range; this
explains the choice of multiplicative constant discussed earlier. Plots for f*(x) and y(x) appear in
Figure 2.1 (a-b). The function y.(x) illustrates well the concept of bounded influence estimation. Since
wild observations are truncated, no single data point can totally dominate the others; this is in stark
contrast to the sample mean, for instance, where any data point may have arbitrarily large influence on
the estimate of the parameter. Note also that the function y.(x) is closely related to the practice of
Winsorization (see for example Tukey and Laughlin, 1963), where the ;j smallest and & largest
observations in a sample of size n are replaced by the values of the j+1st smallest and n-kth largest
observations, respectively. While Winsorization does not result in a bounded-influence estimator, its
relationship to (2.186) is clear. The main difference between the two approaches is that in the former,
truncation does not occur at preset values but is a function of the sample.

Since it is assumed that p is differentiable, and therefore continuous, integrating (2.186) yields
(within an additive constant)

2
—kx-—-’-‘é- x < -k
Pelx) = ¢ -;—xz -k <x <k (2.187)
k2
kx - — k<x
2

a.s. In other words. it is quadratic in the center and linear in the tails. It follows that the estimator
defined by (2.81) with y.(x) given by (2.186) (or equivalently by (2.77) with p, given by (2.187))
represents in some sense a continuum between the sample mean and the sampie median. As € — 0,
(2.165) implies that k — o, 50 that p(x) o x” resulting in the sample mean (the least square estimate).
As € — 1, on the otheér hand, £ — 0, and for small k, pg(r) o x| approximately, corresponding to the
sample median (the minimum modulus estimate).

Assume that the true distribution P, belongs to the location family generated by the e-
contaminated normal neighborhood, i.e. Pg. € P; because of translation invariance, it can be assumed
with no loss of geperality that 6* = 0. It is clear that since y, is odd and P, is symmetric,' &0)=0
_ (see equations (2.123)-(2.127)), so that §(T') exists for all T by Lemma 2.4. Mofeover, from (2.82),

0 @ .
ET) = | welx=T)dPyix) + [ welx-T) dPo(x) (2.188)
~o00 0




T T T L
Figure 2.1 (a) Least favorable distribution for e-<contaminated normal family.

Figure 2.1 (b) Y-function for e-contaminated normal family.
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]

! Ve(-x-T) dPo(~x) + [ Welx-T) dPylx) (2.189)
0

[ [y - weteeD) | Pt 2.190)

where (2.189) follows from a change of variable (replacing x by —x), and (2.190) follows from (2.122)
and the symmetry of Py. Thus, &(T) > 0 for any P, if and only if

Ve(x =T ) > Ye(x +T) (2.191)
as. for x € [0,). In tamn, this holds (provided P, has nonzero mass on [~k,+k], which is always true
for Py € P;) if and only if

x=-T > x+T : 2.192)

as., or

T <0, (2.193)

since Y,(x) is strictly monotone for x € [-k.k], from (2.186). A similar argument demonstrates that
&(T) < 0 if and only if T > 0. Finally, since -k < y, < k a.s. from (2.186), it follows that

| wex-T)1 dPo(x) < | & dPyx) (2.194)
<k . (2.19%)
(since P, may be substochastic), which is finite for € > 0. Thus, the ﬁ;'st set of conditions in Theorem

2.4 are satisfied, so that the estimator T,,( x,, - - -, X, ) solving (2.81) with y = y, a.s. is consistent.

As stated earlier (in the proof of Corollary 2.1), &T) is continuous and differentiable if
I(Py) < =; moreover, if P, has nonzero mass on [—k,+k], then &(T) is strictly monotone in a
neighborhood of 0; finally, as before,

[ wi-T)ydPox) < &%, (2.196)
which is finite for € > 0. Thus, the second set of conditions in Theorem 2.4 are also satisfied, and
T.(xy *--,x,)is asymptotically normal.

Of course the e-contaminated normal neighborhood of distributions is only one possible model of
indeterminacy. Another proposed model is the €-normal veighborhood, containing distributions whose
~ Kolmogorov distance to the normal distribution is at most €. More formally, this neighborhood is given

by ’

P/ = {P:sup | Px)-Dx) 1 <¢e PeS} 2.197)
xe X .

and was investigated by Huber (1964; 1969, pp.89-90; 1981, pp.86-90) as well as Sacks and Ylvisaker
(1972), who also analyzed the neighborhood

+A

Py, = {P: jdp(x)zp, PeS} ‘ (2.198)
: ~A
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Whilc neither (2.197) nor (2.198) is of particular interest to the present application, which deals
primarily with robustness in the presence of heavy-tailed noise, these examples do point to the fact that
the choice of a distributional family is rather ad hoc. Such arbitrariness, however, seems unavoidable in
view of the fact that incomplete or inaccurate information lies at the very core of the robust estimation
problem.

There is a certain correspondence between families of distributions and their least favorable
members, and, by corollary, between families of distributions and their minimax W-functions. (See
Poljak and Tsypkin, 1978, 1980.) One can therefore speak of a certain duality between the choice of a
distribution family and the selection, on the basis of experience and judgement, of a y-function. In
other words, it may be of interest to investigate the properties of robust estimators designed with
specific influence-bounding functions y in mind. For instance, a continuously differentiable (smooth)
approximation for the general form of y.(x) is the function corresponding to the logistic distribution

PGx) = ——, (2.199)
l+e
given by
l-e™
= . 2.200
W(x) 11 e 4( )

a.s. While this function is not necessarily optimal in the minimax sense, it has the advantage of not
containing "comers,” which may cause numerical difficulties for some iterative techniques. Thus, the
relationship between y, p, and f is worth exploring in greater detail. Integrating (2.80) yields

F) e e YO 2.201)

= o), ' : (2.202)

a.s., where the proportionality constant is chosen so as to give f unit mass. Several researchers have
investigated choices of y, and a large number of curves are pictured in Andrews et al. (1972, pp.96-
101); some are critically reviewed by Rey (1983, pp.100-116). Clearly, for f to be a proper
distribution function, ¥ must satisfy certain conditions - e.g. p(x) — o0 as x —> 1o, Yet, there are
instances where intuition suggests such properties should be violated. For instance, if it is known with
certainty (say, because of a physical impossibility) that very large observations contain no information
whatsoever, then it might be more reasonable to entirely discard rather than merely truncate them. This
would call for redescending w-functions, and loosely corresponds to trimming -- where, however, the
censoring fraction is not preset but depends on the sample (see for example Tukey and Laughlin, 1963;
also Prescott, 1978). iNote that non-monotone W-functions (i.e. non-convex p-functions) do not satisfy
the conditions of Lemma 2.4 and Theorem 2.4, and the theory is much less developed for estimators
based on them.

Numerous redescending w-functions have been proposed. These include Hampel’s piecewise
linear function (Hampel, 1974; Andrews er al., 1972, p.14), Andrews’ sine wave (Andrews, 1974;
Andrews et al., ‘1972, p.15), and Tukey's biweight (Mosteller and Tukey, 1977, p.353; Gross, 1977).
The fact that these y-functions do not correspond to the least favorable member of any given family of
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distributions -- indeed that substitution in (2.201) does not even yield a proper density — diminishes the
theoretical justification -for this methodology. Nevertheless, Agee, Tummer and Gomez (1979) have
somewhat formalized this approach by terming the expression in (2.202) a pseudo-density and deriving
a posteriori "densities” based on it. For his part, Huber (1981, p.100-102; see aiso Collins, 1976) retains
the minimax approach by solving the original problem subject to the additional constraint that y(x) =10
for ¢ < Ix 1, where the cutoff parameter ¢ is arbitrary. He also observes that an important issue to
consider in designing influence-bounding functions is that they must not redescend too steeply:
otherwise, the estimate would be very sensitive to small changes in those observations lying in the
interval where the function redescends, violating a fundamental tenet of robustness. This suggests that
the simple (and frequently used) practice of discarding observations that are "too large,” i.e. using

x Ixl €c .
Yx) = 0 c <lxl 2.203)

is unwise from the standpoint of robustness, as discussed in Section 1.2.
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3. Robust Recursive Estimation of a Deterministic Parameter

As before, let {xy, - --,x, } be a sample of independent random variates with a common
distribution function P. Define ’

n

Bal(xy, - yxsT) = Y W(x; -T) , @3.D

i=l
and recall that the estimator T,( x{, - - -, x, )is defined as the root of (3.1), i.e.
Bu(xl’.'.’-xu;Tn(xb ”"xn))=0- (3.2)

Since the estimator is consistent (provided certain conditions are satisfied), successive solutions of (3.2)

for increasing n tend towards the true value of the location parameter almost surely and in probability,

as shown in Section 2.2. Since (3.2) is nonlinear, however, its solution for any given n and

{xy v ,xy } Decessitates some kind of iterative procedure (Huber, 1972). For instance, the-
Newton-Raphson method is of the form

Bn(xl’ T s Xps Tn(k))
Bn'(xb CC s Xas Tn(k))

TED = 7 - (3.3)
for £k =0,1,- - and some arbitrary T,® -- an intelligent choice might be the median of
{xy +-+,x, } It is assumed in (3.3) that B, is differentiable, and furthermore that its slope only
vanishes at the root, if at all; since such is not the case, for example, for ¥ = W, ass., some safeguards
would have to be provided to deal with comers as well as flat extremities. This difficulty aside,
however, it is well known that recursions of the form (3.3) converge quadratically near the root (e.g.
see Dahlquist and Bjork, 1974, pp.222-224). For given { xy, - -,x, }, the process is entirely
deterministic, -and so long -as B, is relatively well-behaved and T is reasonable, the correct solution
is virtually assured.

Nevertheless, there are some diSadvantages to this kind of "batch" processing -- i.e. to solving
(3.2) over and over again each time a new observation x,,; becomes available. On the one hand, this
procedure involves the solution of increasingly complex nonlinear equations: recall that y is generally
nonlinear, so that the sum B, of n variously shifted y-functions gets more and more complicated to
handle. On the other, it requires the availability of a/l past observations at all times, a potentially
serious memory problem for even moderately high sampling rates. Thus, despite recent advances in
computer technology, it appears highly desirable to tormulate a sequence of estimators recursively
updated by a function of only the most recent observation. This can be achieved with the Robbins-
Monro stochastic approximation procedure (for general reviews, see for instance Wasan, 1969, pp.8-35;
Nevel’son and Has'minskii, 1973, pp.79-83, 88-94; Kushner and Clark. 1978, pp.19-47), first proposed
in the context of robust estimation by Martin (1972), Martin and Masreliez (1975), Nevel'son (1975),
and Price and Vandelinde (1979). See also Englund, Holst, and Ruppert (1988), who investigate the
colored noise case.
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3.1 The Method of Stochastic Approximation
Suppose &(T*) = 0, where &(T) = Ep[ W x — T ) ] as before, and consider the recursion
Tha = T3 + a, W(x, ~TX), (3.4)

where n = 1,2, -, {a,} is a given real-valued sequence, and T is an arbitrary (possibly random)
starting point. The problem, first posed in a more general setting by Robbins and Monro (1951), is to
determine conditions under which T® — T* as n —» . Note that while the correction term in (3.3)
approaches zero (under suitable regularity conditions) as T, — T,(x;, ‘' *,x, ), an analogous
statement does not necessarily hold for (3.4): since the value of y( x, — TR ) is random, it is necessary
for {a,} to obey certain conditions in ordér to ensure convergence. Specifically, ¢, must tend towards
zero at a rate sufficient for the error variance to vanish asymptotically; yet, it must not reach zero for
n < oo, since it must be able to compensate for any and all random perturbations due to the {x,} --
indeed, there must at ail times remain "an infinite amount of comrective effort” to converge to the
correct limit, no matter where the estimate may have deviated (Young, 1984, p.34).

The results presented below draw upon a considerable body of literature, where increasingly
general conclusions are obtained under weaker and weaker conditions (see e.g. Derman, 1956;
Schmetterer, 1961). In their landmark paper, Robbins and Moaro prove the mean-square convergence
(and hence, the convergence in probability) of recursions of the form (3.4) by assuming that the
observation is bounded in probability -- i.e. (in the present case) that there exists an & < oo such that

_pmb[lw(x-TMSa] =1 (3.5)

Kallianpur (1954) also assumes (3.5) to derive estimates for the order of magnitude of the error
variance E [ (TR -T* )*]. Although this condition is satisfied in the case of bounded-influence
estimators (e.g. using ., for which o = k), it is in general too restrictive; in particular, it is violated by
y-functions which reduce, but do not necessarily bound, the influence of large x Wolfowitz (1952)
proves mean-square convergence by assuming that there exists an o < o such that [&(T) | < « for all
T, and a ¢° < o such that

E [ (ve-n -5 ] < & | (3.6)

for all T. While bounded variance is also assumed in deriving the asymptotic distribution of the M-
estimator (see Theorem 2.4), the bound on Z(T) is once again violated by certain robust or near-robust
estimators. A further weakened condidon is provided by Blum (1954a), who assumes -- besides (3.6) --
that there exist suitable 0 < o) < = and 0 < ¢, < = such that

LET)1 S oy + 0 | T =T* | 3.7

for all T. Moreover, he is able to prove convergence with probability one. Dvoretzky (1956) proves
mean-square convergence as well as convergence with probability ome for vastly more general
situations, but his setup also requires (3.7) in the special case of Robbins-Monro; indeed, he argues that
this condition is necessary to prevent estimates from diverging. Wolfowitz (1956) and Derman and
Sacks (1959) provide alternative proofs for Dvoretzky’s results, and other researchers also assume
conditions at least as strong as (3.7). It is worth noting, however, that this condition is not restrictive in
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the present application: since the objective is to mitigate the influence of large observations, it is hard
to conceive of situations where | y(x-T) | grows faster than linearly with large values of its argument;
thus, §(T) may be assumed to obey (3.7) without realistic loss of generality. Nevertheless, this condition
is relaxed in Theorem 3.2, where an alternative proof is employed.

Another class of results obtained for recursions of the form (3.4) concems the behavior of the
moments of TX, as well as its asymptotic distribution, The first such results are due to Chung (1954),
who not only provides bounds on the former but also shows that they tend towards the moments of a
normal distribution. Unfortunately, he assumes that &(T') is bounded by straight lines with nonvanishing
slopes from both above and below, a condition clearly violated in the case of bounded-influence
estimators (such as that obtained with V). Hodges and Lehmann (1956) are able to weaken that
assumption to (3.7), although at the expense of information on the asymptotic moments. Burkholder
(1956) defines a broader class of stochastic approximation algorithms of which the Robbins-Monro
process is a subclass, and proves asymptotic normality, as well as obtaining aéymptotic confidence
intervals free of unknowns, under this weakened condition. Sacks (1958) proves asymptotic normality in
both cases by utilizing a central limit theorem rather than Chung’s method of moments, and Fabian
(1968) does so by obtaining the asymptotic characteristic function.

Some asymptotic resuits are now stated and proved. Note that generality is not sought beyond
that required by the present application. The following lemmas, due to Burkholder and to Chung, are
used in the proof of Theorem 3.1.

Lemma 3.1 Let {b, } be a real sequence such that, for some ny, b, 20 and

Cn d,
b,y S b, [l-—— } + (3.3)

n np-(—l
for all n = ngy, where {c, } is a real sequence with
iminf ¢, =c > p, ‘ (3.9
n —=joa

{d, } is a real sequence with

limsup d, =d 20, 3.10)
n o0
and p > 0. Then,
. d
limsup n? b, < . 3.11)
7 oo . c—-p

Proof For any 3 such that ¢ —p > 8 > 0, there is by (3.9) and (3.10) a large enough 7(38) 2 n, such that
¢, 2c~-8andd, £d+3 forall n = n(3). Thus, (3.8) may be rewritten as

I-C"S}_‘_ d +3d (3.12)

n np-i'l

bn+l < bn {

for all n 2 n(3), where use is made of the non-negativity of b, for n 2 n,.
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Note now that for any p > 0,

1 ) 1 _¢c-3 3 _1__. 1
(n+1)f [1" n ]np T pptl [n’ m(n-t—l)l’} (3.13)
-»
c -3 1 I 1
= T {1 - {H;] } (3.14)
_ c -9 _ _L _ _P -2
= e T [1 {1 —+0(n )H (3.15)
= _c_—_§:_2_ 4+ O(n-(p+2)), (3.16)
np-(-l

where the leading term in O(n~% *2)) is positive. Thus, multiplying through by (d +38)/(c —8-p),
one can always find a ¢, > 0 such that

d+d d+3 1 c -39 1 €1
< - 1= -_ + . 3.17
AL c-3-p l(rz+l)_‘.’ [ n } n? } n?+? G170
Moreover, choose some p” such that p <p’<p+1 and p’ < ¢ —& (which is possible since ¢ -3 >p

by hypothesis). Then, since ¢ ~3-p’ > 0, equation (3.16) (with p replaced by p”) implies that there is
a large enough n (p”) such that

1 c-9d 1
—_— - i1 — >0 3.18
(n+1)° { " n }n" ©G.18)
for all n 2 n(p”). Thus, one can always find a ¢, > 0 such that
€y 1 c—-9d 1
< ¢y | ————— - - ——— | — .
n?+? -C"{(n+l)" [l n }n" ] 3.19)

for all n 2n(p"), since p+2 >p’+1 by hypothesis. Substituting (3.17) and (3.19) into (3.12) and
rearranging, it follows that

d+39d C2 c -9 d+3d ] ’
byt — - - < |1~ b, - ———— - — 3.20
+ (c-8pXn+1)? (n+1)? ( n } { (c-8-p)n? n? ( )

forall n 2 n, = max ( n(3), n(p”"y). If, for some n, > max (¢ -3, n, ),

- —4r8 S, (3.21)
2 (c-dp)nd nk
then (3.21) holds for all n = n,, so that
d+s <2 (3.22)

- (C;S-p) n? e

for all n 2 n,. Otherwise, given some n, > max ( ¢ —9, n, ), for any n 2 n,,

. d+3d C2 d+38 C2 [ c -8
, - —d4t8 2 N, __d+8 2 1- £ 3.23
(c-3-p)yn? n? L (-dp)ns ng ] JLI?_ ( I } G2
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r 3

d+3d C2 n-t —Ae=8Y/}
b,, - ——— - — e(e-8/j 3.24
Sy 4 ©.24

A

n-1
r 4 -(c=3) Z -!-
d+3d Ca jmy d
= by - — - 3.25
| (cSp)ng ni ¢ @25

O(e(c=8)ogny (3.26)

"

o(n~e-%), (3.27)

where (3.24) follows from inequality 4.2.30, and (3.26) from equation 4.1.32, of Abramowitz and
Stegun (n.d.). Combining (3.22) and (3.27), it follows that in either case,

d+9d

sy e O(n™? +n~tc=8)), (3.28)
c=o-p)n

or, since p’ > p and ¢ -3 > p by hypothesis,
lim sup »nf b, £ —/—, _ 3.29)
and letting 3 | 0 proves the assertion. (This is a lemma due to Burkholder and inspired by Chung. The

proof follows Wasan, 1969, pp.175-178, and Chung, 1954.) n

Lemma 3.2 Let {b, } be a real sequence such that, for some ny, b, 20 and

Cn d,
bus1 2 b, 1—--—n— + g (3.30)

for all n 2 n, where {c, } is a real sequence with
imswp ¢, =c¢ > p, 3.3

R ~poo

{d, } is a real sequence with

iminf d, =d > 0, (3.32)
and p > 0. Then,
lim inf n? b, > —%—. (3.33)
n —o0 c-—-p

Proof The proof is virtually identical to that of Lemma 3.1, and is ommitted. (See Chung, 1954;
Wasan, 1969, pp.178-179.) ]

Lemma 3.3 Let {b, } be a real sequence such that, for some nq, b, 20 and
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Cn d,
byyy = b, {1-— ] + - (3.34)

for all n 2 ng, where {c, } is a real sequence with
iim ¢, =¢ > p, . (3.35)
n oo .

{d. } is a real sequence with

im d, =d 20, (3.36)
and p > 0. Then,

. d

lim »n? b, = . (3.37

n—jo0 c=-p

Proof The proof consists of successive applications of Lemmas 3.1 and 3.2, and is ommitted. (The
result is suggested by Burkholder; for a proof, see Wasan, 1969, pp.179-180.) n

The following theorem is based on the results of Blum and of Burkholder.

Theorem 3.1 Let E(T) exist for all T, and let there be a T* such that 0<&T) for T <T* and

ET)< 0 for T* <T. Let (3.6) and (3.7) be satisfied, and let {a,} be a sequence such that a, > 0 for
all n, :

Y a, = oo, (3.38)
n=1 .

and
Y ar < oo (3.39)
n=1 s

Then, given any T% <o, TR - T* as n — o= w.p.1 (ie. TR is consistent).
If, moreover, §(T*)=0, &T) is continuous, differentiable and strictly monotone in a
neighborhood of T* with 1&'(T*) | < oo, if
[ (we-T)-&T) ¥ dPx) > 0 (3.40)
and is continuous and bounded in a neighborhood of T*,
[ Twe-T) - &T) 17 dP(x) < o : (3.41)

in a neighborhood of T for all natural numbers r, and finally if

1

lx_lewna,.=a>-—~2—-§-;-(-7—_*—)-,

(3.42)
then

azj W(x=T*) dP (x)
Ta BT+ 1

L(Vn (T®-T*)) - N} O, - (3.43)




(i.e. TR is asymptotically normal).

Proof Note first that
n
TRa =T} + X a; w(x -TF) (3.44)
j=
from (3.4), so that

T4 - X a4 &TH

j=t
=T - 3 a;w(x-TF) + z a; (w(xj—Tf)—ﬁ(Tf)} (3.45)
j=t j=1
=Tf + ¥ g [w(xj-r,‘-’)-é(rf)} (3.46)
j=1

from (3.44). Now:

E [\y(x,-—T,-R ) : Yo =T, <o, e -TRY) ]

I

&TH) (3.48)

w.p.1, where (3.47) follows from the independence of {x,} and from (3.44), and (3.48) holds by
definition. Furthermore,

E[(ve,-TH - 800 7 | = E[ EpL (v TH ~8a ? 1 71 | (3.49
< ¢ (3.50)
w.p.1, from (3.6). It follows, therefore, that
:z:,l E| (g e TH -£@)) P | < g a? @51
< oo (3.52)

by hypothesis (from (3.39)). Finally, since &(T'%) is a deterministic function of the random variable T%,

o0

2 E [a,- WO =THR) —ETR)) | ay (e TR - &TH), -+

j=t

aj (Wi =TR ) - TR ]

)y E[a; (W =TF) = &T7)) | Tf] (3.53)

j=t

]

=0 (3.54)

vé.p.l, whexfe' (3.53) follows from (3.47), and (3.54) holds identically from (3.48). Thus, by a
convergence theorem due to Lodve (1963, p.387; also 1951), the sum in (3.46) converges w.p.1, and
therefore so does the left hand side of (3.45).

Ep [\y(x TRy 1 T# ] (3.47)
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Suppose now that
im T} = o : (3.55)
n =300

for some sequence {TX}. It follows that there is a large enough N such that 78 > T* for all n 2 N,
and thus

a, E&T?) < 0 (3.56)
for all n 2 N, by hypothesis. Then, it must hold that

oo

Y g &Tf) < = (3.57)
j=t

so that
lim {Tf...l - Z a; §(Tf)} = o (3.58)
8 =—poo j=1

from (3.55) and (3.57). But since this expression was shown to converge w.p.1, (3.58) is an event of
probability zero, whence it follows that

prob [nm TR = «] = 0. (3.59)
n—yoe

A similar argument for —<o proves that { TR } converges to a finite limit, if at all.
Suppose the sequence { TR } does not have a limit, i.e.

liminf T® % limsup TR (3.60)
Assume first that
limsup T® > T*, (3.6

n~c0

and choose the numbers @ and b such that

T <a < b (3.62)
and
[a.b] < (liminf TX tmsuwp TX) (3.63)
Since the left hand side of (3.45) converges to a finite number, it follows that form > n,
| m-1 LT |
im ITR - ¥ 4 &T8) - TR + 3 4, @) 1 = 0. (3.64)
(.

imaa | j=t j=i

Thus, for any §; > 0, there is a large enough N(8;) such that

| m-l { .
ITE - T8 - 3 a4, &TF) 1 < § (3.65)
| j=n i

provided N(3;) < n < m. Similarly, it follows from (3.39) that

lim 4, = 0, ' ' (3.66)
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and for any 3, > 0, there is a large enough N (§,) such that

a, <8 (3.67)
provided N(3,) < n. In particular, let

5 = 2 ;a (3.68)

5,

1 b-a
min { T 3o } | (3.69)
(It is assumed bere that o; and o, are nonzero; this causes no loss of generality, however, since a

positive number can always be substituted for zero without affecting the validity of the bound in (3.7).)
Choose n and m such that max (N(§;), N(8»)) < n <m, with

T® < a, (3.70)

b < TX, (3.71)
and, if m #n+1, then

TRe[a,b] | (3.72)
for all n < j < mj; this is possible by (3.60). Then, from (3.65) and (3.68), |

b-a ml

Ta - TR < S5+t X9 &§TF) B.73)
j=n

<2t 72+ a 5T, (3.74)

since &T%) <0 for n < j by hypothesis, in view of (3.62) and (3.72). If T* <T%, then &T%)<0
also, so that (3.74) yields :

TR _ TR < b—;‘l (3.75)

which contradicts (3.70)-(3.71). If on the other hand TX < T*, then (3.74) yields

TR - TR < b;“ +a, (g +op | TR-T* 1) (3.76)

b -a
3

IA

+ a, (o + 0 (TR -TF)) @B

from (3.7) and the fact that TR < T* < a < b < TZ by hypothesis. Equation (3.77) can be rewritten as

b-a

(1~a,%)(T£—Tf)s—-§-—+ana,, (3.78)
or, from (3.67) and (3.69),
TR _ TR < p g . (3.79)

which once again contradicts (3.70)-(3.71). Thus, (3.61) cannot be true. A similar argument for

~
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limsup TR® < T* ' (3.80)
n ~yoc
also results in a contradiction, proving that

liminf TR = limsup TR : (3.81)
n =0

B ~poo

i.e. the sequence { TR } converges to a finite number. It remains to show that the limit is T*.

Assume the contrary, i.e.
im TR = Ty = T* (3.82)
R =~poo
for some sequence (TR}, Suppose first that 7* < T,. Then, for every T* < 8 < T, there is a large

enough n(8) such that T® > § for all n = n(3). Since &(T) is monotone decreasing by Lemma 2.4, it
follows that

§TS) < &) (3.83)
for all n > n(3), where use is made of the hypothesis that E(T') exists for all T. Thus,
< R QL R - R
Z an g(Tn ) = Z ay é(Tn ) + Z an g(Tn ) (3.84)
=l n=1 - n=n(d)
n(S)—l o0
< Y aG&TT)+E® Y a (3.85)
n=l n=n(5)
= —o0 . (3.86)

from (3.38), since &(8) < 0 for 8 > T* by hypothesis. But this is a contradiction: equation (3.82) and
the convergence w.p.1 of the left hand side of (3.45) imply that the left hand side of (3.84) converges
w.p.1, ie. that (3.86) is an event of probability zero. A similar argument for Ty < T* completes the
proof, establishing that TX — T* as n — s wp.L.

The proof of asymptotic nomality proceeds in two steps: the result is first proved for a
"truncated” version of the recursion (3.4), where &§(7) is bounded from both above and below by
straight lines with finite, nonvanishing siopes; it is subsequently extended to the original recursion
subject to the consistency property proved above.

Define
M
S(T) = T - T r=r
e S R )

which is possible, since &'(T*) exists by hypothesis. Since &(T) is strictly monotone descending in a
neighborhood of T*, one can find numbers 5, and s, such that

0 < '5,17 < s < -ET*) < s, (3.88)

(&hexe the first inequalities follow from (3.42)) and by the continuity of &(T) in a neighborhood of T*,
~ there exists a 3; > 0 such that
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Y < S(T) < §a (3.89)
provided T € [ ﬁ%l, T* +3; 1. Similarly, let
AT) = [ (y-T)-&T) ) dP &) (3.90)

denote the variance of W with shift T. Equation (3.40) and boundedness (by hypothesis) in a
neighborhood of T* imply that one can find numbers o? and o7 such that

0 < 62 < B¥(T*) < 6F < =, (3.91)
and by the continuity of G*(T) in a neighborhood of T* , there exists a 8, > 0 such that

o < oXT) < of (3.92)
provided T € [ T* -8, T*+5, 1.

By the convergence of TR to T* w.p.1, there exists for 8, := min ( §;, 3, ) and for any §,>0 a
large enough n(33,3,) such that

prob [ ITR -T* | <3; forall n 2n(83,8)] 2 1 -8 (3.93)

In other words, the probability that T, R lies in an arbitrary neighborhood of T* can, in view of
- consistency, be made arbitrarily large by choosing a large enough n.

Given some n{ 2 n(33,8,), define the "truncated” recursion
2 = T2 + an Wo( %0 = T) ' _ (3.94)
for n 2 n,, where

re = { T T? & [T*3;, T*+5 ] .
1 0 otherwise (.95

V(T B) — ET* -85 + BTN T3-T*)  T2<T*=8;
WO(XR—T:) = \V(xn "Tno) Tno € [ T* —839 I* +63 ] (3-96)
Wt ~(T* +89) = B(T* +89) + E@*) T2-T*) T2 >T*+3,

a.e. Defining &,(T), 6XT), and S(T) analogously to (2.82), (3.90), and (3.87), respectively, it is easy
to verify that '

e = { 5D T e [T*-3;, T*+3; ]
ET (T -T*) otherwise 397
so that
S < SO(T) < $2 - (3.98)

for all T. Similarly,

62(7*—83) T < T*-8,
oXT) = { &) Te [ T*-3;, T*+3; ] (3.99
S(T* +34) T > T*+8, :
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so that
of € oXT) < o} (3.100)

for all T. Asymptotic normality is now proved for this bounded case, i.e. for the recursion (3.94)-(3.96).

For economy of notation, define for all non-negative integers 7

b = E[(T.-T*)" ] (3.101)

BY) = E[IT2-T* 1"}, ’ (3.102)

and note that their finite existence is guaranteed by (3.41). From (3.94) and (3.101),

bl = E[(T2 -T2 +T7-T*)" ] (3.103)
£\ (i) @-ro (o win-m) H (3.104)
= B + kzl (2] a &cron) (3.105)
where

He(ron) = E[(T9 =T ) yitn - T7) | (3.106)

for all ¥ < r. Moreover,
| He(r,n) | < E| IT-T* 177 Iyo(x, =T) 1* ] (3.107)
- E ITo-T* 17 E[ 1yea =T 1* 1 T2 ] (3.108)
= E[ 1T v EL iy T - 6@D+ETD T2 | G1o9)

IA

2kt E[ I To-T* 17

(ECwTo-8aa i 121+ 8@t | | G
= 2t [ E[ 1T 1 ELwn T - 5@ 1 (121 |
+ E[IT:—T* 17 18T 1* } } (3.111)

wp.l, where (3.110) follows from the c,-inequality (Logdve, 1963, p.155) and (3.111) holds by
definition. It then follows, using (3.41) and (3.98), that

| H(r,n) 1 = OQ)BY™- + o) B (G112
forallk <r.

This result is now used to prove by induction that for each positive integer r there exists a B, >0

" such that
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limsup n"'28Y) < B,. (3.113)
n~3o0

Note that since (B{)” is nondecreasing in r for r > 0 (as a consequence of Holder’s inequality; see
Logve, 1963, p.156), it suffices to establish (3.113) for all even r. In that case, ) =p 0,

Note first that
H(r,n) = E[E[(T:-z*)'-‘ Yolta=T) 1 T ] ] (3.114)
= E[@-miean | G.115)
= B[ @) (-5.09) | (.116)
< -5, B9 (3.117)

w.p.l (provided r is even), where (3.115) and (3.116) hold by definition and (3.117) follows from
(3.98). Similarly,

Hyr,n )= E :E[ @2-T*) "2 yixa=T) | T} ] ] (3.118)
=E :(TH"‘)"2 [63(1‘:) + EXT) ] ] a1
=E :(T,,°-T")"2 SX(T?) ] + E{(T,,"-T*)’ SI(TY) ] (3.120)
< of BYP + s B RSN

w.p.1 (provided r is even), where (3.119) and (3.120) hold by definition and (3.121) follows from
(3.98) and (3.100). Substituting (3.117) and (3.121) into (3.105) with r = 2, it follows that

B2 < BP - 2a,5BP + al (cf+s5BP) (3.122)
na, (2s,—a, s? n%alo?.
=@ |12l : n S ) 2 (3.123)
n
Since
liminf na, (25,-a,5% ) = 2as, > 1 (3.124)
” =00

(from (3.42) and (3.88)), and

lim sup n%a’of = a’c? > 0 (3.125)

n o0

(from (3.42) and (3.91)), it follows by Lemma 3.1 (with p = 1) that

a’os

lim sup 7 BP < = B,, (3.126)
N —Hoo

2as; -1
establishing (3.113) for the case r = 2.

Assume now that (3.113) holds for all £ < r-2 for some even r, i.e. that»

BE = 0(n™*'?) , (3.127)




for all £ < r-2. Since, moreover,

a = 0™ (3.128)
from (3.42), it follows that A

(T * H ,)=’ 1 om™* OMBE™ + o) P 3.129
Ea[k]a k(rom E[’C] @ (owsp wpY | e
= - r 0( -k)o —(r-&)IZ)
% (&) oemoa
+ B s (7] om= 3.130
= 0?2y + 0(n7%) B0, (3.131)

where (3.129) follows from (3.112), and (3.130) from (3.127). Substituting (3.117), (3.121), and (3.131)
into (3.105) yields

r(r-1 -
B < BY - ravsip? + HEL a2 [o2pr0 42 0 )

+ o(n-(r+3)12) + O(”-3) B’?’) (3.132)

= ﬁ") |

na,,(rst—r(r'—l)a,,.s'z2 12)+0(n™ ]
n

L T o (PRI 2 + 0T

T . (3.133)
Since
lim inf na,(rs;~r(r-1)a,s?/12)+0@?) = ras, > -;- ' (3.134)
(from (3.42) and (3.88)), and
0 < lim sup r(r=1) (n2a2) 6} (nCD2BED )2 + O(n7V2) (3.135)
< .’_(%:12 a’ o} B, A : (3.136)

(where (3.135) follows from (3.91) and the non-negativity of BY~%, and (3.136) from (3.42) and (3.113)
under the induction hypothesis), it follows by Lemma 3.1 (with p = r/2) that

' (r-1)a?c?B,_,
lim riz g < ~— = = B,, .
nsup " P Tasi -1 ’ (3.137)

completing the proof of (3.113) for all even r, and hence for all r.

This result is now used to prove by induction that for each positive integer r,

lim »""2p) = Yro2 3.138
n o0 0263(7*) } ( ; )

T~ i r even
2ag T+ 1 |

(r-D(r-3)---1 [-—
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Note first that for any § > 0,
) = E[IT,,"—T* i : IT-T* | 28] prob [IT:—T* | 28]

+ E[IT:—J* v L igers |<5] prob [IT:-I* |<5] (3.139)

2 E[IT:-T* I : 1T>-T* | 28] prob [IT:—T"‘ | 28] (3.140)
since all terms in (3.139) are non-negative. Choose any ¢ > 0. Then,

E,[IT:—P I | 1T 125] prob [IT:—’P" lza]

iTe-T* 1 |7
E|\TS-T* I | —2—— | |ITS-T* iZS]prob {IT:—I* 125] (3.141)

= 3

< 8“‘1 pir+a) (3.142)
= Q(n~rD2) (3.143)
= o(n~"'?), ‘ (3.144)

where (3.142) follows from (3.140), (3.143) from (3.127), and (3.144) from the fact that ¢ > 0 by
hypothesis. Altematively, if § is replaced by a sequence {3, } such that §, > 0 for all n and

&l=0('"?), (3.145)
then
;1B = 0(n?'?) O(n~+'2) ‘ (3.146)
= o(n~"'?), | . (3.147)
as before.

Since &(T) is continuous in a neighborhood of T (by hypothesis), so is S,(7). It follows that
there is a 8 > 0 and a K(3) > 0 such that

| S(T)=S(T*) | < K(&) | (3.148)
if and only if
I T-T%1 < & (3.149)

Choose sequences {9,} and {XK(3,)} such that 0< 3, <3 and X(3,)>0 for all n, (3.145) and
(3.148)-(3.149) are satisfied, and

K(@3,) = o(D). (3.150)

(This last condition is possible by virtue of the continuity of S(T') in a neighborhood of T*, and by
(3.145) which implies that §, = o(1).) Moreover, from (3.87) and (3.97),
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I ST)=ST*) | = 1 §T)+&(T*) | (3.151)
SIS 1 + 1ET) | (3.152)
< sy - §(T) (3.153)

for all T, from (3.98) and the negativity of &'(T*) by hypothesis. It follows that

[ @err [sanevan |1

IA

E { IT2-T* 17 IS(T) +&T*) | ] (3.154)

E[IT:-I* 17 18T + BT | | IT2-T* | <3, ] prob [nr:-rh 1 <3, ]
+ E[ ITo=T* 17 1ST2) + 5T | | IT-T* | 28, ]

prob [IT:—I* | 28, ] (3.155)

A

K(S,)E[IT:-I* I 1T 1 <3, ] prob {IT:—T“ | <5, ]

+ (Sz—é'(T*))E[IT:-:r* \r :IT:—T* I 23, ]

prob [11:-1* 128, ] (3.156)
< K@) BY + oY) (3.157)
= o(n""'?) (3.158)

where (3.156) follows from (3.148) and (3.153), (3.157) from (3.147), and (3.158) from (3.127) and
(3.150). Thus, from (3.116),

Hron) = E[ @-T%)" (= 54T ) | (3.159)
= e[ @y g | - B[ @y (ET*) +54T) | (3.160)
= ET*) b + o(n™"'?) : (3.161)

from (3.158).‘ Setting r = | and substituting into (3.105) yields

b = b0 + g, Hy(Ln) (3.162)
» n 'P 3
= bn(l) {14.————-—-—-—-—”0 E( ) } + a, o(n~1?), (3.163)
implying that

na, §(T*) l
n

|
153 | < 1M | :1+ : + la,o(n~t2) 1. . (3.164)

(Note that this step is necessary because 5" may be negative, violating a condition of Lemma 3.3.)
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But by (3.42), there is, for any &'(T*) and {a,} satisfying the conditions of this theorem, a large
enough N such that '

1 + a,&T*) >0 (3.165)
for all n = N. Hence, (3.164) may be rewritten as

n ' n 1
b1 € 1B {l+na E(T*) ] . naom)

2 = (3.166)

for all n 2 N (where the last term is implicitly positive). Since

liminf -na, &T*) = —a & (T*) > 1/2 (3.167)
(from (3.42)), and

limsup na,o(l) = 0 (3.168)
(from (3.42)), it follows by Lemma 3.1 (with p = 1/2) that

limsup n'2 1501 50, (3.169)

R =00 -

implying that

im »!'/2pM = 0. (3.170)

This establishes (3.138) for the case r = 1.

In analogous fashion, the continuity of oXT) and hence oX(T) in a neighborhood of T* (by
hypothesis) yields that

E[(T,,"-—T*)"z SHT) ] = GHT*)bID + o(}r“-z)’?), (3.171)
while it follows from an argument similar to (3.154)-(3.161) that

E| @y $2ED | = (F@) 0 + o), (3.172)
Thus, (3.120) may be used to obtain

Hyr,n) = (§T*)) 2 + AT*)bID + o(n 22 (3.173)

(neglecting the lower order term in (3.172)). Setting r = 2, substituting into (3.105) and rearranging
yields

na, (28(T*) +a, (E(T*))?)
n

b3 = b? {1 +

2 : 1
N na, ( 0(1)+na,,2(0"(T*)+0( ))) (3.174)
n

Sjnce
lim —n ay (28/(T*) + 0, (8(T*))%) = =23 &(T*) > 1 B (3.175)

(from (3.42)), and
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lim na,(20(1)+na, (AT*)+o0(l))) = a?6*(T*) > 0 (3.176)

(from (3.42) and (3.40)), it follows by Lemma 3.3 (with p = 1) that

2
. @2 = a 02(7*)
dm n b 2a @ ) +1°

This proves (3.138) for the case r = 2.

3.177D

Assume now that (3.138) (with r replaced by k) holds for all k¥ < r, given some r > 2, and note
that

}’_j [;] a¥ Hi(r,n) = O~ 2 (3.178)
k=3

by (3.127) and (3.131). Substituting (3.161), (3.173), and (3.178) into (3.105) yields

{

by = b + ar [";’(I*)bé”+o<n"'2) }

r(r=1) ,

+ 3 ay, [(g'(T“ )28 + GAT*)bID + 0 (n~ D2y }

+ O(n~+2y (3.179)

]

-n

b [1+ na,r§(T*)(l+a, (r-1)5(T*)/2) J

r(r-1)

3 (nzanz)

1
+ ;-(—'_-7-27;1" {r(na,,)o(l)-i-

[62(1*)(,,0-2)/2 B’('r-2))+ 0(1)] + O(n—llz) ] (3.180)

Since

im —na,7ET*)(1+a, (r=1)ET*)/2) = —ra&’(T*) > é (3.181)

(from (3.42)), and

lim r(na,)o)+r(r—1)(n%a2) (*T*) (n" 2P )y+0(1))/2

N =Poo

r{(r-1)

= = a?c¥(T*) Lim (nD2RE-D) (3.182)
0 r odd

= Fr=1) A (azo.z(,ﬁ))r/z (3.183)
T — (r-3) et ) r even

(from (3.42) and (3.138) under the induction hypothesis), where the last term 1s clearly positive in view
of (3.42) and (3.40). Lemma 3.3 (with p = r/2) completes the proof of (3.138) for all r.
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A comparison of (3.138) with the moments of a normal distribution (e.g. Kendall and Stuart,
1977, vol.1, p.62) reveals that

L(Vn (T2-T*)) — N[O,

__aoi(T)
2a E¥T*)+1 [

(3.184)

i.e. that T, is asymptotically normal with the parameters given in equation (3.43). It remains to extend
this result to the original recursion TX.

From (3.93) and the definition of the truncated recursion (equations (3.94)-(3.96)), it follows that

prob [TR=T>] S &

for all n 2 n,. Choose any ¢ € R. Then,

[(TR>6,T2<st] c [TR=T71,

where brackets denote events. It follows that

prob[TR> ¢, T2<t] < prob[TR=TP1,

so that

prob[TR<t ] 2 prob[TR<t, T2 <t ]

prob[T2<t] — prob[TR>¢, T2 <t ]

v

prob [T <t] - &

from (3.185) and (3.186). Thus,

prob[T2<t]-prob[TR<: ] <

By symmetry,

A
£

prob [ TR <t ]~prob (T2 <t ] < &,

also, so that

| prob [ TR < ¢ ] - prob [T, <¢ ]

| < 8

But from (3.184), there is a large enough n(93;) such that

|

Lprob [T <t j-@() | < 8

for all n 2 n(e), where @ denotes the normal distribution in (3.184). Thus,

Lprob [ TR <t - @(t) |

]

in

:prob[TfSt]—-prob[T°$t]+’prob[T°St]-—<b(t){
|prob (TR <r]-prob[T2<t ]| + |prob[ TSt - () |

28,

(3.185)
(3.186)
(3.187)
(3.188)
(3.189)
(3.190)

(3.191)

(3.192)

(3.193)

(3.194)

(3.195)
(3.196)

(3.197)
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for all # = n(3,), from (3.193) and (3.194). Letting 8, { 0, using (3.90) with T = T*, and noting that
E(T*)=0 by hypothesis, completes the proof. (The proof of consistency follows, with some
modifications, that of Blum, 1954a; the proof of asymptotic normality uses a truncation argument due to
Hodges and Lehmann,-and is a special case -- with modifications -- of that of Burkholder, 1956.) n

Corollary 3.1 Theorem 3.1 holds also if 7% is a random variable, provided that
E[(Tf) 1< = (3.198)

for all natural numbers r, and Tf is independent of x,, n =2,3, -+ . If, moreover, T is a
translation-invariant function of x |, then TZ is translation invariant.

Proof The proof of the first part of the corollary follows that of Theorem 3.1 identically. In the proof of
consistency, the condition of independence is required in order for equation (3.48) to hold; furthermore,
T® must have bounded variance in order for (3.46), and hence the left hand side of (3.45), to converge
w.p.1. In the proof of asymptotic nomality, (3.198) is required in addition to (3.41) in order to ensure
that the expressions in (3.101) and (3.102) exist finitely.

The“proof of translation invariance proceeds by induction. By hypothesis,

TR(x+c) = TR(x ) + c (3.199)
Assume now that T®( x,, - -, x,_; ) is translation invariant for some »; then, from (3.4),
TR (xi+c, ,xp+c ) = TR xi+c, + -+, xaq+c)
+ @y YWx e —TR(x(+C, X q+c ) (3.200)
= T,é(x,, e, Xy )+ C
+ @y W(x, e =TR(x1, " xam ) =c ) (3:20D)
= TRa(xn " % ) + ¢, (3.202)
where (3.201) holds by the induction hypothesis, and (3.202) by (3.4), completing the proof. n

Remark This corollary suggests that -- in the absence of additonal information -- a convenient starting
point for the recursion might be 7% = x, (see, for instance. Martin, 1972; Martin and Masreliez, 1975;
Price and Vandelinde, 1979). This has the advantages of simplicity and translation iﬁvariance, in
addition to the obvious fact that the observation x| will generally be a better estimator of location than
an arbitrary constant. On the other hand, this choice implies that one observation can have arbitrarily
large influence on TX, n 21, so that an outlying x, could severely degrade the smail sample
performance of the estimator. This is contrary to the philosophy of robust estimation, and is therefore
not desirable. While a better initial value might be a bounded version of the observation, such as y(x ),
this choice does not generally lead to translation invariance. Alternatively, the first few observations
could be utilized to obtain a Huber minimax robust M-estimator, which could then be used as the initial
value T} of the recursive minimax robust estimator with the remaining observations. Since Huber's
estimator is translation invariant, as shown earlier, this approach does yield a translation invariant and
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robust estimator TR,

Corollary 3.2 Under the conditions of Theorems 2.4 and 3.1, the recursive minimax robust estimator
T® has asymptotic variance no smaller than that of Huber’s minimax robust M-estimator. The
asymptotic variance of T® is minimized for the choice

P S 3.203
a gf(P ) £ ( 2 )
for which the two estimators are asymptotically equivalent.
Proof From Theorem 3.1,
2 &
; Ry _ __a o(T™)
Im o valTv) = - o+ 1 (3:204)
so that
9 . R _ _ 2a0X(T*)(2aE(T*)+1) ~ 2a% A(T*) &(T*)
3 ﬂ var| T, ] (2a BT 11)? (3.205)
=0 (3.206)

at the optimal value @ =a*. Since a* # 0 (by (3.42)) and oX(T*) > 0 by hypothesis, (3.206) may be
rewritten as

G ET*)+ 1 = 0, ' (3.207)

which yields (3.203); note that this value is consistent with the inequality in (3.42), since §'(T*) < 0 by
hypothesis.

Moreover,
F .. R 26%(T*) ’ 3
— 'lim TR] = - 2¢5(T*) + 1
da? o= var I’ (2a 8 (T*)+1)* [( ag@+1)

- 44‘3’(7*)(0.5'(7'*)4-1)(24&'(1"‘)+l) } (3.208)

2

S 1404 N (3.209)

(2a&(T*)+1)
>0 (3.210)
for all a satisfying (3.42), confirming that (3.203) corresponds to a global minimum.
Finally, substituting (3.203) into (3.204) yields

L (T*)

min lim var{T?] = oar) (3.211)

e T (&(T*))?

which, using (3.90) with T = T*, corresponds to the asymptotic variance of Huber’s minimax robust
M-estimator in equation (2.92). n
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Corollary 3.3 For a given family of symmetric distributions with location parameter 9, let the least
favorable density fq¢ be such that the cormresponding influence-bounding function g satisfies the
conditions of Theorem 3.1. Let TX be the recursive minimax robust estimator of © defined by equation
(3.4), with coefficients {a,} satisfying the conditions of Theorem 3.1 as well as (3.203). If the true
underlying distribution is f ¢+, then

m (TR-6*)) > N |0, —— 3212
as n - e (ie. TR is asymptotically efficient). In that case,
1
* = . 3.213
I(foe) ( )

Proof Note first that by equations (2.131)-(2.135) (with 0 replaced by 0),
E®) = -I(foq) (3.214)

provided that the true distribution is the least favorable one. Thus, the condition that 1&'(6) | < o= in
Theorem 3.1 implies that I(fq) < e, and the corollary is a direct consequence of Corollaries 2.1 and
32. ]

Corollaries 3.2 and 3.3 give some hints as to the choice of coefficients {a, } that yields minimum
asymptotic variance. Although these results are of little immediate practical value, since neither 7% nor
the true distribution P (and therefore the function &(T)) are known a priori, they can potentially serve
to help making clever choices of coefficients. For instance, minimax optimality can be ensured by
chosing P to be the least favorable distribution. The latest estimate TR of T* can be substituted for T*
in the expression for a,, making this latter a function of the data (i.e. adaptive gains). That the
recursion would still converge under this scheme, and have the various properties derived earlier,
remains to be demonstrated. .

The result in Corollary 3.3 is implicitly used, for instance, by Price and Vandelinde (1979) for the
special case a, = an™'. While this form is used widely, and is in fact assumed by Sacks (1958) and by
those who base their work on his results (such as Martin and Masreliez), it is not necessarily a good
choice for the small-sample behavior of TX. For example, Dvoretzky (1956) shows in the special case
where §(T') is bounded from above and below by straight lines with finite, nonvanishing slopes, and
furthermore (7§ —T* )2 (or equivalently E[ (T —T* ) ] if T} is a random variable) is bounded by a
function of these slopes, that the choice

LS
Ky+n

a, = (3.215)
(where K| and K, are constants satisfying certain conditions) is minimax in the sense of providing the
minimum upper bound on the estimation error variance E[ (TX-T* )? ] for all . In other words, for
any {a, } other than that given by (3.215), there exist 7% and \(x, — TX) satisying the above condition
on §(T) as well as all the conditions of Theorem 3.1, for which Dvoretzky’s upper bound is violated for
some n. Moreover, under certain conditions, larger values of K, can result in tighter upper bounds on
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the error variance. On the other hand, in general, (3.215) leads to estimates with asymptotic variance
greater than the minimum given by (3.211), a loss in asymptotic efficiency that is "the price paid for
small-sample optimality” (Derman, 1956).

“The choice of optimal coefficients {a,} remains a difficult problem to which no satisfactory
solution presently exists. Dvoretzky’s assumptions are limiting, especially in the case of robust

- estimation, as discussed earlier in the context of the work of Chung. Moreover, it is not clear that an

upper bound is necessatily the performance measure of choice in selecting optimal a,; on the other
hand, since E{ (T®-T*)2]=0(n"') as a consequence of Theorem 3.1, the sum

oo

Y E[(TR-T*)?] : (3.216)

n=1

does not converge and can therefore not be used as an objective function either. One possible approach
might be to choose a finite N and then find

N
min Y E[(TR-T*)?) (3.217)

{an } a=l

subject to the constraints

E(Tiu 1= E[T?] + @, ELY(x,—T) ] (3.218)

= E[TR] + a, E[Ew(x,.—r,f) I TR ] ] (3.219)

= E[T{] + a, E[&TD ] (3.220)'

wp.l,and n =1, - -+, N-1, where (3.218) follows from (3.4) (and is used instead of this latter in the

usual way in order to ensure that the solution is not a function of the data {x, }), and (3.220) follows
from (2.82). What makes this problem especially difficult, however, is that §(T') is generally nonlinear,
and moreover &( TR)y, n=1, -+, N-1 are not independent nor identically distributed. Moreover,
there is no guarantee that the results thus obtained for finite N would be consistent at the limit with the
asymptotic properties discussed earlier. The problem remains intractable even for (realistic) special
cases, so that only asymptotic results are sought in the sequel.

It is noted, finally, that the recursive robust estimator has been studied for the e-contaminated
normal neighborhood by Martin (1972); the "p -point” neighborhood

P's, = [ P: [dP(x)=p/2, P &S, P contnuousatA } (3.221)
fa
(which is a special case of P, , in (2.198)) by Martin and Masreliez (1975); and the "e-G"
neighborhood
Peg = {P: supx i P(x)—G»(x) l<e P,Ge S} (3.222)
(which is a generaﬁzationx;f P/ in (2.197)), a.nc-l the "generalized moment-constrained” neighborhood
Pipy = (P: [x"dPx)Sp,, PES 0Sn<N | - (3.223)

by Price and Vandelinde (1979).
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For the problem of robustness in the presence of outliers, those of primary interest here are the
€-contaminated nommal and the p -point neighborhoods. Indeed, the latter seems particularly appealing:
if A is chosen, based on physical considerations, to be at the limit of acceptable noise (so that anything
beyond it can be viewed as an “outlier"), then P’ , yields itself to an interpretation as the
neighborhood of all symmetric noise distributions containing a certain fraction p of outliers. This is
very general and does not assume underlying normality, as does the e-contaminated neighborhood.
Furthermore, the estimator has constant asymptotic variance over a class of noise distributions.
However, there is a price to this generality: just like ., the influence-bounding function derived by
Martin and Masreliez for the p -point neighborhood is flat beyond * A ; however, it is not linear in the
"center," so that all observations are processed, to a greater or lesser extent. Even the slope at the point
of symmetry does not generally equal unity. This suggests a loss of efficiency at the nominal
(underlying) model —~ especially whez it is neazly normal, as is often the case. For this reason, 4only the
e-contaminated normal neighborhood is used in the present analysis.

3.2 The Multivariate Case

So far, the discussion has been limited to estimators of scalar location parameters from univariate
observations corrupted by noise. In the present section, these results are extended to vector location
parameters and multivariate observations.

Multivariate extensions of the Robbins-Monro stochastic approximation procedure have been
proposed by Blum (1954b), Block (1956), Sacks (1958), Derman and Sacks (1959), Epling (1964), and
Fabian (1968). The primary limitation of these results is that all but Fabian’s are restricted to scalar
sequences {a, }, and thus do not provide a means of attaining minimum asymptotic vaﬂanée; this latter,
on the other hand, makes a last-minute assumption (as to the normality of the updates) that neither
appears in the statement of his theorem, nor is consistent with his claim of total generality.

Consider, as before, the measure space ( X, B, u ) where X is now R?, B the Borel c-algebra,

and p the Lebesgue measure. Let { x,, - - -, x, } be a sample of independent random variates taking

“values in X, with a common distribution function P; let P:={ Py: 08 € © }, where ® c R?, be a

family of probability measures on ( X, B ) such that for all § € ©, Py is absolutely continuous with
respect to i and admits the density f o in accordance with the Radon-Nikodym theorem.

Let X" be the product of n copies of X, and let T, : X" — © be Huber’s minimax robust M-
estimator for the parameter §, ie. the maximum-likelihood estimator given the least favorable
distribution g & P. It follows that T, is the solution of maximization problem

max 3 log fg(x), (3.224)
8e9

or, alternatively (provided that © is an open set) of the system of equations
n
T Welx) =0 _ . (3.225)
i=l

where




=71 -

]

Yolx) = - Yylog falx) (3.226)

= __.._____f;(;) ngé(&) 3.227)

a.s., within an arbitrary multiplicative constant. (V4 denotes the gradient with respect to the parameter
vector 9; compare equations (2.77)-(2.80).) That this is minimax follows directly from the results of
Section 2. Note also that for the case of location parameters, p = ¢; this is assumed in the sequel.

As before, consider the recursion

TR’a =T + A, w(x -TF), (3.228)
where n =1,2, -, {A,} is a given matrix sequence with A, € R?”?, and T? is an arbitrary
(possibly random) starting point. Let

§T) = Ep [W(x-T)1 (3.229)

X(T) = Ep [(m&—l‘)—é@))(m@—l)—é@)ﬂ ] (3.230)
and define

JT) = [a—a- §.-(L)L (3.231)

tl =T

as the Jacobian of §(T), provided it exists. The following is a generalization of Lemma 3.3.

Lemma 3.4 Let {5, } be a real sequence such that, for some 7,

Ca d,
by = b, {1 —— } + (3.232)

np+1

for all n 2 n,, where {c, } is a real sequence with
im ¢, = ¢ > p, (3.233)
n —yoa

{d, } is a real sequence with

im d, = d, (3.234)
[ .

and p > 0. Then,
. d
lim »? b, = ——, (3.235)
n—c0 c -p

Proof Assume first that d # 0. Then, there is a large enough n, such that

1= fn— >0 ' (3.236)

and (from (3.234)) either d, >0 (if d>0) or d, <0 (if d <0) for all n 2n, If, for any
ny 2 max(ng,ny), b,, has the same sign as d, then clearly b, has the same sign as d for all n 2 n,,
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and Lemma 3.3 (a.t’tér multiplying (3.232) through by -1 if d < 0) establishes (3.235).
Assume that b, and d have opposite signs for some n, 2 max(ng,n,), and (with no loss of

" generality, since the other case can be reduced to this one by multiplying (3.232) through by —1) let
b,,<0and d > 0. Rewriting (3.232) as

Ca d,
Ubaa 1 S Vb1 | 1==2 |+ =5 (3.237)
for all n 2 n,, Lemma 3.1 yields
imsup n? | b, | § —2—, (3.238)
BR300 c-p
or
liminf n? b, > — —2—. (3.239)
n =300 ¢c-p
It follows that, for any & > 0, there is a large enough n(3) such that
b, z--—l-[ d +5] : (3.240)
n? c-p
for all n 2 n(3). Thus, defining
B, = b, + —— [ d .5 ] (3.241)
n? c—-p

and noting that 5, 2 0 for all n > n(3) from (3.240), equation (3.232) may be rewritten as

d,
np+l

1 & | 1 d
[(n+1)P - [1— " }n’ }[C_P +5] (3.242)

for n 2 max(ng, ny, n(8)), where, from (3.13)-(3.16),

Cn

5n+1 = En {1"—_] +

n

— 1 Sl &P -(p+2)
TSI [1— - ]n? = = + Oln ). (3.243)

Substituting (3.243) into (3.242), and noting that

+0(n Y

lim d,,+(c,,—p){ d +&
R =30 c=p

=2d+{(c-p)&d>0 (3.244)
from (3.233)-(3.234) and by hypothesis, Lemma 3.3 implies that

2d+(c-p)3d
c-p ’

lim »? b, = (3.245)
n ~poo

and (3.241) establishes (3.235).
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Finally, if d = 0, choose any & > 0 and define

_— 5
b, = b, + e

Then, (3.232) may be rewritten as

- - Cn d,
bn+1 = bu {1_’_} +

1]
s
—
[y
!
| )
3
| WE——
+
(oY
N
H
+
—
Ay
|
)
N’
o
+
Q
~~
>
LR
o’
| W———

for n 2 ng, from (3.43). Since

im d, +(c, =p )d+0(n™") = (c-p)8 >0
n oo

from (3.233) and by hypothesis, the problem is reduced to one already solved, and

im n? 5, = Lle=-p)d
n -0 c-p

= §,

so that (3.246) establishes (3.235) with d = 0.

(3.246)

(3.247)

(3.248)

(3.249)

(3.250)

(3.251)

The following theorem, based on the results of Blum and of Fabian, is a multivariate generalization of

Theorem 3.1.

Theorem 32 Let §(T) exist for all T, and let there be a T* such that for any >0 and all ¢ X g

matrices M > 0,

sp  (I-T*)TMET) < 0.
S HT-T* 1l
Assume there exists an S, < oo such that

Ep [M(;_'I)mT(z—I)] <8

forall T, and let {A,} be a sequence such that A, > 0 for all n,

Z Aa = oo,
n=1

and
Y ATA, < =
n=l

Then, given any IR < oo, TR 5 T* asn — = as. (ie. IR is consistent).

(3.252)

(3.253)

(3.254)

(3.255)
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If, moreover, £(T*)=0, &T) is continuous, differentiable and strictly monotone in a
neighborhood of T* with [IJ(T*)ll <, if Z(T*) > 0, Z(T) is continuous and bounded in a
peighborhood of T*, and finally if

1

im nA, =4 > --2-1"(1*), (3.256)
then
L(Vr (ZR-T*)) - N[o,VQ V’}. (3.257)

[VIAzTH ATV )y

q; = T (3.258)
and V is an orthogonal matrix and A = [ A; ] a diagonal matrix such that
VTAI@T*)V = ~-A (3.259)
(i.e. TR is asymptotically norrhal).
Proof Equation (3.228) may be rewritten as
TP -T =I8 - T* + A, W x -IF), (3.260)
whence, squaring and taking expectations, it follows that
E[(TR ~T* )T (T8 - >}
= E[(Zf-T)T(zf 1) |
+zE[(T )T su(-s,.—lf)}
+E[u£T(z,,-I.‘.‘)A,.TA,.m(L.—I§)] (3.261)
= (It -HT(r} -1)
+23 E[(:}‘—z* )T A; w( g -z,‘-‘>]
jal
+ z Efgﬂr ~TRHYATA; w(x - TR)} (3.262)

j=t

Note first that since (3.262) is scalar.

=
g’
it

vl -T2A A, wx, - tr[mf()_c,.—rf)ASA.. uz(..t,.—lf)] (3.263)
= tr[m(zn—l‘f)mT()_c,.—If)A,TA.. ] (3.264)
so that

Elute -T)AT A wa -T0) |
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IA

tr[SOA,,TA,, ]

w25 [ wa -T)wia -TH 1 1 | | 474, ]

w.p.1 for all n, where (3.265) follows from (3.264), and (3.266) from (3.253). Thus,

) E[MT(&;—I}')A,-TA,- m(&,—zf)] <
]=

<

i=l

o0

w.p.l for n — oo, from (3.255) and the finiteness by hypothesis of §,. Moreover,

E[(If—z_* )T A, m(&—z:{‘)]

<0

E[E [(zf- ) 4 e -1 T | |

E[ (-1 )7 A, 52D |

w.p.1 for all n, from (3.252) and the positivity by hypothesis of 4,. Thus,

5 E[(ZF-T)T4 wa T | <0

j=t
w.p.1 for all n. But since

E[(Zf ~T) T (T2 -T%) | 2 0
because the term is in quadratic form, and

(I -H)" (I - ) < =
- by hypothesis, it follows that

)y E[(r}‘—z* )TA;M;,,~I£)] =3

j=t j=l
must be bounded from below w.p.1.

Define now

Y, = E[(zﬁn -T*)T(IR, -T*) ~ (IR-T* )T (IR -

and consider the sequence

n~1
{(zf-r* Y(X-T*) - X ¥ }

j=t

E[(Tf-1 )74, 50D |

3

(3.265)

(3.266)

(3.267)

(3.268)

(3.269)

(3.270)

(3.271)

(3.272)

(3.273)

(3.274)

(3.275)

(3.276)

3.277
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Since

E[(If+1 “PH)T(R-T*) - 3 ¥ | I%, 1:5]

=

= E[(If+x D)L -T*) ~ (L =TT (LI -T*)

F(IR-THN(IR-T*) - 3 ¥ | IR, 1:,‘.‘] (3.278)

j=1
=Y, +(I§—1")T(L‘.’—1"‘)—iY,~ (3.279)
j=l
n-1 7
= (- (’-T*)- T 1; (3.280)

j=t
w.p.1, it follows that (3.277) is a martingale.
Squaring (3.260) and taking conditional expectations,

E[(Lf+1—1* YR, -1 )1 TR, zf]

(TR-T)T(TR-T*)

]

+ 2E[(I—f~l* )TAnm(&_If)IIfs "'s‘—f]
* E[mfm—zf)AfAn Wz -IH) | If, zf} (3.281)

(TR-T* YT (TR -T*)
+2(IR-T*)TA, ETD

+ E{w(;_,_zf)AzA, w(g -I9) | IT, _f] (3.282)
w.p.1; it then follows from (3.276) that
Y, = 2(LF-T* )T A, &I
+E[mr(zc_,.—zf)A3A..m(.:,,—If)iI“, 1;’3} (3.283)

Thus,

”n
+ 2 E[uﬂuj -TRHYAT A w(x -TH | IF, ---,I_ﬂ (3.284)

j=1
is'a sum of two terms whose expectations are monotone and bounded: the first is negative as., from
(3.252), and was shown to be bounded from below; the second is nonnegative since it is in quadratic
form, and obeys (3.268). (In both cases, the positivity by hypothesis of A; is utilized.) Thus, »'the
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expectation of (3.284) converges almost surely to a finite limit as n — « a.s. Hence,

E[l (R-T)T(L}-T*) | ]

E[(L‘.‘-l* )T(If—l*)] (3.285)

(- HT (1’ -1*)

n=1
+ Y E[(I}‘H -T* )T (I} -T*)

j=t

- (TR -THT(IF T | (3.236)
n-1

=(If - H)T(If-T*) + ¥ ElY;] (3.287)
j=l

< oo (3.288)

as. for n ~> oo, where (3.285) holds because the term is in quadratic form and hence non-negative, and
(3.288) follows from the finite convergence of the expectation of (3.284), and from the finiteness by
hypothesis of T%. Thus,

n=dea 1 Jj=1

| PR
lim E[I (TR-T)HT(TR-1*) - Z1 Y; ']
|

- lim E{Zi (I} -1 )TA,-Q(I}‘)}

n =300 j=I

” —s00 izl

+ lim E[i MT(J.j‘If)AjTAj ﬂ(&j‘l}z):} (3.289)

< = (3.290)

a.s. from (3.288) and the finite convergence of (3.284). Using a martingale convergence theorem due to
Doob (1953, pp.319-323), it then follows that the sequence (3.277) converges a.s.; moreover, since the
second term in (3.284) is monotone and bounded, and the first is monotone and appears in (3.277) as a
positive quantity, and (TR-17* )T (TR -1* ) 2 0 also due to its quadratic form, it follows that this latter
also converges a.s. There is therefore a T such that

gn“(zf~1*)T(I}—1*)=To (3.291)

w.p.1. But the boundedness from below of (3.275) implies that

L ]

lim sup E[(L‘.‘-—I_* )T A, §(L’3)_] =0 (3.292)
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or, since the expression is negative a.s. from (3.252),

imiaf [ (Z8-T*)TA, 8D 1 | = 0, | (3.293)
implying that there exists a subsequence {7} such that

im E[ 1T} ~T* )T A, 8TR) | =0 (3.294)
Hence, by the Chebychev inequality (Loeve, 1963, p.11),

lim (I -T* )" 4, §T) = 0 | (3.295)
w.p.1, which in tum implies, from (3.252), that

lim (I -T*) =0 (3.296)
w.p.1. Combining (3.291) and (3.296) establishes that ,

im (IX-T*) =0 : ‘ (3.297)

fromeet :

“ w.p.1, which proves the consistency of the estimator TX.

To prove asymptotic normality, note first that by hypothesis, §(T) is continuous and differentiable
in a neighborhood of T*, say {IT — T* ll < §,, and §(T*) = 0. Thus,

ET) = J@*) (I -T*) + O(NL -T*1?%) (3.298)

for 1T - T* Il < §,. Moreover, since TR — T* w.p.l (as proved above), there exists a large enough
n(8,) such that ITR —T* Il < §, w.p.l forall n 2 n(3,). It follows that (3.260) may be rewritten as

- I*

I - T+ A (v I -ETD | + 4 ETD (.29)

I +4, J@*) +4, O NIR = T#11) | (IR - T*)

+ A, [m(_,. -IH-ETD } (3.300)

w.p.1 for n 2 n(3,), so that ( Lﬁ_l - T* ) is the sum of a sequence of zero-mean random variables
(plus some higher-order terms). Note that

A, O,(UIX = T*11) = 0,(n7") (3.301)

at least, in view of (3.256) (which implies that A, = O(n™"y) and (3.297) (which implies that
0,( WTR — T* 1l )=0,(1) or less). ‘

Next, define for some &, > 0 the set
A(n,8,T) = {26.3 Nye-T)-ET) 1% 2 &n } (3.302)

Since E(T*) = 0 by hypothesis, E(T?) < oo w.p.1 for all » 2 n(3,) by virtue of continuity. Together witi
(3.253), this implies that o

Iy -TH-ETR 12 < = (3.303)
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w.p.l for n 2 n(3,), so that
im A(n,8,IF) = @ (3.304)

(or possibly a set of measure 0). It then follows that

im | Wy -IRH-ETDH 1?aPE) = 0 (3.305)
oo 4(3.52.1',‘,!)

w.p.1 for any 3, > 0. This is analogous o Lindeberg’s condition for asymptotic normality, and is used
in the proof below.

The characteristic function of the update in (3.300) is defined as

L) = | o std-sad |

(3.306)
- £|E [ atwa-T-sa | 7 | } - (3.307)

w.p.1, since {x, } are independent and identically distributed. Using Taylor’s theorem yields

, [ez;TA,m-I.R)-i(I},')) | T® }
= Ep [1 +isTA, (Ye-IH - ET)

- %;TAu (m&-ﬁ)—é@fi)(m@—ﬁ)—é@f} )TA s
+ R, I TR ] (3.308)
=1 - 2sTAZENAs + B[R, | TR, (3.309)

where R, denotes the remainder, from (3.229) and (3.230). Since the truncation error is dominated by
the first omitted term in the Taylor series (see, for instance, Feller, 1966, vol.2, p.485),

| Ep[ R, | TR
< Ep[ IR, | I TR} (3.310)
I R v
S -zt [ 1eTA (waIH-8@D) 17 dP@) (3.311)

L

J lsTA, (ye-TAH - TR ) 13 aP(x)
15T, (e -TH - ETH) €84

, 1sTA, (wa-TH-ETDH )13 aP)  (3312)
15TA, ez TR -&T RN >3,

|-

for some §; > 0. Now: .

1sTA, (a-TH -ETH) 13 dP ()
15TA, (e - - 8@ <8, : o
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<38 { T A, (W@-IH -§TH) 1 2dP @) (3313)
1TA, (G -TH 5T <3, .
< 8 [ 8T A (WGE-TIDH -ETD) (we-IDH -E§XTH)HITATs dP(x) © (3314)

= 8;,5TA, ZTHA, s, 3.315)

where §; can be made arbitrarily small. For the second integral in (3.312), it is more convenient to
bound the error by the next lower term, i.e.

sTA, (Wa-TH -eTH) (ya-TH-ETH)TA s dP(x)
157A, (wx-TR-ET )1 >3,

=0,(NsTA4,4,Ts (3316)

w.p.1, from (3.305). It follows, combining (3.312), (3.315) (letting 3, 4 0), 3.316), and the fact that
A, =0 (n™") from (3.256), that

VE[R, 1 IR S 0,(n) ligh2 3.317)
" Denote the characteristic function of T® — T* by
is T(TR-
(o) = ELe’s =1

and define, for economy of notation, the matrix sequence

1 (3.318)

B, =1 + A, J(T*) + 0,(n™") (3.319)

(compare with (3.300)-(3.301)) and the recursion
Gonls) = G(BTs) |1- 574, 24, s (3.320)

with

Tk

Gs) =¢f = e : , (3.321)

(since T? is a given constant). Note that €.(g) is essentally an approximation for C,,T(p;) obtained by
substituting an approximation for {¥(s); this becomes clear when (3.300) is used to write

¢rae) = ¢BTs) L), (3.322)

and a comparison is made with (3.309) and (3.320). It can be shown that i,,(g) and Q,}r(,g) are
asymptotically equivalent by noting that

| {T8) = Gunt@) | = | ET(BTS) LY

|
~ La(BJSs) [1—%,:”.. Z(Z*)A,.Tg] : (3.323)

|
:CI(B,.T;)CJ’Q) + CN(B.s) [1—%;%" T*)A,Ts }
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- L(BFs) (1_.;-,;'54, za*)A,.T,s}

- L(BTs) [l—%iTA;Z(l")AuTs ]E (3324)
= E(CZ(B;’;)—Q.(B:‘;)) {1—-;-,:% Z(P)A,T;}

+ LH(BJs) [Ca"(&) -1

1 !

+ EzTAnZ(Z_*)A.T,: : (3.325)
l 1 T b T pT T 3|
< :I—E;TA,, IT*)A, ¢ : {Cﬁ(Bni)“";n(Bn )
+ ey oo - 1
1 |
+ —sTA, XA, ¢ : (3.326)

2
where (3.323) follows from (3.320) and (3.322). But
1¢T(B,Ts)1 €1 (3.327)

for all s (a property of all characteristic functions; see Feller, 1966, vol.2, p.473), while

| 1
1Y) ~ 1+ 3574, 3T AT |

s i sTA. (wtx TR —E(TR !
| ELE, [ M T4 | x| J-1s 2574, 30 AT s | (3.328)

e

I |
|E] EpR 1 IF 1= 5 574y (2@ - 200 JATs
L

: (3.329)

A

0,(n7?) lgl? (3.330)

w.p.1, where (3.328) follows from (3.306), (3.329) from (3.309), and (3.330) from (3.317), (3.256), the
fact that T® — T* w.p.1, and the continuity and boundedness of X(T) in a neighborhood of I* by
hypothesis. It therefore follows that

| |
[CCBT) [160W — 1+ 3 sTA BT A s | = o) al (3.331)
Sﬁnﬂarly, again using (3.256),

| S
{1 - %;TA,, S(T*) AT s : = :1 + 0(n”H ngi? : (3.332)
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and
B, I = O() + o,(1) (3.333)
from (3.319).
Thus, defining
B8 = 165@) - &G@) 1, C (3334

it follows that
Auls) S :1 + 0@ lgn? :A,,((O(l)-i-op(l));,) + 0, (n" Y ligl?, (3.335)

from (3.326) with (3.331)-(3.333). Now: from (3.321), A(g) =0 for all 5, so that (3.335) yields

Ay8) S 0,(n7H) g2, (3.336)
Assume by the induction hypothesis that
Rfl .
A,g) £ Y o0, (n%) ligh?*, (3.337)
. k=1 .

holds for some n. Then,

Apa(s) < {1 + 0(n™) u;uzi "z_l'o,,(n-”) Hsl1®* + o,(n7%) Ngl? (3.338)
k=1
< kf 0,(n ) gl + kf 0, (D NP2 + o,(nH) lig? (3.339)
=1 =1
=§;1 0, (n”%) lig 1%, (3.340)
which establishes (3.337) for all n. Thus,
'}iin“ a,() =0 ’ (3.341)

for all finite §, proving that §,,T (¢) and {,(5) are asymptotically equivalent. Hence, it is sufficient to
seek the limit of the recursion (3.320)-(3.321) in order to find the characteristic function of the limiting
distribution of TR,

It follows from (3.320) and (3.321) that

i sTg R _T%
{as) = e ° 1419 (

1-%;%‘:(1*;‘41%}, (3.342)
so that
log Gols) = i s 7B (IF -T*) + log [1—-;-§TA12(1"‘)A1T£ ] (3.343)
Assume by the induction hypothesis that
n-{

log4a(s) =i 5T [1‘1 B; ](I’f -T*)

j=l
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n-1 n-l
+ Y log [1——1 [n B, | A; Z@*) AT

j=l k=j+l

n=1 T
[ H By ] s ] (3.344)
k=j+l

~ (where sums and products are replaced by additive and multiplicative identities, respectively, if the
limits of their indices overlap, and matrix products are ordered by descending index) holds for some n.
Then, (3.320) yields

log §uu(s) = log §,(B,Ts) + log {1 - -;— sTA, Z@HA,Ts ] (3.345)

n-1
isTB, [H B; ](1‘1‘ -T*)

j=1
n~1 1 T n-1 T
+ Y, log 1—-5;_ B, | TI Be | A; Z(T™) A;
j=1 k=j+l
n-1 T
l_[ Bk BuTas.
k=j+1
+ log {1--;-1’%4, Z(I*)A,Tg} © (3.346)

T{ﬁ B,—](I‘?—l*)

j=l

wl»—-

+ 3 log [1

j=t

s [1‘[ B,,] A; Z(T*) AT

k=j+1

R T
[ I1 3. } s } (3.347)

k=j+l

establishing (3.344) for all n. But since B, Il <1 w.p.1 for large enough n (from (3.256) and (3.319),
and the monotonicity by hypothesis of &(T) in a neighborhood of T*, which implies that J(T*) < 0), it
follows that

im [] B, = 0. (3.348)

Ao o)
T
£ }

' n n T
= —%_S_T [ H Bk } Aj Z(Z_*)AjT [H Bk ] S (3.349)

k=j+l k=j+l

so that the first term in (3.344) vanishes as n — <. Moreover,

log [l--—;; [H B,

k—j+l

Aj ZT*)A;T [ n B,

k=j+l

approximately (using a first-order Taylor expansion for the logarithm) at least for large n, since (3.348)
and (3.256) imply that the term on the right-hand side of (3.349) vanishes as n — . Thus,
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1 a-l | n-l n-l T
=37 | | II B | 4 xna;" | T1 B £
j=t | &=j#1 Esjel _

,}i_r,nu () — e = 0, (3.350)

ie. {,(s) asymptotically has the form of the characteristic function of a normal distribution (e.g.
Kendall and Stuart, 1977, vol.1, p.62). Since, by uniqueness, the limit of the characteristic functions of
a sequence of distributions is the characteristic function of the limiting distribution (see, for instance,
Lokve, 1963, pp.189-193), it has thus been shown that (TX—T* ) is asymptotically normal, and there
only remains to prove that its covariance approaches that in (3.257).

Finding the limit of the exponent in (3.350) is not trivial. Consider instead the recursion

Ot = (144, 0@) + 0,07 | 0, (144, 7@ + 0007 |

+ A ZTD AT (3.351)
(from (3.300) with (3.230) and (3.301), noting that the cross term vanishes), where
Q = E[(If-l*)(rj‘—l*)T ] (3.352)
Note first that by (3.256), there is for any & > 0 a large enough n(3) such that

WnAd,-All <3 (3.353)
for all n > n(3). It follows that

n? A, ZIHAT = AZTHAT + 009 (3.354)
= AXTHYAT + 00) + o)) (3.355)

w.p.1 for n > n(3), where (3.355) holds by virtue of the continuity of X(T) in a neighborhood of T*
and the convergence w.p.1 of T® to T*. Similarly,

nA, JT*) = AJT*) + 0 (3.356)

for n > n(3), so that (3.351) can be rewritten as
Ot = [1 +nt (A J(T_"‘)+0(5))+op(n“) ] QO
{1 +n L (AT +0@®)) +0,(n™Y) ]T

+ n2 [A za*)AT+0(6)+o(1)} (3.357)

for n > n(8). To enable a coordinatewise applicatica of Lemma 3.4, it is necessary to diagonalize the
matrices pre- and post-multiplying Q, in (3.357). To this end, define

0, =VTQ,V, (3.358)
where V is defined in (3.259), and substitute into (3.357):

Vo.vT= [1 +r (A TJT*)+0®) ) +0,(n™h ] vo,vT

[1 +n1(A J(r")+0(8))+o‘,(n“) ]T
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+ n? [A XT*YAT+0@©) +0(1) }

(3.359) -
or (by the orthogonality of V')

Ouiy = VT [!+n‘1(A J<1*>+0(8))+o,(n°*5] v 0,

vT [1 +n N (ATT*)+0@)) +0,(n7) ]T 14

+ n2yT [A STHYAT+0@E) +0(1) ] V. (3.360)
But

vT [1 +r (A T@T*¥)+ 0@) ) +0,(n™h) ] V=1I-n' [A+0(5)+a,,(1) } (3.361)
by (3.259) and the orthogonality of V', and

vT [A E(J_"‘)AT+O(8)+0(1))V = VTASTHATV +0@) +0(D),
whence it follows that

(3.362)
Opsr = {1 -nH(A+0®) +0,(1)) } On (1 -2 (A+0®) +0,(1)) ]T
+ n? {VTA ET*HATV +0@) +o(l) } (3.363)
Consider now the element 7, of §,: equation (3.363) yields
g = [1 -n (M +0B) +0,(1)) } [1 -n (A +O0@) + 0,(1)) } g
+ n? {(0(5)4-0?(1) YU,
. + [VTAZT*)ATV ]; +0®) + o) } (3.364)
But
[1 -2 (A +0®) +0,(1)) ] \[1-n‘1(2.,- +0(8) +0,(1)) ]
= [1 -n7t (N + N +0(6)+op(1)+0(ﬁ-‘))] (3.365)
and, letting 3 1 0,
lim A +2; +0@) +0,(1) + o™ =, +x; > 1, (3.366)
where the inequality follows from that in (3.256), which implies that
-AJT*) > -;—1, (3.367)
or
A=-VAJIT)VT - (363)
> -},—I | ]

(3.369)
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by the orthogonality of V. Moreover, again letting § { 0,

im (0@ +0,MPX N0, H+[VTAZTHATV ]; +0@) +0(1)

=[VvTAZ@H ATV ;. (3.370)
(Note here that Il @, Il is bounded because T§ < o by hypothesis, (3.255) holds, and 1B, Il <1
w.p.1 for large enough n.) Thus, by Lemma 3.4 (with p = 1),

) i [VTAEZT* ATV §;
im n qé) = X, "y 1 d , (3.371)
e A -

and using (3.358) establishes (3.257)-(3.258). (The proof of consistency follows, with modifications,
that of Blum, 1954b; on convergence proofs for stochastic approximation procedures via martingales,
see also Métivier, 1982, pp. 66-72, 75; the proof of asymptotic nomnality follows, with modifications,
that of Fabian, 1968; both results are also discussed by Wasan, 1969, pp.77-79, 106-110.) | |

Remark It is easy to verify that the results of Theorem 3.2 agree in the scalar case with those of.

Theorem 3.1. Since J(T*) = E(T*),P =1,and A =—a & (T*), it follows that

a T*)

T @ M)
veve=-33 ET*)+ 1

3.372)

in the scalar case, which is the expression in (3.43). Note, however, that some earlier conditions (most
notably (3.7)) are no longer necessary in this proof; while they are not unduly restrictive, as discussed
earlier, they will henceforth not be required to hold.

Corollary 3.4 Theorem 3.2 holds also if 7% is a random variable, provided that
e[ vahT] < - (3.373)

and T% is independent of x,, n =2, 3, - - -. If, moreover, T¥ is a translation-invariant function of
X1, then T® is translation invariant.

Proof The proof of the first part of the corollary follows that of Theorem 3.2 identically. In the proof of
consistency, the condition of independence is required for equations (3.266), (3.270), and (3.282) to
hold. Furthermore, the product (’l“f ~TYTTR-1*) is replaced by its expectation in (3.262),
(3.274), (3.286), and (3.287), and (3.373) is required for (3.274) and (3.288) (in their modified form) to
hold. In the proof of asymptotic normality, independence is required for (3.309) and (3.329) to hold.
The exponential in (3.321) and (3.342) is replaced by its expectation, while the first terms on the right-
hand sides of equations (3.343), (3.344), (3.346), and (3.347) are replaced by the logarithm of the
expectation of their exponentials. Equation (3.373) is required for the first term in (3.344) to vanish as
n — oo. The proof of translation invariance is identical with that in Corollary 3.1, and is omitted. n

Corollary 3.5 Under the conditions of Theorem 3.2, the recursive minimax robust estimator T% has
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minimum asymptotic variance for the choice

A = -J7T), (3.374)
in which case

LV (@F-1+)) - N[0, I 2@ T, (3.375)

Proof Let A denote the largest diagonal element of the matrix A defined in (3.259), and note that from
(3.258),

VQVT 2 s VVTAIIHATV VT (3.376)
_ 1 x
=251 44 G377
= S (—AT@H T ) (ST (-AIT)T, 63T

' where (3.377) follows from the orthogonality of V. Since A'is the largest eigenvalue of A J(T*), the
infimum of (3.378) may be found in two steps. Defining

X = -AJT*), - (3.379)
N §
X = x X, (3.380)
and
M = J7'\@T) T (I T, (3.381)

the following two problems may be solved independently:

igg X*MxT (3.382)
subject to

Hx I =1 (3.383)
(from (3.380)) and

X" > al (3.384)
~ for some o.> 0 (from (3.367)); and -

. A2
T

(3.385)
Since (3.382) is in quadratic form with M > 0, the infimum exists and occurs at the constrained
infimum of X’; combining (3.383) and (3.384), it follows that

X' =1 ' (3.386)
minimizes (3.382). In the case of (3.385), on the other hand,

4 X _2)(2A-1)-2¥
dh 2A-1 (2A-1)2

(3.387)
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=0 (3.388)

at the extremum, yielding the solution
A= 1. (3.389)
Note that this solution satisfies (3.369), and is the only solution that does so. Moreover,

d? A2 - 2
da? 2A-1 (2A-1)3

(3.390)

>0 (3.391)

for all A satisfying (3.369), confirming that (3.389) corresponds to a global minimum.

It follows from (3.386) and (3.389) that X = I, implying (3.374). Moreover, substituting (3.374)
into (3.257)-(3.259) yields V = A =1, so that

vovT = J"(P)ZQ*)(J'I(I“))T (3.392)
Thus, the lower bound on (3.378) is in fact actneved by the choice (3374), establishing (3.375) and
completing the proof. ]

Definition 3.1 In the multivariate case, the Fisher information matrix of the density fg(x)at 9,8 € ©,
is defined as

I(fo)

By | [Tatog fote) | [Tatog o) | | (3.399)

T
1 1
fg{ [fg(;s) Vo folx) ] {fg(:!) YV, felx) ] jl, (3.394)

provided these expressions exist.

Corollary 3.6 For a given family of symmetric distributions with location parameter 9, let the least
favorable distribution f4(x) = f(x ~ 9) be such that the corresponding influence-bounding function
W(x - 9) satisfies the conditions of Theorem 3.2. Let TR be the recursive minimax robust estimator of §
defined by equation (3.228), with coefficients {A, } satisfying the conditions of Theorem 3.2 as well as
(3.374). If the true underlying distribution is f ¢« (x), then

L(Vn (I?-8*)) - N [0, IMY(fge) ] (3.395)
as n — oo (i.e. I¥ is asymprotically efficient). In that case,
A* = I (fg) ‘ _ (3.396)

Proof In analogy with equations (2.131)-(2.135), (3.231) yields

i .
Jij8%) = ‘é%’ Ei(@) : (3.397)

=%
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M

2 [ wia-t) fla-00) de (3398)
J

=8*

]
59; [ wila-8%) f(x+2-20*) dg | (3.399)
)

|L=g‘

fi

|
[ witz-8%) —a%-f(;ﬂ—zﬁ*): ds, (3.400)
J = g0

where (3.398) follows from (3.229), (3.399) from a change of variable (with x replaced by x — 8* + ¢),
and (3.400) holds by virue of the Lebesgue dominated convergence theorem, provided that f is
bounded and differentiable in a neighborhood of 8* . Postponing for a moment the justification of this
step, (3.400) yields :

_ 1 3 ‘
J;j(@*) = j' [" Fz-8%) o f(x-1) :£=Q. }
L 2 raraen i | fGegd G
f(x-8*) o - fe =g -
a.s. from (3.227), and a comparison with (3.394) establishes that

J@*) = ~I(fg). | (3.402)

Thus, the restriction {lJ(8*)ll < e (imposed by Theorem 3.2) implies finite Fisher information and

hence bounded and differentiable £, justifying (3.400).

Combining (3.374) and (3.402) establishes (3.397). Moreover, in the special case when the
underlying distribution is indeed the least favorable one, a comparison of (3.227), (3.230), and (3.394)
reveals that :

Z(O*) = I{fg), (3.403)
so that (3.375) reduces to (3.395), proving the assertion. |

Theorem 3.2 and Corollaries 3.4-3.6 show that all the desirable properties of the recursive
minimax robust estimator extend to the multivariate case. Given a least favorable distribution with
location parameter 8, the vector-valued influence-bounding function W(x —8) can be found from
(3.226)-(3.227), and the resulting estimator I? is consistent and asymptotically normal under fairly
weak conditions. There moreover exists a choice of A minimizing the asymptotic variance, and this
choice results in an asymptotically efficient estimator when the true underlying distribution is the least
favorable one.

There is nevertheless one problem. So far, in the present section, matrices were ordered in the
usual way -- specifically, given X, Y € R™™, ¥ > X if and only if ¥ — X > 0, i.e. their difference is
positive definite. This is not a lattice ordering, however. Practically, this means that (in contrast to
numbers on the real line') two non-equal matrices need not have an ordered relationship. Thus, finding
the member of a class of distributions that minimizes the Fisher information is not generally possible in
the multivariate case. In the special case of spherically symmetric distributions, the multivariate
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extension is of course trivial: the least favorable distributions and influence-bounding functions are
found coordinatewise, and everything else follows immediately.

Huber touches on the multivariate case only very briefly (1972; 1977, p.35; 1981, pp.211, 222-
223). He proposes to consider spherically symmetric distributions, and to apply non-degenerate affine
transformations of the form x — W (x + @) to obtain parametric families of "elliptic" distributions.
This, however, brings forth the problem of determining W when, as is usually the case, it is not known
a priori. Indeed, nothing has so far been said about the problem of "scale estimation”: Sections 2.2 and
3.1 assumed unit (or known) scale -- an assumption implicit, for instance, in the definition of the ¢-
contaminated normal neighborhood as a set of perturbations of the standard normal distribution. Huber
addresses the issue of simultaneous location and scale estimation in the scalar case, and also offers
some methods for estimating W (Huber, 1981, pp.215-223). This problem is resolved later, in Section
4.4, where an estimated covariance based on theory is used; for the present, it is assumed that W is
known.

Given the measure space ( X, B, i ) as before, let { x;, * - -, x, } be a sample of independent
random variates taking values in X, with a common spherically symmetric distribution function P; let
P={Py:0c O}, © as before, be a family of spherically symmetric probability measures on
(X, B) such that for all § € ©, Py is absolutely ‘continuous with respect to i and admits the density
fqin accordance with the Radon-Nikodym theorem. Define the linear transformation

Z, = W x,, (3.404)
n=1,2, ---,where W € R” is a known matrix, with W > 0.
Let fo € Pbe the least favorable distribution, and consider the recursion

¥ =¥ + WA (W (2 -1 ) (3.405)
n=1,2, ---, where {A,} is a given matrix sequence with A, € R??, TV is an arbitrary (possibly

random) starting point, and W(x—8) is related to fg(x) = f *(x—§) through equations (3.226)-(3.227).
Note in passing that the W matrix premultiplying A, is there primarily for purposes of normalization,
and that similar ideas are used in Masreliez and Martin (1974, 1977) to design a one-step multivariate
robust estimator. The following result holds:

Corollary 3.7 Under the consistency conditions of Theorem 3.2, T¥ — W I* as n — oo a.s. Under the
asymptotic normality conditions of Theorem 2.7,

L(Vn (IV-WT*)) - N[O. WVQVTWT], (3.406)
where Q and V are defined by equations (3.258)-(3.259).
Proof Premultiplying equation (3.405) by W™! yields
| W Th, = W IV + A, sz[W" (z.-T7) ] - (3.407)

or, defining
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I =w'ry (3.408)
it follows that
La=5L +A,wWw'z -T,). (3.409)

From (3.404) and by hypothesis, {z, } is a sample of independent random variates with a common
distribution function, say P;, so that

P(z)=P(x) (3.410)

Thus,
Ep, [M(W‘lz—-l’)} = Ep [m(& -I) ] _ (3.411)
= §T), (3.412)

where (3.411) follows from (3.404) and (3.410), and (3.412) from (3.229). A similar argument
establishes that

Ep, [MW“L—I)}!T(W"z-I) ] < So (3.413)
for some S, < oo, from (3.253). Thus, under the conditions of Theorem 3.2, T, - T* as n — o as.,

whence it follows by (3.408) that T — W T* as n — o a.s.
An argument similar to (3.411)-(3.412) also establishes that

Ep, [( WWlz-T)-ET)) (w(W'z-T)-ET)T } = ZT), (3.414)
so that under the conditions of Theorem 3.2,

L(Vn (L,-T*)) - N(o, VQVT], ‘ (3.415)
where Q and V are given by (3.258)-(3.259), and (3.408) establishes ‘(3.406), completing the proof. W

Clearly, statements analogous to Corollaries 3.4-3.6 can be made for the recursion (3.405). Thus,
in the absence of knowledge of the least favorable distribution in an arbitrary neighborhood of
probability measures, the multivariate minimax robust estimation problem can still be solved at least if
the observation can be expressed as a linear transformation of a random variable with a spherically
symmetric distribution.

3.3 The Time-Variant Case

So far, only the time-invariant case has been addressed: the sample of observations was assumed
to be not only independent but also identically distributed, and the location parameter of the common
distribution function was sought.

A generalization of these results concerns the case where the parameter to be estimated changes
over time. This has been considered by Burkholder (1956) and Fabian (1968), both of whom analyze
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the case where the observations are not distributed identically but according to a converging sequence
of probability distributions. An alternative model is one in which the sequence of distributions does not
approach a limit, but is a known time function of an unknown but constant parameter. This case is
discussed first in the present section.

Let (X,B, ) be a measure space, as before, and let { vy, *--,¥, } be a sample of
independent random variates taking values in X, with a common spherically symmetric distribution
function P centered at the origin; let P:={ P3:9 € © }, © as before, be a family of spherically
symmetric probability measures on ( X, B ) such that for all § € ©, Py is absolutely continuous with
respect to i and admits the density fq in accordance with the Radon-Nikodym theorem. Define the
transformation ’

Zy = 0, + Y, (3.416)
n=12 ---,where
- Bay = Fo8,, (3.417)

(F,}is a known sequence of non-singular matrices with F, € R??, and 8, is an unknown (but fixed
and finite) parameter.

Let fo € P be the least favorable distribution, and consider the recursion

Iiw = Fo LY + Ay W(za - Fa IF ), (3.418)
n=0,1, ---, where {A,} is a given matrix sequence with A, € R??, T¥ is an arbitrary (possibly

random) starting point, and W(y~8) is related to fa(v) = " (z—8) through equations (3.226)-(3.227).
Define §(T'), Z(T), and J(T) as in (3.229)-(3.231), provided these expressions exist. The following is a
generalization of Theorem 3.2.

Theorem 3.3 -Let §(T) exist for all T, and for any & > 0 and all g x ¢ matrices M > 0, let

suap ITMET) < O. (3.419)
d<UTH ’

Assume there exists an §g < = such that
Ep [m(z—:) ¥ (@-I) ] < So (3.420)

" for all T, and let {A,} be a sequence such that A, > 0 for all n,

T A, = = (3.421)

Y ATA, < o, (3.422)

n=1 -

. If there is an & < = such that for all n and all m, with 0 £m <n,

n T n .
{[‘[ Fil [1‘[ F,-}<oc[ (3.423)
Jj=m J j=m

-
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(where products are ordered by descending index), then, given any I5 <o, T¥ -9, — 0as n — oo
as. (i.e. IF is consistent). ‘
If, moreover, £(0) = 0, §(T) is continuous, differentiable and strictly monotone in a neighborhood

of 0 with J(0)Il < oo, if Z(0)> 0, XT) is continuous and bounded in a neighborhood of 0, and
finally if

limsup n A, < oo, (3.424)
then
L(EY2 (IF-8,)) — N(O,1), (3.425)
where
T
5= (14400 | Fasa B (144070 ) + 403045 Gae
with |
=0 ' (3.427)

(i.e. IF is asymptotically normal).

Proof The proof follows in part that of Theorem 3.2, and some intermediate steps are omitted for
brevity. Note first that, denoting the distribution of the observation z at time n by P,, (3.416) implies

P(z) = P(y), (3.428)

so that
EP,[m(z—I)] = Ep [su(.v_+§,.—z)] | (3.429)
= &I-8.) (3.430)

A similar argument establishes that

Ep 1_!!(5."1' YyyTz-T) ] < S (3.431)
for all T, from (3.420).
Rewriting (3.418) as
Li-l = 8, = F, Lf = O + Ay Wz — F, -I-f 2 (3.432)

it follows, upon squaring and taking expectations, that

3

E[(Ifﬂ "QAH)T(LFH —QIH-l )}
= E{(If'gn)TFann(LF__eJl)]
[( Zf-gnﬂ)TAu m(in-&-l"Fn If)]

+ 2E|(F,
L
w Bl YTt = Fu T VAT Ay W2t - Fa IF) ] (3.433)
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T

= (If - 8T [1‘[ F;

j=0

[H F; ](Ig"go)
j=0

”n

n T
+2Y E[(Fj If -9 [ IT Fk}

j=0 k=j+t

{ I1 F: ]Aj Wzjn - F; If)]

k=j+l

n n T
+ 3 El:ﬂT(ljﬂ"Fij)AjT [ I FL—]

j=0 k=j+1

[ I1 F: }Aj Wzju-F; I,F)} (3.434)
k=xj+l »

(products are replaced by the multiplicative identity if the limits of their indices overlap, and are
ordered by descending index), where use is made of (3.417) in (3.433). Noting that (3.434) is scalar, an
argument analogous to (3.263)-(3.264) yields

‘n T n
El:mr(ijé-l"pjzf)AjT[H Ft} [n Fk}Ajy(Qi-l“FjI}:)}

k=jal k=j+l

U{E{m(;m ~F, Iy (zn - F; I}) ]

n T n
Aff [ IT Fk] [ 1 Fe |4 (3.435)

k=j+l k=j+

= U{E{Epiﬂ[.‘ﬂ(ijﬂ“vj )Y g -FI) | I H

AT [ 1‘[ F, ]T [ 1’[ Fy }A,. } (3.436)

k=j+l k=j+1

IA

w.p.1 for all j. where (3.437) follows from (3.423) and (3.431). Thus,

r T
n | n n
)y E‘MT(EI‘H‘F;I}P)A;'T{H Fy [I’I Fi Ai!ll(ijﬂ"pfl'f)]
j=0 L k=j+1 k=j+l .
S ar|Se Y A4 (3.438)
Jj=0
< oo : : (3.439)

w.p.1 as n — =, from (3.422), the finiteness by hypothesis of S, and (3.423). Moreover,

r{ﬁ .

=j+l

A; W(zj —F; If)

E[(FII/F"QI-H)T { n Fk
k

=j+l
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T
E[E’m[(Fi IIF /+1 )T Lg{l Fy ]
n |
{H Fk]AjM(ij-ﬂ"Fij)}If}] (3.440)
k=j+1

n T
E{(Fi If-8;..)7 [ I }
k=j+l

[ I:I Fy }Ajg(ﬁ’] If .e.j-n)jl (3.441)
k=j+1

]

<0 (3.442)

w.p.1 for all j, from (3.419), the non-negativity of the quadratic product, and that of A; by hypothesis.
Thus,

i [F,If Q,+1)T{ﬁ F

j=0 k=j+l

k=j+l

T n
[H Fy ]Mw(zm F, If)] < 0 (3.443)
w.p.1 for all n. But since

E[(Tfn - 80) T (Zhu =8 | 2 0 (.444)

because the term is in quadratic form, and

(I -8 [n F;
j=0

T n
[1‘[ F; ](IS -8 ) S a(Tf -8)T(T5 -98) (3.445)
j=0

< oo (3.446)
as n —» oo, since T < o= by hypothesis and from (3.423), it follows that

3 E [(1",_,-.9.,'4.1)T {H Fy

j=0 k=j+l

T n
[ IT & ]Aj Y(zjm = F; If)}

k=j+l

n n T
=3y E[(Fj If."ﬂjﬂ)r { I Fk}

j=0 k=j+l

a

k=j+1

A; E(F; l'f -8j4) } (3.47)
must be bounded from below w.p.l as n — oo,
Defining
Y, = E[(I.f-o-l -0, )T (T -8 ) — (I -8, )T(If*gn )
Lzt ] (3.448)
it can be shown in a manner analogous to (3.278)-(3.280) that the sequence - '

-
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{(_TI—Q. YL -8,) - z';: Y,-}
j=
is a martingale. Squaring (3.432) and taking conditional expectations,
E[(Ifu =0, )T (T = Bnit) : f, ,If]
= (L -8 F F, (L7 -8)
+ 2Ep, [ (Fa T - 00 T4 W(aan = Fa T)
+ Ep

1[!{1‘(5&{-1"17& Zf)AuTAn M(Z.nﬂ‘Fn L:)

| ' F
‘.Z.'f, A

A

= (IF -8, )T FLF, (IF - 8,)
+ Z(Fnﬂ—ga+l )TAu g(Fn Z:f—ﬂn+l)

+ EPn+1[mT(E;!+1_FnIf)AEAnl[(ZnH"FnIf)
[
| I{? ,I_f]

w.p.1, where use is made of (3.430); it then follows from (3.448) that

Yo = (LF -8 )T (FSFa~1)(If-8,)
+ Z(F,,I:—-Q,,H)TA,,Q(F,,I,{:—_Q,,.H)
+ EP,IH[MT(_ZA-Q-X—FA If)AnTAn M(En-)-l—pu If)
Py

w.p.1, and thus,

Y =Y (IF-9)T(FTF, -1)Y(If-98;)
j=0 j=0 ) )

F2Y (F I -0m) T4 &CF; I - 850)
j=0

* % EP;‘+1[MT(5-}+1"FJ‘ ITVAT A Wz - F; If)
J .

|
[I’;’."‘,I}:]-

* Now: from (3.432) and (3.417),

(Zf -9 T (FFF; -1 )(If-8)

(3.449)

(3.450) -

(3.451)

(3.452)

(3.453)
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= (IFy -9 )T FE (FFF;-I)F;  (IF; -9;)
+ 2(Fj If —9)T(FFF; -I)AjL Wz, -Fj TEy )
+ ¥z ~Faq IO AL (FTF 1)

AWz -Fi,IL) (3.454)

i1 T jwl
= (15 - 80)7 [’[1 Fk} (FFF,-1) ['I'[ F, ](zs—ﬂo)
k=0 k=0

i -1 T
+2Y (FeIf-8.,)"7 { I F.-} (FTF;-1)
k=0 i=k+l

i=k4l

-t
[ I1 ]Ak Wz —F I )
i=k+l

S oyt FyaT | T T
+ 2 ¥ (zn-FIE)A | J1 Fi | (F/F;-1)
£=0

Ac Wz -Fe I) - (3.455)

Jj=1
1~
=kl

(where sums are replaced by the additive identity if the limits of their indices overlap), so that

S (IF-9)T(FFF, -1)(IF-9)

j=0

T j-1

v(FjTFj°I) [H Fy }(Ig -8)
k=0

j~1
=3 (I -9,)7 [’r[ F,
k=0

j=0

i =k+1

. j—l T
(szf-am)T[n F.-} (FTF,-1)

A W zew = Fo IF)

j~1
Il F
i=k+l

n ]—l 1_1 T
+ XL ¥za-F IDAS [1’1 F;] (FTF=1)
=0 k=0 izk+l
j=1
[H Fi |Ay Wza - Fe I ) (3.456)
izk+l
r .
F T ]
=(Lp —-8) Z{[n F, {H Fy
j=0 k=0 k=0
il T(j=a
= | IT 7 IT £ (Ip -9)
k=0 k=0

T i

'{HF;

i=k+l

n-1 n j
+2Y (AR If-6.)" X [[H F;
k=0

o j=k+l isk+l

[n}(m

imee] ki#ﬁ-l

}Ak W zew = Fe IF)

-
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e n . T .
+ % W au-FIHAT 3 Hﬁ Fs} [fl F.-}
k=0

Jj=k+1 i=k+l i=k+l

j=t Tl ‘
- | IT F [T Fi | | A W( 2w ~ Fe IF ) (3.457)

i=k+l ikl

) n T n
= (I§ -8)7 [[n F,,} [H F,,] —1} (I5 -89)
k=0 k=0

i=k+1 i=k41

n-1 n T n
+23 (Fkﬂ-gk#l)T[[H Fi} [H F;}-f]
k=0
A W zen - F IE)

n-1 ”" T n
+ 3 ll!T(zku-FkT_kF)AE{[H F.'] [n Fi}"]
k=0 , ik 4l imk+1

Ay W zen - Fe TE), (3.458) _

where (3.456) follows from (3.432), and (3.458) holds by virtue of cancellation. Thus, from (3.453)
and (3.458), ' .

E[Z Y; } = (Zﬁ-ﬂw"“ﬁ'ﬂ]r [fl Fk} -1} (I§ - %)

n-1
+23% E|Ep
£=0 *

. T
(Fth—_e_H‘)T[{H F.']

i=k+l

(r] Fi} —I]Akm(zm—mf)!zf]]

i=k+1

n T n
sz“(ml-&zfmi“n F;] [ F.-]-I]
) +1

i=k+1 i=k

n-1
+ Y E
k=0
A !l!(_"-u-l‘FkIf)]

n

# 23 E|(F Tf -0 A BCF T ~ 8 |
k=0

+ 3 E[Ep,,ﬂ-[ WNzn - Fe TFYAS Ay W zen - F IF)

| Tt 1[” (3.459)
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i=k+l

[ﬁ F,-}Akamf—em)]

k=0 i=k+]

a " T
+ 3 E{MT(QH-FkIf)AkT [ IT F ]

[ I1 % ]Ak Wzem-Fe IF) } (3.460)
izk+l

w.p.1 for all n (noting that £ = n terms in the first two sums on the right-hand side of (3.459) would
be identically zero and can thus be added in at will), where each term is bounded by virtue of (3.423),
(3.439), and the finiteness of (3.447). Hence,

j=t

| n |
Sup E :(I:-i-l “94n+1)T(Lf+1‘Qn+l) - Z Y,’ :]
s Sup E[(Iftl‘gn+1)T(If+1‘gn+l)]
‘ n " T
+sup 1(T5-8)7T { [I'[ Fy ]
LI k=0
n |
[n F,,} —t] (I5 -8) |
k=0 |

n n T
-inf 2% E[(F,,I{—QM)T{H F.-]

n k=0 {=k+]

[ﬁ F; }Alz E(F I&F-Qul)}

i=k+l

n . n T
+ sup 3 E[!!T(Z.eﬂ“pklf)AkT[H F;

i=k+l

[ [T F }Ak M(Ekdl-l“pkl‘f):l (3.461)

i =kl
< oo (3.462)

a.s., where use is made of the positivity of the first and last terms in (3.461), and the negativity of the
third; the finiteness of the first term in (3.461) follows from the fact that the right-hand side of (3.434)
was shown earlier to be finite. Note in passing that the infimum and supremum (respectively) of the last
two terms in (3.461) are their limits as n — oo, by virtue of monotonicity. Using a martingale
convergence theorem (see the version in Logve, 1963, pp.393-394), it then follows that the sequence
(37449) converges almost surely. It remains to show that each term in (3.449) does so as well. '

Since

S [
go E[E”m[mT(zi“_Fi IfYAM A Wz - F, I | I ] }
)
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= u{z E[Epj,,,[lu(z;u-i"j I ¥z - F I) -T-f}
j=0

AT A; ] ] (3.463)

< :r{s0 Z AT A; } (3.464)
j=0

< o (3.465)

(from (3.422) and the finiteness by hypothesis of Sy), and moreover the sum on the left-hand side of
(3.463) is monotone (each term is of quadratic form and hence non-negative), it converges. Thus, the
convergence of (3.449) implies (from (3.453)) that there is a C such that

n

lim [(zfﬂ—g,.ﬂﬂ(rfﬂ —0) - X (IF -9 )T (FIF; -1)(If-9;)

L R j=o

+ 23 (F;If-9,u)TA; &F; If"..jﬂ)}
j=

i

n+l
lim [z (IF-9)T(If-9;)

R—yo0 j=0

- X (If-;)"FF; (If-8;)
j=0
+ 2% (FIf -8;.)T A; &(F, zf—g,-,q)] (3.466)
j=0

=C, (3.467)

whence it follows that

lim [(Lﬁl =804 )T (Lin = 8uwt) = (L =8 )T FIF (L7~ 80)

C 2P I -8 T A BF I -8, | = 003.468)

w.p.1. But since (3.447) is bounded from below,

lim sup E{(F,.If~§n+l)r { [T F

n =0 k=n+l

R
(H FkJAné(FnIf“QnH)}

k=n<+1
=0 (3.469)
or, since the expmssion is negative a.s. from (3.419),

I , ,. T( » !
lim inf E[l(F,.Lf—Q,,H)T[H Fk} [H Ft}Aug(Fny—.e_nH)l]
\ I

A =00 k=n+1 k=n+l
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= 0, (3.470)

implying that there exists a subsequence {n,, } such that

lim E
L

| ’ o T
l(FamL{; —Qn,,,q-l)r [ I Fk}

| k=n_+1

o |
{ H Fk }Anm g(FnuI:{; ‘gnmﬁ-l)::l = 0. (3471)

k=nm+l

Hence, by the Chebychev inequality,

m (F, Tf -8, )" [i{ﬂ Fe ]T [kil“ Fe ]A,,, E(Fo, If =8, 1)
=0 (3.472)
w.p.l, which in turn implies, from (3.419) and the non-singularity of F, for all n, that
lim (I; -8, ) =0 : (3.473)
w.p.1. Thus, for any &, > 0, there is a large enough m(3;) such that

(L -8, YTFT F, (If -8,)

+ 2(F, T8 -8, )T A, &(F, IF -8, 1)) < & (3.474)

w.p.1 for all m > m(3,). Substituting into (3.468), noting that this implies (3.474) with n,, replaced by
n, +1 and 8, replaced by &, = 0(8;) or less (by (3.422)-(3.423) and (3.472)), and letting &, 4 0,
implies

lim. (If -9,) = 0, ' ' (3.475)

which is the desired result.

To prove asymptotic normality, note first that by hypothesis, §(T) is continuous and differentiable
in a neighborhood of 0, say T Il < &, and &(0) = 0. Thus,

§I) = JOOT + O(NLN?) (3.476)

for IIT Il < §,. Moreover, since I7 —8, — 0 w.p.l (as proved above), there exists a large enough
n(8,) such that IF, I7 - 8,1l <3 wp.l forall n 2n(3,). It follows that (3.432) may be rewritten

\
as i

U

Fn(If—'&) + A’l [M(_zn+l—FnI:)‘§(FnIf—§n+l)}

i

F
Imrl - Qu-l

+ Au §( Fn If "9314-1 ) (3.477)

I

(1 +4. 7@ + 4, O, 1F, TF ~ @) | Fy (TF -8, )

+ A, [m( Zam ~Fa IFY -8 F, TF - 8,,) ] (3.478)

-
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w.p.1 for n 2 n(3,), so that (I¥,, - ©,,,) is the sum of a sequence of zero-mean random variables
(plus some higher-order terms). Note that

Ay Op(NWF, TF = 0,1l ) = 0,(n™) (3.479)

at least, in view of (3.424) (which implies that A, = O(n™") or less) and (3.475) (which implies, using
(3.423), that O,( IIF, If — 8,411l } = 0,(1) or less).

Next, define for some 3, > O the set
A(n,8,I,0) = {z: N ye-T)-ET-D N2 28n } (3.480)

Since £(0) =0 by hypothesis, &(F, If ~8,,,) <> w.p.l for all n 2n(3;) by virue of continuity.
Together with (3.420), this implies that

Nz —F. IF)-E(F, If =8, ) 1% < o (3.481)

w.p.1 for n = n(3,), so that

Lim A(n, 8, FoI75,0,u) = @ (3.482)
n —yo0
(or possibly a set of measure 0). It then follows that

lim i Wz ~Fy IF ) = &(F, IF = 8,0 ) W 2dP,(z) = 0 (3.483)
"7 Am8FING,

w.p.1 for any §, > 0. This is analogous to Lindeberg’s condition for asymptotic normality, and is used
in the proof below.

The characteristic function of the update in (3.478) is defined as

E¥s) -

isT, - Fy_ Fo
E [e = An(y(znﬂ nIn) §(Fnzn 1+1)) ] (3.484)

E {EP [ei;_TAn(y(_v.-anﬂ~ nlvf)-é(pnrvf' 1)) | F ] ],

Ed

(3.485)

w.p.l, from (3.416) and because {v,} are independent and identically distributed. Using Taylor’s
theorem yields (see (3.308))

EP [ei 1TA,,(32(1+§ﬂ+l-F,,If)—§(F,,Zf—0_,,+,)) ] F ]

=

it
—
[
IJI:--
fox
-
>
E1
M
]
3
5
|
'
t
~
S
E1
~
1Y
+
2y
~
-
]

. L TE (3.486)

where R, denotes the remainder. Since the truncation error is dominated by the first omitted term in
the Taylor senes,

| Ep(R, 1 L7 11
<4 [ e Ay (W@ F. L)

.' iTAn &(—V—*Qm-l’FnI:)'g(FaIf"gn +i 553

- EFIF9,,)) 12 dP @)

-
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L

+
6 ‘!
1274, (048, 1 ~F I -8F  I7-8, .1 ) >8

5T Ay (Y@+Ba~F,IF)

- EF,IF-8,,)) 1 3dP(x) (3.487)

for some §,; > 0, from (3.310)-(3.311). But since

13T Ay (W@ —FoID) = EF I5-0,,1) ) | 2 dP ()
15TA, (u(x 48, . ~F,I5)~§(F,I5-8, , )1 <8,

< 8sTA, UF, ITF-0,,0 A, s, (3.488)

where §; can be made arbitrarily small, from (3.313)-(3.314), and (bounding the other part of the
remainder by the next lower term for convenience)

, ST A, (Y@, ~F I - EF, TF-8,,))
1274, (U 48, .\ ~F, I3) - ECF,I5-8, 1)) >8

( W@+, —F, IF) = E(F, IF0,,0 )T A,T 5 dP (v)

=0,(1)sTA, AT s (3.489)

w.p.1, from (3.483). It follows, combining (3.487), (3.488) (letting 8; { 0), (3.489), and the fact that
A, = O (n™") or less from (3.424), that

VEp[R, VIF 11 < g,(n7D) Hig 12 (3.490)
Denote the characteristic function of TF — 8, by

) = B[t Ty, (3.491)

and define the matrix sequence

B, = (I + A, J©) + 0,(n™))F, (3.492)
and the recursion
Grnils) = Ga(Bys) {1 —-;—;TA,, Z0)A," s 4 (3.493)
 with
G = g = T (3.494)

(since T§ is a given constant). It can be shown that {,(s) and {J(s) are asymptotically equivalent by
noting that

|87 = L@ | = | LH(BTS) ¥
T |

- L(BTs) [1-3 T4 Z0 4, s | (3.495)

IA

[

) .
l\)‘r—

|
$TA B AT | | CIBT )~ Ga(BTs) |
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et e -1

|
+ 2sTAZOA S |, 34%)

from (3.324)-(3.325). But

|
oo - 1+ -;-.:TA, ZO AT |

1 |
E|ER, 1T 1-5 274, [zwnrf—.e,,ﬂ)—Z(OJA,T;]: (3497

IA

0p(n7%) g 11 (3.498)

w.p.1, where (3.497) follows from (3.486), and (3.498) from (3.424), (3.490), the fact that IF -9, -0
w.p.1, and the continuity and boundedness of (T ) in a neighborhood of 0 by hypothesis. It therefore
follows, using (3.327), that

] |
| CH(B.Ts) | Y@ - 1+ ST A4 XA | = oy g2 (3.499)

Similarly, again using (3.424),

I I
: 1 - %;TA,. 0 A, s : = }1 + 0(n™d) H,:llz} (3.500)

and
8, I = 0Q1) + 0,() ) (3.501)

or less, from (3.492) and (3.423) (which implies that F, = O(1) or less). Thus, equations (3.334)-
(3.341) hold, proving that {(s) and {,(s) are asymptotically equivalent. Moreover, it can be shown by
induction (see equations (3.342)-(3.347)) that

nel
log §,(s) =isT [1‘[ B, }(IS -8)
j=0

k=j+1

n-1 n-1
+ Y log [1-%& ( 1 & ] A; 2(0) ;T
j=0 =

k=j+l

i

T
s } (3.502)

But since
nr + A, 700) + op(n“) <1 3.503)

w.p.1 for large qnough n (frrm (3.424) and the monotonicity by hypothesis of &) in a neighborhood
of 0, which implies that J (0) < 0), it follows by (3.423) that
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fm T 811 V& fim [T 7 + 4 SO + g™ ¥ (3.504)
=0, (3.505)
so that
im [[ B =0, (3.506)
—— 1%

and the first term in (3.502) vanishes as n — . Moreover,

n n T
log {1-%—3{1’[ B,,]A,-Z(O)A,-T {1’[ B,‘} ;}

k=j+l k=j+l

n n T
= %s.“' [kl'I B, } A; Z(0) A;T [kl‘[ B,;} s (3.507)

=j+l =j+1

approximately (using a first-order Taylor expansion for the logarithm) at least for large n, since (3.506)
and (3.422) imply that the term on the right-hand side of (3.507) vanishes as n — . Thus,

tim C‘(i) - e =0 k=j+1

n=1 T
A; T0) AT [ I ak} };_
k=j+1 ’
= 0, (3.508)
i.e. {,(s) asymptotically has the form of the characteristic function of a normal distribution, and hence
TF - 9, is asymptotically normal as well. There only remains to derive the limiting distribution; since
the sequence {F,} is not required to approach a limit, however, this last step necessitates some form of
normalization,

Define
A=l n-l n-l T
T, =% [[] B, J A; Z(0) 4,7 [n B,,] , (3.509)
j=0 k=j+l k=j+1
and note that (3.508) implies
im (E[(Zf-e)(Zf-8)7] - % | =0 (3.510)
It is easy to verify by inspection that (3.509) yields
Thn = 8, T, B + A, ZO) A, (3.511)
with
£ = 0. (3.512)

Defining the matrix sequence {Z,} as in equations (3.426)-(3.427), and setting
A, =%, - %, ) (3.513)
it follows (using (3.492) and the fact that F, = O(1) or less) that

. T :
B = [1 + A, J(O) ] Fod, FF [1 +A, 1(0)] + 0,(n") ¥, (3.514)
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n n T
{l} (I+A4;J0))F; ]Ao [H-o (I +4;J(0))F; }
i i

+ X 9%G™ { [T (I+A JO)F, | Z, (3.515)
j=0 k=j+l
n - n
=Y 0,(G™ [ [1 (I1+A:J©)F: }Z'., ' (3.516)
j=0 k=j+l
since Ay = 0 from (3.427) and (3.512). But
lim J] (I +AJO)F, =0, (3.517)
A% =iyl
as argued previously, and moreover (3.511) yields
. n-1 n=1 T
.= |11 B |Z% |I] B
=0 j=0
n-1 n=1 a-1 T
+ 3 | TI B |4, Z0AT | [T B, | . (3.518)
j=0 | k=j+l k=j+l

where the first term vanishes by (3.512), and the second is bounded by virtue of (3.420) (which,
together_ with the finiteness of §(0), implies that £(0) is bounded), (3.517), and (3.422). It therefore
follows that

im (%, - %,) =0, (3.519)

and the variance of ( If — 0, ) approaches X, as n — oo, This implies (3.425) and completes the proof
of the theorem. u

Corollary 3.8 Theorem 3.1 holds also if 75 is a random variable, provided that
E [ f ahH’ ] < oo, (3.520)

and T% is independent of z,, n =2,3, ---. If, moreover, T¥§ is a translation-invariant function of z,,
then 77 is translation invariant.

Proof The proof of the first part of the corollary follows that of Theorem 3.3 identicaily. In the proof of
consistency, the condition of independence is required for equations (3.437), (3.441), and (3.451) to
hold. Furthermore, products of the form (T4 — 85)T (T§ — 8) (with or without norming matrices) are
replaced by their expectations in (3.434), (3.445), and (3.459-(3.461). and (3.520) is required for
(3.446) and (3.462) (in their modified form) to hold. In the proof of asymptotic normality, independence
is required for (3.486) and (3.497) to hold. The exponential in (3.494) and (3.342) is replaced by its
expectation, while the first terms on the right-hand sides of equations (3.343), (3.344), (3.346), and
(3.347) are réplaced by the logarithm of the expectation of their exponentials. Equation (3.520) is
required for the first term in (3.502) to vanish as n — oo. The proof of translation invariance is
identical with that in Corollary 3.1, and is omitted. ' A '
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A further generalization concerns the case where the observations {z,} are corrupted by noise that
is independent but not necessarily identically distributed or spherically symmetric, but that can be
expressed as a time-varying linear transformation of a sample {v,} of independent identically
distributed random variables with a common spherically symmetric distribution function P. In other
words, let

Zn =8, + D, v, ' (3.521)

n=12 ---,where {D,} is a known sequence of non-singular matrices, D, € R?°9, and @, obeys
(3.417) with 8, an unknown (but fixed and finite) parameter. Define the recursion

L?-i-l = F, It? + Dy A, ¥ [Dn_}-l (2 —F, LD) }’ . (3.522)
n=0,1, -+, where T5 is an arbitrary (possibly random) starting point, and {A,} and w are as

defined earlier.

Coroliary 3.9 Under the consistency conditions of Theorem 3.3, if there is a §, > 0 and a J, < == such
that

BiI < D, < By (3.523)

for all n, then, given any T5 <o, T2 -9, = 0 as n = o= as. Under the asymptotic normality
conditions of Theorem 3.3 and (3.523),

L(Z'2(I7-8.)) > N(O, 1), (3.524)
where

5, o= D, [1+400 | (D7 Fu) 5 07 Fu)T (144,70 ) DT

+ Dy A, ZOVAL, DT (3.525)

with

% = 0. (3.526)

~ Proof Letting

I, = D;'1P, (3.527)
equation (3.522) yields

DrwiTun = £y Do Lo + Dyt A ¥ D3k (2 =F, D, T) | (.529)

or, premultiplying by D, (which exists and is positive, by (3.523)),

in-i-l = Dn—-tl Fn D, zu + A, ¥ {Dn-:l Za41 _Dn—il F, D, j:n ] (3~5_29)




- 108 -

Similarly, (3.521) may be rewritten as

D'z, = D19, + v, (3.530)
or, defining
8, = D;'8,, - (3.531)
it follows that
=9, + v, (3.532)
with
8.0 = Dy Fu 8, (3.533)
= D7y Fa D, B, (3.534)

from (3.531) and (3.417). Thus, defining

F, = D7} F, D,, (3.535)
where D := I for convenience, it follows that
Ton F T, + 4, g[ DY zan—F, T, ] (3.536)
and moreover,
n T, n T
[H Fj] [H Fj}=D"T {H Fj} (D;H-l D {HF } (3.537)
j=m j=m j=m
2
< aE’. ! (3.538)
Bt

from (3.523) and (3.423). Finally, from (3.530) and by hypothesis, { D' (z, -8, )} is a sample of
independent random variates with a common distribution function P, so that

E[M(D;lz—l')] = Ep [m(x +D,.“Q,—I)] (3.539)
=&I-D'8,) (3.540)

and similarly,
E[ll!( D'z -THw™( Dl 'z -T) } < S, (3.541)

for some Sg < o0, from (3.420). Thus, under the conditions of Theorem 3.3, T, -8, > 0 asn —
a.s., whence it follows by (3.527) and (3.53) that T? - 9, = 0as n — o as.

An argument similar to (3.539)-(3.540) also establishes that
’ : T
el [woiz-1)-&1-070) ] [wprtz-1)-az-0"e) )|

= X(T -D;' 8, ) (3.542)
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so that under the conditions of Theorem 3.3,

L E2 (T, -8,)) = N(O, 1), . (3.543)

with £, given by

B o= [1+47@ | (D7 Fai D) B B Fai D)™ (144070 ]
+ A 2O AT, (3.544)
and
%y = 0. (3.545)
Thus, setting
%, =D E, (DT, (3.546)
equations (3.527) and (3.531) establish (3.524), completing the proof. =

The models in equations (3.416) and (3.521) both correspond to the case where the full state 8,
of the dynamic system is observed, though corrupted by noise. While this is rare in practice,
consistency results such as those of Theorem 3.3 and Corollary 3.9 are obviously not possible if the
observations z, do not span the entire space of the system state. In that case, different goals must be
set, such as minimizing the asymptotic. error variance rather than seeking to drive it to zero as n — oo,
The following generalization is perhaps of limited practical use, since it still assumes that the full state
can be observed, but is given here for completeness.

Consider the model
n = H,8, + v, (3.547)

n=1,2 ---, where {H,} is a known sequence of matrices, A, € R**? with p >4, and 9, obeys

(3.417) with 85 an unknown (but fixed and finite) parameter. Define the recursion

LHH = F, LH + (Hn'l;-l H, )-1 HnT+1 Ap W zhp — Hy Fy L{{ h (3.548)
n=90,1, --- (provided the inverse exists), where {A,} is a given matrix sequence with 4, € R?*®,

T is an arbitrary (possibly random) starting point, and y: R? — R is related to the least favorable
distribution of y in the manner discussed earfier.

Corollary 3.10 Under the consistency conditions of Theorem 3.3, if there is an v, > 0 and an Yo < oo
such that

wl < HYH, < 11 (3.549)

for all n (implying, among other things, that rank[H, ] =¢ for all n), then, given any T < oo,
T# -9, - 0asn — o as. Under the asymptotic normality conditions of Theorem 3.3 and (3.549),

L(Z " (LT-8:)) — N(O, 1), (3.550)
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where

L, = (HTHOHT (144,00 | #, Fay 30,

T
F,T HI [I +4 IO | By (T H
+ (HTH, ) ' HT A, SO AL, H, (HH, )™

with

I = 0.
Proof Letting

:e-n = H, 8,

equation (3.417) implies that

i = Hy1 8ap

Hn+1 Fn Q,‘

o
]

[}

Hn+l Fn (Hl;r Hn )..1 Hr;r-gn
(where the inverse exists and is positive by virtue of (3.549)). Thus, defining
F, = H  F, (HFH,)'H],

it follows from (3.549) and (3.423) that

]

n T n
H, (HIH, )" [H F; J HI Hon [[‘[ F, | (HiHy )" HT
. Jj=m j=m

2
143
< a—1

13

Hence. under the consistency conditions of Theorem 3.3, the recursion

gﬂl

+ = Fnin +Anw(£n+l—Fni:n)

(3.551)

(3.552)

(3.553)

(3.554)

(3.555) "

(3.556)

(3.557)

.(3.558)

(3.559)

(3.560)

is consistent and T, — 9, — 0 as n — > a.s. Multiplying (3.560) through by ( &%, H,., )~ HL,,

setting
T, = H, I,
and substituting (3.557) establishes that 7 - 9, — 0 as n = as.
Similarly, under the asymptotic normalify conditions of Theorem 3.3,
L(E (L -8.)) = N(O, 1),

with £, given by

(3.561)

(3.562)
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~zn = [1 +An—1 J(O) ] Hn Fn—l (HnT—l Hn—l )-l anl -zn-l
T
Huoy (B Hyo)ES HE (144,000 |
+ Apg O AL ' (3.563)

and

L =0 (3.564)
Thus, setting

:Z =H, L H (3.565)

(from (3.561)) and noting that this implies

L = (HTHH)'HYE H, (4T H, )T (3.566)

establishes (3.551), completing the proof. n

Remark Two special cases of Corollary 3.10 are of interest:

®

If p =q, then (3.549) implies that H,™ exists for all #, so that (3.548) reduces to

Ifi-l = Fn I:l + Hu_il Au M( Zn4l "‘Hn+l Fn LH ) (3.567)

(i1) Thé case

z, = H, 9, + D, v, (3.568)

follows trivially from Corollary 3.10, since (3.568) may be multiplied through by D, yielding
the recursion

-1
Ly =F T, + [(D;:l Hy YT (DY Ho) ]

(D7 Hon )T A, su[D;il (Zast ~Hant Fo T) ] (3.569)

| by analogy to (3.548). Indeed, setting A, = for all n in (3.569) shows that Corollary 3.9 is only

a special case of Corollary 3.10.
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4. Approximate Conditional Mean Estimators

The recursive estimators discussed in Section 3 correspond to the linear dynamic model discussed
in Section 1.1 when there is no process noise. In other words, they are estimators of location parameters
which are either fixed or vary in a deteministic and known manner. While there may be instances that
require such models, the absence of process noise makes this a special case of limited application. Not
only is process noise often physically present, but it is also a useful abstraction that compensates for
small and ﬁnsystematic modeling errors. This section therefore extends previous results to the case
where process noise is pressent.

Consider the model
81 = F,8, +w, 4.1)
Zv = 8 + Vs 4.2)
n=0, 1; -+, where {F,} is a sequence oi; non-singular matrices, §; is a random variable with

L(8y)=N(8p My), where 0 <My<o, and {w,} is an independent random sequence with
L(w, )=N(0, Q, ), where Q, 20 for all n. Assume, moreover, that {v, } is a sample of independent
random variates with a common spherically symmetric distribution function P centered at the origin,
and that 8y, {w, }, and {v,} are mutually independent.

Here, the "location parameter” 8, is itself random and time-variant, necessitating different
conditions and a somewhat different approach than those discussed so far; in that sense, Corollary 3.10
represents in 2 way the end of the road for a recursive estimator of a purely Robbins-Monro type. For
example, it is clear that if 8, changes raﬁdomly over time, the gains {A, } cannot always be required to
vanish as n — o since observations must continue to be taken into account in order to track the
trajectory of §,,. ‘

Furthermore, results that can be obtained in the presence of process noise are somewhat weaker
than those of Theorem 3.3 and related corollaries. In particular, since §, is now randomly varying, the
estimator cannot be consistent, i.e. the estimation error variance does not vanish, except in some special
cases. Indeed, only using asymptotic performance measures makes little sense except in the special case
where the process noise vanishes w.p.l as n — oo. Instead. it is necessary to seek other performance
criteria, measuring short-term pertormance as well.

As in the case of non-robust recursive estimation (the Kalman Filter), an appropriate criterion in
the robust case is unbiasedness and minimum variance. It is well known that the conditional mean
estimator fullfils these conditions (see for example Anderson and Moore, 1979, pp.26-28). The first
derivation of a robust approximate conditional mean estimator of the state 8, of the linear dynamic
system (4.1)-(4.2) in the presence of heavy-tailed observation noise {v, } is due to Masreliez and Martin
(1974, 1977), and is based on Masreliez (1974, 1975); some generalizations are provided by West
(1981).
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- A key assumption made by these and other authors is that at each n, the conditional probability
distribution of the estimate based on past observations { zp, * ", 2,-; } is zero-mean normal. This
assumption allows rather clever algebraic manipulation that yields an elegant stochastic approximation-
like estimator. However, while it has been shown in simulation studies to be a good approximation of
the true conditional density, it is only strictly correct for finite » in the special case where P = N(0,R)
(see Spall and Wall, 1984), which is clearly of no interest here. No analytical results have been
published to bolster empirical findings, and the resulting ad hoc application of this assumption has
therefore not been uniformly accepted in the literature.

In Section 4.1, a first-order approximation to the conditional distribution prior to updating is
derived for the case where P belongs to the e-contaminated normal family. In Section 4.2, this
distribution is used in an extension of Masreliez’s theorem to derive a first-order approximation to a
robust conditional mean estimator. Some related simplifications and approximations are then given in
Section 4.3, and a brief discussion of minimax issues follows in Section 4.4.

T 41 A First-Order Approximation to the Conditional Prior Distribution

As stated above, the method pionneered by Masreliez and Martin is crucially dependent on the
assumption that the estimate immediately prior to updating is conditionally normal. While this is never
exactly satisfied in the presence of non-normal noise, it is shown in this section that, in fact, the
zeroeth-order term in a Taylor series representation of the distribution is indeed normal. Furthermore, a
first-order approximation is derived, and the error is shown to be bounded as n — =0, provided certain
conditions are satisfied. The small parameter around which the Taylor series is constructed involves &,
the fraction of contamination.

It is first shown that the Kalman Filter recursions are exponentially asymptotically stable under
certain conditions. This property ensures that the effects of past outliers are attenuated rapidly enough
as new observations become available. The stability of the Kalman Filter recursions has been studied by
several researchers, notably Deyst and Price (1968), Caines and Mayne (1970), Jazwinski (1970,
pp.234-243), Hager and Horowitz (1976), and Moore and Anderson (1980). Hager and Horowitz (1976)
have proposed relaxing the conditions of controllability and observability, used below, to detectability
and swabilizability, but have only provided results for the time-invariant case; while they claim that
extension to the time-variant case is direct, this is not obvious. Moore and Anderson (1980) promise the
extension in a future paper, and investigate these conditions further in Anderson and Moore (1981).

The stability theorem discussed below follows Moore and Anderson (1980). Although it is
required here that {F,} be non-singular, this condition is relaxed by Moore and Anderson. The
following simple lemma will be used:

Lemma 4.1 Let A € R, B € R™™, and C € RV be such that A >0, B >0, and furthermore
A =ATand B =BT Then, ‘

A-CBCT 20 ‘ 4.3)
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if and only if
B'~CcTA"'C 20. 4.4)
Proof It is easy to verify that
A-CcBCT 0 I-CB||A C r o}
o0 B'|T 0o I ||cTe'||-BCTI @3
and similarly,
B'-CTAIC 0 I -cTat' | [Bt CT I 0
0 Al= o 1 c A ||-atcry) (@.6)
Then, it follows from (4.5) that (4.3) holds if and only if
Ta c]
ct gt |20 . .7
and likewise, from (4.6), that (4.4) holds if and only if
B-I- CT 1
c 4 |20 , ) 4.8)

Comparing equations (4.7) and (4.8), and noting that one can be obtained by pre- and post-multiplying
the other by a rotation matrix, proves the lemma. (Moore and Anderson, 1980.) n

The exponential asymptotic stability of the Kalman Filter recursions is now established. The
following generalization of equation (4.2) is utilized, since the more general results are used further on:

z, = H, 8, + D, y,, 4.9)

-where {H, } and (D, } are sequences of matrices of appropriate dimensions, and D, is non-singular for
‘ all n. Moreover, the notation

R, = D,RD,T (4.10)

is used for brevity, where R = Ep[v,v, ]

Theorem 4.1 Let the matrix sequences {F,}, {H,}, {Q,}, and {R,} be bounded above, and let {R,}

also be bounded below. Let there exist positive integers ¢ and s and positive real numbers o and § such
that for all n,

"f [EIj.F;

i=n

T . i=1
HTR™H, {[‘[ F; } > al (4.11)

j=n

(i;e. the system is completely observable) and

n " n ” T
2 | ITF ] Q; [H' F; } > BrI (4.12)
P = - kj=i+l j=i+l

S —
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(i.e. the system is completely controllable).
Then, given any 8, such that 8, < o , and defining the closed-loop recursion
Bunt = (I ~KnyiHout ) Fy B, - @.13)
(where K, is the Kalman gain defined in equation (1.6)), there exist A > 0 and 0 < 3 < 1 such that
118,11 <Ad, 4.14)
(i.e. the filter is exponentially asymptotically stable).

Proof Define first the Lyapunov function (see for example Kalman and Bertram, 1960; La Salle and
Lefschetz, 1961, pp.33-36; Hahn, 1963, pp.14-18, Willems, 1970, pp.170-185)

Vo = 8 P18, (4.15)
where P, is the Kalman covariance defined in equation (1.8) (where it is denoted by Z,). Note that

8, =8, = Fosy B,y + Ky (24 ~HoFro1Bncy) = (Fasy8pcy + Wary) (4.16)

Fr8oy + Ky (Hy 8, +Dp vy —HoFny8,) = (Frsi8noy +way) (417)

Faabuct + Ko [y (Faus + 200) + Doy~ Hy Fay |

= (Fr185y + Way) (4.18)

(I —KyHy YFpy (80 = 80y) + KaDpva = (I -KyHy Y way,  (4.19)

where 6, is the Kalman estimate defined in equation (1.3), (4.17) follows from (4.9), and (4.18) from
(4.1). Thus,

P, = (I-K,H,)F, P, F,L (I ~K,H, )" + K, R, KT
‘ + ([ =Ky Hy ) Quoy ([ =K, H )T (4.20)

{by independence), so that

Py = KoR KT = (I =Ky Hy ) Foy Poy F,1y (I =Ko Hy )T
+ (I =K, H,)Qu (I -K,H, )T (4.21)
> (I =K,Hy )Fooy Pacy Fu5 (T =K, H, )T, (4.22)

since the last term in (4.21) is of quadratic form with Q,_; = 0 by hypothesis. Furthermore,

K, = M,HS(H,M, H,T + R, )" )
= M, HT [R;‘ = RV, (M HTRH, T HTRT ] (4.24)
= M, H'R' - M, HR'H, (M + HR ' H, Y H,R (4.25)

M, (M7 + HIRSH, Y( M + HIR ™ H, Y HIR

d Mn HRTRn-l Hn ( M;‘ + HRTR;‘ Hn )-lHnTan (4»26)
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M MM +HTRUH, Y H,TR,!

]

(M, - M,BTCR, +H, M, BT H, b, | HTRS

=P, HnTRn.I’

4.27)
(4.28)

(4.29)

where (4.23) follows from (1.5);(1.6), (4.24) and (4.28) from the Sherman-Morrison-Woodbury theorem
(see for example Householder, 1964, pp.123-124) — the existence of R, is guaranteed by the fact tﬁat
the sequence {R, } is bounded below by hypothesis, and that of M, by the non-singularity of {F, }, the
fact that M, > 0 by hypothesis, and the structure of equation (1.7) -- and (4.29) follows from (1.8) and

(1.5)-(1.6). Thus,

]

P,HIR'H,P, = P,H R 'R,R'H, P,

Kn Rn K’l
from (4.29). Finally, it follows from the Sherman-Morrison-Woodbury theorem that
(P +HIRH, Y

P, ~ P,H (R, +H,P,H ) H,P,
> P, - P,H,"R'H, P,
= P, - K,R, K,
2 (I =K, Hy YFpoy Pay Foly (I =K, Hy )T,
where (4.33) follows from the fact that P, 2 0 so that
H, P, A,,T 20,
R, +H,P, HT > R,,
and therefore
(R, +H, P, HTIY' < R,
(4.34) follows from (4.31), and (4.35) from (4.22). Thus,
(P +HR!H, ' - (I -K,H, )F,_{ P._, Fﬁl (I -K,H, )T =20,
which implies that
Pl - FY (I ~KH, ) (P +HTRH, }(I -KHy YFuey 20
by virtue of Lemma 4.1.
From (4.15), therefore,

Vo - Vn+l = TP

Lml

. - T -1 &
.94: - .Qn+l Pn-f-i QA«H

t

£

-1
= BT [P = (L = Ko )R (1 = KewHo OF, | 2,
2 8 FN (1 = Kyt Hot )THG RO ot (1 = Ky Ha ) F 8,

where (4.42) follows from (4.13), and (4.43) from (4.40) with n+1 substituted for n. Thus,

4.30)
4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)




- 117 -

R+
Vast = Vape = Z (Via = Vi) 4.44)
i=n
B+t - -~
2 Y 8L RN (I -KH )"H R 'H; (I -K; H; YFi; 8,4 (4.45)
i=n
_ ” n4 i T
=8 |Y | [I (U-K;H)F | H'RH,
i=n j=n+l
[ M (-k;H; )FJ-_,} }g,‘ (4.46)
j=n+l

from (4.43) and (4.13). It is now necessary to show that this quantity is bounded below by a positivé
number.

Note first that under the conditions of this theorem, P, is bounded above. This can be proven by
considering the (suboptimal) moving average estimate

[ [ﬁ F,-] [i [ﬁ F; ]THiTRn"lHi[ﬁ Fj]

j=n—t izt j=n—t j=n—t

-1

i=n-t j=n=t

n i=-1 T
p {I‘[ F;] HTR™z (4.47)

for n 2 ¢, where the existence of the inverse of the sum is guaranteed by (4.11) with n replaced by
n—t. From (4.1) and (4.9),

z = H; 9 + Dy (4.48)
=HF_9_, + Hw_ + Dy (4.49)
i-1 i-1 i1
=H |1 Fj |8 +H Y | 1 Fj |we + Dix, (4.50)
' j=n=t k=n—t | jek+l

so that

T -1

(i)

j=n~t

2”: {ﬁpi

{=n—t j=n=-r

i=-1
HTR™H; { 1 7

jEa-~t

n i-1 17T i=1 :
{ i: > [ 1 F J HTIR™H, I F; } [
i=n—-t j=n—t jEn-t
n { i T =1 i1 B
+ ¥ [1F | &"R7'H % [T 7 !-“ik
i=n—r+l j=n=t k=n - J=k+l J

n i1 T
+ 2 [H Fj] HTR™'Dy } 4.51)

i=n—t jEn—t

j=n—t

= [ﬁ Fj]ga-:

+ [ﬁ Fj} [ i {ﬁ fi }TH-'TRI"Hf [ ﬁ F; )

jEn~t i=n—t j=r-t j=n—-t
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{ i [ﬁ F; ]T”iTRi'lHi E {ﬁ Fi]ﬁt

izn—t+l j=n—t k=n—t j=k+1
n i=l T
+ X |1 F; | 'R7'Dix |- (4.52)
i=n~t j=a=t
Similarly, from (4.1),
-l ) n-1 a-l
9, = H Fj Q. + z l_I Fj Wi (4.53)
jen-t k=n—t| j=k+l

so that, subtracting (4.53) from (4.52), the 9,., terms cancel, leaving

e (fn] £ (5 Jaren 0]

jan-t isn-t jen-t j=n—t

(& (e g [f )

i=n~—t4l j=m—=t k=n—t j=k+l

+ Z {ﬁ F; }TH,-TRi-IDiy; ]

izn—t Jj=n-t

n-1 n~1

- Z | I1 7 |m (4.58)
k=n~t | j=k+1

Since the matrix sequences {F,}, {H,}, {QO.}, and {R,} are bounded above by hypothesis, and

likewise {R, } is also bounded below, and by (4.11) which ensures that the inverse of the sum in (4.54)

is bounded above, it follows that there exists a y; obeying 0 < v, < e such that

E[(8-0.)(8 -0 | < nL (4.55)

But since 8, is suboptimai,
P,,’sE[&—an)(é,—e,.)T] (456
<yl (4.57)

from (4.55), establishing that the sequence [P, } is bounded above, and so, by (4.29), is {X,, }.
Note furthermore that from (1.5)-(1.6),

(I -K,Hy) = (I ~M,H (H, M, H' + R, Y'H,) (4.58)

MA(I -MPHY(H, M, H' + R, Y H, M )M* (4.59)

M) {1 -MHT [R,," -RIH M(I +M*HR'H, M)
MHTIR™ ]H,, M7 ]M;"* (4.60)
= M) [1 ~MAHTR'H, M

+ MPAHTRIH MPA(T +M2HRH, M%)
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MPHTIR'H,M" ]M,,“” (4.61)
= M {1 -MPAHIRIIH, M (I + MPH,TR'H, M y! |
(I +M H R H, M%)
+ MPHTRI'H, M2A(I + M,;"“H,TR,‘I H, M2y
MYHTIR'H,M* ] M (4.62)
= M2 [1 -MHIRIH, M2 (T + MAH,"R7VH, M5 Y ]M,.“"’ (4.63)

= M2 (14 MPABTRI H MP) (1 + MPHTRE H b Y

— MAHTRIH, MPCT+ MPHTRIH, MP | M s

MACI +M2HTRTH M Y M (4.65)

20, (4.66)

where (4.60) follows from the Sherman-Morrison-Woodbury theorem, and (4.66) from the positivity of
the covariance matrices M,, and R,, as well as the non-negativity of the quadratic form in (4.65).

Since {K,} is bounded above (as shown earlier), equation (4.66) implies that there exists a Y,
obeying 0 < v, < 1 such that

(I -K,H,) 2l (4.67)

It follows that (4.46) can be rewritten as

L [ i T i -
Vot = Ve 2 87 [Z [ IT »Fi HRH | T1 Ysz-x} }Q.n (4.68)
i=n j=n+l j=n+l
. l"m .. it T il .
=8t LZ BT F | BR7'H | TT F; | |8, (4.69)
i=n j=n j=n
. net [ ist 1T [x‘—-l .
2 @8 | T T F J HTRH, LH Fi | | & (4.70)
i=n j=n j=n
2 ¥ ad, 8, (4.71)

where (4.68) tollows from (4.67), (4.70) from the fact that 0 < v, < 1. and (4.71) from (4.11). Since the
right-hand side of (4.71) is non-negative, this establishes, by the method due to Lyapunov, that

im 118,11 =0, 4.72)

n =300

i.e. the system (4.13) is asymptotically stable.

-
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To prove exponential asymptotic stability, it is first necessary to show that the sequence (P, } is
bounded below as well. Note that

P, =

2

M, - M,H(H,M,H" + R, Y'H, M, 4.73)
M [1 - MPHY(H,M,HT + R, Y'H, M, }M,,”* (4.74)
Ylel’ (4.75) .

where (4.75) follows from (4.67) and (4.59) postmultiplied by M,. Thus, in particular,

2 YZMO’

whence it follows, using (1.7}, that

M,
2
ﬁ n+l
with

FoPoFg + Qo

YzFoMoFoT + Qo

Define the recursion

= n,F,M,F,} + Q,

ﬁo = M0.>

Then, assuming by the induction argument that

M, > M,

it follows that

Mn+l

v

2

F,P,FL + Q,
YZFII EVI,, FnT + Qn
Y’.’.anFn‘r + Qn

Re o)

(4.76)

@477
(4.78)

4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)
(4.85)

where (4.83) follows from (4.75), (4.84) from (4.81), and (4.85) from (4.79), thus proving that (4.81)
holds for all n. But (4.79) yields

My

v

L]”!—S j=a=s

A+I ( }1‘7’;—: { ll[ F/.

|
l-Jl-s L]-«H
T
| e
j=n-s j=n=s
+ i
izR—s =i+l

F; } o) { 1~ }T (4.86)

[ j=i+t

j=i+1

n . T
IT F,-] o [HF,} (4.87)
j .
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o)

j=n-s

2 T
I F;} + ¥BI (4.88)

j=n=s

2 pBpI, (4.89)

where (4.87) follows from the fact that 0 <y, < 1, (4.88) from (4.12), and (4.89) from the non-
negativity of the quadratic form in (4.88). Thus, combining (4.81) and (4.89) -- which holds
independently of n -- yields

.M, 2 I, (4.90)
whence it follows from (4.75) that
P, 2 y¥BI, 4.91)
or
?," < Yz’:‘ 5 I 4 4.92)
Thus,
Vo S 72‘41-1;3 8, : | (4.93)
from (4.15) and (4.92), so that (4.71) yields
Vot = Vo 2 oyt BV, (4.94)
2 BB Vi, (4.95)

where (4.95) follows from the monotonicity of V,, evident from (4.43) and the non-negativity of the
quadratic form. Rewriting (4.95) as
o

Ve .S ————
- 1+ vy oB

Vp-i (4.96)

establishes the exponential asymptotic convergence of V,,, with

.
t+1

V. ' (4.97)

1
V" < (1+Y22r+s+lap

Then, using the non-negativity of V, (from (4.15) and the positivity of the covariance), equation (4.71)
yields

Vo 8 € Vaet = Vaue ' (4.98)
< Vaa (4.99)
n;l ’
1 T+
—— Vos 4.100
[1 +,Yz?.t+s+laﬁ} o o ( )

from (4.97). The proof is concluded by taking the square root of (4.100), and setting

-
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1 +y2ttsdlggy+l )"
p = |LL1th ~ BY" arpst (4.101)
Yo
and
i |
1 2(r+1)

= j— ) 4.102
{1 + .hzt«q-l aﬁ ] ( )
(This is a special case, restricted to non-singular transition matrices, of the proof given in Moore and
Anderson, 1980.) |

This result is used in the following, slightly different form. Let N(x; i, Z) denote the density
associated with the normal distribution of a random variable x, with mean | and covariance X.

Corollary 4.1 Let the conditions of Theorem 4.1 be satisfied for the system (4.1) and (4.9), and let a
0 < ¢ < oo exist such that for all n,
I H

HIT F < ¢ (4.103)
=t .

(i.e. the system is uniformly sfable). Fori =1, 2, let

Qi = Fo8i + Koy (Zowy — HenFn8y) (4.104)
K. =MHY(H,MH' + R, ! (4.105)
My, = F,PiF, + O, (4.106)
P, = (I -K.H, M ' (4.107)

be two Kalman Filters with respective initial state estimates 8§ and initial covariances M}, i = L, 2.
Then, there is a 0 < § < 1 such that for any finite 8,

N(8; 8., M, ) = N(8: 8% M) + 0,(8). (4.108)

Proof Combining (4.107) and (4.106) with n replaced by n—-1,

PnI - Pnz (1 - Kann )( Fn-IPnl-l Fn’x—.l + Qa—-‘. )

1

-~ (I =K H, ) F, 4 PL FT + Qu) (4.109)

([ - K.ntHn )(Fn-lpnl-l Fnzl + Qn—l )

~ (F PELFI + QT - KZH)T (4.110)

(I =K H, YFp (P —PL YL (I - KIH, )T

+ [([ - Kann )Fn—lpnl-l F,;Z) +Qn }(anHn )T

- ( Kann ) [Fn—lpnz-l Fnzl (1 - anHn )+ Qn } (4111)
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= (I - K H, YFai(PAy =PEOFL (I — KPH, )t
+ Pnl(anHn )T - (Kann )Puzv

where (4.110) follows from symmetry, and (4.112) from (4.106)-(4. 107). But from (4.29),

]

Pnl( anHn )T e (‘Kn1 Hn )Pn2

0

i

by symmetry. Thus, (4.112) becomes
Pl-P? = (I - K} Hy )Fpy(Pay —P2FI (I - KH,)T
j=t j=1
But Theorem 4.1 implies that there exists 20 <8< 1 such that
H n+l i .
t TI (I - K}H;)Fja n = 0( &)
H j=t
It follows that
IR =PIl = 0(&),
and hence, by (4.29) and the facts that {H, } is bounded above and {R, } is bounded below,
K —K21L = 0(&)

also. Similarly, (4.106) yields

Mnl-H - n2+1 FnPannT + Qn - FuPnzpnT - Qn

F, (P} -PI)F],
so that, since F, is bounded above by hypothesis,
o M-M21L = 0(8),
from (4.118) and (4.121).
Now, equation (4.104) yields
{M\-l ' M n+l ( n+l ; “
9 = {1 (I -KiH;)YFj, | & = S I «f - KH )F K z.
k=0 j=k+l Ji
It therefore follows that

frgl, -8z, 11 < O(8") il 0 -92 1!

n+l
+ Y o0& 1l Kl -K&11 11z 01
k=0

a+l
o8y 11 8l -82 11 + 0(F*) Y O(F) Il =
. k=0

Pul( PnZHnTRn-lHn )T - (PannTRn_‘Hu )Pnz

n " T
= [1’[ (I - KjHj)Fj }(P& -P3) [H (I - K}H, >Ff-1] :

il

(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

4.117

(4.118)

4.119)

4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)
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= 0,(8*), (4.126)

where (4.124) follows from the Cauchy-Schwarz inequality, (4.125) from (4.119), and (4.126) from the
fact that the transition matrix is bounded above, by (4.103), and therefore so w.p.1 is the output.

Finally, note that N( x; J, Z ) is everywhere continuously differentiable with respect to y and X
except at £ = 0. But equation (4.90) shows that M, is bounded away from 0, so that it is possible to
write a first-order Taylor series expansion as follows:

N(9; 8\, M) = N(9; 8%, M2)

a |
e -982); N M2y
+ ;[ L (8: M) e
J
Ml-M2] N(9; 8% =
+ {'_ { lj 5= a{z],, (8 );zsu}
+ A - @.127)

where [ ]; and [ ];; respectively denote vector and matrix elements, and A is the remainder term. Using
(4.122) and (4.126) coancludes the proof. (The use of equation (4.115) follows Jazwinski, 1970,
pp.242-243.) n

The following lemma is used repeatedly in the proof of Theorems 4.2 and 4.3:

Lemma 42 Let §,x,andy € R" and A,B,and C € R"™. LetA>0 C >0. and furthermore
A=ATandC-CT.Then,

N(8:x.A )N(B8;y,C) _
= N(8;x +ABT(C+BABTY" (y-Bx)A-ABT(C+BABT)'BA)
N(y;Bx,C+BABT). (4.128)
Proof Expanding the sum of the exponents on the left-hand-side of (4.128), and neglecting the ~'A
factor for simplicity, yields
9TA™'g - 28TA"'x + xTA™'x + @TBTC™'BQ - 28TBTC™'y + yTCly
= 8T(A™'+8TC'B)Yg - 2874 +BTCy)

+ 2TA 'y + yTCly (4.129)

QT(A-I_'_B Tc—lB )0
— 20T(A"+BTCB )(A" +BTC B Y (A"t +BTCy)

+ (A +BTC'y)T(A+BTC'B Y (A s +BTCy)
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(A7 +BTC 'y )1 (A'+BTC'BY (A x +BTCy)

+

&'TA-1£ + Z-Tc—ll
T
= [Q - (A'1+BTC“B)"(A“g+BTC"‘z_)} (A'+BTC'B )

[g - (A7+BTCc'B Y (A x+BTCy) ]

(A7 x+BTC'y)T (A +BTC'B Y (A x +BTCy)
+ xTA 'y + X_TC"I)_’.
It follows from the Sherman-Morrison-Woodbury theorem that

(AT'+BTC'BY! (A x+BTCy)

[A -ABT(C+BABTY'BA ](A“;+BTC"2)

x - ABT(C+BABTY'Bx

+ ABTC'y - ABT(C+BABTY'BABTCy,

(4.130)

4.131)

(4. 13?)

(4.133)

where the existence of the inverse in (4.132) is guaranteed by the fact that A>0and C >0, by

hypothesis. But
ABT [1 - (C+BABT)-IBABT]C°‘1

ABT [(c +BABTY'Y(C+BABT)

- (C+BAB™'BABT } cly

ABT(C+BABTY'CcC™y

]

i

ABT(C+BABTY'y.
Thus,
(A+BTC'By (A x+BTC'y) = x + ABT(C+BABTY'(y -Bx).

Moreover,

— (A g +BTCY)T(A+BTCT B Y (A g +BTCy) + xTA™x + yTCy

]

+ ._X_TA-IE. + Z'I'C-I

<

xT {-A‘1+BT(C+BA BTy'B +A™ ],g

- 2x7 [BTC"—BT(C +BABTY'BABTC™! ]y_

(ATl x+BTCy)T (A -ABT(C+BAB™Y'BA J(A",_\;-t-BTC“X)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)
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+yT [-c-lsABTc"

+ C'BABT(C+BABTY'BABTC +C™! ]}i-

[BTC‘I -BT(C+BABTY'BABTC™! ]

as in (4.134)-(4.136), while

-C1'BABTC! +

Finally, note that

But

i

BT [1 - (C+BABT)"BABT}C“

BT(C+BABTY,

C'BABT(C+BABTY'BABTC'+C!

-CY(C+BABTY(C+BABTY'BABTC™

+ C'BABT(C+BABTY'BABTC™! + C!

~Cl'C(C+BABTY'BABTC! + ¢!
~(C+BABTY'BABTC!
+ (C+BABTY(C+BABT)C!

(C+BABTY'cc!

= (C+BABT.
| C+BABTI | C+BABT!I | BBT|
| A'+BTCc-'B |

(A'+BTCc'By'B

1]

1}

1 A'+BTc'Bt | BBT |

| BT(C +BABT)B |
| At +BTc'B 11 BBT!

| (A'+BTC'BY'BT(C +BABT)B |
{1 BBT | '

T«c +BAB™)B

[A - ABT(C+BABTY'B A}BT(C +BABT)B

ABT(C+BAB™)B

(4.139)

(4.140)

(4.141)

4.142)

(4.143)

4.144)

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.130)

— ABT(C+BABYY'BABT(C+BABT)B (4.151)

ABT(C+BABTY'(C+BABTYC+BABT)B
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- ABT(C+BABTY'BABT(C+BABTYB (4.152)

= ABT(C+BABTY'C(C+BABT)B. (4.153)
1t follows that
| C+BABTI | ABT(C+BABTY'C(C+BABT)B |
— = = (4.154)
| A'+BTC'B | | BBT|
fA1LICII(C+BABTYY(C+BABT)1 | BBT|
= 4.1
| BBT | .155)
=l1AllCL (4.156)

Combining (4.137), (4.139), (4.141), (4.146), and (4.156) establishes (4.128), completing the proof. H

In the sequel, it is assumed that L( », ) = P e P, the e-contaminated normal family defined in

equation (2.135). Then, it is possible to write
P =(1-e)NC(O,R) + eH 4.157)

for some H € S. It is further assumed that H is absolutely continuous with respect to the Lebesgue
measure, and admits the probability density % in accordance with the Radon-Nikodym theorem. A first-
order approximation to the conditional probability distribution of the estimate of the state 8, based on
past observations { zg, ' * *, z,-1 } iS given by the following theorem:

Theorem 4.2 Let the conditions of Theorem 4.1 and Corollary 4.1 be satisfied”for the system (4.1)-
{4.2), and let d be a real number for which (4.14) holds. Let ® be the smallest integer such that

& < e | @.158)
If
S we <1 (4.159)
and if the disuibuﬁon H has bounded moments, then
| p(gnl£07:”’1n—1)

= (1-€)"x, k0 N( 8, 0% M)

+e(l-e)'x, 3 «xiN(8, 0, M)

iz =1

[ NCzi-8& vi+Vi(8,—00), Wi-ViMiViT ) h(&) d§

+ O,(w’e?) (4.160)
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for all n 2 @, where, fori =1,2, --- andn >1i,

0l = Foli8iy + Fouy Mi i Th i (2o — 8it) 4.161)
Mi = Fao PiL FL + Qany (4.162)
Pi = Mi - M\T: "'M} (4.163)
I, =M, +R | (4.164)
Vi = Vi Py FL M, ™ (4.165)
Vi = Vi VoML T (zag = 80) (4.166)
W:: = f;-l - V;-I M:;-l rf;-fle';—l V:';-1T 4.167)
K = Koy N(Zaet; Baeps Tact) ) | (4.168)

subject to the initial conditions

8 = F,10% (4.169)
Mi = FMYL FL + Qi @.170)
Vii = Mi(-)-l F;II Mii o @.171)
vi =8, 4.172)
Wi = M @.173)
K= kb, | ‘ (4.174)

fori >0, and

8 = 8 (4.175)
MY = M, (4.176)
@ = 1 . 4177

The normalization constant satisfies .

' =(1-e)x) + e(l-e@®' ¥ xi j Nz =& Vi, W) h(E)dE  (4.178)

i=n =+l

Remark Before proceeding with the proof of Theorem 4.2, some comments are in order:

(i) Equations (4.161)-(4.164) are a bank of Kalman Filters, each starting at a ditferent point in time
i=0,12, ---. Beéause of the way in which they are initialized, the cases i > () correspond to
Kalman Filters skipping the /th observation. The case { = 0 is based on all observations.

(ii) Equations (4.165)-(4.167) are a bank of optimal fixed-point smoothers (see for example Anderson
and Moore, 1979, pp.170-175; also Gelb, 1974, pp.170-172 -- where, however, the error
covariance matrix propagation equation is incorrect), each estimating the state at a different point
intmei =0, 1,2, - -, based on all preceeding and subsequent observations,
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(iii) Thus, each term in the summation on the right-hand side of (4.160) is a Kalman Filter that skips

(iv)

one observation, coupled with an optimal smoother that estimates the state at the time the
observation is skipped. Some general results pertaining to conditional probability distributions of
the form (4.160) are given in Di Masi, Runggaldier, and Barazzi (1983).

From (4.157), it is possible to write
Yo = (L=m ) + ¥ 4.179)
where 1, is a random variable independent of 6, and {w, } obeying

: 0 wp. (l-¢) v
M = { 1 w.p. € (4.180)

and (vY} and (v} are random variables independent of (m,}, 8, and {w,} with
L(¥Y)=N(0,R ) (for some R >0) and L(y¥)=H. Then, neglecting for a moment the.
question of ®, it is possible to interpret equation (4.160) as follows:

P8 lzo "y za1 Y P(205 """ 5 Zat)
= P(ﬂo-"—o» "'9“;—1"—"0)[’(5.0’ AP £ | ‘n0=0’ ""Tln-1=0)
p(gn '101 ...155—1;“0:0, "',T\,._l-'-'-O)

+ Y p(Me=0, -, Miy=1, =", , M =0) i

i=l

P(zZos " sz | Mo=0, -, Ni=L +, , Mpy=0)
(8, V zo, """ Zae, Me=0. -+, Mi=1, -+, , M =0)

+ higher—order terms. 4.181)

In other words, loosely defining a random variable distributed as A as an "outlier," the first term
in (4.160) and (4.181) corresponds to the event that "there has been no outlier among the first n
observations,” each term in the summation to the event "there has been no outlier among the first

n observations except for one, at time ! - 1,” and higher-order terms to the occurrence of two or
more outliers. Moreover, )

p(zos """y znet I Me=0, " M=k -, My =0)
p(8, Vzo, 15, Mo=0, -, =L -+ . M,;=0)
=p(zo """ Zi2 2, " s Zpa [ Me=0. - M =1, 00 n,=0)
p(8: V2o, """y Zicps Zis " Znls »

Mo=0, - -+, Miy=L . N =0)

p(zict 1 ©ny 20, """ Zicts s """ s Enets
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Mo=0, -, Niy=L -+, N,1=0) (4.182)

Note that the orly non-normal term on the right-hand side of (4.182) is the last one, and it
comresponds to the convolution in equations (4.160) and (4.181). Furthermore, since the
distribution of a past event is expressed here conditioned on subsequent observations, this
corresponds to a smoother. The second term on the right-hand side of (4.182), on the other hand,
is the distribution of a normal random variable (the state 6, ) conditioned on normal observations
{Z0s """ s Zica Zis ** s Zay }. It therefore is a normal distribution, whose mean and variance
are given by the Kalman Filter that skips the observation z; ;.

Evidently, as n — oo, the probability of the event that only a finite number of outliers occur
vanishes for any €>0. That the density can nevertheless be approximated by the first-order
expression in (4.160) is due to the exponential asymptotic stability of the Kalman Filter: ®
represents a "window size” beyond which the effects of older observations have sufficiently
attenuated. Compare Martin and Yohai (1986, Theorem 4.2) and its discussion in Kiinsch (1986),
where weak dependence on temporally distant observations is exploited in the context of influence
curves for time series.

Finally, it is easy to show that

(1-e) %, x
20’...9 n~=0 (_Z_,"',Z“_l =0,..., n—=0
- p(Mp Na-1=0) p( 2o 11 Mo Nn-1=0) (4.183)
P(Zo " 1 Zn)
= P(nOr‘Ov T ,Tln-1=0 | 20y """y Zn-t ) (4.184)
is the posterior probability, conditioned on all past observations { z4, - - -, z,_; }, that no outliers
have occurred among the first n observations. Similarly, it is easy to show that
e(l-ey e ki [ N(za=§vi, Wa) h(8) d§
= p(T‘O:O’ “'vni—l:l’ ”"nn—l:o | 200 " s Za-t) (4.185)

is the posterior probability that exactly one outlier occurred, at time i/ — . Thus, equation (4.160)
may be interpreted also as a weighted sum of conditional distributions, with weights equal to the
posterior probability that each event has occurred.

Proof The proof of Theorem 4.2 proceeds by induction. Note first that

P{Gsi 1200 " 22 )PC2n V20 " 0 Znmt)
= p(Qastsza L 2oy """ 2amt) (4.186)
= [ p(808nst 2 L 200~ 2 24t ) dE, (4.187)
= fﬂﬁm 1 8,20, ~"52a )

P(2a 195,200 " s Za ) P(8n V 2ow * * " 12001 ) A8y (4.188)
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= [ P(8an 182)P(20 18)P( 8 120, 120y ) dE, (4.189)

where (4.186) and (4.18R) follow from the definition of the conditional probability, (4.187) from that of
the marginal probability, and (4.189) from (4.1)-(4.2) and the independence of {w,} and {v,}. In
particular, for n =0, equation (4.189) yields

P(8 1 20) p(20)
= | N(8y; FoB Qo) f (2080 ) N(86; B, Mo ) dy (4.190)

= N8 Fol Qo) [ (1-6)N(z0= 85 0.R )+ eh(zo- ) |

N( 89; 8o, My ) d 8y (4.191)

where f denotes the Radon-Nikodym derivative of P (which exists since both N(0,R ) and H are
absolutely continuous with respect to the Lebesgue measure), (4.1)-(4.2) as well as the initial condition
of (4.1) are used in (4.190), and (4.157) is used in (4.191). But for any n,

J NC8asi £ 845 Q0 ) N(20 843 0, R ) N(8,; 82, M) dB,

| NCF 845 8us10 @0 YN(8s: 240 R INC 8, 82, M, ) a8, 4.192)

[ NC8uiza + RET(Qu +Fa RF,TY (8~ Faza)s
R —RFnT(Qn'I'FnRFaT)—‘FnR )

N( 8,41 Frz,, Qu +F, RF,T)N(8,: 8%, M) de, (4.193)

N(z, +RFS(Qu+F,RF,Y " (8,41~F,z. ) 85,
R-RFY(Q,+F,RFIY'F,R +M?)

N(8,41; Frzar Qu+F,RF,T) . (4.194)

N(RF,'T(Q,, +FnR Fur)-‘-e—n-i-l; _6_,?-_2,. +RFnT(Qn+FnR F,,T)“‘an,,,
R-RF(Q,+F,RFYY'F,R +M?)

N(8,4is Frza, Qu+F, RFTY - (4.195)

i

N(Bnyi; Frzy +F, R(MO+R) () - 2,),
Q. +F,RF,"-F, R(M2+R)Y'RFT)
N(z; 0% M2 +R ), 4.196)

where (4.192) and (4.195) are obtained by rearranging terms, (4.193), (4.194), and (4.196) follow from
repeated applications of Lemma 4.2, and (4.194) from the fact that the distribution integrates to unity.
Furthermore, -

Foza + FA RIMP+RYN(8)~2z,)

= F, [(M,,°+R)(M,,°+R Ylz, = R(M2+R Yz,
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+ R(MOI+R)Y'Q% + (MP+RYMP+R )80

- (M2+R)(MQ+R )-‘g},’] 4.197)
= F, [M,,°(M,f’+R yYlz, + 8% - MY(M2+R )-‘_Q,?} (4.198)
= F, 00 + F, MT; (2, -8]) (4.199)
= 8%, , (4.200)

from (4.161). Similarly,

Q, + F,RF,Y - F,R(M?+R)'RF,T

=0, + F, [R(M,.°+R 7 H(MJ+R) - R(MJ+R)'R ]F,,T (4.201)
= Q, + F,R(M}+RY'MF,T | (4.202)
= Q. + Fo(M) '+R'YF,T (4.203)
=0, + F, (M..°-M.P(Mn°+R M, ] F,T (4.204)
=Q, + F,PYF,T (4.205)
= M, | (4.206)

where (4.204) follows from the Sherman-Morrison-Woodbury theorem, (4.205) from (4.163)-(4.164),
and (4.206) from (4.162). It therefore follows that

| NC8usii 8. Qn ) N(2u = 8,5 0. R ) NC8,: 87, M) 4B,
= N( 83 8241 M IN( 25 82, T2), 4.207)

from (4.164), (4.196), (4.200), and (4.206).

Going back to equation (4.191),
| NC8asii Fr 8. Q0 ) 1z, -8, ) N(8,: 07, M) d8,
= | N(8u 80 + M) FT(Q +F M)F,T ) (8,1~ F, 8)),
M) ~MIFT(Q, +F, M)ET Y F, M)

NC8iis Fr 87, Qn + Fu MU F,T ) h(2, =8, ) d8, (4.208)

1

N(Q:H—l; Fnﬁ:?’ Qn +FnMn0FnT)
J N(zy =5 00+ MYF,T(Q, +F, MY 1Y @un~F, 80),
M) -MPFT(Q, +F, M)F,S Y F, M) h(§)d§ (4.209)

N8, Q0 MaH )
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J Nz -5 w2l + VI (8823,
Wit + Vel MiE Vid Ty h(E) dE, 4.210)

where (4.208) follows from rearranging terms and using Lemma 4.2, (4.209) from making the
substitution § = z, — 9,, and (4.210) from (4.169)-(4.173) with i = n +1.

Substituting equations (4.207) and (4.210) with » =0 into (4.191), and using (4.175)-(4.176),
yields

p(81 1 z0)p(20)
= (1-€)N(z; 8, T§ ) N( 8;; 80, M7 )
+ eN(8; 8, M{ )
[ NCzo-& vl +Vi(@-8), W{+VIMI VIT)R(§)dE @211)
But since |
f P8 1200 - za) P20+ 201 ) B,
= [ p(8 2o+ s 20y ) A, 4.212)
= p(2o """ s Zat ),. (4.214)
respectively by the definitions of conditional and marginal probabilities, and since
J NCO: 01, ML) N(ziq =8 vi - Vi (8, -80), Wi-ViMiV; T) de,
= N(ziq~& ¥i, Wi) 4214

by Lemma 4.2, it follows that

ptzo) = [ (1-€)N(z; 8, I3 ) N(8y; 67, M7 )
+ eN(8y; 81, M{)

| N(zo =& vi +V{(0-8),

W{+VIMIVET)R(E)dE d8, , .215)
= (1-e)N(20: 80, T3) + & [ N(zo—& vl, Wi ) d& L (4216)
= Ky 4.217)

where the interchange of the order of integration of 8, and & is justified by Fubini’s theorem {since both
the normal density and 4 are Lebesgue-integrable). Thus, combining (4.211) and (4.217), and using
(4.168), (4.174), and (4.177), it follows that

P81 120) = (1—€) %o w§ N(By: 87, MP ) + €% % N(8y; 81, M/ )
f NCzo-& vl + V(@80 Wi+ViM! VIT)h(§)dE (4218)

Assume now by the induction argument that




-134 -
(9 1z "y Za1)
=(1-¢) %, xIN(8,; 0 M)

n . . .
+e(l-e)lx, I xiN(8,; 8, M)

i=1

J Nz =8 vi+Vi(8, -0), Wi-ViMiViT) h(§) d§

+ 0,( E(1-¢)?) _ (4.219)

for some n. From (4.189),
P(8nsy 2oy " .2, )P (28 | 2o» T Zaa)
= [ N(8ui Fa 80 00 [(1-8IN(z = 843 O.R )+ k(20— 8. |

[(l—e)" K, XY N(9,; 8%, M)

n

+e(l-e)V'x, 3 xiN(8.:0L M)

i=1

J NCaig =& vi+Vi(8.,-905), Wi-ViMiViT )y h(E) dE
+ op(s2(1—e)"-2)] de,.

Now:
J NC8usis Fua, 00 ) N(z, - 8,50, R ) NC 8,5 85, M)

[ N(zioi=& va+Vi(8,~02), Wa-ViM, ViT ) h(E) dE d8,

JJ NCFa85 80i1, @0 ) N(8y; 2, R ) NC 8, 85, M)

Nz =& Vi+Vi(0, -8:), Wi -ViMiViTyn(E)dE 48,

i

JJ NCQuiza +RFT(Qu+F RFTY (Buni= Faza)s
R-RFI(Q,+F.RFY'F,R)
N(Qn-&-l; Fn.z.n’ Qn+FnRFnT)N(Qn;.6.£:M}; )

N(z =8 vi+Vi(8, —8), W, -ViM ViT) (k) dE de,

] NCai 85 + My (Mi+R -R F,T(Qu+F, RF,TY'F, R
(22 +R FN(Qu +Fa R FTY (Ba— Faza )-80),
M, -M, (M, +R -R F,J(Qa +F, R F,"Y'F,RY' M, )

N(RF,T(Q,+F, RF,TY " 0, 1; RF,T(Qu +F, RF,TY\F, 2, ~z, +8],

(4.220)

(4.221)

(4.222)
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Mi+R-R F,*(Q,+F,RF,"Y'F,R)
N(8nst; Fo Za» Qu +FaR F,T)
N(zio -8 YA +Vi(8,-81), W, -ViMi ViT )y h(§) dE d8, 4.223)
= N(RF,"(Q, +F,RF,TY"8,,;; RF,T(Q, +F, RF,TY"'F, z, -z, +8},
M. +R~RF,*(Q,+F,RF,"Y'F,R)
N(8a41; Fu 20 Qn +F, R F,T)
| NCzig=& vi+Vi(M; (M;+R R F,T(Q, +F,RF,"y' F, R )"
(24 +RF,T(Qp +Fy R FT Y (Basi- Faz,)-8)),
Wi -ViMi(M;+R -R F,T(Q, +F,RF,"Y'F,RY'M;ViT)
h(§)d§ (4.224)
= N(8,41; Frza +F, R(Mi+R Y (8] -2, ),
Q. +F,RF,-F,R(M;+RY'RF,T)
N(z,; 8, M +R )
| NCzia=& wi+Vi(M; (M;+R ~R F,7(Q, +F,RF,TY'F, R)"
(24 +RF,T(Qu+F, RF,TY (8yi— Fr 2, )-83)),
Wi-ViMi(M;+R-R F,7(Q, +F, R F,"Y'F, RY'M; V)
h(E)dE (4.225)
= N(Qauis Qiuts May Y N( 2,5 85, T )
| N(zi-& xﬁ Vi (M} (M} +R ~R F,T(Q, +F, R E,TY F, R
(20 +RE,(Qu +Fa RE,TY  (8pi1— Faza )-81))
Wi—ViMi(My+R -RF,(Q, +F, RFY ' F,RY'MViT)
h(&)dE, - (4.226)

where (4.221) is obtained by rearranging terms, (4.222)-(4.225) follow from repeated applications of
Lemma 4.2, (4.223) from the fact that the distribution integrates to unity (the interchange of the order
of integration of @, and § is justified by Fubini's theorem), and (4.226) from (4.200) and (4.206) with
the superscript 0 replaced by i.

Now, the coefficient of 9,,, in the integrand of (4.226) is

L , -1 ’
Vi [M;,ue -RFY(Q,+F,RF,'Y'F,R } RF,(Q,+F,RF,)!

= ViM; {(M,f+R Y '+ (M. +RY'RF,T [(Q,, +F,RFT)
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- F,R(M:+R)Y'RFT ]-l F.R (M:+R )" ]
RFS(Q,+F,RF,)!
ViMi [(M:; +RY '+ (Mi+RY'RF,Mi ' F, R (Mi +R )™ }
RF,"(Q.+F,RF,)"!
ViMi(Mi+RY'R F,T(Q.+F, RF,T )"
+ VIMi(M:+RY'RF,M! 7'F,R(M:+R !
RF,"(Qu+F,RF,T)!
ViMi(Mi+RY'R F,IM} "' M (Qn +F, R F,T)!
+ VIM (M +RY'RF, M., 'F,R(M!+R !
RF,"(Q,+F,RF,T)!
ViMi(Mi+RY'R FIM; 7 (Qu +F, RFT)(Qu +F, RF,TY!
ViMi (Mi+RY'RF,"M; ;™! |
Vi(My 4RTYVETIMG
Vi [M:; - Mi(M;-R)Y'M] ] FIM; ™
ViPiF MG

i
A+l

4.227)

(4.228)

(4.229)

(4.230)

(4.231)

(4.232)

(4.233)

(4.234)

(4.235)

(4.236)

where (4.227) and (4.234) follow from the Sherman-Morrison-Woodbury theorem, (4.228) and (4.231)
from (4.206) with superscript i, (4.235) from (4.163), and (4.236) from (4.165).

Using (4.236) and rewriting the mean of the normal distribution in the integrand of (4.226) as

i

v, + V::H(.Q;:H"Q::«H) + Vr:+l _.)‘H-l

i

- ViMmi [M:;+R —RET(Q,+F, RFTY'F,R ]' 9;

-1

+ ViM} (M,‘; +R-RF,Y(Q,+F,RFXY'F,R J

{[ "RFnT(Qn+FnRFnT).1Fn ]Zn

R . . -1
- ViM, {M;+R-R F.X(Q,+F,RF,"Y'F,R ] 8!

= Vi + Vig (Bau—8an) + Vria-l [an'i+F"M’ir";-l(£" -Q‘i)]
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. . . -1
+ ViM! [M,‘,+R -RF,Y(Q,+F,RF,'Y'F,R }

(1-REIQ+F.REFY'F, 5, 8237)
it follows that the coefficient of z, is

. .. . . , -1
ViaF,MiTi' + ViM} [M; +R-RFX(Q,+F,RF}Y'F,R ]

(1-REFQ.+F. RETY'F,

. . . -1
ViM: [M,‘,+R -RFY(Q,+F,RF,''F,R }
{R F(Q.+F,RF,SY'F, My (Mi+R )

+ I -RFX(Q,+F,RF,TY'F, ] (4.238)

. . . -1
Vi M [M,: +R~-RFY(Q,+F,RF,Y'F,R ]

(RET(Qu+Fu R ETY'F, [ MiMi+R Y

~ (Mi+R)YM.+R)! ] + 1 ] (4.239)

i

. . N -1
ViM; {M,‘ +R-RF, (Q,+F,RFIY'F,R }
[- RF,Y(Q, +F,RF,"Y'F, R (M} +R )™

+ (M +R)(M,+R)™ } ' (4.240)

i

. . . -1
ViM! [M;, +R-RFY(Q,+F,RF,*Y'F,R ]
{M,‘; +R ~RF,"(Q, +F,RF,"y'F,R } (Mi+R Y  (4.241)

Vi Mi(ME+R Y, (4.242)

il

where (4.238) follows from (4.236). Similarly, the coefficient of 8! is
ViMi [M;‘+R —RFY(Q,+F,RF,Y'F,R ]'l
[R F,T(Q,+F,RF,T)! {F,, - F, M (M} +R )" } -1 ]
= -ViM (M:+R Y, (4.243)

as in (4.239)-(4.242). 1t follows, therefore, that the mean of the normal distribution in the integrand of
(4.226) is

Vo + Vi (Qau=8an) + VaMa (M +R) ' (2, — 87)

= !.:4-1 + V:i+l (_e..n+l"..:‘;+1 ) (42‘_1'4)




[
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from (4.166).
Finally, the covariance of the normal distribution in the integrand of (4.226) is given by

W,

1

. . ~1 .
ViM;i {M,: +R —RF,*(Q,+F,RF,"Y'F,R ] MiviT
= Wi - Vidi [MieR Y
+ (Mi+RY'RF,T [Q,, +F,RF,T

, -1 . N
F,R(M. +R )“RF,.T] F,R(M;+R )“]M,: viT (4.245)

Wi -ViM;i [r:; lerilREMCUF, R ]-M;; vi T (4.246)

W, - ViMiTi'MiviT - VIMIT:'RFM VP, RTEIMIVE T (4.247)

i - VIM T 'REIM, ' Mg ML ERTEIMIVE T (4.248)

]

i = ViaMiaVig T, (4.249)

Sl

from (4.167) and (4.165). Thus, substituting (4.244) and (4.249) into (4.226), and this latter in tum into
(4.220), along with (4.207) and (4.210), and finally noting that

Koo = L | (4.250)
p(zo """ 22Zn )
= 1 4.251)
P(En ’.Z_O! ”'95)!—1)p(£.0’ "',.za-l) ’
< ,
= , 4252
P(zn 1 2w " s Zaet) ( )

establishes the validity of (4.219) for all n.

There remains to put (4.219) into the form of (4.161), and to show that the error term remains
bounded as n — es. This proof exploits the exponential asymptotic stability of the Kalman Filter,
demonstrated in Theorem 4.1 and its corollary.

Consider first the case where only one outlier occurs during the first n time steps. If it occurs
early enough, its effects will have become negligible by time n, and hence the cormresponding term can
be lumped up with the "no outlier during the first » time steps” term.

By Corollary 4.1,
N(8.: 81, My) = N(8,: 87, M) + 0,(&7 ). (4.253)
Furthermore, equations (4.165) and (4.163) imply that

Vi

Vi (I-M; rfi-l—l)M:‘;-l Fnzl M (4.254)

Vi Moy (I =My Doy ™) TR M, ™ | (4.255)

ViaMio (I-Mi TR M T M (I-ML T DTET ML~ (4.256)
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n-1 ' X T .
= ViM; [1’[ F;(I-M;T; “)] M} 4.257)
j=
. n‘l . - T .
= M% FL M M [H_F,-(I—M}l‘,‘- ")] M (4.258)
j=i
n-1 . ; T .
= M2 Fl [H F;(I-MjTi ™) ] M7 (4.259)
, j=i
n-1 T
= M2, [[‘[ (I-M;T] ")F,._l] F,IL M (4.260)
Jj=i
= 0(&), (4.261)

where (4.255) holds by symmetry, (4.258) follows from (4.171), and (4.261) from Theorem 4.1 and the
facts that {F,} is bounded above by hypothesis, and (M2} and {M.} are bounded above and below, by
equations (4.57) and (4.90). (Note that both bounds carry over to {M}} -- which skips an observation
update -- because (I —K;_; H;.;) is bounded both above and below.) Thus, it also holds that

N(zig =& wi+Vi(8,-00), Wi-ViMiViT)
= N(z-§¥i W) + 0,(87) (4.262)

from (4.127), where use is again made of the fact that {M,‘;} is bounded above, and also of the
boundedness w.p.1 of 8, and 9:, due to the bound (4.103) on the transition matrix. Hence, each term
in the summation in (4.219) may be written as

e(l-e) "' x, ki N(8,: 85, M)

[ Nz & wi+Vi(8, —80), Wi-ViMiViT) h(§) d§

i

e(1-e)" %, x, [N(Q,,;a,?,M,,"Hop(S"“)]

| [N(zs-x—é;\_ri,Wi)+0p(5"“) ] R(E)dE (4.263)

e(l-e)y'x,«i [N(QR;QS,M:’)

[ NCaim=& ¥l W) h(B) dE + 0,(8) . (4.264)

where (4.263) follows from (4.253) and (4.262), and (4.264) from the fact that /# has bounded moments,
by hypothesis. Moreover, it is clear from (4.168) and (4.174) that

0

Ke = p(200 """ 5 Za1 1 Mo=0, -, Npy=0) (4.265)
=p(zialze " sziaz, 0 Ea Mo=0, -, My =0)
P(io, Tt 2 Zi Ziy T 2 Zn-t I n0=0’ Y nn-lzo ) (4~266)

But

Plzia Vzo = v Zicn v "7 "0 Bne1s Mo=0, -+, My =0)
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= N(z_p ¥i, W +R), (4.267)

as a consequence of (4.2) and the fact that the probability is conditioned on the event "there were no
outliers among the first n observations." (Note that v! is the optimal estimator of 8;_; given the
observations { zo, ‘", Zi-2 %> ‘"> Zs-t }» and W} is its covariance.) Thus,

X0 = N(zi; v Wi+R )

P(zm T Zi gy "',En-l'n0=07 ""nu-l:o) (4268)

K2 N(ziop; ¥i, Wo +R ), (4.269)

where (4.268) follows from (4.266) and (4.267), and (4.269) from (4.168) and (4.174). Hence,
substituting into (4.264) yields

e(l-e)y x, ki N(§,; 8, M)
[ NCzia=& wi+Va (8 =80 Wi-ViMiV,T) h(§) d§
= e(1-ey=tnxd [pi N8, 0% M) + 0,(8) ) @.270)
where

) N(zi =& vi, WiYh(E) d ,
o _ I Nza-§ . W ) h(8) d8 @21
N(zips Vi, Wa+R )

is the likelihood ratio for the dual alternatives of whether or not v;_; was an outlier.
For n 2 @, rewrite (4.219) as
p(8, lzo "¢ 201)
= (l-g) %, x7 N(8,; 87, M)

n-o . . .
+e(l-e)x, Y % N(8s; 8, M,)

i=l
[ NCaia-& wi+Vi(8. -0 Wa=ViM, ViT ) h(§) d§
+e(1-e)x, Y ki N(8.:8i,M,)
i =n—0+1
J N(zia~& vi+Vi(8,-8:0), Wa-ViMi VT ) h(E) d§

+ 0,(&(1-e)y?) (4.272)

= (1=-e) x, xy N(8,; 87, M)

’l-m . ‘ . .
+e(l-e)'x xy ¥ [p,‘. N(8.: 63, M) + 0,,(8"“)}
. i=1

+e(l-eytx, T «iN(Q,:8, M)

i=n~ol

-—
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f NCzo=& wi+Vi(8,-80), Wi-ViMi Vi) h(§) d§

+ 0, (E(1~e)?) | “273)

n—o

= [(1~e)" +e(l-e? ¥ pl | ® xINCO,; 00, M)

i=l
n—m

+e(1-e)lx, x] 3 0,(3)

i=1

re(l-erlx, 3 ® N8O, M)

i=n~m+1

J NCzia=8& wi+Vi(8, -8, Wi-ViMiViT) h(§) dE

+ 0, ( E(1-e)"?), 4.274)

where (4.273) follows from (4.270). But since

e(l-e)tx, « T 0,(8)

i=1

n-l

=e(l-e)'x k) ¥ 0,(8) (4.275)
n-1 -1

=g(l-e)"x, &) [Z 0,(8) - ¥ 0},(8")} (4.276)
i=0 i=0

=e(l-e) K o,,[ 11“_56" - ‘1‘_58 } @277

- eti-ern o, | 82 | | a2

= 0,(*(1-&)y™") 4.279)

or less, from (4.158), and the fact that {x,} and {x’} are bounded above. It follows that (4.274) can be
rewritten as '

p(gn IAO’ "',En—l)

n—-Q .
= | (Ll=-g) + e(l=e)™" 3 pi|x k) N(8,;8), M)

i=1
n

+e(l-e)tx, ¥ xiN(8, 8, M)

i=n—o+l

[ NCzia=5 wi+Vi(8, -0:), Wi-ViMi ViT) h(E) d§
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+ 0,((1-e) ). , (4.280)

Let ) be the measure induced on R? by the system (4.1)-(4.2), conditioned on the observations
{zo, """ >Zic2%, * " »2Zp }» and let f,l,'; be the same measure further conditioned on the events
{ no=0, - -, M;-1=0 }. From Theorem 4.1 and its corollary,

B o= p o+ 0, (3, (4.281)
1t follows that
Eilpal = Eji[pa]l + 0,8 @.282)

J NCzi -8 vi, Wi ) h(§) d§
I N(zii; Ya, Wi +R )

it

dRi(zie) + 0,(8*) 4.283)

- [ NCzii-E wi, Wi ) h(§) d§
B N(zii Vi, Wi+R)

NCzi; va, Wi+R )Yd z,

+ 0,(8"*) (4.284)
= J"j N(z =& v, W) h(E)dEdziy + O,(8*) (4.285)
=1 + 0,(&7*) (4.286)
w.p.1. Thus, there is a 0 < p < 1 such that
nf = o — f 0,(8" ) | + 0,(p"™) (4.287)
n=0 o Pr = n—o 5 °° Pt -

by virtue of the Chemoff bound (see for instance Chemnoff, 1952; 1972, pp.44-45). It follows therefore
that

n—-0 . n—w .
T pi=n -0+ Y 0,08 + 0,((n-w)p"™®) (4.288)
i=1 i=1 .

=n -0+ 0,(e) + 0,((n-0)p"™®), (4.289)

where (4.288) follows from (4.287), and (4.289) from (4.275)-(4.279). The O,((n —)p"™) cleady
vanishes as n — oo, Substituting into the first term on the right-hand side of (4.280) yields

n— .
(l-eg) +g(lt-egy' ¥ p;}KHKSN(Q,.;_QS,M,.O)

i=1

= |1-ne+ i [Z]a‘ +xa(n—~oo)+(n—co)nz-1 [:]e‘“
k=1

k=2

K, KO N(8,: 89, M) + 0,(8) + 0,((n~w)p*™)  (4.290)
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n-1

= |1~ ot + 2": [:}e" + (n-a) Y [:]e"“

k=2 k=1

Ky KO N(8,; 0%, M2) + 0,(€2) + 0,((n-m)p™™®),  (4.291)

from (4.289). It is worth noting that 1-we in (4.291) corresponds to the first two terms of the
expansion of (1-¢g)*.

More generally, suppose a finite number m of outliers occurred during the first n time steps. The
prior probability of such an event is €” (1-~¢)"™. All the outliers may have occurred during the most ‘
recent @ time steps, resulting in

) o! ,
{”‘} T oml(w-m)! (4.292)

terms in the corresponding sum, which is consequently bounded. Altemnatively, m —1 outliers may have
occurred during the most recent @ time steps, and one during the earlier n — time steps. In the latter
case, the effects of that early outlier will have attentuated to O (&), by (4.158), and the comresponding
term will therefore be indistinguishable, to O (&%), from the case where only m —1 outliers occurred.
Clearly, there are

n-o . '
[ 1 ] =n-0 (4.293)

such terms. Analogous arguments can be made for m -2, - - -, 0 outliers occurring during the last @
time steps.

Obviously, if no outliers at all occurred during the most recent o steps, then this case is
indistinguishable, to 0 (&), from the case where no outliers ever occurred. The same would be true if
m — 1 outliers occurred, neither of which during the most recent ® time steps, and so on. In general,
therefore, the "no outliers” term has the coefficient

g(l-g)y! {n;ml + z—:z(l-e)"'l[n;m} +

(L-¢&) +
n—o n-—-o
=y s’"(l—s)"""{ m } (4.294)
m=0
n—m n-—o
= (1-g)* X s”‘(l—-s}""‘"’”[ m } (4.293%)
m=0
= (1-e)® (g+1-g)® (4.296)

(1-¢)%, (4.297)
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which agrees with (4.160). Similarly, the "one outlier” term corresponds to the coefficient

e(l-ey + sz(l-e)”'z{n;m} + é(1-e)"-3{";m} +

n—® n-—-o '
= 3 e"‘*‘(l—e)""""[ m } (4.298)
m=0
: L n-o
= g(1-g)* Y s"‘(l—e)"“‘”“"‘[ m ] (4.299)
m=0
= g(l-e)®! (g+1-e)® (4.300)
= g(1-¢g)*}, 4.301)

which also agrees with (4.160). Similar arguments may be made for higher numbers of outliers. It
follows from (4.292) that the order of each term is

& (1-g)™™ ‘”(""”"’,",(m""“) = O(e" ™). (4.302)

From (4.159), the most significant term is for the smallest possible m, ie. for m = 2, concluding the
proof. . -

Remark The analogue of equation (4.160) for the case n < ® is equation (4.219).

The following corollary is immediate.

Corollary 4.2 Let the conditions of Theorem 4.1 and Corollary 4.1 be satisfied for the system (4.1) and
(4.9), and let & be a real number for which (4.14) holds. Let @ be the smallest integer such that (4.158)
is satisfied. If (4.159) holds and if the distribution A has bounded moments, then

p(8n Iz * " 2nmt)

= (1-€)"x, xy N(8,; 87, M)
+e(l1-e)lx, Y kN8, 8, M)
) 1= -1
I NCzim =8 Hi Vi +H Vi (8, ~85),

H_ WiHT -H_ ViMiViTHT Y h(E)dE

+ 0,(ated) #303)
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forall n 2 @, where, fori =1,2, --- andn > i,

8 = Fo18iy + Fou My H T 7 (20m = Hasy8ily) (4.304)
M, = Fu P oYy + Qay (4.305)
P =M. - MH T “'H, M} (4.306)
I} = HyM H + D,RD,’ (4.307)
Vi = Vi PiL F.L M, (4.308)
Vi =vig+ VioML BT T (2 - H,185) , (4.309)
Wi = Wi - ViaMi HL Tay  Hy M Vi T (4.310)
K = Kooy N(Zooi; Hr8io, Tis) (4.311)

subject to the initial conditions (4.169)-(4.177). The normalization constant satisfies

& =(1-e)

+e(l-g)' ¥ «i IN(Ei—l_g;Hi—IX:’

i=n—a+l

H Wi HT )Yr(E)dE (4.312)

Proof The proof is identical to that of Theorem 4.2, and is omitted. ]

4.2 A First-Order Approximation to the Conditional Mean Estimator

The approximate conditional prior probability distribution of the state 8, given the observations
{zo» ~ ", Zs21 } is now used in an extension of a theorem due to Masreliez. This results in a first-
order approximation to the conditional mean (i.e. minimum-variance) estimator.

The following notation is used, respectively for the conditional mean and conditional variance of
8.: '

L

E[8, lzo " "2 ] 4.313)

z, E[(8,-T,)(0,-T, )T lzo, -,z ] (4.314)

In addition, the functional

[ .
(z,) = -
(2 Pz 1 200~ s Ze, Mo=0, -, My =0)

V. p(zx l 200~ "1 Zacts Mo=0, -+, My =0) 4.315)

denotes the score function for the conditional probability of z, -- i.e. the additive inverse of the gradient
of its logarithm - as defined earlier in equations (3.226)-(3.227), and similarly, for i = 1,2, - - and
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{ -
Wi(zia) = -
& p(zicy VZos ** v ZicsZis "5 2y M0=0, s, Ma=1 o, M =0)

Z;‘._IP(L'—I | 20y "t s Zi-2Zis T 9 En

ﬂo=0' o ’Th-1=17 IR ﬂn-1=0) (4316)

Finally, fori =0, 1,2, - -- and n 21,
wi(z) =Y. wiT(z) ' (4.317)

denotes the additive inverse of the Hessian ot the logarithm of the conditional probability, i.e. the
Jacobian of ;.

Theorem 4.3 Let the conditions 6f Theorem 4.1, Corollary 4.1, and Theorem 4.2 be satisfied for the
system (4.1)-(4.2). If h is bounded and differentiable a.e., then

Ld . .
T, = (1= ke 70 L0 + e(1-8) 1 3 mIi + Op(a@e) 4.318)

i=n=—0+1

for all n = w, where

I = 0) + M)Wz -87) @

T = 0] + MiTi (2 —8) + PiVa " W (Zict = Yaut) (4.320)

W = (l-e)ly + & k) [ N(z -5 8% MO h(E)dE @320

mo= (1=8) kiy [ N(zo=§ Yaur, Wan ) h(5) dE @.322)
. Y.;,[(l-e)N(zn;Q,?,f'f)*-e ) N(.z,._—é;a,?,Mf)h(é)dé}

Wiz -87) = - 4.323)

(1-g) N(z: 8% TP ) +€ | N(z. =& 87, M) h(8) d§

, Y. | N(za=& Yavo Wa ) R(§)dE
Yo (2o =Yast) = = , ; (4.324)

- [ NCzio=& Yo Wan ) A(§) d& ~
with 8/, Mi, Pi, Ti, vi, vi, Wi, !, and x, as defined in equations (4.161)-(4.168), subject to the
initial conditions (4.169)-(4.177). Furthermore, '

n . . e
5, = (1-8)° k020 + e(1-8)" Ky 2 T Z, 0,(w*e?) (4.325)

i=n—~ar+l
for all n = w, where
52 = M2 - MY (z -e)yM2 + (L “IH (L -THT (4.326)

Z, = Pi - Pa ViTWi (g = ¥in) ViPE + (L= (L-L)7 (4.327)
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and ¥} is given by equation (4.317), with (4.323) and (4.324).

Proof Note first that
P(Q.m!a I5.09 -,.’Za—l)
. o 3 4'
p(& | zo 1Zn ) 2z 120 i) (4.328)
-al , 2 C ey Zao !_ SIS
- p(z. | 84,20y 2,1 ) P{( 8, | Zo» Znoy) 4329
P(zy l Zoy """ 3 Zr1)
z 19, 1 29y * 5 Zne
- p(z Yp( 8. 1 2 z 1)’ 4330)

P(zy 1200 """ s Zauy)

where (4.328) and (4.329) follow from the definition of the conditional probability, and (4.330) from
(4.2) and the fact that {v, } are independent.

It therefore follows that

L = [8p(8lzo - 1zl @.331)
l ;.
irrrarrarrre i R A CR IR L IR A - A CE &)
1
-p(zaigo,"-’&_l) J.gnf(.z.n-gn)

[((1-eY % W N8, 8% M)

n . . .
+e(l-ey'x, ¥ i N(8,:0iLM)

i=l

[ NCzio-§& vi+Vi(Q. -8, Wi-ViM ViT) h(§) d§

+ 0,((1-¢)?) } de,, : (4.333)
where (4.331) follows from (4.313), (4.332) from (4.330), and (4.333) from (4.219), (4.2), and the
definition of f. .

Consider the first term on the right-hand side of (4.333), i.e. the "no outliers among the first n
observations" term, and rewrite as

(l—e) x, x?

[ 8 f(za 8, )N(8,; 87, M) d,

pCz l zoy """ 2ac1)
(l-2) x, x7
P(za 1 2oy """ 1 Za)

[ 242 [ 1227 (0,-80) £ (2 -8, ) NCB,: 89, M2 ) dB,

+ 80 | f(z -8, )N(8,: 89, M) d8, } (4.334)
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Now, by independence,
F(z22=8,) = p(z, 1 8,)
= P(in ’Qn:z.(h "',£a~1,ﬂo=0, "'7“)!—1:0)1

and moreover,

N(Q_,;Q,‘,’,M,") = P(Qn 120, " 1 Zs-1>M0=0, -, MNey=0).
It follows that

| £(za =8 ) N, 82, M) a8,
= [ P(z 1 8ar20y * s Zacts Mo=0, * My y=0)

P(gu I.Z.Ov ""Ll-b“():o’ "‘,T\,._1=0)d__9_,.

]

IP(Q'"Z“ Fze * " s Za-y Mo=0, - -+, My =0)d8,
=p(2a 1 200 """ 3 2,1 M0=0, * ", My =0),

from the definition of the marginal probability. Thus, using (4.184),

1—6“ 0
CoErm B g [ f(za -8, )NCQ,; 87, M) a8,
p(zy V200 " 122 )
= p(T‘O:O: --~,T1,,_1=0|_z_0, "':_z_n-l) 90
Pz, V2o " 3 2Zacy) -
p(z 1 20y " "5 221, M0=0, * -, My =0)

p(Me=0, -, MNp1=0129, - -,2:) _,?,

from the definition of the conditional probability.

Note next that

M 7 (8,-80)N(8,; 80, M) = - VYo N(8,; 87, M),

so that
[ ¥, N9, 8% M2 ) de, = - J M? 7 (8,-82) N(8.; 87, M) de,
=-M)7(8-8)
= 0.
Hence,

| M7 (8, -80) F(za — 8, ) N8, 82, M) A,

= = | f(2a.~8.) ¥ N(Q,; 83, M) d8,

(4.335)
(4.336)

(4.337)

(4.338)
(4.339)

(4.340)

(4.341)

(4.342)

(4.343)

(4.344)
(4.345)

(4.346)

(4.347)

-




= - f(z-8,) [ Yo N(8&,; 8, M) de,

+ [ N(8x; 00, M) Yy f(zs -9, )d8, (4.348)
=.J N(8.;80, M) ¥y (2, -8,)d8, (4.349)
=~ [ N9, 8 MM) Y, f(z, -9,)d8, (4.350)
= - Y [ N80 M) f(z -8,)d8, .351)
=~ Y p(z 120 " Zaci Mo=0, -+, My =0), @4352)

where (4.347) follows from (4.343), (4.348) from integration by parts, (4.349) from (4.346), (4.351) is
justified by the dominated convergence theorem (since both the normal density with R > 0 and 2 are
bounded and differentiable a.e., and hence, so is f), and (4.352) follows from (4.340). Thus,

(1-€) %, k3
p(.zu l.z.Oi "'vzn-l)

MY [ M 71 (8,-8) fz, - 8, ) N( 8 80, M) d,

- P(ﬂt):(), ...7nn—1=0'_z.09 .“vZJl—l)

p(za V2o " s 20t )
Pz 12y ot 2y om0 M=0) g
P(Z.n ‘.;0’ ...,zn_l,-no:o’ '-.’nn—l=0) n
["yg,, p(;n I 200 " "9 Zp-1s T\0=03 s :T‘n—1=0) ] (4.353)

p(Mo=0, **,Meey=0 1z -~ *,2,) M}

1
[ p(.“:n ‘lOs "'1511—1’1]0:0’ "‘,ﬂn-\=0)

Y, p(z. Lzoo = - zaets Mo=0, -, My =0) ] (4.354)
= p(Mo=0, ", Mauy=0 1 2¢, ", 2, ) M2wl(z, —802), (4.355)

where (4.353) follows from (4.184) and (4.352), (4.354) from the definition of the conditional
probability, and (4.355) from (4.315). Substituting (4.342) and (4.355) into (4.334) yields

1-€e) x, k2
) S g, £z -8 ) NCBM; 8% M) 8,
Pz V2o "y 201)
=P(T\o=0' "'1nn-l=0120’ ‘T, Za ) {QV? + Mnoy:?(.za"ﬂr?)} (4356)

p(Me=0, -+, Muy=013z -,z ) T2, (4.357)
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from (4.319).
But from the definition of the conditional probability,
p(Mo=0, "+, MNuy=01 20 - -, 2 ) P(2 L 200 """ s Znt)
=p(zatzoo """ s 24y M0=0, . M =0)
p(Mo=0, - -, MNpy=012z " ,21) (4.358)
=p(za V2o """ 5 201y Mo=0, * -+, Muy=0) (1-€)" %, X7 (4.359)
from (4.184). Since {yv, } are independent,

P(En ’209 "'vz.n-lvnl):O’ "'1nn~l=0)
= (8 1 Zo 1 2oy M0=0, - -, Mei=0) % p()  (4.360)
= N(Q: 8L M) % [(1-e)N(w, O.R) + eh(z) ] (436D

(1-e)N(2:; 00 T7) + & [ N(z,-& 00, M) h(§)dE,  (4362)

where (4.361) follows from (4.157), and the first term on the right-hand side of (4.362) from the fact
that the convolution of two normal distributions is also normal, with appropriate mean and variance.
Comparing (4.362) with (4.315) establishes (4.323). Substituting into (4.359), and using (4.168) and
(4.252), establishes that (4.334) can be rewritten as

1-¢ n 0
Uy o™ g, f(z -8 ) N8 8% M) 8,
Pz Vzoy "y 201)
= (1-8) K, my T, (4.363)
from (4.357) and (4.321).

Consider now each term in the summation in (4.333). Although these terms are not normal, they
involve convolutions of normal distributions. For this reason, manipulations similar to those above
(equations (4.334) and (4.343)-(4.352)) are still possible. Each term in the summation in (4.333) may
be rewritten as

g(l-e)lxg, x

p(za V2o s Zam)

[ NCzio =& v +Vi (8, =00, Wa=ViM ViT) h(§) d§ 4o,

ge(l-e)'x, i

- p(_zal_Z_Os .-‘QZA—I)

| & {(1~e)ﬁ(z,.:§4.,R ) +0(¢) } N( 85 82, M, )

f NCaio =& wi+Vi(0, -8, Wi-ViM, ViT ) h(§) dE dB,, (4.364)
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from (4.157). For economy of notation, define for given n and i the function

g(aa-Vi8s) = | N(zia-§& vi+Vi(8 -00), Wi-ViMi V,T) h(§) dE,

Then,

f 8a N(za3 84, R ) N(8a; 81, M7 )

(4.365)

[ NCzi—8& wi+Vi(8,—-80), Wi-ViMi V. ") h(§) d§ d8,

(i [ pi [e-ei-uir;
N(8,; 0 +MiTi ~(z,
+ [Qi+Mii (s -

[ N8 8i+MiT;

[ € N(8y; Qi +MiTi (2 —81), Pi) g(zie1— VaBs ) d8,

N(z; 85, T5) (4.366)
Nz -8i) ]

~8i ) Pi)g(zg - Va8, )do,

)]

Nz -8 ) P)

(4.367)

$(za Vi )d8, | N(zi € T),
where (4.366) follows from Lemma 4.2, (4.163), and (4.365). Note that
Y.é, g(zia - Vit ) = - ViT¥, g(z-Vi8,)
Moreover,
N(z; 81, Th) | NCzi—§-vi, ViMiTi ™ (22 - 00D,

Wi-ViMiTi "MiviT) h(&)dE

i
)
~~
&N
I
4

2 Zn-1Mo=0, -, M =1, M =0)

T Mea=0) + O(e)

|
<
~
I
I
<
&
I
@
X
b
.
iy

L, Mea=0) + O(e)

- Y., J NCzia-&-vi, VaMiT; 7 (2, - 80),
Wi-ViMiTi "MiviT) n(&)dE

p(.’:i-l lios T, & 'R} "'7131’“0:0’ .'.,ni;lzl, "'a“n—l‘_-.o)

(4.368)

(4.369)

(4.370)

Z;2 2
p(zior Vzor s Zicas Zis 2y, Me=0, o Mg =1 0, M =0)




Zz,_l 2(ziaq | zo» s Zi2s i » Zns
MNo=0, -, Mi=1=1, -+, Mp1=0) 4.371)
=plzialzo " v ZiaZ, I
Mo=0, ", Misy=L M1 =0) Wi (z1—¥in), (4.372)

from (4.316) with (4.166). Comparing (4.367) with (4.334), and using (4.368), (4.370), and (4.372),
establishes (following the reasoning of equations (4.335)-(4.357)) that (4.364) may be rewritten as

e(l-e)ytx,

PCz 1 20w 201 )

[ 84 f(za =80 )N(8y; 81, My )

J NCzio =& wi+Vi (8. -80), Wa=ViM, Vi) h(8) d§ d8,

e(1-¢e)tx, xi

p(gn IlO? "':Zu—l)

[(l-e)p(a-l,z,. bzo " vzias Zis """ s Znmls
Mo=0, -, Ma=L, -+, My =0)

(9 + MiTi (-8 + PiViT Wi (amvhe) |

+ 0(¢) ] 4.373)

= e(1-er w80 + MiTE 7 (z-8))
+ P, V:Tm;'(z,--l—x;'ﬂ)] + 0(e(1-ey™) 4.374)
= g(l-e)Y ' kuurm T, + O((1-¢)1), 4.375)

where (4.374) follows from (4.370), (4.322), (4.252), and (4.168), and (4.375) from (4.320). Combining
(4.363) and (4.376) yields ‘

L= (1-e) %u L) + e(l-ef ' X m L+ O((l-e)™),  (4376)
i=1
and the equivalence of (4.376) and (4.318) is an immediate consequence of Theorem 4.2.

Moving on to the estimation error covariance,
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T, o= [ (8 -L) (8, ~L )T p( 8, 1 2o "2, ) d8E, | @31
= 2z |g_0,l...,zn_1) f (0 -T2) (8, -L. ) p(z. 1 8,)
P(8, 1z~ 1 2ay) A, 4.378)
= Pz |;o,l...,_z‘_l) J @-T) (8. -T)T f(z - 80)

[((1-er % NCe,; 8% M)

n

+e(l-e)y'x, I « N(8,; 8, M)
i=l

f NCzio=& vi+Va (8, -85, Wi-ViM{ ViT) h(&) d§

+ 0,((1-g)"?) ] do,, (4.379)

where (4.377) follows from (4.314), (4.378) from (4.330), and (4.379) from (4.219), (4.2), and the
definition of f.
Consider the first term on the right-hand side of (4.379), and rewrite as

(1-g) %, k7 :
RTINS [ (8 =T) (8 =T)" F (22 — 82 ) N( 8,5 82, M, ) dB,
_ (1-e) %, x0
T op(z lzoy  Zamt)

[ (8,-89+80~T,) (8, -87+87-L.)" f(z, — 8, )

N(8,; 8%, M?)de, (4.380)
. (l-ey %
Pz Vzo, * 7y 2a1)

[j (8, ~82) (8, -82)" f(zn — 8, ) N( 8y 82, M) d8,
+ [ (87-T,) (8, -80)" F(z — 8, ) N(8,: 82, M) d8,
+ [ (8. -80)(8)-T.)T F (2. - 8. ) N(8,; 87, M. ) 8,

o [ (80-T.) (80-T)T £ (2 - 8 ) N85 8 MO ) dB, |. (438D)

Neglecting for now the coefficient, the first term on the right-hand side of (4.381) may be rewritten as

-
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M2 [ M2 '(8,-82) N(8,; 8%, M?) (8, -8 f(z, -8, )d8,

= - M | ¥y N(8,; 8% M) (8, -8 f(z, -8, ) d8, (4.382)
= M | N(8,; 8% M) ¥, [(Q»-Qf)Tf(a. —gn]ds,, (4.383)

M [ NCo.; 00 M2) [ £z -8

+ 1%, f(2-0)1(8-8)7 |do, (4389

]

PCza 2oy " 5 Zacty Mo=0, =+ +, Npy=0) M
+ M7 f N(8.; 80, M) [ ¥y F(z, -8 )1(8,-87)T d8, (4.385)

© s Znals T\o=0, T T\u-1=0 )Mno

"
s
=
g
al
?

- MY, [ (8. -8DTN( 8, 80, M) f(2, -8, )dO,  (4.386)

Yy Zn-ly ﬂ0=0$ Y nn—l=0 ) M"O

"
2
[
¢

- MY, (M:’ [ MD (8, -983) N(Q,: 82, M)

T
f(z, -8, )d8, } (4.387)

=p(za 1200 """ Zne Ne=0, *+, My =0) M)

+ M) Y2 [I N(8,; 87, M) f(z, — 8, ) d8, ]M,? (4.388)
= p(z V200 "y Zees M0=0, ** *, Nay =0) M)

+ MY V2 p(z V2o s Zaets Mo=0, *+ , Macy =0) My, (4.389)

where (4.382) follows from (4.343), (4.383) is analogous to (4.349), (4.385) and (4.387) follow from
(4.340), (4.386) is justified by the dominated convergence theorem, and (4.388) follows the same
reasoning as (4.382)-(4.386), as well as the symmetry of the covariance matrix. Thus, the first term in
(4.381) becomes :

(1-¢) %, %2
p(zy 120 - 1 Zpay)

[ (8.-89) (8, ~80)T £ (2 - 8, ) N( 8,5 89, M) d,

= p(W=0, My =0 120, o z0) [ MY

1

+ MQ .
p(z, L 2oy " s Zpoty Mo=0, - -+, My =0)




- 155 -

“v‘zznp(-z-u b 2oy ** "5 241y Mo=0, ”"nn-l=0)Mv? ]v

as in (4.354).

(4.390)

Consider next the remaining terms in (4.381). Note that since 8° and T, are measurable with

respect to the conditional probability measure in the integrals,
[ (8-T1.) (8, -8D)T (2, — 8. ) N(8s; 82, M, ) d8,
=p(za 1 Zoo ** " 2 21, 0=0, -+, May=0) (87 -1, ) (Z2-0N)T
J (8 -8 (87-T.)T f(z. — 8, ) N( 8,3 82, M) a8,
= p(za 1 Zo, " "2 Zaets Mo=0, -+ -, My =0)(L-8) (87 -T,)T
[ (@-L)(8-T)T f(zn ~ 8 ) N(8a: 82, M, ) dB,
= p(za V2o " " 1 Zae1y M0=0, *+*, May=0) (L, ~80) (T, -8
Moreover, compleﬁn§ the square yields
(87-T, ) (I7-a)7T + (L7-87) (87-

= (L,-99+80-T.0) (T, -82+83-THT - (89-T.0) (82-T)T

3
-
+
B
©
B
{
®
=

= (L, L) (L, -T.O)T - (8- (82-T.0)T
= (LT (L. -T)HT
— ﬂo 1
(P(Lu | Z9 """ aln-l’ﬂ():()s cre !nn—1=0))2
Y. p(za V20 " 20, =0, *+*, My =0)
Y_;:p(h 1 'EO, Tt Znals n0=0’ T nn-i"—‘o )Mno,
from (4.355)-(4.356). But since
1

—Zp P(Z.q ;_z.o, ...,L._hnoz()’ ...,nn_1=0)

VIp(z 2o+ ) Zaets Mo=0, -+, My =0)
_ 1
P(zy V 2oy " 4201 Me=0, -+, Mpy=0)

_V_;znp(_z_” 1 2o, "4 Zpa1, Mo=0, ** -, My =0)

1
(P(2a 1 200 """+ Zaety M0=0, ** +, My =0) )P

(4.391)

4.392)

(4.393)

(4.394)
(4.395)

4.396)
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-Z;np(.‘:a | Zoy " v..zat-bn0=oa et 1ﬂn-1=0)
Y;P(Zn l ;0! Tt ’.Zu—l: n0=0’ t ‘.1 nn-lzo ), (4‘397)

it follows, by substituting (4.390), (4.396), and (4.397) into (4.381), that
(1-2) % %,

P(z V2o, * "1 201)

[ (8 -L) (8 =L)T f (20 = 8, ) N(8,; 02, M) a8,

i

p(Me=0, -+, Mp=01lzp - -,2,)

(M9 - M %2z -0 MY + (L-ID(L-TT ] @3%®)

]

(1-€) Ky 77 Z7, ; (4.399)
where (4.398) follows from (4.317) and (4.399) from (4.326) as well as (4.359), (4.362), (4.252),
(4.168), and (4.321).

Consider now each term in the summation in (4.379): ’

e(l-eytx, x

P(z L 2o " Zat)

J (@=L (8 -L)T f (2 — 8. ) N(&as 8, Mi)

[ N(zi—& vi+Vi(8,-8), Wi-ViM;Vi" ) h(§) d& d8B,

o E(l-g)x, K,
P(za LZg v 3 20y)

[ (8 -L) (8 =TT [ (1-8) N(z1: 80, R )+ 0(®) |

N( 8. 81, M; ) g (21— Vi, ) d8, (4.400)
from (4.157) and (4.365), where
[ (B =L) (81 -T. )" N(za3 8. R )
N(8.; 83, M5 ) g( 2oy - Va8, ) d8,
= [ (8a-T) (&=L )" N(8; 05 +M Ty "(z, -85 ), Pi)
8(zi1 = Va8, )d8y N(z; 8, In) (4.401)

= | (e-ai-miri (a0 | @ -gi-siri Y -gh |
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N(8,; 8 +M T} (2, -85),Pi)

8(zi - Vi0, )de, N(z;8iT}), (4.402)

where (4.401) follows from Lemma 4.2. Comparing (4.402) with (4.380), \ising (4.368), (4.370), and
(4.372), and following the same reasoning as before, establishes that

e(l-e)y'x, xi
P(2 V2o "5 201)

[ (B =T.) (82 ~T. )T f( 20 - 8, ) N(8s; 8], M;)
J N(zia=5 i +Vi (8, -00), Wi=ViMi V") h(§) d§ de,

= g(l-e) Vg m = + O(2(1-e)), (4.403)

so that

L, = (1-e) K, 022 + e(1-e)" ',y in,‘; o+ o(&(1-e)y ). (4.404)

i=l

Once again, the equivalence of (4.404) and (4.325) follows from Theorem 4.2, completing the proof.
(This theorem generalizes the result in Masreliez, 1975.) n

Remark The approximate conditional-mean estimator of Theorem 4.3 has the following properties:

@

(ii)

(iif)

(iv)

The analogue of equations (4.318) and (4.325) for the case n < @ are equations (4.376) and
(4.404).

Both Theorem 4.2 and Theorem 4.3 are based on the assumption that outliers occur rarely relative
to the dynamics of the filter. In the unlikely event that two outliers occur within less than o time

steps of each other, equation (4.320) -- which shows that T! is linear in z, -- suggests that the

estimate would be strongly affected. This implies that the estimator developed here is robust in
the presence of rare and isolated outliers, but not to outliers occurring in batches. This issue is
further discussed later in this section.

It is easy to see that
(l—e)n Kn 4l 7!,? = P(ﬂo=0, T T nn—-1=0 ! Z0s "'y Za ) (4.405)

and

e(l‘g)n’-l Kn-l-l TC:; = P(no=0, D ’T‘i—1=1, v 9T‘n—1=0 l 200 T s 2 )9 (4‘406)

ie. the estimator is a weighted sum of stochastic approximation-like estimators, with weights
equal to the posterior probabilities of each outlier configuration. These probabilities are
conditioned on all the observations, including the current one.

Unlike the Kalman Filter, the estimation error covariance X, (i.e. the conditional covariance of
the state 9,) is a function of the observations. Indeed, the Gaussian case is the only one where
the error covariance is independent of the observations. Note, however, that the covariance is a
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function of a set of matrices {M:}, {Pi}, {Ti}, (Vi}, and {W!}, which are themselves
independent of the observations. Thus, they can be pre-computed and stored, as is sometimes
done with the Kalman Filter. This would drastically reduce the on-line computational burden.

(v) The estimate of Theorem ;1.3, as well as its error covariance, are both fairly complex. In all but
the simplest cases, obtaining them will be computation-intensive. However, the structure given in
Theorems 42 and 4.3 includes banks of parallel filters and smoothers that are entirely
independent of each other. This suggests that the estimate derived here is well suited to parallel
computation.

(vi) The error covariance X, includes a weighted sum of quadratic terms of the form
(L, -Ti)(T,-T:)T. In some sense, this sum measures the disagreement among the parallel
estimators, weighted by the posterior probabilities of each outlier configuration, and can be

v regarded as a price paid for analytical redundancy.

(vii) The "robust Kalman Filter" of Masreliez and Martin (1974, 1977) is approximately equivalent to
the zeroeth-order term in equation (4.318), i.e. to T2 as given in (4.319). This may explain its
good empirical performance, as reported in the literature, despite the questionable assumption of
normal conditional prior on which it is based. It is also instructive to compare T with the robust
smoother of Martin (1979).

(vidi) Tt 1s easy to verify that, for € = 0,

V. N(z:8).T7)
0(z,-80) = — — 4.407
A (e =20 N(z; 85, T7) @407

0 (2, ~89), | (4.408)

so that T, reduces to the Kalman Filter.

The following corollary is immediate.

Corollary 4.3 Let the conditions of Theorem 4.1, Corollary 4.1, and Theorem 4.2 be satisfied for the
system (4.1) and (4.9). If 4 is bounded and differentiable a.e., then

T, = (1-e)°kum I + e(1-e) "%y Y mITi + O,(0?€?) (4.409)

i=n-m+l

forall n 2 ©, where

L) =8 + MJH, W (z, ~H, 83) (4.410)
T = 8+ MIHTT (5 - H,80) + PLVATHTY wi(aa-Hovia)  @41D
o= (I-e) ki + e kD [ N(z-§ H. 80, M) h(§)dE 4.412)
mo= (1-8) iy | NCzio~& Hia¥ia, Wi Y h(E) dE (4.413)




- 159 -

WO (2 ~H, 80 = ~ [(L-&) N(zi H, €2, T)
+ e [ N(z,—& H, 80 MO h(E)dE |
_Y{"[(l—ﬁ)N(L.;HnQSs D)
+ & [ N(z-§ Hy 00 M2) h(8) dé] (4.414)

V.. j N(zi =& Hio ¥ Was ) R(E) dE
[ NCzia=8& HisiYaw, Wan ) R(E)dE

with 8, Mi, Pi, T, Vi, vi, Wi, i, and x, as defined in equations (4.304)-(4.312), subject to the
initial conditions (4.169)-(4.177). Furthermore,

Wi (zio—Hio Yam) = - (4.415)

T, = (1-€) K T Zn + £(1-8)"" k0 n Z + 0,(w'e?) (4.416)
P

i=n-atl
for all n = w, where
L = M) - M)HT ¥ (z, -H,87) H, M) + (L, -I)) (L -L))" (4.417)
o= P— PiVETHT Wiz - Hia Vi) Ha ViRl + (L-T)) (L -I)T, (4.418)
and P} is given by equation (4.317), with (4.414) and (4.415).

Proof The proof is identical to that of Theorem 4.3, and is omitted. |

The matter of the linearity of T in z, is an important limitation of the estimator presented here. One
way of dealing with this problem is to retain the function f rather than making the approximation of
equation (4.364). Thus, using (4.365), each term in the summation in (4.333) yields

[ 8n N(8.; 85, My ) f(20 =8 ) 821 — Vi Bs ) de,
= M [ ME U8, -80) N(8ui 8 Mi ) F (2 - 8 ) g2y - VB, ) d,
+ 81 [ N8 8L Mi)f(za-98,)2(z—-ViB )dO,,  (4419)
and proceeding as before (equations (4.343)-(4.352)),

[ Mi (8, ~81) NCB,: 81, M) ) F (2 — 8, ) gz — ViBy ) dB,

~ | Yo, N(8,: 81, Mi) f( 20 -8 ) g(zim — ViB, ) d8, (4.420)

1]

[ NC8.; 8. M1 ) ¥, [f(.z,. -8, )g(L'-x"V:';_Qa)} de, - (@421

~n

JNCO 8L ML) (g, F(z-8.) ]g(z.--l—v;'a,. ) de,

] N8 8L M) f(2-8) [Va, 8z -Viey) | do, @422

~ ¥, | N8y 0, Mi) [z -8, )8(zi1 - Va8, )d8,
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~ ViTY, | NC8as 81, M) f( 20— 8 ) g(ziey ~ Vi B, ) dB,, (4.423)

where (4.421) follows from integration by parts, (4.423) holds by the dominated convergence theorem,
and use is made of equation (4.368). Since

[ NC8.; Q0 ML) f(2a =80 ) (2 - Vi 8, ) d8,
= p(zi-1y2y V Zoy """ 2 Zic2sZis """ 5 Epe1s
MNo=0, -, Mia=L ", MN=0) (4.424)

it follows that T} may be expressed as a function of influence-bounding functions that are the scores of
a joint probability distribution. Similar arguments also apply to the derivation of I). An obvious
difficulty with this approach is that, since the function g is itself a convolution, equation (4.424)
represents a double convolution. This may be difficult to obtain in practice, except in cases where # has
a special and convenient form. If, however, it is assumed that z, and z;_; are nearly conditionally
independent, i.e. that

PQzicnzn 1 2o "0 Zicp iy * " "5 Za=1, Mo=0 =7 ;Wi =1, - -, My =0)
=p(zialze vz o Za-p =0 Mg =1 e, My =0)
PCza V2o " 0 Zic Zir " 2 Ze-1Mo=0, -, M =1, 00, M =0),
+ A (4.425)

where A is sufficiently small, then it is easy to see that equation (4.320) becomes
Lo=80 + Miwi(z -8) + MiViTwi(za-w), (4.426)

with appropriately defined influence-bounding functions. An important difficulty remains, however:
while T} is no longer a linear function of z,, it is easy to see (equation (4.161)) that 9!, still is. Thus,
while the influence of the outlier may be bounded at the current time, it is not bounded for future time
steps. This limitation is due to the fact that the approximations are of first order. Under the assumption
that at most ome outlier occurs within ® time intervals, the posterior probabilities multiplying each term
in {(4.160) and (4.318) take care of bounding the influence of the outlier; thus. there is no further need
for any non-linearity in (4.161). When that assumption is violated, however, this mechanism fails, and
the influence of multiple outliers cannot be controtled. Using a second-order approximation would
eliminate the non-robustness of the estimator against pairs of outliers within less than « time intervals,
but not, of course, against three or more outliers within the same period. Higher-order approximations
are briefly mentioned in Section 6.2,
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4.3 Further Approximations to the Conditional Mean Estimator

The estimator of Theorem 4.3 and its corollary makes explicit use of the exponential stability of
the Kalman Filter. It retains a finite number o of terms only, so that the complexity of the estimator
does not increase without bound as n — -s. However, as the proof of Theorem 4.1 makes clear, the
parameter ® is a function of various upper and lower bounds, and is therefore necessarily conservative.

. It may often be sufficient to retain a much smaller number of terms to preserve a comparable degree of
accuracy. Furthermore, @ is not exactly trivial to obtain, making ways of eliminating this parameter
quite desirable.

This section briefly discusses a number of further approximations, designed to simplify the
estimator without sacrificing precision. The first two are based upon tests to decide which of the
possibie outlier configurations (i.e. each set { Mg, - ', N,-1 }) are significant. The third is geared
towards making a hard decision as to which single configuration best represents the observation history,
and retaining it alone. As pointed out in Section 1.2, such hard decisions sometimes result in better
performance at the nominal (i.e. normal) model.

Approximation 4.1 For the sake of discussion, suppose the current time is » > @, and let /, denote the
set of integers { n —w+1, ---,n }. Foreachi € f,,, it is desired to make a decision as to whether or
not to retain the corresponding term in the conditional prior distribution given by (4.160).

Clearly, if no outlier has occurred, or if one has occurred long enough ago that its effects on the
ith term have sufficiently attenuated, then the ith term is indistinguishable from the Oth term and can
be aggregated with it. Consider the alternative hypotheses

Hy: 9. is normally distributed

H,: 9/ is not nommally distributed (4.427)
and the test statistic
S = (8, -89)TM) (8 -8)) (4.428)

Under H,, § is x>-distributed with ¢ degrees of freedom: if the null hypothesis cannot be rejected, then
the i th term can be dropped (i.e. consolidated with the Oth term).

Note that this test is designed to be conservative: if an outlier has occurred recently, then neither
62 nor ©) will be normally distributed. Thus, even though they might both be invalid models, they are
each retained individually. Note also that the norming matrix in (4.428) is the inverse of M., not that
of Y2(M,2+M; ) as might be expected. This too is to ensure that the test is conservative: the nominal
covariance matrix M, is based on the hypothesis that no outliers are present, and is thus the minimum
obtainable error covariance. Hence, the statistic S will be very sensitive to differences between the two
estimates 97 and 8}, i.e. the test will be powerful.
Defining I, to be the set of all i for which H, can be rejected, the conditional prior takes the
form '

p(8s 2o " 201)
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= (1-2)"%, x2N(8,; 8%, M)

+e(1-e)"%, 3 «iN(8,; 8 M)

iel,
f NCzia=& vi+Vi(8, -80), Wi-ViMiViT) h(§) d§
+ O0,(w2ed), (4.429)
where ®, is the number of elements in the set J,, and the normalization X, is defined appropriately.
Similarly, the estimator is given by

L= (1-)" ku m0 L0 + e (1-0)" Ko ¥ I + Op(aied), (4.430)

iel,

and its error covariance by

-

T, = (1-e)" 7l Z + e(1-8)" Koy ¥ M E  + O,(aléd). 4.431)

iel,

To ensure that the error term is still Op(ez), it is necessary to choose the level of the hypothesis test
accordingly. Since M,? is bounded below, by equation (4.90), requiring that

S = 0(e%) (4.432)
achieves the desired accuracy, by virtue of equation (4.127).

The same algorithm is implemented at the next time step n +1, starting with the set
Lay={n+l} U, {(n-o+l}.

Approximation 4.2 The conditional prior means 8; are easy to compute, making Approximation 4.1
easy to implement. ¥nder some conditions, the posterior probabilities of each outlier configuration may
also be easy to obtain. In those cases, a more direct approximation is possible.

- Equations (4.184)-(4.185) and (4.405)-(4.406) show that the coefficients of each term in the
expressions for the conditional prior and the conditional mean (respectively) are equal to the posterior
probabilities that each outlier configuration has occurred. It is intitively clear that those terms
corresponding to the most improbable models may be dropped, resulting in simpler expressions and
" reduced computational burden. Since M2 is bounded below, and h is bounded above. each term is
itself bounded, and the coefficients can therefore be used for this purpose.

Always retaining the nominal (Oth) term, a criterion for dropping terms from the expresion for the
conditional prior is

e(1-e) ' xi [ N(zo-& vi, Wi ) h(§)dE < 0, ((1-e)*?), (4.433)
or equivalently

e(l-e)k, % [ N(z=&vi, Wi) h(§)dE < 0,(&). (4.434)
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Similarly, a criterion for dropping terms from the expresion for the conditional mean is
E(1-€)Kum < Op(€). (4.435)

As before, @, is the number of terms retained, and the approximate distribution, mean, and variance are
given by equations (4.429)-(4.431), respectively, with I, redefined as the set of i that do not satisfy
(4.434)-(4.435).

Approximation 4.3 Finally, a third approximation is based upon choosing only one term at any given
time, i.e. making a hard decision as to which model best represents reality. Although this approach is
somewhat ad hoc and lacks strong theoretical justification, it is nevertheless attractive for the following
reasons:

(i) The principal difficulty in implementing the estimator of Theorem 4.3 and its corollary is the
need to perform, in real time, several convolutions at each time step. These convolutions are
needed to compute both the weights of the parallel estimates and the overall normalization
coefficient. Retaining only ome term reduces the number of convolutions that need to be
calculated to at most one per time step, and only following the detection of an outlier.

(ii) It was mentioned in Section 4.2 that the estimator of Theorem 4.3 is non-robust when two or
more outliers occur within less than o time intervals. In this approximation, a test is performed
to detect outliers at each time step, and approprate action is taken when one is detected,
regardless of how recently a previous outlier may have occurred. This results in an estimator that
is more resistant to the effects of a burst of outliers than that of Theorem 4.3.

(iii) As stated earlier in reference to the estimators of Guttman and Pera (1984, 1985) and Ershov and
Lipster (1978), using mixture distributions as priors in a Bayesian setting can result in drastically
reduced performance at the nominal model, unless competing models have negligible overlap.
Thus, unless the outlier distribution # is such that the posterior probabilities for each outlier
configuration are always either near zero or near unity, some "smearing” is likely to occur,
resulting in suboptimal performance when no outliers are present. That effect is eliminated when
a hard decision is made and only one term is retained: in that case, whenever no outlier is
detected, the optimal (Kalman Filter) term remains in use. Furthermore, the main argument
against such a hard decision -- the question as to what to do in case of uncertainty -- is not
relevant here: if an observation is not an "obvious" outlier, then a conservative approach would
dictate that it be treated as an ordinary observation.

For an observation z,, consider the alternative hypotheses

Hy: z, is normally distributed

H,: z, is not normally distributed (4.436)
and the test statistic
S = (za —H, 81T} 7' (2, ~H,8]) @437

Initially, j equals zero. As long as no outliers occur, 87 is clearly normally distributed (it is the méan
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of a Gaussian process conditioned on Gaussian observations). Thus, under Hy, S is xz-distributed with
p degrees of freedom. As long as the null hypothesis cannot be rejected, the Oth term N( 8,; 8%, M,2)
(ie. a standard Kalman Filter) can be used to approximate the conditional prior. Suppose the null
hypothesis is rejected at some pre-selected significance level o for the observation z;_;. Then, set j =i.
Since 8: is independent of z;_; (equations (4.161) and (4.169)), it is still normally distributed, and the
statistic defined in (4.437) can still be used in a 2 test.

Note furthermore that, by Bayes’ rule,

P(Q.n ‘209 "'9..2.!-177‘0:0, "')ni-lzla ”'anpx—lzo)

1
p(.za'-l | zo, "'ZJ-Z’ZJ'{ "'xZn—hnO:O’ "‘,11:-1=1, "'ann-l:O)
P(8, 1 2o " ZinnZi, " "3 Zaxy Mo=0, -, Mg=1, -, N1 =0)
Pz 1 8nvzos """ ZicnZis " 5 Znels
MNo=0, '+, N =L, My =0) (4.438)
= [I p(Zi-an V2oo * " Zicas Zis """ s Znets
~1
MNo=0, -, My=1, -+, Ny=0)db, }
P(8lzo " ZigZir " hZae Mo=0, My =1, <01, Mg =0)
p(-z-i—l | .Ql;’.z.Ov T En Es Ty Znals
Mo=0, -+, Misg=1, ***, Ny =0) (4.439)

- 1 - N( 8. 80, Mi)
[ N(zia-& vi, Wi) h(E) d§

J NCaio=8 va - Vi(8,-80), Wa-ViMi Vi ") h(E) d§, (4.440)

. from (4.214) and Fubini’s theorem. Thus, following the detection of an outlier, the conditional prior
density is given (approximately) by (4.440), until the effects of the outlier have sufficiently decayed.
The point of sufficient attenuation can be determined by ensuring that
NCzi=& Vi = Vi (8, -8 ), Wi-ViMivi T)yh(g) dg, :
J' ! ." < l+e (4.441)
f NCziq=8 va, Wiy h(§) dE

for all 8,, or, from equations (4.254)-(4.262), by verifying that

1-¢g <

Il Vitl = O(e), , (4.442)
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which is simpler. Once this point is reached, the conditional prior may be approximated simply by the
i th Kalman Filter, ie. N(8,; 8}, M} ).

In the unlikely event that another outlier is detected prior to this point, say z;_;, it would appear
that the above process can be repeated starting at the new outlier, i.e. replacing i in (4.432) by &, and
using a modification of the initial conditions (4.169)-(4.174) so that the ith filter, not the nominal (Oth)
one, is used to initialize the kth term.

The equivalent algorithm for the conditional mean estimator and its variance should be obvious
from the above discussion. The estimator is T, until an outlier is detected. Following detection, T} is
used until the effects of the outlier are judged to have decayed sufficiently, or untl another outlier is
detected. A slight modification would consist in performing the outlier test prior to, not following, each
update. In that case, a Kalman Filter would be used until an outlier is detected, .0 at the time of
detection, and T, following it. If Huber’s influence-bounding function v, is used, as discussed further in
Section 4.4, and an observation is considered an outlier when it lies in the region of truncation, the two
methods are identical.

2

4.4 Choosing the Noise Distribution

As discussed in previous sections, the significance of the functional y lies in the fact that it
processes the innovation so as to mitigate the effects of observation outliers. "Overprocessing” the data
results in loss of efficiency at the nominal model, while "underprocessing” makes the estimator
excessivelyv sensitive to outliers, i.e. non-robust.

In Sections 2 and 3, the goal is to estimate a deterministic parameter -- either a time-invariant
location parameter, or one that changes in a known and deterministic fashion -- given observations
corrupted by heavy-tailed noise. Since the parameter itseif is deterministic, asymptotic performance
measures are used, following the lead of Huber. Estimators are designed to minimize the asymptotic
estimation error covariance under the least favorable noise distribution, and these are shown to be
saddle-points, i.e. optimal in the minimax sense.

In Section 4, the goal is to estimate the state of a stochastic time-variant linear dynamic system.
In other words, the parameter to be estimated is itself random, and the problem consists in optimally
tracking it, rather than achieving minimum asymptotic estimation error. Thus, approximations to a
conditional mean estimator are sought, since such estimators are known to achieve minimum error
variance at each point in time. Throughout the discussion in Sections 4.1-4.3, however, the "outlier"
noise distribution H is treated as known. In other words, the results of Sections 4.1-4.3 are better
characterized as non-Gaussian filters than robust ones. To achieve minimax robustness in this case as
well, it is necessary to choose a least favorable distribution H, and show that the solution satisfies a
saddle-point property. '

- It is clear from equations (4.318)-(4.320) and (4.325)-(4.327) that the estimation error variance X,
depends crucially on the distributions of the innovation and residual terms. The relationship between
 these distributions and %, is complicated, as is fairly evident from these equations, but there is an
additional factor that makes this problem especially difficult: the innovation and residual terms are
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clearly sums of nomally distributed random variables and random variables distributed according to a
member of the e-contaminated normal neighborhood of distributions (e.g. see equation (4.362)). The
main difference between Huber’s formulation and this one is thus that the former involves the
neighborhood P, whereas the corresponding neighborhood in the latter case is

Po,o,e = {(1-€)®, +e®, % H: HeS}, ' (4.443)

where @, and @, are given zero-mean normal distributions. To appreciate the distinction, note that
when ©; = ®,, Huber’s case involves replacing outliers, and (4.443) additive ones.

The problem of minimizing the Fisher information for the location parameter of neighborhoods of
the form (4.443) was first posed by Mallows (1978), who postulated that the minimizing H concentrates
its mass on a set of isolated points, and that it has a geometric form; Donoho (1978) proposes a slight
variant, also of a basically geometric form, and offers some numerical results supporting his choice.
This issue has been widely discussed in the literature, particularly in a Bayesian setting where either the
prior or the noise distribution is normal and the other distribution is sought to maximize the expected
risk. Since it has been shown (Brown, 1971) that the Bayes risk is a linear function of the Fisher
information, the problems are equivalent. This connection was used in the present context by Bickel
(1981, 1983), Levit (1979, 1980), and Marazzi (1980).

Mallows (1980) states without reference that B.F. Logan demonstrated that the least favorable A
cannot have a continuous density, but that "after much effort I have been unable to determine” the
distribution in question. Casella and Strawderman (1981) show that if the least favorable distribution is
constrained to place all its mass within some interval [ ~m, m ], then, for small m, it concentrates on
the end points. Bickel (1981) investigates this case for large m, and derives a cosine-shaped density that
is a second-order approximation of the least favorable one. Bickel and Collins (1983) prove under
certain regularity conditions that the least favorable density concentrates its mass on a countable subset
of isolated points, possibly including {+eo}. Marazzi (1980) also provides a proof that the least
favorable distribution is discrete. Nome of these authors, however, are able to derive exactly the
distribution minimizing the Fisher information in this case.

A conclusion strongly implied by this discussion is that the least favorable distribution in the
neighborhood Po, ®,c IS of a highly complex shape and extremely difficult to derive, and, moreover,
that since the very choice of neighborhood is to a large extent arbitrary, the effort necessary is perhaps
unwarranted. An approximation (also suggested by Marazzi, 1987) consists of the following: since
Po.0,e < Pe, the least favorable distribution in P clearly has Fisher information no greater than that
in Py ¢, . Indeed, the least favorable distribution in P (derived by Huber and given in Theorem 2.5)
can easily be shown not o be a member of Py o, . by noting that the support of the minimizing H
distribution is not R, so that it cannot be the result of a convolution with a normal distribution ®,.
Thus, since it was shown to be unique, its Fisher information is in fact stﬁctly less than that of the least
favorable distribution in P o, 0, Consequently, a conservative approach to approximating a minimax

solution is simply to use the least favorable distribution in P; this has also the additional advantage of
simplicity.
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Approximation 4.4 Note first that the conditional distribution of the innovation term is given by
p(z,—82 l"‘\o-‘-f), T Mpy=0)
= (1-e)N(z, -850, T7) + & [ N(z-07-5 0, M) h(§)dE.  (4444)
Thus, defining the normalized innovation as
& = T] % (z -8, (4.445)
it follows that
plen 1 Mp=0, -+, Mpy=0)
= (1-e)N(e,;0,7)
+e [ Ng=8&0,T7 ™M MIT) ") I T (1) ~* &) d& (4.446)
Suppose that & is such that the above distribution may be approximated by
.IW_P(L. [ Me=0, ", Nuy=0)
= (1-e)N(eg,;0, ) + € h*(g, ) + A, (4.447)

where A* is the Huber distribution of equation (2.163), and A is a remainder term. As discussed earlier,
there is no 2 for which (4.447) holds with A =0, but there may be some for which A is smail. A
similar argument can be made to show that

P(Wia ™ (zim = Hisvin)) 1 mo=0, -, mis=1, -, My =0)
= h*(eg, ) + A (4.448)
Thus, the estimator of Corollary 4.3 reduces to (4.409) with conditional estimators given by

L) = 80 + MMH,"T0 "%y (T? (2, ~H,8))) (4.449)

]

Idi Q:‘n + M,‘,'H,,TI‘,‘; -1(5,‘—1‘1,,_9_,‘;)
+ PiVETHI Wi (Wi ™ (zie = Hio e ). (4.450)

Note in passing that W, is . at the limit € = 1, and the vector version is the same. componentwise.
The coefficients n and =, and the conditional covariances X0 and X/, are defined similarly:

T o= Ky W (T (2 -H,80)) @.451)
m = (1) Kt W0 (Wi ™ (a=Hia¥ia)) | (4.452)
) = MY - MPH T VYT TRz, - H,00)) T} T H, M

| + (LI (L -I)T (4.453)
I, = Pio— PaViTHL Wi TR (Wi TR (s - HiYaw) ) Wi " Hi Vi P

+ (L, ~TIH (L, =TT, (4.454)

with ¥, and ‘{:’1 defined analogously, by equation (4.317). This approximaton can, of course, be
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combined with either of Approximations 4.1-4.3.

Deriving a least favorable distribution for the neighborhood Pgo, o, seems to be destined to
remain an open problem for a while longer. In the interim, it would .appear that Approximation 4.4
provides a simple and intuitively appealixig framework for the robust recursive estimation of the state of
a stochastic dynamic system in the presence of heavy-tailed observation noise.
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5. Numerical Examples

Section 4 describes the derivation of a new robust recursive estimator of the state of a discrete-
time stochastic linear dynamic system in the presence of e-contaminated Gaussian observation noise, as
a first-order approximation to the conditional mean given all past observations. As discussed in Section
1.2, there are a number of other robust recursive estimators in the literature, but many are based on
beuristic arguments and ad hoc assumptions, making a theoretical comparison all but impossible.

This section presents the results of some Monte Carlo simulation experiments, comparing the
performance of several estimators for a number of different observation noise distributions. The purpose
of these simulations is emphaticaily not to determine the best method: most estimators could be "tuned”
to specific applications, and it is possible that better performance could be obtained given enough
preparatory work. Rather, this section describes a comparison of several estimators, in their published
forms, with the first-order conditional mean estimator derived here, in order to give a general idea of
their respective strengths and weaknesses.

For simplicity, only the scalar time-invariant case is considered, with F < 1 and H = 1. In other
words, the dynamic system is given by

Opss = F O, + w, (5.1)

z, =0, + v, (5.2)

where @, and {w,]} are independent random variables with distributions N( 8q: 8o, M) and
N(w,; 0, Q ), respectively, and {v,} are independent identically distributed random variables with
variqus distribution.

Section 5.1 discusses the observation noise distributions, and Section 5.2 describes the estimators
to be compared. Performance criteria are discussed in Section 5.3, and experiment results follow.

5.1 Observation Noise Distributions

A good robust estimator has at least the following properties: it is resistant to outliers, and it

looses minimal efficiency at the nominal model. To verify these properies, several observation noise

distributions were used in the simulation experiments, ranging from very light- to very heavy-tailed
ones. The choice of distributions follows the well-known Princeton robustmess study (Andrews et dl..
1972, pp.67-68). The tollowing distributions were used:

(i)  The Gaussian Distribution. To verify the performance of each estimator at the nominal model, i.e.
when no outliers are present, the normal distribution is used in the first set of experiments:

L(va) = N(%; 0, R). - (5.3)




(i)

(iid)

(i)

)

- 170 -

As discussed elsewhere, there is a tradeoff between efficiency at the nominal model and resistance
to outliers, and it is worth comparing the performance of each estimator with and without
observation outliers.

The Scale-Contaminated Gaussian Distribution. The most commonly used form in modeling
outliers for detection and robustness studies is the two-component Gaussian mixture, where both
distributions are zero-mean, but one has a greater variance than the other (see for example
Titterington, Smith and Makov, 1985, pp.22-25):

L(va) = (1-8)N(v,; 0,R) + €N(vs; 0, Rour ), (5.4

with R, > R and 0 < € < . Although the tails of the normal distribution are relatively light, this

‘model is the basis of a number of robust estimators in the literature.

The Laplace Distribution. Heavier tails than the Gaussian mixture are provided by the Laplace
(or double-exponential) distribution, which is used as a contaminant to the Gaussian distribution:

L) = (1-€)N(v; O, R) + & —m ¢ YR ™ (5.5)
n ne * m . .
Here, the Laplace distribution is zero-mean and has variance equal to R,,,. It is worth noting that,
as shown earlier, Huber found the least favorable member of the e-contaminated normal family to
have exponential tails (in the no process noise case).
Tukey's "Slash" Distribution. This distribution, for which an analytical expression is not
available, is defined as follows (Andrews et al., 1972, p.68): Let

L(x,) = N(x,;0,1) : (3.6)
and
Liva) = Uly,;0,1), - (5.7

where U( y; 0, | ) denotes a uniform distribution over the interval { 0, 1 ]. Then, the distribution
of the random variable

Xn

Y, =
Yn

is named Tukey’s "Slash” distribution. It is easy to see that it has extremely heavy tails, and can

therefore be used to test the performance of robust estimators in the presence of very large

outliers. It is used as a contaminant to a Gaussian distribution, as in Equations (5.4) and (5.5).

The Cauchy Distribution. Another model, also for heavy-tailed noise, is the Cauchy distribution.
It is also used as a contaminant:

L(v,)= (l=e)N(v:0,R) + ¢ ~ —1L

, 5.9
T oL+ ©9

The Cauchy distribution above is zero-mean and has infinite variance. This distribution too is
frequently used in robustness studies.

(5.8)




(vi)

-171 -

Fixed-Amplitude OQutliers. To test the performance of robust estimators as a function of the
magnitude of the outliers, the following distribution is also used:

L(v,)=(1=-e)N(v;;0,R) + &8 vy —VRow ) (5.10)
where & v, ~yR,.. ) denotes the Dirac delta function. '

5.2 Recursive Estimators

@

(it)

(iit)

The following recursive estimators are used in the present study:

The Kalman Filter. It is well known that the Kalman Filter is optimal both in the sense of
minimizing the mean squared error (regardless of any distributional assumptions), and, if the
noise is Gaussian, in the Bayesian sense (regardless, this time, of the cost function). Thus, it can
be used as a benchmark in the nominal case. The performance of the Kalman Filter does,
however, severely degrade in the presence of outliers. The appropriate equations appear in (1.3)-
(19),with F, =F,Q, =Q,and H, =D, = 1.

The Guttman-Peria Estimator. As discussed in Section 1.2, Guttman and Pefia (1984, 1985)
propose a Bayesian framework for adjusting the Kalman gain a posteriori, according to the
respective probabilities that an outlier has or has not occurred. In principle, this approach could
be used for any two (i.e. undetlying and outlier) noise distributions. Indeed, it performs best when
the noise distributions have relatively disjoint supports. However, Guttman and Pefa only give
the scale-contaminated normal case, and do not treat other kinds of observation noise. The
equations for this estimator are identical to those of the Kalman Filter, except that (1.5) is
replaced by

I, =M, + R(z,) (5.11)
where the posterior observation noise covariance matrix R (z, ) is given by

(1=B)N(v;; 0, R)IR + EN(vs; 0, Row ) Rous
R(z,) = - - ~ , (5.12)
' (1—£)N( Vu;09R)+ EN(Vn;ovRoul)

where R,,, is the modeled outlier variance and £ is the modeled fraction of contamination. The
extension of these results to other noise distributions is not always trivial: for instance, an
analytical expression is not available for Tukey’s "Slash" distribution, while the Cauchy and
Laplace distributions are not mixtures at all. Nevertheless, since outliers do occur rarely, it is
possibie that they can still be modeled adequately as a Gaussian mixture.

The Ershov-Lipster Estimator. As discussed before, the estimator of Ershov and Lipster (1978) is
similar to that of Guttman and Pefa (1984, 1985), with the exception that equation (5.12) is
replaced by a hard decision, ie. ' :
R if z, is an outlier

R(z,) =

Rou otherwise G.13)

The decision as to whether or not an outlier has occurred may be made in several ways. Here,
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since the nominal (underlying) model is assumed to be normal, a ¥ test is performed at the
significance level o = 0.05 on the statistic
7

= . 14
X T’ (5.14)

i.e. the normalized squared innovation.

It is worth noting that both the Guttman-Pefia and the Ershov-Lipster estimators could be
expressed in the form of (1.12) with influence-bounding functions W that are nor flat for very
large innovations. This suggests that, while they may be very efficient near the nominal model,
their performance declines significantly for very heavy-tailed noise. This problem could be
circumvented by deriving estimators based on the approaches of Guttman and Pefia or Ershov and
Lipster, but on distributional assumptions other than scale-contaminated normal nois=. That,

however, is not done here.

The Masreliez-Martin Estimator. Essentially, the estimator derived by Masreliez and Martin
(1974, 1977) is equivalent to the Oth-order term of that given in (4.318). It has the distinct
advantage of being robust in the presence of patchy outliers. However, since it is a lower-order
approximation to the conditional mean estimator than (4.318), its overall estimation error variance
can be expected to be higher. The equations for this estimator are similar to those of the- Kalman
Filter, with (1.3) and (1.8) replaced by

M,y Yo+i
T,. = FT, + y | (5.15)
+ Vrn+l { Vrn+1
and
- Mn2+1 Yr+1
Z, =M, - ¥ , (5.16)
n+1 +1 rln+] { '—‘-—I..”.}'l

where ¥ is given by (2.186) (based on the modeled fraction of contamination £), and ¥ is as
defined in (4.317). '

The First-Order Approximation to the Conditional Mean. This is the estimator of Theorem 4.3.
The values of 3 and ® can easily be approximated for the time-invariant case by fitting a straight
line of the form By + By 7 to the ordered pairs

i=1

n i 0 ]
{n, log [T F [1— r;*' | } (5.17)
and noting that

5 = M (5.18)

approximately. The window size ®. is then the smallest integer such that (4.158) holds. As
discussed in Section 4.4, the influence bounding function W is chosen to be that given by (2.186)
(based on the modeled fraction of contamination &), and ‘¥ is as defined in (4.317).
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5.3 Performance Measures

The choice of criteria by which to measure the performance of robust estimators presents certain
difficulties. In particular, it is clear that a global performance measure such as the mean squared error
only gives a partial picture of reality: for instance, one estimator may do very well at the nominal
model but badly at an outlier, while another may do poorly at the nominal model but well at an outlier,
and yet the two could have the same mean squared error.

Another important measure of fit is the whiteness (or near-whiteness) of the residual sequence.
The residual of an estimator that tracks the state very well under nominal conditions may exhibit large
and systematic excursions from zero immediately following an outlier; conversely, an estimator that is
insensitive to observations may be resistent to outliers, but its residual sequence may be significantly
non-white at the nominal model.

This suggests that separate criteria must be used for determining the performance of each
estimator for observation noise with and without outliers. The following performance measures are
calculated:

(iy The Mean Squared Error. This is computed in order to determine the performance of each
estimator under nominal conditions. Given K simulation runs, each N time steps long, the mean-
squared error is given by

1 K N 2
MSE = == 3 % (0 =Tn; V. (5.19)

i=t as=sl
This measure is only truly meaningfui in the nominal (no outliers) case.

(ii) Error at Qutliers. To measure the behavior of each estimator specifically at outliers, the
following experiment is performed: instead of outliers occurring randomly, as described in Section
5.1, they are forced to occur at a given time ( n =20 ). Then, the mean squared error at each
time n =21, 22, - - is computed by averaging over all X runs. Thus, for each n,

K
MSE, = — ¥ (8, - T.; ¥, : (5.20)
i=l
This allows an assessment both of the resistance of the estimator to an outlier when it occurs, and
of the persistence of the effects of an outlier due to the dynamics of the estimator.

(iii) Serial Correlation Following Outliers. As above, outliers are forced to occur at a specific time,
and the serial correlation (autocorrelation) of the residual sequence {vy,} is computed for
n =21,22, --- by averaging over all K runs. Thus,

K
_ Yn.i Yn-1,i
SCr.nt = K"‘ = (5.21)
) Y2 h Yo-ii ’
i=1

i=1

for each n.

(iv) Normalized Estimation Error Covariance. Each estimator provides an expression for the
estimation error covariance. However, these expressions are derived based on certain
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distributional assumptions, and how close they are to the true covariances is not immediately clear. For
this reason, the normalized error covariance is computed for each time n as

. | x
NMSE, = = %

(eu,i —Tn,i )2

Sy (5.22)

i=t
where I represents the theoretical variances of equations (1.8), (5.16), and (4.325). The more accurate
the covariance estimate, the closer NMSE will be to unity. This criterion has the added advantage that
it allows a comparison of the first two theoretical and empirical moments, giving an idea of the
accuracy of a normal approximation to the distribution of the estimator.

5.4 Simulation Results

This section summarizes the results of 63 simulation experiments, comparing the performance of
each estimator described in Section 5.2 under each noise distribution of Section 5.1. Each experiment
comsists of K =200 runs of ¥ =50 time steps each, with iritial conditions 8y =0 and M, = 1.
Randoni’ number generators from the IMSL package were used, and the model parameters were as
follows: Q = 1,R =1, F =0.1 (unless otherwise noted), modeled outlier standard deviation equal to 2,
2.5, and 3 times the nominal standard deviation (i.e. R,, =4, 6.25, and 9), and finally & = 0.01, 0.05,
and 0.10.

It is worth noting that the recursive computation of the coefficients x; in Theorem 4.3 presented
some numerical difficulties: as they tended to vanish with respect to machine precision, periodic
rescaling was necessary. Similarly, the probabilities for alternative hypotheses (outlier v.s. not outlier) in
both Theorem 4.3 and the Guttman-Pena estimator tended to vamish with respect to machine precision
when outliers were very large, and these cases therefore had to be treated specially.

Finally, a few words are in order about the presentation of results. Clearly. not every estimator is
parametrized by modeled outlier variance and modeled fraction of contamination. In particular, the
Kalman Filter depends on neither, the Guttman-Pefia estimator depends on both, the Ershov-Lipster
estimator depends only on R,.., and the Masreliez-Martin and First-Order estimators depend only on £.
To make the results easier to compare, however, the tables are organized so that an entry appears for
each estimator and each pair {R,,,, & }.

The Nominal Case (Pure Gaussian noise). To measure the loss of efficiency relative to the
optimal estimator (the Kalman Filter) under nominal conditions (no outliers), two sets of simulations
were ‘run, for F = 0.1 and F = 0.5, respectively. Note that although the true fraction of contamination
is € = 0. different values are used in the estimators for the modeled parameters 150,,, and €. The overall
mean squared esumation errors are given in Tables 5.1-2. It is easy to see that the Guttman-Pefia
estimator is very close to the optimal performance of the Kalman Filter for small R,, and &, as
expected; however, its MSE increases with both R,. and & The Masreliez-Martin estimator has a
slightly higher MSE than the First-Order estimator, and the difference between the two increases with €.
It is also noteworthy that the MSE increases in all cases with the value of F, due to the "memory"”
inberent in slower dynamics. The mean squared esﬁmaﬁon error at each n for each estimator is plotted
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Table 5.1. Mean Squared Estimation Error (Gaussian, F = 0.1)

Kalman Filter
£=0.01 £ =0.05 £=0.10
= 0.4993 0.4993 0.4993
=6.25 0.4993 0.4993 0.4993
= 0.4993 0.4993 0.4993
Guttman-Pefia
£ =0.01 £ =0.05 £=0.10
=4 0.5010 0.5094 0.5217
= 6.25 0.5040 0.5241 0.5484
= 0.5082 0.5407 0.5757
Ershov-Lipster
£ =0.01 £ =0.05 £=0.10
=4 0.5482 0.5482 0.5482
=6.25 0.5708 0.5708 0.5708
= 0.5867 0.3867 0.5867
Masreliez-Martin
£ =0.01 £ =0.05 £=0.10
='4 0.5067 0.5298 0.5552
=6.25 0.5067 0.5298 0.5552
= 0.5067 0.5298 0.5552
First-Order
£ =0.01 £ =0.05 £=0.10
=4 0.5066 0.5276 0.5491
=6.25 0.5066 0.5276 0.5491
= 0.5066 0.5276 0.5491
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Table 5.2 Mean Squared Estimation Error (Gaussian, F = 0.5)

Kalman Filter
£=10.01 £=0.05 £=0.10
0.5302 0.5302 0.5302
0.5302 0.5302 0.5302
0.5302 0.5302 0.5302
Guttman-Pefia
£=0.01 € =10.05 £=0.10
0.5319 0.5409 0.5543
0.5354 0.5577 0.5855
0.5403 0.5774 0.6193
Ershov-Lipster
£=0.01 £=0.05 £=0.10
0.5879 0.5879 0.5879
0.6186 0.6186 0.6186
0.6404 0.6404 0.6404
Masreliez-Martin
€ =0.01 € =0.05 £=0.10
0.5390 0.5670 0.5985
0.5390 0.5670 0.5985
0.5390 0.5670 0.5985
First-Order
€=0.01 £=0.05 £=0.10
0.5381 0.5599 0.5830
0.5381 0.5599 0.5830
0.5381 0.5599 0.5830
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in Figures 5.1-8. These plots clearly illustrate the fact that the loss of efficiency of the First-Order
estimator at the nominal model is minimal for small & (Figures 5.1, 5.3, 5.5, and 5.7) and that it
favorably compares with the other estimators for large ﬁou, (Figures 52, 54, 5.6, and 5.8). In
particular, Figures 54 and 5.8 show that its behavior is the closest of all robust estimators to the
optimal (the Kalman Filter). The relationship between the parameters R,. and & and the robustness of
these estimators will become clear when simulations with heavy-tailed observation noise distributions
are reviewed.

Another measure of the performance of the estimators is the whiteness of the residual sequence.
The lag-one serial correlations of the residuals for each estimator are given in Tables 5.3-4, and confirm
the findings outlined above: the Guttman-Pefia estimator behaves nearly optimally for small R,,, and &,
while the First-Order estimator (and also the Ershov-Lipster estimator) perform very well for large ﬁou,

and €. Lag-one serial correlations for each n are plotted in Figures 5.9-12.

Finally, the mean squared estimation error normalized by the estimated covariance is computed in

an effort to determine the accuracy of the second moment estimate. Clearly, perfect covariance

estimates would yield mean squared errors pear unity, and deviations in either direction indicate under-
or over-estimation of the estimation error covariance. The results are presented in Tables 5.3-6, and
plotted in Figures 5.13-16. As before, the First-Order estimator performs best for large R, and &, while
the Guttman-Pefia estimator performs best for small R,,, and &. '

In most of the experiments discussed so far, the Ershov-Lipster estimator did not perform as well
as the others; it must be remembered, however, that different outlier tests and different significance
levels might yield better performance. In addition, the Masreliez-Martin estimator did not perform as
well as the First-Order estimator at the nominal model. While this behavior would be expected if the
assumed distributional model was identical to the true observation noise distribution, it need not hold

when the two are different, as some examples in the sequel demonstrate.

Scale-Contaminated Gaussian Noise. To assess the performance of the various estimators in the
presence of outiers distributed according to a Gaussian distribution with larger variance than the
-nominal model, simulation experiments were performed with nominal Gaussian observation noise
except at n =210, where the noise was Gaussian with variance R, = é,,u,. The mean squared
estimation error at times n = 18, 19. - - - . 28 are plotted in Figures 5.17-20, while the MSE at n =20
appears in Table 5.7. As expected. the Kalman Filter has the best performance except when atfected by
the outlier. While the Masreliez-Martin and First-Order estimators are virtually indistinguishable for
small g, the latter performs better in the attermath of an outlier for large €. This is a consequence of the
"smoother” correction terms in Theorem 4.3. The Guttman-Pena and Ershov-Lipster estimators perform
comparably to the Masreliez-Martin and First-Order estimators at the exact time of the outlier, but their

~ performance is considerably worse nght after the outlier in the case of large R,, and E.

The lag-one seral correlations in this case do not show a great difference among the robust
estimators. The normalized mean squared estimation errors also show comparable performance among
the estimators, which all tend to somewhat underestimate the covariance at the time of the outlier, but
recover within a couple of time steps. One example appears in Figure 5.21.
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Table 5.3 Lag-One Serial Correlation (Gaussian. F = 0.1)

Kalman Filter
{ £ =001 & =0.05 £ =0.10
R =4 0.0057 0.0057 0.0057
Rop =625 0.0057 0.0057 0.0057
e =9 0.0057 0.0057 0.0057
Guttman-Peda -
€ =001 £ =005 £=0.10
Rou = 0.0072 0.0112 0.0148
Row =625 0.0084 0.0145 0.0193
o = 0.0095 0.0173 0.0229
Ershov-Lipster
£ =001 & =0.05 £=0.10
R =4 0.0134 0.0134 0.0134
R,u =625 i 0.0150 0.0150 0.0150
R.=9 5 0.0160 il 0.0160 0.0160
- Masreliez-Martin
, , ] & =0.01 & =0.05 & =0.10
Rou =4 { 0.0082 " 0.0134 0.0179
Row =625 ' 0.0082 0.0134 0.0179
R = 0.0082 0.0134 0.0179
T First-Order
& =0.01 & =0.05 £=0.10
Row = 0.0081 0.0130 0.0169
Ry =6.25 0.0081 0.0130 0.0169
R, = 0.0081 0.0130 0.0169
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Table 5.4 Lag-One Serial Correlation (Gaussian, £ = 0.5)

Kalman Filter
£ =0.01 £ =0.05
Ry =4 0.0078 0.0078
Rou =6.25 0.0078 0.0078
Row =9 0.0078 0.0078
Guttman-Pefia
£ =0.01 § =0.05
Rou = 0.0147 0.0344
R,y =625 0.0207 0.0512
Ry = : 0.0267 0.0660
Ershov-Lipster
£ =0.01 £ =0.05
Rou = 0.0501 0.0501
Rou =6.25 0.0601 0.0601
R, = 0.0662 0.0662
Masreliez-Martin
. £ =0.01 £ = 0.05
=4 0.0202 0.0468
=6.25 0.0202 0.0468
= 0.0202 0.0468
First-Order
£ =0.01 £ =0.05
=4 0.0199 0.0422
=6.25 0.0199 0.0422
= 0.0199 0.0422
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Table 5.5 Normalized Mean Squared Estimation Error (Gaussian, F = 0.1)
Kalman Filter
£=0.01 g€ =0.05 £=0.10
Roe =4 0.9961 0.9961 0.9961
Rou = 625 0.9961 0.9961 0.9961
 Royp =9 0.9961 _ 0.9961 0.9961
Guttman-Pefia
€ =0.01 € = 0.05 £=10.10
I§m =4 0.9846 0.9517 0.9249
Roe =625 0.9808 0.9443 0.9190
oz =9 09787 . 0.9419 0.9196
B B Ershov-Lipster
& =001 | & =0.05 £=0.10
@M =4 1.0390 1.0390 1.0390
R, =6.25 1.0586 1.0586 1.0586
R, =9 1.0715 1.0715 1.0715
Masreliez-Martin
£=001 £ = 0.05 € =10.10
Rue=4 0.9789 0.9411 0.9204
Row =625 0.9789 0.9411 0.9204
RE!! =9 0.9789 0.9411 0.9204
First-Order
£ =0.01 | & = 0.05 £=0.10
Ig,,,,, =4 0.9792 0.9436 0.9240
Rouw =625 0.9792 0.9436 0.9240
R,. =9 0.9792 0.9436 0.9240
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Table 5.6 Nomalized Mean Squared Estimation Error (Gaussian, F = 0.5)

Kalman Filter
E=0.01 g = 0.05 €=0.10
lgo,‘, =4 0.9972 0.9972 0.9972
Rou =6.25 0.9972 0.9972 0.9972
Ryw =9 0.9972 0.9972 0.9972
Guttman-Pefia
£ =001 € = 0.05 € =0.10
Row =4 0.9839 0.9446 09114
Row =6.25 0.9793 0.9338 0.9007
Ryw =9 0.9763 0.9292 0.8990
Ershov-Lipster
£=0.01 € = 0.05 €£=10.10
Rop =4 1.0417 1.0417 1.0417
Rou =6.25 1.0665 1.0665 1.0665
R =9 1.0829 1.0829 1.0829
Masreliez-Martin
€ =0.01 € = 0.05 £ =0.10
’ @M =4 0.9748 0.9319 0.9014
Row =6.25 0.9748 0.9319 0.9014
Ry =9 0.9748 0.9319 0.9014
First-Order
€ =0.01 g = 0.05 € =0.10
Ry =4 0.9772 0.9401 0.9163
R, =625 0.9772 0.9401 0.9163
R,,=9 0.9772 0.9401 0.9163
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Table 5.7 Mean Squared Estimation Error at n = 20 (Scale-Contaminated Gaussian)

Kalman Filter
£ =001 £ =0.05 £ =010
4 1.2519 1.2519 1.2519
6.25 1.8070 1.8070 1.8070
9 2.4899 : 2.4899 2.4899
Guttman-Pefia
£ =001 t =0.05 £ =0.10
4 1.1039 0.9881 0.9392
6.25 1.2624 1.0878 1.0283
=9 1.3424 1.1448 1.0869
Ershov-Lipster
£ =0.01 £ =005 £ =0.10
4 0.9564 0.9564 0.9564
6.25 1.0968 1.0968 : 1.0968
9 - 1.1993 1.1993 1.1993
Masreliez-Martin
t =001 £ =005 £ =0.10
o =4 1.0208 0.9399 0.9261
o = 625 1.2263 1.0887 1.0489
=9 1.4176 1.2095 1.1356
First-Order
£ =001 & =0.05 £ =0.10
=4 1.0239 0.9500 ' 0.9357
=625 1.2336 1.1023 1.0598
=9 1.4261 1.2222 1.1485
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The Laplace Distribution. The Laplace (or double exponential) distribution is somewhat heavier
tailed than the Gaussian distribution. Moreover, it is similar to Huber’s least favorable distribution (for
the no process noise case), at least in the tails. In this case, the observation noise obeyed the nominal
Gaussian distribution except at n = 20, where the noise was Laplacian with variance R, = R,,,. The
MSE at n =20 appears in Table 5.8, and show the First-Order estimator to have the best performance
at the outlier, for many parameter values. Figures 5.22-23 illustrate the performance of each estimator at
and right after an outlier distributed according to the Laplace distribution. For small R,, and &, the
estimators behave similarly, except that the Guttman-Pefia estimator approaches closer to the
performance of the Kalman Filter once the effects of the outlier have attenuated. For large R,. and &,
on the other hand, the Masreliez-Martin and First-Order estimators perform virtually identically at the
outlier, but the latter does better after the outlier. As with the nominal case, the behavior of the
Guttman-Pefia and Ershov-Lipster estimators are poor for large R,, and & after the occurrance of an
‘ouﬂier. The performance of the Kalman Filter in the presence of an outlier is well llustrated by Figure
5.23: its MSE is lower than the robust (hence, suboptimal) estimators everywhere except at the outlier.
If F were larger, the effects of the outlier would have taken longer to attenuate, but qualitatively, the
respective performance of the estimators would not have changed.

Once again, the lag-ome serial correlation of the residual does not change markedly from one
estimator to the other in this case. The normalized mean squared errors for two sets of parameters
appear in Figures 5.24-25; recall that proximity to unity, not absolute magnitude, is the performance
criterion here.

Tukey's "Slash” Distribution. The scale-contaminated Gaussian and Laplace distributions are
relatively light tailed, and do not highlight the differences among the various robust estimators analyzed
here. Tukey’s "slash” distribution has considerably heavier tails, and makes these differences quite
apparent. The noise was normally distributed except at » = 20, where it obeyed the "slash" distribution.
The MSE for n =18, - - -, 28 is plotted in Figures 5.26-29, and its values at » = 20 appear in Table
5.9. The Masreliez-Martin and First-Order estimators perform best at the outlier; while the former is
somewhat better than the latter at n = 20, the reverse is true after the occurrance of the outlier, as
suggested by the nominal case simulations. Moreover, the behavior of the Guttman-Pefia and Ershov-
Lipster estimators is very poor at the outlier for small values of R,,,, while their performance following
the outlier is poor for large values of that parameter.

The accuracy of the estimate of the second moment of the estimation error behaves similarly, as
demonstrated by Figure 5.30-31. The Guutman-Perda and Ershov-Lipster estimators drastically
underestimate the covariance at the time of an outlier when R,,, is small: they do better for large R, .
but in that case, the performance under nominal conditions is quite poor.

The Cauchy Distribuion. Another very heavy-tailed noise distribution was the Cauchy
distribution, whose variance is infinite. Here, the differences among the performance of the various
. robust estimators is highlighted most dramatically. Moreover, the deviations of some of the estimators
from the state trajectory can get so large in this case, that the lasting effects of the outliers are more
visible. Once again, the noise was nominal except at n = 20, where it obeyed a Cauchy distribution.
The MSE at times » =20 and n = 21 are given in Vables 5.10-11. Plots of the MSE at times
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Table 5.8 Mean Squared Estimation Error at n = 20 (Laplace)
Kalman Filter
g =0.01 g =0.05 £=0.10
Roue =4 0.9094 0.9094 0.9094
Rowe =625 0.9094 0.9094 0.9094
Ry =9 0.9094 09094 0.9094
"Guttman-Pefa
g =0.01 £ =10.05 £ =0.10
Ry =4 0.7986 0.7273 0.7043
Row = 6.25 0.7565 0.7059 0.6987
e =9 0.7412 0.7091 0.7146
B Ershov-Lipster
i £ =0.01 £ =0.05 §=0.10
R =4 } 0.7169 0.7169 0.7169
R, =625 ; 0.7400 0.7400 0.7400
| R, =9 ; 0.7648 0.7648 0.7648
o Masreliez-Martin
| & =0.01 l £ =005 £ =0.10
Ruu=4 | 0.7412 0.7026 0.6972
R, =625 0.7412 0.7026 0.6972
o =9 l 0.7412 0.7026 0.6972
First-Order
g =0.01 & =0.05 g =0.10
R = 0.7396 0.6953 0.6951
R =625 0.7396 0.6953 0.6951
ot = 0.7396 0.6953 0.6951
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Table 5.9 Mean Squared Estimation Error at n = 20 (Slash)

Kalman Filter

£ =001 £ =0.05 £=0.10

“Row =4 23.2744 23.2744 23.2744
Roy =625 23.2744 23.2744 23.2744
Ry =9 23.2744 23.2744 23.2744

"Guttman-Pefia T
g =0.01 & =0.05 £=0.10
Rou = 4.7842 4.6311 4.5733
Rou =625 2.8361 2.7041 2.6616
Ry =9 1.9830 1.8717 1.8404
Ershov-Lipster
£ =001 t =0.05 £=0.10
Roy = 45338 4.5338 4.5338
Ry =625 2.6704 2.6704 2.6704
R =9 1.8730 1.8730 1.8730
Masreliez-Martin
& = 0.0l £ =0.05 £=0.10
Roy =4 1.3204 ~ 1.0990 1.0254
R, =625 1.3204 1.0990 1.0254
Ry =9 1.3204 1.0990 1.0254
First-Order

£ =001 £ = 0.05 £=0.10

Rouw = 1.3250 1.1072 1.0397
Rou =625 1.3250 1.1072 1.0397
R,. = 1.3250 1.1072 1.0397
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Table 5.10 Mean Squared Estimation Error at n = 20 (Cauchy)

Kalman Filter
£=001 & =0.05 £ =0.10
Rouw = 4 838.815 838.815 838.815
Row =625 838.815 838.815 838.815
o =9 833.815 838815 838.815
Guttman-Pefia
£ =001 £€=0.05 £=0.10
Row = 4 134.268 134.186 134.209
Roue =625 63.8841 63.8453 63.8760
o =9 33.6835 33.6659 33.6976
| Ershov-Lipster
§=001 '! & =0.05 £=0.10
Roy =4 134.065 | 134.065 134.065
Rouw =625 63.7884 | 63.7884 63.7884
Ry =9 33.6418 ] 33.6418 33.6418
Masreliez-Martin
. € =0.01 ; & =0.05 € =0.10
R, =4 0.9375 0.7914 0.7561
Rou =625 0.9375 0.7914 0.7561
o =9 0.9375 0.7914 0.7561
First-Order
&€ =0.01 £ =0.05 £=0.10
Rou =4 0.9394 0.7932 0.7561
Ry =625 0.9394 0.7932 0.7561
Ry = 0.9394 0.7932 0.7561

-
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Table 5.11 Mean Squared Estimation Error at n = 21 (Cauchy)

Kalman Filter
§ =001 t =0.05 £=0.10
Rou =4 2.8063 2.8063 2.8063
Ry =625 2.8063 2.8063 2.8063
| R =9 2.8063 2.8063 2.8063
T Guttman-Peiia
£ =0.01 £ =005 £=0.10
Ropu =4 1.5053 1.5314 1.5522
R,. =625 1.0731 1.1190 1.1588
Ryu=9 0.8381 0.9038 0.9564
Ershov-Lipster
& =0.01 | t =005 £ =0.10
R =4 1.5733 i 1.5733 1.5733
R,, =625 1.1793 1.1793 1.1793
R =9 0.9677 0.9677 . 0.9677
T Masreliez-Martin
& =001 | £ =0.05 §=0.10
Rou = 0.5108 0.5398 0.5727
R, =625 0.5108 0.5398 0.5727
R, = 0.5108 f 0.5398 0.5727
First-Order
| & =001 =005 £=0.10
R, =4 0.5117 0.5500 0.5770
R,. =625 0.5117 0.5500 0.5770
R,, = 0.5117 0.5500 0.5770
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n =18, -+, 28 appear in Figures 5.32-35.

The effects of outliers on the residual sequences are illustrated well by Figures 5.36-37, where
systematic excursions from whiteness are evident in the cases of the Kalman Fiiter and the Guttman-
Pefia and Ershov-Lipster estimators, but much less so in those of the Masreliez-Martin and First-Order
estimators. -

The normalized mean squared estimation error, plotted in Figures 5.38-39, illustrate once again
that the covariance estimates are relatively good for the Masreliez-Martin and First-Order estimators,
but not for the others.

Fixed-Amplitude Outliers. To show the influence of the magnitude of an outlier on the estimators,
simulations were run with' fixed-amplitude outiers at n = 20. The MSE is given in Table 5.12, and
. three cases (for magnitude equal to 2, 6, and 10 times the nominal standard deviation) are plotted in
Figures 5.40-42. These show that, although the effect of the outlier may be controlled by choosing
larger values for R,,,, this is done at the expense of performance under nominal conditions.

Note finally that the model parameters used in these sunulauon exercises yield the mﬁueuce-
bounding function cutoffs £, window sizes , and error orders & 2o given in Table 5.13.

5.5 Discussion

Simulation studies such as this one can provide valuable insight into the performance of various
robust estimators under different noise distributions, but they seldom yield definitive conclusions or
choices valid under all conditions. Consequently, a brief and informal discussion is presented here,
concerning some of the lessons taught by the present effort. An important limitation of this simulation
study is that it did not involve any comparisons with the performance of an optimal (defined in some
sense) estimator; as a result, only the performance of various estimators relative to each other could be

" assessed.

From this limited vantage point, it can be stated that the Guitman-Pefia estimator works very well
when outliers are light-tailed, i.e. when the observation noise does not significantly deviate from
normality. Despite the fact that the scale-contaminated Gaussian model leads to inflated covariances (as
discussed in Section 1.2), this effect is only moderate for small modeled outlier covariance R, and
fraction of contamination €, and the Guttman-Pefia estimator was found to have very good nominal
performance in those cases. However, it broke down totally when the outliers have heavy-tailed, and
values of R,, and % large enough to mitigate the influence of Cauchy or "slash" outliers yielded
severely degraded nominal performance.

The performance of the Ershov-Lipster estimator was somewhat disappointing, although this may
in part be due to the choice of outlier detection test used here. Different tests and/or significance levels
may yield improved performance, particularly under nominal conditions. In general, the Ershov-Lipster
and Guttman-Pefia estimators had qualitatively similar behavior, and both exhibited severely degraded
performance in the presence of heavy-tailed outliers. This is a consequence of the fact that the
adaptive/switching covariance (or gain) scheme employed by both estimators decreases but does not
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Table 5.12 Mean Squared Estimation Error at n = 20 (Fixed Amplitude)

Kalman Filter
£€=0.01 £ =0.05 £=0.10
1.3652 2.6467 4.4308
6.7173 9.5064 12.7979
L Rou 16.5920 20.8886 25.6876
Guttman-Pefia -
£=0.01 £=0.05 €=0.10
1.2957 1.9721 1.9943
1.5976 1.3328 1.2497
1.2368 1.2382 1.2404
] Ershov-Lipster
£=0.01 £=0.05 £ =0.10
1.5021 2.1554 1.8907
1.3411 1.2693 1.2260
1.2311 1.2345 1.2367
Masreliez-Martin
£€=001 €=0.05 €=0.10
1.3766 2.0160 22701
2.3281 2.3338 2.3338
2.3338 2.3338 2.3338
First-Order

£=0.01 £=0.05 £=10.10
1.3749 2.0477 2.3411
2.4006 2.3704 2.3419
2.3320 2.3302 2.3300
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Table 5.13 Parameters of the First-Order Estimator

F =01 F =0.5

€ = 0.05 £=0.10 £ =001 € =0.05 £€=0.10
1.3983 1.1410 1.9451 1.3983 1.1410

-0.6425 -0.6425 -0.3109 -0.3109 -0.3109
0.5260 0.5260 0.7328 0.7328 0.7328
5 4 15 10 7
0.25 0.40 0.15 0.50 0.70
0.0625 0.1600 0.0225 -0.2500 0.4900




bound the influence of very large observations.

In contrast, the Masreliez-Martin and First-Order estimators do bound the influence of large
outliers, resulting in performance far superior to the Guttman-Pefia and Ershov-Lipster estimators when
the outliers are very heavy tailed. The Masreliez-Martin estimator has been shown empirically (via
Monte Carlo studies) to perform very well under fairly broad conditions, but has not gained wide
acceptance due to the rather arbitrary assumptions on which it is based. The present study confirms that
this estimator performs quite well, and moreover this thesis suggests theoretical reasons to explain this
performance.

The First-Order and Masreliez-Martin estimators perform comparably in most cases, and yet the
former is considerably more complex than the latter. The derivation of the First-Order estimator
suggests that, when the true outlier distribution is known exactly, or at least approximately, the
additional complexity of the First-Order estimator may yield considerable improvement. However, when
this distribution is very far from the modeled distribution used in the derivation of the estimator, the
"correction” terms T, in the estimator may not help and indeed may hurt the performance of the
estimator. In other words, the choice between the Masreliez-Martin and First-Order estimators must
depend on the particular application at hand.

It must also be noted that particular applications may dictate higher-order expansions than the
first-order expansion used here. For example, the First-Order estimator is not robust to two or more
outliers occurring in quick succession, as discussed in Section 4.2; the Masreliez-Martin estimator, on
the other hand, is not sensitive to the configuration of outliers, but this is achieved at the expense of
some nominal performance. Thus, the choice of which estimator to use will have to be based on the

particular problem under consideration.

Leaving aside the variability among the robust filters tested hex:e. and ignoring for a moment their
respective strengths and weaknesses, the present simulation study shows once again that the Kalman
Filter breaks down in the presence of outliers, thus confirming the need for robust recursive estimators
when the noise significantly deviates from normality.




6. Conclusion

This thesis follows and extends the work of Martin and Masreliez in combining the robust
location estimation ideas of Huber with the stochastic approximation method of Robbins and Monro to
develop a robust recursive estimator of the state of a linear dynamic system. It aims at deriving an
estimator that is not only of practical value, but is also based on sound theory, so as to be useful for
inference as well.

A brief summary of the thesis appears in Section 6.1, followed in Section 6.2 by a list of research
topics motivated by the work described herein.

6.1 Summary

The relationship between point estimation and filtering is clear: both seek to obtain estimates of
parameters based on observations contaminated by noise, but while the parameters to be estimated are
fixed in the former case, they vary according to some (possibly stochastic) model in the latter. This
relationship is at the root of the present thesis.

Huber’s theory of minimax robust estimation is first reviewed in detail. It is shown that the
Fisher Information is a more convenient measure of performance than the asymptotic variance, due to
its convexity and other useful propetties; conditions are derived for the existence of a minimax (in

terms of Fisher Information) robust estimator of a location parameter.

Although Huber’s method is batch, in the sense that the entire sample of past observations is
needed at all time. an asymptotcally equivalent recursive version of the robust estimator of location can
be derived based on the stochastic approximation technique introduced by Robbins and Monro. The
properties of such recursions are investigated, and proofs of consistency, asymptotic normality, and

asymptotic efficiency are reviewed in detail.

These results are extended to the case where the “location parameter” varies according to a
deterministic linear model. It is shown that this corresponds to estimating the state of a linear dynamic
system when there is no process noise, and that the above asymptotic properties hold here as well,

under relatively mild conditions.

When the "location parameter” varies randomly, i.e. when process noise 1s present, the stochastic
approximation techrﬁque cannot be used to obtain a consistent recursive estimator. Moreover,
asymptotic performance measures make little sense in this case. and a condifional mean estmator is
sought instead.

Using an asymptotic expansion around the fraction of contamination €, a first-order approximation
is obtained for the conditional prior distribution of the state (given all past observations) for the case
where the observation noise belongs to the e-contaminated Gaussian neighborhood. This approximation
makes use of the exponential stability of the Kalman Filter, which ensures that the effects of past
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outliers attenuate fast enough.

The first-order approximation to the conditional prior distribution is then used in a theorem that
generalizes a result due to Masreliez, to derive a first-order approximation to the conditional mean of
the state (given all past observations and the current one). This non-Gaussian estimator has the form of
banks of Kalman Filters and optimal smoothers weighted by the posterior probabilities that each
observation was an outlier. '

Because the derivation of a least favorable distribution in this case remains an open problem, the
estimator derived here is not minimax. Several simplifications are proposed to make the estimator easier
to use.

The results of a series of simulation experiments are presented, showing that some of the robust
recursive estimators in the liferature remain very sensitive to heavy-tailed noise. The First-Order
estimator derived here performs well in the presence of heavy-tailed observation noise, but whether or
not its added complexity (relative to the estimator of Masreliez and Martin) is warranted depends on the
particular application for which it is to be used.

6.2 Future Research Directions

Two principal limitations of the robust recursive estimator derived in this thesis have already been
pointed out. Specifically,

(i) Equations (4.320) and (4.411) indicate that the estimator is not robust when two or more outliers
occur within less than o time intervals of each other. This is a limitation due to the fact that the
approximations are of first order. Using a second-order approximation would eliminate the non-
robustness of the estimator against pairs of outliers, but not against three or more outliers.
Higher-order approximations to the conditional prior and conditional mean are thus one potential
directon for future research. How much they would complicate the estimator, and whether or not

the result will be of any practical value, remains to be seen.

(i1)  As discussed in Section 4.4, the least favorable distribution for this problem has not been tound.
Even if it were. there is no guarantee that the distribution and corresponding estimator would be a
saddle point, and thus a solution to the minimax problem. While Approximation 4.4 is simple and
appealing, this estimator is strictly speaking not optimal in the minimax sense -- indeed, it is
somewhat more conservative. More research is needed to determine whether a minimax solution

can be tound, and how much better one would be than the estmator of Approximation 4.4.
In addition to the above, the following related problems are suggested as topics for future research:

(ill) Parchy outliers. As stated in Section [.2. the denvation in Section 4.1 makes heavy use of the
fact that outliers are rare and isolated. Yet. there are cases (e.g. cracking-grinding ice in the
Arctic seas in the problem of signal processing for acoustic surveillance -- Wegman, 1986) where
time series contain patchy outliers. One way to extend the present results to cover such outliers
is by suitable time-aggregation: there is a considerable literature on the question of time scaling
systems subject to wide-band (i.e. only approximately white) noise, including Blankenship and
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Borkar (1977), Blankenship and Meyer (1977), and Blankenship and Papanicolaou (1977, 1978).
It appears worthwhile to investigate the applicability of such techniques to the estimators
proposed here. Besides patchy outliers, such methods might also allow the relaxation of another
assumption of Section 1.2, namely the whiteness of the process and observation noises. The
question of robustness against weakly colored noise remains relatively understudied at this
writing.

Process outliers. As pointed out by Shirazi, Sannomiya and Nishikawa (1988), a robust estimator
is expected to behave in quite opposite manners when confronted with process and observation
outliers. In the latter case, as this thesis makes clear, the influence of the observation must be
bounded and indeed downweighted, in favor of past information accumulated over time. In the
former, on the other hand, it is desirable to emphasize the observation, and reduce the influence
of past information, since a process noise outlier results in a shift in the state. In other words, the
confidence an estjxhator_ accords to a large-valued innovation changes according to whether it is
due to a process noise outlier or an observaton noise outlier. This suggests that estimators
resistant to process noise outliers must be constructed in ways very different from those described
herein. The assumption that both kinds of outliers are very unlikely to occur together, within
some short time period, will probably be necessary if estimators robust against both process and
observation outliers are to be derived.

The continuous-time case. It does not appear that the robust recursive estimation via stochastic
approximation ideas have yet been applied to continuous-time systems. Yet, all the theoretical
prerequisites seem to exist. The principal difference between the present results and their
continuous-time analogue will probably be in Theorem 4.2, where a differential equation version
of the conditional prior (in the spirit of Zakai, 1969: see Di Masi and Runggaldier, 1982) may
result in a much simpler form. The same goes for discretely 'sampled continuous-time systems.
Finally, it is worth noting that applications of time-scaling to discrete-time systems have been
found to yield differential equations (Blankenship, 1981); thus, continuous-time results may be
useful in accomodating colored noise as well as patchy outliers.

Unknown model parameters. The approach taken in the present thesis assumes that all model
parameters are known, so that only the system state needs to be estimated -- in other words, this
is a filtering problem. Yet, in many situatons of practical importance, model parameters uare
unknown and need to be estimated simultaneously. The problem of robust model identification
has been studied by Poljak and Tsypkin (1978, 1980), Poor (1986), and others, and can be
combined with the filtering problem of this thesis. While model parameters may be estimated by
using the residual of the robust estimator in a likelihood function, it is probable that a combined

state-parameter estimation scheme will be more fruitful.

Fault detection and identification. Most techniques for detecting unmodeled changes in systems
(variously refered to as faults, failures, jumps, etc.) are based on the detection of abrupt model fit
degradation. They make heavy use of distributional assumptions, and even those that use the term
"robust fault-detection” are not statistically robust. As stated in Section 1.2, the principal
motivaﬁon for this thesis was the absence of robust state estimators based on a sufficiently
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rigorous theoretical foundation to enable the use of their residuals for inference. It is easy to see,
by convolving the conditional prior of the state (equation (4.160)) with the noise distribution, that

pCz V2o "0t s 20t)

= (1-e)* x, x¥ N(z,; 8%, T?)

+e(1-8)x%x, Y i N(z:8i,Th)

i =n—a+l

[ NCaa-&wu+ViMiTi ™ (2, -80),
Wi-ViMiTy ~ MyViT) h(8) d§

+ 0, (w?e). (6.1)

This expression trivially leads to the conditional distribution of the innovation. which can be
utilized for fault detection and identification. Alternatively, a conditional residual can be
- computed from each conditional estimate, and used for inference.

(viii} Non-linear models. The estimates derived in this thesis can be applied to linearized versions of
non-linear models, in analogy with the extended Kalman Filter (e.g. see Gelb, 1974, pp.182-190).
Altemnatively, more sophisticated approaches to non-linear filtering can be developed to
recursively estimate the state of a non-linear dynamic system. The most difficult step is likely to
be the propagation of the conditional prior distribution (Theorem 4.2), where, if the system can be
represented by a continuous-time model, or at least a discretely sampled continuous-time model,
Zakai’s method may once again yield good resul}s.
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