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Abstract

Under the usual assumptions of normality, the recursive estimator known as the Kalman Filter
gives excellent results and has found an extremely broad field of application -- not only for estimating
the state of a dynamic system, but also for estimating model parameters as well as detecting abrupt
changes in the states or the parameters. It is well known, however, that significantly non-normal noise,
and particularly the presence of outliers, severely degrades the performance of the Kalman Filter. This
results in poor state estimates, non-white residuals, and invalid inference.

Several attempts have been made in the literature to mitigate the effects of non-normality on the
Kalman Filter. These range from the ad hoc practice of routinely discarding observations that yield
excessively large residuals, to more formal approaches based on non-parametric statistics. Bayesian
methods, or minimax theory. While some of these techniques have been found empirically to work
well., their theoretical justifications have remained scanty at best Many, moreover, are based on
heuristic approximations with ill-understood characteristics.

This thesis alms at providing sufficient theoretical foundations for certain robust recursive
estimators to justify their use for state estimation as well as inference for linear dynamic systems. It is
based on the minimax robustness concept of Huber, and the recursive estimation ideas of Martin and
Masreliez. Existing results are first reviewed and standardized, not only ensuring notational consistency
but also making modeling assumptions consistent with each other and correcting omissions and errors.

In particular, results pertaining to the existence and derivation of a minimax optimal robust
estimator of a location parameter are reviewed in detail. This is followed by a review of stochastic
approximation recursions of the Robbins-Monro form, their convergence, asymptotic normality, and
asymptotic efficiency. The multivariate and time-varying cases are also described in detail.

The main results of the thesis are a first-order approximation to the conditional prior distribution
of the state of a discrete-time stochastic linear dynamic system in the presence of a certain class of
heavy-tailed observation noise, and a first-order approximation to the conditional mean (minimum-
variance) estimator based on it.
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If the observation noise distribution can be represented as a member of the Fe-contaminated normal
neighborhood, then the conditional prior is also, to first order, an analogous perturbation from the
normal distribution whose first two moments are given by the Kalman Filter. Moreover, the perturbation
is itself of a special form, combining distributions with moments given by banks of Kalman Filters and
optimal smoothers.

This form makes it possible to derive an approximate conditional mean estimator which is a
weighted sum of stochastic approximation-like terms. This estimator, while somewhat complex, is very
well suited to parallel computationAt also has an intuitively appealing form, the zeroeth-order term of
which is shown to be analogous to the filter of Masreliez and Martin.

Some simulation results are also presented, describing the behavior of the robust estimator for
several observation noise distributions, and comparing it to that of a standard Kalman Filter as well as
other published robust recursive estimators.

Thesis Supervisor. Dr. Sanjoy K. Mitter
Title: Professor of Electrical Engineering
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1. Introduction

Time-dependent data are often modeled by linear dynamic systems. Such representations assume

that the data contain a deterministic component which may be described by a difference or differential

equation. Deviations from this component are assumed to be random, and to have certain known

distributional properties. These models may be used to estimate the "true" values of the data

uncorrupted by measurement error, and possibly also to draw inference on the source generating the

data.

A method that has found an exceptionally broad range of applications -- not only for estimating

the state of a dynamic system, but also for estimating model parameters, choosing among several

competing models, and detecting abrupt changes in the states, the parameters. or the form of the model

-- is the recursive estimator known as the Kalman Filter (Kalman. 1960: Kalman and Bucy. 1961).

Originally derived via orthogonal projections as a generalization of the Wiener filter to non-stationary

processes, the Kalman Filter has been shown to be optimal in a variety of settings (e.g. Jazwinski, 19710.

pp-200-218). It has been derived as the weighted least-squares solution to a regression problem, without

regard to distributional assumptions (e.g. Duncan and Hom, 1972: Bryson and Ho, 1975, pp.349-364);

as the Bayes estimator assuming Gaussian noise, without regard to the cost functional (e.g. Harrison and

Stevens, Ml: Meinhold and Singpurwalla, 1983), and as the solution to various game theoretic and

other problems. Indeed, Morris (1976) is led to conclude that the Kalman Filter is therefore "a robust

estimator," and proceeds to demonstrate its minimax optimality "against a wide class of driving noise,

measurement noise, and initial state distributions for a linear system model and the expected squared-

error cost function."

One condition under which the Kalman Filter is most assuredly not robust is heavy-tailed noise.

i.e. the presence of outliers. It is well known that even rare occurrences of unusually large observations

severely degrade the performance of the Kalman Filter. resulting in poor state estimates. non-white

residuals, and invalid inference. There is no contradiction between this fact and the findings of Morris

and others. It is by now well-established that the mean-squared error criterion is extremely sensitive to

outliers (Tukey, 1960. Huber. 1964), for reasons that are intuitively easy to gras . Squaring- a large

number makes it even larger, so that an outlier is likely to dominate all other observations in an

algorithm that depends on squaring. In other words. optirriality relative to the mean-squared error

criterion must not be sought when the noise distribution is heavy-tailed.

Past efforts to mitigate the effects of outliers on the Kalman Filter range from ad hoc practices

such as routinely discarding observations for which residuals are "too large." to more formal approaches

based on non-parametric statistics, Bayesian methods. or minimax theory. 'Niany, however. 'include

heuristic approximations with ill-understood characteristics. While some of these techniques have been

empirically found to work well, their theoretical justifications have remained scanty at best. Their

nonlinear forms, coupled with the difficulties inherent in dealing with non-normal distributions. have

resulted in a strong preference in the literature for Monte Carlo simulations over analytical nigor. -It is

*d
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the goal of this thesis to provide sufficient theoretical foundations for certain types of robust recursive

estimators to justify their use for both state estimation and inference.

It is important to bear in mind that routinely ignoring unusual observations is neither wise, nor

statistically sound. Such observations may contain valuable information as to unmodeled system

characteristics, failures, measurement errors, etc. But detecting unusual observations is only possible by

comparison with the underlying trends and behavior, yet, it is precisely these that non-robust methods

fail to capture when outliers are present. 'Me purpose of robust estimators is thus twofold. To be as

nearly optimal as possible when there are no outliers, i.e. under "nominal" conditions; and to be

resistant to outliers when they do occur, i.e. to be able to extract the underlying system behavior

without being unduly affected by them.

This thesis is organized as follows. The problem is formally stated in Section Ll: Equations are

given for the linear dynamic system and the Kalman Filter, and a context is proposed for deriving the

robust recursive estimator. This is followed by a review of the literature in Section 1.2.

Huber's argument for a theory of robust estimation based upon minimax principles is
reconstructed in Section 2.1: The asy!n ure of performance, as well as its

.. ptotic variance as meas

relationship to the Fisher Information, are discussed first, followed by some properties of the Fisher

Information, and conditions for the existence of a solution to the minimax problem. In Section 2.2,

Huber's minimax robust estimator of location is rederived, to lay the groundwork for the development

of recursive estimators of location, in Section 3.

Recursive estimators based upon the stochastic approximation method of Robbins and Monro and

.others are reviewed in Section 3.1, where proofs are given for convergence, asymptotic normality, and

asymptotic efficiency. The muitivariate generalization is discussed in Section 3.2, and these results are

further generalized in Section 3.3 to the case of a time-variant location parameter, whose evolution is

modeled by a deterministic linear dynamic system.

The problem of estimating the state of a stochastic dynamic, system is introduced in Section 4.

First, a first-o rder approximation is derived in Section 4.1 for the conditional prior distribution of the

state given all past observations. In Section 4.2, this conditional prior is used in a generalization of a

theorem due to 'Masreliez. to derive a first-order approximation to the conditional mean estimator.

Further approximations am discussed 'in Section 4.3, followed by a brief review of the minimax aspects

of this problem, in Section 4.4.

Numerical examples am discussed in Section 5. where various robust filters are simulated under

different observation noise distributions. The latter are described in Section 5.1. and the former in

Section 5.2, performance measures are discussed in Section 5.3, and the simulation results are analyzed

in Section 5.4. A brief assessment of these results follows.

A summmy is provided in Section 6.1, and some possible directions for future research are

suggested in Section 6.2.

The contribution of this thesis is twofold. First, an attempt is made to standardize existing results

on minimax robust recursive estimation, not only ensuring notational consistency but also making

modeling assumptions consistent with each other and correcting numerous omissions and errors. Much
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of the past work on robust recursive estimation has been disparate and insufficiently formal: results

from minimax. robustness, stochastic approximation, and recursive estimation have been used with little

regard for consistency. 'Ibus, a self-contained presentation is given of existing results on minimax,

robust recursive estimation theory within a single unified framework.

Second, a robust recursive estimator is derived formally, in an effort to bridge the gap between

appealing heuristics and sound theory. Since its distributional properties are known -- at least

approximately -- it is possible to use this estimator for statistical inference, such as fault detection and

identification. In this regard, the principal contribution of this thesis is methodological: it is shown how

an asymptotic expansion may be used to derive a nonlinear filter that approximates a conditional mean

estimator. The resulting estimator is shown to have good performance characteristics both under

nominal conditions and in the presence of outliers.

1.1 Problem Statement

Below, the notation. L(x_) denotes the probability law of the random vector x, N( I ) denotes a

multivariate normal distribution with mean �t and cov" ce Z, and N( X is its Radon-Nikodym

derivative with respect to the Lebesgue measure.

Consider the model

,z = H. 0 v

where

F. 0, + w, (1.2)

n denotes discrete time; 0, r= Rq is the system state, with a random initial value distributed as

L(%) = N(j, 4); j,, E RIP is the observation (measurement); w E Rq is the process (plant) noise

distributed as Vw) = N(O, Q,,); v e RP is the observation (measurement) noise distributed as

L(v,) = P, with E Ly. I = 0 and ELv v T] = R; (F. 1, (H.), (D. 1, (Q. I., ZO and R are known matrices

or sequences of matrices with appropriate dimensions; I E Rq is a known vector, and finally w,

and v are independent for all n.

A well known estimator of the state 01 given the observations -Z-n is the Kalman Filter,

given by the recursion

%+t Fn + Kn+I 'In+I, (1.3)

where

In+1 !n+I H.+, F. �0. (1.4)

is the innovation at time n+1 and

r.+, = H.+, M.+, H.T T+1 + D.+, R Dn +1 (1.5)

is its covariance,

K.+, = M,,, Ht r.-I+1 +1
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is the g

M.,, = F. y.. F. T + Q. (1.7)

is the a priori estimation error covariance at time n+1 (i.e. before �pdating by the observation z,,),

and

I - K.+, H.+, ) Mn+1 (1.8)

is the a posteriori estimation error covariance at time n +1 (Le. after updating). The initd condition is

!L = i. (1.9)

As is clear from equations (13)-(1.4), the estimate is a linear function of the observation, a

characteristic that is optimal only in the case of normally distributed noise (Goel and DeGroot, 1980).

Similarly, equations (1.6)-(1.8) show that the gain.and covariance are independent of the data, a

property related once again to the assumption of normality. Finally,. in the Gaussian case P = N(O, R

the residual (innovation) sequence ly, , ,yn I is white and is distributed as L(yi) = NO, I"i

When P is not normal, on the other hand, the state estimation error can grow without bound

(since the estimate is a linear function of the observation noise), the residual sequence becomes colored,

and residuals become non-normal. Thus, not only is the estimate poor, but-furthermore invalid inference

would result from utilizing the residual sequence in the case of significant excursions from normality.

Figure 1.1 illustrates the behavior of the Kalman Filter in the presence of an outlier: the estimate

tracks the state very closely until the outlier, which occurs at time n = 20, at which time the estimation

error increases sharply; moreover, the effects of the outlier persist for some time.

A robust estimator should at the very least have the following characteristics:

The state estimation error must remain bounded as a single observation outlier grows arbitrarily.

The effect of a single observation outlier must not be spread out over time by the filter dynamics,

i.e. a single outlier in the observation noise sequence must result in a single outlier in the residual

sequence..

As a corollary, the residual sequence should remain nearly white when the observation noise is

normally distributed except for an occasional outlier.

It is assumed in the sequel that P. the distribution of the observation noise, is non-normal but

spherically symmetric with respect to the origin, and that it belongs to a neighborhood of perturbations

(in a sense to be defined) from the normal distribution. It is also assumed that the observation noise is

white, i.e. that outliers occur independently. While this assumption may be seen as limiting (other

models have been proposed, e.g. by Martin and Yohai, 1986), it is justified by the principal goal of this

effort, which is to derive a recursive estimator that can be used for inference on the linear dynamic

model in the presence of heavy-tailed noise: clearly, if outliers were allowed to occur in "patches," the

distinction between model changes and sequences of outliers would become rather arbitrary, and might

indeed be reduced merely to a decision based on the duration 4 the excursion from the predicted

trajectory. This is not to say that patchy outliers do not constitute a problem worthy of study -- on the

contrary, time series outliers do sometimes occur in patcies, and this problem is briefly touched upon in
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Section 6.2.

The same justification as above also applies to the assumption that outliers only occur in the

observation noise: process noise outliers (also known as Innovational outliers," as opposed to

observation or "additive" outliers) would cause abrupt state changes that would not'immediately be

from faults (except by observation of the subsequent behavior of the model, i.e. non-

causally). Moreover, large enough process noise outliers can be utilized to determine the impulse

response of the system, which makes them rather less interesting than observation outliers. Nevertheless,

dealing with process noise outliers in real time is a problem for which satisfactory solutions remain

unavailable, and is also briefly discussed in Section 6.2.

1.2 Survey of the Literature

Conscious.of the deleterious effects of spurious observations on the Kalman Filter, engineers have

long had recourse to ad hoc methods aimed at downweighting the influence of outliers on estimates.

The simplest way employed is simply to discard observations for which the residual is "too large" (e.g.

Meyr and Spies, 1984). Thus, the a priori estimate F,, I of the state 0,, would not be updated by

,z,, it for example,

I 11.+11i I > a4l�r-+,Tii (1.10)
or

YnT+l rn-+'I 7n+l >

for some thresholds a and This is equivalent to rewriting the Kalman Filter in Equation (1.3) as

4. + F. & + K. + + + I ), - (1.12)

is an influence-bounding functi n that is linear between some possibly time-dependent (e.g.

as a function of the covariance) thresholds, and zero elsewhere. There are several disadvantages to this

approach, notably the absence of a firm theoretical basis or justification, as well as the lack of a

rigorous way to choose the thresholds. (Three standard deviations are sometimes used, but more for

historical reasons than due to statistical considerations.) Moreover, no use whatsoever is made of

information contained in the observations if they faU outside the thresholds, which may in some cases

result in decreased efficiency: if something is known about the statistics of the outliers. then it might be

possible to extract some information from outlying observations as well., and discarding them Outright

may not be appropriate. FinaRy, sharply redecending influence-bounding functions of this type give rise

to non-robust covariances, since smaR changes in the values of the observations in the neighborhood of

the thresholds may result in large variations in the value of the estimate (Huber, 1981, p.103).

Somewhat more sophisticated approaches have also been advanced to preprocess the data prior to

its use in updating the Kalman Filter. In general, these techniques consist in replacing non-robust

statistics by their robust counterparts. Thus, for instance, Kirlin and Moghaddainjoo (1986) use the

median instead of the sample mean, while Hewer, Martin, and Zeh (1987) use Huber's M-estimator.

Both papers report on applications to real data (target tracking in the case of thi former, glint noise' 'in
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that of the latter), where outliers were found to adversely affect the performance of the Kalman Filter.

In recent years, a great deal of work has been published, investigating more formal techniques for

"robustifying" recursive estimators. 'Broadly speaking, these methods can be grouped in three

categories: .

(i) Bayesian methods. When the noise is non-Gaussian, but its statistical properties are known and

not excessively complex, estimators can be derived in a Bayesian framework, whereby

observations are used to update modeled prior information. The parameters of these estimators are

often chosen in accordance with some performance criterion, such as the risk.

Oi) Non-parametric methods. There are cases of practical importance where the statistical properties

of the noise are either entirely unknown, or known only partially, or possibly known but very

complex. In such cases, distribution-free estimators are sometimes sought that remain valid in a

relatively broad class of situations.

(iii) Minimax methods. Another way of dealing with incomplete or absent knowledge of the statistical

properties of the noise is to choose a class of distributions and derive the estimator whose worst-

case performance is optimal. If a saddle:-point property can be shown to hold, such estimators are

refered to as minimax robust. -

A review of the literature follows. It is worth noting that the recent literature on robust statistics is vast,

and a broad survey is not attempted here. Indeed, even indirectly related works, such as those on robust

regression or outlier detection, are not discussed, except when they specifically focus on the robust

estimation of the state of a dynamic system. Published reviews include Ershov (1978b), Stockinger and

Dutter (1983), Kassam and Poor (1985), and Martin and Raftery (1987).

McGarty (1975) proposes a method to maximize the Bayes risk. eliminating outliers and

concurrently computing the estimate. His model assumes that the state is totally absent'from the

observation when an outlier occurs, i.e. that observations are occasionally pure noise and contain no

information at all. It would appear that this approach can conceptually be reduced to a simple

hypothesis test to decide whether or not to update the estimate at the time of each observation. It

differs considerably from the model assumed here, where the state is always observed, although the

noise may occasionally contain outliers. Moreover, McGarty's method is non-recursive, as well as

computationally burdensome.

A Bayesian setting is also employed by Sorenson and Alspach (1971), Adspach (.1974), and Agee

and Dunn (1980), who use a Gaussian sums approximation for the prior distributions. There is some

similarity between tins approach and the derivation of the conditional prior in Section 4.1. However,

while the number of components in the approximating sum grows exponentially with time in these

papers, the formulation adopted in the present thesis (which exploits the exponential asymptotic stability

of the Kalman Filter, as well as the fact that only one component in the mixture is of 0 ( I )) results in

a bounded number of terms. Although the option of truncating the mixture sums to reduce complexity

has been raised in the literature, little is known about the consequences of such a move in the general

case.
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A simple way to decrease the influence of outliers is to adjust the noise covariance matrix used in

the filter to reflect the greater variance due to them. Suppose for instance that outliers occur with

probability e, and that the covariances of the nominal (underlying) and outlier models are denoted by

R. and respectively. Then, using the inflated covariance

R = (I-e)Rwm + eR,, (1.13)

in the Kalman Filter recursion results in the deflation of the gain K,, and hence a reduction in the

influence of outliers. Unfortunately, of course, this also results in a reduction of the influence of all

other observations as well, with the consequence that very inefficient use is made of measurement

information'when no outliers are present.

Guttman and Pef3a (1984, 1985) propose a more refined version of (1.13): they assume a

distributional model for the observation noise, and compute a posterior observation noise covariance by

using the posterior probability that an outlier has occurred, conditioned on the measure ment. Similar

approaches are discussed by Harrison and Stevens (1971, 1976). One problem with this method is the

need for an explicit model for the noise: Guttman and Peda use a two-component Gaussian mixture

(scale contamination) model, which is somewhat limiting - although frequently used in the literature.

Another problem Ls that tins approach also tends to overestimate the covariance under nominal

conditions, even though it does perform much better that (1.13). When the respective domains of the

bulk of the probability masses for the underlying and outlier distributions are not sufficiently disjoint,

the probability that an observation is an outlier does not decrease fast enough in the neighborhood of

the mean, yielding inflated covariances and poor performance at the nominal model. Consider for

instance the scalar case, with the fraction of outliers e = 0.1 (as discussed in the paper), and the

nominal and outlier models respectively given by N( 0, I ) and N( 0, 3 ) (as often assumed in the

literature). Suppose that the innovation is y = 0 -- i.e. the case where an outlier is least likely. Using

B ayes' rule,

p ( nominal I y = 0 p ( y = 0 1 nominal ) p ( nominal (1.14)
P ( Y = 0 )

1-e) N( 0; 0, 1 (1.15)
I-e) N( 0; 0, 1 ) + e N( 0; 0, 3

0.94. (1.16)

Thus, the effective covariance is given by

R = (0.94) ( 1) + ( 1-0.94) (3) (1-17)

= 1. 12, (1.18)

implying that even in the best of all cases, the covariance is overestimated by 12%. This results in loss

of efficiency at the nominal model - as illustrated in Section 5, where the performance of this estimator

is calculated for different values of e and R,,,,. This problem carries over to virtually any model where

the overlap between the nominal and outlier distributions is not negligible, 'such as any symmetric

unimodal distribution.
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A related method is that proposed by Ershov and Lipster (1978) and Ershov (1978a), where the

framework is very similar to that of Guttman and Pefia, but a hard decision is made at each step as to

whether or not the observation is an outlier. This approach -has the disstinct advantage of superior

performance at the nominal model, since the effective covariance is either R"O. or R,"", but not a

weighted combination of the two. Indeed, simulations performed in the early stages of this thesis

showed this filter to have excellent performance when the true noise distribution matches the modeled

one. Furthermore, although the published derivation is for the scalar case, the multivariate extension is

straight-forward. The difficulty with this, formulation is that the problem of choosing an outlier model

remains: Ershov and Lipster only consider the Gaussian mixture case. In addition, it is probable that

such hard decisions result in non-robust covariances, in view of the fact that small deviations in the

neighborhood of thresholds can yield large differences in the value of the estimate. Indeed, abrupt

switching of covariances introduces transients in the filter dynamics which have apparently not been the

object of study.

It is worth noting that both the Guttman and Pefia. and the Ershov and Lipster filters can also be

formulated in the form of Equation (1.12) -- the first with a signioidal and the latter with a piecewise

linear iy-function. Neither function is bounded, implying that the performance of these estimators is

poor when the observation noise is heavy-tailed.

Mixture models are also used by West, Harrison and Migon (1985) in the context of generalized

linear models for nonlinear time series in the presence of outliers. Their discussion is brief, however,

and their -proposal rather sketchy.

A Bayesian framewo& is also used by Kitagawa (1987), who proposes to approximate non-

Gaussian distributions by piecewise linear functions, and select the best among a set of competing

models by means of the Akaike Information Criterion (AIC). The main difficulty with his approach,

aside from the considerable computational burden it entails, lies with the mechanical and indiscriminate

use of a criterion derived for another, very particular application, and not even universally accepted for

that one. The w 'ell-known problems of AIC relative to order over-estimation and inapplicability to non-

nested models are not addressed; as with an earlier paper by the same author on outlier detection, AIC

is taken as an article of faith.

Another attempt at representing a distribution by simpler functions is that of Tsai and Kurz

(1983), where a piecewise polynomial approximation is used to adoptively derive the influence-

bounding function. Some connections between this approach and AIC are discussed in Tsai and Kurz

(1982). While adaptive methods are very appealing when modeling information is incomplete, this

particular application raises a problem: since outliers are rare occurrences by definition, very large

samples are likely to be required for even moderate levels of confidence, particularly in the tails where

accuracy matters most. Furthermore, the derivation presented in the paper is for the scalar case only

(or, more precisely, for the case where the elements of each observation vector are uncorrelated), and

the multivariate extension is quite arbitrary; yet. such correlation could provide crucial information in

the event of an -outlier that affects some measurements more than others.

The need to select probabilistic models for the noise is entirely circumvented by the use of non-

parametric. distribution-free estimators such as the median (Nevel'son, 1975; Evans, Kersten, and Kurz,
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i976; Guilbo, 1979; Gebsid and McNeil, 1984). medians and other quantiles have very useful

properties, such as strong resistance to transients (such as outliers) but perfect tracking of abrupt

changes (such as step inputs or slope changes). Furthermore, the development of recursive methods for

estimating them has eliminated the computational burden and memory requirements commonly

associated with such statistics. However, their performance remains ill-understood, as do their statistical

properties. Yet, estimators are often used not merely to smooth, filter, or predict, but also for inference

(e.g. model parameter estimation, jump detection, etc.), in which case knowledge of statistical properties

is crucial. Finally, some non-parametric estimators may actually. be special cases of more general

formulations (such as the median as a limiting case of Huber's M-estimator), and should perhaps be

studied in a more general framework.

A final class of robust filters is based on a minimax approach. Here, a class or neighborhood of
'tuations (e.g. noise dis

si tributions) is selected, and the estimator with the best performance under the

least favorable member of that class is sought -- where best and worse are defined in a certain sense.

This paradigm is very appealing, since, in view of the absence of precise knowledge of the noise

distribution, the essence of robust estimation is a quest for methods that perform satisfactorily under a

relatively broad range of conditions. Since the least favorable situation may in fact not represent reality,

and since estimators could conceivably be found that perform better under some other conditions, this

approach is necessarily conservative. However, it has the important advantage of providing a lower

bound on the performance of the estimator. This is the approach taken in the present thesis, and details

of the history of minimax robust estimation are provided throughout the text. Thus, only papers that
specifically concern recursive state estimators are discussed here.

One group of papers (VandeLinde, Doraiswami, and Yurtseven, 1972; Doraiswami, 1976;

Yurtseven and Sinha, 1978; Yurtseven, 1979) assumes bounds on covariances and obtains a minimax

estimator under various conditions. Unfortunately, these papers are opaque and contradictory, making

their complicated methods less accessible still. Moreover, their non-recursive nature makes them

unsuitable for the present problem.

The literature most pertinent to this thesis (Masreliez, 1974, 1975; Masreliez and Martin, 1974,

1977; Tollet, 1976; Stankovi6 and Kovacevi6, 1979; West, 1981; StepifisId, 1982) uses stochastic

approximation of the Robbins-Monro type to get a recursive approximate conditional mean (minimum

variance) estimator having the form of with the influence-bounding function _V ven by the

score of the conditional distribution of the observation, i.e.

P(; :0,

P ( ;n +I I 10, ;I

This estimator has been found to perform well in simulation studies, but its theoretical basis has

remained inadequate. Moreover, a crucial assumption, that of a normal conditional prior for the state at

each time step, is insufficiently justified and remains controversial. The present thesis extends these

results and provides rigorous statistical derivations that will enable the use of this estimator for

inference.
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Similu filters are investigated by Agee and Turner (1979) and Agee, Turner, and Gomez (1979),

who eliminate the explicit relationship between the Wfluence function and distributional assumptions in

the interest of versatility. As a result, however, these filters are not minimax and the choice of

influence-bounding function remains arbitrary. Mataugek and Stankovk (1980) also study related filters

for the case of non-linear, continuous-time, discretely-sampled systems; their discussion of influence-

bounding functions does not appear to be statistically motivated either. Shirazi, Sannomiya and

Nishikawa (1988) consider models where both the process and the observation noises contain outliers;

astonishingly, they too make the assumption of Gaussian conditional prior, and only offer simulation

results to support their algorithm. Levin (1980) investigates methods for analyzing the accuracy of

filters of the form (1.12) with bounded W-functions, including notably the minimax robust estimators

described above.

Tsaknakis and Papantoni-Kazakos '1988) start out from a rather different definition of robustness,

based on the Prokhorov distance and on what they call "asymptotic outlier resistance," and construct a

minimax, robust estimator tha is insensitive to bursty outliers of fixed duration. Their algorithm is not

strictly recursive, however, since it is based on processing all the elements of a moving window at each

time step. Furthermore, while their scalar estimator is minfinax, its multivariate generalization is ad

hoc and does not obviously share this property.

Lastly, Boncelet and Dickinson (1983) describe a minimax filter obtained by applying a known

robust regression technique to the Kalman Filter reformulated as a regression problem. However, the

results are incomplete, and the crucial problem of updating the covariance is not addressed; further

results do not appear to have been published as of this writing.
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2. Minimax Robust Estimation of a Location Parameter

It has long been recognized that spurious observations can totally offset even the soundest

statistical practices, and early attempts at dealing with this problem were recorded at least as far back

as the early nineteenth century (Huber, 1972; Hampel, 1973; Stigler, 1973). Nevertheless, the various

methods for mitigating the effects of outliers in statistical analysis remained disparate and for the most

part heuristic until Huber's landmark paper (1964). There, he proposed a new approach to robust

estimation justified by minimax theory. This section attempts to reconstruct his argument, and is based

mainly on Huber's own writings (1964, 1969, 1972, 1977, 1981).

The traditional approach to estimation is predicated upon a precise knowledge of the form of the

probability distribution governing the random process under investigation -- if not the values of its

parameters. 'Thus, commonly used estimators maximize or minimize some functional which derives

from the. distribution, as is the case with maximum likelihood or maximum a posteriori probability

estimation. Alternately, a functional may be chosen for its simplicity, as is the case with least squares

or minimum modulus estimation, but here again acceptance of the methodology depends on -its

justification through probabilistic arguments. In the case of the former, the normal (Gaussian) density,

and in the case of the latter, the Laplacian. (double-exponential) density, provide that justification.

Indeed, Gauss formulated his density as having the form e--= 2 precisely to justify his choice of

quadratic functional (Gauss, 1821, p.98).

Robust estimation answers the need raised by the common situation where the distribution

function is in fact not precisely known. In this case, a reasonable approach would be to assume that the

density is-a member of some set, or some family of parametric families, and to choose the best estimate

for the least favorable member of that set -- in a sense to be discussed. While such an approach is

bound to be overly pessimistic, since the true distribution may well not be the least favorable, it at least

has the advantage of providing an optimum lower bound on performance. Consisting of Bayes solutions

with respect to least favorable a priori distributions, minimax theory had been used earlier as a

conservative approach to hypothesis testing and decision problems in the presence of statistical

indeterminacy (see for instance Wald, 1950. pp.18. 89-99: Lehmann, 1959, pp.326-341; Blackwell and

Girshick, 1954, pp.27. 195-199, 7-90-291), but Huber was apparently the first to formulate a minimax.

theory of robust estimation.

As a suitable performance measure for the robust estimator, Huber suggests its asymptotic

variance. There are a number of pros and cons about this choice, including the following:

(i) The reason for having recourse to robust procedures is the lack of precise information about the

distribution of the random van'able(s); if the best one can do is think in asymptotic terms, why

not estimate the distribution? The answer is that since outliers -- by definition -- are rare

occurrences, it would take an enormous number of observations to obtain such estimates with any

degree of confidence. (Nevertheless, some researchers have in fact opted for this approach, as

briefly discussed in Section 1.2.) Thus, the minimax approach can be useful when the sample size
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is large enough to indicate deviations from the assumed model, yet not large enough to establish

the precise nature of these deviations.

(ii) Since, by their very nature, outliers are infrequent, asymptotic results may not be applicable to

small samples. This is a very valid criticism. At the same time, however, the probability that an

outlier is present in a very small sample is remote, so that it is only in moderately large samples

that outliers are likely to truly become problematical. Monte Carlo studies conducted so far

suggest that asymptotic results become applicable quite rapidly.

(iii) As is usually the case, asymptotic analytical results are considerably easier to obtain than small

sample results. Furthermore, under certain conditions, the estimator can be shown to be

asymptotically normal. This has the added benefit of allowing its use in hypothesis testing and in

the computation of confidence intervals. Seeking the distributional properties of robust estimators

for small samples seems quite hopeless, in view of their complex and inevitably nonlinear forms.

(iv) The sample variance is strongly dependent on the tails of the distribution. Indeed, for any

estimator whose value is always contained within the convex hull. of the observations, the

supremum of its actual variance is infinite�- Thus, the asymptotic variance is a better performance

measure than the sample variance. Moreover, especially if the estimator is asymptotically normal,

the 'central part" of the distribution (which is of greatest importance) can better be approximated

in terms of the asymptotic variance than the actual variance, yiqlding more accurate intervals for

moderate levels of confidence.

For these and other reasons, all discussions here are based on using the asymptotic variance as measure
of performance.

Huber's argument for a theory of robust estimation based upon minimax principles is

reconstructed in Section 2.1, where conditions for the existence of a minimax robust estimator of a

location parameter are derived. The robust estimator of location itself is rederived in Section 2.2: this

result is subsequently generalized to the case where the location parameter is not constant.

2.1 Eidstence of the Estimator

Choosing the asymptotic variance as performance measure, it is necessary to obtain the least

favorable distribution in the set, i.e. the distribution for which the minimum attainable asymptotic

variance is maxi'murn over the set The estimator attaining that minimum asymptotic variance will then

be the best robust estimator fof this set of distributions. It is shown that under certain conditions, the

least favorable distribution is that for which the Fisher information is minimized. While this is quite

intuitive, in view of the Crarn&-Rao lower bound. a more formal treatment is presented below.

Let ( X, B ) be a measurable space, and P Pa : 0 e 9 I a family of probability measures on

X, B ) such that for some a-finite measure g on X, B ), P9 absolutely continuous with respect to g

for all 0 e 8, dP�(x) / dg(x) := fg(x) as. (g) is a probability density in accordance with the Radon-

Nikodym theorem (Halmos, 1964, pp.128-130; Loi.-ve, 1963, p.132). Suppose ftutbennore that

af O(X aO := f '(x ) exists a.e. (g) for all 0 e E).
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Definition 2.1 Tbe Fisher information of the density f 9(x) at 0, 0 e 9, is defined as

2

1 (f 9) Ef log f OW (2.1)

log f q(x) f 9(x) dIL(x) (2.2)

2

f f e(x) f 9(x) d9(X) (2.3)

provided these expressions exist. (Kendall and Stuart, 1979, vol.2, p.10.)

The Fisher information is related to the asymptotic variance of an estinn--tor by. the following well-

known relation, which is stated and proved for completeness:

Lemma 2.1 (The Cram�r-Rao lower bound) Let T : X --* 9 be an estimator of the parameter 0 for the

family of distributions P P 9 : 0 E 9 Assume the distributions admit densities f 9 such that f 0'(x

exists and is finite for all 0 r: 9 and all x r= X. Let the bias of the estimator T be given by b(O), i.e.

Ef T I = 0 + b (0). Then the variance of T (x) obeys

var? T I + vo) )2 (2.4)

Proof Note first that

f f 9(x) dg(x) 1 (2.5)

so that

f f 9(x ) d g(x 0. (2.6)

Now, since f 9 is assumed to be differentiable with respect to 0, and f < by hypothesis, there is for

each 0 a > 0 such that

< (2.7)h

for 0 < I h I < 8(0). Hence, taking the limit as h --� 0,

f f q(x) dg(r) = f f 9(x) dg(,-c) (2.8)

= 0 (2.9)

where (2.8) follows from the Lebesgue dominated convergence theorem (Lo�ve, 1963, pp.125-126), and

(2.9) from (2.6).
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By definition,

Ef T 0 + b(O) (2.10)

f T(x) f 9(x) dg(x) (2.11)

Differentiating with respect to 0 and- once again using the dominated convergence theorem, it follows

that

I + b'(0) f T(x) f O(x) dg(x) (2.12)

f ( T(x) - 0 - b(O) ) f 9(x) dg(x) (2.13)

f ( T(x) - 0 - b(O) ) f 9(x) dg(x) (2.14)
f OW

where (2.13) follows Erom (2.9). Squaring, the Cauchy-Schwarz inequality yields

2

I + b'(0) � _5 f ( T(x) - 0 - b(O) )2 fg(x) dIL(x) f f O(x) dg(x). (2.15)
f OW

Recognizing that the first integral on the right hand side of (2.15) is the variance of T and the second

defines the Fisher information, and dividing both sides of the inequality by the latter, proves the lemma.

(See, for instance, Cox and Hinkley, 1974, p.254.)

The least favorable distribution is that for which the best estimator (i.e. the one minimizing the

asymptotic variance) has the worst (highest) asymptotic variance over the entire class of distributions.

Since the Cram6r-Rao inequality (2.4) provides a lower bound on the asymptotic variance of an

estimator, a reasonable approach. might be to seek the distribution for which this lower bound is highest

-- especially if assurances can be given that an estimator achieving that bound always exists.

Unfortunately, dealing with bias in the minimax ftamework presents some difficulty, because there is no

single expression for it that is valid over the entire set of probability distributions. This makes the use

of (2.4) far from straightforward. If, however, it can be assumed that the estimator is unbiased, then

b'(0) = 0 and the bound reduces to

varf T ] >- (2.16)

Then, the least favorable distribution is simply the one minimizing the Fisher information, and the

problem is considerably simplified. In the present application, robust estimators are sought for location

parameters. In that special case, provided some restrictions are made on the class of probability

distributions, it can be shown that Huber's robust estimator is unbiased so that (2.16) is indeed valid.

This is assumed in the sequel.

As will become clear in the discussion of robust recursive estimators for linear dynamic systems

(see Section 4), the principal case of interest here concerns estimators of a location parameter. Thus, it

is assumed henceforth that X is the real Line R, B the Borel cy-algebra, and g the Lebesgue measure,

and that f 9(x f (x - a.s.
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To determine the least favorable distribution in the manner discussed above, it is first necessary to

prove the existence and uniqueness of a distribution minimizing the Fisher information. To this end, an

alternative definition is proposed by Huber to incorporate situations where Definition 2.1 is

inappropriate, in which case I(f g) is chosen.

Definition 2.2 Let C be the set of all continuously differentiable functions with compact support, such

that for all q r: C, j V(x) dP (x) > 0. Then, the Fisher information for location of the distribution P

on R is given by

f 4e(x ) dP (x ) )2
1* (P) := SUP (2.17)

Wec f V2(x ) dP (x

It is shown in Theorem 2.1 that these deflations are equivalent when the expressions in equations (2.1-

2.3) are well-defined. As becomes clear later, Definition 2.2 has certain features that are useful in

proofs of existence and uniqueness. The following theorem is due to Huber.

Theorem 2.1 Let ( P� : 0 e 19 ) be a location family. Then, the following two statements are

equivalent:

W *(Pe) <

(ii) P 9 has an absolutely continuous density f 9, and I (f 9) <

In either case, I (f 9) = I* (P (), and the asterisk is dropped in the sequel.

Proof Assume flat that P ( has an absolutely continuous density f O(x f x - 0 and that I (f 9) <

Then, integratin by parts, noting that V(x 0 at x and that

f (X -0) f (X (2.18)ax O-le
it follows that

f W(.c)f.(x)dx f V(x) f '(x) dx (2.19)L
2

f woc f O(x) dx (21 --) 0)
f 9("r)

2

!S f W2(X f �(,C ) dr f
f 90C f 9(x) dx (2.21)

where (2.21) holds by th� Cauchy-Schwarz inequality. Dividing by the first term on the right hand side

of (2.21) (which is positive by definition), it then follows from (2.17) that

I* Wo) < I V 0) (2.22)

< 00 (2.23)
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by assumption. This proves (ii) (i).

Conversely, assume that I* (Po) < and define by

A(V) = - f 4e(x) dPQ(x) (2.24)

the linear functional A : C -+ R on the dense subset C of the Hilbert space Lz(Pg) of square integrable
functions with respect to Pg. Noting that 11 A 11 2 = 1* (p 0) (from (2-17) and the definition of the

norm), it follows tint A is bounded, and can.therefore be extended by continuity to the entire Hilbert

space L-2(Pe). By the Riesz representation theorem (Conway, 1985, pp.12-13; Bachman and Narici,

1966, p. 15), there is a g 9 e L 2(P 9) such that for all V es L .2(P 9),

A f #(x ) g 9(x ) dPa(x (2.25)

Define the function f a(x ) as

f ow f go(y) 09(y) (2.26)
.V QX

a.e., and proceed to prove that this yields the density associated with Po. Squaring (2.26) and using the

Cauchy-Schwarz inequality,

f dp 0(y f g2(y) dpo(y)
fiw :5 a (2.27)

Y T.X Y QX

PO(X) 2 (Y) dpo(y)f go (2.28)
Y QX

a.s., whence it follows that f 9(x) is bounded as., and f 9(x) --+ 0 for x Furthermore, since from

(2.24) and (2.25), f g 9(x ) dP g(x A (1) = 0, equation (2.26) implies that f �(x 0 for x

Thus,

f V(x) f (x) dx f 4e(x) f g9(y) dP�(y) dx (2.129)
Y QX

f V(y) g9(y) dPo(y) (2.30)

A (2.31)

f 4e(x ) dP 9(x (2.32)

where the order of integration is interchanged by virtue of Fubini's theorem (Halmos. 1964, p.148),

(2.31) follows from (2.25), and (2.32) from (2.24). 'Ibus, f 9(x) dx and dPg(.v) define the same linear

functional on the set I V': V E C I which is dense in Lz(Pg); they therefore deftne the same measure,

proving that fo is the density associated with the probability measure Pg, and (differentiating 2.26)

g e(x = f a'(x ) 11 f 9(x ) a. s..

From the Cauchy-Schwarz inequality,

f V(x) g e(x) dP.(x) f -'(x ) dPo(x f g 2 (x ) dP e(x (2.33)

with equality only if V(x) = a gg(x) a.e. for some real-valued scalar cL It follows therefore that
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V(x) g.(x) dP.(x)
1* (Pe) (2.34)SUP f V2(X,we C dP.(x)

f g2(X)dp.(X) (2-35)

f OU ) 2
f f OW f 9(x) dx (2.36)

I (f 0). (2.37)

which is finite by hypothesis, proving the theorem. (This proof follows those inspired by T. Liggett in

Huber (1969, pp.78-81; 1977, p.30-, 1981, pp.77-79); Huber (1964) provides a somewhat more

cumbersome proof of the same theorem.)

The existence of a least favorable distribution for minimax. problems has been investigated by

several researchers; indeed, one of the primary tasks of minimax, theory is deriving sufficient conditions

for the existence of such distributions. Wald (1950, pp-96-917) formulated necessary conditions for a

least favorable distribution to exist, which included the restriction that the parameter set be compact.-

Lehmann (1952) provided some conditions under which this requirement could be relaxed, for tests

involving a finite number of decisions. In general, however, proofs of existence involve some

topological restrictions which are problematical since in many cases the sets of probability distributions

of interest are not tight, so that their closures are not compact in the weak topology.

To circumvent these difficulties, Huber proposes to endow the set P with the vague topology,

defined as the weakest topology such that maps P -4 f V dP are continuous for all continuous

binctions y with compact support. This implies that some measures may be of mass less than unity, i.e.

they may place, nonzero mass at ±-. According to Huber, such substochastic measures may in general

be viewed as providing for "infitlitely bad outliers", and the fact that they may have mass less than

unity formalizes the practice of'routinely discarding such grossly invalid data. In the present context,

however, only location families are considered-, since they always have the 0 measure as a limit, P can

be assumed not to contain substochastic measures. In this framework, existence and uniqueness are

proved in Theorem .2.22 using the following lemma, due to Huber.

Lemma 2.2 The Fisher information for location I(P) is a convex function of P.

Proof Noting that, by linearity,

32

f 4e(x) dP(x) 0 (2.38)

and

V(x) dP(x) 0, (2.39)
aP2
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it'is easy to show that

0'�2 f W'(.x dP (x f W(x ) dP (x
- 2 f V2(X dP(x) (2.40)

ap2 f V(x) dP(X) aP f V2(X ) dP(x)

0. (2.41)

Thus, the quotient on the left hand side of (2.40) is a convex function of P, so that by (2.17) I(P) is

the supretnum of a set of convex functions of P, and is therefore itself a convex function of P. (See

Huber, 1981, pp.79-80.)

The following theorem is due to Huber.

Theorem 2.2 If P is vaguely compact and convex, then there is a Po e P minimizing I(P). If,

furthermore, 0 < I(PO) < - and the support of the corresponding density f 0 is convex, then Po is

unique.

Proof Since P is vaguely compact, then from (2.17), the Fisher information I(P) is the pointwise

supremum of a set of vaguely continuous functions; consequently, it is lower semi-continuous as a

function of P, and attains an infimum on P. This proves the existence portion of the theorem.

Assume now that P 0 and P 1 both minimize I (P ). Then, by convexity (Lemma 2.2), I (P 0 must

be constant over the subset of P defined by 0 i5 X < 1, so that

a2 (2.42)
-�X-2 I (P X) = 0

Since I (P j < - by hypothesis, it follows from Theorem 2.1 that P% Oas an absolutely continuous

density f X. Then, it is easy to show by straightforward differentiation that (for f 0)

a2 (fX)2 fl, fo -fo' fi

(7.43)aX2 fX f 3

> 0 (2.44)

for 0 < X < I (where f X' := af x 30, and 0 is the location parameter). It follows that (f ),')2 f is a

convex function of X, and

(f X:)2
I I -

h f X i X.,h f X

is monotone in h. Thus, from (2.3), the limit as h 0 is taken and

2f -Lf o rI (P TX f d (2.45)

2

f dy 4 6)f X
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by the monotone convergence theorem (1.6bve, 1963, p. 124). Furthermore, (2.44) and monotonicity

imply that

I V XI) (f > 0 (2.47)
h a% f X X+h fX

so that taldng the limit as h -4 0,

')2
C I(P)) f dr (2.48)a% fX

V%1)2
dc (2.49)> f �71 - fX

f 2 (f IVO-fo'f I dx (2.50)
f3

X

> 0 (2.51)

where (2'.49) follows from Fatou's lenuna"(Halmos, p.113-114), and (2.50) from (2.43). Thus, Erom

(2.42),

(fI'fO-fO'f If 2 f3 dx = 0 (2.52)

It follows that

fl , fo

fi - fo (2.53)

a.e. 4

Integrating (2.53), since the support of f 0 is convex and therefore connected, it follows after

exponentiation .that

ft = (Xfo (2.54)

for some constant oL But from (2.3),

I(P 1) f f I(x) dx (2. 5 5
f I Qc

12
f af O'(x d-

af 0(�_c a-f 0 c (2.56)

a I(PO) (2.57)

whence, since I (Po) and I (PI) are both minima and hence equal by hypothesis, cc 1, and uniqueness

is- proved. (See Huber, 1964, pp.86-90; 1969, pp.81-85; 1981, pp.79-81.)
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Theorem 2.2 proves that under suitable conditions, there is a distribution in P that minimizes the

Fisher information. The question remains as to whether or not an estimator can be found that achieves

the Cram&-Rao lower bound, ie. an estimator whose asymptotic variance is the inverse of the Fisher

information. It is well known that under suitable conditions, the maximum likelihood estimator achieves

this bound. Specifically, if it is consistent, then it is asymptotically efficient, i.e. it is asymptotically

normal with mean equal to the true parameter and variance equal to the inverse of the Fisher

information. (See for instance Akahira and Takeuchi, 1981, p.58). Le Cam (1953) discusses the history

of the maximum likelihood estimator as well as issues relating to its consistency and asymptotic

efficiency (see also Le Cam, 1956). Wald (1949) provides a proof for consistency, which Huber (1967)

modifies to hold under weaker conditions; fin-thennore, Huber also proves asymptotic normality under

these weaker conditions. Many of the relevent regularity conditions (though not those of Huber) are

ftniher discussed in Le Cam (1970). Proofs of these results are involved and will be ommitted here.

This suggests that the maximum likelihood estimator based upon the least favorable distribution

in a given set of distributions may yield the best robust estimator for that set. This is not immediate,

however. It can be shown to hold -- at least for some cases - by explicit verification of the saddle

point condition: i.e. given a set C of allowable estimators and a set P of distributions, both defined on

( X, B ), and a gain function J : C x P -+ R to be maximized over C and minimized over P, the pair

consisting of the estimator % and distribution Po are such that

J( '#' PO ) < J( VO, PO ) < J( %, P (2.58)

for all iV e C and all P e P. In other words, the pair Po ) is a solution to the minimax. problem.

It must be noted that although such a saddle point solution yields the optimal robust estimator, the

converse does not necessarily hold -- i.e. a least favorable distribution and the corresponding optimal

estimator do not necessarily constitute a saddle point solution. Theorem 2.3, due to Verdfi and Poor

(1984), provides sufficient conditions such that every least favorable distribution forms a saddle point

with its corresponding optimal estimator. The following definition and lemma axe deeded:

Definition 2.3 Given the minimax problem defined by the sets C and P and the function J,

iyL, PL ) e C x P is a regular pair if and only if for every P such that Pk := (I-X) PL + X P C= P,

0 �5 X!5 1,

J( W* WJ, P% P WL, Pk 0 W (2.59)

where iV* (P) E C denotes the optimal estimator for the distribution P E P.

Lemma 2.3 Let g [0, 11 :-4 R be a convex function. Then, g (0) < g (k) for every X e [0, II if -and only

if

I
0 !::- lim I gW - g(O) I. (2.60)

X10

Proof From the definition of convexity,.
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g ( 8X + (1-8) Y ) < 8 g (X) + g (Y) (2.61)

where 0 < 8 < 1. Let (A, I be a strictly decreasing sequence, 0 < X. < I for all n. Substituting x

y = 0, and 8 = �,+j / X. in (2.61), it follows that

g g (0) < g (X.) (0) (2.62)

for all n. In particular, this implies that

g g (0) (2.63)

is an increasing function of X, and its limit as X I 0 exists. Suppose g (0) < g (,%) for every X r= [0,1].

Then, (2.63) is non-negative, and therefore so is the limit. Conversely, suppose that (2.60) holds. Since

(2.63) decreases with decreasing X, it follows that for every X E � , 1

1
1 g 0.) - g (0) lim gM - g(o) I (2.64)V10

> 0 (2.65)

by hypothesis, so that g (0) < g for every X e [0, 1], and the lemma is proved.

Theorem 2.3 Consider the minimax problem defined by the sets C and P and the function J. If P is

convex, and if J( vj, P ) is convex on P for every 4r e C, then the following two statements are

equivalent:

(i) Po is a least favorable distribution

(ii) The regular pair ( V0, Po ) is a saddle point solution.

Proof Let Po'be a least favorable distribution, and let ( V0, Po ) be a regular pair. Choose P = Po in

the statement of Definition 2.3, so that P X = Po for all X. Then, letting X = 0 in (2.59), regularity

implies that

J( V* (Po), Po J(,Wo, PO (12.66)

i.e. Vo is the optimal estimator for the distribution Po and satisfies the left hand inequality in (2.58).

This proves the first half of (i) --+ (ii); it remains to show that the right hand inequality in (2.58) is also

satisfied.

For Po, P I E P and 0 < X < 1, let P X := (I-X) Po + X P 1. Then by definition,

J( 4f* (PO, P% sup J( 'V, P% (2.67)
ye C

< sup [ (1-k) J( V, Po + X J( V, pi (2.68)
we C

< (I-%) sup J( XV, PO + X sup J( AV, PI (169)
Wec WE C -
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(1-%) J( Wo), Po ) + X J( VI* (P P (2.70)

where (2.68) follows from the convexity (by hypothesis) of J( V, P ) on P given any r= C. This

proves that J V* (P ), P ) is also convex on P.

By definition, Po is a least favorable distribution if and only if

J( V* Wo), Po ) < J( V* (P), P (2.71)

for all P e P. In particular, setting P = P) and using Lemma 2.3, it follows that Po is a least favorable

distribution if and only if

O'< link 1 (2.72)
X10 I J( VI* (PO' PX J( AV* Wo), Po

Similarly, setting P P% and using Lemma 2.3, the right hand inequality in (2.58) holds if and only if

0 :5 firn, J(VO' PO - J(VO, Po) (2.73)

Note that

A V* (PO, PX A V* Wo), Po A V* (PO' PX J( VO, Po (2.74)

J(V*(PO'PX) J(VO'PX)

+ J(VO'PX) - AVO'po) (2.75)

where (2.74) follows from (2-66). Div iding (2.75) by X and taking the limit as X I 0, and noting that

Urn J(V*(Px),Px) - AW PO 0 (2.76)X10 I

from the regularity assumption (2.59), a comparison with (2-72) and (2.73) shows that Po is a least

Favorable distribution if and only if the right hand inequality in (2.58) holds. This establishes that

(i) (ii), and completes the proof (See Verdfi and Poor, 1984.)

Remark In the present context, the minimax. problem consists in finding the estimator minimizing the

asymptotic variance for the least favorable distribution. Instead of using the asymptotic variance as cost

function, however. it is more convenient to utilize its inverse, the Fisher information, as gain function.

This is because. as shown earlier (Lemma 2.2), [(P) is convex on P. Thus, if P itself is also convex,

then the conditions of Theorem 2.3 are satisfied, subject to the regularity condition, eliminating the need

to verify that any given pair consisting of a least favorable distribution and the corresponding optimal

estimator is a saddle point solution to the minimax problem. It has thus been established that the

maximum likelihood estimate corresponding to the distribution minimizing the Fisher information is the

optimal robust estimator in the minimax sense, provided that it is contained in C and that P satisfies

certain conditions.
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2.2 Derivation of the Estimator

Consider the measure space ( X, B, g ) defined earlier, and let I x x,, ) be a sample of

independent random variates taking values in X, with a common distribution function P. Let

P,= ( P 9 : 0 e 9 ) be a family of probability measures on ( X, B ) such that for all 0 e 9, P 9 is

absolutely continuous with respect to IL and admits the density f 0 in accordance with the Radon-

Nikodym theorem.

Let X ' be the product of n copies of X, and let T, : X 9 be an estimator for the parameter

0. A broad class of such estimators are solutions to maximization problems of the form

max Pq(XA (2.77)

For instance, if pe(x log f G(x ), then the solution of (2.77) is the maximum likelihood estimatc; ` .-f

pB(X ) := _ I I X A 11 2, it is the least squares estimate; if pq(x) := - IxA 1, it is the minimum modulus

estimate, i.e. the median. Huber calls these M-estimators. Since the optimal robust estimator'described

in Section 2.1 is a maximum likelihood estimator (for a certain appropriately chosen family of

distributions), it is also of the form (2.77).

An alternative way of stating (2.77), provided that pe is differentiable and that 8 is an open. set,

is

vq(xi) = 0 (2.78)

where %(x) := ccape(x) ae., and a is an arbitrary constant. For the minimax robust estimator,

a = -1 is chosen for aesthetic reasons (as will become clear below), and

Vq(X log f OW (2.79)

f OV) (2.80)

f OW

a.s., where f 9 is the density corresponding to the least favorable distribution as described in Section 2. L

Since the minimax. robust estimator is a maximum likelihood estimator, it has the properties

known to hold for such estimators in general. Specifically, under rather mild conditions, it is consistent

as well as asymptotically efficient. (In this context, it is useful to recall that Huber (1967) proves the

consistency and asymptotic normality of the maximurn likelihood estimator for the case where the true

distribution f * underlying the observations does not necessarily belong to the parametric family

fa: 0 E E) I defining the estimator. In that case, convergence is to 00 e 8 satisfying

Ef. [ log f 9(x) I < Ef. [ log f %(x) I for all 0 e 8, 0 # 00.) As discussed later, however, the minim ax

estimator is not always the most appropriate for any given application, so that Huber's more ',general

results concerning a class of M-estimators are reviewed below.

As before, it is assumed here that f g(.Y) := f (x A); the same follows. of course, for iV and p.

Let p be a continuous, convex, real-valued function of a real variable, whose derivative V exists

a.e. and takes both negative and positive values. Let the estimator of location T, x x. ) be- the
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solution of

xi - T 0 (2.81)

(as with equation (2.78)), and let

4(T) := f -V(x -T) dP (x) (2.82)

denote the expectation of V with shift T. It is clear, from (2.81), that

T. ( x I+c, x. +c T. ( x x, ) + c, i.e. T, is translation invariant This fact is used in

the sequel.

The following lemma, due to Huber, establishes the existence of the expectation in (2.82), and the

fact that it crosses zero.

Lemma 2.4 If there is a T* such that 4(T*) < *- exists, then 4(T) exists for all T (though it is not

necessarily finite), is monotone decreasing with T, and takes both positive and negative values.

Proof Since p is convex, W is a monotone increasing function of its argument (This is easy to

demonstrate and is analogous to Lemma 2.3 see Royden, 1968, pp.108-109.) Thus, -q(x-T) is

monotone decreasing in T, so that for 7* < T,

%x -7'* iV(x -T) Z: 0 (2.83)

a.s., and consequently

f ( V(x -7-* W(x -T) ] dP (x (2.84)

exists (though it is not necessarily finite). But by hypothesis,

4(7*) f iV(x-T*)dP(x) (2.85)

also exists and is finite; taken together, (2.84) and (2.85) imply that 4(T) exists for T* < T (though it is

not necessarily finite). A symmetric argument for T < P extends the result to all T Moreover, since

#(x -T) is monotone decreasing in 7, so is 4(T).

Decompose iV into its positive and negative parts, i.e. let iV where

*+(x) = max ( W(x), 0 (2.86)

and

W�(x) = --� min( V(x ), 0 (2.87)

a.s. For any given xO, iV(xo-T) is monotone decreasing in T and takes both positive and negative values

by hypothesis. It follows that for large enough T, V'(xo-T) 0 and *-(xo--T) > 0, so that

lim 4(T) = lim. f V+(x -T) dP (x f W�(x -T) dP (x (2.88)
T T--+-

< 0, (2.89)
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where both integrals in (2.88) exist since 4(T) is defined for all T, and the limit exists since both xV+

and W� are monotone in T, and therefore so are the integrals. A symmetric argument for T -+

completes the prooL (The proof of existence is suggested in Huber, 1981, p.48; the remainder follows

Huber, 1964; 1969, pp.64-65.)

The following theorem is due to Huber.

Theorem 2.4 If 4(T) exists and there is a 7* such that 0 < 4(T) for T < T* and 4(T) < 0 for T* < T,

and if

f I *x -T) I dP (x ) < (2.90)

then Tn ( x 1, x,, 7* as n almost surely and in probability (i.e. T,, is consistent).

If, moreover, 4(7'* 0, 4(T) is continuous, differentiable and strictly monotone in a

neighborhood of 7*, and if

0 < f V(x -T) dP (x) < (2.91)

is continuous in a neighborhood of T* , then

f V(x-1*)dP(x)
L(,I-n(Tn-7'*)) -+ N 0, 4,(7,* ) )2 (2.92)

as n (i.e. T. is asymptotically normal).

Proof Let 8 > 0. If (2.90) holds, then the Kolmogorov strong law of large numbers (Lo�we, 1963,
p-239) implies that as n -4

1 n

Y, y( xi - (T* 4) 4(7* 4) < 0 (2.93)
n i=1

a.s. and i.p., where the inequality holds by hypothesis. Siniflarly, as n

n

F, IV( xi - (7'* +8) 4(7'* +8) > 0 (2.94)
n i=,

a.s. and i.p. Since �(T) is monotone in T, it follows that for each 8 > 0, there is an n (8) such that for

all n > n

71 < T.(xi, X. ) < T* + 8, (2.95)

(recall that Tn ( x 1, xn solves (2.8 1)), and sinliMy, as n

prob[ T* 8 < T,( x x, ) < T* + 8 (2.96)

Letting 8 -* 0 proves the first assertion.

Because of translation invariance, it can be assumed with no loss of generality that 7* 0. Since

iV(x -T) is monotone decreasing in T and T,( x x, solves (2.8 1), it follows that

T,,(xl, - x,, < T if and only if

n

XV(Xi -T) < 0. (2.97)
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a.s., for any given T. Rewriting (2-97) to center the sum on its expectation and bound its variance,

n-1/2 V(xi -T) - 4(T) ] < n 1t2 (2.98)

a.s. (from (2.82)), so that

prob[ '4n_ T.( x 1, xn ) < T

prob n 4((xi-n-1/2T) - 4(n-1/2T) :5 - n 1/2 -"2T) . (2.99)

Thus, showing that the right hand side of (2.99) tends towards a normal distribution would establish the

asymptotic normality of )I-n- T,, x 1, - - - , x,, ).

Note first tha-t since ( xi we independent and identically distributed,

12T)var #(xi -n -"2T) I V(xk -n var[ V(xi -n -11T) 1 (2.100)

for all i, -so that

n I 1/2
E I var V(xi-n-"2T) I V(xjt-n-"7T) var( 4((xi-n- T) I 0 (2.101)

k-I

identically. Moreover, by independence,

var[ *xi-n-1/2 T)] f V2(x-n-"2T) dP(x) - 42(n-1/2 T) (2.102)

for all i, so that

n 1/2 f *2(X -"2T) dP (x) 42(n -"2T) (2.103)var[ n- V(xi-n-"2T) - 4(n-"2T) _n

< 00, (2.104)

at least for large n (i.e. for n-1'2T near 0), where (2-104) follows from (2.91), the continuity of 4(T) in

a neighborhood of 0, and 4(0) 0 (by hypothesis). Finally, define

A( n, 6, T x: n-1/2 4((x -n - 1/2 T) - 4(n-"2T) > 8 (2.105)

for some given 5 > 0. Then, by independence,

n

1 1n-1/2 xV(xi -n -1/2 T) - 4(n -""-T) dP (xi)
i=1 A (jsx)

A (nkr) I 4Kx -n -1/2 T) - 4(n-'/2T) dP (x) (2.106)

0 (2.107)

as n ---> since, as with (2.103)-(2.104) and from (2.90),

U2 -1/2W(X-n- T) - 4(n T) < co (2.1-08)

----- ---------
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a.s., so that

lim A( n, 8, T 0 (2.109)
n 0.

(or possibly a set of measure 0). 'Ibus, Lindeberg's conditions (Lo�ve, 1963, pp.377-378) for

asymptotic normality are satisfied, and the right hand side of (2.99) tends towards a normal distribution.

Since 4(0) = 0 and 4(T) is differentiable in a neighborhood of 0 by hypothesis,

4(T) = T 4'(0) + 0 (T2) (2.110)

so that

n 1/2 4(n -"2T) n 1'2 ( n -"2T 4'(0) + 0 (n

- T 4'(0) (2.112)

as n Thus, recalling that 4(T) 'LS' strictly monotone (decreasing) in a neighborhood of 0 by

hypothesis, so that 1�(O) < 0, the limit of (2.98) can be written as

iV(xi-n-1/2 T) - 4(n-"2T)
lim n-V2 T (2.113)

so that, comparing with (2.99),
1/2 V(X -"2T)

i-n 4(n-"2T) d
n- In- T.( xj, x. (2.114)

asymptotically. This establishes the asymptotic normality of in Tn x 1, xn and it only rem

to derive its limiting variance. Once again by independence,

n iV(xj-n-111ZT) - 4(n-'/2T)
var lim n-1/2

n

AV(x-n-11'2T) - 4(n-'/2T)
var lim (2.115)

n -4-

Y(xvar (2.116)

f W2(X ) dP (x) (2.117)
)2

where use is made of the fact that E [ y(x �(O) 0, concluding the proof (See Huber, 1964; 1969,

pp.66-72; also 1981,'pp.45-50.)

Corollary 2.1 For a given family of symmetric distributions with location parameter 0, let the least

favorable density f 9 be such that I (f 0) < for all 0, let the corresponding influence-bounding function

1#0 (given by equation (2.80)) satisfy the conditions of Theorem 2.4, 'and let T,( x xn be the

minimax robust estimator of 0, i.e. the solution of (2.81). If the true underlying distribution is f 9*,

then
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L( 4-n (T. - O* N 0, (2.118)
IV W)

as n (i.e. T,, is asymptotically efficient).

Proof Because of translation invariance, it can be assurned with no loss of generality that O* 0. Note

fint that since f 0 is symmetric with respect to 0, it follows that

f O(x f 0(-x (2.119)

and similarly,

IYO(X fo 01 (x (2.120)
f OW

f Ot(-x
(2.121)

f 0(-X)

VO(-x)- (2.122)

Thus,

4(0) f Vo(x ) f O(x dx (2. i23)

0
f VO(x) f O(x) dx + VO(x) f O(x) dx (2.124)

0
f Vo(-x) f 0(-x) dx + #O(x) f O(x) dx (2.125)

VO(x) f O(x) dx + VO(x ) f O(x ) dx (2.126)
0

0, (2.127)

where (2.123) holds by deviation, (2.125) follows from a change of variable (replacing x by -x),

(2.126) follows from (2.119) and (2.122). It is ftutbermore easy to show that 4(T) has a unique root, at

0: suppose 4(T 1) = 0 also, for T I > 0, and define Tx XT t for X e [0, I Then,

4(Tx) - 4(0)
41(o) = I- (2.128)

%lo Tx

> lim 4(T I) - 4(0) (2. i 29)
%lo T x

0, (2.130)

where (2.129) follows from the fact that 4(T) is monotone decreasing and T, > Tx by definition, and

(2.130) holds identically since T, and 0 are both roots of 4(T). But this is a contradiction, since

4'(0) < 0 by hypothesis (see Theorem -2.4). Thus, there can be no root T, > 0. A similar argument for
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T I < 0 establishes unicity. Thui, by Theorem 2.4, �n- T,, x x,, is normally distributed with

mean 0.

Note next that

4(T) J %(x -T) f (x) dx (2.131)

J I#o(x) f o(x +T) dx (2.132)

by a change of variable, so that

1�(T) = f #O(x ) f Ax +T) dx. (2.133)

Equation (2.133) is justified (via the Lebesgue dominated convergence theorem) by the boundedness

and differentiability of f 0, implicit in the assumption that I (f 0) < -; the change of variable in (2.132)

thus allows the proof to proceed without making any further assurriptions as to the differentiability of

,#O. Substituting for iVo yields

4%T) f ow f 0'(x+T) dc (2.134)

and thus,

41(0) IV O). (2.135)

But

V02(X)'f O(X fo"Wdx f f OW f O(x) dx (2.136 .)

I V O). (2.137)

Comparing (2.135) and (2.137) with the asymptotic variance in (2.92) proves the assertion. (See also

Huber, 1969, pp.72-73.)

Remark The condition in Theorem 2.4 that 4(T) be differentiable in some neighborhood of r is

restrictive. It is often not met, in which case weaker statements can be made - concerning the

asymptotic normality of 4-n 4(T,,), but not that of 4-n- T,. Corollary 2.1 shows that the minimax robust

estimator is asymptotically efficient under certain conditions -- specifically, when the true underlying

distribution is in fact the least favorable one, and has finite Fisher information. On the other hand, small

sample theory on the distributional properties of 'NA-estimators is unfortunately very limited, their non-

linearity and the rather uncooperative forms of least favorable densities make such results very hard to

obtain.

A specific case is now treated in some detail. This case has been investigated in the literature, and

forms the basis of a considerable part of what follows.
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Definition 2.4 A convenient model of indeterminacy, proposed by Huber (1964), is the e-contaminated

normal neighborhood

P, := ( ( I - e ) (D + e H : H e S (2.138)

where 0 is the standard normal distribution, S is the set of all probability distributions symmetric with

respect to the origin (Le. such that P (-x ) = 1 - P (x)), and 0 :5 e < I is the known fraction of

11CO The location family (of neighborhoods) generated by P. is then defined as

P, I P(X -0) : P re P,, 0 6 9 (2.139)

The presence of outliers in a nominally normal sample can be modeled here by a distribution H

with tails heavier than normal. Note that symmetry ensures the unbiasedness of the maximum likelihood

estimator, making the expression for its asymptotic variance considerably simpler as discussedearlier.

Although this restriction obviously precludes cases where outliers are grouped on one side of the mean

of the nominal ("underlying") distribution, the model is general enough to represent many realistic

situations. jbe assymetric case has been studied by Jaeckel (1971) and Collins (1976).) Note also that

allowing H to be substochastic would ensure vague compactness.

Lemma 2.5 P, is a convex set.

Proof Let Po, P, r: P, be two distributions respectively corresponding to Ho and HI e S. Then, for

PX (1-X) Po + X P, (2.140)

(1-%) ( (1-e) <D + e Ho ] + X [ (1-e) O + e HI I (2.141)

(I-e) O + e C (1-X) Ho + X HI (2. i42)

(1-e) O + e HI (2.143)

P, (2.144)

since, being a weighted sum of two symmetric distributions, with weights summing to unity, Hx e S

also.

From Lemma 2.2, I(P) is a convex function of P, and from Lemma 2.5, P, is convex. It

follows by Lemma 2.3 that Po minimizes I (P) if and only if

0 < lim I I (P�) - (Po) (2.145)X10

for all PI r= P, where P x is defined by (2.140). Equation (2.46) yields

(f X,)2 dx (2.146)f f X X.0

f 2 �Lo, fo, 2fo ffl'-fo') fo (f I -f O dx (2.147)
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> 0, (2.148)

where f x is the Radon-Nikodym derivative of P x, X 6 [0,11, and f X' := 3P (x - 0) / dA Moreover,

(2.148) follows from (2.145) and must hold for all P, e P, Integrating by parts, and assuming that

f O" exists at all but a countable number of points,

f O' f O f O" (f 0'� (f 1 - f 0 dx (2.l.49)f To (fl'-fo')dx f f2
0

so that (2.147) may be rewritten as

fo, 2 (fl

f 2 f O' (fl'-fo') _fO) 'dX

fo fo

fo fo" Vo'� fo
f -2 f (fi-fo)dx (2.150)

0 fo

(fo,)7- _

2fofo" (fl-fo)dx (2.151)
f 2

fo

NTO)"
-4f (f I -fo) dx (2.152)

> 0 (2.153)

where (2.152) can easily be shown to reduce to (2.151), and (2.153) follows from (2.148). Note,

ftu-thermore, that the izm'g distribution f 0 can be assumed not to be substochastic, so that

f (fl-fo)dx ,- 0 (2.154)

and (2.153) holds if

NTOr
f NTO a, (ft-fo)dx < 0 (2.155)

for some real-valued constant a.

Huber does not provide details as to how this problem can be solved in the general case, i.e. how

to find a Po such that (2.153) holds for all PI given any family of distributions. Rather, in the case of

the F--contaminated normal neighborhood, he draws upon heuristic arguments -- as well as some

analogies to the Schrbdinger equation for an electron moving in a given potential -- to propose a

solution, and proceeds to show that it satisfies (2.153) (1969, pp.82-89; 1981, pp.82-86). That approach

is taken below.

The problem essentially consists in findin f 0 minimizing I (f subject to the constraints9

f O(X) (I-e) OW (2.156)

a.e., and
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f O(x) dx = 1, (2.157)

where 0 is the Radon-Nikodym derivative of (b, (2.156) follows from Definition 2.4, and (2-157) once

again assumes f 0 is not substochastic (otherwise, equality must be replaced by :5). Given this

formulation, it is more than likely that there is some region where the inequality constraint (2.156) is

active, ie.

f OW = O-e) VX) (2.158)
for x in some X c X. In that region, f I > f 0 for all P I e P, a

(compare (2.138) and (2.158)), so th

NTO)" Cj2 (fj-fO)dx < 0 (2-159)
-47-0

only if

2 Is 0 (2.160)
47-0 -

for x e X. It is not hard to verify, by substituting (2.158), that (2.160) holds in some neighborhood of

0, i.e. in the "center" of the distribution. If, on the other hand,

f OW > (1-0-OW (2-161)

for x E X\X, then ( f I - f 0 ) may be either positive or negative, depending on f In dig case, to

ensure that

NTO)",
NTO o� (fj-fO)dx < 0 (2.162)

X\X

for all P I e P,,, one may require

NITO)" 2 0.
r- - (2.163)

-47 0

for x e X\ X. This, in turn, implies that for x e X\X -- the regions away from the center, i.e. the

"tails" - f 0 has exponential form. AR these arguments lead to the following least favorable distribution,

due to Huber.

Theorem 2.5 For the set P, of e-contarninated normal distributions, the least favorable distribution (i.e.

the distribution minim�izing the Fisher information 1(f )) is given by

( I - e ) O(k) e'='+*2 X < -k
f * (X) ( I - e ) 4*0 -k < x 5 k (2.164)

( I - e ) O(k) e-c' +k2 k <x

where k is related to the fraction of contamination e by

2 (D(-k) (2.165)
k
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Proof It is first shown that f * e P, Le. there is an h* e S such that

f*(x) = (I-e)4Kx)+eh*(x). (2.166)

It follows from (2.164) and (2-166) that

E �(k) ekx 4,,2 _ O(X x <

h* (x) 0 -k <x :5 k (2.167)

-4=+k2Xk) e �(X) k < x

which is clearly symmetric with respect to the origin. Furthermore, substituting for it follows that

for x < -k,

I -k2t2 kx4,t2
e e e -x2/21 Z! 0 (2.168)

,�2-x e

if and only if

-k2/2 A,+k2 %
e e >- e -x (2.169)

or equivalently (taldrig logarithms and rearranging)

2 2k - + kx > x (2.170)
2 2

or

k + x � Z! 0, (2.171)

which holds for all x e X, and for x < -k in particular. Since h* is symmetric with respect to 0, it

follows that 0 < h* (x) for all x. Finally, again by symmetry,

-k

f h* W dx 2 �(k) e b, +t 2 �(X dx (2.172)

2 O<k) - (D(-k) (2.173)
k

1 (2.174)

from (2.165). Thus, h* r= S, so that f* E P,

Next, it is necessary to show that f minimizes I (f i.e. that it satisfies (2.15 3). Note first that

for k < Ix 1,

(f* �2 - 2 f* f*
f* 2 k , (2.175)

wbfle for Ix I <k,

(f*)2 - 2 f* f*"
f* 2 (2.176)
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Thus, (2-151) may be rewritten as

f* f* (f I -f* )dx
f f*2

-k
-k 2 (f, _f* )dX + 1 _X2 (f, _f* dX

k2
I (f I -f* )dx (2.177)

k

f (k'+l-x)(f,-f* )dx - k2 f (fl-f* )dx (2.178)

> 0 (2.179)

for all f e P, Here, (2.179) follows from the fact that for I x I < k, 0 5 + I - x2 ) and

0 :5 ( f P ), and furthermore

f (f�-f* )dx < 0 (2.180)

since f may be substochastic, but f* is not. This proves that f* minimizes I (f

Finally, it must be shown that f* is unique. Note first that for k < I x 1,

*.- 2
f 2-7;;- = k' (2.181)

while for I x I < k,

f 2 2

X (2.182)

It follows that

f f* dx (2.183)f

-k
f P f* dx + X2 f* dX + f k-2 f* dX (2.184)

k

(1-e)[20(k)-Ij (2.185)

whence 0 < I < for 0 < k, which is consistent with (2.165). Moreover, the support of f* is R,

which is convex. Thus, the conditions of 'Theorem 2.2 are met, and f* is unique. This concludes the

proof. (Outlines of this proof can be found in Huber, 1969, pp.87-89; 1981, pp.84-85.)

Remark It is, in retrospect, somewhat surprising that the least favorable distribution has tails that do

not descend slower than exponentially. One explanation is provided by the following qualitative
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argument: if the tails were very heavy, then it would be "too easy" to discriminate outlying observations'

from those due to the underlying (normal) distribution. Thus, the least informative situation occurs

when tails are "just heavy enough" for outliers to be most difficult to discriminate.

It follows from (2.80) and (2.164) that

-k x < -k

VeW X -k <x < k (2.186)
k k <x

a.s., where 'k is related to e through (2.165). Thus, the transformation %(x) leaves its argument

unaffected if it is within some predefined range, and truncates it if it goes beyond that range; this

explains the choice of multiplicative constant discussed earlier. Plots for f* (x) and yjx) appear in

Figure 2.1 (a-b). 11he function yjx) illustrates well the concept of bounded influence estimation. Since

wild observations are truncated, no single data point can totally dominate the others; this is in stark

contrast to the sample mean, for instance, where any data point may have arbitrarily large influence on

the estimate of the pararneter. Note also that the function V,(x) is closely related to the practice of

Winsorization (see for example Tukey and Laughlin, 1963), where the j smallest and k largest

observations in a sample of size n are replaced by the values of the j+1st smallest and n-kth largest

observations, respectively. While Winsorization does not result in a bounded-influence estimator, its

relationship to (2.186) is clear. The main difference between the two approaches is that in the former,

truncation does not occur at preset values but is a function of the sample.

Since it is assumed that p is differentiable, and therefore continuous, integrating (2.186) yields

(within an additive constant)

V
kx - 2 x < -k

pjX) X2
2 -k <x <k (2.187)

V
AX - 2 k < x

a.s. In other words. it is quadratic in the center and linear in the tails. It follows that the estimator

defined by (2.81) with ml,(x) given by (2.186) (or equivalently by (2.77) with p, given by (2.187))

represents in some sense a continuum between the sample mean and the sample median. As e -+ 0,

(2.165) implies that k so that p&) .. x 2 resulting in the sample mean (the least square estimate).

As e -4 1, on the other hand, k -4 0, and for small k, pjx) - I x I approximately, corresponding to the

sample median (the minimum modulus estimate).

Assume that the true distribution Pp belongs to the location family generated by the e-

contaminated normal neighborhood, i.e. Pg.' e P,; because of translation invariance, it can be assumed

with no loss of generality that 0* = 0. It is clear that since ml, is odd and Po is symmetric, 4(0) 0

(see equations (2.123)-(2.127)), so that 4(T) exists for all T by Lernma 2.4. Moreover, from (2.82),

0
4(T) Wjx-T) dP.(.c) + f Tjx-T) dPo(x) (2.188)

O'
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exponential

normal

Figure 2.1 (a) U49 favorable distribution for *-cAmtaminated normal family.

Figurc2.1(b) *-functionfore-cmftminatednormalfamilY-
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(-x-T) dPo(-x) + V.(x-T) dPo(x) (2.189)
0

[,#.(x -T) - y.(x +T) ] dP.(x) (2-190)

where (2.189) follows from a change of variable (replacing x by -x), and (2-190) follows from (2.122)

and the symmetry of Po. Thus, 4(T) > 0 for any. Po if and only if

V,,(x - T ) > vl,(x + T ) (2.191)

a.s. for x e [0,-). In turn, this holds (provided Po has nonzero mass on [-k,+k ], which is always true

for Po e P, ) if and only if

x -T > x+T (2.192)

a.s., or

T < 0, (2.193)

since V,(x) is strictly monotone for xe [-kk], from (2.186). A similar argument demonstrates that

4(T) < 0 if and only if T > 0. FinaUy, since -k < V, < k as. from (2-186), it follows that

f I V,(x-T) I dP((x) f k.dPo(x) (2.194)

< k (2.195)

(since Po may be substochastic), which is finite for e > 0. Thus, the first set of conditions in Theorem

2.4 are satisfied, so that the estimator T.( x 1, - - - , x,, ) solving (2.81) with V = AV, as. is consistent.

As stated earlier (in the proof of Corollary 2.1), 4(T) is continuous and differentiable if

I(Po) < -; moreover, if Po has nonzero mass on (-k,+k], then 4(T) is strictly monotone in a

neighborhood of 0; -finally, as before,

W'(.r -T ) dP,,(x k 2, (2.196)

which is finite for e > 0. Thus, the second set of conditions in Theorem 2.4 are also satisfied, and

T,, ( x 1, - - - , x,, ) is asymptotically normal.

Of course the e-contarninated normal neighborhood of distributions is only one possible model of

indeterminacy. Another proposed model is the e-normal neighborhood, containing distributions whose

Kolmogorov distance to the normal distribution is at most e. More formally, this neighborhood is given

by

P sup I P (x (DQ ) I < E, P e S (2.197)
xe X

and was investigated by Huber (1964; 1969, pp.89-90, 1981, pp.86-90) as well as Sacks and 'Ylvisaker

(1972), who also analyzed the neighborhood

+A

PA, p P f dP (x > p, P IE S (2.198)
-A
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V�hile neither (2.197) nor (2-198) is of particular interest to the present application, which deals

prima rily with robustness in the presence of beavy-tailed noise, these examples do point to the fact that

the choice of a distributional family is rather ad hoc. Such arbitrariness, however, seems unavoidable in

view of the fact that incomplete or inaccurate information lies at the very core of the robust estimation

problem.

There is a certain correspondence between families of distributions and their least favorable

members, and, by corollary, between families of distributions and their minimax W-functions. (See

Po1jak and Tsypldn, 1978, 1980.) One can therefore speak of a certain duality between the choice of a

distribution family and the selection, on the basis of experience and judgement, of a ml-fanction. In

other words, it may be of interest to investigate the properties of robust estimators designed with

specific influence-bounding functions 4r in mind. For instance, a continuously differentiable (smooth)

approximation for the general form of iV,(x) is the function corresponding to the logistic distribution

P(X) (2.199)
I+e-

given by,

V(X 1 e' (2.200)
I + e-1

a.s. While this function is not necessarily optimal in the minimax, sense, it has the advantage of not

containing "comers," which may cause numerical difficulties for some iterative techniques. Thus, the

relationship between W, p, and f is worth exploring in greater detail. Integrating (2.80) yields

f (.0 - e- f W(.) d. (2.201)

= e- OX), (2.202)

a.s., where the proportionality constant is chosen so as to give f unit mass. Several researchers have

investigated choices of iV, and a large number of curves are pictured in Andrews et al. (1972, pp.96-

101); some are critically reviewed by Rey (083, pp.100-116). Clearly, for f to be a proper

distribution function, W must satisfy certain conditions - e.g. p(x) as x Yet, there are

instances where intuition suggests such properties should be violated. For instance, if it is known with

certainty (say, because of a physical impossibility) that very large observations contain no information

whatsoever, then it might be more reasonable to entirely discard rather than merely truncate them. This

would call for redescending W-functions, and loosely corresponds to trimming -- where, however. the

censoring fraction is not preset but depends on the sample (see for example Tukey and Laughlin, 1963;

also Prescott, 1978). Note that non-monotone W-functions (i.e. non-convex p-fimctions) do not satisfy

the conditions of Lemma 2.4 and Theorem 2.4, and the theory is much less developed for estimators

based on them.

Numerous redescending y-functions have been proposed. These include Hampel's piecewise

linear function (Hampel, 1974; Andrews et al., 1972, p. 14), Andrews' sine. wave (Andrews, 1974;

Andrews et al., .1972, p.15), and Tukey's biweight (Mosteller and Takey, 1977, p.353; Gross, 1977).

The fact that these 4i-functions do not correspond to the least favorable member of any given family'of
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distributions -- indeed that substitution in (2.201) does not even yield a proper density - diminishes the

theoretical justification -for this methodology. Nevertheless, Agee, Turner and Gomez (1979) have

somewhat formalized this approach by terining the expression in (2.202) a pseudo-density and deriving

a posteriori "densities" based on it For his part, Huber (1981, p.100-102; see also Collins, 1976) retains

the minimax. approach by solving the original problem subject to the additional constraint that vl(x) = 0

for c < Ix 1, where the cutoff parameter c is arbitrary. He also observes that an important issue to

consider in designing influence-bounding functions is that they must not redescend too steeply:

otherwise, the estimate would be very sensitive to small changes in those observations lying in the

interval where the function redescends, violating a fundamental tenet of robustness. This suggests that

the simple (and frequently used) practice of discarding observations that are "too large," i.e. using

X 1XI <C
0 C < IX I (22.21.03)

is unwise from the standpoint of robustness, as discussed in Section 1.2.
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3. Robust Recursive Estimation of a Deterministic Parameter

As before, let ( x x,, be a sample of independent random variates with a common

distribution function P. Define

A.(xj, x.; T Vxi - T (3.1)

and recall that the estimator T,,x x,, is defined as the root of (3. 1), i.e.

5.(xi, - - -, X.; T.(xi, X. = 0. (3.2)

Since the estimator is consistent (provided certain conditions are satisfied), successive solutions of (3.2)

for increasing n tend towards the true value of the location parameter almost surely and in probability,

as shown in Section 2.2. Since (3.2) is nonlinear, however, its solution for any given n and
( x 1, - -, - , x,, I necessitates some kind - of iterative procedure (Huber, 1972). For instance, the
Newton-Raphson method is of the form

+1) = (k)T." Tn(") X X.; T" (3.3)
X X.; Vk)

for k 0, 1, - - - and some arbitrary Tn(o) -- an intelligent choice might be the median of
I xi, - , x,, 1. It is assumed in (3.3) that Pn is differentiable, and furthermore that its slope only
vanishes at the root, if at all; since such is not the case, for example, for iV = % as., some safeguards
would have to be provided to deal with comers as wen as flat extremities. This difficulty aside,
however, it is well known that recursions of the form (3.3) converge quadratically near the root (e.g.
see Dahlquist and Bj6rk, 1974, pp.222-224). For given I x I, x, 1, the process is entirely
deterministic, and so long -as P,, is relatively well-behaved and T,(O) is reasonable, the correct solution
is virtually assured.

Nevertheless, there are some disadvantages to. this kind of "batch" processing -- i.e. to solving
(3-2) over and over again each time a new observation x,,,, becomes available. On the one hand, this
procedure involves the solution of increasingly complex nonlinear equations: recall that W is generally
nonlinear, so that the sum P,, of n variously shifted W-functions, gets more and more complicated to
handle. On the other, it requires the availability of all past observations at all times, a potentially
serious memory problem for even moderately high sampling rates. Thus, despite recent advances in
computer technology, it appears highly desirable to formulate a sequence of estimators recursively
updated by a function of only the most recent observation. This can be achieved with the Robbins-
Monro, stochastic approximation procedure (for general reviews, see for instance Wasan, 1969, pp.8-35:
Nevel'son and Has'minskii, 1973, pp.79-83, 88-94; Kushner and Clark. 1978, pp.19-47), first proposed
in the context of robust -estimation by Martin (1972), Martin and Masreliez (1975), Nevel'son (1975),
and Price and Vandelinde (1979). See also Englund, Holst, and Ruppert (1988), who investigate the
colored noise case.
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3.1 The Method of Stochastic Approximation

Suppose 4(7* ) = 0, where 4(T) = Ep x' - T as before, and consider the recursion

T.R., = Tf + a. V( x. - T.,R (3.4)

where n = 1, 2, Ia.) is a given real-valued sequence, and TR is an arbitrary (possibly random)

starting point. The problem, first posed in a more general setting by Robbins and Monro (1951), is to

determine conditions under which TIR -+ P as n --> -. Note that while the correction term in (3.3)

approaches zero (under suitable regularity conditions) as T,,(k) -* Tn ( x 1, - - - , x" ), an analogous

statement does not necessarily hold for (3.4): since the value of V( x,, - Tf ) is random, it is necessary

for (a,, I to obey certain conditions in order to ensure convergence. Specifically, a,, must tend towards

zero at a rate sufficient for the error variance to vanish asymptotically; yet, it must not reach zero for

n < -, since it must be able to compensate for any and all random perturbations due to the Ix,,)

indeed, there must at all times remain "an infinite amount of corrective effort" to converge to the

correct limit, no matter where the estimate may have deviated (Young, 1984, p.34).

The results presented below draw upon a considerable body of literature, where increasingly

general conclusions are obtained under weaker and weaker conditions (see e.g. Derman, 1956;

Schmetterer, 1961). In their landmark paper, Robbins and Monro prove the mean-square convergence

(and hence, the convergence in probability) of recursions of the form (3-4) by assuming that the

observation is bounded in probability -- ie. (in the present case) that there exists an a < - such that

Prob, I V(x - T ) I < a 1. (3.5)

Kallianpur (1954) also assumes (3.5) to derive estimates for the order of magnitude of the error

variance E [ ( Tf - P )7- ]. Although this condition is satisfied in 'the case of bounded-I]nfluence

estimators (e.g. using vj, for which (z = k), it is in general too restrictive; in particular, it is violated by

4t-functions which reduce, but do not necessarily bound, the influence of large x Wolfowitz (1952)

proves mean-square convergence by assuming that there exists an a < - such that 14(T ) I < cc for all

T, and a cs2 < - such that

Ep V(x -T) - �(T) < a2 (3.6)

for a T. While bounded variance is also assumed in deriving the asymptotic distribution of the M-

estimator (see Theorem 2-4), the bound on ',(T) is once again violated by certain robust or near-robust

estimators. A further weakened condition is provided by Blum (1954a), who assumes -- besides (3.6) --

that there exist suitable 0 < a, < - and 0 < m, < - such that

I 4(T) I < a, + a2 I T - r 1 (3.7)

for all T. Nforeover, he is able to prove convergence with probability one. Dvoretzky (1956) proves

mean-square convergence as well as convergence with probability one for vastly more general

situations, but his setup also requires (3.7) in the-special case of Robbins-Monro; indeed, he argues that

this condition is necessary to prevent estimates from diverging. Wolfowitz (1956) and Derman and

Sacks (1959) provide alternative proofs for Dvoretzky's results, and other' researchers also assume

conditions at least as strong as (3.7). It is worth noting, however, that this condition is not restrictive in
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the present application: since the objective is to mitigate the influence of large observations, it is hard

to conceive of situations where I iV(x -T) I grows faster than linearly with large values of its argument;

thus, 4(T) may be assumed to obey (3.7) without realistic loss of generality. Nevertheless, this condition

is relaxed in Theorem 3.2, where an alternative proof is employed.

Another class of results obtained for recursions of the form (3.4) concerns the behavior of the

moments of T.R, as well. as its asymptotic distribution. Tbe first such results aie due to Chung (1954),

who not only provides bounds on the former but also shows that they tend towards the moments of a

normal distribution. Unfortunately, he assumes that 4(T) is bounded by straight lines with nonvanishing

slopes from. both above and below, a condition clearly violated in the case of bounded-influence

estimators (such as that obtained with %). Hodges and Lehmann (1956) are able to weaken that

assumption to (3.7), although at the expense of information on the asymptotic moments. Burkholder

(1956) defines a broader class of stochastic approximation algorithms of which the Robbins-Monro

process is a subclass, and proves asymptotic non-nality, as well as obtaining asymptotic confidence

intervals free of unknowns, under this weakened condition. Sacks (1958) proves asymptotic normality in

both cases by utilizing a central limit theorem rather than Chung's method of moments, and Fabian

(1968) does so by obtaining the asymptotic characteristic function.

Some asymptotic results are now stated and proved. Note that generality is not sought beyond

that required by the present application. The following lemmas, due to Burkholder and to Chung, are

used in the proof of Theorem 3. I.

Lemma 3.1 Let (b,, I be a real sequence such that, for some no, b,, > 0 and

b. +1 < bn I_ Cn d,. (3-8)
n nP+1

for all n > no, where (c,, I is a real sequence with

lim inf Cn -` C > P, (3.9)
n

Idn I is a real sequence with

lim sup d,, = d > 0, (3.10)
n

and p > 0. Then,

lim sup nP bn < d (3.11)
C - P

Proof For any 8 such that c -p > 8 > 0, there is by (3.9) and (3. 1 0) a large enough n (8) > n 0 such that

C, c - 8 and dn < d + 8 for all n �t n (8). Thus, (3. 8) may be rewritten as

b,, +1 5 b,, I - C - 8 + d + 6 (3.12)
n nP+1

for all n -Z, n (8),.where use is made of the non-negativity of bn for n > no.
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Note now that for any p > 0,

1 I -C (3-13)
n + 1 P n nP nP+I nP n + P

= C 1 1+ (3.14)
nP+1 nP n

= C - I - P + 0(n-2) (3.15)
0+1 nP n

nP+1 + 0 ( n-(P +2)), (3.16)

where the leading term in 0 n (p +2) is positive. Thus, multiplying through by (d +8)1(c -8-p),

one can always find a c 1 > 0 such that

d + 8 SI d + 8 1 + C, (3.17)
nP +1 C -8-P n + 1 n n-P nP+2'

Moreover, choose some p' such tha p < p' < p + I and p' < c - 8 (which is possible since c - 8 > p

by hypothesis). Then, since c - 8 -p' > 0, equation (3.16) (with p replaced by p � implies that there is

a large enough n (p such that

.1
I C > 0 (3.18)

n + ),P n nP

for all n > n (p Thus, one can always find a c 2 > 0 such that

C1 < I I C - 8 1 (3.19)
nP+2 n + P' n nP'

for all n > n (p'), since p + 2 > p'+ I by hypothesis. Substituting (3.17) and (3.19) into (3.12) and

rearranging, it follows that

d +8 C 2 d + 8 C)
b.+t - b" (3.20)

(c 4-P Xn +1) P (n +1) P' n (c --8-P n' nP'

for all n �tnj=max(n(8),n(p')). Ifforsomen2>max(c-&nj),

bn d + 8 C-7 < 0, (3.21)
2 (c--&-p) n� nj'

then (3.2 1) holds for all n %�: n so that

b,, < d + 8 C-2 (3.22)

(C-8-P) n-' 0

for all n > n 2. Otherwise, given some n 2 > max c - 8, n for any n �t n .2,

b,, d +8 C2 :!5 b, d + 8 C2 I - C 8 (3.23)
'2(c --.8-P ) nP nP' (c--&-p) nj n9' j="2
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d + 8 c-z n-I (C -5) j
b,, 2 - n e (3.24)

(c--&P) nj nj' j=,,2

M-I
_(C I --r

b. - d + c? e (3.25)
2 (C nj nj

= O(e-(c -8) log n (3.26)

= O(n- (C - 8) ), (3.27)

where (3.24) follows from inequality 4.2.30, and (3.26) from equation 4.1.32, of Abramowitz and

Stegun (n.d.). Combining (3-22) and (3.27), it follows that in either case,

d + 8 (C -8)
b. < - + 0( n-P' + n- (3.28)

(c--8-p) nP

or, since p' > p and c - 8 > p by hypothesis,

d + 8Urn sup n-I b. < - (3.29)
n --I,- C -P'

and letting 8 1 Oproves the assertion. (This is a lemma due to Burkholder and inspired by Chung. The

proof follows Wasan, 1969, pp.175-178, and Chung, 1954.)

Lemma 3.2 Let (b,, I be a real sequence such that, for some no, b, > 0 and

bn+l > bn 1 Cn d. (3.30)
n np+l. �

for all n > no, where ( c,, is a real sequence with

Lim sup c,, = c > p (3.31)
n -4-

(dn I is a real sequence with

Urn inf d,, = d > 0, (3.32)

and p > 0. Tben,

Urn inf nP b. > - d (3.33)
n C -P

Proof The proof is virtually identical to that of Lemma 3.1, and is ommitted. (See Chung, 1954.

Wasan, 1969, pp.178-179.)

Lemma 3.3 Let b,, be a real sequence such that, for -some no, b, 0 and
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b. +1 = b. I - C. d. (3.34)
n nJP+1

for all n > no, where (c. I is a realsequence with

lim C. C > P, (3-35)

(d. I is a real sequence with

lim d. = d > 0, (3-36)
n

and P > 0. Then,

lim n-1 b,, - d (3.37)
n C -P

Proof The proof consists of successive applications of Lemmas 3.1 and 3.2, and is ornmitted. (Ibe

result is suggested by Burkholder, for a proof, see Wasan, 1969, pp.179-180.)

The following theorem is based on the results of Blum and of Burkholder.

Theorem 3.1 Let 4(T) exist for all T, and let there be a T* such that 0 < 4(T) for T < T* and

4(T) < 0 for 7* < T. Let (3.6) and (3.7) be satisfied, and let a,, be a sequence such that a,, > 0 for

all n,

a. (3.38)
n-1

and

a 2 < (3.39)n
n=1

Then, given any TR < T,,R -4 P as n w.p.1 (i.e. 1,, is consistent).

If, moreover, 4(7* 0, 4(T) is continuous, differentiable and strictly 'monotone in a

neighborhood of T* with 14'(7* ) I < -, if

f ( V(.c -T) - �(T) � dP (x ) > 0 (3.40)

and is continuous and bounded in a neighborhood of T*,

j I 4((x -T) - 4(T) Ir dp(X) < (3.41)

in a neighborhood of T* for all natural numbers r, and finally if

Jim n a,, = a > (3.42)
n 2 4(T*

then

L( T.,R T* N 0 a2f *2(X_r)dp(X) (3.43)

2 a 4'(7* ) + I
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(i.e. Tf is asymptotically normal).

Proof Note first that

n

TR+ T R + Y. a, x, - TjR (3.44)
j=1

from (3.4), so that

n
TR+, F. aj 4(TjR

j=1

Tn n
R R + R RI a. xj - Tj aj IV( xj - Tj 4(Tj (3.45)

j=1 j=1

TR R R+ F. aj Xj Tj 4(Tj (3.46)

j=1

from (3.44). Now:

E [ V(xj -TjR V(x �-T RI #(xj-j-TjIj Ep V(xj -TjR I TjR (3.47)

4(7 (3.48)

w.p. 1, where (3.47) follows from the independence of (x,, I and from (3.44), and (3.48) holds by

definition. Furthermore,

E V(xj -TjR 4(TjR ) )2- ] ='E [ Ep [ (,W(xj -TjR) - 4(TjR) I TjR (3.49)

:5 Cy2 (3.50)

w.p.1, from (3.6). It follows, therefore, that

aj (V(xj _TjR 4(TjR :5 02 a7 (3.51)
j=1 j=1

< 00 (3-52)

by hypothesis (from (3-39)). Finally, since 4(TjR is a deterministic function of the random variable TjR,

E aj (V(xj -TjR 4(TjR a I (,#(X I _TR 4(T R
j=1

aj-� (4f(xj-j-Tj�-j) - 1)

E aj (V(.cj -TjR 4(TR I TjR (3.53)
j=1

0 (3.54)

w.p.1, where (3.53) follows from (3.47), and (3-54) holds identically from (3.48). Thus, by a

convergence theorem due to Lot-ve (1963, p.387; also .1951), the surn in (3.46) converges w.p.1, and

therefore so does the left hand side of (3.45).
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Suppose now that

lim T"R (3.55)

for some sequence (T.R It follows that there is a large enough N such that T.R > P for all n > N,

and thus

a. 4(T.R ) < 0 (3.56)

for all n � N, by hypothesis. Then, it must hold that

aj 4(TjR ) < (3.57)
j=1.

so that

n

Jim Tf, a j 4 (Tj (3.58)
n j=1

from (3.55) and (3.57). But since this expression was shown to converge wp.1, (3.58) is an event of

probability zero, whence it follows that

prob lim TR, 0. (3.59)
1 n-*w

A similar argument for - proves that TnR I converges to a finite limit, if at all..

Suppose the sequence ( TnR I does not have a limit, i.e.

lim inf TnR * lim sup Tf. (3.60)
n -4- n

Assume first that

Urn sup Tf > T* (3.61)
n --*-

and choose the numbers a and b such that

P < a < b (3.62)

and

a. b lim, inf T,,R, lim sup TR, (3.63)
n --+-

Since the left hand side of (3.45) converges to a finite number, it follows that for m > n,

I M-I n-I
lim I TR,, - Z aj �(TjR TR + Z aj �(TjR 0. (3.64)
n-+- I j=1 j=1

Thus, for any 81 > 0, there is a large enough N(81) such that

I M-I I
I T.R - T.R - Y, aj 4(TjA ) I < 81 (3.65)
1 j=n I

provided N(81):5 n < m. Similarly, it follows from (3.39) that

lim a. 0, 3.66)
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and for any 82 > 0, there is a large enough N (8j) such that

an :5 82 (3.67)

provided N(82):5 n. In particular, let

b - a
3 (3.68)

and

62 min I b -a (3.69)
3 %' 3 a,

(It is assumed here that a, and % are nonzero; this causes no loss of generality, however, since a

positive number can always be substituted for zero without affecting the validity of the bound in (3.7)..)

Choose n and m such that max (N(81), N(82)) < n < m, with

R
Tn < a, (3.70)

b < T.R, (3.71)

and, if m # n + 1, then

TjR e (a, b (3.72)

for all n < j < m; this is possible by (3.60). Then, from (3.65) and (3.68),

M-1
T.R - TnR 5 b -a + I a, 4(TR (3.73)

3 j=n

b -a 4(T.R
< � � + an (3.74)

3

R, �(T"R < 0since 4(TjR ) < 0 for n < j by hypothesis, in view of (3.62) and (3.72). If T* < Tn then

also, so that (3.74) yields

b -a
T.R - T.R <- (3.75)

3

which contradicts (3.70)-(3.71). If on the other hand T,,R < T*, then (3.74) yields

T.R _ T.R < b - a + a, ( (xj + % I Tf - T* 1 (3.76)
3

b - a R R< an ( at + m ( Tm - T. (3.77)
3

from (3.7) and the fact that TR < T* < a < b < T! by hypothesis. Equation (3.77) can be rewritten as

b -a
a n C T.A - TnR ) < 3 + an Ott, (3.78)

or, from (3.67) and (3.69),

TmR Tn < b - a (3.79)

which once again contradicts (3.70)-(3.71). Thus, (3-61) cannot be true. A similar argument for
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hM Sup T.R < 7-* (3.80)
a-+-

also results in a contradiction, proving that

T'Rlim inf T,,' = lim sup (3.81)

i.e. the sequence ( Tf I converges to a finite number. It remains to show that the limit is P

Assume the contrary, i.e.

lim T.R To P (3.82)
Os

for some sequence TnR Suppose first that T* < To. Then, for every P < 8 < To, there is a large

enough n (8) such that T,,R > 8 for all n > n (8). Since 4(T) is monotone decreasing by Lemma 2.4, it

follows that

4(T.R ) < 4(8) (3.83)

for all n �t n (8), where use is made of the hypothesis that 4(T) exists for all T. Thus,

an 4(TnR an 4(T.R ) + an W.R (3.84)
n-I n=n(b)

n(8)-I R) + 4(8) -< E a. Wn Y. a, (3.85)
n-I -(b)

(3.86)

from (3-38), since 40) < 0 for 5 > T* by hypothesis. But this is a contradiction: equation (3.82) and

the convergence wp.1 of the left hand side of (3-45) imply that the left hand side of (3.84) converges

w.�.I, i.e. that (3.86) is an event of probability zero. A similar argument for To < T* completes the

proof, establishing that TR ---� T* as n w.p.l.

The proof of asymptotic normality proceeds in two steps: the result is first proved for a

"truncated7 version of the recursion (3.4), where 4(T) is bounded from both above and below by

straight lines with finite, nonvanishing slopes; it is subsequently extended to the original recursion

subject to the consistency property proved above.

Define

S (T) T - T* T P

4"(7* T P (3.87)

which is possible, since 4'(7*) exists by hypothesis. Since 4(T) is strictly monotone descending in a

neighborhood of T* , one can find numbers s 1 and s .2 such that

0 St < -4'(T*) < S2 (3.88)
2a

(where the first inequalities follow from (3.42)) and by the continuity of 4(T) in a neighborhood of T*,

there exists a 81'> 0 such. that
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Si < S(T) -'I., S2 (3.89)

provided T E p 41, 7* +81 Similarly, let

d2(T) j ( #(X _T) _ 4(T) )2 dP (x) (3.90)

denote the v-ariance of # with shift T. Equation (3.40) and boundedness (by hypothesis) in a

neighborhood of T* unply that one can find numbers Cy2 and a,22 such that

0 < U2 < (12(T* ) < O? <1 (3.91)

ad by ft continuity of a2(T) in a neighborhood of P, there exists a 8,. > 0 such that

a 2 < a2(T) < a22 (3.92)

provided T e T* -42, P +82

By the convergence of T; R to P wp. 1, there exists for 83 := min 81, 82 ) and for any 84 > 0 a

large enough n ( 83, 84 ) such that

prob C I T.R - P 1 < 83 for all n > n ( 83,84) 1 > 1 - 84- (3.93)

In other words, the probability that TR lies in an arbitrary neighborhood of P can, in view of

consistency, be made arbitrarily large by choosing a large enough n.

Given some n I �t n ( 83, 84 ), define the "truncateX' recursion

TnO+j = Tno + a. V.( x. - Tno (3.94)

for n 2t n i, where

R IE ( P --83, P +83
Tno, TI-11 Tn 1

0 otherwise (3.95)

and

VXn --(I* --83)) - 4M --83) + 4(T* ) (T-0-P Tn" < P --83

Wo(X.-Tno) VXn -TnO) T.0 P 43, T* +83 (3.96)
V(Xn -(7-* +83)) - 4(7* +83) + 4'(T* ) (Tno-7* T,,O > T* +83

a.e. Defining �,(T), a,,2(T), and SJT) analogously to (2.82), (3-90), and (3.87), respectively, it is easy

to verify that

4(T) T e ( T* --83, P +83
4'(T* T - P otherwise (3.97)

so that

s 1 :5 S.(T) < s,2 (3.98)

for all T. Similarly,

(32(7'* --83) T < P --83
,a.2(T) ci2(T) T re ( 7* 43, P +83 (3.99)

cr'(7'* +83) T > P +83



58 -

so that

a12 _-� a.2(T) :5 (Y22 (3.100)

for all T. Asymptotic normality is now proved for this bounded cm, i.e. for the recursion (3-94)-(3.96).

For economy of notation, define for all non-negative integers r

b.r) E [ ( T.0 - P ) r (3.101)

and .

P,( r) E [ I T.0 - P 1 r (3.102)

and note that their finite-existence is guaranteed by (3.41). From (3.94) and (3.101),

b.(r,), = E T.O, - T.0 + T.0 - T* ) r (3.103)

r ]
= E ( T.- - T* ) r -k [a. VO(x. - T.0 (3.104)T, k

k=O

r
b. + k ak Hk( r, n (3.105)

7,
k=1

where

Ht r, n E Tno - P ) r-k V."( Xn Tno (3.106)

for all k < r. Moreover,

I Hk( r, n I < E I T,,0-7* I r-* I AVo(X,, -Tno) I (3.107)

= E I Tno_p I r-"' E ( I V.(Xn -Tno) lk Tn- (3.108)

I To_7,*
= E Ir -* E [ I V.(-Cn -T.") - 4o(Tno) + �o(T.O) I k I Tn_ (3.109)

< 2" E I I T"'�_7* i r -k

E ( I V.(-'Cn -Tno) 4.(Tno) I k I T.0 I + I �O(T.O) I (3.110)

2k-I ( E I Tn'-T* 1 r-* E I Vjx. -T,-) - �.(Tn-) Ve Tn'

i T",,_T* I r I S "(Tno) I k+ E

w.p.1, where (3.110) follows from the c,-inequality (Lo�we, i963, p.155) and (3.111) holds by

definition. It then follows, using (3.41) and (3.98), that

O(j) p(r-k). + O(j)
I Hk( r, n ) I n n (3.112)

for all k :5 r.

Tins result is now used to prove by induction that for each positive integer r there exists a B, > 0

such that
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lim sup nr'2 p(r) < B, (3.113)n

inCe (p(r))1h, is nondeCreNote that SJ a asing in r for r > 0 (as a consequence of IT61der's inequality; see

Lave, 1963, p.156), it suffices -to establish (3.113) for all even r. In that case, b,,(r).

Note first that

H I( r, n E E [ (T.,�_7,* r-1 W.(X. _To) I To (3.114)

E (T.0-7'* "-I �.(T.-) ] (3.115)

E (Tn04-* S O(T.0) (3.116)

n (3.117)

w-p-1 (provided r is even), where (3.115) and (3.116) hold by definition and (3.117) follows from
(3.98). Similarly,

H2( r, n E E [ (T.R-7* ) `2 V.2 (X. _To) I Tno (3.118)

r-2 [,a.2(T..) + V(To)E (T.'�-7* (3.119)

S'2
(T.0-7* `2 a.2(T.0) I + E I (Tn -7* (3.120)

C22 5 n(' + S 2 (3.121)

w.p.1 (provided r is even), where (3.119) and (3.120) hold by definition and (3.121) follows from

(3.98) and (3.100). Substituting (3.117) and (3.121) into (3.105) with r 2, it follows that

P,(,'2+), :5 P (2) - 2 an SI PAP + a2 ( a22 + s 2 0 (2) (3.122)

A n n

nan (2s,-anS 2 n 2a 2 (122.
(2) 2 + n-1 (3.123)
n n n2

Since

lim inf n a. ( 2s, - a. s2 2a SI > 1 (3.124)2
n

(from Q 42) and (3-88)), and

lim sup n I a,,2 aF = a 2 al > 0 (3.125)

(from (3.42) and (3-91)), it follows by Lemma 3.1 (with p 1) that

2 -7
a a5,

lim sup n P(2 < := B,, (3.126)
n - 2a SI - I

establishing (3.113) for the case r = 2.

Assume now that (3.113) holds for all k < r-2 for some even r, i.e. that

OW (3.127)
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for all k :5 r-2. Since, moreover,

a. = 0 (n -') (3.128)

from (3.42), it follows that

r ak r, n [r 0(n-k) O (1) P.(r-*) + O (1) (3.129)k k n
k=3 k=3

r [r -k) -+--k)/2)
I k O(n O(n
k=3

+ Pn r
(r) [r 0 (n-k) (3.130)

I k
k=3

-3) 5(r)
0(n--(r+3)12) + O(n (3.131)

where (3.129) follows from (3.112), and (3.130) fi-om (3.127). Substituting (3.117), (3-121), and (3.131)
into (3.105) yields

2n + a;0.("+), !5 P r an s 1 §,,(r) 2 [ '122 N' + S

+ O(n -�r+3)/2) + O(n -3) NO (3.132)

n a, ( r st - r (r-1) a. s 2 1 2 ) + 0(n-2)
n n

2 2 (r-2)/2 5(r-2) 2 + 0 (n-"2)r (r-1) (n an q22 (n --- _ __n (3.133)
+ (r / 2)+l

n

Since

-2 / 2 ) + 0(n-2) = r a s, > r (3.134)

liminf na,,(rsj-r(r-l)ans2 2
n-->-

(from (3-42) and (3.88)), and

2a.2) r0 < lim sup r (r-1) (n (7,22 ( n (r-2)/ 2 -2) 2 + 0 (n (3.135)
n--"-

< r(r-1) a 2 a,2 Br-2 (3-136)
2

(where (3.135) follows from (3.91) and the non-negativity of and (3.136) from (3.42) and (3-113)

under the induction hypothesis), it follows by Lemma 3. 1 (with p r 2) that

B,
lim sup n r 12 P (r) < (r -2 := B,, (3.137)

A 2a s, t

completing the proof of (3.113) for all even r, and hence for all r

This result is now used to prove by induction that for each positive integer r,

0 r oddrlim n' /2 b 1-2 (3.138)

r - 1) r - 3 -a r even
"a -I-' I(T* + I



61 -

Note first that for any 8 > 0,

I
E I T,--T* I II T,,--7-* I prob I I T.��-T* I a 8

+ E I T,,--7-* I' I T,'�-T* I < 8 prob [ I T,,-�-T* I < 8 (3.139)

Z: E I T.--T* I' I T,,"�-T* Ia 6 I prob [ I T,,--7-* I Z! 8 (3.140)

since all terms in (3.139) are non-negative. Cboose any q > 0. Then,

E.[ I T.'-71 I I T,,'�-P I > 8 ] prob I T.-�-P 1 2: 8

• E I T,,--T* I' I T,,O-T* I >- a prob I T,,'-7-* I > 8 (3.141)

• &-q Kr+q) (3.142)n

-(r+q)/2= O(n (3.143)

= O(n -r /2 (3.144)

where (3.142) follows from (3.140), (3.143) Erom (3.127), and (3.144) from the f-act that q >0 by

hypothesis. Alternatively, if 8 is replaced by a sequence (8, such that 8,, > 0 for all n and

8n-1 = o (n (3.145)

then

8,-q p(r-lq) 0(nq/2) O(n - (r +q) /2 (3.146)

o(n (3.147)

as before.

Since 4(T) is continuous in a neighborhood of P (by hypothesis), so is S,,(T). It follows that

there is a 8 > 0 and a K (8) > 0 such that

I S,(T) - SO(T*) I < K(8) (3.148)

if and only if -

I T - P I < 8. (3.149)

Choose sequences 16, 1 and I K (8n ) I such that 0 < 8,, :5 8 and K (Sn > 0 for all n (3.145) and

(3.148)-(3.14�) are satisfied, and

K(S.) = o(l). (3.150)

(This last condition is possible by virtue of the continuity of SJT) in a neighborhood of P, and by

(3.145) which implies that o (1).).Moreover, from (3.87) and (3.97),
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I S.(T) - S,,(7*) I I S.(T) + 4(P ) 1 (3.151)

< I S.(T) I + 1 4(7* ) 1 (3.152)

< s2 - 4(P) (3.153)

for all T, from (3.98) and the negativity of 4(7* by hypothesis. It follows that

E (T.-�-P S (T.-) + 4(7-*

< E I Tn`�-P I I S,,(T.-) + 4(7'* ) I (3.154)

E I T,,--T* I I S.(T,,-) + 4(7* ) I I T,,--7-* I < S., ] prob I T,,'-T* I < 8.

+ E I T,,'-7'* I' ! S6 + r-'(2-* ) I I Tn�-P I > Sn

prob I T,-v-l* I > 8, (3-155)

5 K (8, E I T.-�-T* I I T,,--7-* I < 8" prob I Tn�-T* I < 8n

+ ( s,2 - 4(7* E I Tn`�-P I' I T,,--T* I > 8"

prob [ I T.-�-T* I 2t 8, (3.156)

< K(8.) P(r) + o(n-" 12 (3.157)

0 (n (3.158)

where (3-156) follows from (3.148) and (3.153), (3.157) from (3.147), and (3.158) from (3.127) and

(3.150). Thus, from (3.116),

Hi( r, n E (T'.o_7,* ) r S .(To) (3.159)

(T.o (Tn,�_T* r 4,(7-* + S Oqn.)E _T* ) r 4(7* E (3.160)

nr -r12)4(7* ) b ( ) + o (n (3.161)

from (3.158). Setting r = I and substituting into (3-105) yields

+ n (I) + an HI( 1, n (3.162)

+ n an + an o(n-112),
n (3.163)n

implying that

+ n a. 1/2)
bn(+)l I < I b + lan o(n (3.164)

n

(Note that this step is necessary because b may be negative, violating a condition of Lemma 3.3.)
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But by (3.42), there is, for any 1�(T* ) and (an I satisfying the conditions of this theorem, a large

enough N such that

1 + a, 4(7* ) > 0 (3.165)

for all n > N. Hence, (3.164) may be rewritten as

I b M I :5 I b.(1) I 1 + , an + n a. o(l) (3.166)
n+I n n 3/2

for all n �: N (where the last term is implicitly positive). Since

Urn inf - n an 4(7* a 4'(7* ) > I / 2 (3.167)

(from (3.42)), and

lim, sup n a, o (1) = 0 (3.168)
n-*-

(from (3.42)), it follows by Lenuna 3.1 (with p 1 2) that

lim. sup n 1/2 1 b (1) 1 :5 0, (3. i 69)
n ino

implying that

Urn n 1/2 b (1) 0. (3.170)

This establishes (3.138) for the case r 1.

In analogous fashion, the continuity of a2(T) and hence cy,2(T) in a neighborhood of 7* (by

hypothesis) yields that

E[(T.--T*)'-2a.2(T.-) -72(7-*)b.('-2) + o(n-(r-2)12)' (3.171)

while it follows from an argument similar to (3-154)-(3.161) that

E (To_T* ) r S2 (�no) (4'(7*))2b("I + o(n -r /2). Q. i 72)
1 0 1 = 4

Thus, (3.120) may be used to obtain

n -(r-2)12)H2( r, n b() + a' 7*)b(-2) + o(n (3-173)

(neglecting the lower order term in (3.172)). Setting r 2, substituting into (3.105) and rearranging

yields

b"(,+l bn(,) I + n a, ( 2 4'(P + a, (4,q*
n

n an 2 o (1) + n an + o (1)
+ (3.174)

n

Since

2lim, -na,(24'(P)+an 2 a 4'(7* > 1 (3.175)
n

(from (3.42)), and
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lim n a. ( 2o(l) + n a. ( (y2(7*) + o(l) a2 02(7'*) > (3.176)

(from (3.42) and (3.40)), it follows by Lemma 33 (with p = 1) that

a 2
lim n b.(2) - (3.177)
n O. 2a 4(7*) + I

This proves (3.138) for the case r = 2.

Assume now that (3.138) (with r replaced by k) holds for all k < r, given some r > 2, and note

that

(r ] ak Hi.( r, n 0(n-(r+3)'2) (3.178)
k=3

by (3.127) and (3-131). Substituting (3.161), (3.173), and (3.178) into (3.105) yields

b.1+01 b.r) + a. r 4(7* ) b (r) + o (n 12)
1 n I

r(r-1) 2 b,(r-2) + (r-2)/?)+ a. b.(r) + e(7* o(n-
2

+ 0(n-(r+3)/2) (3.179)

n a, r + a. (r - 1) 4(T*) / 2b.(r 1 +

-n

1 )0(1)+ 2 2
+ - (r / 2)+I (n an (n an

n 2

(r-2)/2 p,(r-2) + O(j) 1/2)e(r) (n + O(n (3.180)

Since

lim n a,,r 4(7* 1 + a. r - 1) 2 r a 1�(T* > r (3-181)
n --". 2

(from (3.42)), and

Urn r(na.)o(1)+r(r-1)(n 2a 2 a2(T* n(,--2)1'2 5("-2) + o(l) 2n n
n

r(r-1) 2 '(I,* ) IiM ( n (r -2) / 2 p (r -2)2 a a' n (3.182)

0 r odd
r (r - 1) a2 a2(7* r '2 (3.183)

,(r-3) I r even
2 2 a 4'(7- I ) (r-'Z)/z

L

(from (3.42) and (3.138) under the induction hypothesis), where the last tezm is clearly positive in view

of (3.42) and (3.40). Lemma 3.3 (with p = r/2) completes the proof of (3.138) for all r.
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A comparison of (3.138) with the moments of a normal distribution (e.g. Kendall and Stuart,

1977, vol.1, p.62) reveals that

a2 C�(T*
L( -�n- (T.0 - T* N 0, - 2 �'(T*) + 1 (3.184)

i.e. that T,,O is asymptotically normal with the parameters given in equation (3.43). It remains to extend

this result to the original recursion Tf.

From (3.93) and the definition of the truncated recursion (equations (3.94)-(3.96)), it follows that

prob [ T;R * T.0 I < 84 (3.185)

for all n 2: n 1. Choose any t e R. Then,

> t , T.0 5 t T.' * T.0 (3.186)

where brackets denote events. It follows that

prob [ Tn" > t, Tno < t I < prob [ TR, T,,O (3.187)

so that

prob [ TnA 5 t ] �t prob [ Tf < t, Tno :5 t (3.188)

= prob [ Tno < t prob TnR > t, Tno < t (3.189)

> prob [ Tn' < t 84 (3.190)

from (3.185) and (3.186). Thus,

prob [ Tno :5 t prob [ TnR < t < 84. (3.191)

By symmetry,

prob [ T,,R < t prob [ T,' < t < (3-192)

also, so that

Prob, [ TR --5 t prob [ TO :5 t < (3.193)

But from (3.184), there is a large enough n (8.4) such that

prob [ TO < t 0(t) < 84 (3.194)

for all n > n (e), where (D denotes the normal distribution in (3.184). Thus,

prob [ T' R 5 t <D(t)

prob [ Tf < t ] prob [ Tn' < t ] +: prob [ Tno < t (D(t) (3.195)

:5 prob [ TnR < t ] prob [ Tno :5 t ] + prob Tn' !5 t ID(t) (3-196)

< 2 84 (3.197)
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for all n > n (84), from (3.193) and (3-194). Letting 84 1 0, using (3-90) with T = T* , and noting that

4(7* ) = 0 by hypothesis, completes the proof. (The proof of consistency follows, with some

modifications, that of Blum, 1954a; the proof of asymptotic normality uses a truncation argument due to

Hodges and Lehmann,-and is a special case -- with modifications -- of that of Burkholder, 1956.) N

Corollary 3.1 Theorem 3.1 holds also if TRT is a random variable, provided that

E[ ( TRI ) r ] < - (3.198)

for all natural numbers r, and TR, is independent of x", n = 2, 3, If, moreover, T R is a

translation-invariant function of x 1, then TR is translation invariant.

Proof The proof of the first part of the corollary follows that of Theorem 3.1 identically. In the proof of

consistency, the condition of independence is required in order for equation (3.48) to hold; furthermore,

TRt must have bounded variance in order for (3.46), and hence the left hand side of (3-45), to converge

w.p.l. In the proof of asymptotic normality, (3.198) is required in addition to (3.41) in order to ensure

that the expressions in (3.101) and (3.102) exist finitely.

The proof of trarislation invariance proceeds by induction. By hypothesis,

RTRi( xi+c Ti (Xi ) + C. (3.199)

Asstune now that T,,R( x - , x,, -1 ) is translation invariant for some n; then, from (3.4),

TR+,( xj+c, X. +c T,,A( xj+c, - - - , x,,-I+c )

+ a, AV( xn + c - T,,R( x I + c, xn -1 + c (3.200)

T.R( X X,,_I ) + C

+ an V( Xn + C - TnR( XI, xn -I C (3.2-01)

TRt+l XI, Xn ) + C (3.202)

where (3.201) holds by the induction hypothesis, and (3.202) by (3.4), completing the proof.

Remark This corollary suggests that in the absence of additional inforrnation. -- a convenient starting

point for the recursion might be TR xi (see, for instance. Martin, 1972; Martin and Masreliez, 1.975;

Price and Vandelinde, t979). This has the advantages of simplicity and translation invanance, in

addition to the obvious fact that the observation xi will generally be a better estimator of location than

an arbitrary constant. On the other hand, this choice implies that one observation can have arbitrarily

large influence on TR, n �t 1, so that an outlying xi could severely degrade the small. sample

performance of the estimator. This is contrary to the philosophy of robust estimation, and is therefore

not desirable. While a better initial value might be a bounded version of the observation, such as V(x 1),

this choice does not generally lead to translation invariance. Alternatively, the first few observations

could be utilized to obtain a Huber minimax, robust M-estimator, which could then be used as the initial

value TR of the recursive minimax. robust estimator with the remaining observations. Since Huber's
estimator is translation invariant, as shown earlier, this approach does yield a translation invariant and



67

robust estimator T.".

CoroUary 3.2 Under the conditions of Theorems 2.4 and 3.1, the recursive minimax robust estimator

T.R has asymptotic variance no smaller than that of Huber's minimax robust M-estimator. The

asymptotic variance of Tf is minim:ized for the choice

a* (3.203)

for which the two estimators are asymptotically equivalent.

Proof From Theorem 3.1,

lim var( Tf a 2 C,2(7,* (3.204)
2a 4(7*) + I

so that

2 lim varf T." 2 a (y2(7-* 2 a 4'(7-* ) + 1 2 a 2 02(7* Z�(T* (3.205)
3a n 2a 4'(7*) + 1 )2

0 (3,206)

at the optimal value a =a*. Since a* * 0 (by (3.42)) and (.T2(7,* ) > o by hypothesis, (3.206) may be

rewritten as

a* 4,(7'* ) + I = 0, (3.207)

which yields (3.203); note that this value is consistent with the inequality in (3.42), �'(7* < 0 by

hypothesis.

Moreover,

')2
.0 lim var( TR, 2 a(P 2a 4"(Y*) + I ) 3
Da 2 n (2a4'(7*)+1)7

4a Z�(7*) a 4'(T*) + 1 2a 4'(7*) + I (3.208)

2 cY2(7
i )3 (3.209)2a 4'(7'*) +

> 0 (3.210)

for all a satisfy�ing (3.42), confirming that (3.203) corresponds to a global minimum.

Finally, substituting (3.1-03) into (3.204) yields

min Urn var( T,,R (3.211)
a n

which, using (3.90) with T T* , corresponds to the asymptotic variance of Huber's minimax robust

M-estimator in equation (2.92).
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Coroflary 3.3 For a given family of symmetric distributions with location parameter 0, let the least

favorable density f a be such that the corresponding influence-bounding function AVG saitisfies the

conditions of Tbeorem 3.1. Let T.R be the recursive minimax, robust estimator of 0 defined by equation

(3.4), with coefficients la. I satisthng the conditions of Theorem 3.1 as well as (3-203). If the true

underlying distribution is f O*, then

V Fn ( TnR - 0 N 0, (3.212)
IV P)

as n (i.e. TR is asymptotically efficient). In that case,

a* (3.213)
IV 0.),

Proof Note first that by equations (2.131)-(2.135) (with 0 replaced by 0),

4,O) = -I V 0) (3.214)

provided that the true distribution is the lead favorable one. Thus, the condition that 11�(O) I < - in

Theorem 3.1 implies that I (f 9) < -, and the corollary is a direct consequence of Corollaries 2. 1 and

3.2.

Corollaries 3.2 and 3.3 give some hints as to the choice of coefficients I a,,) that yields minimum

asymptotic variance. Although these results are of little immediate practical value, since neither T* nor

the true distribution P (and therefore the fimcdon 4(T)) are known a priori, they can potentially serve

to help making clever choices of coefficients. For instance, minimax optimality can be ensured by

chosing P to be the least favorable distribution. The latest estimate TR of 7* can be substituted for T*

in the expression for a, making this latter a function of the data (Le. adaptive gains). That the

recursion would still converge under this scheme, and have the various properties derived earlier,

remains to be demonstrated. .

The result in Corollary 3.3 is implicitly used, for instance, by Price and Vandelinde (1979) for the

special case a,, = an-'. While this form is used widely, and is in fact assumed by Sacks (.1958) and by

those who base their work on his results (such as Martin and Masreliez), it is not necessarily a good

choice for the small-sample behavior of Tf. For example, Dvoretzky (1956) shows in the special case

where ',(T) is bounded from above and below by straight lines with finite, nonvanishing slopes, and

furthennore ( T� - T* (or equivalently E TR - P ) 2 ] if Tft is a random variable) is bounded by a

function of these slopes, that the choice

a. - K, (3.215)
K,2 + n

(where K, and K2 are constants satisfying certain conditions) is minimax in the sense of providing the
) 2 ]minimum upper bound on the estimation error variance E T� - P for all n. In other words, for

any I a,, ) other than that given by (3.2 15), there exist Tft and #(,rn - TR, ) satisying the above condition

on 4(T) as well as all the conditions of Theorem 3. 1, for which Dvoretzky's upper bound is violated for

some n. Moreover, under certain conditions, larger values of K-z can result in tighter upper bounds, on
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the error variance. On the other hand, in general, (3.215) leads to estimates with asymptotic variance

greater than the minimum given by (3.211), a loss in asymptotic efficiency that is "the price paid for

small-sample optimality" (Derman, 1956).

The choice of optimal coefficients la. I remains a difficult problem to which no satisfactory

solution presently exists. Dvoretzky's assumptions are limiting, especially in the case of robust

estimation, as discussed earlier in the context of the work of Cnung. Moreover, it is not clear that an

upper bound is necessarily the performance measure of choice in selecting optimal a.; on the other
hand, Since E [ (Tf _ 7,* ) 2 0 ( n -1 ) as a consequence of Tbeorem I 1, the sum

E T.R - T* (3.216)

does not converge and can therefore not be used as an objective function either. One possible approach

might be to choose a finite N and then find

IV
min E[(T,,R-T*)2] (3.217)
(a.)

subject to the constraints

EE [ T,,"+, E T.R + a. E x,, - T.R (3.218)

E TR, + a,, E E y( x, - Tf I T.,R (3.219)

E T.R + a.'E Tf (3.220)

w.p.1, and n = 1, , N-1, where (3.218) follows from (3.4) (and is used instead of this latter in the

usual way in order to ensure that the solution is not a function of the data (x,, 1), and (3.220) follows

from (2.82). What makes this problem especially difficult, however, is that 4(T) is generally nonlinear,

and moreover �(TR), n N-1 are not independent nor identically distributed. Moreover,

there is no guarantee that the results thus obtained for finite N would be consistent at the limit with the

asymptotic properties discussed earlier. 'Me problem. remains intractable even for (realistic) special

cases, so that only asymptotic results are sought in the sequel.

It is noted, finally, that the recursive robust estimator has been studied for the e-contaminated

normal neighborhood by Martin (1972); the "p -point" neighborhood

P Ap P f dP p /2, P c- S, P continuous at A (3.221)
+A

(which is a special case Of PA., in (2.198)) by Martin and Masreliez (1975); and the "&G"

neighborhood

P�.G P : SUP I P(x) - G(x) 1 :5 e, P, G e S (3.222)
Xe X

(which is a generalization of P.' in (2.197)), and the "generalized moment-constrained" neighborhood

P, PM P f x' dP (x :5 p, P e S, 0 :5 n < N (3.223)

by Price and Vandelinde (1979).
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For the problem of robustness in the presence of outliers, those of primary interest here are the

e-contaminated normal and the p-point neighborhoods. Indeed, the latter seems particularly appealing:

if A is chosen, based on physical considerations, to be at the Emit of acceptable noise (so that anything

beyond it can be viewed as an "oudier"), then P'A,, yields itself to an interpretation as the

neighborhood of all, symmetric noise distributions containing a certain fraction p of outliers. This is

very general and does not assume underlying normality, as does the e-contarninated neighborhood.

Furthermore, the estimator has constant asymptotic variance over a class of noise distributions.

However, there is a price to this generality: just like V, the influence-bounding function derived by

Martin and Masreliez for the p -point neighborhood is flat beyond ± A; however, it is not linear in the

%enter," so that all observations are processed, to a greater or lesser extent. Even the slope at the point

of symmetry does not generally equal unity. This suggests a loss of efficiency at the nominal

(underlying) model - especially when it. is --ea-.iy normal, as is often the case. For this reason, only the

e-contarninated normal neighborhood is used in the present analysis.

3.2 The Multivariate Case

So far, the discussion has been limited to estimators of scalar location parameters from univariate

observations corrupted by noise. In the present section, these results are extended to vector location

parameters and multivariate observations.

Multivariate extensions of the Robbins-Monro stochastic approximation procedure have been

proposed by Blum (1954b), Block (1956), Sacks (1958), Derman and Sacks (1959), Epling (1964), and

Fabian (1968). The primary limitation of these results is that all but Fabian's are restricted to scalar

sequences (a. 1, and thus do not provide a means of attaining minimum asymptotic variance; this latter,

on the other hand, makes a last-minute assumption (as to the normality of the updates) that neither

appears in the statement of his theorem, nor is consistent with his claim of total generality.

Consider, as before, the measure space ( X, B, g ) where X is now RP, B the Borel. a-algebra,

and g the Lebesgue measure. Let I x 1, - - - , r I be a sample of independent random variates taking

values in X, with a common distribution function P; let P:= ( Po: _0 e El 1, where 19 c RI, be a

family of probability measures on ( X, B ) such that for all 9 r= 6, Po is absolutely continuous with

respect to g and admits the density f 9 in accordance with the Radon-Nikodym theorem.

Let X' be the product of n copies of X, and let T,, : X' --+ 8 be Huber's minimax robust M-

estimator for the parameter 0, i.e. the maximum-likelihood estimator. given the least favorable

distribution f ; E P. It follows that Tn is the solution of maximization problem

max log f *9 (x.. (3.224)

or, alternatively (provided that 19 is an open set) of the system of equations

licx, 'O (3.225)

where
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-%(X-) -V-9 log f (X-) (3.226)

Vt f (3.227)

as., within an arbitrary multiplicative constant. (Y4 denotes the gradient with respect.to the parameter
vector I compare equations (2.77)-(2.80).) That this is minimax follows directly from the results of

Section 2. Note also that for the case of location parameters, p = q; this is assumed in the sequel.

As before, consider the recursion

TR+ - R. I = 9 + A. j( x, T (3.228)

where n = 1, 2, - - , (A,, I is a given matrix sequence with A, e R114, and 1R, is an arbitrary

(possibly random) starting point Let

Ep �g( x - T (3.229)

F., (-T- Ep (a g(T) ) T (3.230)

and defte

J(-T) 4i CO (3.231)atj T

as the Jacobian of 4(T), provided it exists. The following is a generalization of Lemma 3.3.

Lemma 3.4 Let (b,, ) be a real sequence such that, for some no,

bot +1 = bn 1 C. d. (3.232)
n nP+I

for all n �: no, where (c, is a real sequence with

lim C" = C > P, (3.233)
n -4-

(d, I is a real sequence with

lim d,, = d, (3.234)

and p > 0. Then,

dlim nP b,, - (3.235)
C -P

Proof Assume first that d # 0. Tben, there is a large enough n 1 such that

C'I
> 0 (3.236)

n

and (from (3.234)) either d, > 0 (if d > 0) or d, < 0 (if d < 0) for all n 'z! n 1. If, for any

n 2 Zt max( n 0, n' ), b. has tbe same sign as d, then cleafly b,, has the same sign as d for all n > n 2,
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and Lemma 3.3 (after multiplying (3.232) through by - 1 if d < 0) establishes (3.235).

Assume that b,, and d have opposite signs for some n 2 > max( n (), n I), and (with no loss of
2

generality, since the other case can be reduced to this one by multiplying (3.232) through by - 1) let

bn2< 0 and d > 0. Rewriting (3.232) as

I b,, +1 1 5 1 b,, I I - C. d. (3.237)
n nP+1

for all n > n2, Lemma 3.1 yields

dlim sup nP I b,, 1 !5 (3.238)
C -P

or

dlim inf nP b. > (3.239)
n -*- C - P

It follows that, for any 8 > 0, there is a Inge enough n(8) such that

I d
bn 2! - ' + 8 (3.240)

nP C -P

for all n n (8). Thus, defining

b, + -1 d (3.241)
O C - P

and noting that 5,, a 0 for all n > n (8) from (3.240), equation (3.232) may be rewritten as

b. +I -2 bn Cn + - dnn nF+I

Cn d
+ (3.242)

n + I )P n nIP C -P

for n max( n o, n i, n (8) where, from (3.13)-(3.16),

C. I = Cn - P + 0(n-(P+2)). (3.243)
n + n nP nP+l

Substituting (3..;1.43) into (3.242), and noting that

lim dn + ( C. - P d +8 +O(n-1)
C -P

= 2 d +( c -p 8 > 0 (3.244)

from (3.233)-(3.234) and by hypothesis, Lemma 3.3 implies that

2d +(c -p )8
lim - nP . = v (3.245)
n--o- C -P

and (3.241) establishes (3.235).
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Finally, if d = 0, choose any 8 > 0 and define

b. + - 8 . (3.246)
MP

Then, (3.232) may be rewritten as

6. +1 C. d.
n nP+'

Cn+ (3.247)
( n + 1 )IP n O

C + dn + c,, - p ) 8 + O(n- (3.248)
n nP+l

for n > no, from (3.43). Since

lim d. +( c. -p ) 8 + 0(n-1) c > 0 (3.249)
n-"*

from (3.233) and by hypothesis, the problem is reduced to one already solved, and

lim nJP c P (3.250)
c -P

(3.251)

so that (3.246) establishes (3.235) with d = 0.

The following theorem, based on the results of Blum and of Fabian, is a multivariate generalization of

Theorem 3. 1.

Theorem 3.2 Let tLf) exist for all 1:, and let there be a such that for any 8 > 0 and all q X q

matrices M > 0,

q _j* ) T M �(T) < 0.sup (3.252)
< IIZ:-T- 11

Assume there exists an So < - such that

EP __�T) I T(,r < So (3.253)

for all T, and let An I be a sequence such that An > 0 for all n,

A, (3.254)
n=1

and

n TAn < (3.255)
n=1

Then, given any TR < TR 7* as n as. (i.e. TR is consistent).
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If, moreover, 0, t(-T) is continuous, differentiable and strictly monotone in a

neighborhood of T* with I I J LT* I I < -, if 1(7* > 0, ILT) is continuous and bounded in a

neighborhood of r, apd. finally if

Jim n A, = A > (3.256)
2

then

L( -'rn- ('T'I-p N 0, V Q VT (3.257)

where qij 1,

[ V T T VI(r) (3.258)

Xi +Xj - I

and V is art orthogonal matrix and A Xi ] a diagonal matrix such that

V T A JL7'*) V A (3.259)

(i.e. TR is asymptotically normal).

Proof Equation (3.228) may be rewritten as

T11+1 - TR + A. W-( & - (3.260)

whence, squaring and taldng expectations, it follows that

E T ( TR+,

E [( TR _r )T (

+ 2 E ( 'TR p T An -V( :r-. 'TR

T( X - A T A. -V( TR (3.261)

+ E I , n

(TR 7,* ) T (TR _ 7*

E[(TR )T

-j -r Aj j( cj - j:jR
j.1

n

+ 1: h, - 1:jR ) AY Aj xLf( xj - 2:jR (3.262), _VT( Kj
j=1 L

Note first that since (3.262) is scalar.

T T(X -TR)ATA.T( x, - TR A A. _W _((�r -, _, V c. TRTR tr n (3.263)

Ttr x, - TR _V T( & - TR An A. (3.264)

so that

E t( x, - TR A T A. x, - TR
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tr [,E [ Ep [.W( x, - TR T( x I TR A.T A. (3.265)

< tr SOA T An (3.266)
1 n

w.p.1 for aH n, where (3.265) fbUows from (3.264), and (3.266) from (3.253). Thus,
[-IT( x - j:R ) AjT Aj j( x 'R tr So AY A, (3.267)

_j - J:j Y.
j.1 j=1

< 00 (3.268)

w.p.1 for n from (3.255) and the finiteness by hypothesis of So. Moreover,

E TR - T A n An TR

E[E' [(T.R_I:* )T A n -V X, - TR I -TR (3.269)__n

E [(V_I:* )T A. 4(Tj) (3.270)

< 0 (3.271)

w.p. I for aU n , from (3.252) and the positivity by hypothesis of An TbUS,

n
E [(!:jR -!:* )T Aj 3g( x 'TR < 0 (3.272)

j=1

w.p. I for all n . But since

E 'TR'1 T ( f+1 > 0 (3.273)

because the term is in quadratic form, and

'1* )T(IR < (3.274)

by hypothesis, it foUows that

E[(I:jR-r )T Aj V( E 1:jR-r T Aj t(TjR) (3.275)
j=1 j=1

must be bounded from below w.p. I.

Define now
[ ( 'TR R+

Yn := E +1 _2:* )T(,T )T(,T

RI TI, (3.276)

and consider the sequence

'TR T 'TR yj (3.277)

j=1
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Since

)T +1 Ij IE r TR

)T= E[(TR

+ yj I TR,---,,TR] (3.278)
j=1

n
= yn + (,7,,R_r, )T(,7�R_p T. Yj (3.279)

j=1

n-I

= (,TR_7:*)T(,TR_2:*) Y, Yj (3.280)
j=1

w.p.1, it follows that (3.277) is a martingale.

Squaring (3.260) and taking conditional expectations,
)T ( 7�R R

+1 _1, IRE[(f+l T,

(,7,R_I:* )T(,TR_r )

+ 2E[('7'R_Z* )TAn V& -9) I V1, _InR

T( X T 'TR 1 2!, - TR )A -.- ,,TR+ E I -1 nAn Xn (3.281)

TR p )T ( TR _ r

+ 2(g-r )T A. t(:O)

T R ... R[IVT(x, - TR A An VX, I T T, (3.282)

w.p.1; it then follows from (3.276) that

Yn = 2 TR- rl )T An =f)

T( X - TR) A T A. I TR TR
zc. (3.283)

Thus,

Yj 2 j:jR 2:* T Ai 4(Tf)
j=1 j=1

R+ j E T(.-tj - TR ) AY A, -V( Ij - IjR I T --- ,IjR 1 (3.284)
j=I

is'a sum of two terms whose expectations are monotone and bounded: the first is negative as., from

(3.252), and was shown to be bounded from below; the second is nonnegative since it is in quadratic

form, and obeys (3-268). (In both cases, the positivity by hypothesis of Ai is utilized.) Thus, 'the
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expectation of (3.284) converges almost surely to a finite limit as n -4 as. Hence,

E I (V_r)T('TR _ r ) I

= E[(,TR_r )T(e_T* (3.285)

= (TR_ 7,* )T (IR

+ R
E JjR, r, )T I:jl p

(IjR_r )T(IjR_1:* (3.286)

n-I
= (TR )T (TR p + Y, E [ Yj (3.287)

< 00 (3.288)

a.s. for n where (3.285) holds because the term is in quadratic form and hence non-negative, and

(3.288) follows from the finite convergence of the expectation of (3-284), and from the finiteness by

hypothesis of TR Thusl

n-I
lim E I TR T TR Y. Yj I
n-4- j=1

'T, R_ p ) T '7vR5 Urn E

lim E 2 IJR 1:* )T Ai 4(-TjR)
j=t

T(:K R ) AjT Ai j( :Kj R (3.289)
+ lim E j - 2:j 1j

j=1

< 00 (3.290)

a.s. from (3.288) and the finite convergence of (3.284). Using a martingale convergence theorem due to

Doob (1953, pp-319-323), it then follows that the sequence (3.277) converges a.s.; moreover, since the

second term in (3.284) is monotone and bounded, and the first is monotone and appears in (3.277) as a

positive quantity, and ( V - !:* )� ( TR - !:* ) > 0 also due to its quadratic form, it follows that this latter

also converges as. There is therefore a To such that

liM ( 'TR T ( 'TR To (3.291)
n

w.p.l. But the boundedness from below of (3.275) implies that

'TRlim sup E TAn tClj). 0 (3.292)
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or, since the expression is negative as. from (3.252),

lirn inf E [ I ( TR _ p ) T A. 4(-Tf) I 0, (3.293)
n -*"

implying that there exists a subsequence J nt ) such that

lim E [ I ( TR TA., I 0. (3.294)

Hence, by the Chebycbev inequality (Lave, 1963, p.11),

'T11 Tlim A., 0 (3.295)
k

w.p. 1, which in turn implies, from (3-252), that

hm 0 (3.296)
k-*-

w.p.l. Combining (3.291) and (3.296) establishes that

lim O (3.297)
n -4-

w.p.1, which proves the consistency of the estimator TR.

To prove asymptotic normality, note first that by hypothesis, tLT) is continuous and differentiable

in a neighborhood of 7*, say I I I I < 81, and �(T* 0. Thus,

tCT-) = J (7*) (I - r + 0 ( 11 T - P II'2 (3.298)

for II T - T* II < 81. Moreover, since TR -4 T* w.p. 1 (as proved above), there exists a large enough

n (81) such that II TR - r II < 81 w.p. I for all n > n (81). It follows that (3.260) may be rewritten as
'TR 'R "X TR) T (3.299)

+1 T - T* + A. I. _ , _ 4C_f) + An uz!)

I +An J(7*) +An OP( 11,TR - P 11 ] ( 'TR _ 1:* )

+ A. [ IC& TR) - 4CT (3.300)

w.p. I for n > n (51), so that ( TR+, is the sum of a sequence of zero-mean random variables

(plus some higher-order terms). Note that

A. O'p ( I I TR - rk I I ) = o'P (n (3.301)

at least, in view of (3.256) (which implies that An = 0 (n -1)) and (3.297) (which implies that

Op ( I I TR - P I I ) = op (1) or less).

Next, define for some > 0 the set

A( n, &, T x : II _1(.r --�T) - 4(T) II '2 >- 82 n (3.302)

Since t(7-'* 0 by hypothesis, tCTf) < wp. 1 for all n > n (81) by virtue of continuity. Together wit'i

(3.253), this implies that

'T t(.Tj) 1; < (3-303)
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w.p. I for n �: n (81), so that

lim A(n,82,9) 0 (3.304)
n -"- �

(or possibly a set of measure 0). It then -follows that

Jim f I I j(x- - TR) - g UT) 11 2 dP (i 0 (3.305)
A (n.8214)

w.p.1 for any 82 > 0. This is analogous to Lindeberg's condition for asymptotic normality, and is used

in the proof below.

The characteristic function of the update in (3.300) is defined as

E I e i , TA. W& (3.306)

E [Ep (3.307)

w.p.1, since Jx-,, I are independent and identically distributed. Using Taylor's theorem yields

Ep

I + i ST P
Ep An O& -7, - 40)

T t(T t( TS2 I A. #(x Tf) )T A

+ R, I 7-R (3.308)

T T; 'R2 S A. ICTI) A + Ep [ R. I T (3.309)

where R, denotes the remainder, from (3.229) and (3.230). Since the truncation error is dominated by

the first omitted term in the Taylor series (see, for instance, Feller, 1966, vol.2, p.485),

I Ep R. I TR I

< Ep I R. I I TR (3.310)

f I ST 1 3 dp (Z)A TR) - �(C) (3-311)

I S T A. ( �f(x 1 3 dp(X)
6

I STA.

T I(X R)

A. _,T 1 3 dp (X (3.312)
6 f

IjLTA,,LVU-j4,-.,...JJ- -- 3

for some 83 > 0. Now:

I T A. _V(x -TR) - 1 3 dp (X)
f

I.eTA,, VZN I 63
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!5 83 1 T A. (j(x--V) - 12 dP (3-313)f
I I-TA. CVU -If W)) I -'; 83

!5 63 f T _TR) _ t(g) _TR) T ))T TS dpA. A. (3-314)

T A. T
83 Z(T A (3-315)

where 83 can be made arbitrarily small. For the second integral in (3.312), it is more convenient to

bound the error by the next lower term, Le.
T _ R) R) T ))T TS

A. T 4LT!) _V(A_,7 A. . dp (S.

>83

T TOP (1) ;- An A" (3.316)

w.p.1, from (3.305). It follows, combining (3.312), (3.315) (letting 83 0), (3.316), and the fact that

A. 0(n-') from (3.256), that

I Ep ( R, I 1 :5 0, (n -2) 1 1 11 2. (3.317)

Denote the characteristic function of TR - 2:* by

E [ e (3-318)

and define, for economy of notation, the matrix sequence

Bn := I + A. J(7*) + o,(n-1) (3.319)

(compare with (3.300)-(3.301)) and the recursion

TS ) I I2 S T An Z(,I* ) An T (3.320)

with

ST(Tf_l:*)
e (3.321)

(since j:R is a given constant). Note that is essentially an approximation for a(� -) obtained by
substituting an approximation for �:(s); this becomes clear when (3.300) is used to write

TS 4,y _,4.T. I (s ',.T(Bn n uh, (3.322)

and a comparison is made with (3.309) and (3.320). It can be shown that �.U) and �.T(-s) are

asymptotically equivalent by noting that

T4E
�n,&S-) I Bn (SE,

TS�n (Bn S T A. 7-(7* )An T., 1 (3.323)
2

TS) �y T( B T 1 T T4
n (E) + �n n An Y-(I* An



�.T( B.T S ) I S T A. Ttr ) A T S

2

TZ) 1 TA An' 1 (3.324)(Bn 2 S

T T T SU(B. 1 S A,, I(T*) A

+ �.T( B.T s u

+ I T A. U-7*),A 'IT (3.325)
2

1 T T TS)< 11 S A. 1(7*) A Ts) - �,,(Bn
2 U(B.

T
+ �nT( B �n 1

T T+ An U.-Y*) An (3-326)
2

where (3.323) follows from (3.320) and (3.322). But

I U( B 'T < 1 (3.327)

for all s (a property of all characteristic functions; see Feller, 1966, vol.2, p.473), while

T T SQV(D 1 + S An 1:(7* )An

1E Ep e i TAn (V.(x_ -rR, wT.R)) I 7R I + T An FLY*) An T S 1 (3.328)
1 L 2

T1E Ep R. I TR s A. IT-&) A, I 1 (3,329)
1 L 1

o (n -2) 11 S 11 2 (3.330)
P -

w.p.1, where (3.328) follows from (3.306), (3.329) from (3.309), and (3.330) from (3.317), (3-256), the

fact that 9 --� T* w.p.1, and the continuity and boundedness of Z(-T) in a neighborhood of T* by

hypothesis. It therefore Mows that

�.T( B. T T TI + A. E(7* ) An s I = o,, (n -2) 1 1 11 2. (3.331)

Similarly, again using (3.256),

T T S- -2) 22 S A. Y.(-r )A 1 + O(n (3.332)



82 -

and

I I B. I I = 0 (1) + o,, (1) (3.333)

from (3.319).

Thus, defining

,&. (I-) := I V'u) - �. co I, (3.334)

it follows that

A. +I(D I + 0(n--,) 111111 IA.( (0(1)+o,(I)) s + o,(n-2) 112, (3.335)

Erom (3.326) with (3.331)-(3.333). Now: Erom, (3-321), Aj(,t) 0 for all I, so that (3.335) yields

A2(,E) < o',(n-2) 11s 112. (3.336)

Assume by the induction hypothesis that

< o. (n -2k 11 2k (3.337)
k=I

holds for some n. Then,

1 -2) 1 2 1
A.+IW < I 1 + O(n F,'o,,(n-2*) 11s 112k + OP(n-2) 111.112 (3.338)�

k=1

n-1 n-1
< Y, o,,(n-2k) 115 112* + F o,(n-2*-2) II;-ll2k+' + o,(n-,2 IIS 112 (3.339)

k=1 k=1

n

F, o,(n-2k) lis 112k, (3.340)
k=I

which establishes (3.337) for all n. Thus,

liM An US 0 (3.341)
n --O-

for all finite s, proving that �.T(5-) and �. (,t) are asymp totically equivalent. Hence, it is sufficient to

seek the limit of the recursion (3.320)-(3.321) in order to find the characteristic fimcdon of the limiting

distribution of UR.

It follows from (3.320) and (3.321) that

i sTS, (TR_ r*)
e S T A 1(1:*.) A T S (3-342)

so that

§T - ST IT S

109 �2(1) + log I - 2 A Y-(7* A (3.343)

Assume by the. induction hypothesis that

n-1
log U) i ST B T R Pnj=I
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T T+ Y, log 1 - S ri Bk Ai 1('_7T'* Aj
j=1 kj+I

X-I T
n Bj� (3-344)

k=j+l

(where sums and products are replaced by additive and multiplicative identities, respectively, if the

limits of their indices overlap, and matrix products are ordered by descending index) holds for some n.

Then, (3.320) yields
9 T :)g ST

lo �.+,Cs) = log �. (B. 't) + 14 2 A, Z(7 A" (3.345)

"I= i S T B, Bj T R rpn Ij=1
n_I T n-I k.T

• I log I - I Bn n Bk Aj XLP
j=1 7 k=j+l

n-I T
T

ri Bk B
k=j+l

• log I - I 3 T A. Y.(I* )A T S (3.346)
2

n
= ij T n Bj !RI

n

log 1 S T X(r Aj T

j=1 k=j+l

n T

H Bk S (3.347)
k=j+l

establishing (3.344) for all n. But since IIB,, 11 < I wp.1 for large enough n (from (3.256) and (3.319),

and the monotonicity by hypothesis of T) in a neighborhood of 7*, which implies that J (r < 0), it

follows that

Urn FT Bi = 0, (3.348)
n-+- j=1

so that the first term in (3.344) vanishes as n Moreover,

n n T
log I ST H Bt Ai Y-(7* Ai T IT B,,

2 k=j+l k=j+l

n n T
T TBk Ai Z(7 Aj rT Bk s (3.349)

7 rik=j+l k�=j.+I

approximately (using a first-order Taylor expansion for the logarithm) at least for large n, since (3.348)

and (3.256) imply that the term on the right-hand side of (3-349) vanishes as n Thus,
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T

T Aj 143:* ) Aj T Bk_7 n Sk ri
lim e j=1 k=j+l k=j+l 0, (3.350)
n

i.e. �, (,I) asymptotically has the form of the chmuteristic function of a normal distribution (e.g.

Kenda'd and Stuart, 1977, vol.1, p.62). Since, by uniqueness, the limit of the characteristic functions of

a sequence of distributions is the characteristic function of the bmiting distribution (see, for instance,

Lo;bve, 1963, pp. 189-193), it has thus been shown that is asymptotically normal, and there

only remains to prove that its covaiiance approaches that in (3.257).

Finding the limit of the exponent in (3.350) is not trivial. Consider instead the recursion

T+A,, J(7* ) + o -1) + o,(n-1)
Q. +I ,(n Qn [I +A. J(P

T+ A. I:CT-!) A. (3.351)

(from (3.300) with (3.230) and (3.301), noting that the cross term vanishes), where

[( 'TR )T ].Qn := E (3.352)

Note first that by (3.256), there is for any 8 > 0 a large enough n (8) such that

11 n A, - A 11 < 8 (3.353)

for all n > n (8). It follows that

n 2 A,, EW) A. T = A I(TI) A T + 0 (8) (3.354)

T + 0 (8) + 0 (1)= A Y-(T* ) A (3.355)

w.p.1 for n > n(8), where (3.355) holds by virtue of the continuity of I(T) in a neighborhood of I*

and the convergence w.p.1 of TR to P. Similarly,

n A, J (_7* A J (7* ) + 0 (6) (3.356)

for n > n (8), so that (3.3 5 1) can be rewritten as

Q. +1 I + n-' (A J(7*) + O(S) ) + op(n-1) Q.

T
I + n-I ( A JLP) + 0(8) + o,(n-1)

+ n -2 (A Y.(2-* ) A T + 0(8) + O(j) (3.357)

for n > n(8). To enable a coordinatewise application of Lemma 3.4, it is necessary to diagonalize the

matrices pre- and post-multiplying Q, in (3.357). To this end, define

:= VTC)n Qn V, (3-358)

where V is defined in (3.259), and substitute into (3.357):

V T ] V �n V. T.V I + (A J(7*) + 0(8) ) + o,(n-1)

T
I + n-1 (A J(71) + 0(8) + o,(n-1)
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+ n-2 (A AP) A T + 0(8) + 0(l) (3.359)

or (by the orthogonality of V)
VT I + n-' (A J(n V On

+ 0(8) ) + o,(n-1)

v T II + n-' (A J(7-'*) + 0(8) + o,(n-1) v

+ n -2 v T IA ZL7*) A T + 0(8) + 0(l) I V. (3.360)

But

VT II + n-' (A J(-7'*) + O(S) + o,,(n-1) I V = I - n-1 (A + O(S) + o,(l) (3.361)

by (3.259) and the orthogonality of V, and

VT IA 1(7* )A T + 0(8) + 0(l) I V = VT A E(7-'* )A T V + 0 (8) + 0 (1), (3.362)

whence it follows that

On +I I - n-' ( A + 0(8) + o,,(I)) ] On [I - n-1 A + 0(8) + 0"(1) ]T

+ n -2 1 VT A Y.(_P) A T V + 0(8) + 0(l) (3.363)

Consider now the element of On: equation (3.363) yields

4.(" +1) = 4.�n)I - n-I xi + 0(8) + 0'P(l) 1 - n-I ( xi + 0(8) + OPM I]

+ n -2 ((O(,3)+O"(l)� 11 On 11

+ [ V T A ELI*) A T V ],j + 0(8) + 0(l) (3.364)

But

1 - n-'( Xi + 0(8) + o 1 - n-I ( xi + 0(8) + OPM

n-I xi + xi + 0(s) + OPM + 0(n-') (3-365)

and, letting 8 I 0,

Urn xi + Xj + 0 (8) + o. (1) + 0 (n + Xj > 1, (3-366)
n-*,-

where the inequality follows from that in (3.1-56), which implies that

-A JL7*) > I 1, (3-367)
2

br

A -VA j(2:*) VT (3.368)

> (3.369)
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by the orthogonality of V. Moreover, again letting 8 I 0,

lim ( O(b) + OP(j) )2 11 & 11 + [ V T T V ],j + 0(8) + O(j)A I(T* ) A

V T A ZLr) A T V ],j. (3.370)

(Note here that 11 �. 11 is bounded because IR, < - by hypothesis, (3.255) holds, and IIB, 11 < 1

w.p.1 for large enough n.) Thus, by Lemma 3.4 (with p = 1),

Hm n VT A X(r) A T V (3-371)
Xi +Xj - I

and using (3.358) establishes (3.257)-(3.258). (The proof of consistency follows, with modifications,

that of Blum, 1954b; on convergence proofs for stochastic approximation procedures via martingales,

see also Mkivier, 1982, pp. 66-72, 75; the proof of asymptotic normality follows, with modifications,

that of Fabian, 1968; both results are also discussed by Wasan, 1969, pp.77-79, 106-1 10.)

Remark'It is easy to verify that the results of Theorem 3.2 agree in the scalar case with those of

Theorem 3. 1. Since J (_T* 4(7* ), P = 1, and A a 4'(7* ), it follows that

VQ VT a 2 X(T*
2 4(7-*) + 1 (3.372)

in the scalar case, which is the expression in (3.43). Note, however, that some earlier conditions (most

notably (3.7)) are no longer necessary in this proof; while they are not unduly restrictive, as discussed

earlier, they will. henceforth not be required to hold.

Corollary 3.4 Theorem 3.2 holds also if TR, is a random variable, provided that

E [ iR (V) T < (3.373)1 1 1

and T R is independent of ,r, n = 2, 3, If, moreover, T R is a translation-invariant function of

X .1, then TR is translation inv

Proof The proof of the first part of the corollary follows that of Theorem 3.21 identically. In the proof of

consistency, the condition of independence is -required for equations (3-2661i, (3-270), and (3.282) to
Thold. Furthermore, the product (IRI (TR - T* ) is replaced by its expectation in (3.262),

(3.274), (3.286), and (3.287), and (3.373) is required for (3.274) and (3.288) (in their modified form) to

hold. In the proof of asymptotic normality, independence is required for (3.309) and (3.329) to hold.

The exponential in (3.321) and (3-342) is replaced by its expectation, while the first terms on the right-

hand sides of equations (3.343), (.3.344), �3.346), and (3.347) are replaced by the logarithm of the

expectation of their exponentials. Equation (3.373) is required for the first term in (3.344) to vanish as

n 'The proof of translation invariance is identical with that in Corollary 3.1, and is omitted. a

Corollary 3.5 Under the conditions of Theorem 3.2, the recursive minimax robust estimator TR has
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minimum asymptotic variance for the choice

A* J-'(-7'* (3.374)

in which case

0, j-I(p IL7* (j-1(7* T
L< NG- N I I (3.375)

Proof Let X denote the largest diagonal element of the matrix A defined in (3.259), and note that ft-om

(3158),

V'Q VT V V T T V V T2 X I A 2:(-7'* ) A (3.376)
1. T

2 X I A X(7* )A (3.377)

2 XI I A j(l*) ) j-I(T*) 1:(7,*) (j-I(r) )T ( -A j(7,*) T1 (3.378)

where (3.377) follows from the orthogonality of V. Since X is the largest eigenvalue of A J(T-*), the

infimum. of (3.378) may be found in two steps. Definin

X -A f(r), (3.379)

X X, (3-380)

and

M j-1 (T* ) y(7,* j-1 L7,* T, (3.381)

the following twoproblems may be solved independently:

inf X, M X, T (3.382)
X

subject to

11 V 11 = 1, (3-383)

(from (3.380)) and

V > a 1 (3.384)

for some a > 0 (from (3.367)); and

inf (3.385)
X 2 X - I

Since (3-382) is in quadratic form with M > 0, the infimum. exists and occurs at the constrained

infimum of X'; combining (3.383) and (3.394), it follows that

X, = 1 (3.386)

minimizes (3.382). In the case of (3.385), on the other hand,

d V 2X(2X-I 2V
(3.387)

2 X - 1 (2k- 1 )2
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0 (3-388)

at the extremum, yielding the solution

(3.389)

Note that this solution satisfies (3.369), and is the only solution that does so. Moreover,

d2 2
(3.390)

dV 2 X- I 2 X - I

> 0 (3-391)

for all X satisfying (3.369), confirming that (3.389) corresponds to a global minimum.

It follows from (3.386) and (3.389) that X = 1, implying (3.374). Moreover, substituting (3.374)

into (3.257)-(3.259) yields V A = 1, so that

V Q VT = j-IL7,* y.(7,*) (j-1L7,*)) T. (3.392)

Thus, the lower bound on (3.378) is in fact achieved by the choice (3.374), establishing (3.375) and

completing the proof,

Definition 3.1 In the multivariate case, the Fisher information ma of the density f 9(x

trix. )atQOe e,
is defined as

1(f 9) Ef 2�9 log f i(X) V log f 14) (3.393)

T

Ef Ve f 9(-,c Ye f OCX.) (3.394)
f ix f ix)

provided these -expressions exist.

Corollary 3.6 For a given family of symmetric distributions with location parameter 0, let the least

favorable distribution f j(x) = f (x- - �) be such that the corresponding influence-bounding function

j(_x - 0) satisfies the conditions of Theorem 3.2. Let TR be the recursive minimax, robust estimator of 0

defined by equation (3.228), with coefficients (A,, I satisfying the conditions of Theorem 3.2 as well as

(3.374). If the true underlying distribution is f j* (x then

L( 4W (,TR - O* N 0, 1-1(f (3-395)

as n (i.e. TR is asymptotically efficient). In that case,

A* I-'(f j*). (3.396)

Proof In analogy with equations (2.131)-(2.135), (3.23 1) yields

iij ,E)* 1 (3-397)
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f Vi(X--_t f (X--Q*) A 1 (3.398)
J

j (3.399)

f Vi (X -a* f (X- +.t- 2 _Q* I it, (3.400)
j L, -ft.

where (3.398) follows from (3.229), (3.399) from a change of variable (with x replaced by x - fl* + t),

and (3-400) holds by virtue of the Lebesgue dominated convergence theorem, provided that f 0 is

bounded and differentiable in a neighborhood of _Q*. Postponing for a moment the justification of this

step, (3.400) yields

f f (X - (*) Tti f (X - O I

f (X-Q*) ati f (X+t-2-Q*) I f (:K-Q*) ds (3.401)

a.s. from (3.227), and a comparison with (3.394) establishes that

J(-Q*) = -IV (3.402)

Thus, the restriction IIJ(-Q*)Ii < - (imposed by Theorem 3.2) implies finite Fisher information and

hence bounded and differentiable f justifying (3.400).

Combining (3.374) and (3.402) establishes (3-397). Moreover, in the special case when the

underlying distribution is indeed the least favorable one, a comparison of (3-227), (3.230), and (3.394)

reveals that

I V (3.403)

so that (3.375) reduces to (3.395), proving the assertion.

Theorem 3.2 and Corollaries 3.4-3.6 show that all the desirable properties of the recursive

minimax robust estimator extend to the multivariate case. Given a least favorable distribution with
location parameter 0, the vector-valued influence-bounding function x- ) c fo d om

-I(- 6 an be un fr

(3.226)-(3.227), and the resulting estimator Tj is consistent and asymptotically normal under fairly

weak conditions. There moreover exists a. choice of A minimizing the asymptotic variance, and this

choice results in an asymptotically efficient estimator when the true underlying distribution is the least

favorable one.

There is nevertheless one problem. So far, in the present section, matrices were ordered in the

usual way -- specifically, given X, Y e R", Y > X if and only if Y - X > 0, i.e. their difference is

positive definite. This is not a lattice ordering, however. Practically, this means that (in contrast to

numbers on the real line two non-equal matrices need not have an ordered relationship. Thus, finding

the member of a class of distributions that minimizes the Fisher information is not generally possible in

the multivariate case. In the special case of spherically symmetric distributions, the multivariate
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extension is of course trivial: the least favorable distributions and influence-bounding functions are

found coordimtewise, and everything else follows immediately.

Huber touches on the multivariate case only very briefly (1972; 1977, p.35; 1981, pp.211,'222-

223). He proposes to consider spherically symmetric distributions, and to apply non-degenerate affme

transformations of the form x -� W (r- + _Q) to obtain parametric families of "elliptic" distributions.

This, however, brings forth the problem of determining W when, as is usually the case, it is not known

a priori. Indeed, nothing has so far been said about the problem of "scale estimation": Sections 2.2 and

3.1 assumed unit (or known) scale -- an assumption implicit, for instance, in the definition of the e-

contaminated normal neighborhood as a set of perturbations of the standard normal distribution. Huber

addresses the issue of simultaneous location and scale estimation in the scalar case, and also offers

some methods for estimating W (Huber, 1981, pp.215-223). This problem is resolved later, in Section

4.4, where an estimated covariance based on theory is used; for the present, it is assumed that W is

known.

Given the measure space ( X, B, g ) as before, let ( x x, I be a sample of independent

random variates taking values in X, with a common spherically symmetric distribution function P; let

P Po: _Q e 8 1, 9 as before, be a family of spherically symmetric probability measures on

X, B ) such that for all 0 cm 9, P Q is absolutely continuous with respect to g and admits the density

f 9 in accordance with the Radon-Nikodym theorem. Define the linear transformation

z W -X. (3.404)

n = 1, 2, where W e Rq-"q is a known matrix, with W > 0.

Let f e P be the least favorable distribution, and consider the recursion
Tw ftn

11 = Tw + W A, W-1 ( I - VW (3.405)

n = 1, 2, where tA, I is a given matrix sequence with A,, E Rqq, Tw is an arbitrary (possibly

random) starting point, and W(x-0) is related to f (x) =f -(x - 9) through equations (3.226)-(3.227).

Note in passing that the W matrix premultiplying A, is there primarily for purposes of normalization,

and that similar ideas are used in Masreliez and Martin (1974, 1977) to design a one-step multivariate

robust estimator. The following result holds:

Corollary 3.7 Under the consistency conditions of Theorem 3.2, Tw W 7* as n --+ as. Under the

asymptotic normality conditions of Theorem 2.7,

L( I-n (,Tw-W 7-* N I 0, WV Q VTWT (3.406)

where Q and V are defined by equations (3.258)-(3.259).

Proof Premultiplying equation (3.405) by W-' yields

W-1 -1ITWIJ W, TW + A. W-1 z Tw (3.407)

or, defining
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W-' &TW (3.408)

it follows dw

+ A. -W( W-I (3.409)

From (3.404) and by hypothesis, z is a sample of independent random variates with a common

distribution function, say P, so that

PAI P(x (3.410)

Thus,

Ep. I(W-'z -T) Ep [_j(x (3.411)

(3.412)

where (3.411) follows from (3.404) and (3.410), and (3.412) from (3.229). A similar argument
establishes that

Ep, V(W-I.L_T)VT(W-I.__T)I - I < so (3.413)

for some So < -, ftom (3.253). Thus, under the conditions of Theorem 3.2, T:,, 7* as n a.s.,

whence it follows by (3.408) that Tw -+ W rO as n -� - as.

An argument similar to (3.411)-(3.412) also establishes that

E,. -V(W-1 z -T g(T) -V(W-'z - T t(-T) )T UT), (3.414)

so that under the conditions of Theorem 3.2,

L( 4-n N I 0, V Q VT (3.415)

whelre Q and V are given by (3.258)-(3.259), and (3.408) establishes (3-406), completing the proof M

Clearly, statements analogous to Corollaries 3.4-3.6 can be made for the recursion (3.405). Thus,

in the absence of knowledge of the least favorable distribution in an arbitrary neighborhood of

probability measures, the multivariate minimax robust estimation problem can still be solved at least if

the observation can be expressed as a linear transformation of a random variable with a spherically

symmetric distribution.

3.3 The Time-Variant Case

So far, only the time-invariant case has been addressed: the sample of observations was assumed

to be not only independent but also identically distributed, and the location parameter of the common

distribution function was sought.

A generalization of these results concerns the case where the parameter to be estimated changes

over time. This has been considered by Burkholder (1956) and Fabian (1968), both of whom analyze
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the case where the observations are not distributed identically but according to a converging sequence

of. probability distributions. An alternative model is one in which the sequence of distributions does not

approach a limit, but is a known time fimcdon of an unknown but constant parameter. This case is
discussed first in the present section.

Let ( X, B, R ) be a measure space, as before, and let I v v I be a swnple of
independent random variates taking values in X, with a common spherically symmetric distribution

fimcdon P centered at the origin; let P I P.Q : _Q e e 1, e as before, be a family of spherically

symmetric probability measures on ( X, B such that for all 0 e 9, P9 is absolutely continuous with

respect to g and admits the density f 0 in accordance with the Radon-Nikodym theorem. Define the
transformation

Zn 0, + V, , (3.416)

n 1, 2, where

F. 0, (3.417)

(F. is a known sequence of non-singular matrices with Fn e Rqq, and 1_90 is an unknown (but fixed

and finite) parameter.

Let f 0 e P be the least favorable distribution, and consider the recursion

'TF +T F+ I = F. A. ,j( z +1 - F. TF (3.418)

0, 1, where (An I is a given matrix sequence with An e Rqq, TF is an arbitrary (possibly

random) starting point, and j( v - 0 ) is related to f *0 (v f v - Q ) through equations (3.226)-(3.227).

Define t(_T), Z(T-), and J (T) as in (3.229)-(3.23 1), provided these expressions exist. The following is a

generalization of Theorem 3.2.

Theorem 3.3 -Let t(T) exist for ail T, and for any 8 > 0 and all q x q matrices M > 0, let

Sup IT M �(T) < 0. (3.419)
8< 11111

Assume there exists an So < - such that

E [ 1(y T(j < S. (3.420)

for all T. and, let IAn I be a sequence such that An > 0 for all n,

An oc, (3.421)
n=1

nTAn < (3.422)
n=1

If there is an (x < - such that for all n and all m, with 0 < m < n,

n n
11 Fj F1 Fj < 1 (3.423)
j=M j=M
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(where products are ordered by descending index), then, given any TF < -, 7F - 0, --+ 0 as n

a.s. (i.e. EF is consistent).

If, moreover, 4(0) = 0, tLT) is continuous, differentiabk and strictly monotone in a neighborhood

of 0 with 11 J (0) II < -, if Z(O) > 0, X(T) is continuous and bounded in a neighborhood of 0, and

finally if

lim sup n A, < oo, (3.424)
X-4"

then

L( 1;"2 (,TF-,0 N( 0, I (3.425)

where

T
Z. J (0) I F.-, &L, I +A,-, J(O) + An-1 X(O) An-1 (3.426)

with

zo 0 (3.427)

(i.e. TF is asymptotically normal).

Proof The proof follows in part that of 'Theorem. 3.2, and some intermediate steps are omitted for

brevity. Note first that, denoting the distribution of the observation Z at time n by Pn, (3.416) implies

Pn(-Z P( V (3.429)

so that

Ep. z - T Ep v + 0, - T (3.429)

(3.430)

A similar argument establishes that

EP T( Z-T) < so (3.431)

for all T, from (3.420).

Rewriting (3.418) as
'T, F+ -0 'TF (3,432)

.nl = F,, e - 0+1 + A,. F,,

it follows, upon squaring and taldng expectations, that

E 9+1 )'I )T 'TF.1 +I

E '7F _ O'� T F T F n ( TF 0,n

F,, )T n
+ 2 L. L A. -F

T( F. T" A TA,, F, TFn ;-n +I -_n (3.433)
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Fj Fj
TF ()O )T

0 0
j.0 j=0

T
Fj IF+ 2 E j _ QjI ) T n Fk

j.0 k=j+l

rl Fk Aj j(4j+1 - Fj 2:jF)
k-j+l

T

+ E T(.zj+1 - Fj 7:jF ) AT FkY. i 11
j=0 k=j+l

n Fk Ai Fj j:jI) (3.434)
k-j+l

(products are replaced by the multiplicative identity if the limits of their indices overlap, and are

ordered by descending index), where use is made of (3.417) in (3.433). Noting that (3-434) is scalar, an

argument analogous to (3.263)-(3.264) yields'

T X

_�j+j - Fj I:jF ) Ai n Fk IT Fk Ai V(.4j +1 - Fj I:jF
k=j+l kj+I

I:jF T(.1tr [ E 1(.Ij+l - Fj j+1 - Fj I:jF

n T
A :r rl Fk fj Fk A (3.435)i

k=j+l k=j+l

tr [ E Epj+l [ _j( z+, - Fj I:jF T( ;q+1 - Fj 1:jF TF

n T n

Al :r Ft Fk F1 Fk Ai (3.436)
k=j+l k=j+l

< a tr So AY Ai (3.437)

w.p.1 for all j. where (3.437) -follows from (3.423) and (3.431). Thus,

T nT( F T 'FEl LI 't _ Fj Li ) Ai rl Fk rl F1, Ai #(.Ij+1 - Fj Ij
j=O -L k=j+l k=j+l

5 (x tr So AY A (3.438)1 i i
j=0

< (3.439)

w.p.1 as n -4 from (3.422), the finiteness by hypothesis of So, and (3.423). Moreover,

T
E ( Fj I:jF _ gj+1 ) T Fk Fk Ai V( �6-L, +I - F, I:jF

k=j+l k=j+l
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T
= E EPj F, I:jF _ Qj I T IT Fk

k=j+l

n
rT Ft Aj _j( 4i +I - Fj -Zj" I I:jF (3.440)

k=j+l

T
Fj 7:F 2j+l ) T fT Fk

k=j+t

a
fT Fk Aj 4( Fj 2:jF - Qj+j (3.441)

,t=j+l

< 0 (3.442)

w.p.1 for all j, from (3.419), the non-negativity of the quadratic product, and that of Aj by hypothesis.
Thus,

T n
Fj j:jII FE _Qj+1 ) T IT Fk rT Fk Aj -Vij+l - Fj 2:j < 0 (3.443)

j-0 k=j+l k=j+l

w.p.1 for all n. But since

7F+l +1 ) T ( 'T+I _ 1+1 0 (3.444)

because the term is in quadratic fonn, and

a T 4

TF eo ) T Fj Fj I:F (O < oc(T F _(O)T TF - _00 (3.445)O F1 R 0 -0 -0j=0 j=0

< (3.446)

as n since To < by hypothesis and from (3.423), it follows dig

T

E F, !:,F - %+1 )T- fT Fk rl & Aj 1(.Zj+l - Fj I:jF
:=-O k=j+l k=j+l

n T

Fj I:jF flj+l ) T F1 Fk

j=0 k=j+l

F1 Fk Aj t( Fj jjF - flj+1 (3.447)
k=j+i

must be bounded from below w.p.1 as n

De i

Y,, := E TF+� +1 _j+I )T(Lf

TF.' 'TF (3.448)

it can be shown in a manner analogous to (3.278)-(3.280) that the sequence
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n-I yj
)T (3.449)

j.1

is a martingale. Squaring (3.432) and taking conditional expectations,

'F )T 21 e 'TFE T+, +1

)TF.TF.

(F. g_(+ 2 Ep.+1 )T A. F. TF

'TFTFI

TEpn+l T( z+, - F. A A. j( z

IF1, _ - . , 'TF (3.450) -

'TF T Fn ( 'T11)T Fn gn

+1 )T* 2 ( F. TF - e A. t( F. Lf - Q. +

Ep.+, T( -+� - Fn TF ) A T A. -V( -z-,+1 Fn

F ... TF
TI (3.451)

w.p.1, where use is made of (3.430); it then Mows from (3.448) that
yn 'TF T Fn F

9, ) T (F. _I )(,y _,(

+1 T A. & TF

F. TF - 0, 0 +1

_IT( 'Z 'F) A.T A. 'F

Ep"+ F. T z +1 F,, 7,

TF, - TF (3.452)

w.p.1, and thus,

n
yj I:jF _ qj T F7 FJ - I I:jF -

j =0 j=0

+ 2 Fj TF _ qj+l )T Aj Fj I:jF - fjj+jj
j=0

T( 4, +1+ Epj., Fj I:jF AJT Aj.- Fj 1:j
j=0

TF, I:jF (3.453)

Now: from (3.432) and (3.417),

I:jF fij T FjT Fj 1:,F
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_Qj FjT Fj

_1 ) T Fj _ I ) Fj_l ( 1:�_, _ _qj_i

Fjl 1:f-I _ aj ) T FjT Fj -I ) Aj-, V Fjl 7:jLl
T( T FjFj_l T�., )A:rl (F,j J_

Aj-1 1(.Lj - FjI TILI (3.454)

I:F -go )T j-1 T
0 Fk FjT Fj -I j Fk ( ro - _QO )ri n

k=O k=O

j-1 If T+ 2 Fk (kl )T TFj-, )Fi Fj

j-1
IT Fj At Zk+l - Fk

i=k+l

j-1 T( Z Fk T j-1 T
+ 1 39 _.k+l Ak n Fj FjT Fj -I

k.0 i--k+l

Fj At _�V( zk+l - Ft (3.455)
i=k+l

(where sum's are replaced by the additive identity if the limits of their indices overlap), so that

n
I:jF _ aj T ( FjT Fj _ I I:jF _j

j=0

j-1 T j-1
2:F FjT Fj -I F _ (O0 D n Fk n Ft To

j=0 k.0 k=O

fi j-1 Ft ()k+l T j-1 T
+ 2 1 1 ( n Fj FjT Fj - I

j=0 k.0 i=k+l

Fj Ak V lk+l'- Fk

n j-1 T
+ T( A T Fj FjT Fj -IY. Y. k H

j=O k=O i=k+l

j-1n Fj At _j( jk+1 - Fk (3.456)
i=k+t

T
I:F T

O Fk. Fk
j=0 k=O k=O

T j-1
Fk Fk TF oon ri .- O

k=:O

T
Fl, T+ 2 n Fj n Fj

k=O j=k+l i --k +1

T j-1
Fj Fj Ak z Fkn k+l

i=k+t i=k+l
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n T+ Fk ]!)A T 1:
_IT( zk +1 k 6 Fj Fj

k-0 j-*+l

Fi Fj Ak 1(;k+l Fk IF) (3.457)
i--k+l

FkI:F _QO T Fk 7:,F
0 0

k=O k=,O

n-I T n
+ 2 1 ( Fk _Qk+j T ri Fj ri Fj I

*=ID i=k+l i --k +1

Ak V -;k+l - Fk if

n-I n T
+ Y, -IT(.Zk+l - F A T Fj Fj Ik k ri 11

k=O i=*+l i=k+l

k V -Zk+I - Fk (3.458)

where (3.456) follows from (3-432), and (3.458) holds by virtue of cancellation. Thus, from (3.453)

and (3.458),

n n T
TF QO )T Fk Fk I IF - -Oo0 n ri -0

j=0 *=O k=O

n-I T
( Fk :ff F;+ 2 7. E Ep k+I _.k+l ) T

k=O i=k+l

Fj - I Ak W(,zk+t - Fk

i=k+l

n T
+ E T(;k+l - Fk A T Fj Fj Ik. ri fl

k=O i=k+l i --k +1

Ak 1(;*+, - Fk

+ 2 E [( F, 9k+� T Ak Ft Qk+I
*=O

n
+ E Ep IT( �Zk+� F, A T Ak FkY. I _ k K A+1

k=O

TI , (3.459)

n T n
TF ()O T F 0,O F1 Fk ri F, -1 (To

k =0 k-0

T
F" TF+ 2 E (k,� T Fjri

k=O --k +1
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n Fj Ak Fk -()kl

n T

T(-.-kl - Fk )A T Fj
k-0

Fj Ak _j( zk+l - Fk (3.460)

w-p.1 for all n (noting that k = n terms in the fim two sums on the right-hand side of (3,459) would

be identically zero and can thus be added in at will), where each term is bounded by virtue of (3.423),

(3.439), and the finiteness of (3.447). Hence,

I n
sup E I 'T+ +1 _ 1+1) Yj I

j=1

)T ( 7,Fsup +1 9E 7'F+1 _.+1

n T
+ sup I !FO oo )T Fkn

k=O

Fk - I TFrT O - -00
k-0

n n T
inf 2 Y, ( & 11 _ ()k+l ) T Fj

E rT
n k=4 i=k+l

n

Fj Ak �( Fk _O11 t+li-k+l

n n T
Tsup 1: E I T( ;*+I - Fk TF At Fj

n k-0 i =k+l

n

11 F. Ak ;k +1 - Fk (3.461)

< (3.462)

a.s., where use is made of the positivity of the first arKi last terms in (3.461), and the negativity of the

third; the finiteness of the first term in (3.461) follows from the fact that the right-hand side of (3.434)

was shown earlier to be finite. Note in passing that the infirrium and supremurn (respectively) of the last

two terms in (3.461) are their limits as n by virtue of monotonicity. Using a martingale

convergence theorem (see the version in Lo�we, 1963, pp.393-394), it then follows that the sequence

(3.449) converges almost surely. It remains to show that each term in (3-449) does so as well.

Since

E Ej., -V T(.&-j Fj lj' AT Aj _j( - Fj jjF jjF
j='O
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Epj,, T(.z 1:jF

tj 1jj - Fj 2:jF j.� - Fj I:j"
j-0

AY A, (3.463)

< tr So AjT Aj (3.464)Y.
j-0

< 00 (3-465)

(from (3.422) and the finiteness by hypothesis of SO), and moreover the sum on the left-hand side of

(3.463) is monotone (each term is of quadratic form and hence non-negative), it converges. Thus, the

convergence of (3.449) implies (from (3.453)) that there is a C such that
)T ( '7+1 _ '(+I ) _ yn F T Fj F

. ( I:j _ fjj )T ( Fj _I )(2:j _9lim _j
j-0

+ 2 F, 1:jF _ fIj+ITAj t( Fj 2:jF - flj+I
j=0

liM 1:11 F

j _Qj T 2:j
j=0

n F Fj T FjT Fj 7:j

j=0

2E Fj I:jF aj+1 TAj t( Fj 2:jF - flj+l (3.466)
j=0

C, (3.467)

whence it follows that

r T ( '7, F FJim VTI�I I(+I '('I 'T T F� FnL
'TF2(F. T A. �( F, TF 0+1 0(3.468)

w-P. I. But since (3.447) is bounded from below,

T

limsup E (F,,,TF- (+I ) T fj Fk F1 F An F. TF 0+1
n k=n+l k=n+l

0 (3.469)

or, since the expression is negative as. from (3.419),
T

lim inf E I F. TF T & A. F. 0+1n &
k=n+t
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0, (3.470)

implying that there exists a subsequence Inn I such that

I - T
lim E F.. _T� )T rl Fk

IT Fk A.. F.. T� - 0. (3.471)
k=n.+l

Hence, by the Chebychev inequality,

T

lim ( F.. 'T� +1 ) T n Fk n Ft A.. t( F.. _T�
k=n.+l k=n.+l

= 0 (3.472)

w.p.1, which in tam implies, from (3.419) and the non-singularity of F. for all n, that

lim 0 (3.473)

w.p. 1. 71bus, for any 81 > 0, there is a large enough m (81) such that

_7,� _ _9. ) T F.� F.

T+ '� _ (. +1 ) T A.,. t( F,.. -0.+1 < 81 (3.474)

w.p.1 for all m > m(81). Substituting into (3.468), noting that this implies (3.474) with n,, replaced by

n,,, + I and 81 replaced by 82 = 0 (81) or less (by (3.422)-(3.423) and (3.472)), and letting 81 I 0,

implies

liM 'TF _ %)_ ) = 0, (3.475)
n -4-

which is the desired result

To prove asymptotic normality, note first that by hypothesis, t(-T) is continuous and differentiable

in a neighborhood of 0, say I I T I I < 81, and t(O) = 0. Thus,

�(-T) = J(O) T + 0( 11 T II (3.476)

for I I T I I < 81. Moreover, since TF - 0, --* 0 w.p. I (as proved above), there exists a large enough

n (61) such that I I F, TF - Q j I I < 81 w.p. I for all n > n (81). It follows that (3.432) may be rewritten

as

171F., 0,1 F. 7'F - + A. z,, - F. TF Fn UF (,)+l

+ A. t( Fn TF - (,I (3.477)

I +A, J(O) +A, 0,( IIF. - 0+1 II F, 0,

A, +1 - F. TF F,, 7'F 0, +1 (3.478)



102 -

w.p. I for n �t n (81), so that ( TF+l - I+,) is the sum of a sequence of zero-mean random variables

(plus some higher-order terms). Note that

A. Op( IIF. TF - 1+1 11 ) = op(n-1) (3.479)

at least, in view of (3.424) (which implies that A. = 0 (n -1) or less) and (3.475) (which implies, using

(3.423), that 0. ( I I Fn TF - 9. +1 11 ) = op (1) or less).

Next, define for some 62 > 0 the set

A( n, 62, T, 0 ) := z : II V(z �(T -g) 11 2 > 82 n (3.480)

Since t(O) = 0 by hypothesis, t(F. TF - 0+1 < - w.p. 1 for all n > n (81) by virtue of continuity.

Together with (3.420), this, impliez that

II j( z - F. ff Fn TF - 0+1 11 2 < (3.481)

w.p. 1 for n > n (81), so that

lim A( n, 82, Fn TF, 9. +1 0 (3.482)

(or possibly a set of measure 0). It then follows that

lim 11 z - Fn F. 0+1 11 dPn(Z-) 0 (3.483)
n --*" i -V I

A (n. k.,Fn if. g.+,)

w.p.1 for any 82 > 0. This is analogous to Lindeberg's condition for asymptotic normality, and is used

in the proof below.

The characteristic function of the update in (3.478) is defined as

i , TA. (Nl(.,
VCs) E I e (3.484)

E 1E, (3.485)

w.p.1, from (3.416) and because jv, I are independent and identically distributed. Using Taylor's

theorem yields (see (3.308))

Ep [ei I V F

ST TS+ 'FA. Y.( F., TF - 'I ) A + Ep [ R,, 1 7, (3.486)

where R, denotes the remainder. Since the truncation error is dominated by the first ornitted term in

the Taylor series,

I Ep Rn I TF I

:5 I T A. W_(_v+O, +,-F. TF)
6 f

I STAn Olb-'+-Q. +I-F.Zf) W. -Z.F-,O +0 1

1 3 dp(V)

------ ----
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+ I ET A. V(V +e _F. '7,F)
6 f _ _ _. +1

>83

(F. 'TF 1 3dP (v (3.487)

for some 83 > 0, from (3.310)-(3.31 1). But since

I T A. V+!L+I_F.Lf) _ t(Fng e"1) ) 1 3 dpLV)

01 S83

< 83 Y T A. E(F. TF- 0,j) A T S, (3.488)

whete 83 can be made arbitrarily small, from (3.313)-(3.314), and (bounding the other Part of the

remainder by the next lower term for convenience)

I T A. ( v +9 -F. TF) - t(F. Tf�,,,)
.LTA. WX40,,, 0

_V(V 4�L+l TF)
_F., _ t(F. 'TF__% +1) )T A T., dP (-v)

O'. (1) S An An (3.489)

w.p.1, from (3.483). It follows, combining (3.487), (3.488) (letting 63 4- 0), (3.489), and the fact that

A, = 0 (n-') or less from (3.424), that

I Ep [ Rn I TF I I < o. (n -2) 11 s 11 2. (3.490)

Denote the characteristic function of 7F - 0, by

i;R§-) := E [ e i!E T(9-9) 11 (3.491)

and define the matrix sequence

B,, I + An J (0) + o. (n Fn (3.49i)

and the recursion

B TS I T An X(O) A T S (3.493)
C,,IUS) n L 2 S n

with

i sTf TF _ge - --0 _') (3.494)

(since j:F is a given constant). It can be shown that �n (s) and �1(-s) are asymptotically equivalent by

noting that

TS
I �.T(Bn

TS T T S
�n (B A. 1(0) An (3.495)

< I S TAn 7.(O) A T S I �.T( BT S �.(B TSn n 4
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B. T+

I T T+ A. Z(O) A. (3.496)

from �3.324)-(3-325). But

I T T
I + A. X(O) A.

E Ep R, I TF -1 T An Y.( F. Jr- 0, +1 LO) An T s (3.497)
2

< 01 (n-") II, (3.498)

w.p. 1, where (3.497) follows from (3.486), and (3.498) from (3-424), (3.490), the fact that UTF - 0, --) 0

w.p.1, and the continuity and boundedness of X(T) in a neighborhood of 0 by hypothesis. It therefore

follows, using (3.327), that

T I I I T A. y
Bn I ;.V(t) - I + 'I (O) A'VT s o. (n -2) 11 s 11 2. (3.499)

Similarly, again using (3-424),

S '2) s 2I TAn 'F(O) A I + O(n (3.500)
2

and

I I Bn I I 0 (1) + Op (1) (3.501)

or less, from (3-492) and (3.423) (which implies that F., = 0 (1) or less). 'Mus, equations (3.3 34)-

(3.34 1) hold, proving that ;1(§-) and ;n (,F) are asymptotically equivalent. Moreover, it can be shown by

induction (see equations (3.342)-(3.347)) -that

log ;"LS) i ST Bj TF - _00F1 0j=-O
't-1 I n-1

+ Y, log l__$ R Bk Aj Z(O) Aj
j-0 2 k=j+t

n-1 T

FT Bk s (3.5 02)

But since

I I I + A, J (0) + o,, (n -1) I I < 1 (3.503)

w.p.1 for large enough n (from (3.424) and the monotonicity by hypothesis of �(_T) in a neighborhood

of 0, which imphes that J (0) < 0), it follows by (3.423) that
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lim II rl Bi 11 < -fa- lim rl I + A. J (0) + o,, (n- (3.504)
j=0 11 n -.4- j .0

0, (3.505)

so that

Jim ft Bj = 0, (3.506)
19-0" -j=o

and the first term in (3.502) vanishes as n -4 Moreover,

)g 1 1 IT Tn Bk Aj X(O) Aj rl Bk S
2 k=j+l k=j+l

a n T
T rl Bt Aj 2:(O) B' (3-507)i k S

k=j+l k=j+l

approximately (using a first-order Taylor expansion for the logarithm) at least for large n, since (3.506)

and (3.422) imply that the term on the right-hand side of (3.507) vanishes as n Thus,

T
T BA, Aj Z(O) Aj T Sk

I ri ri
lim e j=O k=j+l k=j+l 0, (3.508)

i.e. �. (,t) asymptotically has the form of the characteristic function of a normal distribution, and hence

Tf - %) is asymptotically normal as well. There only remains to derive the limiting distribution; since

the sequence JFn I is not required to approach a limit, however, this last step necessitates some form of

normalization.

Define

n_1 n-1 n-1 T
-= .1: TEl, . F1 Bk Ai M(O) Ai rl Bk (3.509)

j-0 lr=j+l k=j+l

and note that (3-508) implies

im [ E T'- - 0, TF - 0, 0. (3.510)
n

It is easy to verify by inspection that (3.509) yields

E,, +1 = B" El', B T T
n , + An Z(O) An (3.511)

with

0. (3.512)

Defining the matrix sequence (1, as in equations (3.426)-(3.427), and setting

(3.513)

it follows (using (3,492) and the fact that F, .= 0 (1) or less) that

T
I + An J (0) Fn A, F T I +A, J (0) + o. (n -1) Vn (3.514)
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n T
rl (I +Ai J(O) ) Fj "lo n ( I + Ai J(O) Fj
j=0 j-0

n+ 0 -1) rT U +At JO)) k V.Y. U F (3.515)
j=0 k=j+l

n nT. Op (j-1) n ( I +Ak J(O) Fk Vx (3.516)
j=0 k=j+l

since Ao 0 Erom (3.427) and (3-512). But

n
Jim 1-1 ( I + Ak J(O) ) Fk = 0, (3.517)
M --O- k =j +1

as argued previously, and moreover (3.5 1 1) yields

T

n Bi Y.10 ri B j
j=0 j=0

n-1 n-I T
+ 1: 11 Bk Aj 7.(O) AjT Bj (3.518)

j=O k=j+l k=j+l

where the first term vanishes by (3.512), and the second is bounded by virtue of (3.420) (which,

together with the finiteness of �(O), implies that I(O) is bounded), (3.517), and (3.422). It therefore

follows that

lim ( 11 - 7-11, 0, (3.519)
n -4-

and the variance of ( 7F - 9, approaches T., as n --> -. This implies (3.425) and completes the proof

of the theorem.

Corollary 3.8 Theorem 3.1 holds also if TF is a random variable, provided that

E [ I:F (1:,F) T ] < (3-520)0 0
and TF is independent of ;,, n = 2, 3, If, moreover, !:'F is a translation-invariant function of z

0 0

then EF is translation invariant.

Proof The proof of the first part of the corollary follows that of Theorem 3.3 identically. In the proof of

consistency, the condition of independence is required for equations (3.437), (3.4-41), -and (3.45 1) to

hold. Furthermore, products of the form (TF _ OO)T (TF - _00) (with or without norming matrices) are0 . 0

replaced by their expectations in (3.434). (3.445), and (3.459)-(3-461), and (3.520) is required for

(3.446) and (3.462) (in their modified form.) to hold. In the proof of asymptotic normality, independence

is required for (3.486) and (3.497) to hold. The exponential in (3.494) and (3,342.) is replaced by its

expectation, while the first terms on the right-hand sides of equations (3-343), (3.344), (3.346), and

(3.347) are replaced by the logarithm of the expectation of their exponentials. Equation (3.520) is

required for the first term in (3.502) to vanish as n The proof of translation invariance is

identical with that in Corollary 3.1, and is omitted.
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A hurther generalization concerns the case where the observatiorfs I z are corrupted by noise that

is independent but not necessarily identically distributed or spherically symmetric, but that can be

expressed as a time-varying linear transformation of a sample (,v I of independent identically

distributed random variables with a common spherically symmetric distribution function P. In other

words, let

z. : = -% + D. y. (3.521)

n = 1, 2, where (D,, I is a known sequence of non-singular matrices, D, E Rqq, and 0, obeys

(3.417) with 00 an unknown (but fixed and finite) parameter. Define the recursion
TD D -1

'+1 = F. T + D.+, A. Dn+l ( z+, - F. (3.522)

n = 0, 1, - - - , where ID is an arbitrary (possibly random) starting point, and (A,, ) and 3# are as0

defined earlier.

Corollary 3.9 Under the consistency conditions of Theorem 3.3, if there is a 01 > 0 and a 132 < - such

that

I < D,, < f6 1 (3.523)

for all n, then, given any T D < _' TD - 0, --> 0 as n as. Under the asymptotic normality0
conditions of Theorem 3.3 and (3.523),

L( TD N( 0, I (3.524)

where

n-I F.-, )T T DTZ, D, [I + An-I J (0) X.-I (D I +A,-, J(O)

T T
+ D,, A,-, T.(O) An-, Dn (3.525)

with

ZO 0. (3-526)

Proof Letting

I
n n (3-527)

equation (3.522) yields

Dn+1 L+1 & D,, L + Dn +1 A,, D _z, +1 Fn D,. T

n+I (3-528)

or, premultiplying by D -11 (which exists and is positive, by (3.523)),

L+1 n NV ID-', z - D-' F. Dn D-' F. D. + A (3.529)n+I n+ An+1 n+1
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Similarly, (3.521) may be rewritten as

D, �' z = D.-' 0, + v (3.530)

or, defining

D. : = D (3.531)

it follows that

D.-' 'z + _V, (3-532)

with.

b.+1 n +1 (3-533)

n +-11 F. D, (3-534)

from (3-531) and (3.417). 'Ibus, defining

D-' Fn D., (3.535)

where D o I for convenience, it follows that
+I T F. (3.536)

A,, n +1 -Zn +1

mid moreover,

fj Pj T n D T Fj T (D-11)T D-' n Fj D,,, (3.537)
ri ri n+ n+1 fl

j=M j=n j=n j=M

1 (3.538)
p2

from (3.523) and (3.423). Finally, from (3.530) and by hypothesis, I D E) is a s�unple of

independent random variates with a common distribution function P, so that

E [j( D-' T E, [ v + (3.539)

T - D E) (3-540)

and similarly,

I(D -1: - T ) IT( D -1: - T < S" (3.541)

for some So < -, from (3.420). Thus, under the conditions of Theorem 3.3, T in 0 as n

a.s., whence it follows by (3.527) and (3-53 1) that TD - 0, --> 0 as n -4 - a.s.

An argument similar to (3.539)-(3.540) also establishes that

]TD,,-'z - D 0, Tn Dn

1( Dn (3.542)
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so that under the conditions of Theorem 3.3,

4 (f. -:0. N( 0, I (3.543)

with t,, given by

[I + A.-, J (0) D -' F.-, D.-, (D;I F._, D._, T I + A_._l J(O)
R

A.-, Z(O) AT (3.544)

and

ZO 0. (3-545)

Thus, setting

T,D.-' (3.546)

equations (3.527) and (3.531) establish (3.524), completing the proof.

The models in equations (3.416) and (3.521) both correspond to the case where the MI state 0,

of the dynamic system is observed, though corrupted by noise. While this 'Ls rare in practice,

consistency results such as those of Ibeorem 3.3 and Corollary 3.9 axe obviously not possible if the

observations z do not span the entire space of the system state. In that case, different goals must be

set, such as minimizing the asymptotic error variance rather than seeking to drive it to zero as n -> o-.

The following generalization is perhaps of limited practical use, since it still assumes that the full state

can be observed, but is given here for completeness.

Consider the model

in H. E) + v (3.547)

n = I., 2, where IH,, I is a known sequence of matrices,-H,, E RJ`q with p > q, and E) obeys

(3.417) with _00 an unknown (but fixed and finite) parameter. Define the recursion

T,T F. T" + (H H.,, (in+, -,Hn+l Fn VT (3.548)

n = 0, 1, (provided the inverse exists), where (A. I is a given matrix sequence with A,, e RPP,

TH is an arbitrary (possibly random) starting point, and ig: RP -+ RP is related to the least favorable

distribution of v in the manner discussed earlier.

Corollary 3.10 Under the consistency conditions of Theorem 3.3, if there is an yj > 0 and an yz <

such that

yj I < HT H, < 7.2 1 (3.549)

for all n (implying, among other things, that rank[ Hn q for all n ), then, given any TH <

Eff - 0, ---> 0'as n as. Under the asymptotic normality conditions of Theorem 3.3 and (3.549),

L( 1;1�" (g- -O. N( 0, I (3.550)
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where

T, H.T H. -1 H.T I+ A,-, J(O) I H. F.-, T..-,

F.T1 H.T T
[I +A.-, J(O) H. (H.T H.

H.T H. H.T A. -1 T.(O) Ait -1 H. H.T H. -1 (3.551)

with

TO 0. (3.552)

Proof Letting

D. H. �0. (3.553)

equation (3.417) implies that-

:0.+I = H.+I 1+1 (3.554)

= H.+, F. 0. (3-555)

= H. +I F. ( H.T H. H.T :0. (3.556)

(where the inverse exists and is positive by virtue of (3.549)). Thus, defining

P. -.= H.+, F. ( H� H. ) -' H.T, (3.557)

it follows from (3.549) and (3.423) that
n T

11 '��j Pj

j=m j=n

n T n
H. H.T H. Fj HnT+l Ht+l IT Fj H.T H. H.T J3.558)

j=m j=m

Yi< a 17 1 (3.559)

Hence. under the consistency conditions of Theorem 3.3, the recursion

L+1 L + A. _1(&nl -J� f. (3.560)

is consistent and L - 10n -+ 0 as n a.s. Multiplying (3.560) tbTough by H�+, Hn+I TI

setting

Hn (3.561)

and substituting (3-557) establishes that T2 - 0, --� 0 as n as.

Similarly, under the asymptotic normality conditions of Theorem 3.3,

L( �;"2 (�T. N( 0, I (3.562)

with given by



I +A,-, J(O) H. F.-, (Hnit Hit-, )-1 Hni, in-,

T
H._j (H.�.j H._,) -1F.T H.T I+ A,-, J(O)

T (3.563)+ A.-, UO) An-1

and

to 0. (3.564)

Thus, setting

H. 1. H.T (3.565)

(from (3.561)) and noting that this implies

Y.. H.T H. HnT t. H. ( H.T H. -1 (3.566)

establishes (3.551), completing the proof.

Remark Two special cases of Corollary 3. 1 0 are of interest:

(i) Up = q, then (3-549) implies did H,,-' exists for all n, so dig (3.548) reduces to

71, H+ I= F. T H + H.-+', A _z. + H. + 1 F. TH (3.567)

(ii) Th e case

,z = H. %) + D. (3.568)

follows trivially from Corollary 3.10, since (3.568) may be multiplied through by D-', yielding

the recursion

D-' Hn+1 ) TF,. L + n+1 D -', Hn+j+ n +

D.-II H�' +1 )T Z' H.+, F. T+ A. D +1 _.. ) 1 (3-569)

by analogy to (3.548). Indeed, setting H,, I for all. n in (3.569) shows that Corollary 3.9 is only

a special case of Corollary 3. 10.
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4. Approximate Conditional Mean Estimators

The recursive estimators discussed in Section 3 correspond to the linear dynamic model discussed
in Section 1.1 when there is no process noise. In other words, they are estimators of location parameters
which are either fixed or vary in a deterministic and known manner. While there may be instances that

require such models, the absence of process noise makes this a special case of limited application. Not

only is process noise often physically present, but it is also a useful abstraction that compensates for

small and unsystematic modeling errors. This section therefore extends previous results to the case

where process noise is pressent.

Consider the model

F. 0, + w (4.1)

+ V (4.2)

n = 0, 1, where (F. I is a sequence of non-singular matrices, 90 is a random variable with

L( 00 N( MO where 0 < MO < -, and (w is an independent random sequence with

L( w N( 0, Q. where Q. �t 0 for all n. Assume, moreover', that I v I is a sample of independent

random variates, with a common spherically symmetric distribution function P centered at the origin,

.0, J, 1, and J__, I are mutually independent.

Here, the "location parameter" 0, is itself random and time-variant, necessitating different

conditions and a somewhat different approach than those discussed so far, in that sense, Corollary 3.10

represents in a way the end of the road for a recursive estimator of a purely Robbins-Monro type. For

example, it is clear that if 0, changes randomly over time, the gains (A,, I cannot always be required to

vanish as n -4 - since observations must continue to be taken into account in order to track tile

trajectory of 0.

Furthermore, results that can be obtained in the presence of process noise are somewhat weaker

than those of Theorem 3.3 and related corollaries. In particular, since 0, is now randomly varying, the

estimator cannot be consistent, i.e. the estimation error variance does not vanish, except in some special

cases. Indeed, only using asymptotic performance measures makes little sense except in the special case

where the process noise vanishes w.p.1 as n -4 -. Instead, it is necessary to seek other performance

criteria, measuring short-term performance as wen.

As in the case of non-robust recursive estimation (the Kalman Filter.), an appropriate criterion in

the robust case is unbiasedness and minimum variance. It is well known that the conditional mean

estimator ftdlffls these conditions (see for example Anderson and Moore. 1979, pp.26-28). The first

derivation of a robust approximate conditional mean estimator of the state 0, of the linear dynamic

system (4.1)-(4.2) in the presence of heavy-tailed observation noise (,v ) is due to Masreliez and Martin

(1974, 1977), and is based on Masteliez (1974, 1975); some generalizations are provided by West

(1981).
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A key assumption made by these and other authors is that at each n, the conditional probability

distribution of the estimate based on past observations zo, - - - , z-1 I is zero-mean normal. This

assumption allows rather clever algebraic m that yields an elegant stochastic approximation-

like estimator. However, while it has been shown in simulation studies to be a good approximation of

the true conditional density, it is only strictly correct for Wte n in the special case where P = N(OR

(see Spall and Wall, 1984), which is clearly of no interest here. No analytical results have been

published to bolster empirical Rings, and the resulting ad hoc application of this assumption has

therefore not been uniformly accepted in the literature.

In Section 4.1, a first-order approximation to the conditional distribution prior to updating is

derived for the case where P belongs to the e-contarninated normal family. In Section 4.2, this

distribution is used in an extension of Masreliez's theorem to derive a first-order approximation to a

robust conditional mean estimator. Some related simplifications and approximations are then given in

Section 4.3, and a brief discussion of minimax issues follows in Section 4.4.

4.1 A First-Order Approximation to the Conditional Prior Distribution

As stated above, the method pionneered by Masreliez and Martin is crucially dependent on the

assumption that the estimate immediately prior to updating is conditionally normal. While this is never

exactly satisfied in the presence of non-normal noise, it is shown in this section that, in fact, the

zeroeth-order term in a Taylor series representation of the distribution is indeed normal. Furthermore, a

first-order approximation is derived, and the error is shown to be bounded as n -+ -, provided certain

conditions are satisfied. The small parameter around which the Taylor series is constructed involves e,

the fraction of contamination.

It is first shown that the Kalman Filter recursions are exponentially asymptotically stable under

certain conditions. This property ensures that the effects of past outliers are attenuated rapidly enough

as new observations become available. The stability of the Kalman Filter recursions has been studied by

several researchers, notably Deyst and Price (1968), Caines and Mayne (1970), Jazwinski (.1970,

pp.234-243), Hager and Horowitz (1976), and Moore and Anderson (1980). Hager and Horowitz (1976)

have proposed relaxing the conditions of controllability and observability, used below, to detectability

and stabilizability, but have only provided results for the time-invariant case; while they claim that

extension to the time-vari'ant case is direct, this is not obvious. Moore and Anderson (1980) promise the

extension in a future paper, and investigate these conditions further in Anderson and Moore (1981).

The stability theorem discussed below follows Moore and Anderson (1980). Although it is

required here that (F,, I be non-singular, this condition is relaxed by Moore and Anderson. The

following simple lemma will be used:

Lemma 4.1 Let A e R", B e R", and C r= R" be such that A > 0, B > 0, and furthermore
T and B T.A =A B Then,

A -CBCT >_0 (4-3)



114 -

if and only if

B-' _ C TA-'C > 0. (4.4)

Proof It is easy to verify that

A-CBCT 0 I -CB A C I 0
0 B-1 0 1 CT B-I -B CT I (4.5)

and similarly,
-IC 0 1 CT

B-' _ C TA- _CTA-' B-1 I 0

0 A 0 I C A -A-'C I (4.6)

Then, it follows from (4.5) that (4-3) holds if and only if

A C
CT B-1 > 0 (4.7)

and likewise, from (4.6), that (4.4) holds if and only if

B-' C T
C A > 0. (4.9)

Comparing equations (4.7) and (4.8), and noting that one can be obtained by pre- and post-multiplying

the other by a rotation matrix, proves the lemma. (Moore and Anderson, 1980.) 0

The exponential asymptotic stability of the Kalman Filter recursions is now established. The

following generalization of equation (4.2) is utilized, since the more general results are used further on:

H. 0, + D. v (4.9)

where I H, I and ID,, ) are sequences of matrices of appropriate dimensions, and D, is non-singular for

ad n. Moreover, the notation

R. := D,, R D T (4.10)
n .

is used for brevity, where R := Ep "y v T1.

Theorem 4.1 Let the matrix sequences I F,, 1, I H,, 1, I Q, 1, and I Rn I be bounded above, and let I R,

also be bounded below. Let there exist positive integers t and s and positive real numbers a and P such

that for all n,

n +r i-I T
5" R Fj HiT Ri-1 Hi Fj > (xl
i =n j=n j=n

(i.e. the system is completely observable) and

n 't n T

F Fj > PI (4.'12')1 ri Q; n
j=i +1 +1
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(i.e. the system is completely controllable).

Then, given any �Oo such that :OD < and defining the closed-loop recursion

:(.+I -2 (I -K.+, H.+,) F. :0 (4.13)

(where K,, is the Kalman gain defined in equation (1.6)), there exist X > 0 and 0 < 8 < I such that

< (4.14)

(i.e. the filter is exponentially asymptotically stable).

Proof Define first the Lyapunov function (see for example Kalman and Bertram, 1960; La Salle and

Lefschetz, 1961, pp.33-36; Hahn, 1963, pp.14-18, Willems, 1970, pp.170-185)

Vn = IT Pn-1 1, (4.15)

where Pn is the Kalman covariance defined in equation (1.9) (where it is denoted by I,). Note that
0, Fn-1 1-1 + K. ( z - H. Fn-1 F.-, 0 w

+ _1 (4.16)

F.-j&-j + K. ( Hn + D. v - Hn Fn-j �On-j Fn-j 0-1 + w-1 ) (4.17)

Fn-1 1-1 + K. IHn Fn-j 1-1 + w-1 ) + D. v Hn Fn-j �0.-j

- ( Fn-1 Q.-I + -Wn-1 (4.18)

I - Kn H. ) Fn-1 ( 1-1 - Q-I ) + Kn D. V I - K. Hn ) W-1, (4.19)

where 0.:.,, is the Kalman estimate defined in equation (1-3), (4.17) follows from (4.9), and (4.18) from

(4. 1). Thus,

p. I _ K" H. Fn_j & _I F.11 (I _ Kn Hn )T + K, Rn K.T

+ ( I _ K. Hn ) Qn_1 K, H" )T (4.20)

(by independence), so that

KnT I _ Kn H. ) Fn_j p._l FnT, )TP. - K. R. - ( I - K, H,,

4_ ( I _ Kn Hn ) Q._, ( I _ K., Hn )T (4.21)

T _ K. Hn )T,(I - K,, Hn ) F,,-, P,.-, F.-, ( 1 (4.22)

since the last term in (4.2 1) is of quadratic form with Qn -I Z: 0 by hypothesis. Furthermore,

K. = M. H.T( H. Mn H"T + Rn )-1 (4.23)

= M" HnT R -1 _ R,-1 Hn ( Mn-1 + HT R-' H,, )-I HTR,,-l (4.24)1 n n I

= M. HnT R M. HnT R -'H. ( Mn-' + H T R -'H,, )-1 HnT R,,-' (4.25)n n n

M. (M.-' HnT R.-'H. )(Mn-'+H.TR-'Hn )-'HTR-1

n n n

HnT Rn-1 Hn Mn-1 + H.T )-1Mn Rn-1 Hn HnTRn (4.26)
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M. M.-'(M.-'+ H.TR.-'H. )-'H.TR -1 (4.27)

HjM. - M. H.T ( R. + H. M. H.T)7-1 H,, M. Rn (4.28)

P.H. T R,.-', (4.29)

where (4-23) follows ftom (1-5)-(1.6), (4.24) and (4.18) from the Sherman-Morrisonwoodbury theorem

(see for example Householder, 1964, pp. 123-124) - the existence of R -1 is guaranteed by the fact that

the sequence (R, I is bounded below by hypothesis, and that of MR-' by the non-singularity of (F. 1, the

fact that MO > 0 by hypothesis, and the structure of equation (1.7) and (4.29) follows from (1.8) and

(1.5)-(1.6). Thus,

P.H.TR,-'H.P,. = P.H.TR-1R.R,-'H.P. (4.30)

= K, R. K. (4.31)

from (4.29). Finally, it follows from the Sherman-Mornson-Woodbury theorem that

-' + HnT R -'Hn )-I P, - P. Hj ( R. + H. P. H T )-I Hn p. (4.32)

P. - Pn H.T R;'Hn Pn (4.33)

P. - K. R. K. (4.34)

> U - Kn Hn ) Fn-I Pn-I FnTI I K. H. )T, (4.35)

where (4.33) follows from the fact that Pn > 0 so that

Hn Pn HnT �t 0, (4.36)

R,, + H, P,, H,,T > R,,, (4.37)

and therefore

R. + H. p, H"T )-I < R -1, (4-38)

(4.34) follows from (4.3 1), and (4.35)- from (4.22). Tbus,

F.TJP -' + H.T R -'Hn )-1 I - K. H. ) F.,-, Pn -1 _K, H" T > 0, (4-39)n n

which implies that

F"T I I 'K" Hn T ( p"- I + H.T- I _ - -'Hn )(I -K,, H, )F,,-,Pn � Rn (4.40)

by virtue of Lemma 4. 1.

From (4.15), therefore,

Vn VnI Pn-' O.. - Uj Pn-+'t (:).,I (4.41)

[P-1 FnT( I _ Kn+,H,.+, )Tp-11 I K,.+,H,,,, )F.n + (4.42)

> UFj( I _Kn+,H.,, )TH.T+l R-', H.+,( I - K.+,Hn+t )Fn A,, (4.43)n+

where (4-42) follows from (4.13), and (4.43) from (4.40) with n+1 substituted for n. Thus,
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n+(

Yn-1 V.+, Y, ( Vi-I - Vi (4.44)
i=n

n+r
T> Y, D,�j F -I K, Hi )THT Ri-'Hi U - Ki Hi Fi-I 10, -1 (4.45)

i=n

n4i T
I rl U - Kj Hj )Fj-l HT Ri-'Hi
i=M j=n+t

rl U - Kj Hj )Fj-I !L (4.46)
j=n+l

from (4.43) and (4.13). It is now necessary to show that this quantity is bounded below by a positive

number.

Note first that under the conditions of this theorem, P. is bounded above. This can be proven by

considering the (suboptimal) moving average estimate

4-1 n i-I T
IT Fj 7. fl Fj H iTR I�-I Hi Fj

j="-t i=01 -r j=M --t j=n-c

n i-I TI ri Fj H i T R,:-'.z,, (4.47)
i=n-t j=n-t

for n �t t, where the existence of the inverse of the sum is guaranteed by (4.1 1) with n replaced by

n -t. From (4. 1) and (4.9),

z. = Hi% + Di v. (4.48)

= Hi Fi-,!%.-, + Hi w.-I + Di v- (4.49)

= Hi FT Fj + Hi I F1 Fj wk + Di y,, (4.50)
j=n-t k=R -r j=k+l

so that

n-1 n i-I T

F1 Fj T. 11 Fj Hi T Ri-1 Hi F1 Fj
j=n-t i=n-t j=n-r j=n -r

n i-I IT i-IY. ri Fj Hi T Ri-1 Hi F1 Fj
=n -t i =n --r i j=n-r

n i-I T i-I+ Y. ri Fj H, T Ri-1 Hi I FT Fj
i =n --r +1 j=n-( =n -r j---k-+l

n T T

Fj H Ri-'Dj- v (4.51)
i=n -t j=n-t

n-I

Fj 0F1j=n -r

n-I T

+ F1 Fj I rl Fj HT Ri-1 111. rl Fj
j=n =n -f j=n -r j=n-t
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TY. n Fj Hi T R,-1 i1i H Fj _Wk
i=n-t+l J=n-t k=M-t j--k+l

R i-I T+ Y, n Fj HTRi-'Di.V-i (4.52)

Similady, from (4.1),

n-1R Fj an + 1: rl Fj -w-k (4.53)
j="-c k=n-t jz*+l

so that, subtracting (4.53) from (4.52), the %, terms cancel, leaving

n Tn Fj I n Fj HT Ri-'Hi Fj

T

Fj HiT Ri-1 JyjY, ri n F, &k
i=*-t k=ft -4 j=k+l

X T

+ Fj H T K-1 Di X,2: n i
i=n-t

n-1 n-1

(4.54)i n Fj -w-k -
k=n-t j--*+l

Since the matrix sequences IF., 1, IHn 1, IQ,, 1, and (R. I are bounded above by hypothesis, and

likewise JR,, I is also bounded below, and by (4.11) which ensures that the inverse of the sum in (4.54)

is bounded above, it follows that there exists a yj obeying 0 < yj < - such that

E -0. 0, )T ] :5 y, L (4.55)

But since :E):. is suboptimal,

P,, < E 9, )T (4.56)

< Y11 (4-57)

from (4.55), establishing that the sequence I P., is bounded above. and so, by (4.29), is I K,

Note ftnibermore that from (1.5)-(1.6),

I K. H. I _ M" H"T ( H. M, H"T + R, )-'H,, (4.58)

M."2 I - M.A H�T ( H. Ad., H T + R. )-' H. -W.4 ) M.-"z (4.59)

TMnA I - M "2 HT R R -' H, M,"" I + M "2 H R-'H "2n M n n M,,

M,,'/2 HnTRn 1 ] Hn Mn-'i Mn-1/2 (4.60)

MnA I Mn" H.T R -1 H. MnA

+ M,� H,.T Rn-1 HnM."' H�T R -'Hn M."( I Mn/' )-I
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MP H.T R.-'H. M.�4 I Mn-% (4.61)

= M.A I - MP H.T R.-' H. MP (I + MP H.T R.-' Hn Mn�l- rl

I + M,� H.T R.-'H. M."'

+ M."' H.T R.-'H. MnA ( I + M,� H.T R.-'H, M."' r'

MP HnT R. H. W IMn (4.62)

= Mn�" I - MP Hi Rn-1 Hn MP ( I + MP H.T R -'Hn M.' r' I Mn-" (4.63)

= M."' I + M."' HnT Rn-1 H. Mn"' I + M.'I" HnT R.-'H. M

Mn'12H.T R.-'H. M."' O + MnIA H T R.-' H. M."2 M;'h (4.64)

= M."(1 +M."'H.TRn-'H.W )-'M;-% (4.65)

> 0, (4.66)

where (4.60) follows from the Sherman-Morrison-Woodbury theorem, and (4.66) from the positivity of

the covariance matrices Mn and R, as well as the non-negativity of the quadratic form in (4.65).

Since (K,, I is bounded above (as shown earlier), equation (4.66) implies that there exists a yz

obeying 0 < y2 < I such that

I - K, Hn ) > y2L (4.67)

It follows that (4.46) can be rewritten as

T
y ?i_1HiV.-I v. > U Y. F1 Z Fj_1 HTj rl y2Fj_1 (4.68)

i=n j=n+l j=n+l

i-I T i-IT i-,n)
y22( Fj H, T Ri-'Hi Fj On (4.69)H HL i=n j=n j=n

• (22, T Fj HiT R-'Hi Fj O. (4.70)E F1 i
i=n j j=n

• y;-1ak1:4 (4.71)

where (4.68) follows from (4.67), (4.70) from the fact that 0 < < 1. and (4.7 1) from (4. 1 1). Since the

right-hand side of (4.7 1) is non-negative, this establishes, by the method due to Lyapunov, that

lim I 1 k, I I O, (4.72)

i.e. the system (4.13) is asymptotically stable.
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To prove exponential asymptotic stabil ity, it is first necessary to show that the sequence (P,, I is

bounded below as well. Note that

P. M. M. H.T ( H. M. H.T + R. Y'H. M. (4.73)

M."' I - M.'1- H.T ( H. M. H.T + R. )-'H. M."' I M.�h (4.74)

> 72M" (4.75)

where (4.75) follows from (4.67) and (4.59) postmultiplied by M,. Thus, in particular,

Po �t 'Y2MO' (4.76)

whence it follows, using (1.7), that

M, = FOPOF T + Q0 (4.77)0

> 72FOMOF T + Q0. (4.78)0

Define the recursion

M- +1 = '12 F. jW. Fft T + Q. (4.79)

with

two = Mo. (4.80)

Then, assuming by the induction argument that

M. >

it follows that

T + Q.M.+, F. P., F" (4.82)

TF,, M,, F" + Q,. (4.83)

-12 F. F�T + Q. (4.84)

(4.85)

where (4.83) follows from (4,75), (4.84) from (4.81), and (4.85) from (4.79). thus proving that (4.81)

holds for all n. But (4.79) yields

Tn

M'+1 '12"' fj Fj R Fj
j=n-s j=n-s

e IT
n Pt

Y2n Fj F (4.86)
i =n -s j=i +1 j =i +1

T
n n

YJ +1 -1 Fj F
j =n -s j=n-s

T

+ 72' E R Fj Qj rT Fj (4.87)
i=n -S j-i-+l
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T

> +1 Fj (4.88)n n Fj + Y2

Y2' (4.89)

where (4.87) follows from the fact that 0 < 72 < 1, (4.88) ftom (4.12), and (4.89) from the non-

negativity of the quadratic form in (4.88). Thus, combining (4.81) and (4.99) which holds
independently of n -- yields

M" > Y2, PI, (4.90)

whence it follows from (4.75) that

Pn > 72' PI, (4.91)

or

P-1 < L (4.92)
Y2'+l

Thus,

V. :5 �O.T :o. (4.93)
Y2'

from (4.15) and (4.92), so that (4.71) yields

V. 21 '+' V.> y2 a Y2 (4.94)

> Y72t+s+l (4.95)

where (4.95) follows from the monotonicity of Vn, evident from (4.43) and the non-negativity of the

quadratic form. Rewriting (4.95) as

V. +1 :S 2t+S+I-;� V.-I (4.96)
+Y2

establishes the exponential asymptotic convergence of V, with

n

v < r+I V0. (4.97)
+ y22t+$+la

Then, using the non-negativity of V, (from (4.15) and the positivity of the covariance), equation (4.71)

yields

Y2 _I _ V�' +' (4.98)

< (4-99)

VO, (4.100)2t+s+F+ 71 (X

Erom (4.97). The proof is concluded by -taking the square root of (4. 100), and settbag
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+ y2t+s+l a )t +I 100T n, i (4.101)

722'a

and

2(t+l) (4.102)
+-e2 +S+1

(Ibis is a special case, restricted to non-singular transition matrices, of the proof given in Moore and

Anderson, 1980.)

This result is used in the following, slightly different form. Let N( x; g, Z ) denote the density

associated with the normal distribution of a random variable x, with mean 4 and covariance YE.

Corollary 4.1 Let the conditions of Theorem 4.1 be satisfied for the system (4.1) and (4.9), and let a

0 < 0 < exist such that for all n,

II rl Fj 11 < (4.103)
I I j=1 I I

(i.e. the system is uniformly stable). For i = 1, 2, let

!k+1 = F.!k + K,'+, ( z (4.104)

K.i = Mn, H"T ( Hn Mn, HnT + R. (4.105)

M.i +I F. P' FnT + Q (4.106)

P' I - K,' H. ) M.' (4.107)

be two Kalman Filters with respective initial state estimates and initial covariances M' i= 1, 2.

Then, there is a 0 < 8 < I such that for any finite 0,

N( 0; (,), M.' N( 0;- 02, M.2 ) + OP (4.108)

Proof Combinirig (4.107) and (4.106) with n replaced by n - 1,

P I p 2 I - K.' Hn Fn -1 P I I F T I + Q,.n ft n- n-

I - K;H,, F,, -1 Pn'-, F"T., + (4.109)

TI - KnH,. Fn-1 P,,.�j F"-I + Q"_,

p 2 T1 + Q. )Tn- - _1 'H,,F.-, F I - K,�

I - K.' H. F. -I ( Pn' I - PnLI ) FnTI (I - K;Hn )T

+ I - K.Hn ) Fn -1 Pn'-l F,;�l + Qn KWH. )T

K.Hn ) [F.-IP7-1 Fj, (I - K.2H. ) + Qn (4.111)
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KIH.)F. -P2,)F T, Kn2Hn )TO$- n- n-P I I

+ p K,,2Hn )T _ (K., H. )p2 (4.112)
n n 9

where (4.1 10) follows from symmetry, and (4.112) from (4.106)-(4-107). But from (4.29).

pni ( Kn2 Hn )T KnI Hn ) pn2 P 1 P ' HnT Rn-'Hn )T PnHnTR.-'H. )Pi (4.113)

0 (4.114)

by symmetry. Thus, (4.112) becomes

2H. )T
P P 2 I - K.H. & -1 Pn'-l PnLi F.1i I K. (4.115)

n n
T

n
P1 -P2 [�H- W, (4.116)n ( I - Kj1 Hj ) Fj-1 ( 0 0 n J-1j=1

But Theorem 4.1 implies that there eiists a 0 < 8 < 1 Such that

n+1n (1 -Kii Hi ) Fj-, 11 = o(w+ -I (4.117)

j=1

It follows that

(4.118)
F., - P2 II = 0(

and hence, by (4.29) and the facts that (Hn I is bounded above and [R. is bounded below,

I I K,' - Kn' I I = 0( (4.119)

&O. Similarly, (4.106) yields

M4, Mn2+1 = Fn PI F T + Q" - Fn P ' FnT Qn (4.120)n n n

= F,,(PI -P2)F Tn n n

so that, since F, is bounded above by hypothesis,

M"2 II (4.122)

from (,4.118) and (4.121).

Now, equation (4-104) yields

n+1 n+1 n+1
rl ( I - KjHj ) Fj -I (4.123)

n+1 N F1 Kj� HJ Fj -I Kk
j=1 k=O �j--k+!

it therefore follows that

91+1 2+1 0( an+,

n+1+ I 0( an-k+t ) II K&- K�- I I II I 1 (4.124)
Ir =0

n+1
8n+1 002 1.1_O 0(8k II (4.125)
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0 (4.126)

where (4.124) follows from the Cauchy-Schwarz inequality, (4.125) from (4.119), and (4.126) from the

fact that the transition matrix is bounded above, by (4.103), and therefore so w.p.1 is the output

Final1y, note that N x_; R, X ) is everywhere continuously differentiable with respect to g and Z

except at Z = 0. But equation (4.90) shows that M,' , is bounded away Erom 0, so that it is possible to

write a first-order Taylor series expansion as follows:

N( it N( 0; (,)2, M.2

+ 01 - 92 N( 91; M.2 ) I

+ M., - M.2 N YE
Z.M2

+ (4.127)

where ]i and ]ij respectively denote vector and matrix elements, and A is the remainder term. Using

(4.122) and (4.126) concludes the proof. (The use of equation (4.115) follows Jazwinsld, 1970,

pp.242-243.) 0

The Mowing lemma is used repeatedly in the proof of Theorems 4.2 and 4.3:

Lemma 4.2 Let 0_r, and y e R' and A, B, and C e R". Let A > 0, C > 0. and furthermore
A A T and C C T. Then,

N( !a; x, A ) N( B Q; C

T(C T)-I T(C TN(O;x +AB +BAB (y-Br),A -AB +BAB )-IBA

BT ).N(y; B x, C +B A (4.128)

Proof Expanding the sum of the exponents on the left-hand-side of (4.128), and neglecting the

factor for' simplicity, yields

(T A-'() 2�T A-'x + x "A-'x + OT B T C-B 0 - 2 �TBTC-IV + VTC-ly- - - - - - - r.- r.- -

oT (A-'+B T C-1B )Q _ 29T(A-'&+BTC-IV)

+ _r T A-' x + VTc-Iv (4.129)
z.- %.-

eT (A -'+ B T C-IB )O

2 (T (A -'+ B TC-'B )(A-' +B TC-'B )-'(A-'x +B TC-I Y

T C-I L)T T TC-I V)+ (A-'x +B (A-'+B C-'B)-'(A-lx+B
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(A-lx+BTc-ly)T(A-'+BTC-IB)-I(A-lx+BTc-I Y)

+ eA-'x + YTc-ly (4.130)

[O - (A-'+BTC-'Brl(A-lx+BTC-1y) T (A -'+ B T C -'B )-I

(A-'+BTC-IB )-'(A-'x +BTC-1y)

+BTC-1y)T TC-IB T c-1- (A -'x (A -'+ B )-'(A-'x +B Y

+ X TA-l:x + Y Tc-I Y (4.131)

It follows from the Sherman-Morrison-Woodbury theorem that

(A -'+ B T C-'B )-'(A -'x + B T C-1 Y )

T(C T)-lA - A B +BAB B A I (A -'x +B T c -1 Y (4.132)

x - ABT(C+BABT)-'Bx

+ ABTc-ly - ABT(C+BABT)71,BABTC-1 Y, (4.133)

wbere the existence of the inverse in (4.132) is guaranteed by the fact that A > 0 and C > 0, by

hypothesis. But

ABT II - (C+BABT)-'BABT I C-I Y

= A BT I(C+BABT)-I(C+BABT)

4 T)-l B T C-I
- (C+BAB BA Y (.4.134)

= ABT(C+BABT)-ICC-ly (4.135)

= ABT(C+BABT)-IV. (4.136)

Thus,

T T C-1 T(C Tyl (y(A-'+B C-'B )-'(A-'x +B y) x + AB +BAB _BX). (4.137)

Moreover,

(A-'x+BTC-IV)T(A-'+BTC-'B)-'(A-'x+BTC-1y) + XTA-'x + VTC-IV

TC-ly )T T(C T TC-1 V)(A-'x +B A -AB +BAB )-lBA (A-' x +B

+ X TA-1 X + YTc-ly .(4.138)

=X T (-A-'+BT(C+BABT)-IB + A-' IX

2XT IBTC-1-BT(C+BABT)-'BABTC-1 ly
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+ y T I- C-'B A B TC-1

+ C-lBAB T(C +BA B Tyl BA BTC-1 + C-t ly. (4.139)

Now:

BTC-I_BT(C+BA B T)-l BA BTc-I

U T II - (C+BA B T )-'B A B T I C-1 (4.140)

BT(C +B A B T)-l' (4.141)

as in (4.134)-(4.136), wWe

TC-1 T(C BTC-'B A B + C-'B AB +B A. )-'BABTC-I+C-1

C-'(C +B A BT)(C +BAB T)-l BAB TC-1

+ C-IBAB T(C +B A BT )-'B A B T C-1 + C-1 (4.142)

BT BTC-1 + C-1C-'C (C +B A )-'B A (4.143)

= -(C+BAB T)-l B A B Tc-I

+ (C+BABT)-I(C+BABT)C-1 (4.144)

= (C+BAB T)-l C C-1 (4.145)

= (C+BAB T)-l. (4.146)

Finally, note that

- I C +BA BT I - I C +BAB T I I BB T 1 (4.147)
1 A-' + B T C-1 B I I A-' + B TC-lB I I B B T I

T(C T
- I B +BAB )B I (4.148)

IA-'+ B T C-'B I I BB T I

- I (A-'+ B TC-'B )-I B T(C + B A B T )B I (4.149)
1 BB T I

But

(A-' + B T C-'B )-l B T(C + B A B T ) B
(C +B A B T)-'B A T (C +B A B T )B (4.150)

A - A B B

AB T(C +BAB T )B

ABT(C +B A B T )-l B A B T (C +BAB T B (4.15 1)

A BT(C +BABT)-I(C+BABT)(C+BABT)B
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A BT(C +B A BT)-'B A BT(C +B A BT)B (4-152)

ABT(C+BABT)-IC(C+BABT)B. (4.153)

It follows that

-1 C +BABT I I ABT(C+BABT)-IC(C+BABT)B I
I A-I+BTC-IB I I BBT I (4.154)

1 A I I C I I (C+BABT)-I(C+BA BT) I I BBT I
.(4.155)

1 BBT I

I A I I C 1. (4.156)

Combining (4.137), (4.139), (4.141), (4.146), and (4.156) establishes (4.128), completing the proof. m

In the se A, it is assumed that L( v P e P, the e-contaminated normal family defined in

equation (2.135). Then, it is possible to write

P = (I-e)N(OR + eH (4.157)

for some H re S. It is ftirther assumed that H is absolutely continuous with respect to the Lebesgue

measure, and admits the probability density h in accordance with the Radon-Nikodym, theorem. A first-

order approximation to the conditional probability distribution of the estimate of the state 0, based on

past observations ( zo, z-1 is given by the following theorem:

Theorem 4.2 Let the conditions of Theorem 4.1 and Corollary 4.1 be satisfied'for the system (4.1)-

(4.2), -and let 8 be a real number for which (4.14) holds. Let co be the smallest integer such that

< (4.158)

if

< 1 (4.159)

and if the distribution H has bounded moments, then

P( 10' 'Z-1

I - K" N( 0; 90, M.,")
P- K' N( 0; M'

n n
=n --o>+-l

Wi Vi Mi Vi Tf N( t; + V.' (0, h(t) d�

+ OP(Oe2) (4.160)
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for all n �t co, where, for i = 1, 2, and n > i,

=F.-,!k-, + (4.161)

T, + Q.M.' F.-, P'-, F (4.162)

P.' M.' - M.' r.' X (4.163)

r.' Mn' + R (4.164)

V.' V.'-, P.'-, F.!, Mni (4.165)

Y4-1 + Vni-t Mi-I ri-,-l 16-1 -%-I (4.166)

W.' Wn'-I - Vni -1 Mi ri -1-1 Mni-I Vi -1T (4.167)

r�-, N(,z-,; !"-I (4.168)

subject to the initial conditions

_%f = Fi-,_%�, (4.169)

Mf F,_,M,�, FT + Q,_, (4.170)

Vi M,� I F, T Mi -I (4.171)

V� (4.172)

W! mio-I (4.173)

-C'i 'e-1 (4.174)

for i > 0, and

(00 (1) (4.175)

MO A10 (4.176)0

(4.177)

The normalization constant satisfies

Kno + f N( W,, h d (4.178)

Remark Before proceeding with the proof of Theorem 4.2, some comments are in order:

(i) Equations (4.161)-(4.164) are a bank of Kalman Filters. each starting at a different point in time

i = 0, 1, 2, Because of the way in which they are initialized, the cases i > 0 correspond to

Kalman Filters skipping the ith observation. The case i = 0 is based on all observations.

(ii) Equations (4.165)-(4.167) are a bank of optimal fixed-point smoothers (see for example Anderson

and Moore, 1979, pp.170-175; also Gelb, 1974, pp-170-172 -- where, however, the error

covariance matrix propagation equation is incorrect), each estimating the state at a different point

in time i 0, 1, 2, based on all preceeding and subsequent observations.



129 -

(iii) Thus, each term in the summation on the right-hand side of (4.160) is a Kalman Fflter that sidps

one observation, coupled with an optimal smoother that estimates the state at the time the

observation is sicipped. Some general results pertaining to conditional probability distributions of

the form (4-160) are given in Di Masi, Runggaldier, and Barazzi (1983).

(iv) From (4.157), it is possible to write

V, = ( I - 11. ) _V.9 + - 11. -v-.H (4.179)

wherein. is a random variable independent of 00 and (,w I obeying

0 W.P. ( I - e (4.180)
,nn = 1 W.P. e

and Wv'�rl and I Z) are random variables independent of Jnn ), Oo, and I w I with

L( vv N( 0, R ) (for some R > 0) and L( vH H. Then, neglecting for a moment the,

question of (o, it is possible to interpret equation (4.160) as follows:

P lo, Z-, P ( zo, -Z.-,

P(Ilo--20, TU-i=O)P(zo, ,Z-l I 110=01, lln-1=0)

P I Z01, I In-1, 110 Ot nn-1=0

+ P( T10=01 I -Iii-I =0

P ZO, -Zn -1 I 710 = 0, Tli-1=1, 11n-1=0

P I 10, -Z.-1,110=0, 11-1 1, =0

+ higher-order terms.

In other words, loosely defining a random variable distributed as H as an "outlier." the first term

in (4.160) and (4.181) corresponds to the event that "there has been no outlier among the fmt n

observations," each term in the summation to the event "there has been no outlier among the first

n observations except for one, at time i - I," and higher-order terms to the occurrence of two or

more outliers. Moreover,

P 10, -1 I 710 = 0, Tli-,=" TIn-1=0

P( Q. I -zo, - - - 110=0, , , II-17-, I, Tln-!=o

P zo, .2i -2, L. 1. -1 I TIO 0. Ili-I Iln-I =0

P 0, Z; -2, -Z,, Z, -1,

no= 0, Ili-I 1, T1n-I 0

P -Z, - I 0, In -1,
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110�0- Tli-l:,-- 1, "n.-i=O (4.182)

Note that the onty non-nonnal term on the right-hand side of (4.182) is the last one, and it

corresponds to the convolution in equations (4.160) and (4.181). Furthermore, since the

distribution of a past event is expressed here conditioned on subsequent observations, this

corresponds to a smoother. The second term on the right-band side of (4.182), on the other hand,

is the distribution of a normal random variable (the state Q) conditioned on normal observations

( zo. - - - , -z-. --2, -z, , - - - , z -1 1. It therefore is a normal distribution, whose mean and variance

are given by the Kalman Filter that sIdps, the observation Z -1.

(v) Evidently, as n the probability of the event that only a finite number of outliers occur

vanishes for any e > 0. 'Mat the density can nevertheless be approximated by the fu-st-order

expression in (4.160) is due to the exponential asymptotic stability of the Kalman Filter: (O

represents a "window size" beyond which the effects of older observations have sufficiently

attenuated. Compare Martin and Yohai (1986, Theorem 4.2) and its discussion in Kiinsch (1986),

where weak dependence on temporally distant observations is exploited in the context of influence

curves for time series.

(vi) Finally, it is easy to show that

P(no=o, "n.-,=O )P(.10, Z-, I 'no=O, 'I.-I=o
(4.183)

P( zo, Z-,

P ( 110 = 0, Iln -1 = 0 1 10, Z -1 (4.184)

is the posterior probability, conditioned on all past observations ( zo, z,-, that no outliers

have occurred among the first n observations. Similarly, it is easy to show that

r-' K, K4 f N( L-1 -t; v ' ) h(t5 dt

no = 0, TIi-I = 1, 71.-I =O, 1,-I (4.185)

is the posterior probability that exactly one outlier occurred, at time i - L 'Thus, equation (4.160)

may be interpreted also as a weighted sum of conditional distributions, with weights equal to the

posterior probability that each event has occurred.

Proof The proof of Theorem 4.2 proceeds by induction. Note first that

P (+I 10, Z. P ( ;n 10, - -I

P ( ;. I 10, , g. -1 (4.186)

f p 0, 0, +1, z I zo, -1 ) d 0, (4.187)

f P +1 lo, Z,

p .1 0, zo, �6-1 p 0. I z d, (4.188)
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f p( 1+1 p(-z-, I -0. ) p ( -0-. I 10, z-I dQ (4.189)

where (4.186) and (4.188) follow from the definition of the conditional probability, (4.187) from that of

the marginal probability, and (4.189) from (4.1)-(4.2) and the independence of I w I and (,v 1. In

particulu, for n =0, equation (4.189) yields

X (I I zo) P(10 )

f N( 01; FOOO, QO ) f ( zo - flo ) N( %;1,93, MO ) d-QO (4.190)
j N( 01; FOO -e)N( zo'

.0, QO ) [(1 -9 , 0, R ) + eh(zo )O)

N( 00; 1, MO ) d-QO (4.191)

where f denotes the Radon-Nikodym derivative of P (which exists since both N( 0, R and H are

absolutely continuous with respect to the Lebesgue measure), (4.1)-(4.2) as weU as the initial condition

of (4.1) are used in (4.190), and (4.157) is used in (4.191). But for any n,
N( ; 0, M.0 ) d 0,

F. Q. ) N( z -,0; 0, R ) N(f

N( F. 1; 0.+I, Q. ) N( 0,; z 00, M.0 ),de (4.192)

f N(j;z, +RFj(Q.+F.RF.T)-I(,0+I-F.,z),

TR - R Fj (Q,, +F,, R Fn )-IF,, R
N( Q,,; F. z T 0 Ono, M.0 ) d O.,

-. , Q. +F. R Fn ) N( Kl.93)

N( z + R FnT(Q. +Fn R Fn T)-1 ((n+l _F. Z.,.); 'V,

T ( Q" TR -RFn +Fn R Fn )-I Fn R + M,,O

N( 0 z Q.+FnRF T (4.194)
T ( F T)-I (O -'F,,

N(R F Qn +Fn R a +I; Z, + R F"T (Q" + Fn R F"T In

R -RFn T ( Q., +Fn R F T )-'Fn R + 'W"On

N( 0, +I; F. z,'Q. +F, R F T (4.195)n
N(,O+,;F,- +FR(MO+R)-'(,�O--

mtn n ZA

T TQn + F, R F" - F, R (M,,o + R )-'R F"

N(; 00,,,Vn0 + R (4.196)

where (4.192) and (4.195) are obtained by rearranging terms, (4.193), (4.194), and (4.196) foUow from

repeated applications of Lemma 4.2, and (4.194) from the fact that the distribution integrates to unity.

Furthermore,

F. z + Fn R (Mno + R 00 - _z,

F. [(M,,O+R )(MO+R Y-';. - R (M.O+R )-'I.
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+ R (M.0 + R )-'O + (M,,o + R (M.0 + R 1 00

- (M.O+R)(M.O+R)-'Oo. ) (4.197)

= F. (M.O(M.O+R)-lz + 00 M.O(M.O+R)-1,00 (4.198)

= F. 00 + F. M.0 r.0 z - 00 (4.199)

00 (4.200)

from (4.161). Similarly,

Q. + F. R F.T - F,, R (M,,o +R )-'R Fj

Q. + F. IR (M.0 + R rl (M.0 +R R (M,,o + R )-l R F.T (4.201)

Q. + F. R (M.0 +R )-'M.0 F.T (4.202)

Q. + F. (M.0 -'+ R -')-'F.T (4.203)

Q. + F. [ M.0 - M 0 (M.0 + R )M.O F.T (4.204)

Q,, + &POF T (4.205)
n 4

M-0.1, (4.206)

where (4.204) foUows from the Sherman-Morrison-Woodbury theorem, (4-205) from (4.163)-(4.164),

and (4.206) &orn (4.162). It therefore follows that

N( 0+,, F,, 0 0 ; 0, R N( 0; V,,o ) dO
N( -O..,; (4.207)

MnO+j N( Z-4; !e, r.0

from (4.164), (4.196), A' .100), and (4.206).

Going back to equation (4.191),
N( 0, +,;F. 0 h(; -6 0

, , ) N( 0. ej, M,,O ) d,

00 IF.T(Q. T)-l W. _F,. ,f N( 0, +F,. MOF 'I (0),n n

M.(-MOF T(Q" +F,. M 0 F"T )- I F" MnO
n

,+j; F. 60, Q. + F. M"F T It(;, -0, ) dl

= N( I+,; F. 00, Q. + F,. M.,O F T

N(Z. - �; 00 + Mno Fn T (Q. n (O

+ Fn M,,O F�T)-' (9, +1 -F

M.11 - M.0 F"T Q. + F. MnO F.T IF. M.0 h (g) dt (4.209)

N( en+l, "+'+1; .+1 M.+1
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N( 'Z y:++Il + Vn+, n+I),
+1 +1

W.n + I + V.,, ++ I M., ++11 Vn,, + I T+1 I +1 h(t) dt, (4.210)

where (4.208) fOUOws from rearranging terms and using Lemma 4.2, (4-209) from maldng the

substitution t = ;. - 1, and (4.210) from (4.169)-(4.173) with i = n + 1.

Substituting equations (4.207) and (4.210) with n = 0 into (4.191), and using (4.175)-(4.176),

yields

P( QI lo) P(.KO

(I - P-)N( zo; 0]), roo ) N( 91; 00, MO

+ eN( 01; Q',MI

f N(.zO - 4; v' + V (0, -0 W + V I M I V I T h d�. (4.21 1)

But since

f P( I 'Z-1 p(.10, z-1 dO

f P( &I ZO, _zn_I dQ (4.212)

P( ZO, (4.214)

respectively by the definitions of conditional and marginal probabilities, and since

_ i )" W'i i Mi Vni TN( 0; !k, M' ) N( z.-I - t; V.' (0, 0, _V. o

N( -oil -4; Y�' Wi (4.214)

by Lemma 4.2, it follows that

-e N( -o; I, ro N( 01; ao, M 0

+ N( %; O', M'

W + V I M I V I T h(t) d� d0I (4.215)

0 ) + e N( :0-�; y', W d4I -F, N ;.0; f 10, ro f (4.216)

(4.217)

where the interchange of the order of integration of 91 and � is justified by Fubini's theorem (since both

the normal density and h are Lebesgue-integrable). Thus, combining (4.21 I) and (4.217), and using

(4.168), (4.174), and (4.177), it follows that

p( 01 I I -F-) 1co 4 N( 01; 00, MO ) + s r.0 i� N( 61; O', M'

f N(z0-t;v'+V1(01-0'),W1+V'M1 V I T h (t) dt. (4.218)

Assume now by the induction argument that
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P(Q. I -to,

(I - e r v. N(9.; M.0)

+ e (I e)II-I rc, N(-On; M.'

N(z.-I-t;y�+Vi(%_g�),Wi_ViMiViT h(t) dt

+ op(eo-er-2) (4.219)

for some n. From (4.189),

-,-Z. )P(,Z .go, Z-,)

f N(%+�; F. &, Q,, ) ((l-e)N(,z 0, R + eh(,z 10)

(I - e r ic,. 4 N(J; q2, M.0)

+ N( 0 !k, Mn

f N ( z y + V.' ( 0, Wi Vi M ni Vni T h(t) dt

+ 0 S2( 1 _p)n-2 d9n. (4.220)

Now:

f N( 0+�; F. E),, Qn N( z 0; 0, R ) N( 10; �k, M.'
Wi i IVi Vni T

. _ V.N( z.-t -t; v' +V.' (0, O.,

N( Fn Q; 0+1, Qn ) N( 0; zn, R N( 0;!k, M,,

N( z.-I + Vn' (0, Wn, Vi M., Vn' T 0 (4.2-11)

f f N( 0; ��n + R Fn T (Qn +F. R Fn T)-l F..Z.

R - R FnT ( Qn +F. R F"T)-l F, R

N( 0+1; Fn Zn, Q. +F. R Fn T ) N( Q; !&, Mn'

N( z 0 Wi _ V"i �Wi Vi vi + V,�. h d� dO (4.222)

N( 0; + M,, (M.+R -R FnT(Q. +F. R F . n

(,r +R FnT (Q,. +Fn R FnT)-I(( _Fn-

M.-M.(M.+R-RFnT(Q.+F.RFnT)-'FnR) i)

)-I T (Qn R FnTN(RFnT(Q,+FnRF.T 0+I;RF. + Fn )-'Fni.-,Z+lfil

----------
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M.' + R - R F,,T + F. R F,,T)-'F. R

N(J+1; F. z Q. +F. R F.T)

N(z--1-t-,y�+V.'(0 -W),W.-V.M.' Vi T h(t) dt d (4.223)
N(R F.T(Q. +F. R F.T)-'() 'F. z - z +!k,

R F.T (Q. +F. R F.T)

M.� +R -R F.T(Q. +F. R F.Tr'F,,R

N(Q.+,; F. z, Q. +F. R F.T)

f N(z,.-I-t;y�+V.(M.(M.+R-RF.T(Q.+F.RF.Tr'F. Rr'

(,z +R Fj (Q. +F. R F T rl(,o+,- F. z.)--O')),

W.' - V.' M.' (M.' + R - R F.T (Q. + F, R F.TrIF. Rr I Xi Vi T

h(t) dt (4.224)

= N( Q, +1; F. z + F. R (Mn' + Rr I (-W. - z

Q. +F,, R F,,T -F,, R (M,, + Rr'R F,,T

N( z; (g, M,+ R

f N(z.-I-t; V'+V.(M.(M.+R -R F.T(Q. +F. R F.T -'F. Rri

T F. z(,z +R FnT (Q. +F. R F . r, (-o, +,
W.' - V.' M.' (M,,+ R - R F.T (Q. +F. R F.TrIF. Rrlmi Vi T

h(�) dt (4.225)

riN( 0, +1; +I, Mn'+, N( z; n

(M,,' F.T (Q. 'T -'F,, R )-1

N(z,.-,-4; v; +V. (M,, +R -R +F. R F,

+ R F.T T -F.+Fn R F rl(,o+, -=n

T (Q" T )-I Vfni V"i TW,', - Vn' Mn' ( Mn' + R - R F., +F,, R F, & R

h(�) d�, (4.226)

where (4.221) is obtained by rearranging terms, (4.222)-(4.225) follow from repeated applications of

Lemma 4.2, (4.223) from the fact that the distribution integrates to unity (the interchange of the order

of integration of 0, and 4 is justified by Fubini's theorem), and (4.21-6) from (4.200) and (4.206) with

the superscript 0 replaced by i.

Now, the coefficient of Q,+I in the integrand of (4.226) is

ViMi [M,,+R-RF.T(Q.+F.RF.Tr'F,, R ]-'R F"T (Q. +Fn R F.T)-1

Vni M.4 M'i' + RrI + (M,. +Rr' R F,,T I (Q. +Fn R Fj)
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F. R (M.+,R Y-'R F.T 1-1 F. R (M.+ R

R F.T (Q. +F. R F.T)-' (4.227)

= V.Ai [(M,,+R)7'+(M,,'+R )-'R F,,TM,,'+, -'F,, R (M.+R

R F.T (Q. +F. R F.T)-' (4.228)

= V.M." (M.' + R r'R Fj ( Q. + F. R F.Tr'

+ V.M.' (M.' + R r'R F.T M.+ I -'F,, R (M,,' + R r'

R F.T (Q. + F. R F.T r' (4.229)

V.'�V.(M.+R)-'R F.TM.'+,-'M.'+, (Q. +F. R F.T)-'

+ V.M.(M.+R)-'RF.TM.'+,-'F.R(M.+R)-'

R Fj (Q. + F. R F.T)-' (4.230)

V.M.(M.+Rr'RFiM.'+,-I(Q.+F.RFi)(Q.+F.RFir1 (4.231)

V.M,.(M.+Rr'RF.TM.'+,-' (4.232)

(4.233)

V.' [M.' - M.(M.-R )-'M.' F.TM.'+I-l (4.234)

Vi p i F.T Mi +1 -1
n (4.235)

V,'. (4.236)

where (4.227) and (4.234) follow from the Sherman-Morrison-Woodbury theorem, (4.228) and (4.2231)

from (4.206) with superscript i, (4.235) from (4.163),'and (4.236) from (4.165).

Using (4.236) and rewriting the mean of the normal distribution in the integrand of (4.2126) as

+ vn+l (%+1-!k+I) + vn+t !k+1

i Mi T ( Q" TV, , [iVf,,+R -R Fn +F, R Fn )-'Fn R

vi X [M,, +R -R FnT( T

Qn +Fn R FIt )-l F,

I _ R F nT (Q" +F, R F,,T)-'F,, I in

vi i ri -I 'z+ vn +1 M +1 +1 ) + n.+I [ F. !k + F. M.

T(Q.Vn' [M,, +R -R & +F. R F.T)-1 F. R all
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+ V'i'M.' (M.+R-RF.T(Q.+F.RF.T)-'F.R

I - R F.T (Q. +F. R F.T)-1 F. )In 1 (4.237)

it follows that the coefficient of z is

V.i+lF.M.'r.'-'+V.'M.' (M.+R-RF.T(Q.+F.RF.T)-'F.R 1-1

I - R F.T(Q. +F. R F.Tr, F.

= V.Ai [M.+R-RF.T(Q,,+F,,RF,,T)-'F,,R

[R F.T (Q. +.F. R F,,T)-'F,, M.' (M.+R )-1

+ I - R F.T(Q. +F. R F.TrF. (4.238)

= Vi Mi [M.+R -R F.T(Q. +F. R F.T)-'F. R

R F.T (Q. + F. R F.T)-'F. M.' (M.' + RrI

- (M.+R)(M.+R)-' + I (4.239)

Vim"i [M.+R-RF.T(Q.+F.RF.T)-'F.R )-I

R F.T(Q,. +F. R Fn T )-'F. R (M.+ R )-1

(M.+R)(M'+R)-' (4.240)

Viwi [M,,+R-RF, T (Q" +F,, R Fn T)-I F,, R

M.+R -R Fj (Q,, +.F,, R F.T)-' & R (M,, +R )-1 (4.241)

Vn (4.242)

where (4.238) follows from (4-236). Similarly, the coefficient of 0�' is

VIi, M,,' [ Mn' + RR Fn T(Q" +F,, R Fn Tyl & R Y

IR F "T (Qn +Fn R FnT)-I IFn - F. M.,' (.M.' + R

V,, IW-n' (Mni +R (4.243)

as in (4.239)-(4.242). It follows, therefore, that the mean of the normal distribution in the integrand of

(4.226) is

+ Vn'+, + V.Mn(M.+R )-'(,z -

Y�+I + Vni+I (4.244)
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from (4.166).

Finally, the covariance of the normal distribution in the integrand of (4.226) is given by

W.i Vi Mi [ M.' + R - R Fj (Q. + F. R F.T )-'F. R Mi Vi T

W.' - V.' M.' CM.' + R r

+ (M.' +R )7'R Fj I Q. +F. R F.T

F. R ( M.' + R )7'R F.T 1-1 F. R (M.' + R r' ] Mi Vi T (4.245)

Wi - V.' M.' I r i -I + r.' -'R F.T M.'+, -'F. R r.' Mi Vi T (4.246)

W., _ V., M., r., -I M., V., T M.' r.' -1 R F.T M.+, - 'F. R ri -1 Mi Vi T (4.247)

= W.'+, - V.M.r.' -'R FjM.'+j_'M.'+j M.'+,-'F. R 1r.' -'M.' Vi T (4.248)

T= W-i +1�1 - Vi +1 Mi +1 Vi +1 (4.249)

from (4.167) and (4.165).Ibus, substituting (4.244) and (4.249) into (4.226), and this latter in turn into

(4.220), along with (4.207) and (4.210), and finally noting that

1
r-n+1 = (4.250)

P( z

(4.251)
P(;. 10, Z-1 P(.K0, z_1)

Kn
- 1 (4.252)

P 10, z_1

establishes the validity of (4.219) for all n.

There remains to put (4.219) into the form of (4.161), and to show that the error term remains

bounded as n -> -. This proof exploits the exponential asymptotic stability of the Kalman Filter,

demonstrated in Theorem 4.1 and its corollary.

Consider first the case where only one outlier occurs during the first n time steps. If it occurs

early enough, its effects will have become negligible by time n, and hence the corresponding term can

be lumped up with the "no outlier during the first n time steps" term.

By Corollary 4.1,

N( (,); !a�, Mn") = N( 0; 0, 0, M,,O ) + OP ( an (4.253)

Furthermore, equations (4.165) and (4.163) imply that

-')M.'-, F. Mi (4.254)V.i = V.Li (I -Mni-I ri-l - n

= Vi _I M"i_1 (I _Mi_, ri_,-1)TF.T1 Mi -1 (4.255)

= Vi_.2 Mi_2 (I _Mni_,2 ri -1 )T T Mi_,-IMni_l (I _Mi i -I)T&T, M' -1
-2 Fn -2 n (4.256)
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T
Mi -1

= Vi'M n Fj (I -Mii rii -1) (4.257)

T
= MO IF, T Mf -1 M/ _1) M�i _I

Fj (I r�ri (4.258)
j=i

MiO I Fi It I
n Fj (I -Alr,� ri -1) Mi (4.259)
j-i

'I T= Mi�' rT (I -Mjrj' -')Fj-l F.!, M.' (4.260)
j=i

(4.261)

where (4.255) holds by symmetry, (4.258) follows from (4.171), and'(4.261) from 'Ibeorem 4.1 and the

facts that IF,,) is bounded above by hypothesis, and I M.0) and M,) are bounded above and below, by

equations (4-57) and (4.90). (Note that both bounds carry over to jM,'j -- which skips an observation

update because (I - Ki -1 Hi -1 ) is bounded both above and below.) Thus, it also holds that
N( Z. _t; V i ('( i Mi Vi T

+ Vn Wn Vn

N( v (4.262)

from (4.127), where use is again made of the fact that JM,'j is bounded above, and also of the

boundedness w.p.1 of 0, and!k, due to the bound (4.103) on the transition matrim Hence, each term

in the summation in (4.219) may be written as

F-( 1 - )n ic. r� N( 0; !k, Mn'

Wi _ Vi M i Vi Tf n+ V.' (0, h(t) dj

6( 1 _,E )n-1 Cn 1� N( 0; 00, iVf,,o ) + OP W

[N(z--j-�;v + 0,(S'-') ] h(�) dt (4.263)

I - F. )"-' IC, 1� ( N( 0; Ono, MOn

f N( z.-I W.' ) h (t) d + Op (6n-1 I 1 (4.164)

where (4.263) follows from (4.253) and (4.262), and (4.264) from the fact that h has bounded moments,

by hypothesis. Moreover, it is clear from (4.168) and (4.174) that

P( 10, - ' - , i.-I I 110=0, nn-I =( -) (4.265)

P ( _Z4 -1 I Lo, , , , , -Z-4 -2, li , -Zn-j' T10=0, n.-I =0

P ( ZO, 1-2, Zi, Z-I I N 0, Tln-I 0 (4.266)

But

P( Zi-I I -1011 -Z,-2, Z, 710 0, -qn-I =0
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N( z--j; V�, W.+R (4.267)

as a consequence of (4.2) and the fact that the probability is conditioned on the event "there were no

outliers arnong the first n observations." (Note that )� is the optimal estimator of %_1 given the

observations 1.10, -z.-,2, z-1 ), and W,, is its covariance.) Thus,

N( W.' +R

P(10, Z., I 110=0, "n.-1=0 (4.268)

N( z--,;v (4.269)

where (4.268) Mows from (4.266) and (4.267), and (4.269) from (4.168) and (4.174). Hence,

substituting into (4.264) yields

)n-1 .. 'K,,' N( Q; fl�, M.'

N( z.-I-t; v,' +V.' (0, Wi Vi M i Vni Tn h(t) d�

-8 r-I 1C. 14 N ( E) 00, M.0 + 0,, ( W-' (4.270)

where

f N( W.' ) h (g) dti
Pn N( W.+R (4.271)

is the likelihood ratio for the dual alternatives of whether or not v.-, was an outlier.

For n > (j), rewrite (4.219) as

P( zo, - , Z-, )

I - e -K. N( 0; (,)O, M.0

n --W
+ )n -1 IC. Y, i c.'N0, 0', M.'

i=t

W i Vni Mi(0, n VniM4 +V. h(t) dt

n
+ I )n-I N( 0; M'

n
=n -0)+1

Vi Mi V., T
n h(t) d'

+ O', 1 _,E)n-2 (4-272)

I e ic,, N: N( 1; 00, Mno

n-.
+ 1 )n-I 14 N( 0; 00 0 + O'(61-i

Pn M,

n
+ F( I _F )n-1 Wn 1 c,, N0, 0 M,
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i Wi i Mi Vi TN(z.-l-t, V (0, V. h dt

+ (4.273)

1 + E( 1 - )nl pi x. N( Q.; 0, Mno
n

_p)n-I r+ OPWi)
i=l

n
• E( 1 _ Er-l N( 0; M.

f N(z-_j-t;Y4+Vn(,0 _!k Wi Vni Mni Vn' Th (t dt

• O'( jl(l_er-2 (4.274)

where (4.273) follows from (4.270). But since

e( I E

n-l

Op (V (4.275)

op(s� 0,P (Si (4.276)
i=O i=O

Op _,5n 1-r
= F-( I - p )n (4.277)

= E( 1 _ F )n-l Kn OP (4.278)

(4.279)

or less, from (4.158), and the fact that (r., and are bounded above. It foUows that (4.2174) can be

rewritten as

P( _Z0,

)n + E( t - E P' Kn icno N 0, Oi 0, M 0n

n
+ p( F )n-l Cn N( 0; M.'

N(ji-l-t; v 0 Wi Vni Mi Vi T h(�) dt
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+ O"( izo-erl (4.280)

Let g' be the measure induced on RP by the system (4.1)-(4-2), conditioned on the observations
z.-2, z., z conditioned on the events

1, and let be the same measure fin

1qO = 0, -1 0 From Theorem 4.1 and its corollary,

PL.i + 0'.oF-i*1)- (4.281)

It Mows that

E E P'ni I + Op W (4.282)

f N( --4; y4, W.' h (t) dt
dpL'(z.-I) + 0 (4.283)

f N( z--j; Wn+R

f N( W.' ) h (t ) dt N( z--j; y�, W.' +R d z.-I
f N( W.+ R

+ OP ( &I-i+1 (4.284)

f j N( z--�-t; y ' ) h(t) dt d + 0,,(W-i+')

W. (4-285)

1 + 0 P (8--i+i) (4-286)

w-P. I Thus, there is a 0 < p < I such that

I n -<O I n-<O
n -q) P, + n -o) 0,(an-i+l) + op(pn--W), (4.287)

n

by virtue of the Chemoff bound (see for instance Cbernoff, 1952; 1972, pp-44-45). It follows therefore

that

p' = n - (o + 0,(8n-'+') + Op((n n-.) (4.288)n

= n - co + Op(F.) + Op((n _,))pn,), (4.289)

where (4-288) follows from (4.287), and (4.289) from (4.275)-(4.279). The 0,((n -o))p"--O) clearly

vanishes as n -4 Substituting into the first term on the right-hand side of (4.280) yields

r n .0+ )n -1 Pn rn K.0 N( 0, ; 00, M 0n

n n n

ne + I k + e(n -(j)) + (n -(o) IC ek+1
k=2 k=1

1c. N( 0; + OP(p2) + Op((n_(O)pn--w)M.0 (4.1-90)
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n n n� n
-a ek+1

L k=2 k.1

1c. 4 N( Qn; V, M.0 ) + Op (e) + O', ((n -co) p" (4.291)

from (4-289). It is worth noting that 1-we in (4.291) corresponds to the first two terms of the

expansion of (I - e)P.

More generally, suppose a finite number m of outliers occurred during the first n time steps. The

prior probability of such an event is 6, ( 1 )n, . AU the outliers may have occurred during the most

recent (o time steps, resulting in

r.0 (4.292)
M M ! (CO-M

terms in the corresponding sum, which is consequently bounded. Alternatively, m - I outliers may have

occurred during the most recent o) time steps, and one during the earlier n -a) time steps. In the latter

case, the effects of that early outlier will have attentuated to O(e), by (4-158), and the corresponding

term will therefore be indistinguishable, to 0 ( e2 ), from the case where only m - I outliers occurred.

Clearly, there are

n -CD
I n - o) (4.293)

such terms. Analogous arguments can be made for m - 2, 6 outliers occurring during the last co

time steps.

Obviously, if no outliers at all occurred during the most recent (o steps, then this case is

indistinguishable, to 0 ( E2 ), from the case where no outliers ever occurred. The same would be true if

M - 1 outliers occurred, neither of which during the most recent o) time steps, and so on. In general,

therefore, the "no outliers" term has the coefficient

n - W + n -(O(I_E). + (I_,)n- I _,)n +
I j 2

n --<o n -co
E- (4.294)

,n -_0

n --w n -0)
I _E)0) 5' 'SM I- 8 )n -.(L,-m M (4.295)

M=0

1 y, + (4.296)

(I-E)", (4.297)
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which agrees with (4.160). Similarly, the "one outlier" term corresponds to the coefficient

-2 n -CO + n -0)
+ 2 +

n -(O
(4.298)MM=O

n -(O
e (4.299)

M=0 M

(4.300)

(4.301)

which also agrees with (4.160). Similar arguments may be made for higher numbers of outliers. It

follows from (4.2W) that the order of each term is

e (CO-M+l) = O(ee). (4.302)Mt

From (4.159), the most significant term is for the smallest possible m, i.e. for m 2, concluding the

proof.

Remark The analogue of equation (4.160) for the case n < o) is equation (4.219).

The following corollary is immediate.

CoroIllary 4-1 Let the conditions of Theorem 4.1 and Corollary 4.1 be satisfied for the system (4.1) and

(4.9), and let 8 be a real number for which (4.14) holds. Let o) be the smallest integer such that (4.158)

is satisfied. If (4.159) holds and if the distribution H has bounded moments, then

P( _Z0, l.-I )

N( 0; 90, MOn

n

+ N( 0,;
4 =n -<0+1

f N( H� -I 4- Hi - 1 Vn' -0-.,'

H,_1 Wi HT _Hi_l Vi Mi Vn' T TH-1 )h(�)dt

+ 0�, (4.303)
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for all n > (o, where, for i = 1, 2, and n > i,

!k = F.-I!k-I + F.-,M.'-, H.Ir.'-,-' H._IWI (4 .304)

M.' F.-, P'-, F.!, + (4.305)

pi mi - xv r i -I m. x (4.306)

r.' H. M.' Hj + D. R D.T (4.307)

V.' V.'-, P.'-, F.!, M.' -' (4-308)

Y; - I + V.' - I M.' H.!, ri-1-1 (,z-, - H.-IC-, (4.309)

V._, M._, H.TI ri_I _,M._, v,,-,
W.' n (4.310)

i�; -1 N( z -1; H, r.'-, (4-311)

subject to the initial conditions (4.169)-(4.177). The normalization constant satisfies

F.

+ e e f N( Z-1 -_�, Hi-, 3�,

H,_, Wi HT ),h(t) d4. (4.312)

Proof The proof is identical to that of Theorem 4.2, and is omitted.

4.2 A Fwst-Order Appro)dmation to the Conditional Mean Estimator

The approximate conditional prior probability distribution of the state 0, given the observations

zo, - - - , 1,_'I I is now used in an extension of a theorem due to Masreliez. This results in a fir-st-

order approximation to the conditional mean (Le. minimum-variance) estimator.

The following notation is used, respectively for the conditional mean and conditional variance of

0,

T := E [ 0 I -tLn (4.313)
)(E) _T

__. _..' )TZ. := E I 001. - L -0 (4.314)

In addition, the functional

P In -,"no=o'
V ...

P( 'Z I 10, 'Z_1' 110 =0, 71n-1=0 (4.315)

denotes the score function for the conditional probability of z -- i.e. the additive inverse of the gradient

of its logarithm - as defined earlier id equations (3.226)-(3-227), and similarly, for i = 1, 2,
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n

'9 CZ., -0 P( Z ... Z' Z, -Z-n 'lo 0, 0

P ( -Z, to, -Z, -2, zn

110 0, - -1 0 (4.316)

Finally, for i = 0, 1, 2, and n > i,

Z V jg� T ( Z (4.317)
n

denotes the additive inverse of the Hessian ot the logarithm of the conditional probability, i.e. the

Jacobian of-V4.

Theorem'4.3 Let the conditions of Theorem 4.1, Corollary 4.1, and Theorem 4.2 be satisfied for the

system (4.1)-(4.2). If h is bounded and differentiable a.e., then

T E )P, JC' 'I X, +1 L? + E (I (4.318)
T + O"C"

for all n > 0), where

V = + Mn Z, - IQ0 (4.319)
T. = + Mn rni i V"i T

Z + p. -y4+1) (4.320)

nno re 40 + I + Fe -K.0 f N z E) 0, MnO h d (4.321)

gni rn'+, f N( Z-, -t; Y�+,, Wn+i ) h(�) d� (4.322)

le( 'oo I -e) N( Zn; fl2, rnO ) + e f N( z 90, Mno h(t) d� (4.323)

(l-e)N(;.;OOrnO)+ef N(,z-t;,OOMO)h(4)dt

f N(L-1-t;v-�'+1,Wn'+1 ) h(�)dt (4.324)

f N(z--1-4;Y�+1,Wn',1 ) h(t)d�

with !E�, M't P', rni, Vi, V-�, Wni, ic,, and icn as defined in equations (4.161)-(4.168), subject to the
n

initial conditions (4.169)-(4.177). Furthermore,

n(J_F 0 To JCn +1 ni Y- ni + Op_)O, JCn'J Xn n + E (J_e) or (4.325)

for all n> co, where

O)T
0 = M.0 Mno 'P no ( i. - W Mno + In 10 LT 'T

E. (4.326)
xi = pi pi Vi T pi( ipi

V. + ('T T -7)n )T' (4.32
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and T' is given by equation (4.317), with (4.323) and (4.324).

Proof Note first that

P( 10, P( 10, (4.328)
P( Z 10, - Z-,

P -Z. -KO, , Z-, P 10, (4.329)

P( Z, lo, zI

P Z, P zo, Z-,
(4.330)

P( Z, I 10,

where (4.328) and (4.329) follow firom the definition of the conditional probability, and (4.330) from

(4-2) and the fact that Iv ) are independent.

It therefore follows that

T f 0, p( 0 I zo, z ) dO (4-331)

0, p( z I 0, p( 0, I z dO (4-332)
.10,

f f ( Z,ZO, - - -

1 - e )n -K. 4 N 0, 0, M.0

+ F n1 )n_l N( On; M.'

Wi _ Vni Mi Vn' T
f N( v,' +V.' (0, h(t) dt

+ 0,(e(l_e)n-2) I d 0, (4.333)

where (4.331),follows, from (4.313), (4.332) from (4.330), and (4.333) from (4.219), (4.2), and the

definition off.

Consider the flat term on the right-hand side of (4.333), i.e. the "no outliers among the first n

observations" term, and rewrite as

)n lcn 4

f Zn E) N( 0; M. d,
P 10, ;n-I

)n Cn IC.0

P In 10, .in-l

Mno Mno 90 f (,Z -0., 0 d,

00 f f z -- On N( 0, M.0 d e (4.334)



148 -

Now, by independence,

f (,Z P( Z I (4.335)

P( Z I ZO- Z-19'110=-O1, 1,nn-1=0 (4.336)

and moreover,

N( Q.; M.0 p I Lo, -z-n-,, ijo�O, TIn-I =0 (4.337)

It follows that

9. ) N( q.; 0 dQ.

P ( -Z. I 10' -Z-a-11 110 =0, Iln-I =0

P ( I I -Z(, 16-1,'no 0, nn-I 0 d Q (4-338)
p(,O,,z I z , --- ,z (4.339)

-0 -I, i1o 0, TIn -1 = 0 d-Qn

P ( -Z-n I 10, ' , In -1, 'TIO = 0, . ,, 0 ), (4.340)

from the definition of the marginal probability. Thus, using (4.184),

)n 0 f f ( z - 9, N( 0 00, Mno de,) 0,
P( Z, zo, Z-,

P( 110=0' Iln-1=0 I Z-_O

P Z, 10'

P ( Z, 10' Z-,,, 710=0, I lin-1=0 (4.341)

P( TIO=O, 71n-t=O I Lo, Z, ) %0' (4.342)

from the definition of the conditional probability.

Note next that

M.0 0, - 00 ) N ( 0, ; 00, MO N 00, M,,O (4.343)

so that

0, 00, M.0 d 0, f M no E) 00 ) N 0, 0 no, M., I d (4.344)

M.0 I W 'oo ) (4.345)

0. (4.346)

Hence,

M.0 0 _QnO) f z _O 6 00, M.0 d

f f ( Zn. - -_O. N( 00, M.0 dQ. (4.347)
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f Z f N( 0 00, M.0 dQ

+ j N( 0; 00, M.0 , f (�6 0, dO (4.348)

f N( 1; 00, M.0 f ( z - E) dO (4-349)

f N ( -0-. M.,O. ) -V-j. f ( z - ) d 0. (4.350)

'V,. f N( 1; 00, M.0 ) f ( z - ) dQ (4.351)

V P I 10, (4.352)

where (4.347) follows from (4.343), (4.348) from integration by parts, (4-349) from (4-346), (4.351) is

justified by the dominated convergence theorem (since both the normal density with R > 0 and h are

bounded and differentiable a.e., and hence, so is f ), and (4.352) follows from (4.340). Thus,

)n .��' 4 _ 0 f M.0 -' (0, 0, M.0 d,
M. 00) f E) ) N( 0;

P( Z 10' Z-,

P010=0, lln-1=0 Ilot Z-I

P( Z I zo, Z-,

P In I 10, -Z^-I, TIO= 0, 'nn-I = 0 Mno

p Z I -Zot 'Z-1, 'lo= 0, Iln-1 = 0

'V� p ( Z I -zo' ;-.-I, 'lo 0, 'n"-I 0 (4.353)

= p TIO 0, 71n-I =0 I -zo' Z Mno

P( Z I 10' - - ;.-I' TIO=O' TI.-I =0

V,, P(,Z I 10, ' - , ;n-1, TIO=O, ' , II.-I=O (4.354)

= P( 110= 0, Iln-I =0 I -1-0, in ) Mn'12 ( Z,, - 'oo (4.355)

where (4.353) follows from (4.184) and (4.352), (4.354) from the definition of the conditional

probability, and (4.355) from (4.315). Substituting (4.342) and (4.355) into (4.334) yields

)n f -0, )N(O 0,0, M,,o ) d 0,
P( Z -:0, f (�6

= P( 710=0, 71n-1=0 I 10, -Z.,) + Mno Z, - '(0 (4.356)

= P( TIO=O, lln-1=0 I -ZO, Z, ) Ino, (4.357)
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from (4.319).

But from the definition of the conditional probability,

P('qO=O' '1._1=O I lo, -;. ) P( Z I ;-O' - - Z.-,

P(.6 1 lo, Zx-l- 110=0' II.-,=O

P010=0' TI.-I =0 I .10, -Z-,-I (4.358)

P ( In I .10, In -1, no=o' "n.-I =0 I -er ic" 14 (4.359)

ftom (4.184). Since (y, are independent,

P( -Z. I -KO' Z_1"nO=O' , In-1=0

= P( fel. I lo, Z-I, T10=0' "n.-,=O P( 'V (4.360)

= N( 0; V, M.0 I-e) N( v,, 0, R ) + e h(v, (4.361)

1 -e) N( z; 00, r. + a f N(-z. M.' ) h(t) dt, -(4.362)

where (4.361) follows from (4.157), and the first term on the right-hand side of (4.362) from the fact

that the convolution of two normal distributions is also normal, with appropriate mean and variance.

Comparing (4.362) with (4.315) establishes (4.323). Substituting into (4.359), and using (4.168) and

(4.252), establishes that (4.334) can be rewritten as

)n . E,) 0 ) d,
f ( z. - _O 00, M.

P ( _zn I 10' Z-, N(J;

C r 'C. ', n.0 V, (4-363)

from (4.357) and (4.321).

Consider now each term in the summation in (4.333). Although these terms are not normal, they

involve convolutions of normal distributions. For this reason, manipulations similar to those above

(equations (4.334) and (4.343)-(4.352)) are still possible. Each term in the 4-ummation in (4.333) may

be rewritten as

)n-I j,'. 0
) f On f ( z N( Q; ();, M,,

P('Z lo, Z-,

f Wni _ Vi M"i Vi T )h(t)d� dO

1Cn r�
P Z, -Z O' -1

(I-e) N( z N( -On; !C, ?4.'

+ Vni Wni Vni M"; Vn' T
)h(t)dt dO,,,, (4.3',04)
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from (4.157). For economy of notation, define for given n and i the fimction

t; V Vi i i Mi V., T+ _ V.N( W. (4.365)g z -1 - V.' ),h(t) dt.

Then,

f N(.;.; R N( 0; M.,

W.i _ Vi Mi Vi Tf h(t) d� dO
0, N( 0;!k +M.r" z fl� P' g z.-l - V.'Q 0

n Q. ) d,

N( z; !k, rn' (4.366)

PI f Pni 0, - (i Mi r. Z

-Q� +M.' r.' z P' g( z-1 - V.',O ) dO

+ + Mni ri -1

f N( Q.; + Mn' r.' r Pn'

g Vn' 0, dl N( z; fl4, r"n (4.367)

where (4.366) follows from Lemma 4.2, (4.163), and (4.365). Note that
Ki _I i i T, i,

Vn V. V� Vn E)
g( (4.368)

Moreover,

N( ri f N( z,-,-�-.v�, VnMnrn' (Z -!k),

W.i _ Vni Mni rni -I Mi Vni T h(�) dt

P ( -Zn I 10, L-2, Zs, In-1, 110 = 0, Tli-I lln-I 0

P ( AL - I I 0, -Z, -2, -Z, -Zn

110= 0, Tli-I = 1, lln-I = 0 ) + 0 (E) (4.369)

P (-Z., -1, In I 10, L, In-1,

110= 0, = 0 ) + 0 (4.370)

Fina.Hy,

Y, -t-v, V.M.r" (,z 0'),
f n

Wni Vni Mni ri -I Mni Vni T h(g) d4

p 14 -1 I I 0, -Z-, -2, 14 1 '16'710=0'

p -Zj' -1 I -to, -Zi -2, L" -Zn,110=0, Ili-1=1, 'Tl--I=O
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-09 -Z,

"lo-= O' . ..... nn-1=0 (4-371)

Z. O' -21

110 0, Tln-i=O) (4-372)

from (4.316) with (4.166). Comparing (4.367) with (4.334), and using (4.368), (4.370), and (4-372),

establishes (following the reasoning of equations (4.335)-(4.357)) that (4.364) may be rewritten as

)n-I Cn r�

0 MiP Z, 101 f f N( ,

f N( z v I + Vi Wi _ Vi Mni Vi T h(t) d� dO

)n-I Xn

P Zn 10, In -1

P ( -Z, 101 - Z -2 9 Ij

110 0, lln-1=0

Vi T jl� (Z. _V+ Mi rni -1 + Pni _,_I _�+t ) I

+ O(e) (4.373)

p( 1 p )n-I Kn +1 X"i (9� + Mi rn; -1

+ pi Vni T +1 + 0( F2( I _Er-,
n (4-374)

)n -1 ICn +1 Xni Ti. + 0( e2( I _,)n-I (4.375)

where (4-374) follows from (4.370), (4.322), (4.252), and (4.168), and (4.375) from (4.320). Combining

(4-363) and (4.376) yields

no 'TO + e ( _,)n-, X"I + 0( E2(l
L Kn+1 (4-376)

and the equivalence of (4.376) and (4.318) is an immediate consequence of Th6orern 4.2.

Moving on to the estimation error covariance,
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)Tp(q-Q. L Z -Z (4.377)-09 M d9,

)Tp( Z,z f M

P( I I 10, z -1 dO (4-378)

f M-,T (P. -L )T f (I.
zo,

1_,)n 0 0)N(,e; 0 Mn

n N( 0; ja�, M.'

Wni _ Vi Mni Vi T
h(t) dt

+ 0"(0(i-ey-2) d _Q,, (4.379)

where (4-377) follows from (4.314), (4.378) from (4-330), and (4.379) from (4.219), (4.2), and the

definition of f

Consider the first tenn on the right-hand side of (4.379), and rewrite as

)n )T f(In 0

- f N( 0; 0, MO dOn
P (,Z _Z0, - )

)n j."

P( Z, lo, Z-,

f M -,00+,(O-L M -,60+,(O-L )T p Z,

N 0, 00, M,,O d 0, (4.380)

P ZO,

f (0, 0) _,e)Tf( Z, 0 0 d,0, N(0 Q, M.

O)Tf(Z. 0 0 d+ f (,(O - L N( Q; 0, M.

+ f 0)
9, _T Z 0 d

)Tf(, 0 0, Mn Q. N(

)T p Z, �oo 0 ) d, (4.381)(,(O-L ) (,(O-L N( 0; , M. o

Neglecting for now the coefficient, the first term on the right-hand side of (4.381) may be rewritten as
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M.o M.0 - I _W) N( (0, M.0 _(O)T f Z d,o
M.0 N( __.,M. )d, (4.382)

O)T f( Z _M.0 f N( 0; 00, M.0 ) d 0, (4.383)

M.0 f N( %; 00, M.0 ) f (,Z I

+ L f (Z. _(O)T 0I d, (4.384)

= P ( 14 I ZO, -Za-1, 110 "'2 0, Iln-1 0 MnO

) ] (9 _El 0 d 0, (4.3 85)
M.0 f N( M.0 ��q )T

f ( Zn 0, _n

= P ( In 101 -Z-n-1, 110 = 0, 'nn-I = 0 Mno

go V 9 _(,)O)T N( 0; 92, M.0 ) f dO (4.386)__;. f (' _

= p ( 14 I lo, , , , , IZA -I, 710 = 0, 11. -I = 0 ) M.0

Mno -V-;,, [ M,,O f M.0 1 0, - 00 ) N ( 0 n ; 0 0, M no

T
f z 0, dOn (4.387)

P In I -ZO, -Zn-1, TIO = 0, 71n-I = 0 M.0

'V� 2 f N 00, M.0 f ( Z, 0, ) d 0, -'O (4.388)

P( Z, I to, Z-I"q0=0' In-, =0 M.0

+ Mno V' P( ;, I -Z0, Z-I,'nO=O, TIn-1=0 ) Mno, (4.389)

where (4.382) follows from (4.343), (4.383) is analogous to (4.349), (4.385) and (4.387) follow from

(4.340), (4.386) is justified by the dominated convergence theorem, and (4.388) follows the same

reasoning as (4.382)-(4.386), as well as the symmetry of the covariance matrix. Thus, the first term in

(4.381) becomes

)n

p 1. zo, Z, -1

((n _(O) On 00, M,,o d 0,

)Tf (Z. _.n N(

P( 710=0, "Iln-l -Z

-0 M.0

+ MOn
p In 10' In -1, Io 0, 71n-I =0
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,V' P( -Z. I 10, - ;.-,'no= O, - - - "n._I=O )M.' (4.390)

as in (4-354).

Consider next the remainin terms in (4.381). Note that since 00 and LT are measurable with

respect to the conditional probability meas= in the integrals,

f (Q:_T _00)T f (,Z N ( 0, ; 00, M.0 ) d 0,

P ( zn I .10, In _I, no = 0, 11. 90_T (,TO_oo)T (4.391)

)T f Z, 'Ej 0 ) d,f (19, -,(O) (,(O-L N ( 0, ; f) 0, M. 0
p(zn I Lo, zn - - TO_(O) (,(O_T.)T .392)

_I, TIO = 0, (4
f (,90_ (O

,T)(,_,T)Tf(,z 0 0) N( Q; 0, M. .) dj

p ( Zn I .10, Zn qo = 0, rl. T T _90)T._)O (4 393)

Moreover, completing the square yields

(L?_ O)T 0 0) M )T + 0) (O ) T_(,)O - L + ( T (O-L (L

(T _(O+(O_L?)T _ (,(O_TO)(,_TO)T(L 90 + 90 - V _, , _.. __. oo (4.394)
_ O)T. 0 0) O)T

(L -,10) (L 'T (9, _,T 'T (4.395)

O)T(L -,10) (L _ 'T

M.0
P ( -Z. I 10, - Z, -1, TIO 0, Tl.-,=O

P( Z, I 10, _z_,_I,11O=O, '%_1=0

V P( Z, I'ZO, Z-,, 710=0, nn-1=0 Mno, (4-396)

from (4.355)-(4.356). But since

V.
P Z, I 110, Z-I, T10=0, nn-I =0

VZP(;, I 10, 110=0, Tln-1=0

P in I 10, ;n-1, 110 =0, - TIn-I 0

P( 1. -0 16-1, 110 = 0, TIn -1 0

P( 1. I ZO, Z-I, 710=0, n.-I=O
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P( ,Z I Z 0

P( Z I -Lo, z-i,'no=O, ','n.-i=O (4.397)

it follows, by substituting (4-390), (4.396), and (4.397) into (4.381), that

Fe
P( Z Lo, Z-,

f (I _T _T Z _9 9 00, M,,O ) d-O

P010=0, "n.-,=O I lo, - Z

M.0 M.0 p 0 0 )M.0 + (T TO) (,T _L?)T
n (4.398)

(I_. )n Xn +1 X.0 (4.399)

where (4.398) follows from (4.317) and (4.399) from (4.326) as weU as (4.359), (4.362), (4.252),

(4.168), and (4-321).

Consider now each term in the summation in (4.379):

FE 1C,, 1�
)Tf( Z M.�

p -Z. 109 Z, 71

N( Z i i Mni Vi T
_t;y�+Vn ().._I),Wn_V. h(4) d� d,

p Z, I 10, -Z.-,

f (0, -L M _,T )T [ (1-F-) N( z; 0, R + O(F.)

N( 0; !!�, M,, g ( z.-I V.' 0, dO (4.400)

firom (4.157) and (4.365), where

f (,(-,T)(,(-L )T N(z.; O, R

N( O..; !g, Mn' g( li-I Vn'� d-

f -,T)(-(-,-L )T N + Mn' rn' Z Pn'

g zi-I Vn' 0, dl N( z; !k, rn' (4.401)

T

0, Mni rni -I Z, -mi ri -1 z
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piN(,Q; +M.r.' -'(,z

g ( z. V.' 0, ) d 0 N( z; r.' (4.402)

where (4.401) follows from Lemma 4.2. Comparing (4.402) with (4.380), u sing (4.368), (4.370), and

(4.372), and following the same reasoning as before, establishes that

)T f 'Z _ I ) N( M'iT ) (a. IT
P In 10, f mo -,

f Wni _ Vi Mi Vni T ) h(t) dt dO

Xi ji + 0 ( E2 (I _ )n -1
X (4.4W3)

so that

n1:n I E)n Cn +1 E., + e ( I - )n -1 1Cn +1 it' T� + 0( e(l-,)n-1 (4.404)

Once again, the equivalence of (4.404) and (4.325) follows from Theorem 4.2, completing the proof.

(This theorem generalizes the result in Masreliez, 1975.)

Remark The approximate conditional-mean estimator of Theorem 4.3 has the following properties:

(i) The analogue of equations (4.318) and (4.325) for the case n < (o are equations (4.376) and

(4.404).

(ii) Both Theorem 4.2 and Theorem 4.3 are based on the assumption that outliers occur rarely relative

to the dynamics of the filter. In the unlikely event that two outliers occur within less than a) time

steps of each other, equation (4.320) -- which shows that T is linear in suggests that the

estimate would be strongly affected. This implies that the estimator developed here is robust in

the presence of rate and isolated outliers, but not to outliers occurring in batches. This issue is

further discussed later in this section.

(iii) It is easy to see that

K- 11 ICno = P (- TIO = 0, 11n-1 = 0 1 'z (4.405)

and

_)n +1 Cni = P ( T10 = 0, Ili _I= 1, lln-1=0 I --'O, Z (4.406)

i.e. the estimator is a weighted sum of stochastic approximation-like estimators, with weights

equal to the posterior probabilities of each outlier configuration. These probabilities are

conditioned on all the observations, including the current one.

(iv) Unlike the Kalman Filter, the estimation effor covariance 4 (i.e. the conditional covariance of

the state Q) is a function of the observations. Indeed, the Gaussian case is the only one where

ihe error covariance is independent of the observations. Note, however, that the covariance is a
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function of a set of matrices (Mij, (Pi), (rij, (V.'I, and (W.'), which are themselves

independent of the observations. Thus, they can be pre-computed and stored, as is sometimes

done with the Kalman Filter. This would drastically reduce the online computational burden.

(v) The estimate of Theorem 4.3, as well as its error covariance, are both fairly complex. In all but

the simplest cases, obtaining them will be computation-intensive. However, the structure given in

Theorems 41 and 4.3 includes banks of parallel filters and smoothers that are entirely

independent of each other. This suggests that the estimate derived here is well suited to parallel

computation.

(vi) The error covariance T, includes a weighted sum of quadratic terms of the form
L - _T_.' L _T�)T. In some sense, this sum measures the disagreement among the parallel

estimators, weighted by the posterior probabilities of each outlier configuration, and can be

regarded as a price paid for analytical redundancy.

(vii) The "robust Kalman Filter" of Masreliez and Martin (1974, 1977) is approximately equivalent to

the zeroeth-order term in equation (4.318), i.e. to 7,'O as given in (4.319). This may explain its

good empirical performance, as reported in the literature, despite the questionable assumption of

normal conditional prior on which it is based. It is also instructive to compare _T; with the robust

smoother of Niartin (1979).

(viii) It is easy to verify that, for e0,

V N( z 0
(4.407)

=n N z 00, 17.0

= r.0 - I ( Z. -o- .O ), (4.408)

so that L reduces to the Kalman Filter.

The following corollary is immediate.

Corollarv 4.3 Let the conditions of Theorem 4.1, Corollary 4.1, and Theorem 4.2 be satisfied for the

system (4.1) and (4.9). If h is bounded and differentiable a.e., ffien

OL? + E(l + OF((,)2p2)
L 1c. +, icn (4.409)

for all n �! o), where
,TO T H. (O

Mno H _2 (4.410)

H. + pi Vi THT Z. H, Vei + mni HnT r i z _1 +1n (4.411)

(I-e)-K.O+j + e f N( z H. 00, M.0 ) h(t) dt (4.412)

lEni O -P-) 1Cni+1 fN( z --1 - t; Hi -1 v'+,, W.'+, ) h (t) d t (4.413)
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le (Z -H. W) 1(1-e) N(,z; H. W, r.0)

+ e N(z -t;H., 0) h(t) d�J 00, M.

I-e) N( z 0

+ N( z H.!O, M.0 h (t) d t (4.414)
1

N( z--I-t; Hi i +I, Wi +1 ) h (4) d (4.415)
n th

with M-i, P', r-', V., M4, Wn, 1,�, and icn as defined in equations (4.304)-(4.312), subject to e

initial conditions (4.169)-(4.177). Furthermore,

e)" r..+, X'0' I;'0 + e 'Xni Y-.i + O'P(We2) (4.416)

for all n (o, where
y' = M.0 M.0 HnT p.0 ( Zn _ Hn H. Mno + 'T 'T -O)T

7, (4.417)

= Pni Pi vni THT %pi ( Z, _Hi ipi _T)T,
YE.i n -1 n __,_I _1)�+J Hi_J Vn . + (L - -T-;) (L (4.418)

and 'F.' is given by equation (4.317), with (4.414) and (4.415).

Proof The proof is identical to that of Theorem 4.3, and is omitted.

The matter of the linearity of T in z is an important lirnitation of the estimator presented here. One

way of dealing with this problem is to retain the function f rather than making the approximation of

equation (4.364). Thus, using (4.365), each term in the summation in (4.333) yields

0, N(� 0; _Q4, M.' f 0, ) g V.' 0 0

Mi f M.' 0 N( 0; !&, Mn' f ( z g (.L-I V.' d,
+ 9i f N( 10; �', M' f z - 0, g z.-I - V.' 0, d 0,

Rn n (4.419)

and proceeding as before (equations (4.343)-(4.352)),

Mn' (0, N( 0; Qn, Mn' f ( 1. g ( ;i-I V.' 0. On

f N ( 0, ; 0', M.' f ( z -E)�n V.' 0, d,19 (4.420)

f N( 0; !k, M.) f 'z - I ) 9 ( -Z, - I Vni d 0, (4.421)

N( Qn; !k, M.' V z - _0.. ) g( z--� - V.'Qn dO

N( 0; !k, Mn' ) f z - fl) V, g( z. d (4.422)

_.n V., On

N( Qn; f z - E) g z- -I - V.' 19, ) d E)
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Vi T )f (I. - -0 z.-I - V.',O ) d (4.423)

_' f N( M. _. ) g (_.,

where (4.421) follows from integration by parts, (4.423) holds by the dominated convergence theorem,

and use is made of equation (4.368). Since

N( 0; !k, M.' f 0, g z.-I - V.' 0, ) de,

P (-Z, -1, lo, -Z, -2, I -Z

(4.424)

it follows that T; may be expressed as a function of influence-bounding functions that are the scores of

a joint probability distribution. Similar arguments also apply to the derivation of An obvious

difficulty with this approach is that, since the function g is itself a convolution, equation (4.424)

represents a double convolution. This may be Wficult to obtain in practice, except in cases where h has

a special and convenient form. If, however, it is assumed that �6 and ;i_1 are nearly conditionally

independent, i.e. that

P 1i -1, Z, I ;.0, -Z, -2, -Zn-l,, 110=0, wqi-l= 1, nn-1=0

P( Z -I I 10, 14 -2, 14, In-1, 110=0i t nn-1=0

P( Z, I .10, Z, Z-I, 110=0, Ili-I= 1, 'In-1=0

+ (4.425)

where A is sufficiently small, then it is easy to see that equation (4.320) becomes

T' T (4.426); = a4 + Mni Z, + Mn' Vn' 131� ( L -I -

with appropriately defined influence-bounding functions. An important difficulty remains, however:

while T�' is no longer a linear function of z, it is easy to see (equation (4.161)) that g�+, still is. Thus,

while the influence of the outlier may be bounded at the current time, it is not bounded for future time

steps. This limitation is due to the fact that the approximations are of first order. Under the assumption

-that at most one outlier occurs within (o time intervals, the posterior probabilities multiplying each term

in (4.160) and (4.318) take care of bounding the influence of the outher, thus. there is no further need

for any non-linearity in (4.161). When that assumption is violated, however, this mechanism fails, and

the influence of multiple outliers cannot be controlled. Using a second-order approximation would

eliminate the non-robustness of the estimator against pairs of outliers within less than (o time intervals,

but not, of course, against three or more outliers within the same period. Higher-order approximations

are briefly mentioned-in Section 6.2.
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4.3 Further Approximations to the Conditional Mean Estimator

The estimator of Theorem 4.3 and its corollary makes explicit use of the exponential stability of

the Kalman Filter. It retains a finite number (o of terms only, so that the complexity of the estimator

does not increase without bound as n -+ -. However, as the proof of Theorem 4.1 makes clear, the

parameter (o is a fimcdon of various upper and lower bounds, and is therefore necessarily conservative.

It may often be sufficient to retain a much smaller number of tenons to preserve a comparable degree of

accuracy. Furthermore, -(o is not exactly trivial to obtain, making ways of eliminating this parameter

quite desirable.

This section briefly discusses a riumber of ftnther approximations, designed to simplify the

estimator without sacrificing precision. The first two are based upon tests to decide which of the

possible outlier configurations (i.e. each set ( 't1O, T1,_I 1) are significant. The third is geared

towards maldrig a hard decision as to which single configuration best represents the observation history,

and retaining it alone. As pointed out in Section 1.2, such hard decisions sometimes result in better

performance at the nominal (i.e. normal) model.

Approximation 4.1 For the sake of discussion, suppose the current time is n > co, and let 1, denote the

set of integers I n - (o + 1, - - - , n ). For each i r= 1, , it is desired to make a decision as to whether or

not to retain the corresponding term in the conditional prior distribution given by (4.160).

Clearly, if no outlier has occurred, or if one has occurred long enough ago that its effects on the

i th term have sufficiently attenuated, then the i th term is indistinguishable from the Oth term and can

be aggregated with it. Consider the alternative hypotheses

HO: Q� is normally distributed

HI: lk is not normally distributed (4.427)

and the test statistic

S (.,i _ (O )T M.0 -1 (O (4.428)

X2Under Ho, S is . -distributed with q degrees of freedom: if the null hypothesis cannot be rejected, then

the i th term can be dropped (i.e. consolidated with the Oth term).

Note that this test is designed to be conservative: if an outlier has occurred recently, then neither
0, nor 0 th be invalid models, they are

� will be normally distributed. Thus, even though they might bo

each retained individually. Note also that the norming matrix in (4.428) is the inverse of 'W"O' not that

of 1/2(M,,O+,W,' ) as might be expected. This too is to ensure that the test is conservative: the nominal

covariance matrix M 0 is based on the hypothesis that no outliers are present, and is thus the minimum

obtainable error covariance. Hence, the statistic S will be very sensitive to differences between the two

estimates 00 and 1k, i.e. the test will be powerfiA.

Defining 1,, to be the set of all i for which Ho can be rejected, the conditional prior takes the

form

P 10' 'z -1
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T', N(&; M.0)

+ e( N( M.'

N(z.-I-4; v Vi Mi Vi T

+ V. 0 Q� ), W. h(4) d4

+ OF (0).2 (4.429)

where a), is the number of elements in the set 1, and the normalization -k,, is defamed appropriately.

Similarly, the estimator is given by

0-0 On i�-+Iitl)'To + E(l-e) +1 -T-; + 0, ( 0), Fe, (4.430)

n n

and its error covariance by

1. = (I-e) Con kn +1 7t." Eno + e e )Wn k. +I wni T� + OP ( (4.431)

To ensure that the error term is still 0,, ( E? it is necessary to choose the level of the hypothesis test

accordingly. Since MO is bounded below, by equation (4.90), requiring that

S = O(e) (4.432)

achieves the desired accuracy, by virtue of equation (4.127).

The same algorithm is implemented at the next time step n + 1, starting with the set

n +I 1, ( n -(o + I

Approximation 4.2 The conditional prior means f� are easy to compute, making Approximation 4.1

easy to implement. Under some conditions, the posterior probabilities of each outlier configuration may

also be easy to obtain. In those cases, a more direct approximation is possible.

Equations (4.184)-(4.185) and (4.405)-(4.406) show that the coefficients of each term in the

expressions for the conditional prior and the conditional me-an (respectively) are equal to the posterior

probabilities that each outlier configuration has occurred. It is intuitively clear that those terms

corresponding to the most improbable models may be dropped, resulting in simpler expressions and

reduced computational burden. Since M'3 is bounded below, and h is bounded above. each term is

itself bounded, and the coefficients can therefore be used for this purpose.

Always retaining the nominal (Oth) term, a criterion for dropping terms from the expresion for the

conditional prior is

E( 1-e)-' x. Vni f N(g;-1-t;y�,W.' )h(�)d� < (4.433)

or equivalently

e -K. f N( z, v h(t) d4 < Op( c2
W. (4.434)



Similarly, a criterion for dropping terms from the expresion for the conditional mean is

e ( 1 - e ) r..+, 1Ci < OP( 0 ). (4.435)

As before, (o. is the number of terms retained, and the approximate distribution, mean, and variance are

given by equations (4.429)-(4.43 1), respectively, with I, redefined as the set of i that do not satisfy

(4.434)-(4.435).

Appro.,dmation 4.3 Finally, a third approximation is based upon choosing only one term at any given

time, i.e. making a hard decision as to which model best represents reality. Although this approach is

somewhat ad hoc and lacks strong theoretical justification, it is nevertheless attractive for the following

reasons:

(i) The principal difficulty in implementing the estimator of Theorem 4.3 and its corollary is the

need to perform, in real time, several convolutions at each time step. These convolutions are

needed to compute both the weights of the parallel estimates and the overall normalization

coefficient. Retaining only one term reduces the number of convolutions that need to be

calculated to at most one per time step, and only following the detection of an outlier.

(ii) It was mentioned in Section 4.2 that the estimator of Theorem 4.3 is non-robust when two or

more outliers occur within less than a) time intervals. In this approximation, a test is performed

to detect outliers at each time step, and appropriate action i's taken when one is detected,

regardless of how recently a previous outlier may have occurred. This results in an estimator that

is more resistant to the effects of a burst of outliers than that of Theorem 4.3.

(iii) As stated earlier in reference to the estimators of Guttman and Pefia (1984, 1985) and Ershov and

Lipster (1978), using mixture distributions as priors in a Bayesian setting can result in drastically

reduced performance at the nominal model, unless competing models have negligible overlap.

Thus, unless the outlier distribution h is such that the posterior probabilities for each outlier

configuration are always either near zero or near unity, some "smearing" is Ukely to occur,

resulting in suboptimal performance when no outliers are present. That effect is eliminated when

a hard decision is made and only one term is retained: in that case, whenever no outlier is

detected. the optimal (Kalman Filter) term remains in use. Furthermore, the main argument

against such a hard decision -- the question as to what to do in case of uncertainty -- is not

relevant here: if an observation is not an "obvious" outlier, then a conservative approach would

dictate that it be treated as an ordinary observation.

For an observation ;,, consider the alternative hypotheses

HO: Z,, is normally distributed
(4.436)HI: ;, is not normally distributed

and the test statistic

ej )T rj -1 j (4.437)

Initially, j equals zero. As long as no outliers occur, 00 is clearly normally distributed (it is the mean
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of a Gaussian process conditioned on Gaussian observations). Thus, under Ho, S is )?-distributed with

p degrees of'freedom. As long as the null hypothesis cannot be rejected, the Oth term N( Q; 90, M,,O )

(i.e. a standard Kalman Filter) can be used to approximate the conditional prior. Suppose the null

hypothesis is rejected at some pre-selected significance level (x for the observation z--,. Then, set j =i.'

Since _Q� is independent of z.-I (equations (4.161) and (4.169)), it is still normally distributed, and the

statistic defined in (4.437) can still be used in a X� test.

Note ftuthermore that, by Bayes' rule,

P( 0, I Lo, Z-,, 110=0' "ni-1=1, "nn_1=0

P( Ai -I I lo, - - -L-2, 1, la-1, 110-=0, 1, Tln-1=0

P( 19). I 10, --Z,--2,-Z,, -Z-n-1, 710=0, 11n-1=0

P (z_1 zo, -Z, --Z, Z IR-1,

110=01, =0 (4.438)

f P -Z, 'o I a, -Z-j'- 2, A, AZ n - I

110 Oi, 11i - I 1, n - I = 0 d 0,

P 10, 1, -2, Z Z, -1, 110 0, Ili

P -Z, -1 Z 0, 1, -2, L -Zn - 1,

'nO=O, Ili-I 1, 11n-1 =0 (4.439)

f N( z.-I -t, v, W.' h(t) d4 N( 0,; 0" Mn,

W,f N(.gi-I - _�, y4 V.' (0, _Vi Mi Vi T ) h(t) d�, (4.440)

from (4.214) and Fubini's theorem. Thus, following the detection of an outlier, the conditional prior

density is given (approximately) by (4.440), until the effects of the outlier have sufficiently decayed.

The point of sufficient attenuation can be determined by ensuring that

< f N( zi- _Y� - VnI (91 __(L ), Wni -V., Mni V�'i T h(t) d�, I +E (4.441)

N( zi_1 - v ' ) h(t) dt

for all 10, or, from equations (4.254)-(4.262), by verifying that

I I V"i II = Om, (4.442)
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which is simpler. Once this point is reached, the conditional prior may be approximated simply by the

i th Kalman Filter, i.e. N( Q; fi�, M,, ).

In the unlikely event that another outlier is detected prior to this point, say z -1, it would appear

that the above process can be repeated starting at the new outlier, i.e. replacing i in (4-432) by k, and

using a modification of the initial conditions (4.169)-(4.174) so that the ith filter, not the nominal (Oth)

one, is used to initialize the kth term.

The equivalent algorithm for the conditional mean estimator and its variance should be obvious

from the above discussion. The estimator is TO, until an outlier is detected. Following detection, -T, is

used until the effects of the outlier are judged to have decayed sufficiently, or until another outlier is

detected. A slight modification would consist in performing the outlier test prior to, not following, each

update. In that case, a Kalman Filter would be used until an outlier is detected, T0 at the time of

detection, and 7" ollowing it. If Huber's influence-bounding function W, is used, as discussed further in

Section 4.4, and an observation is considered an outlier when it lies in the region of truncation, the two

methods are identical.

4.4 Choosing the Noise Distribution

As discussed in previous sections, the significance of the functional y lies in the fact that it

processes the innovation so as to mitigate the effects of observation outliers. "Overprocessing" the data

results in loss of efficiency at the nominal modei, while "underprocessing" makes the estimator

excessively sensitive to outliers, i.e. non-robust.

In Sections 2 and 3, the goal is to estimate a deterministic parameter -- either a time-invariant

location parameter, or one that changes in a known and deterministic fashion -- given observations

corrupted by heavy-tailed noise. Since the parameter itself is deterministic, asymptotic performance

measures are used, following the lead of Huber. Estimators are designed to minimize the asymptotic

estimation error covariance under the least favorable noise distribution, and these are shown to be

saddle-points, i.e. optimal in the minimax sense.

In Section 4, the goal is to estimate the state of a stochastic time-variant linear dynarnic: system.

In other words, the parameter to be estimated is itself random, and the problem consists in optimally

tracking it, rather than achieving minimum asymptotic estimation error. Thus, approximations to a

conditional mean estimator are sought, since such estimators are known to achieve minimum error

variance at each point in time. Throughout the discussion in Sections 4.1-4.3, however, the "outlier'

noise distribution H is treated as known. In other words, the results of Sections 4.1-4.3 are better

characterized as non-Gaussian filters than robust ones. To achieve minimax robustness in this case as

well, it is necessary to choose a least favorable distribution H, and show that the solution satisfies a

saddle-point property.

It is clear from equations (4.318)-(4.320) and (4.325)-(4.327) that the estimation error variance T.,

depends crucially on the distributions of the innovation and residual terms. The relationship between

these distributions and T, is complicated, as is fairly evident from these equations, but there is an

additional factor that makes this problem especially difficult the innovation and residual terrns -are
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clearly sums of normally distributed random variables and random variables distributed according to a

member of the e-contarninated normal neighborhood of distributions (e.g. see equation (4.362)). The

main difference between Huber's formulation and this one is thus that the former involves the

neighborhood P, whereas the corresponding neighborhood in the latter case is

Po 11 4>2- P- 1 - (DI + e 0,2 * H : H E S (4.443)

where (DI and 02 are given zero-mean normal distributions. To appreciate the distinction, note that

when (DI = 02, Huber's case involves replacing outliers, and (4.443) additive ones.

The problem of minimizing the Fisher information for the location parameter of neighborhoods of

the form (4.443) was first posed by Mallows (1978), who postulated that the minimizing H concentrates

its mass on a set of isolated points, and that it has a geometric form; Donoho (1978) proposes a slight

variant, also of a basically geometric form, and offers some numerical results supporting his choice.

This issue has been widely discussed in the literature, particularly in a Bayesian setting where either the

prior or the noise distribution is normal and the other distribution is sought to maximize the expected

risk. Since it has been shown (Brown, 1971) that the Bayes risk is a linear function of the Fisher

information, the problems are equivalent. This connection was used in the present context by Bickel

(1981, 1983), Levit (1979, 1980), and Marazz, (1980).

Mallows (1980) states without reference that B.F. Logan demonstrated that the least favorable H

cannot have a continuous density, but that "after much effort I have been unable to determine" the

distribution in question. Casella and Strawderman (1981) show that if the least favorable distribution is

constrained to place all its mass within some interval [ -m, m ], then, for small rn, it concentrates on

the end points. Bickel (1981) investigates this case for large m, and derives a cosine-shaped density that

is a second-order approximation of the least favorable one. Bickel and Collins (1983) prove under

certain regularity conditions that the least favorable density concentrates its mass on a countable subset

of isolated points, possibly including Marazzi (1980) also provides a proof that the least

favorabld distribution is discrete. None of these authors, however, are able to derive exactly the

distribution minimizing the Fisher information in this case.

A conclusion strongly implied by this discussion is that the least favorable distribution in the

neighborhood P ,,, is of a highly complex shape and extremely difficult to derive, and, moreover,

that since the very choice of neighborhood is to a large extent arbitrary, the effort necessary is perhaps

unwarranted. An approximation (also suggested by Maraz2i, 198?) consists of the following: since

P J> I-*21 EC P, the least favorable distribution in P,, clearly has Fisher information no greater than that

in Indeed, the least favorable distribution in P., (derived by Huber and given in Theorem 2.5)

can easily be shown not to be a member of PDl,(D,.E, by noting that the support of the minimizing H

distribution is not R, so that it cannot be the result of a convolution with a normal distribution 02.

Thus, since it was shown to be unique, its Fisher information is in fact stri ctly less than that of the least

favorable distribution in PDI.4> Consequently, a conservative approach to approximating a minimax

solution is simply to use the least favorable distribution in P,; this has also the- additional advantage of

simplicity.



167 -

Approximation 4.4 Note first that the conditional distribution of the innovation term is given by

An T1n-I=0

(I-e) N( 'z -'00; 0, rno + f N(j. --0,0-4; 0,M.0 h(t) d�. (4.444)

Thus, defining the normalized innovation as.

that ro -'A (z -00), (4.445)

it follows

P( 'e I 110=0' "n._I=0

I-e) N( P 0,

+ 6 f N( e 0, To, W rno I r,,o I -v' hr 0 "i 4) d�. (4.446)

Suppose that h is such that the above distribution may be approximated by

P( An I nO=O, IU-1=0

0-e) N( e; 0, + e h*( e. ) + (4.447)

where h* is the Huber distribution of equation (2.163), and A is a remainder term. As discussed earlier,

there is no h for which (4.447) holds with A = 0, but there may be some for which A is small. A

similar argument can be made to show that
+1 _z,_I - Hi-,

P( W. _�+I) ) I 110=0, 11n-1 =0

h* ( gn ) + Al. (4.448)

Thus, the estimator Of Corollary 4.3 reduces to (4.409) with conditional estimators given by

= (O + MOH T rO -'A
ITO ?t n n r.0 z - Hn 90 (4.449)

and

T + Mni HnT r, i -1 Ht
n

Pi Vni THT
+ Wi Wn'+l (zi-I - Hi-, (4.450)

Note in passing that q I is YE at the limit 9 = 1, and the vector version is the same. componentwise.

The coefficients Id and Irni, and the conditional covari ances 1,0, and li, are defined similarly:

I C.0 _W -1/2 (I -H. 00 (4.451)

n e W"i +1 -,A (4.452)

Y, no M,0 - M"'O HnT r", -I p ri _'/2 (_z. - H. _(,0 r,,' -1 H n Mno

O)T+ L 10 (L - T (4.453)

P i Vi T HiT Wnj +I W j +I _,,j _I Hi_j Y4+1) W, Hi ipi
+1 V" n

-T+ (L T, (4.454)

with T. and 'Pi defined analogously, by equation (4-317). This approximation can, of course-, be
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combined with either of Approximations 4.1-4-3.

Deriving a least favorable distribution for the neighborhood P(1>1,4>2,, seems to be destined to

remain an open problem for a while longer. In the interim, it would -appear that Approximation 4.4

provides a simple and intuitively appealing framework for the robust recursive estimation of the state of

a stochastic dynamic system in the presence of heavy-tailed observation noise.
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5. Numerical Examples

Section 4 describes the derivation of a new robust recursive estimator of the state of a discrete-

time stochastic linear dynamic system in the presence of e-contaminated Gaussian observation noise, as

a first-order approximation to the conditional mean given all past observations. As discussed in Section

1.2, there are a number of other robust recursive estimators in the literature, but many are based on

heuristic arguments and ad hoc assumptions, making a theoretical comparison all but impossible.

This section presents the results of some Monte Carlo simulation experiments, comparing the

performance of several estimators for a number of different observation noise distributions. The purpose

of these simulations is emphatically not to determine the best method: most estimators could be "tuned"

to specific applications, and it is possible that better performance could be obtained given enough

preparatory work. Rather, this section describes a comparison of several estimators, in their published

forms, with the first-order conditional mean estimator derived bere, in order to give a general idea of

their respective strengths and weaknesses.

For simplicity, only the scalar time-invariant case is considered, with F < 1 and H 1. In other

words, the dynamic system is given by

0. +1 = F 0. + w. (5.1)

and

Z,, = On + V, 1 (5.2)

where 00 and (w,, I are independent random variables with distributions N( 00. 00, MO ) and

N( w,,; 0, Q ), respectively, and I v, I are independent identically distributed random variables with

various distribution.

Section 5.1 discusses the observation noise distributions, and Section 5.2 describes the estimators

to be compared. Performance criteria are discussed in Section 5.3, and experiment results follow.

5.1 Observation Noise Distributions

A good robust estimator has at least the following properties: it is resistant to outliers, and it

looses minimal efficiency at the nominal model. To verify these properties, several observation noise

distributions were used in the simulation experiments, ranging from very light- to very heavy-tailed

ones. The choice of distributions follows the well-known Princeton robustness study (Andrews et al..

1972, pp.67-68). The following distributions were used:

W The Gaussian Distribution. To verify the performance of each estimator at the nominal model, i.e.

when no outliers are present, the normal distribution is used in the first set of experiments:

L( v,, N( v,.; 0, R (5.3)
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As discussed elsewhere, there is a tradeoff between efficiency at the nominal model and resistance

to outliers, and it is worth comparing the performance of each estimator with and without

observation outliers.

(ii) The Scale-Contwninated Gaussian Distribution. The most commonly used form in modeling

outliers for detection and robustness studies is the two-component Gaussian mixture, where both

distributions are zero-mean, but one has a greater variance than the other (see for example

Titterington, Smith and Makov, 1985, pp.22-25):

L( v. ) = ( I - e ) N( v.; 0, R ) + e N( v.; 0, R,., (5.4)

with R,,, > R and 0 < e < 1. Although the tails of the normal distribution are relatively light, this

model is the basis of a number of robust estimators in the literature.

(W) The Laplace Distribution. Heavier tails than the Gaussian mixture are provided by the Laplace

(or double-exponential) distribution, which is used as a contaminant to the Gaussian distribution:

I v I
L( v. I - e ) N( v.; 0, R ) + e e R.. (5.5)

, 72 R �,.,

Here, the Laplace distribution is zero-mean and has variance equal to Ro,,,. It is worth noting that,

as shown earlier, Huber found the least favorable member of the 0--contaminated normal family to

have exponential tails (in the no process noise case).

(iv) Tukey's "Slash" Distribution. This distribution, for which an analytical expression is not

available, is defined as follows (Andrews et al., 1972, p.68): Let

L( x,, ) = N( x.; 0, I (5.6)

and

L( y, ) = V yn ; 0, I (5.7)

where Q y; 0, I ) denotes a uniform distribution over the interval 0, I Then, the distribution

of the random variable

X,
Vn := (5.8)

Yn

is named Tukey's "Slash" distribution. It is easy to see that it has extremely heavy tails, and can

therefore be used to test the performance of robust estimators in the presence of very large

outliers. It is used as a contaminant to a Gaussian distribution, as in Equations (5.4) and (5-5).

(v) The Cauchv Distribution. Another model, also for heavy-tailed noise, is the Cauchy distribution.

It is also used as a contaminant:

L( v, I - E ) N( v,,; 0, R ) + (5.9)2IC t + Vn

The Cauchy distribution above is zero-mean and has kffinite variance. This distribution too is

frequently used in robustness studies.
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(vi) Fixed-Amplitude Outliers. To test the performance of robust estimators as a function of the

magnitude of the outliers, the following distribution is also used:

L( v. 1 - e ) N( v.; 0, R ) + e 8( v. (5.10)

where 8( v,, - -,rR7,, ) denotes the Dirac delta function.

5.2 Recursive Estimtors

The following recursive estimators are used in the present study:

(i) The Kalman Filter. It is well known that the Kalman Filter is optimal both in the sense of

minimizing the mean squared error (regardless of any distributional assumptions), and, if the

noise is Gaussian, in the Bayesian sense (regardless, this time, of the cost function). Thus, it can

be used as a benchmark in the nominal case. The performance of the Kalman Filter does,

however, severely degrade in the presence of outliers. The appropriate equations appear in (1.3)-

(1.9), with F. = F, Q. = Q, and H,, = D, = 1.

(ii) The Guttman-Pefia Estimator. As discussed in Section 1.2, Guttman and Pefia (1984, 1985)

propose a Bayesian framework for adjusting the Kalman gain a posteriori, according to the

respective probabilities that an outlier has or has not occurred. In principle, this approach could

be used for any two (i.e. underlying and outlier) noise distributions. Indeed, it performs best when

the noise distributions have relatively disjoint supports. However, Guttman and Pefia only give

the scale-contaminated normal case, and do not treat other 1drids of observation noise. The

equations for this estimator are identical to those of the Kalman Filter, except that (1.5) is

replaced by

I". = M. + R ( z. (5.11)

where the posterior observation noise covariance matrix R (Zn is given by

( I -E ) N( v,; 0, R ) R + i N( v,; 0, iz""' )'k""
R (z. (5.12)

I - N( v,,; 0. R ) + i N( v,; 0,

where is the modeled outlier variance and i is the modeled fraction of contamination. The

extension of these results to other noise distributions is not always trivial: for instance, an

analytical expression is not available for Tukey's "Slash" distribution, while the Cauchy and

Laplace distributions are not mixtures at all. Nevertheless, since outliers do occur rarely, it is

possible that they can still be modeled adequately as a Gaussian mixture.

(iii) The Ershov-Lipster Estimator. As discussed before, the estimator of Rnhov and Lipster (1978) is

similar to that of Guttman and Pefia (1984, 1985), with the exception that equation (5.12) is

replaced by a hard decision, Le.

R if -, is an outlier
R (z. ) = - (5.13)

R,, otherwise

The decision as to whether or not an outlier has occurred may be made in several ways. Here,
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since the nominal (underlying) model is assumed to be normal, a X� test is performed at the

gnificance level cc = 0.05 on the statistic

2

X (5.14)

i.e. the normalized squared innovation.

It is worth noting that both the Guttman-Pefia and the Ershov-Lipster estimators could be

expressed in the form of (1.12) with influence-bounding functions V that are not flat for very

large innovations. This suggests that, while they may be very efficient near the nominal model,

their perforrnance declines significantly for very heavy-tailed noise. This problem could be

circumvented by deriving estimators based on the approaches of Guttman and Pefia or Ershov and

Lipster, but on distributional assumptions other than scale-contaminated norr-n-al- noise.,.That,

however, is not done here.

(iv) The Masreliez-Martin Estimator. Essentially, the estimator derived by Masreliez and Martin

(1974, 1977) is equivalent to the Oth-order term of that given in (4-318). It has the distinct

advantage of being robust in the presence of patchy outliers. However, since it is a lower-order

approximation to the conditional mean estimator than (4.318), its overall estimation error variance

can be expected to be higher. The equations for this estimator are similar to those of the- Kalman

Filter, with (1.3) and (1.9) replaced by

T.+, F Tn + Yn+I (5.15)
Vrn+1 Nlf�+ I

and

M.2+1 IF Yn+I (5-16)
F, -\I-r-.+, '

where y is given by (2.186) (based on the modeled fraction of contamination and T is as

defined in (4.317).

(v) The First-Order Approximation to the Conditional Mean. This is the estimator of Theorem 4.3.

The values of 5 and a) can easily be approximated for the time-mivariant case by fitting a straight

line of the form Po + �j n to the ordered pairs

n, log F I - (5-17)
i=1 n0+1

and noting that

�j8 = e (5.18)

approximately. The window size o) is then the smallest integer such that (4.158) holds. As

discussed in Section 4.4, the influence bounding function W is chosen to be that given by (2.186)

(based on the modeled fraction of contamination i), and T is as defined in (4.317).
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5.3 Performance Measures

The choice of criteria by which to measure the performance of robust estimators presents certain

difficulties. In particular, it is clear that a global performance measure such as the mean squared error

only gives a partial picture of reality: for instance, one estimator may do very well at the nominal

model but badly at an outlier, while another may do poorly at the nominal model but well at an outlier,

and yet the two could have the same mean squared error.

Another important measure of fit is the whiteness (or near-whiteness) of the residual sequence.

The residual of an estimator that tracks the state very well under nominal conditions may exhibit large

and systematic excursions from zero immediately following an outlier, conversely, an estimator that is

insensitive to observations may be resistant to outliers, but its residual sequence may be significantly

non-white at the nominal model.

Ilus suggests that separate criteria must be used for determining the performance of each

estimator for observation noise with and without outliers. 'Me following performance measures are

calculated:

(i) Th� Mean Squared Error. This is computed in order to determine the performance of each

estimator under nominal conditions. Given K simulation runs, each N time steps long, the mean-

squared error is given by

i K N

MSE -jN- F, Y, (Oni -Tn.i (5.19)i=1 n=1
This measure is only truly meaningful in the nominal (no outliers) case.

(ii) Error at Outliers. To measure the behavior of each estimator specifically at outliers, the

following experiment is performed: instead of outliers occurring randomly, as described in Section

5.1, they are forced to occur at a given time ( n = 20 ). Then, the mean squared error at each

time n 21, 22, is computed by averaging over all K runs. Thus, for each n,

MSE,
F, ( (..i - T..i (5.20)K

This allows an assessment both of the resistance of the estimator to an outlier when it occurs, and

of the persistence of the effects of an outlier due to the dynamics of the estimator.

(iii) Serial Correlation Following Outliers. As above, outliers are forced to occur at a specific time,

and the serial correlation (autocorrelation) of the residual sequence jy" I is computed for

n = 21, 22, by averaging over all K runs. Thus,

K

Yni 'In-li
SC.'.-I (5.21)

Y;-
i=1 j=1

for each n.

(iv) Normalized Estimation Error Covariance. Each estimator provides an expression for the

estimation error covariance. However, these expressions are derived based on certain
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distributional assumptions, and how close they are to the true covariances is not immediately clear. 'For

this reason, the normalized error covariance is computed for each time n as

I 'r ( (., i - T.,
NMSE,, (5.22)

where I represents the theoretical variances of equations (1.8), (5.16), and (4.325). The more accurate

the covariance estimate, the closer NMSE will be to unity. This criterion has the added advantage that

it allows a comparison of the first two theoretical and empirical moments, giving an idea of the

accuracy of a normal approximation to the distribution of the estimator.

5.4 Simulation Results

This section summarizes the results of 63 simulation experiments, comparing the performance of

each estimator described in Section 5.2 under each noise distribution of Section 5.1. Each experiment

consists of K = 200 runs of N = 50 time steps each, with initial conditions 00 = 0 and MO = 1.

Randoid number generators from the EMSL package were used, and the model parameters were as

follows: Q = 1, R = 1. F = 0.1 (unless otherwise noted), modeled outlier standard deviation equal to 2,

2.5, and 3 times the nominal standard deviation (i.e. 4, 6.25, and 9), and finally i = 0.01, 0.05,

and 0.10.

It is worth noting that the recursive computation of the coefficients K,, in Theorem 4.3 presented

some numerical difficulties: as they tended to vanish with respect to machine precision, periodic

resealing was necessary. Similarly, the probabilities for alternative hypotheses (outlier v.s. not outlier) in

both Theorem 4.3 and the Guttman-Pefia estimator tended to vanish with respect to machine precision

when outliers were very large, and these cases therefore had to be treated specially.

Finally, a few words are in order about the presentation of results. Clearly. not every estimator

parametrized by modeled outlier variance and modeled fraction of contamination. Ifi particular, the

Kalman Filter depends on neither, the Guttman-Pefia estimator depends on both, the Ershov-Lipster

estimator depends only on and the Masreliez-Martin and First-Order estimators depend only on

To make the results easier to compare, however, the tables are organized so that an entry appears for

each estimator and each pair I i 1.

The Nominal Case (Pure Gaussian noise). To measure the loss of efficiency relative to the

optimal estimator (the Kalman Filter) under nominal conditions (no outliers), two sets of simulations

were run, for F = 0.1 and F = 0.5, respectively. Note that although the true fraction of contamination

is e = 0. different values are used in the estimators for the modeled parameters and �. The overall

mean squared estimation errors are given in Tables 5.1-2. It is easy to see that the Guttman-Pefia

estimator is very close to the optimal performance of the Kahnan Filter for small k,,,, and �, as

expected; however, its MSE increases with both §,,., and L The Masreliez-Martin estimator has a

slightly higher MSE than the First-Order estimator, and the difference between the two increases with L

It is also noteworthy that the MSE increases in all cases with the value of F, due to the "memory"

inherent in slower dynamics. The mean squared estimation error at each n for each estimator is plotted
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Table 5.1 - Mean Squared Estimation Error (Gaussian, F 0. 1)

Kalman Filter

I = 0.01 i = 0.05 0.10

�kour = 4 0.4993 0.4993 0.4993
= 6.25 0.4993 0.4993 0.4993

R,,., = 9 0.4993 0.4993 0.4993

Guttman-Pefia

i = 0.01 i = 0.05 i = 0.10

FOut = 4 0.5010 0.5094 0.5217
§ou, = 6.25 0.5040 0.5241 0.5484
R,,.r = 9 1 0.5082 0.5407 0.5757

Ershov-Lipster

i 0.01 0.05 0.10

4 0.5482 0.5482 0.5482
6.25 0.5708 0.5708 0.5708
9 0.5867 0.5867 0.5867

Masreliez-Martin

i = 0.01 t = 0.05 0.10
iout ='4 0.5067 0.5298 0.5552
§ou, 6.25 0.5067 0.5298 0.5552
f?"', 9 0.5067 0.5298 0.5552

Fmt-Order

i = 0.01 0.05 0.10
,Rout = 4 0.5066 0.5276 0.5491
§,,., = 6.25 0.5066 0.5276 0.5491

= 9 0.5066 1 0.5276 0.5491L



176 -

Table 5.2 Mean Squared Estimation Error (Gaussian, F 0.5)

Kalman Filter

i = 0.01 t = 0.05 i = 0.10
= 4 0.5302 0.5302 0.5302
= 6.25 0.5302 0.5302 0.5302

R,,., = 9 1 0.5302 1 0.5302 0.5302
Guttman-Pefia

i = 0.01 i = 0.05 0.10
�Our = 4 0.5319 0.5409 0.5543
�ou, = 6.25 0.5354 0.5577 0.5855
R,,., = 9 1 0.5403 0.5774 0.6193

Ershov-Lipster

i = 0.01 0.05 0.10
= 4 1 0.5879 0.5879 0.5879
= 6.25 0.6186 0.6186 0.6186
= 9 0.6404 0.6404 0.6404

Masreliez-Martin

i 0.01 0.05 0.10

fo,,, = 4 0.5390 0.5670 0.5985
f?,Ut = (5.25 0.5390 0.5670 0.5985
R,,,, = 9- 0.5390 0-5670 0.5985

First-Order

i = 0.01 i = 0.05 0.10

4 0.5381 0.5599 0.5830
6.25 0.5381 0.5599 0.5830

Rout 9 0.5381 0.5599 0.5830
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in Figures 5.1-8. These plots clearly illustrate the fact that the loss of efficiency of the First-Order

estimator at the nominal model is minimal for small i (Figures 5.1, 5.3, 5.5, and 5.7) and that it

favorably compares with the other estimators for large (Figures 5.2, 5.4, 5.6, and 5-8). In

particular, Figures 5.4 and 5.8 show that its behavior is the closest of all robust estimators to the

optimal (the Kalman Filter). The relationship between the parameters and � and the robustness of

these estimators will become clear when simulations with heavy-tailed observation noise distributions

are reviewed.

Another measure of the performance of the estimators is the whiteness of the residual sequence.

The lag-one serial correlations of the residuals for each estimator are given in Tables 5.3-4, and confirm

the findings outlined above: the Guttman-Pefia estimator behaves nearly optimally for small &,,,, and

while the First-Order estimator (and also the Ershov-Lipster estimator) perform very well for large

and i. Lag-one serial correlations for each n are plotted in Figures 5.9-12.

Fmally, the mean squared estimation error normalized by the estimated covariance is computed in

an effort to determine the accuracy of the second moment estimate. Clearly, perfect covariance

estimates would yield mean squared errors near unity, and deviations in either direction indicate under-

or over-estimation of the estimation error covariance. The results are presented in Tables 5.5-6, and

plotted in Figures 5.13-16. As before, the First-Order estimator performs best for large R.,,, and �, while

the Guttman-Pefla estimator performs best for small R,. and t.

In most of the experiments discussed so far, the Ershov-Lipster estimator did not perform as well

as the others; it must be remembered, however, that different outlier tests and different significance

levels might yield better performance. In addition, the Masreliez-Martin estimator did not perform as

well as the First-Order estimator at the nominal model. While this behavior would be expected if the

assumed distributional model was identical to the true observation noise distribution, it need not hold

when the two are different, as some examples in the sequel demonstrate.

Scale-Contaminated Gaussian Noise. To assess the performance of the various estimators in the

presence of outliers distributed according to a Gaussian distribution with larger variance than the

nominal model, simulation experiments were performed with nominal Gaussian observation noise

except at n = 20, where the noise was Gaussian with variance R, = R,,,,. The mean squared

estimation error at times n = 18, 19. 28 are plotted in Figures 5.17-20, while the MSE at n = 20

appears in Table 5.7. As expected. the Kalman Filter has the best perfon-nance except when affected by

the outlier. While the Masreliez-Martin and First-Order estimators are virtually indistinguishable for

small �, the latter performs better in the aftermath of an outlier for large L This is a consequence of the

"smoother" correction terms in Theorem 4.3. The Guttman-Pefia and Ershov-Lipster estimators perform

comparably to the Masreliez-Martin and First-Order estimators at the exact time of the outlier, but their

performance is considerably worse right after the outlier in the case of large R,,,, and t.

The lag-one serial correlations in this case do not show a great difference among the robust

estimators. The normalized mean squared estimation errors also show comparable performance among

the estimators, which all tend to somewhat underestimate the covariance at the time of the outlier, but

recover within a couple of time steps. One example appears in Figure 5.21.

-- --------
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Table 5.3 Lag-One Serial Correlation (Gaussian. F 0,1)

Kalman Filter

0.01 i = 0.05 0.10

A00 = 4 0.0057 0.0057 0.0057
AO,, = 6.25 0.0057 0.0057 0.0057
A"" = 9 0.0057 0.0057 1 0.0057

Guttrnan-Peda

i = 0.01 i = 0.05 0.10
Aom = 4 0.0072 0.0112 0.0148
A0, = 6.25 0.0084 0.0145 0.0193
R,,,. = 9 0.0095 1 0.0173 0.0229

Ershov-Lipster

i = 0.01 i = 0.05 i = 0.10
= 4 0.0134 0.0134 0.0134
= 6.25 0.0150 0.0150 0.0150
= 9 0.0160 0.0160 0.0160

Masrehez-Maftin

0.01 i = 0.05 0.10

Ro. = 4 0.0082 0.0134 0.0179
RO., = 6.25 0.0082 0.0134 0.0179
R,,- = 9 0.0082 0.0134 0.0179

Fu-st-Order
0.01 I i = 0.05 i = 0.10

AOW = 4 0.0081 0.0130 0.0169
AO,,, = 6.25 0.0081 0.0130 0.0169
AO", = 9 0.0081 0.0130 0.0169
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Table 5.4 Lag-One Serial Correlation (Gaussian, F 0.5)

Kalman Filter

i = 0.01 i = 0.05 0..lo
4 0.0078 0.0078 0.0078

A"w = 6.25 0.0078 0.0078 0.0078
Rnt = 9 0.0078 0.0078 0.0078

Guttman-Pefia

0.01 i = 0.05 e = 0.10

Aour = 4 0.0147 0.0344 0.0521
,�ow = 6.25 0.0207 0.0512 0.0756
A,,,, = 9 0.0267 0.0660 0.0950

Ershov-Lipster

0.01 0.05 t = 0.10

Ro., = 4 0.0501 0.0501 0.0501
= 6.25 0.0601 0.0601 0.0601

9 0.0662 0.0662 0.0662

Masrefiez-Maftjn

i = 0.01 i = 0.05 0.10

Aout = 4 0.0202 0.0468 0.0704
AO,,, = 6.25 0.0202 0.0468 0.0704
Rn.r = 9 0.0202 0.0468 0.0704

First-Order

i = 0.01 i = 0.05 i = 0.10

Aout = 4 0.0199 0.0422 0.0612
A o,,, = 6.25 0.0199 0.0422 0.0612
A"", = 9 0.0199 0.0422 0.0612
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Table 5.5 Normalized Mean Squared Estimation Error (Gaussian, F 0.1)
Kalman Filter

i: = 0.01 i = 0.05 i = 0.10

fz", = 4 0.9961 0.9961 0.9961
= 6.25 0.9961 0.9961 0.9961
= 9 0.9961 0.9961 0.9961

Guttman-Pefia

'i = 0.01 i = 0.05 t = 0.10
4 0.9846 0.9517 0.9249

FZ,,. = 6.25 0.9808 0.9443 0.9190
f? = 9 0.9787 0.9419 0.9196

Ershov-Lipster

'i = 0.01 t = 0.05 t = 0.10

fz'k, = 4 1.0390 1.0390 1.0390
= 6.25 1.0586 1.0586 1.0586
= 9 1.0715 1.0715 t.0715

Masreliez-Manin

i = 0.01 0.05 t = 0.10

= 4' 0.9789 0.9411 0.9204
f?", = 6.25 0.9789 0.94,11 0.9204

= 9 0.9789 0.9411 1 0.9204

First-Order

t = 0.01 i = 0.05 i = 0.10

= 4 0.9792 0.9436 0.9240
= 6. 2 5 0.9792 0.9436 0.9240
= 9 0.9792 0.9436 0.9240
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Table 5.6 Normalized Mean Squared Estimation Ermr (Gaussian, F 0.5)

Kalman Filter

0.01 i = 0.05 i = 0.10

f?,Ut = 4 0.9972 0.9972 0.9972
Rw = 6.25 0.9972 0.9972 0.9972

= 9 0.9972 0.9972 0.9972

Guttman-Peda

i = 0.01 i = 0.05 i = 0.10.
= 4 0.9839 0.9446 0.9114
= 6.25 0.9793 0.9338 0.9007

R,,. = 9 0.9763 0.9292 0.8990

Ershov-Lipster

0.01 i = 0.05 0.10
4 1.0417 1.0417 1.0417

Ru, = 6.25 1.0665 1.0665 1.0665
R,,., = 9 1.0829 t.0829 1.0829

Mastehez-Martin

i = 0.01 i = 0.05 i = 0.10
4 0.9748 0.9319 0.9014
6.25 0.9748 0.9319 0.9014
9 0.9748 0.9319 0.9014

First-Order

i = 0.01 i = 0.05 t = 0.10
R,,U, = 4 0.9772 0.9401 0.9163
�,,u, = 6.25 0.9772 0.9401 0.9163

= 9 0.9772 0.9401 0.9163
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Table 5.7 Mean Squared Estimation Error at n = 20 (Scale-Contaminated Gaussian)
Kalman Fdter

i = 0.01 i = 0.05 i = 0.10

4 1.2519 1.2519 1.2519
6.25 1.8070 1.8070 1.8070

R,,., = 9 2.4899 2.4899 2.4899

Gutunan-Pefia

i = 0.01 i = 0.05 i = 0.10
= 4 1.1039 0.9881 0.9392
= 6.25 1.2624 1.0878 1.0283

k", = 9 1.3424 1.1448 1.0869

Ershov-Lipster

t = 0.01 i = 0.05 0.10

A.Ut = 4 0.9564 0.9564 0.9564
= 6.25 1.0968 1.0968 1.0968
=-g 1.1993 1.1993 1.1993

Masreliez-Martin

i = 0.01 i = 0.05 i = 0.10

4 1.0208 0.9399 0.9261
6.25 1.2263 1.0887 1.0489
9 1.4176 1.2095 1.1356

Fun-Order

i = 0.01 t = 0.05 i = 0.10

4 1.0239 0.9500 0.9357
6.25 1.2336 1.1023 1.0598
9 1.4261 1.2222 1.1485
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The Laplace Distribution. The Laplace (or double exponential) distribution is somewhat heavier

tailed than the Gaussian distribution. Moreover, it is similar to Huber's least favorable distribution (for

the no process noise case), at least in the tails. In this case, the observation noise obeyed the nominal

Gaussian distribution except at n = 20, where the noise was Laplacian with variance R,,., 'Me

MSE at n = 20 appears in Table 5.8, and show the Fmt-Order estimator to have the best performance

at the outlier, for many parameter values. Figures 5.22-23 illustrate the performance of each estimator at

and right after an outlier distributed according to the Laplace distribution. For small R,., and i, the

estimators behave simidariy, except that the Guttinan-Pefla estimator approaches closer to the

performance of the Kalman Filter once the effects of the outlier have attenuated. For large and i,

on the other hand, the Masreliez-Martin and First-Order estimators perform virtually identically at the

outlier, but the latter does better after the outlier. As with the nominal case, the behavior of the

Guttrnan-Pefia and Ershov-Lipster estimators are poor for large and i after the occurr-ance of an

outlier. 'Tbe performance of the Kalman Filter in the presence of an outlier is well illustrated by Figure

5.23: its MSE is lower than the robust (hence, suboptimal) estimators everywhere except at the outlier.

If F were larger, the effects of the outlier would have taken longer to attenuate, but qualitatively, the

respective performance of the estimators would not have changed.

Once again, the lag-onc serial correlation of the residual does not change markedly from one

estimator to the other in this case. The normalized mean squared errors for two sets of parameters

appear in Figures 5.24-25; recall that proximity to unity, not absolute magnitude, is the performance

criterion here.

Tukev's "Slash" Distribution. The scale-contaminated Gaussian and Laplace distributions are

relatively light tailed, and do not highlight the differences among the various robust estimators analyzed

here. Tukey's "slash" distribution has considerably heavier tails, and makes these differences quite

apparent. The noise was normally distributed except at n = 20, where it obeyed the "slash" distribution.

The NBE for n = 18. - - - , 1-8 is plotted in Figures 5.1-6-29, and its values at n = 20 appear in Table

5.9. The Masreliez-Martin and First-Order estimators perform best at the outlier, while the former is

somewhat better than the latter at n = 20, the reverse is true after the occurrance of the outlier, as

suggested by the nominal case simulations. Moreover, the behavior of the Guttman-Pefia and Ershov-

Lipster estimators is very poor at the outlier for small values of R,,,,,, while their performance following

the outlier is poor for large values of that parameter.

The accuracy of the estimate of the second moment of the estimation error behaves similarly, as

demonstrated by Figure 5.30-31. The Guttman-Pefia and Ershov-Lipster estimators drastically

underestimate the covariance at the time of an outlier when is sma.11: they do better for large

but in that case. the performance under nominal conditions is quite poor.

The Cauchv Distribution. Another very heavy-tailed noise distribution was the Cauchy

distribution,. whose variance is infinite. Here, tile differences among the performance of the various

robust estimators is highlighted most dramatically. Moreover, the deviations of some of the estimators

from, the state trajectory can get so large in this case, that the lasting effects of the outliers are more

visible. Once again, the noise was nominal except at n 20, where it obeyed a Cauchy distribution.

The MSE at times n 20 and n = 21 are given in Yables 5. 10-1 1. Plots of the MSE at times

...............
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Table 5.8 Mean Squared Estimation Effor at n 20 (Laplace)

Kalman Fdter

0.01 i = 0.05 i = 0.10
4 0.9094 0.9094 0.9094
6.25 0.9094 0.9094 0.9094
9 0.9094 1 0.9094 1 0.9094

Guttman-Pefia

i = 0.01 i = 0.05 i = 0.10

;?"Ut = 4 0.7986 0.7273 0.7043
izo,,, = 6.25 0.7565 0.7059 0.6987
R,,., = 9 0.7412 0.7091 0.7146

Ershov-Lipster

i = 0.01 i = 0.05 i = 0.10

§Out = 4 0.7169 0.7169 0.7169
R�., = 6.25 0.7400 0.7400 0.7400
R,,,, = 9 0.7648 0.7648 0.7648

Masreliez-Martin

i = 0.01 i = 0.05 0.10
f?"Ut = 4 0.7412 0.7026 0.6972

= 6.25 0.7412 0.7026 0.6972
R,,,, = 9 0.7412 0.7026 0.6972

Fu-st-Order

i = 0.01 i = 0.05 i = 0.10

= 4 0.7396 0.6953 0.6951
= 6.25 0.7396 0.6953 0.6951
= 9 0.7396 0.6953 0.6951
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Table 5.9 Mean Squared Estimation Error at n 20 (Slash)
Kalman Filter

0.01 t = 0.05 t 0.10

hour = 4 23.2744 23.2744 23.2744
hou, = 6.25 23.2744 23.2744 23.2744

= 9 23.2744 23.2744 1 23.2744

Guttman-Peda

i = 0.01 i'= 0.05 0.10
kut = 4 4.7842 4.6311 4.5733
iou, = 6.25 2.9361 2.7041 2.6616
R,,., = 9 1.9830 1 1.8717 1.8404

Ershov-Lipster

i = 0.01 0.05 0.10
kat = 4 4.5338 4.5338 4.5338

fOU = 6.2 2.6704 2.6704 2.6704
= 9 1.8730 1.8730 1.8730

Masreliez-Martin

i = 0.01 'i = 0.05 0.10
4' 1.3204 1.0990 1.0254

kut = 6.25 1.3204 1.0990 1.0254
= 9 1.3204 1.0990 1.0254

First-Order

i = 0.01 i = 0.05 t = 0.10
Aout = 4 1.3250 1.1072 1 1.0397
fz,., = 6.25 1.3250 1.1072 1.0397
kut = 9 1.3250 1 1.1072 1.0397
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Table 5.10 Mean Squared Estimation Error at n 20 (Cauchy)
Kalman Filter

i = 0.01 i = 0.05 0.10

4 838.815 838-815 838-815
6.25 838.815 838-815 838.815
9 838.815 838.815 838.815

Guttinan-Peda

t = 0.01 0.05 0.10
4 134.268 134.186 134.209
6.25 63.8841 63.8453 63.8760

R,,,, 9 33-6835 33.6659 33.6976

Ershov-Lipster

0.01 t = 0.05 t = 0.10
4 134.065 134.065 134.065

fz"., = 6.25 63.7884 63.7884 63.7884
R-, = 9 33.6418 33.6418 1 33.6418

Masrehez-Martin

t = 0.01 t = 0.05 0.10
4 0.9375 0.7914 0.7561
6.25 0.9375 0.7914 0.7561
9 0.9375 0.7914 1 0.7561

First-Order

i = 0.01 t = 0.05 i = 0.10
4 0.9394 0.7932 0.7561
6.25 0.9394 0.7932 0.7561
9 0.9394 0.7932 0.7561

..............
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Table 5.11 Mean Squared Estimation Error at n 21 (Cauchy)

Kahnan Fflter

i = 0.01 i = 0.05 i = 0.10

= 4 2.8063 2.8063 2.8063
Rour = 6.25 2.8063 2.8063 2.8063

= 9 2.8063 2.8063 1 2.8063
Guttman-Peda

i = 0.01 i = 0.05 i = 0.10

= 4 1.5053 1.5314 1.5522
= 6.25 1.0731 1.1190 1.1588
= 9 - 1 0.8381 1 0.9038 0.9564

Ershov-Lipster

i = 0.01 0.05 i = 0.10

fiout = 4 1.5733 1.5733 1.5733
= 6.23 1.1793 1.1793 1.1793
= 9 0.9677 0.9677 0.9677

Masreliez-Martin

i = 0.01 I i = 0.05 i = 0.10

R,,,, = 4 0.5108 0.5398 0.5727
= 6.25 i 0.5108 0.5398 0.5727

k- = 9 0.5108 0.5398 0.5727

First-Order

i = 0.01 � = 0.05 i = 0.10

izout = 4 0.5117 0.5500 0.5770
�kou, = 6.25 0.5117 0.5500 0.5770
ku, = 9 0.5117 0.5500 0.5770
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n = 18, 28 appear in Figures 5.32-35.

The effects of outliers on the residual sequences are illustrated well by Figures 5.36-37, where

systematic excursions from whiteness are evident in the cases of the Kalman Filter and the Guttrnan-

Pefia and Ershov-Lipster estimators, but much less so in those of the Masreliez-Martin and First-Order

estimators.

The normalized mean squared estimation error, plotted in Figures 5.38-39, illustrate once again

that the covariance estimates are relatively good for the Masreliez-Martin and Fmt-Order estimators,

but not for the others.

Fixed-Amplitude Outliers. To show the influence of the magnitude of an outlier on the estimators,

simulations were run with- fixed-amplitude outliers at n = 2.O. The MSE is given in Table 5.12. and

three cases (for -magnitude equal to 2, 6, and 10 times the nominal standard deviation) are plotted in

Figures 5.40-42. These show that, although the effect of the outlier may be controlled by choosing

larger values for this is done at the expense of performance under nominal conditions.

Note finally that the model parameters used in these simulation exercises yield the influence-
2 1 .bounding function cutoffs k, window sizes co, and error orders -E co- given in Table 5.13.

5.5 Discussion

Simulation studies such as this one can provide valuable insight into the performance of various

robust estimators under different noise distributions, but they seldom yield definitive conclusions or

choices valid under all conditions. Consequently, a brief and informal discussion is presented here,

concerning some of the lessons taught by the present effort. An important limitation of this simulation

study is that it did not involve any comparisons with the performance of an optimal (defined in some

sense) estimator, as a result, only the performance of various estimators relative to each other could be

assessed.

From this limited vantage point, it can be stated that the Guttman-Pefia estimator works very well

when outliers are light-tailed, i.e. when the observation noise does not significantly deviate from

nonnality. Despite the fact that the scale-contaminated Gaussian model leads to inflated covariances (as

discussed in Section 1.2), this effect is only moderate for small modeled outlier covariance R,,,, and

fraction of contamination �, and the Guttman-Pefia estimator was found to have very good nominal

performance in those cases. However, it broke down totally when the outliers have heavy-tailed, and

values of §,,,, and i large enough to mitigate the influence of Cauchy or "slash" outliers yielded

severely degraded nominal performance.

The performance of the Ershov-Lipster estimator was somewhat disappointing, although this may

in part be due to the choice of outlier detection test used here. Different tests and/or significance levels

may yield improved performance, particularly under nominal conditions. In -eneral. the Ershov-Lipster

and Guttman-Pefia estimators had qualitatively similar behavior, and both exhibited severely degraded

performance in the presence of heavy-tailed outliers. This is a consequence of the fact that the

adaptive/switching covar.,ance (or gain) scheme employed by both estimators decreases but does not
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Table 5.12 Mean Squared Estimation Error at n 20 (Fixed Amplitude)

Kalman Filter

i = 0.01 i = 0.05 0.10

R,,,,, = 4 1.3652 2.6467 4.4308
A�O", = 6.25 6.7173 9.5064 12.7979

= 9 16.5920 t 20.8886 25.6876

Guttman-Pefia

0.01 0.05 0.10
A�ow = 4 1.2957 1.9721 1.9943
Ro,,, = 6.25 1.5976 1.3328 1.2497
ROW = 9 1.2368 1 1.2382 1.2404

Ershov-Lipster

0.01 i = 0.05 i = 0.10

k1u, = 4 1.5021 2.1554 i.8907
Ro., = 6.25 1.3411 1.2693 1.2260
R = 9 .1.2311 1.2345 1.2367

Masreliez-Martin

0.01 i = 0.05 0.10
fout = 4 1.3766 2.0160 2.2701
Ro,,, = 6.25 2.3281 2.3338 2.3338
Rn.f = 9 2.3338 2.3338 2.3338

Fir a- Order

Aou, = 4 i = 0.01 i = 0.05 0.10
1.3749 2.0477 2.3411

= 6.25 2.4006 2.3704 2.3419
Rout = 9 2.3320 2.3302 2.3300
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Table 5.13 Parameters of the First-Order Estimator

F = 0.1 F = 0.5

i = 0.01 i = 0.05 0.10 0.01 t = 0.05 i = 0.10
k 1.9451 1.3983 1.1410 1.9451 1.3983 1.1410

-0.6425 -0.6425 -0.6425 -0-3109 -0.3109 -0.3109
0.5260 0.5260 0.5260 0.7328 0.7328 0.73 2 8

0) 7 5 4 1 5 1 0 7
e20) 0.07 0.25 0.40 0.15 0.50 0.70

0.0049 0.0625 0.1600 0.0225 0.2500 0.4900
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bound the influence of very large observations.

In contrast, the Masreliez-Martin and First-Order estimators do bound the influence of large

outliers, resulting in performance far superior to the Guttman-Pefia and Ershov-Lipster estimators when

the outliers are very heavy tailed. The Masreliez-Martin estimator has been shown empirically (via

Monte Carlo studies) to perform very well under fairly broad conditions, but has not gained wide

acceptance due to the- rather arbitrary assumptions on which it is based. The present study confirms that

this estimator performs quite well, and moreover this thesis suggests theoretical reasons to explain this

performance.

The First-Order and Masreliez-M.Lartin estimators perform comparably in most cases, and yet the

former is considerably more complex than the latter. 'Tbe derivation of the First-OTder estimator

suggests that, when the true outlier distribution is known exactly, or at least approximately, the

additional complexity of the First-Order estimator may yield considerable improvement. However. when

this distribution is very far from the modeled distribution used in the derivation of the estimator, the

correction" terms T,, in the estimator may not help and indeed may hurt the performance of the

estimator. In other words, the choice between the Masreliez-Martin and First-Order estimators must

depend on the particular application at hand.

It must also be noted that particular applications may dictate higher-order expansions than the

first-order expansion used here. For example, the First-Order estimator is not robust to two or more

outliers occurring in quick succession, as discussed in Section 4.2; the Nlasreliez-Martin estimator, on

the other hand. is not sensitive to the confi-uradon of outliers, but this is achieved at the expense of

some nominal performance. Thus, the choice of which estimator to use will have to be based on the

particular problem under consideration.

Leaving aside the variability among the robust filters tested here, and ignoring for a moment their

respective strengths and weaknesses, the present simulation study shows once again that the Kalman

Filter breaks down in the presence of oudiers, thus confirming the need for robust recursive estimators

when the noise significantly deviates from normality.
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6. Conclusion

This thesis follows and extends the work of Martin and Masreliez in combining the robust

location estimation ideas of Huber with the stochastic approximation method of Robbins and Monro to

develop a robust recursive estimator of the state of a linear dynamic system. It aims at deriving an

estimator that is not only of practical value, but is also based on sound theory, so as to be useful for

inference as well.

A brief summary of the thesis appears in Section 6.1, followed in Section 6.2 by a list of research

topics motivated by the work described herein.

6.1 Summary

The relationship between point estimation and filterin is clear: both seek to obtain estimates of

parameters based on observations contaminated by noise, but while the parameters to be estimated are

fixed in the former case, they vary according to some (possibly stochastic) model in the latter. This

relationship is at the root of the present thesis.

Huber's theory of minimax robust estimation is first reviewed in detail. It is shown that the

Fisher Information is a more convenient measure of performance than the asymptotic variance. due to

its convexity and other useful properties; conditions are derived for the existence of a minimax (in

terms of Fisher Information) robust estimator of a location parameters

Although Hubers method is batch, in the sense that the entire sample of past observations is

needed at all time, an asymptotically equivalent recursive venion of the robust estimator of location can

be derived based on the stochastic approximation technique introduced by Robbins and Monro. The

properties of such recursions are investigated, and proofs of consistency, asymptotic normality, and

asymptotic efficiency are reviewed in detail.

These results are extended to the case where the "location arameter" varies according to a

deterministic linear model. It is shown that this corresponds to estimating the state of a linear dynamic

system when there is no process noise, and that the above asymptotic properties hold here as well.

under relatively mild conditions.

When the "location parameter" varies randomly, i.e. when process noise is present, the stochastic

approximation technique cannot be used to obtain a consistent recursive estimator. Moreover,

asymptotic perfomiance measures make little sense in this case. and a conditional me�iri estimator is

sought instead.

Using an asymptotic expansion around the fraction of contamination P_ a first-order approximation

is obtained for the conditional prior distribution of the state (given all past. observations) for the case

where the observation noise belongs to the E-contaminated Gaussian neighborhood. This approximation

makes use of the exponential stability of the Kalman Filter, which ensures that the effects of past



235 -

outliers attenuate fast enough.

The first-order approximation to the conditional prior distribution is then used in a theorem that

generalizes a result due to Masreliez, to derive a first-order approximation to the conditional mean of

the state (given all past observations and the current one). This non-Gaussian estimator has the form of

banks of Kalman Filters and optimal smoothers weighted by the posterior probabilities that each

observation was an outlier.

Because the derivation of a least favorable distribution in this case remains an open problem, the

estimator derived here is not minimax. Several simplifications are proposed to make the estimator easier

to use.

The results of a series of simulation experiments are presented, showing that some of the robust

recursive estimators in the literature remain very sensitive to heavy-tailed noise. The First-Order

estimator derived here performs well in the presence of heavy-tailed observation noise, but whether or

not its added complexity (relative to the estimator of Masreliez and Martin) is warranted depends on the

particular application for which it is to be used.

6.2 Future Research Directions

Two principal limitations of the robust recursive estimator derived in this thesis have ah-eady been

pointed out. Specifically,

(i) Equations �4.320) and (4.41 1) indicate that the estimator is not robust when two or more outliers

occur within less than (o time intervals of each other. This is a limitation due to the fact that the

approximations are of first order. Using a second-order approximation would eliminate the non-

robustness of the estimator against pairs of outliers, but not against three or rabre outliers.

Higher-order approximations to the conditional prior and conditional mean are thus one potential

direction for future research. How much they would complicate the estimator, and whether or not

the result will be of any practical value, remains to be seen.

(d) As discussed in Section 4.4, the least favorable distribution for this problem has not been found.

Even if it were. there is no guarantee that the distribution and corresponding estimator would be a

saddle point, and thus a solution to the minimax problem. While Approximation 4.4 is simple and

appealing, this estimator is strictly speaking not optimal in the minimax sense -- indeed, it is

somewhat more conservative. N-fore research is needed to determine whether a minimax solution

can be found, and how much better one would be than the estimator of Approximation 4.4.

In addition to the above, the following related problems are suggested as topics for future research:
di) I ak

(I P.atchv outliers. As stated in Section 1.2. the derivation in Section 4. m es heavy use of the

fact that outliers are rare and isolated. Yet. there are cases (e.g. cracking-ghinding ice in the

Arctic seas in the problem of signal processing for acoustic surveillance -- Wegrnan, 1986) where

time series contain patchy outliers. One way to extend the present results to cover such outliers

is by suitable time-aggregation: there is a considerable literature on the question of time scaling

systems subject to wide-band (i.e. only approximately white) noise, including Blank-enship'and
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Borkar (1977), Blankenship and Meyer (1977), and Blankenship and Papanicolaou (1977, 1978).

It appears worthwhile to investigate the applicability of such techniques to the estimators

proposed here. Besides patchy outliers, such methods might also allow the relaxation of another

assumption of Section 1.2, namely the whiteness of the process and observation noises. The

question of robustness against weakly colored noise remains relatively understudied at this

writing.

(iv) Process outliers. As pointed out by Sbirazi, Sannomiya and Nishikawa (1988), a robust estimator

is expected to behave in quite opposite manners when confronted with process and observation

outliers. In the latter case, as this thesis makes clear, the influence of the observation. must be

bounded and indeed downweighted, in favor of past information accumulated over time. In the

former, on the other hand, it is desirable to emphasize the observation, and reduce the influence

of past information, since a process noise outlier results in a shift in the state. In other words, the

confidence an estimator accords to a large-valued innovation changes according to whether it is

due to a process noise outlier or an observation noise outlier. This suggests that estimators

resistant to process noise outliers must be constructed in ways very different from those described

herein. The assumption that both kinds of outliers are very unlikely to occur together, within

some short time period, will probably be necessary if estimators robust against both process and

observation outliers are to be derived.

(v) The continuous-time case. It does not appear that the robust recursive estimation via stochastic

approximation ideas have yet been applied to continuous-time systems. Yet, all the theoretical

prerequisites seem to exist. The principal difference between the present results and their

continuous-time analogue will probably be in Theorem 4.2, where a differential equation version

of the conditional prior (in the spirit of Zakai, 1969: see Di Masi and Rung-aldier, 1982) may

result in a much simpler form. The same goes for discretely sampled continuous-time systems.

Finally, it is worth noting that applications of time-scaling, to discrete-time systems have been

found to. yield differential equations (Blankenship, 1981); thus, continuous-time results may be

useful in accornodating colored noise as well as patchy outliers.

(vi) Unknown model parameters. The approach taken in the present thesis assumes that all model

parameters are known, so that only the system state needs to be estimated -- in other words, this

is a filtering problem. Yet, in many situations of practical importance, model parameters are

unknown and need to be estimated simultaneously. The problem of robust model identification

has been studied by PoIjak and Tsy kin (1978, 1980), Poor (1986). -and others, and can be

combined with the filtering problem of this thesis. WI-lile model parameters may be estimated by

using the residual of the robust estimator in a likelihood function, it is probable that a combined

state-parameter estimation scheme will be more fruitful.

(vii) Fault detection and identification. N4ost techniques for detecting unmodeled changes in systems

(variously refered to as faults, failures, 'urnps, etc.) are based on the detection of abrupt model fit

degradation. They make heavy use of distributional assumptions, and even those that use the term

"robust fault -detection" are not statistically robust. As stated in Section 1.2, the principal

motivation for this thesis was the absence of robust state estimators based on a sufficiently
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rigorous theoretical foundation to enable the use of their residuals for inference. It is easy to see,

by convolving the conditional prior of the state (equation (4.160)) with the noise distribution, that

P ( -Z. I &�O' - - - , 1._1 )

)-1 r, 1c.0 N( 00, r,,o

n

+ 1 - 1C, -K.' N( z;.,oi, rin
i =n -A�+l
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+ O" (& e2). J6.1)

This expression trivially leads to the conditional distribution of the innovation. which can be

util ized for fault detection and identification. Alternatively, a conditional residual can be

computed from each conditional estimate, and used for inference.

(viii) Non-linear models. 'Tbe estimates derived in this thesis can be applied.to linearized versions of

non-linear models, in analogy with the extended Kalman Filter (e.g. see Gelb, 1974, pp.182-190).

Alternatively, more sophisticated approaches to non-linear filtering can be developed to

recursively estimate the state of a non-linear dynamic system. The most difficult step is likely to

be the propagation of the conditional prior distribution (Theorem 4.2), where, if the system can be

represented by a continuous-time model, or at least a discretely sampled continuous-time model,

Zakai's method may once again yield good results.
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