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Abstract

For some linear strictly broper system given by its transfer
function, two dynamic output feedback problems can be posed.
The first one is that of using dynamic output feedback to assign
the closed loop characteristic polynomial and the second that
of assigning the closed loop invariant factors. In the first
part of this thesis we are concerned with these problems and
their inter-relationships. The formulation is done in the fre-
quency domain and the investigation carried out from an alge-
braic point of view, in terms of linear equations over rings
of polynomials. Several results are expressed by exploiting
the notion of Genericity.

In the second part of the thesis we undertake the study
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of a family of linear matrix equations and give necessary and
sufficient conditions for the existence of a unique solution,
while showing a connection with the Hilbert-Nullstellensatz.
The basic idea is that the set of matrices, with elements in
some field can be thought of as a module over some polynomial
quotient ring. Emphasis is also given in suggesting algorithms
for constructing the solution, which make use of finite alge-
braic procedures  which are easily implemented on a digital

computer.
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Chapter 1

Introduction

Several problems in Control Theory can be formulated in
terms of linear equations and in many others it is essential
that a linear equation be solved in order to obtain their so-
lution. We mention a few which are closely related to what we
will be concerned with. In the Wiener-Hopf design of Optimal
Controllers [34], one encounters the equation A(s)X(s)+B(s)Y(s)=I.
In the Synthesis of Linear Multivariable Regulators [3,8] equa-
tions A(s)X(s)+B(s)Y(s) = I and A(s)X(s)+Y(s)B(s) = F(s) ap-
pear. In the Model Following problem [22,27] one can formulate
the problem using the linear equation H(s)X(s) = M(s). The
Lyapunov Equation PA+A'P = Q appears in Stability Theory, Opti-
mal Control, Stochastic Control and in the solution of the Alge-
braic Riccati equation when Newton's method is used [18].

This thesis is divided in two major parts. In the first one
we are interested in formulating the problem of General Pole
Assignment by dynamic output feedback, in terms of transfer
matrices and linear equations. This is done by exploiting the
notion of matrix fraction representation. The similar problem
utilizing state feedback has been investigated [24]. The pre-
sent approach is appealing due to the fact that the state does
not enter into the analysis. This means that in computations
no state estimate need be calculated. Instead only the output
is used for feedback. We also will be concerned with an equa-

tion of the form X(s)A(s)+Y(s)B(s) = o(s), and will be interested
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in solutions which have the property that X_l(s)Y(s) exists and
1s proper.

In the second part we investigate a method for solving
equations which belong to a certain class of linear matrix equa-
tions which includes the Lyapunov equations PA+A'P = Q, P-A'PA = Q
and the Sylvester equation PA+BP = Q. The approach uses module
theoretic ideas and readily lends itself to computations. This

research is a continuation of work done in my Masters Thesis [12].

General Pole Assignment.

Placing the poles of a closed loop system at desired locati-
ons using feedback is a problem that has been seriously studied
and finds application in many areas of Control Theory. For seve-
ral years most of the work done delt with state feedback. Recent-
ly researchers have turned to the question of dynamic output

feedback. In Chapter 2 we work with the following feedback system:

The mx%2 (m> %) matrix P is the input-output transfer function
of a strictly proper plant and C (&xm) that of some dynamic com-
pensator. Both P and C have elements in R(s), the field of ra-

tional functions in the indeterminate s over the reals R.



The closed loop transfer function 1is
G = p(I+CP) L.

The condition m3 & is not restrictive because the situation

m¢ 2% can be treated in a similar manner, and dual results ob-

tained.

The transfer function P is assumed to be given. We are inte-
rested in the following two problems and their inter-relation-
ships.

(The Characteristic Polynomial Problem).Let ¢ be some polynomial
in R[s]. What are necessary and sufficient conditions for the
existence of a proper compensator C, so that if y is the chara-
cteristic polynomial of the closed loop system, then x is a fa-
ctor of ¢. A variant of this problem is the investigation of
the situation in which x is equal to ¢.

(The Invariant Factor Problem).Let ¢ be an 2x2 diagonal matrix
with elements in R{s]. What are necessary and sufficient condi-
tions for the existence of a proper compensator C, so that if

¥y is the closed loop invariant factor matrix, ¥ is equivalent
to ¢. A variant of this problem is to let ¢=(¢i) be in Smith
form and require that (W=(¢i)) wi divides ¢i, 1¢<1ig2,0r more
specefically that by = ¢

Similar problems have been treated by Rosenbrock [24], in
the state feedback situation where necessary and sufficient
conditions were given involving the degrees of the diagonal
polynomials of ¢, for the existence of a constant compensator

C. In later work [26] an attept was made to generalize this

result to the output feedback case with a proper dynamic C.



In our approach we will use some of the results given in [26].
We also give a clear proof of Rosenbrock's earlier result.

The problem of assigning the closed loop poles of a system
by feedback is of fundamental importance in System Theory. It
has received, and Trightly so, a great deal of attention from
both the frequency and state space point of view. Therefore
justification about carrying out research on this topic 1is
self evident.

The situation is different with the problem of assigning
the closed loop invariant factors. It is a problem that beco-
mes much more pronounced in the theory of multivariable sy-
stems, a subject which is less understood and still in the
developmental stage.

It is clear that from a mathematical standpoint, that the
invariant factors of a transfer function, determine the deeper
structure of a system. If P = C(sI-A)_lB with (A,B,C) minimal,

then A can be written in Companion form as:
i .

X = . , A =T AT,

| €2

where by det(sI-Ci) are the invariant factors of P.
Beyond this, the system theoretic significance of the inva-
riant factors is much less understood at the present time.
There does exist a relationship between the degrees of the

invariant factors and the controllability or observability

indecies for a certain class of systems. For example let P
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be an 9x% upper-triangular transfer function with the following

properties:
[ a a ]
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1) Pis stricly proper, aij’¢j coprime.

2) 6,10, 15 bgql0g 55 -+ s0,l07, ¢; monic.

3) ajplagy, o0 s 3y 0913, a;; monic.

4) ajjiaij 1&€5€% 1Ei&:%:

It can be easily shown that there exists some unimodular matrix
E such that EP = diag(;iTi which is the Smith-McMillan form
of P. Therefore the ¢i ;re the invariant factors of P. On the
other hand the matrices N,D are right coprime and [Bi] is
column proper which means that the controllability indecies of

P are the degrees of the invariant factors. This is quite clear

in the single input single output situation.
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From another point of view, the invariant factors are close-
ly related with the definition of transmission zeros of a plant
[11]. Let P be an mx% (m»2) plant, with Smith-McMillan form

iven b M_.
g Y D
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The ¢i are the invariant factors of P and the zeros of P are
associated with the zeros of the polynomials €5 Suppose that
€5 # 0. Then [11] =z in C is a zero of P of order m iff 82(')
has a zero of order m at z. The significance of this order,
roughly speaking, is that the system completely blocks the trans-

mission of some input of the form
o}

2:. 81 tk exp(zt) for ¢ = 0,1,2,--*m-1. For o = m, there
k=0

is an input of this form for which the output is non-zero and
proportional to exp(zt). Therefore if two systems P and P have
the same characteristic polynomial (ie x=¢1¢2"‘¢2’§ =$i$2°--$2,
x = X ) but different invariant factors and zeros, the transmis-
sion blocking properties of the two systems would be different.
In Chapter 2 several versions of the Characteristic Polyno-
nomial and Invariant Factor Problems will be formulated, as well

as the Denominator Matrix Problem. It will be seen that degree
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constraints on ¢ and the elements of & are generally not
enough to ensure the desired characteristics. We are therefore
urged to introduce the very natural idea of Genericity.

I believe that the approach taken here clarifies many earlier
results, including those of Rosenbrock and Hayton [26], is general
enough to encompass several known results and introduces new ideas
which are used constructively such as Genericity, Generalized
Resultants, Construction of acceptable solutions to the equation

X DRP + Y N = @ . All of the procedures used are constructive

RP
and can be programmed on a digital computer. It would be quite
interesting to implement these algorithms using MACSYMA as 1s
done in [12], for some of the equations in Chapter 3.

One of the ideas that will be extensively used is that of
matrix fraction representation. If P is a matrix over R(s)
then it can be expressed as:
p=nN, D;} =D,
|
input, single-output case we always did think of the rational
=1

N,

where N are all matrices over R[s]. In the single-

function P = = nd as a ratio of two polynomials and asso-

n
d
ciated with this is the construction of the ring (actually a
field) of fractions of R[s], a form of commutative localization.
We will see that because of certain properties of the ring of
square matrices this idea can be generalized in the matrix case
and is a form of non-commutative localization [28]. To my know-

ledge this is the first time that this relationship is clearly

and explicitly demonstrated.



Linear Matrix Equations

In the second part of this research we present an algebraic

method for obtaining the exact solution P, to equations of the

type

S t ) )

Z Z 855 B* pAl = Q (1:1)

i=0 j=0
Matrices B(mxm), A(nxn) and A(mxn) are given and have entries in
some field F,' the gij's are elements of F. The method is found-
ed on the observation that the set MN of mxn matrices over F,
form an F[x,y]/¥ - module where ¥ is some ideal in Fix,. 7]
The Hilbert-Nullstelensatz [35] is then employed to show that
existence of a unique solution to (1.1)is equivalent to the con-
dition that a certain element in F[x,y]/V¥ has an inverse.
The method uses polynomial arithmetic and is very well suited
for computer implementation and has the added advantage that it
allows for parametric studies. Said in a different way, this
means that the theory and the method do not involve the concept
of an eigenvalue. This is of great importance in the investiga-
tion of systems over rings.

The work in this chapter is a continuation of our research
done for my Masters Thesis. Algorithms for the Lyapunov equation
in particular PA + A'P =Q have already been constructed and
programmed on MACSYMA [12].

Throughout this thesis we take an algebraic point of view,
and we demonstrate once again its importance in the treatment of
control theory problems. It is therefore one more indication of
the power of the algebro-geometric approach which has been used

in recent years.
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Chapter 2

General Pole Assignment by Output Feedback

2.1 Formulation

In recent years there has been a resurgence of interest in
frequency domain techniques for the analysis of linear systems.
One idea that has been repeatedly used is the Matrix Fraction
Representation of Transfer Functions. For single-input
single-output systems the transfer function is a rational function,
which is nothing else but an element of the ring. (field) of
quotients of the integral domain R[s]. This idea can be extend-
ed in the case of commutative rings and modules [2] and is a form
of Localization. The idea can be generalized even further for
non-commutative rings which satisfy certain conditions [28]. What
we will now show is that matrices with elements in R[s] do satisfy
these conditions and that Matrix Fraction Representation is a
form of non-commutative Localization. Our principal reference
is [28].

Let A be a ring with identity and T a multiplicatively
closed subset of A (ie if s,t in T then steT and 1€_"1:). Let
A 1_1] denote the right ring of fractions of A with respect

to T. From [28] we have that A [ I-l] exists iff

Sl) if s in T and a€A there exist te€ T, b€ A such that

sb = at.

Sz) if sa = 0 with seT then at = 0 for some t in T.

both hold.
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When Al T ] exists it has the form

AlT?

] = A XT /%

where v is the equivalence relation defined as:

(a,s) ~ (b,t) 1if there exist c,de.é such that ac = bd and
sc = td € T.

Addition in A[ T '] is given by:

(a,s) + (b,t) = (ac+bd,u) u=sc=1tdin T,
Multiplication:

(a,s)(b,t) = (ac,tu) sc =bu and u in T.

In our case let A = ann[

s] F a field and T be
T = {GeA| det G # 0.

T is multiplicatively closed, and one can show that conditions

51,52 are satisfied (see Appendix A). Therefore A[ Z'l] exists.
Proposition 2.1 Let (F(s))nxn be the ring of nxn rational
nxn -1

matrices. Then (F(s)) is isomorphic to A[ T 7].

Now as in the commutative case we also see that for each
right A-module M, we can define its right module of fractions
with respect to T a multiplicatively closed set of A, denoted

by M[ I-l],having a right A[ I-l

] -module structure. It can
be shown that [28]

MET ) M /o
whgre (x,s)~v(y,t) if there exist c,d€A suchthat xc=yd and
sc=tde T.

The operations of addition in M| I-l] and right multiplication

by elements of A I'l] are given by:

(x;8)+(Y,t) (xc+yd,u) u=sc =tdeT

1

(x,8)°(b,t) (xc, tu) (b,t)e A[T 7], sc = bu, ueT.
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Proposition 2.2 The right (E(s))™™™- modules (F(S))mxn and

mXm
F

[s] [ I_l] are isomorphic.
The proofs of the above two Propositions can be found in
Appendix A.

The concept of Matrix Fraction Representations will play a
very important role in our investigation of pole assignment by
output feedback.

Assume that we have the following feedback system:

a4
™)

where P is an mx2 (m»%) strictly proper input-output transfer
function and C some %xm proper dynamic conpensator. Both P and
C have elements in R(s) the field of rational functions in s

over the reals R. The closed loop input-output transfer function

G is
e = u- C-y
y = P-e
=> e =u - CPe. , (I + CP)e =u
=> y = P(I.+ CP) lu
=> G = P(I + CP)'1

where we assume that (I + CP)_1 exists.
Since P is a rational matrix(ie a matrix with elements which
are rational functions) we have that P [10] can be factored as

follows:
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where B,A,D,N are polynomial matrices.

Notation:

B o= BRp Aé; some right fraction representation of P.
= Aié BLP some left fraction representation of P.
= Npp DE; some right coprime fraction representation of P.
= Dié Ny p some left coprime fraction representation of P.

The closed loop transfer function G can then be expressed

in the following ways:

Form 1

G=pP (1 +cp)t
= Bpp Agp (I * Afc Brc Bpp Agp)
= Bpp Agp (AL (Achpp * Brc Bap) App )
= Bpp (Apc Arp * Brc Bre ) Py

Since the representations for P and C are not coprime, unnecessary
dynamics are present ( ie hidden modes are introduced). We have
that if x the characteristic polynomial [10] of G, then x is

a factor of det(ALC ARP + BLC BRP). If K is a greatest common

left divisor of ALC’ BLC and L a greatest common right divisor
of BRP’ ARP then
X = @ det(ALC ARP * BLC BRP) o , constant.
det K - det L
Form 2
_ -1
G = Npp (Ape Dpp * Bre Npp ) Dig

As in form 1 if x is the characteristic polynomial of the

feedback system and K a greatest common left divisor of
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LC? BLC then
det (A; D + B, N_,)
X = LC RP LC _RP ,0 constant.
detK

Form 3

1y = n.alp

G = Npp(Dyo * NyeNpp) Dic RP LC

RP
From [7,10] we have that © has the special property that
det © = 0 is the characteristic equation of the feedback system

(ie the roots of det Q(s) are the internal poles of the system).

Form 4 (least order)

oG5l
G = Npp# ™ Dpe
where ﬁRP’ Q are right coprime.

DLC’ Q are left coprime.

From [14, 24, 25] we have that the system matrix

[ 1 0 0o ]
0 T
0 Fpp 0|

is of least order and therefore that @ is equivalent to the in-

variant factor matrix of the closed loop system G. By invariant

factor matrix of G we mean the following: Let MG be the
Smith-McMillan form of G
°1 W
vy 0
Mg = 0 i) By mendey  Jgl Wy
Yy 1¢ige.
i On-g 2 |
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Then - is the invariant factor matrix

of G and wi are the invariant

factors.

Remark. We want to justify the statement that @ is equivalent
to ¥ . We use 98(°) to denote the degree of a polynomial.
s
Let G be a strictly proper mx% matrix (m»&) and MG=diag($%) its
I

Smith-McMillan form.

MG = E GH E,H unimodular
= o oe-1 -1
=> G = E MGH
B 7 i T -1
€ vy
€, 0 0
— ? -1 1
% H ‘= AY "B
0 0 —
€ Y, B(2xL)
0 H
B Y (Lx2)
A(mx2)

We call ¥ the invariant factor matrix of P.

Let G = A W_lB with A, (mx2), ¥_(2x2), B, (2x2) be some other
1'1 71 1 1 1
least order representation of G.

We then have that Yl and ¥ are equivalent. (In the case when

8(det ¥) = nzm, nzL we can use Theorem 3.1 p.106 in [24 ).

Let Q,Q1 be the system matrices (Rosenbrock sense)
T T
r——, "
= - - -
Iq 0 0 I 0 0
r 3 T q

Q =\]0 4 B Q = 0 Yy B,

LO "A 0 ! -0 "Al 0 i
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where 1rzn. From the work of Fuhrman we have that Q and Ql
are strictly system equivalent (Fuhrman sense). But from [25]
Theorem 6 we have that Q, Ql are strictly system equivalent

(Rosenbrock sense), which means that

q 5 4 are equivalent.

Therefore ¥ and Wl are equivalent.

We are now in a position to formulate the following problems.
Problem 1

Let P be a strictly proper plant and $ a monic polynomial.
What are necessary and sufficient conditions for the existence of

a proper compensator C, so that if x is the characteristic poly-

nomial of the closed system then y is a factor of ¢.

Problem 2

Let P be a strictly proper plant and ¢ a monic polynomial.
What are necessary and sufficient conditions for the existence
of a proper compensator C, so that if x is the characteristic
polynomial of the closed loop system then x = ¢.

Both of these problems will be referred to as subcases of

the Characteristic Polynomial Problem.

Problem 3

Let P be an mx% strictly proper plant and ¢ an 2x% diagonal
matrix in Smith form. What are necessary and sufficient condi-
tions for the existence of a proper compensator C so that the
closed loop invariant factor matrix ¥ = (wi) has the property

that ; divides ¢, for 1<ig?.



Problem 4

Let P be an mx% strictly proper plant and ¢ an 2x%& diagonal
matrix in Smith form. What are necessary and sufficient conditions
for the existence of a proper compensator C so that the closed
loop invariant factor matrix ¥ has the property that ¥ = -9.

This problem is clearly a special case of Problem 3. Here
we require that the invariant factors be placed exactly, at given
locations. Rosenbrock in his book [24] delt with this problem
when static, state feedback 1is |used. Problems 3

and 4 will be referred to as subcases of the Invariant Factor

Problem.

Problem 5

B -1
Let P = NRPDRP

9x% matrix. What are necessary and sufficient conditions for

be an mx% strictly proper plant and ¢ an

the existence of a polynomial solution X, Y of XDRP * YNRP = ¢
for which X_lY exists and is proper with NRP’ ® right coprime
and X,% left coprime.

This last problem will be referred to as the Denominator

Matrix Problem. Clearly if such an acceptable solution does

exist then C = X-lY is a proper dynamic compensator and

NRP ¢'1X a least order representation of G, which means that
if ¥ is the invariant factor matrix of the closed loop system

then ¥ and ¢ are equivalent.

Remark In a recent paper [26], Rosenbrock and Hayton are con-
cerned with the following problem.
Let P be an mx? strictly proper plant and & an x% diagonal

matrix in Smith form. What are sufficient conditions for the
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existence of a proper compensator C = ALéBLC so that for
1 0 o |
Q=1 0 ALcPrp*BrcMrr ALc
0 “Ngp 0
- <

a matrix (not necessarily of least order) which gives rise to

the closed loop transfer function G we have that ALCDRP+BLCNRP

and ¢ are equivalent.
Now this does not guarantee that we have placed the inva-

riant factors of the closed loop system since ALCDRP+BLCNRP

and NRP may have a non unimodular right divisor and ALC and
ALCDRP ;- BLCNRP a non-unimodular left divisor. That this is
actually the case can be seen from the following example.

In the paper they say that if 6{¢) = Ze(dp) -1 where

P = nde;1 is a strictly proper plant (siso) then a proper
compensator exists such that det T = a¢ where o is a constant
and T U a matrix giving rise to G.
=¥ 0
Let P = —1— , o= s3.252,
(s-1)

Then using their procedure for constructing the compensator we

find that a_=s b_ =-s =5 C =-1
c C

And also
12 0 0
0 53—252 S is a system matrix giving rise to
0 ~J 0
| 5

G =1 (s3 - 252) 1.,



Clearly det T = 53-252 = ¢

But we can see that this ¢ is not the characteristic poly-

nomial ( invariant polynomial) ¥ of the closed loop system since

- 252
x:-————— -

We see that degree conditions on ¢ are not by themselves
sufficient to ensure that the closed loop invariant polynomial
be equal to ¢. We see that we first have to solve the equation

xdp + ynp = ¢
for x,y such that xﬁly is proper and then require something
additional.

We have suggested several problems, classifying them as
the Characteristic Polynomial, Invariant Factor and Denominator
Matrix Problem. We have commented on their system theoretic
significance (of major significance in Stability Theory). We
will now show the significance of the equation XDRP+YNRP = 9

and then investigate the existence of a special kind of poly-

nomial solutions (X,Y) to this equation.
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2.2 Method of Solution

One way in which we may proceed is to utilize the form in

which the closed loop transfer function G has been expressed:

o e . =d;
G = Npp(A cDpp* BycNpp) "Apc
s T [y N Hesd oD
rp (PrcPrp* NicMrp) Prc
-5l
= Npp@ "Dic

Suppose now that we are investigating the characteristic
polynomial problem. What we then want to do is give some matrix
® with det ¢=¢ and see whether any polynomial solution (X,Y)

exists to the equation

XDRp # YNRp = 9 (2:1)
with the additional requirements that det X#0 and X-lY be proper
matrix. (Since NRP’DRP are right coprime we already know that

a polynomial solution (X,Y) does exist). Now then if such an
(X,Y) does exist, let K be a greatest common left divisor of

X and Y. We then have that the closed loop characteristic poly-
nomial x is expressed by

y = , q = det K.

In a similar manner if we are looking at the invariant
factor problem and ¢ is some matrix in Smith form, we want to
see whether a polynomial solution (X,Y) exists to equation (2.1)
with det X#0 and X-IY proper. This will ensure that if
Y = (py) is the closed loop invariant factor matrix wi|¢i

1¢igg. If in addition Np, and ¢ are right coprime and X and &

left coprime then Yy = ¢ - The association of this equation
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with the denominator matrix problem is evident. Our analysis

evolves around the solution of this equation.
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2.3 The Equation XDRP + YNRP = ¢

We need to answer the following question: For which ®
does there exist a polynomial solution (X,Y) to XDRp + YNRP = ¢
with the additional properties that det X#0 and X'lY is proper.

Such a solution will be called acceptable.

We have that N D are mx% and 2x% matrices respectively

RP’7RP
which are coprime. It is known [24] that a polynomial solution
(X,Y) does exist for all &x% polynomial matrices ¢&. The solu-

tion is not unique and as a matter of fact we have:

Proposition 2.3 [23] Let (U,V) be a pdlynomial solution to

UDRp 4 VNRP = 1. Then all polynomial solutions (X,Y) of
XDRp ¥ YNRp = & can be expressed as:

X = oU - NN;p

X = ¢V + NDLP (2 :2)

where N is a polynomial matrix.
proof: The equation (considered over the field of rational func-

tions) is linear and the general solution is given by:

X Xe # X

)} 0

Y = Y1 + YO
where (xl’Yl) is some particular solution of (2.1) and (XO,YO)

any solution of the homogeneous equation

XD, * Tyllpp = © (2.3)
Now let X1 = oU, Y1 = ¢V, We have polynomial X = Xl + Xo
Y =Y., % X iff X Y, are polynomial solutions of (2.3)

1 0 0> 0
(ie not rational). We then want to know which are the poly-

nomial solutions (2.3).

Let KDRp * LNRP = 0 be some polynomial solution of (2.3).

We want to show that K = NNLP’ L = NDLP for some polynomial N.
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Since KDRP = -LNRp and for any rational N NNLPDRP = —NDLPNRP
we have
(K-NN; ,) D o TN G
LP RP (L NDLP) Nep
_ -1

Let N = LDLP then

(K-NNLP) Dpp = 0
Since det DRP # 0 it is not a zero divisor and so K = ANLP'
Therefore K = NNLP’ L = NDLP' We now must show that N 1s

actually a polynomial matrix.
Since NLP’ DLP are left coprime [24] we have that the Smith

form of [DLP’ NLP] isi [Es B):

=> E,H unimodular 1in E[DLP,NLP] H= [1,0]
i i | -1
=4 [DLP,NLP] = E"*[I,0] H
=> [L,K] = N[D p,N;p]
- Ng-1q1,0] B!

_ : _ -1 _ =
=> [L,K] H= NE “[I,0] = [NO] |E 0

0 I
=> [L,KIH |E 0] = [N,0]

0 I

But the left hand side is a product of polynomial matrices

therefore N is a polynomial matrix.O

It is easy to see that any X,Y of the form

X U - NBLP

Y oV + NAL

P

for some polynomial N is a solution to (2.1)
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We can also go ahead and state

Proposition 2.4 Let & be an Zx% polynomial matrix with det 9#0.

Then there exists a polynomial solution (X,Y) to equation (2.1)
for which det X#0.
proof:

_ N g .
Let P = a0s) where d(s) is the least common multlplé of all the
denominators of P. Let E,H be unimodular matrices such that

ENH = S is in Smith form. Then

% R . |

where M is the Smith-McMillan form of P [24].

e
bl-. _
. 0
a
M = Eﬂ h
= o D where al,az--.aq are non-zero,
a, aq+1=- a2=0, bq+l=---bq=1
. Ez and a;,b, coprime 1<igq.
.
al bl -1
- 0 - 0
Now M = 0 . * 5 ® where A and B are
a, ] bld right coprime
i 0 ] 8
A

This means that P=E'1A(HB)—1=NRP-ﬁ&p is a right coprime repre-
sentation of P. Now if P=NRPDéé there exists a unimodular
matrix F such that

Npp = Nppf

Doy = DppF

RP RP
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Since A and B are right coprime there exist polynomial U,V which

are diagonal and

UB + VA = I

with det U#0.

Let U = UH'' VvV, = VE then
UH luB + VEE !B = I

= UpDgp * ViNgp =T

Let U, = Flu, v, = Fly

=> UIDRPF + V1NRPF = F

= F'1U1DRP + Pl N, = 1

=5 UsPpp: ' Vallgp™ 1

Let X = ¢UZ Y = ¢V2 Then
XDRP + YNRP = ¢ with det X#0.O0

The only condition we have imposed so far is for det ¢#0.
And we have shown that we can construct a polynomial solution
X,Y satisfying XDRP+ YNRP = ¢ with det X#0. But we have not
said anything about X_lY being proper. This is the critical
point. To accomplish this we will need to apply more conditions
on ¢ and investigate the matter further. 1In fact the next part
will concentrate on this issue. To do this we will exploit the
form in which the general polynomial solution X,Y has been

expressed.

<
I

oU - NBLp

=<
]

oV + NALP
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In this part of the section we will develop some theory
that will help us with the construction of desirable polynomial
solutions to equation (2.1).

Let R(s) be the field of rational functions in s over R.
It is a set of equivalence classes, denoted by [a,b]. We pick
a representative from each equivalence class (a,b) where a,b
are coprime and b is monic. This representative is‘unique. We

define two subsets of R(s) in the following manner

{ [a,b] | a polynomial, b =1}

Ps

S
p

{ [a,b] | 6(a)< 8(b) ? {[0,1] }
The set PS is isomorphic to R[s] and Sp is the set of
strictly proper rational functions in which we have also included

the zero element.

We can now define two functions

P0 : R(s) — Ps P1 : R(s) — Sp

Let (a,b) the representative of [a,b] and let a = nb +r where

n,r are the quotient and remainder.

Now define
P,([a,b])
P, ([a,b]) = [r,b]

The functions are well defined.

[n,1]

We tan now state:

Proposition 2.5 Every element x in R(s) can be expressed

uniquely as x = Xg * Xy where X in PS and Xy in Sp
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proof: For X = [a,b] we let Xg = PO([a,b]) and Xy = Pl([a,b])
(ie [a,b} = [n,1] + [T,b]).

Suppose that [a,b] = [q,1] + [g,p].

We are allowed to choose (g,p) to represent the equivalence class.

Then
[nb + r,b] = [ap + g,P]
=> (nb + 1) p = +bqp + bg
=> (np - qp - g) b+ rp =0
Since b,r are coprime then p = -zb
np - qp - g = z-T
=> z|lg , z|p therefore z is a constant.

Since 6(g)< 6(p) we must have n=q, z=-1, which implies that

p=b  g=r.

From the above we can now say that: the fraction %fO is
proper iff RO([a,b]) is constant, the fraction %#0 is strictly
proper iff PO([a,b]) = 0.

The above can also be applied to matrices over R(s) in the
following way:

Po(M) = (Po(mij)) Py(M) = (Pl(m” ) ).
Clearly
M= Py(M) + P, (M)

Here are some properties of PO, P1

Property 1 Let [a,b], [c,d] be two rational functions. Then

P ([a,b] + [c,d]) = Py(la,b]) + Py(lc,d])
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Let A,B be two compatible matrices with rational entries.

Then P,(A+B)

. P (A) + P (B).

Qroof: Let a = nlb + Ty c = nzd + rz.

we know that PO([a,b]) =[n1,1]

P, ([c,d]) =[n,,2]
nlbd + rld =s ad + ¢cb = (n1+n2)bd ¥ rld & rzb
cb = nzbd + rzb

but ad

therefore PO([a,b]+[c,d]).= Po([ad+cb,bd])

1}

=
i

+

oo

I
=]

P (la,b]) + Py(lc,d])
Clearly P (A+B) = P, (A)+P( (B)

Property 2 Let [a,b], [c,d] be proper rational functions.

Then P,([a,b][c,d]) = P,(la,b])-Py([c,d]).

Let A,B be two proper compatible matrices with rational entries.
Then PO(AB) = PO(A)-PO(B).

proof: ac = nlnzbd + rlnzd + nlrzb 1T,

Since [a,b] [c,d] are proper n,,n, are constants therefore nin,

is the quotient rlnzd + nlrzb 1T, the remainder of bd|ac.

1]

= PO([ac,bd]) [nlnz:ll

[nl,l]-[nz,l]

P,(la,b])-Py(lc,d])

I

Let P (A) = Aj Py(A)

0 A1 PO(B) = B0 Pl(B) = B1
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Then P,(AB) = Po((Ag*A) (By*By))

= Py (AgBy*A B *A B+ AjBy)

- Po(AgBg) *Po(AgB) * Po(A1Bg) + Po(A;B))
= A8y
= Py (A) Py (B)

Property 3 Let A be a square matrix, which is proper.

Then if det PO(A)#O we have det A#0.
proof: A is proper so that
A = AO + Al where AO is constant.
Suppose that det AOfO
- a(s) a(s) :
Then det A det AO + B(s) ’ b(s) strictly proper.

=>det A#0.

Property 4 Let K be a constant and A some compatible matrix.

Then PO(KA) = KPO(A)

Rroof:

Py (K(Ap*A1)) = Po(KAG) + Po(KA)) = Po(KAp) = KA;=KP((A).

0

Lemma 2.6 Let alz'azz'QB"'zagz 0 and By By By 0

2

be two sets of non-negative integers with ci=ozi+8i and

ck+1=ck+2=---c2=0. Let €= C +C +---Cp and ¢ be a polynomial
of degree ¢ Then there exists an 2x% polynomial matrix ®
such that i) det ¢=a¢ (o constant) and

ii) Po(diag(s-gi) ¢ Blagls by 3y (2.4)

where J is diagonal with constant entries

proof: We will give a constructive proof in which we will con-

struct a matrix & which has elements on the diagonal of degree
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Cy and elements in column & and row i of degree less than ;o
and det ¢=a¢ . This will immediately satisfy (2.4)
We at first factor ¢ to irreducible terms over R[s] and

then form polynomials ¢1,¢,--'¢k, with ¢=¢1-¢2----¢k. Some

may be equal to 1.

From the matrix @1

61
éZ
0 -
- & 2 g 1
Ql = ¢k where 5 QC(¢1) ¢1 are
0 1 monic.
L T
) ¢2 0
¢1—
0 I

1£ 8(¢i)=ci then we are done since ¢ = @1 satisfies i) and
ii). If not then we must have 8(¢i) s and 8(¢j)<cj for at
least one pair i#j. By repeated applications of Lemma 4.1
[24] on ¢2 we will arrive at a matrix ¢3= EIQZH1 (El’Hl unimodu-.

lar) with diagonal elements of degree C, and elements in column

i of degree less than c; -

€11 ©12 ®13 7 ©gx
€1 ©92 Cpz3”"" Cox

? = '
i °x1 K2 €Kk
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If elements in row i are of degree less than c; we are done. If
not then we start with column 1 and using elementary column oper-

ations transform it so that e(eil)<ci 1¢igk.

Column 1

Let 1 = max(O(eZl),e(eSI)...e(ekl)) and suppose that Cy>T2C, -

Let
€21792122*P2) P10 or  98(py;) €T-¢y
€:1=431€33*P3] P31=0 or 8(pz3) €T ¢y
€1 17%1%kk Pk1 Py =0 or  8(Py;) €T-cy

Multiply column j 2€j<k by qji and subtrack from column 1.

The new column 1 1is (ellelz---ekly

- ' - R - . .
€11 2911 €13 €13 elkW
21| _ | %21 o . 5 S2k

- qz1 - q31 . qklt
®x1 ®x1 ®x2 €x3 ekk{
L. J - - L - b - ol -
Now e(ell) = cq
9(é21) € r-1
B(ekl) < 7r-1

The new max, T = max(6(é21),°“8(ék) y< -1
We can continue doing the above until we make r=max(9(§21)---

) £ c.=~1.

0(2 5

K1)



We now have c2>r;c3.

Let

©317931%353"P3) Dyg®0  BF 0 [P JST=cy

©717941%447 P41

€11~ 9% 1%k Px1 P70 or 8(Py ler-cy

Multiply column j 3<jsk by djland subtract from column 1. The

o

new column 1 is (e

110 &1l

@I
ol

11 11 %13 €1k

i
i

21 73 €23

(el
an

k1 k1 ekSJ €xk

- — - -

@1

Now 8 ( )= C

ypd= 4
6(eyq)< ¢y

9(e31)s r-1

G(ekl) sT-1

and f=max(6(§31),"'e(zkl))$r-l. We can continue doing this

: s ' 1 "
until T max(e(e31), e(ekl) )sc3 1

Continuing in this manner we can make 6(e21)<c2 8(e31)<c3:“

...e(ek1)<ck and be through with column 1.
We subsequently forget column 1 and work on column 2 in the same
manner using columns 3, 4,---k. At the end of this procedure
we will have formed ®4 such that

¢4 " ®3H
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with H unimodular and with elements on the diagonal of degree
4 and of diagonal elements in row i and column 1 of degree

less than Ci'

Remark
This Lemma says the following. Let f=(¢i) be an 2x2%
diagonal matrix with 0(¢i)=di. Let clacza---cﬁ;O be a set of
9‘ 2 X A
non-negative integers with > d;= 3 ¢4

i=1 i=1
Then unimodular matrices E and H exist such that a matrix
& =E®H can be constructed with the property that the diagonal
entries of ¢ have degrees <y and all other elements in column

i and row i have degrees less than ¢y

Lemma 2.7 [26] Let Q=[T,U] be a rational matrix with T 2x%,
U ¢xm and suppose there exist non-negative integers ai>0 such
that
; By
Py(diag(s ") [T,U]) = H =[H,,H,]
where H is constant and of rank &.

i) Then T U exists and is proper iff det H,#0.

ii) Then T 1y exists and is strictly proper iff det HZ#O and

H1=0.
proof:
_a_
Suppose that det HZfO. We also have that Po(diag(s 1)T)=H2.

Then M 1 exists and is proper. M

We see this from the following:

det M = det H2+ p(s) = a(s) # 0
q(s) b(s)
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where p(s) 1s strictly proper

q(s)
and 8(a(s)) = 8(b(s)).
Now ML= Adj ) = Adj (D - b(s)
det M a(s)
But M is proper and so is Adj(M). Therefore M-l exists and 1is
proper.
Now T LU = T'ldiag(s_mi)_1 diag(s-ai)U

<0 4 =0 .
(diag(s 1)T) ~(diag(s 1)U

=1 =0
M t.(diag(s 1) U)

It is a product of proper matrices therefore T'IU is proper.
-0,

If in addition Hy=0 PO(T'IU) = Py 1) Py (diag(s MU

1

=> PO(T—IU) =0 => T “U is strictly proper.

On the other hand suppose that T_1 exists and T—lU is proper.

Show that det }12740.

-G -

-l
P,(diag(s Ho

i) TT_lU)

n

Po(diag(s

a. <]
P,(diag(s l)T)-PO(T u)

= ” CF = =3 :

=5 Hl = HZ F. F PO(T U) F a constant.

=> H = [HZ,Hl] - HZ[I,F]

if det H2=0 then HZ[I,F] cannot have rank 4. Therefore det HZ#O.

Now if in addition T-1y is strictly proper

then PO(T-IU) a i

e
=> P, (diag(s Huy = Hy =0.



Lemma 2.8. Let Q be an 2x(&+m) polynomial matrix of rank 2.

Then there exists a unimodular matrix M such that MQ is row
—lrs

proper, (ie there exist ai;O such that Po(diag(s 1)MQ) = H

with H having full rank).

This is a generalization of Theorem 2.5.7 in Wolovich [33].

proof:
Let B be the maximum degree of all 2¢x2 minors of Q. Let T,
L
be the degrees of the rows of Q. We must have r = & Ty B since
i=1

if r B we would have a matrix Qq such that the degree of each
row being less than or equal to T, but with e(deth) = B which

is impossible.
i
Let Qr = diag(s 1)[‘r , where T is the high order coeffici

ent matrix of Q. If Fr is rank & we are done because we let

o, = Ty and M = I. Suppose then that I's has rank less than £.

This means that the & rows of r. are linearly dependent. This
2

implies that there exist constants cy such that % C;Y; = 0
i=1

(yi the ith row of rr), with not all cy equal to zero. Now sin

Q is rank ¢ none of the yi's are all zero. This consequently

means that at least two c, are non-zero. Lét rj=max(r1,r2,...,
%
s TN TN
=> Z c.s 7 's 'y. = 0. (2.5)
! i i
i=1
Let
1
0
: : “ 0
T.-T T.=T
- 1 jo1
U1 cyS . Cj Cj+1s --Cys
. :
| 1

ce

T ).
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be a unimodular matrix.

; on the left, has the ef-
; S o
fect of replacing row j of Q by _Zl ;s J 1di (di ithrow of Q)
1:
and because of (2.5) the degree of row j is less than rj. Let

We see that by multiplying Q by U
2

= U,Q and repeat the above process until you obtain a Q' with
1 1

F; being full rank. This completes the proof.

We are now in a position to state the following basic Theo-
rem. It expresses a necessary and sufficient condition for a
polynomial solution (X,Y) of (2.1) to also be an acceptable
solution.

Theorem 2.9. [26] Let P be a strictly proper mx Trational

matrix and P = NRPDé; a right coprime representation which in
D
RP

addition has the property that [NRP

column degrees are ordered Ay e, ...;azzo. Let & be a non-

singular 2x2 matrix with q=6(det®)-6(detD

is column proper and the

Rp)z.O. Let X,Y be

a polynomial solution of XDRp + YNRP = O,

Then X~1Y exists and is proper iff there exists a unimodular
L
matrix M and indecies diyo satisfying di=q such that
i=1
~ds oy
PO( diag(s 1)M[Y ddiag(s )]) is a constant. (2.6)

proof:

(sufficiency) Suppose that(2.6) 1is satisfied. This means that
=itk sids -0,
both diag(s 1)MY and diag(s l)MGdiag(s 1) are proper.

Now
%5 By ~d3 03
diag(s IM[X Y] DRP diag(s ) = diag(s )Médiag(s )

Nrp F

d

[X Y]
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By assumption we have that F is proper which means that PO(F)=FO

a(s) a(s)
is a constant. Now detF = detF0 + , where is strictly
b(s) b(s) det?d
proper. Since 8(det®) = q+o (q=al+a7 +a2) then detF =

+a
4

is proper (not strictly proper), which means that detFO#d.

By assumption we also have that (Let PO(A)=A0 Pl(A)=Al)

=
W D diag(s %) W+ W
=] RP =] 9 1] with det Wy#o.
Z Rpp Z1
This follows from the fact that DRp is column proper.
Npp

From Lemma 2.7 we have that det WO#O and that ZO=0.

By assumption we also have that T0(=P0(7)) is a constant.

Now
[X,Y] W =F
Z
=> [Xg+Xy» Yo+ ) [Worw | = [Fo+F;]
Zy
=> X (Wo+W,) + X WotX W +Y g2 #Y 2, =Fo+ Fy
N N e

strictly proper matrix

XO is a polynomial matrix in general.

We will show that 1) det XO#O and in fact that KO is a
- o.
constant, (ie Po(diag(s l)X) is a constant).

Now XO(WO+W1) is proper and
X (Wo+W )=Fg+Vy, V =Py (X (Wy+W ) Fy=Py (X (Wy+¥;))

Since det FO#O, from property 3 of PO we have that
det(XO(hO+Wl))#O
=> det KO#O
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Now XO(W0+W1) = FO+V1

¥ = =1 o | st gl .
> kO(I+C) FOWO +V1LO C “1“0 strictly proper.
Suppose that YO was a polynomial matrix. Then 1t has some row
i, which has polynomial entries. Let rij be the element of

largest degree 6;>0 in row i. The ijth element of YO(I+C)

then becomes

Q=T 5¥T51C35%732%25% 7 "Tie

with each Cij strictly proper.
Po(a) = Pyl )#Polry oy5)%e ¥Bp(T5,Cy5)
n,1]

where 6(n)=6i>0

This is a contradiction because F0W61+V1W61 is proper.
Therefore YO is a constant.
We have that
_d.
: i N _ % AF
Po(dlag(s IM[XY]) = H [XO YO]
where H is constant and det YO#O . Therefore x 1y exists

and is proper.
(necessity)

1

Suppose now that X 'Y exists and is proper. Show that

there exists unimodular M and indecies

L
d., I d. = q satisfying (2.6).
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Since det® #0 [XY] must have rank 2. From Lemma 2.8 then,

there exist di;O and M such that

S,
P, (dig(s 1yM[XY]) = H, with H; having rank £.

1 1

_d.
Now P,(diag(s 1y M[xY]) =P, ([X,4*X Y 7, 1)

and since (MX)_l(MY) is proper from Lemma 2.7 we have that

det YO#O.
iag(s =
We already know that PO([DRp diag(s ) > [HZ'}
NRP 0
where det Hsz.
Therefore
—di -a -d. -0 .
diag(s “)M[XY] [Dgpp) diag(s 7)=diag(s Lymediag(s )
Q
Nep
: -d4 : !
=> Po(dlag(s IMIXY ] DRP diag(s ) = PO(Q)
Nrp
= X, H, = Py(Q
with det XOHZ#O
=> det Q = e(s) with 8 (e) = 6(f) =>0 (detd) = ; d.+ ; o
£(5) j=1 1 i=1 *

Condition 2.6 is clearly satisfied.
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It is very interesting to sce the form Theorem 2.9 takes in
the Single Input Single Output (SISO) case.

Corollary 2.10 Let P be a strictly proper rational function and

P=npd£)1 a coprime representation (in fact it is a minimal coprime
representation). Let be a polynomial with q=6(¢)-8(dp)20
and let x,y be a solution of xdp+ynp=¢
Then x_ly exists and is proper iff
Pd(sgq)[x¢s-a])is constant.

Remark

The above Theorem 1is quite reasonaﬁle for the following
reason: We do have that x,y is a polynomial solution of
xdp+ynp=¢ with e(dp) =a and 6(¢)=a+q.
Necessity. If x_ly is proper then it is clear that
0 (x)+a=0(¢)=a+q and q=6(x) 6(y). Therefore we must have that
Po(s-q{x¢s_a]) is a constant.
Sufficiency. If Po(s_q[y¢s-a]) is a constant this means that
8(y)¢<q and since 6(¢)=q+a we must have that 8(x)=q which means

that x-l

y exists and is proper.

The above Theorem and Corollary speak about a particular
solution. Suppose that we are interested in seeing whether
there exists any acceptable (x-ly exists and is proper) solution
to the equation xdp+ynp=¢ . We give an answer for the SISO case.

Let u,v be such that udp+vnp=1. Then the general solution

is given by

X ¢u -nn

p
oV +ndp for polynomial n.

Y
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Let X, y be the particular solution we obtain when -n is the
quotient and y the remainder of the division dpl¢v.

Corellary 2.11. The equation xdp + ynp = ¢ will have an accepta-

ble solution iff X,y is an acceptable solution.
proof:

If x,y is an acceptable solution then xdp + yn, = ¢ does
have an acceptable solution.

Assume that x,y is an acceptable solution. From Corollary 2.1
this means that Po(s_qy) is constant. Fither q¢n-1 or q» n-1.

If q¢n-1, since the division ¢v by dp gives a unique remain-
der of degree less than n-1 we must have x = X , y = ¥y and X,y
is an acceptable solution.

If q> n-1, then 6 (y)¢n-1 and clearly Po(s'q?) is a constant
which means (Corollary 2.10) that x,y is an acceptable solution.
This completes the proof.

Suppose now that we turn our attention to the Multivariable
case and formulate methods that make a solution X,Y of
XDRP - YNRP = ¢ an acceptable one. We propose to do this by
using Theorem 2.9 and by exploiting (as we did in the SISO case)
the structure of the general solution

X

"

oU - NNLp

¥ oV + ND

LP
\ =
where UDRp + VNRP | €
Theorem 2.9 says that we just need to concentrate on Y and
pick such a & so that condition 2.6 is satisfied. We now proceed

to show two ways in which polynomial solutions are constructed

which are''candidates'" for acceptable solutions.
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Method 1.
We use the SISO case as a basis. There we picked y as the

remainder of the division dpi@v.

e ) . i
Let P~ALPBLp be any left representation of P. Since ALP

is invertible we know that there exists a unimodular matrix M

such that ALP = MALP 1s row proper. Let 81 be the largest row

degree of KLP‘ We can then find a diagonal matrix A such that

ALP = bMA[p and all row degrees of A', are 2 Clearly A}, is

“LP 1° LP
regular. We can therefore assume that we pick P = AL;BIP such
) 3 1 = :l+ B
that ALP is regular and ALp Asls ....AO.

From [15] we then have that right division by AL is possible.

P
We then pick -N and Y as the right quotient and right remainder

respective of the division ALPlQV. This is

oV = -NALp * ¥,

We then have that 6 (Y)< 81.

Method 2.

_a-1 N ; P
Let: B = ALPBLP in which ALP is upper-triangular. Let

Q = oV = (qij). we pick N and Y by columns in the following man-
nex, Let Y be the degrees of the diagonal elements <5 of
ALP’ Y = max (Yl’YZ’ — ,ym). Let Y be the quotient

and remainder respectively of the divisions clllqil 1¢3¢8

Let RPN AP be the quotient and remainder respectively of the
- - - | < L3 . - - - -

divisions Cypld52%M51%12 1<1ig¢ 2. We continue in a similar

fashion with the rest of the columns, and construct a Y such

that 8(Y)< vy.
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It is interesting to note that if oV is some upper-triangular

matrix then the Y chosen in this manner will have the property:

r ~
[ 3] 11 €12 €13 ** Sin |
Y2 0 €5, iCgg #is g
r- Avp ~
0
RE ; “mm |
with Y being the ith row of Y , e(cii) = Y3 and
6(yq) < max(y;-1,v,-1, ... ¥, 1)
8 (y,) ¢ max(y,~1,vg-1, -.. vp-1)
8y ) ¢ max(yy-1, ... v -1).

Suppose that the Yis are a decreassing sequence. Using this
method for constructing a Y may produce lower Tow degrees. This
in turn will imply thet a lower order compensator will be con-

structed.

In the SISO case we have seen (Corollary 2.11) that a solu-
tion x,y to xdp +oyng = 6 is an acceptable solution iff X,y is
an acceptable solution.A generalization of this result to the
MIMO case is very desirable.

Corollary 2.12. Let P be a strictly proper transfer function

with observability indecies equal to u. Then there exists a

= . - _ u
LPNLP with DLP DUS | SNSRI D0

and detDy#0. Let X,Y be the polynomial solution obtained using

left coprime representation D

method 1 and D Let & be a diagonal matrix with 8(¢i) =¥y

LP’
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where a, are the controllability indecies.
Then XDﬁp + YNRP = ¢ has an acceptable solution X,Y iff X,Y

is an acceptable solution.

proof:

If X,Y is an acceptable solution then KDRP + YNRP = & has

an acceptable solution.

Suppose that X,Y is an acceptable solution. From Lemma 2.7
and the proof of Theorem 2.9 (necessity) we have that 6(Y) < ¥y
and Po(diag(s_Y)Y) is a constant. We either have ysgu-1 or ysu-1l.
If yeu-1, since the division gives a unique remainder of degree

less than p we must have X = X, Y = Y and X,Y is an acceptable
solution.
If y>pu-1, then clearly Po(diag(s'Y)Y) is a constant and X,Y is

an acceptable solution.
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2.4 Rosenbrock's State space Thecorem.
Let ¥ = Ax + Bu be a linear system with (A,B) a controllable

pair. Suppose that the output of the system is the state (C=I).

The input-output transfer function P is given by P = (sI-A)-lB.

Since (A,B) is a controllable pair then sI-A and B are left co-

prime. Let DLP= (sI-A), NLP =B. If we now introduce-state (output)

feedback u = Cy + v, then the closed loop transfer function G

can be written as

P(I+CP) v

(I+PC) 1pv

<
I

Let G = P(I+CP) Y, n = 8(det(sI-A)), A (nxn) and B (nx%).

Theorem 2.13 [24]. Let (A,B) be as above. Let Aiakzz ...lez 0
be the controllability indecies of P. Let o5 be given polyno-
L
mials such that ¢i|¢i-1 with i)fle(¢i) = n.
Then there exists a constant C such that the invariant poly-

nomials of G are the ¢i iff

k k
;Z:e(¢i) 2 ;E:xi k=1,2,... 2. (2.7)
22 15 with equality at k=%.

We now prove the theorem using the results from section 2.3.

Eroof:

Let ¢ =

- -

Suppose that P = NRPDRé is a right coprime representation of P

D
with Alaxzz ...zAQ;O being the column degrees of [Ngg].
If C=X"'Y then G = + YN

53
Npp (XDpp rRp) -
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(sufficiency)

Suppose that condition 2.7 1is satisfied. We will construct
=

a constant compensator C = X Y such that
i 3 = & v &Nl 3 X = 1.
i) XDRp + \NRP o where ¢'.% and X I
ii) NRP and &' right coprime.
Sincé G = NRPQ'_l we will have that the ¢i are the invariant

factors of G.

i) Using Lemma 2.6 with ¢=¢1¢7 “e éi 5 Bi=0 and a.=\., we

3 1
=0 i

can construct a matrix ® such that det®?=.3 and PO( diag(s l))=J.
From the proof of Lemma 2.6 we also see that %.9.

We now show that there exists a constant acceptable solution
to XDRP + YNRP = ¢ . Let UDRP + VNRP = I. Using method 1 we con-

struct a Y, as the remainder of the right division DLP|¢V.

This means that 6(Y)=0. From Theorem 2.9 we have that
-a.

Po([Y ediag(s 131) is a constant and therefore that X1y exists
and is proper. We also see that X is a constant.
Define X=I , C=Y=X"'Y #'=x"! . Then
DRP+YNRP=¢'
ii) Suppose that A is a g.c.r.d. of NRP’ &,
Npp~Ngp 8 » Dpp*¥Npp= 2,4
= DRP=(®2-YNRP) A which is a contradiction since NRP’DRP

are right coprime.
(Necessity)

Suppose that a constant C exists such that the invariant
factors of G are the ¢i. Show that condition (2.7) is satis-

fied.
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1

Now G= NRP(DRP+CNRP) 5 Let DRP+CNRP=W . We must have that
NRP’? are right coprime and that therefore V¥~9
Now
T €] Dpp = Y
NRp
—_ Ay .o A
=> PO([I Cl DRP diag (s ))= PO(? diag(s 7))
| Nrp |
) - -Ai . -ki
=3 {1 (E] Po< Dpp diag( )>= PO(? diag(s ))
LNRP_
Let P D Ry
o( RP | diag(s )) =|H det H#0
NRP 0
_>\i
then PO(Wdiag(s )) = H.
...}\_
-1

With y' = H "y , then Pg(¥' diag(s 1y = 1.
=X

Now ¥'~® and P,(¥' diag(s 1Y) = 1. This means that y¥'
L
has the pxp bottom right minor of degree z Ay The
i=-p+]
greatest common divisor of all pxp minors (which ls¢2-p+1¢2—p+é. ¢2)

has degree less than or equal to this

L

2 86 € -

i=L-p+1 i=g-p+1

S

Since we have equality for p=f2 we can rearrange the inequalities

obtaining
k

k
ICICHEID DR k=1,2,-+-2

1=1 1=1

with equality at k=2
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Remark: _The proof presented here is much clearer than the
comment concerning the proof found in [26]. The question of
coprimeness of (NRP’ %) and (X,?) which ensures that o-¥ is
completely ignored in [26]. If C is a constant matrix this 1is

automatically assured.
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2.5 The Characteristic Polynomial Problem
We are now in a position to give an answer to the problem

stated in section 2.1.

Theorem 2.14 Let P be an mx? strictly proper plant and NRPDé;
a right coprime representation which has the property that
[DRP] is column proper with column degrees G2 et ay 0.
N
RP
= 1 >
Let ALPBLp be a left representation of P such that Bizszz B%>0
are the row degrees of [QLP’BLP]’ with %LP regular. Let & be a
polynomial of degree t= I ai+2(81-1).
i=1

Then there exists a proper compensator C such that the character-

istic polynomial y of the closed loop system is given by
-9
X—-—_..
axy

where qdyy is some polynomial with OsS(qu)s 2(31-1).

proof:
Using Lemma 2.6 construct a matrix 2 which satisfies
N -(81-1) i 'O.i
PO(dlag(s )® diag(s ) )= J. If we now use method 1

for constructing a Y we have

G(Y)SBl-l.
This implies that
i -(81'1) i ’C"i
Po(dlag(s )[Y édiag(s )]) 1is a constant.

By Theorem 2.9 we then have that X_lY exists and 1s proper and

det o=a-9¢
$

This means that X
i XY’
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If X =AX and Y=AY with A a g.c.1l.d., then ¢=A¢, and
XDRP+YNRP=© . This means that
Ayy = det A
-(81-1)
Now Po(diag(s X) ) is a constant (seen from the proof of

Theorem 2.9) This means that
6 (det X)sl(Bl-l)

& 8 (det A)si(Bl-l)

=> 0 8(qyy)s2(By-1)

As we can see if the acceptable solution (X,Y) so constructed
has the additional property that X,Y are left coprime then Ay is
a constant we have x=a-¢.

Remark We can easily see how the above theorem can be used
when one wants to stabilize a strictly proper plant. If ¢ 1is
taken to have all its zeros in the left hand plane then we are
assured that the closed loop characteristic polynomial will have
all its zeros in the left hand plane since x|¢

Remark It is quite reasonable to expect that if ¢ is a polyno-

'3
mial of degree t= g a,+ 2(81—1) a proper compensator can be
i=1
constructed such that x|¢ . By using Method 1 for constructing

polynomial solutions to an equation XDRP+YNRP=¢ (¢ arbitrary)

we have that a Y can be constructed with G(Y)sel-l. To use the
sufficient condition of Theorem 2.9 we also need to construct

a ¢ with q=6(det ¢)-6(det D,,)=2(3,-1) and det %=a¢ such that
Po(diag(s )odiag(s )) is a constant. Condition 2.6 is
then satisfied and X-lY exists and is proper. But this is guaran-

teed by Lemma 2.6.
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Remark Another interesting point is to investigate how small can

t the degree of ¢ be, so that a proper compensator C will exist

¢

giving the relation y=——. What we are able to say for this is
XY
as follows.

. . : -v__p-1
Since we have required that P NRPDRP

coprime representation, this means that the column degrees are

be a minimal right

the controllability indecies Ai of P. We can also assure that

we pick a left representation ALll)BLP such that the largest row

degree of [ALP,BLP] is the largest observability index My of P,
We can therefore let
6
tts T A ¥L{p4+1)
i=1 1

For the SISO case t' becomes t'=2n-1 (n=e(dp)) and we have

Corollary 2.15 Let P be a strictly proper rational function

and npd;1 a (minimal) coprime representation. Let ¢ be a poly-
nomial of degree t'=2n-1.

Then there exists a proper compensator C such that the
characteristic polynomial x of the closed loop system is given
by

ot

where qu is some polynomial, 0 < e(qu)sn-l.

We have shown in the SISO case that if ¢ is a polynomial
of degree greater than or equal to 2Zn-1 there always exists an
acceptable solution to the equation xd +ynp=¢ 3 vWe have also
said that even for ¢ such that 8(43<2n-1 there may exist an ‘
acceptable solution. It would be quite interesting to see in

the event that an acceptable solution does exist whether
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it is unique. If not then characterize all acceptable solutions.
The idea behind such an investigation is to see whether any free-
dom afforded by a multitude of solutions can be used to attain
other design objectives. The next two Lemmata address this
question.

Remark Let ¢ be a polynomial with 5($)=t<2n-1. If an acceptable
solution x,y to xdp+ynp=¢ exists then it 1is unique..

proof

Assume that X15Yq is an acceptable solution to xdp+ynp=¢

This means that

xldp+y1np=¢ and 6(x1)=t-n S(yl)st-n

Suppose that X,y5Y, is an acceptable solution. Then

xzdp+y2np=¢ with 6(x2)=t—n a(yz)st-n
=> (xlnxz)dp-{.(yl—yz)np =0
X y
=> X, y solutions to homogeneous equation
=> i: n _= .d
m D y=m p

if m#0 => 8(y)zn. But this cannot happen since
0(y)¢t-ng2n-1-n=n-1

therefore X{¥X5 v Y{TYy -

Lemma 2.16 Let ¢ be a polynomial with 8(¢)=2n-1+k, k>1. Let

X15Y1 be an acceptable solution of xdp+ynp=¢. All accetpable
solutions are of the form
X, = X; - mn
= y. + md
Yo ) p

where 6 (m)<¢k-1.
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proof:

Since 6 (9) 2n-1+k an acceptable solution always exists.
=5 xldp+y1np = ¢,8(x1)=2n-l+k—n= n+k-1, e(yl)s n+k-1
I claim that any X5,Y, can be written as
X, = X; - mn
Yo9. % Yy * mnp
with m polynomial such that 6(m)s k-1, is an acceptable solution.
Clearly 6(x2)=n+k-1, e(yz)s n+k-1, which implies that xélyz exists
and 1s proper.

On the other hand if 6(m)> k then no x of the form

2*72
x2=xl-mnp, y2=yl+mdp 1s an acceptable solution since e(yz);n+k
e(xz)sn+k-1. Since we have taken into account all solutions
the proof 1is complete.

The above Lemma shows that if we allow 68 (¢)32n-1+k, k31
then we introduce k parameters (k degrees of freedom) which
can be used to attain other design objectives such as to shape
the sensitivity function or accomodate steady-state error spe-
cifications. As an example we now show how this freedom can
be used in constructing stable proper compensators.

Let p = 1 and suppose that we want to construct a pro-
2 P P

§"=1
per and stable compensator which makes the characteristic poly-

nomial of the closed loop system equal to the stable polynomial

b = s4+53+352+s+1.
Ssz+25 * .
The compensator c¢,= o Sl e does meet the requirements
-

but it is unstable, xldp+y1np =

|
©
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From Lemma 2.16 we have that all acceptable solutions are of the
form Xy = Xy - mnp, Y, = Y3 + mdp, where in this case m can be
any constant. The polynomial X, = sz+s-1 will become stable if
its constant term becomes positive. Let m=-2. Therefore

1

X, = sz+s+1, Yy = 35242542, Clearly c, = x,

5 Y5 does meet all

2

the requirements.

Motivated by the discussion in [5] suppose that we now con-
sider the following problem.

We have a strictly proper plant P which we are allowed to
modify by 1) using constant output feedback to obtain a system
P and 2) by appropriately reducing the number of inputs of P
to obtain %. Let ¢ be some polynomial. We then ask what are
sufficient conditions for the existence of a proper compensator C
(using output feedback) so that the closed loop system (comprised
of % and C) will have a characteristic polynomial y which is a
factor of ¢.

The following two results are due to Kung [16].
Theorem 2.17. Let Di; NLp be a 1left coprime representation of

P. Then DLP = DLp + NLP K will be simple for almost all con-

stant matrices K.

A polynomial matrix D is simple if it has only one non-unity

invariant polynomial. We clearly have that NLP’ DIP

prime. The effect of such a K on P is to modify P by applying
-1

are left co-

NLP NLP where DLP

is simple. The observability indecies remain the same as well as

constant output feedback K. Let P = (DLP+ K)



the order of the system.

Theorem 2.18. Let 5L;NLP be a left coprime representation of
P where DLP is simple. Then DLp NLPC will be left coprime for

almost all constant column vectors c.

Let ¢ be such that EL N

to modifying P to obtain

LpC are left coprime. This amounts

p? P
I3 P

: = P c. It is easy to see that P
is an mxl strictly proper system which has the same observabili-
ty indecies as P and with only one controllability index n (the
order of P).

We now apply Theorem 2.14.

Corellary 2.19. Let P be the mxl strictly proper plant constru-
cted above and NRPdé; a right coprime representation. The column
d _z
degree of R s n. Let AL;BLP be a left representation of P
N
RP
= R : ‘-1 -
such that 81-82 BﬁzO are the row degrees of [ALPBLP] (ALP regu

lar) where B1%H, is the largest observability index of P.
Let ¢ be a polynomial of degree f=n+81-1.

Then there exists a proper compensator C such that the
characteristic polynomial X of the closed loop system is given
by

where qu is some polynomial Ose(qx 3581-1.

Y

Remark: The difference with [5] is that in some cases, we may
be able to add lesser order dynamics to accomplish a design

objective.
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The compensator technique presented in Wolovich [33] is as foolows.

Given system

+ It

Ay

Q-l

The closed loop transfer function y(s)=G(s)u(s) has the form

R(s) [P(s)-F(s)]1 F Q 1(s) Qrs)
R(s)PL'(s)

G

where F(s) arbitrary and Q(s) 1is stable cancellable portion.
This along with the fact that the design uses input dynamics
are among the main differences between the technique we follow
and that of Wolovich. This idea of pole-zero cancellation is
very reminiscent of the fact that in observer theory as well the
"added dynamics' associated with the state estimator do not
appear in the closed loop input-output transfer function.
In that situation:
x(t) A+BF BF [ x(t) B
. + V(t)
X (t)-x(Ct) 0 A+KC l.A(t)-i(t) 0
and

G = C(sl-A-BF)’l B.
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2.6 The Invariant Factor Problem’

In section 2.1 we defined two versions of the invariant
factor problem. In this section we will be interested with
the first version and will be giving sufficient conditions.
Discussion on the second version will be differed to the next
section when the notion of genericity is defined.

Let P be an mx% strictly proper plant and ¢ an 2x& diago-
nal matrix in Smith form. If P=N__D_>

RPRP
prime representation of P for which there exists a polynomial

is then some right co-

solution X,Y to the equation of the form

XDRP + YNRP = ¢

with 1) ¢ equivalent to ¢ ,
2) xly existing and proper,

3) N ¢ right coprime

RP’
4) ¢ , X left coprime

then C=X"1Y is a proper compensator which makgs the invariant

factor matrix ¥ of G, equal to & . If conditions 3) and 4)

are not met then this is not so. The following Lemma will help

us see what happens in this case.

Lemma 2.22 [9] Let A A2 be 2x% non-singular polynomial matrices

() cy @y, D@y,

1’

with Smith normal forms {y

y%?% |Y§j) , 1€ik¢; j=1,2 respectively. 1If A=A1A2 has the

Smi { (1 (2) _——
Smith form (Y5755 Yz} then Y7 X3 each divide Y
1¢izf.
Theorem 2.23
¢
Let P be an mx2 strictly proper plant and ¢ = 1, 0
B
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D
be a matrix in Smith form. Let P=NRPDé% with RE column
N
RP
=
proper and column degrees Gy2Go> -0y 0. Let ALPBLP be a

left representation of P with the row degrees of [ALPBLP] being

812.82»"‘B£r0 and A regular. Denote by ¢ the matrix construc-

LP
¢
ted using Lemma 2.6 with ¢, = 1'..0 such that
0 ¢
2
o (8g-1) : i
Po(dlag(s )% diag(s ) ) = J.

k k
£ I 6(¢.)>% Z (a.+81—1) k=1,2,--+-%2 with equality at k=%,

i=1 1 =1 7 -

then there exists a proper compensator C=X-1Y with XDRP+YNRP=®

and such that if ¥ is the closed loop invariant factor matrix

then V. |¢;.

proof:

- -1) -
We already have that Po(diag(s

(B g
177y s diag(s 1)) = J.

Now using method 1 for constructing Y we have that 6(Y) 81-1.

But this means that
- (8
Po(diag(s

-1) -a

1 ) [Y,® diag(s i)]) is constant.

By Theorem 2.9 we have that X_lY exists and is proper with

XD +YN =9 and o~ 9.

RP RP
Now G = Npp "1 X. Let K be the g.r.c.d. of Npp and 2.
(NRP=NRPK , & = wl-k
=> G NRPK(¢1'K)'1X
Let L be the g.c.1l.d. of ¢, and X (¢;=L¢, X=LX )
= G = NppK(L ¢, K) -1 X
= Npp éél X



-63-

where N , are right coprime and f,éz are left coprime. If ¥

rp??

is the closed loop invariant factor matrix we have that ¥ is
the Smith form of o, Now ¢=L¢2K. From the previous Lemma we

have that

V. | 6.

1.

In the event that N ® are right coprime and X,¢ are left co-

RP?

prime then we do have that ¢i = ¢i

Remark: We do have that ai=xi where @, are the controllability

indecies of P. In the event that Bi=ui (pi the observability in-

~

decies) the condition in Theorem 2.23 becomes

k k
8(d:) 3 T (A ¥pq-1) k=1,2,...2 with equality at k=2.
fa1 R e e T

In Theorem 2.23 we find that the degrees of the ¢i must

k k

satisfy z 8(¢i)> ai+u1-1. It would be interesting to see
i=1 i=1

whether this can be replaced by the more symmetrical one
k k
z 6(¢i)z L ai+ui—1. We have not been able to show that this
i=1 i=1

second condition is sufficient in the general case. In the

"Generic'" case there is no difference between the two. At any

rate here is a special case in which this second condition can

be used.
n. .
Corollary 2.24. Let P = be an upper triangular with non-
ij
zero diagonal elements(nii # 0 1¢ig?2) with dij|dii l¢is e,
lsi g% and dijldjj l¢j<s , 1€i€j , (nyy, d;; are coprime),

and S(dii); e(di+li+1)’ Let Alzlzz -~-Azz 0, ulzpia"'pﬁb 0
be the controllability and observability indecies of P.

Let & =[ ? o be a matrix in Smith form.

L e by
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1€1 g2,

i \NRP =

and such that if v is the closed loop invariant factor matrix

then there exists a proper compensator C with XDRp o)

then ¢11¢..

i
Eroof:
-
" -~ -1 B = ww e T
d1 Nyp Bypgtc Rig
d22 0 1ny, :
P = . . .
*d ‘n
221 28
T 0
Dip Nip
— _ _ - _ -
g Bys Mg dyq 2
n2 : . . .0
= 0 .
. 0
Nog doe
" _
L ] —————
Npp Drp
. -1 -1 . _ _
Since NRPDRP ’DLPNLP are minimal Ai—e(dii) and ui—e(dii)
1sig2 with u1+1=uz+2=°°'um=0. i, I3 N
We already have that Po(diag(s 1 )& diag(s ))= 1.

We also have that there exist upper triangular

UuDb

RP

+ VN2

RP

U,V such that

Using method 2 for constructingY we have that the degree of the

oA E
1

gular and of the form

h

column of Y is less than ui—l.

Y11
0

Since Y will be upper trian-
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we will have that the degree of the ith row of Y will be 1less

than or equal to uiﬂl. This means that

_ “(uy-1) o
Po(dlag(s )[Y @diag(s )) is a constant.

By Theorem 2.9 we have that X-lY exists and is proper.

— L -l i -
Now G = NRPQ X. ‘If K is the g.c.r.d; of NRP and 9.

(N NRPK ¢=©1-K). Let L be the g.c.l.d. of cl and
X(¢1=LQZ X=LX).
=5 G = NppK(Lo,K) “1rx

_ o -1<

= Hpply &
where NRP’ 6, are right coprime and X ,%2, are left coprime. If

¥ is the closed loop invariant factor matrix we have ¥ being the
Smith form of P Now & = L®2K. From Lemma 2.22 we have that

y.|6.. In the event that L,K are unimodular then y.=o.4., a;
(LR | i 1’1 i
constants.

Remark. In the beginning of this section we list four conditions
that guarantee the existence of a proper compensator which makes

the closed loop invariant factor matrix equal to the given o.

Here is an example showing that these conditions are not necessary.

Let p= s;l Y o= 52-3.
s7-4
We have that the proper compensator c= makes the closed loop
s+1
invariant polynomial equal to 52-3 since

_ -1 = S*1
G = np(acdp+bcnp) a

< 52—3

But for no coprime representation of p and no ¢ equivalent to Y
does there exist an acceptable solution to an equation of the

form

xd_ + yn

1]
©
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(Use Corollary 2.11)

o(s+1)
Any coprime representation of p can be written as ps ————
a(s™-4)
o# 0 a constant, and any polynomial ¢ equivalent to (52-3)
is of the form 9= 8(52—3) B#0 a constant. So we ask whether
an acceptable solution to any one of the set of equations

2
xa(s2-4) + ya(s+1) = B(s%-3)

éxists.

From Corollary 2.11 we have that x,y is an acceptable so-
lution iff X,y 1is an acceptable solution. Now u,v such that
ud_ + vn_ = 1 are

p P 5
u= -a(gs+1) v= (3

- _B8.1_.1 ‘
and y = a(g"s"'-g).

But 6(y)=1 and PO([Y (52—3)5-2}) is not a constant. There-

fore for no «,B # 0 does there exist an acceptable solution.

As we have repeatedly seen in the previous sections degree
constraints on $ or the elements of ¢ are not enough to ensure
that the closed loop transfer function G will have the desired
characteristics. Additional conditions like NRP’¢ being right
coprime and X,% 1left coprime are required. It is very natural
therefore to introduce the notion of Genericity. Roughly speak-
ing given two arbitrary nonzero polynomials they "almost surely"
are coprime. Said differently these two polynomials are generi-
cally coprime. We therefore hope that the notion of genericity
will prove helpfull in two areas. On the one hand show that the

sufficient conditions expressed will actually be enough generica-

1ly. On the other assist in formulating necessary conditions as well.
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2.7 Genericity

Let u be an ideal in the polynomial ring R[x < I

1,x2,...‘q
The variety of u denoted by V(u), is the set of all points

x=(xl,x2,...xq), xiin L, such that f(x) = 0 for all f in u. It
can be shown [35], that if the closed sets in ¢4 are defined to

9 then €Y becomes a topological space.

be the varieties in
This topology on €% is called the Zariski topology. Let RY have
the subspace topology. This means that E is closed in RY iff

E = RYNV where V is closed in C%. We wiil strictly be dealing

with this subspace topology on RY so we also call it Zariski.

Definition. A set ScRY is called generic if it contains a non-

empty Zariski open set of RY.

It would be instructive to explain what is the consequence
of the above terminology. Let p(xl,xz,...,xq) be a polynomial
in R[xl,xz,...,xq] and let p be the ideal in R[xl,xz,...,xq]
generated by p(x). The set E = Rqr1V(p) can either be R? or not.
Suppose that E # RY. Then E has Lebesque measure zero. This
we see from the fact that points x in RY such that p(x) =0
is a set of lower dimension in R%. And more generally if
E=RANV 4 RY where V is some variety, since VcV(g) for some
g # 0 we again have that the measure of E is zero. If we then
show that a set ScRY contains a non-empty Zariski open set
in RY it means that ScRY is contained in a Zariski closed set
not equal to RY. A generic set then contains " almost all'" of RY.

We now want to use the notion of genericity in order to give

answers to the Characteristic Polynomial Problem, the Invariant

Factor Problem and the Denominator Matrix Problem.
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Generic Characteristic Polynomial Problemn.

1
P
has the generic characteristic polynomial assignability property

Defenition. An mx¢ strictly proper system P given by P = NRpDé

if the monic polynomials ¢ in R™9 for which there exists a pro-
per compensator C making the closed loop characteristic polyno-
mial equal to ¢, is a generic subset of R4

Remark. The fact that the definition speaks about a specific
coprime representation of P is not restrictive because one can
see that:

If P given by NRPDé%’ does have the generic characteristic
polynomial assignability property then P given by any right
coprime representation NRPﬁﬁ% has the generic characteristic
polynomial assignability property.

If P given by NRPDéé does not have this property then no
right coprime representation of P exists for which P does

have this property.

Theorem 2.25. Let P = n a1

PP
strictly proper system.A necessary and sufficient condition

be a single-input, single-output

for generic characteristic polynomial assignability property
is q=n-1.

proof:

(necessity). Assume that the set S of monic polynomials ¢ in
R™9 for which there exists a proper compensator for which

¢ is the closed loop characteristic polynomial is generic.
Suppose that q<n-1. Show a contradiction.

Since q<n-1 and C = x_ly with x,y coprime and xdp + yn_ = ¢

P
8(x) = q, we must have x = X , y = y where y is the remainder
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of dp[¢v and -n the quotient. We then have x = ¢u - ﬁhp. By

Corollary 2.10 we have that 6(y)<n-1. This means that at least

?n_1=0 ( ? = ?n_ls“'1+ ia oF ?O). Now ?n-l as a polynomial in

n+

R™9 cannot be the zero polynomial as we can show:

we have ud +vn = 1, 8(v)<n-1.
p

p
a) if o(v) = n-1, let n be such that 8(n) = q, ﬁdp‘monic. Then
define ¢ by
=nd_ + 1
¢ p
= nvd_ + V.
oRY % p
We have a ¢ which is monic of degree n+q which gives 8(y) = n-1

and y 4 F 0, ,
b) if #©6(v)<n-1, let g be some polynomial with 6(gv) = n-1,
and let n, 6(n) = q be such that Hdp is monic. Then define ¢ by
=Hd +
¢ p g
v = nvd_ + gv.
¢ p g
We again have a ¢ which is monic of degree n+q which gives
Bly) = 1~3y Y .q # 0.

Therefore ?n—l is not the zero polynomial. To require
then that y ;= 0 we must have that S is contained in a
7ariski closed set. But this is a contradiction. Therefore
q >n-1l.

(Note: The above can also be shown using Proposition 2.33.)

(sufficiency). Assume now that q > n-1. Let t=n+q and define

t For which there exists
g = ; (9gs97> =~ ’¢t'1) in R°| an acceptable solution
¢ Xy xdp+ynp=¢ X,y coprime,

Since 6(¢)=n+q>2n-1 then from Corollaries 2.10,2.11 we have that
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éu - nn

év + nd

i}

y
with y , -n being the unique remainder and quotient respectively
of the division dp]¢v, is an acceptable solution of

xd_ + yn = ¢.

P P
This is true for every ¢ in RY. Let

g = Res(x,y).

Since 6 (x)

q we must have that Eq # 0. Then X,y will be co-
prime iff g # 0. Lef

Vo = {(8ga9y0--entyg) 0 RY | g(60,0,. 00,0, 1)=0}
It is clear that S;;Vg. We now want to show that Vg# #. We do
this by constructing a ¢ for which x,y are coprime. Let f be
a polynomial in s with 8(f) = q, and fdp monic. Define

¢ = fd_ + n_v.

p P
oV fvdp + (l-udp)

(fv - u)dp * 1
This means that fv - u is the quotient and 1 the remainder of
dp|¢v. Since y for this particular ¢ is 1 then x,y must be
coprime.

Therefore S(;QVg) contains a non-empty Zariski open set
making it generic.

Theorem 2.26. Let P = NRPdé; be an mxl strictly proper system

with dil’ djl i#j (below) being coprime. A sufficient condi-
tion for generic characteristic polynomial assignability (when
¢ is in Rn+q) is qg;”fl where My is the largest observabili-

ty index of P.
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proof:

Assume that qZul-l. Let t = n+q and

5
~11
di1
n [d T [n,,] (1]
=21 11 11 i E
d21 d n n!
p 21 21 21 1
) ) S5 BRI A B o FREL e
2 P
1
dml Mn1 M1 RP
n L a B ] » )
| ml_ DLP ALP NRp

Since nil’dil are coprime, M, = max(e(dilj).

Define

For which there exists an ac-
ceptable solution x,Y to
xd+YNRP=¢, x,Y left coprime.

s . t
S = (¢0,¢l, v e ’¢t—l) in R" |

Since 6 (¢) n+q >n+u-1, then from Theorem 2.9 we have that

X,Y obtained by

Y = [ }711’?12’ e 71m]
e - - . . - l -—
where Yii 1s the remainder of the division dli'¢vli and -n

the quotient,

11

X = ¢u-[n11,n12,...,n1m]- Ny
21

n
| ml

is an acceptable solution of xd + ?NRP = ¢. This is true for
every ¢ 1n RY. We also have that 6(x) = q, which means that

x # 0.



Let g4 Res(x,yll)

-~
G
1

¥ = ROS(X>yl2)

*]
1}

gy = Res(X,¥1,)

Then §’?1i iff g5 # 0.

Let

- 1 t =
Vgi {(¢0)¢1’ SIRe e ’(bt-l) in R 1 gl(¢0’¢1’ W BN ’(bt_l) 0}’
It is clear that S22V UV U ...UuV_  since if X,y,. are coprime

1 €2 €n L
then [x Y11 Y12 - ylm] has rank 1 for all s making x,Y left
coprime. We now have to show that some V is non-empty. We have
g
u,V such that

S
ud + [V11 Vig «-- Vlm]' nyq 1.
v D21
nml

This means that at least one Vii # 0. Suppose that it is V-
Let f be a polynomial in s with €6(f) = q and fd monic.

Define ¢ = fd + n

11°*
Py = Sags B,
(fvlleI"'dml)dll+(1-Ud—né1V12_"‘_n$1vlm)
= (fvyqdpg--edpqudyyecd Ny Vipme ooy Vipddygtl
£ Y11
This means that -n is the quotient and 1 = ?11 the remainder

of the division dlll¢vll' Since ?11 = 1 for this particular ¢

then X, y,, must be coprime. Therefore S (2(V_UV_ U ... UV )
11 g1 &7 &nm
contains a non-empty Zariski open set making S generic.



Remark. In the last Theorem we see that q.;pl-l is not solely
sufficient to guarantee that S is generic. We also had to impose
the condition that dil’djl i#j , are coprime. This in effect
means that we have disregarded " some'" mxl systems. We will see
in what follows that this will be the case in most of the results
that follow, when we leave the single-input single-output case.
If we look at the results of [30] we will see that they are sta-
ted for "almost all" systems. In effect what we are trying to
show is that our results hold for any fired but arbitrary system.
This explains the difficulty we are experiencing. We overcome it
by requiring more conditions on P.

Remark. Using Proposition 2.33 we see that in the case that

My T My T Mg = ... T U T U, then the condition q=>u-1 is also
necessary. It is not surprising to see that this condition coin-
cides with the result of [30]. As a matter of fact we have

shown that m¢>n, & = 1 is a sufficient condition for the ge-

neric characteristic polynomial assignability property for the

mxl systems.



The GCeneric Invariant Factor Problemn.

The work in this section deals with the Single-Input

Single-Output (SISO) case.

Definition. A SISO strictly proper plant P = npdél, has the
generic invariant factor assignability property if the monic
polynomials ¢ in R™Q for which there exists a proper compen-
sator C making the invariant factor of the closed loop system
¥, equal to ¢, is a generic subset of R

Theorem 2.27. Let P = nde;1 be a SISO strictly proper system.

A necessary and sufficient condition for generic invariant fa-

ctor assignability is q>n-1.

proof:

(necessity). Assume that the set S of monic polynomials ¢ in

R"™ % for which a proper compensator C exists making ¥ equal to

¢, is generic. Suppose then that q<n-1. Show a contradiction.
The set E of ¢ for which np,¢ are coprime is generic. Now

if np and ¢ are coprime and C = x-ly is a compensator given

in a coprime representation we must have

n_x n_x
G.—_— p = p=§.
d + yn ;
X p ¥ q 2

p

Therefore q = ay ag. Because of the coprimeness

=}
~
1]

assumptions a = 1.
xd + yn_= ¢ =V,

From Corollary 2.11 we have that fdp 4 ?np = ¢ and x = X

y = y. From Corollary 2.10 Po(s-qY) is a constant. Which

implies that for all the ¢ in E we must have ?ﬁ_l =0

n-1,

(y = ;p_1s + yo). From the proof of Theorem 2.25
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we know that yn-l cannot be the zero polynomial and that the
elements ¢ in R4 for which it is zero must be contained in a
Zariski closed set. This is a contradiction. Therefore gq2n-1.
(sufficiency). The proof proceeds in a manner similar to the

proof of Theorem 2.22. If we define
For which there exists a proper
Q = {(¢0,¢1,...,¢t_l) in Rtl compensator making the closed loopl,
invariant polynomial equal to ¢

we have QDS ( S is defined as in the last Theorem). We

already know that S is generic, then so is Q.



The Generic Denominator Matrix Problem.

1

Definition. An mx{ strictly proper system P given by pzNRPDéP

has the denominator matrix assignability property if the 2xg
- z . + .
matrices ¢ considereded as elements 1in R™ q’ for which there

exists an acceptable solution X,Y to XDRP+YNRP = ¢ with NRP’

® right coprime and X,¢ left coprime, is a generic subset of

RI*A-

Remark. Contrary to the generic characteristic polynomial pro-
blem the above definition for other than the SISO case is sensi-
tive to the specific choice of right coprime representation.

s s -1
That is if P given by NRPDRP

matrix assignability property we are not sure that if it were

. = =1 : s . i |
given by NRPD P it would have it. And if P given by NRPDRP

did not have this property we cannot conclude that no NRpﬁ_%

does have the generic denominator

exists for which it does have 1it.

Theorem 2.28. Let P = npd{)1 be a SISO strictly proper system.
Let ¢ be a monic polynomial of 8(¢) = n+q ( ie ¢ is in Rn+q).
A necessary and sufficient condition for generic derominator
matrix assignability is q2>n-1.
proof:
(necessity). Assume that the set S of polynomials o in R7'A
for which there exists an acceptable solution x,y to xdp+ynp=¢
with np,¢ coprime and x,$ coprime is generic. Suppose then
that q<n-1. Show a contradiction.

Since q<n-1 and x,y is an acceptable solution with x,y
coprime, (since np,¢ are coprime and x,$ are coprime we must

have x,y coprime), we do have that y = y and x = X.



This means that X,y is an acceptable solution to Edp+§np = ¢

and by Corollary 2.10 we have that 3(y)<n-1. This means that at

least yn—l =0, (y = ?n_lsn_1+

+¥g). Now y_ _; as a po-
lynomial in R™™ 4 cannot be the zero polynomial as we see from
the following:
We have udp + vnp =1. , 6{v)<n=1.
a) If 8(v) = n-1, let n be such that 8(n) = q and Hdp is monic.
Then define ¢ by

¢ = ndp * 1

ov = nvdp + V.
We have a ¢ which is monic of degree n+q which gives o (y)=n-1
and y__; # 0.
b) If 6(v)<n-1, let g be some polynomial with 8(gv) = n-1,
and let n, 6(n) = q , be such that Hdp is monic.
Then define ¢ by

¢ =Hdp+g

Hvdp + gv,

and we again have a ¢ which is monic of degree n+q which gives

oV

6(}_’)=1’1‘1, yn-l # 0.

Therefore y is not the zero polvncmial. To require then

n-1
that y__, = 0 we must have that § is contained in a Zariski clo-
sed set. But this is a contradiction. Therefore q=2n-1.
(sufficiency). Assume that q 2>n-1. Let t=n+q and define S as

For which there exists an acce-
S = {(¢0,¢1,...,¢t_1)in Rtl ptable solution x,y to xdp+ynp=¢ }.
with np,¢ and x,¢ coprime.

Show that S is a generic subset of RY.



N

Since 8 (¢) >2n-1 we have from Corollary 2.10 that

X = u - nn

P

y = v + nd

‘ p
with ¥ and -n the remainder and quotient respectively of the
division dp|¢v, is an acceptable solution to ?dp ¥ ?np = .

This is true for every ¢ 1in Rt.

Define

flo)
-
I

R
e5{n,:¢)
qz = ReS(S(—,Cb)

where 4y, 4, are polynomials in R1TA,

Let
Vo, = ((0gsbyseesbpy) in RE| a1 (0g,. .08, 1)=00,
Vg, = ((8gs01s-enrte ) dn R¥| Gy (¥gs « « = s 1 yu
It is clear that S:D(V;;CTV;;) = Vqlf\qu, since if

¢ = (¢O,¢1,...,¢t_1) in R' is such that np,¢ and x,¢ are
coprime we must have ¢ in S. Therefore S contains a Zariski
open set.

We now need to show that (V;;CTV;;) is non-empty, ie
that there exists some ¢ 1in Rt for which both np,¢ and ¢,x
are coprime. We now define such a ¢.

Let q be a polynomial in s with 8(q) = n-1, q and np
coprime and qdp monic. Let ¢ = qdp+np. (We have udp+vnp= 1).

This implies that ¢ and np are coprime.

oV

d v + n v
p p

rd 1-ud
qQudy, * (L= p)

-u)d_ o+ 1.
(qv-u) p

|
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Therefore qv - u is the quotient (=-n) and 1 the remainder (=Y)

of the division dp1¢v. Since y = 1 we have that y,¢ are coprime
Y _
X P ynp ¢
xd_ = B :
s B

Suppose that x and ¢ had a non-trivial common factor k

x‘kdp = ¢'k - np 3 klnp.
But this is a contadiction since ¢, np have been chosen coprime.
This completes the proof.

We will now proceed by treating the Multi-Input Multi-
Output (MIMO) case. In what we have just explored we found that
the notion of the resultant of two polynomials proved to be
extremely usefull. The notion of the resultant has been extended

to the matrix case. One such exposition which we also follow

is that contained in [4].

1 £-1
Let D = Dts + Dt-ls + ...+ D0 .« (IX2),
- t t-1
N = Nts + Nt-ls e NO , (mx2),
with I\.'D_1 existing and proper. We define the generalized resul-

tant of D,N of order k, the k(m+2)x2(t+k) matrix

— —
D, Dp g Dy g D, .
N, Noog Nep wes Ny 0 ... 0
0 D, Dy wsw Dy B sw D
0 N, Ne g w=0 Ny By sus O -
S, (D,N)=} 0 0 D, 0 | block
TOWS
0 0 N, 0
0 0 0 D, D,
| 0 0 0 cee N oes N |
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Lemma 2.29.[4]. Let My be the observability indecies of ND

Then

rank Sy 2+ mk - Yy, (k= i)
1:ui<k

Lemma 2.30.[4]. Let q be the least integer for which

rank Sq+1- rank Sq:SZ . Then for n >q N,D are right coprime
iff rank Sn = ¢n +6(detD).

This second Lemma translates in terms of minors to the
statement: N,D are right coprime iff at least one
2n+9 (detD)x4n+6 (detD) minor of Sn(D,N),is not zero. Denote
these minors by mi(N,D). By symmetry we can also say that Q,P
will be left coprime if at least one minor of Sn,(Q',P') (of
appropriate order) is not zero. Denote these minors by nj(Q,P).

We now state

Proposition 2.31. Let P = NRPDé; be a stricly proper plant
with DRP column proper and column degrees w3 0,% ... a,30.
Npp 72 2
2 - - _
Let ALPBLP be a left representation of P with S(ALP) = My

(ul the largest observability index) and ALp regular.
Let RY denote the set of 2x%& diagogal matrices ¢= (¢i) with
¢; monic and 8(¢;) = a; * t;, t= g;ud+ti'

TE tiZ]Jl‘l, with at least one mi(NRP,é) # 0 and at
least one ni(é,f) # 0 , then P has the generic denominator
matrix assignability property.
proof:

We already know from Theorem 2.9 that for any such ¢ in R
we can find an acceptable solution X,Y of XDRP + YNRP = Q.
This is because the Y obtained using method 1) of constructing

polynomial solutions has the property that



"

Po(diag(s-(ul'l))Y) is a constant. Then
P,(diag(s *i)[Y ediag(s™“i)]) is a constant.

Now if t = max(ti)

_ o,+t &
® = ®a1+f s71 Tl 8
S = a.-1 o
Npp = N -1 81 * N
v _ = VB | 3
X = X“l'l S%L: + XO.
Clearly both NRP@_l and ¢ "X are proper so that lemmata 2.29,
2.30 both hold.
Now mi(NRp,é), ni(é,i) are polynomials in R[xl,xz,...,xt].
Define
. t
J = { = = = = =
vy k(xl,xz,...,xt) in R™| My=m,=mg=...=m 0}
] = 1 t = — = = =
v, {(xl,xz,...,xt) in R™| ny=n,=ns=...=n, 0}
For which there exists an accepta-
. X g resom <
- —_ oz o9 "o ot b?e solutlon-\,Y of XDRP YNRP o
12722777t with ‘RP’Q right coprime and

with ¢, X left coprime.

Clearly Vl and V2 are Zariski closed sets in Rt. And from the

5 TOvVY = ¥ v
above we have S D (VlL)VZ) vlrwxz

In order to show that S is generic we just need to show

v iV
that \lf\\z

mj(NRP,Q) # 0 and some ni(Q,X) # 0, Vlf\Vz # @ . Therefore

is non-empty. But we have assumed that some

S is generic and P does posszss the generic denominator assigna-

bility property. This completes the proof.



Crollary 2.22. Let P be a stricly proper plant which is diagonal

e - ar -1
- N
%1 i al
1 0
%2 0 n, 0 d2
2 .
pP= 5 . = 0 0 .
%2 o | d;
2« \———w E:
| 0 i L 0 DRP
————_———— -
Npp

with n., cli coprime. This means that the controllability
indecies Ay < e(di) and that the observability indecies are
Hy = e(dl) 1l g1 .42 with Moo= o0 = Mp ~© 0.
Let RU denote the set of &x% diagonal matrices ¢ = (¢i),¢i
£

monic with 6(¢i) = Ai ot t==ZiAi *ots.

A sufficient condition for generic denominator matrix
assignability is t.3» u. -1l.
proof:

Assume that tiZLL -1. Define SC:Rt to be the set
For which there exists an acceptable
. t . . a :
S = (¢1,¢2,...,¢t) in R°| solution X,Y to XD,,*YN,, =& with Ngpst®

RP RP
¢ right coprime,?,X left coprime.

Show that S is a generic subset of Rt.

Since NRP’DRP are diagonal there exist diagonal U,V such
that UDRP+VNRp = I. It also means that a diagonal YO can be
picked such that e(yi)<e(di) l¢ig? and yij = 0, i#j. This
is done by dividing $51Vy by di and picking y; as the remainder.
The associated quotiens will form a digonal matrix NO. There-

~ . ) e . t
fore X is diagonal as well. This is true for all ¢ in R".



Define
Ay = Res(ni,¢i) 5 qQps = Res(¢i,xi) LgigR
> 1 S t
where q1j> Qp; are polynomials in R".
Let
- . t, -
Vqll {(glxgzy"'gt) in R | Q]_i(gl)gz"",gt) 0}’
- : ty : -
Vq21 = {(gl’gZ’."gt) in R | qu gl’gz,---,gt) 0}
It is cleayr that S D (V UV U ...UV UV uU...uV )
Qi1 912 9¢ 921 Q24
2
= (v NV ) 2 E ’
i=1 13 21

since if o¢= (gl,gz,...,gt) in Rt is such that n., ¢i are co-

prime and X;,%; are coprime then N ¢ are right coprime and

RP??
X, are left coprime which means that ¢ is in S. Therefore S
contains a Zariski open set.

We now need to show that E is non-empty, ie that there

exists some ¢ in RY for which both N are right coprime

RP*®
and X,o left coprime.
Let fi be a polynomial in s with O(fi) = Ai-l, fi and n;

coprime and fid' monic.

i
Let $. = f£.d. + n.. This means that ¢. and n. are coprime.
1 T | i 1 i
With u.d. + v.n. = 1 we have
i a e
¢.v. = f.d.v. + n.v.
1, a Sl Tl | i1

£.v.d. + (1 - u.d.)
1 1 1 L. 31

Therefore fivi~ui is the quotient (=-ﬁi) and 1 is the re-
mainder (=yi) of the division di|¢ivi. Since Vg = 1 we have

that yi,¢i are coprime.
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This implies that
X34 * ViR T 9y

6. - n..

1 1

xidi
Suppose that Xy and ¢i had a non-trivial common factor ki,then
x'k.d. = é¢!k. - n,;
itii 1l i
k. |n..
L |
But this is a contradiction since 0550y have been chosen copri-
me. Therefore for such a choice of & we have NRP’Q right copri-

me and ©,X left coprime. This means that S # 9. This completes

the proof.

Remark. Under the assumptions of proposition 2.31 we have that

a sufficient condition for the generic denominator matrix assigna-
bility property is the following:
a) t;> ul-l
b) at least one mi(NRP,Q) # 0 and
at least one nj(é, X) # 0.
The objective of recent work was to eliminate condition b).
To accomplish this one has to show that some polynomials mi,nj
are both non-zero. This is done by showing that for some QO in
Rt we have mi(éo) # 0 and nj(éo) # 0. From Corollary 2.32 we
have that if P is diagonal then this can be accomplished. The
idea is then the following:
Instead of looking at the space of all ¢ look instead at
Txe , where T is an appropriate space of systems ( which includes
diagonal systems). Then attempt to show that m. # 0, nj # 0
ie that mi(T0x®0) # 0, nj(Toxéo), where TO is some diagonal

system and where mi,nj may be rational functions in TO’QO'
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i) We now define T appropriately.

Suppose that T = {(A,B,C)} = R“Z*mn+“€
where A is nxn, B is nx2 C is mxn, n=x2 , n=um.

Let G(s) = C(sI - A) 'B.
The set Q of (A,B,C) for which (A,B,C) is minimal and the control-
lability indecies of G(s) are equal to A and the observability

indecies equal to p is a generic subset of T.

ii) Obtain in a rational way a right coprime representation

of G(s).
G(s) = C(sI-A) 1B
- C(—— MB
|sI-A]
where M is the matrix of cofactors. If o = |sI-A|
_ 1
G(s) = CMB =
% FH T,

where F = CMB and H = diag(a), (2x2). Therefore F,H is some
right fraction representation.

Using rational operations in the variable

(cll’clz""Cmn’all’aIZ""’a bll’b12""’bn£) one can write

nn’
E H D D uppertriangular,
= E unimodular
F 0 D :a gscsTi:ds oF H;E.
This is done by working in Rt[s], Rt = R(t), and by extracting
a g.c.r.d. of H,F considered as matrices over Rt[s].
E

[U v'l [H] [D]
tE1 By iFi 9]
UH + VF =D
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UHD # VED — = I
Drp Ngpp
UDpp *+ VNpp = 1

where U,V,;'RP,DRP are all in Rt[s] and ﬁRP’DRP are right coprime
in Rt[s].

This means that if we evaluate U,V,NRPDRP at some tg which

is not a pole of U,V,NRP,DRp then Ut DRP + Vt NRP =1
0 t 0 t
0 0
where N D_l =G is a right coprime representation of
RP RP =
t, t) 0
Gt . This can be done for almost all t, in T.
0

iii) Construct X.
From the above we see that we can do the same for a left
representation of G and we can have

D sHli 4D

LP

!
Is +Du'1

u-1 2
Nu-ls +...+NO, Ni’Di are 1in Rt‘

0

Nip

We divide V on the right by DLp and obtain -N and Y as the right

quotient and remainder respectively,
= -N Y

oV NDLP 2
Then

X = oU - NNLP'

We have therefore constructed an X which will be valid

when evaluated at (to,éo) for almost all (t,%) in Tx¢.
iv) We have now constructed the mi,nj which happen to be
rational in (t,®). We now need to show that for some diagonal

t, and some ¢, we have mi(to,éo)#O, nj(to,éo)#o. The problem

that we now encounter is that we may have '"thrown out" all
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diagonal ty in the previous steps.
Another idea is to show that any t, is contained in some
Zariski open set,( possibly a different one for different tO).

This we have not been able to accomplish. End of Remark.

Proposition 2.33. Let P = NRpDé; be an mx®& strictly proper
plant with controllability indecies A1=A2= . A =A2=x, and
observability indecies HiTH™ oe =um=u, and DRP NRP of the form

_ A-1 ot » -1

Dpp = Is + Dy 45 *o.o.¥Dg, Npp 7 Ny-18 *... 4Ny

Let Rt be the set of 2x% matrices of the form

= petta; A+q-1 .

® = Is *®A+q-ls .. ¥0,.

Let Q= {[X,¥] |X=Is%x s he. ax., Y=y _s%e . #¥)).

G2 0° q 0

A necessary and sufficient condition for the existence of a
solution to XDRP+YNRp =% in the class Q, for generic ¢ is q>u-1.

Eroof:

(necessity). Equation XDRP + YNRP = ¢ with the conditions

imposed can be written as:

[ T Yq Xq-l Yq_1 XO YO] Sq+1 = [I ¢q+A-1 o s @O].
S can be thought of as an operator
q+l
8, : g(2*m) (q+1) . {(24q+1)2

— From Lemma 2.29 we have that Sk ( an k(2+m)x(A+k)2 matrix)

has rtank

rank S, = (2+mk - 35 (k-;)
1,ui<k

which under the special circumstances becomes

rank Sk (2+m)k if 1€ kg#

(2+m)k-m(k-u) if u<k.
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By examining the dimensions we see that:

a) Sl’ SZ’ R SU'l are not onto.
b) Su is both onto and one-one.
c) Su+l’ SU+2, are onto.
Assume now that q<p-1 and that XDRP+Y.\'Rp =¢ has a solution
in Q for generic ¢. Show a contradiction.
If we think of X = Is%ex . s% 1o .. wx., Y = Y s% ... +Y,.,
G=1 0 q 0
2(2+tm)q L(A+q) 8L

as elements in R and the ¢ as elements in R we
see that the ¢ that can be reached from [X,Y] in Q are a set
of dimension less than 2(A+q)f% which means that the & that can
be reached does not contain a Zariski open set which is non-empty.
This is a contradiction.

It is therefore necessary that q>p-1.
Remark. By looking at the class Q we are in a sense attempting
to impose a bound on the order of the compensator dynamics. As
a matter of fact we are looking at a subset of compensators of
order 2q. This is actually the class of compensators of order
q% which have observability indecies equal to q ( which are
almost all such compensators).

This result can be used in the denominator matrix assigna-
bility problem as a necessary condition. (It will read as fol-
lows: A necessary condition for generic denominator matrix

assignability in the class of proper compensators of order qf

and equal observability indecies is q>u-1.)
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(sufficiency). Suppose that q»u-1 or equivalently that
q = p-1+k, k20. We want to show that the set of ¢ in Rt
(t = L(Ax+b)L), for which a solution in Q exists, is a generic
subset of Rt.

We know that Su+k is an (&+m) (p+k)x(A+p+k)2 matrix,
(A+u+k) 2= (2+m)p+2k), with

rank Su+k = (2+m)u+2k.

This means that the operator '
R(2+M) (u+k) . p(R+m)u+2k

Su+k

is onto.
: R
We want to show that Su+k(Q) is all of R™. We know that Su+k

is onto. Let ¢ be an element in RY. Now there exists some [X,Y]
p+k-1

X = Xu+k_ls g XO
—- H"'k'l g
Y = Yu+k-ls R \0
such that
[Xu+k-1 Yp+k-1 XO \0] Su+k = [1I ®A+u+k-1 vion O

But this means that Xu+k-l = 1. Which means that [X,Y] is in Q.
This completes the proof.

Remark. In order to show that the above is a sufficient condi-
tion for the generic denominator matrix assignability property
(which after combining it with the necessity part will become
necessary and sufficient) we need to show generic coprimeness
of NRP and ¢, and X and 9.

Remark. The necessary condition in Proposition 2.33 can be used
in formulating nacessary conditions for the generic denominator

matrix assignability problem, and the generic characteristic

polynomial assignability problem (mx1l case). For necessity ( in
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the class of proper compensators of order q ) they both require
that (X,Y) exists which is an acceptable solution and (X,Y)
left coprime for the equation XDRP+YNRP = o. The necessity of
Proposition 2.33 will then require that q>u-1 if proper compen-
sators of order q& and observability indecies equal to q, are

to be used. This leaves out proper compensators with observa-

bility indecies not all equal to q. But such compensators can-

not satisfy XDRP+YNRP = ¢, This is because of the following:
Let C be of order qf& and of unequal observability indecies.
‘11

Then there exists some index g>q. This means that C = DLC‘LC

DLC’ NLC left coprime where
= g
DLC Dgls LW v B D0
- g. o sse * N o5 €505
NLC Ngls 1 0 1
This implies
Doty Hpclpe = ¥
But Dg 1 # 0 , and therefore this cannot happen.
1

Therefore a necessary condition for the generic denominator
matrix assignability property in the class of compensators of
order q (for the class of ¢ defined) is q >u-1.

Corollary 2.34. Let P = N_ D31

RPRP
observability indecies MpTH,= - o T Let Rt be the set of

be

3v}

strictly proper plant with

gx% diagonal matrices with ¢, monic and 8(¢i) = a;+y. Let Y be
the unique remainder of the right division DLPI¢V, that is

- R
LP+Y where P DLPALP » Dip 0°
If Y # 0, a necessary condition for generic denominator

oV = -ND D, ., = Dus”+...+D detD #0.

matrix assignability is +y2u-1. (ai the controllability indecies)
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Eroof:

Assume that the set SC:Rt

( t=2 (ai+y)) for which there
exists an acceptable solution (X,Y) io XDRP+YNRP=@ with ¢, NRP
right coprime and ¢,X left coprime, is generic.

Suppose now that y<u-1.
Since (X,Y) is an acceptable solution so ix X,Y (Corollary 2.12).
This implies that Po(diag(s-Y)Y) is a constant for almost all
o in_Rt. This in turn implies that Yu-l = 0 for almost all ¢ in
Rt, but this is a contradiction because'Tp_l, by assumption, 1is

zero for only a certain Zariski closed set in Rt.

Therefore y>u-1.
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Chapter 3

Linear Matrix Equations

3.1 Introduction
Linear equations play a very important role in System
Theory. In this chapter we undertake the study of a family

of linear matrix equations which take the form:

S

3 ZgijBlp Al = Q (3.1)
i=0 j=0

where B (mxm), A (nxn) and Q (mxm) are given matrices
over some field F and gij elements of F, using methods of
modern algebra. The emphasis is on the use of finite
algebraic proceedures which are easily implemented on a
digital computer and which lead to an explicit solution to
the problem.

Particular attention is given to equations PA + BP = Q
and P - BPA = Q and their special sucases PA + A'P = Q the
Lyapunov equation and P - A'PA = Q the Discrete Lyapunov
equation. The Lyapunov equation appears in several areas of
Control Theory such as stability theory, optimal control
(evaluation of quadratic integrals), stochastic control
(evaluation of covariance matrices) and in the solution of
the algebraic Riccati equation using Newton's method.

The material in this chapter has been inspired by an
important paper by Kalman [17]. Kalman's concern was the

characterization of polynomials whose zeros lie in certain
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algebraic domains (and the unification of the ideas of
Hermite and Lyapunov). In this chapter we show that the same
ideas lead to finite algorithms for the solution of linear
matrix equations of the form given above. The analysis 1is 1in
terms of a module theoretic structure on matrices presented
here is believed to be new.

The chapter is divided into 6 sections. In section 3.2
we define the action fBA over an arbitrary commutative ring
with identity and prove Proposition 5.3. In section 5.3 we
consider equation (3.1) over some field F in great generality
and prove Theorem 3.4. In section 3.4 we deal with the equa-
tion PA + BP = Q and the Lyapunov equation PA + A'P = Q
for which we give algorithms for obtaining its solution and
comment on the arithmetic complexity. In section 3.5 we deal
with the equation P - BPA = Q as well as with the Discrete
Lyapunov equation P - A'PA = Q. In section 3.6 we look at
equation (3.1) over an arbitrary commutative ring with

identity and in section 3.7 we prove a stability result.
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5.2 The action fBA
Let A be an nxn matrix and B an mxm matrix both over E, a

commutative ring with identity. Let E[x,y] be the ring of poly-
nomials in two indeterminates x and y over E. Let ¥ = (¢2(x),w2(y))
be the ideal in E[x,y] generated by ¢2(x),¢2(y) the characteri-
stic polynomials of A,B. Elements of the quotient ring E[x,y]/V
are cosets (equivalence clases) denoted by ¥Y+a(x,y). The Cayley-
Hamilton Theorem holds [20] therefore ¢Z(A) % 0, QZ(B) = 0.
Since ¢2(x) ;nd wz(y) are monic polynomials division is possible
and as a consequence we can state:
Lemma 3.1. Let g(x,y) be an element of E[x,y]. Then g(x,y) can
be written uniquely as:

g(x,y) = t(x,y)¢2(X)w2(y)+p(x,y)¢2EX)+q(x,y)¢2(y)+r(x,y)

where:

the degree of p(x,y) in y is less than m (it may be a poly-
nomial in x) or p(x,y) 1is zero,
the degree of q(x,y) in x is less than n (it may be a poly-
nomial in y) or q(x,y) 1is zero, (3.2)
the degree of r(x,y) in y is less than m, in x less than
n, O0r 20%,¥) 1S 2ero;
proof:
Division in x is possible therefore
g(x,y) = a(x,y)¢,(x) + b{x,y)
where
the degree of b(x,y) in x is less than n (b(x,y) may be

a polynomial just in y) or b(x,y) 1s zero.

Division in y is possible thercfore
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a(x,y) = t(x,y)p,(y) *+ p(x,y)
where |
the degree of p(x,y) in y is less than m (p(x,y) may be
a polynomial just in x ) or p(x,y) 1s zero.
Also
b(x,y) = q(x,y)v,(y) + 7(x,y)
where
the degree of r(x,y) in y is less than m and the degree
of r(x,y) in x is ‘less than n or r(x,y) 1is zero.
Now then
g(x,y) = t(x,¥)0,(X)y,(y) + p(x,¥)%,(x) + alx,y)u,(y) + r(x,y).

This representation is unique since suppose that

g(x,y) = t1(x,7)0, ()0, (¥)+py (x,¥) 9, (X)+a, (x,¥)0, (Y)+1y (X,Y)

t, (X, ¥) 0, (XY, (¥)+p, (x,¥) 0, (X)+a, (3, y) 0, () +1, (x,Y)
with p],pz,ql,qz,rl,r2 satisfying recuirements (3.2)

a B Y

S

rl(X,Y) - rz(xs)’) = [tl't2]¢2(x)‘\i’2(}')+[pl'p2]¢2(x)+[ql-qzlwz()’)
Suppose that o# 0. Then there exists a term on the r.h.s.
say axiyj izn, jpm. This term cannot be cancelled by either B

or y. Therefore a= 0. Suppose that 3 # 0. Then there exists

J izn. This term cannot be

a term on the r.h.s. say bxly
cancelled by any term from y. Therefore g= 0. But then y= 0
as well and rl(x,y) = rz(x,y).

From the above it 1is very easy to see

Corollary 3.2. Let gy t1¢2(x)¢2(y) + pléz(x) + qlwz(y) I 2

and g, = t,0,(x)V,(¥) * Pyé,(x) *+ quu,(¥) + r, be in the

same coset ¥+a(x,y). Then T=T,.
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Eroof:

we have that
8178, = c(x,¥)d,(x) + d(x,¥)¥%,(¥).
Let  c(x,y)=cy(x,y)¥,(y)+c,(x,¥)
d(x,y)=d; (x,y) ¢, (x)+d, (x,y)
with the degree of cz(x,y) in y is less than m , and the degree

of dz(x,y) in x is less than n.

gl-gz=(c1+d1)¢2(x)wzﬁy)+c2$2(X)+d2¢2(y)-

From the above Lemma it then follows that Ty = T,.

The above results allow us to pick a unique reprentative
from each equivalence class ¥ #glx,y). 1€
g = t¢2(x)¢2(y)+p¢2(x)+qw2(y)+r and g is an elemeht in ¥ +g(x,Yy)
r = g(x,y)mod¥ is this unique representative.

Let MN be the set of all mxn matrices over E. Define
the action fBA : E[x,y] x MN — MN in the following manner:

= Iy AK
Fpp (H(X,),M) b hy BIM A

jk
where

h(x,y) = 2: hjkijk is an element in E[x,y] and M an
jk

element in MN.

It can be shown that fBA has the following properties:
i) fBA(u,m) = uM where u is a constant in E.
ii) fBA(g(X,Y)+h(X,Y),N) = fo.0e(x,y),M)+fp ) (hix,y),M)
1i1) Fp, (8(x,y)0(x,5) M) = £5,(8(x,¥), fpa (h(x,y) M)

Epa (h(x,y) 5 5, (g(x,y),M))
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iv) fBA(g(x,y),M) = fBA(g(x,y)mod? , M)

v)  fpa(g(x,y),M#N) = £5,(g(x,y),M) + £5,(e(x,y),N)

where g(x,y),h(x,y) are any elements in E[x,y] and M,N are
any matrices in MN.

Properties i),ii),i1ii) and v) follow directly from the
definition of fBA [12]. Property iv) is true because of Lemma
3.1 and the Cayley-Hamilton Theorem.

The definition of fBA allows for the interpretation of MN
as an E[x,y]/ ¥ - module. |

Proposition 3.3. The set MN of mxn matrices with elements in

E is a module over the quotient ring E[x,y]/¥
proof:

The set of mxn matrices under addition is an abelian group.
Define multiplication (*) of cosets ¥ +h(x,y) and mxn matrices

M in the following manner.

(¥ *h(x,y)) * M = fg, (h(x,y)mod¥ ,M).
The multiplication is well defined and satisfies the properties:
1) (¥ +h(x,y))*(M+N) = (¥ +h(x,y))*M + (¥ +h(x,y))*N
2) (¥ +h(x,y))*[(¥ +g(x,y))*M] = [(¥ +h(x,y)) (¥ +g(x,y))]*M
3) (¥ +h(x,y))+(¥ +g(x,y))1%M = (¥ +h(x,y))*M + (¥ +g(x,y))*N
4) (¥ +1)*M = M
for all M,N in MN and all Y+h(x,y), ¥+g(x,y) in Elx,y]1/¥
with V¥+1 being the multiplicative identity in B [%.oyd Y
Property v) of the action makes 1) true. Property iii) ensures

2),property ii) ensures 3} and property i) ensures 4).
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3.3 The General Equation
Suppose that we restrict E to be some field F and let K be
an algebraically closed extension of F. If f(x,y) is an element
of F[x,y] we denote by V(f) the variety of f(x,y) in Ag [35] :
Let xl,xz, e An be the eigenvalues of A and HisHgs ---Hp the
eigenvalues of B. suppose that g(x,y) is a polynomial in F[x,y]
g(x,y) = gjkijk then we define Gg the mnxmn matrix
- J .
G = 2: g'kB s (A") (3:3)
g € J
1k )
where m denotes tensor product ( AsB = {aijB) ) and A' denotes
transpose. The significance of the matrix G  comes from the
following:
Let p be the mnxl column vector made up of the entries of

matrix P=(pij) written as

B = [ PypsPygs woe PypsPay -+~ BPagp ~-- Bgn 1
Let g be the mnxl column vector made up of the entries of Q.
The equation (3.1) can simply be written as
G = ; 3.4
g P-4 (3.4)

We now state

Theorem 3.4. The following statements are equivalent.

1) Equation (3.1) has a unique solution for all Q.
2) Gg is invertible.

3) g(Ai,pj) # 0 for all pj,xi 1¢&igmn, 1€jgm

4) V(g(x,Y)INV(6,(x)INV(h,(y)) = ¢

5) The coset Y¥+g(x,y) is a unit in F[x,¥]/VY.
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We will show the equivalences in the order
1) -2) = 3) = 4) =-5) = 1).

1) —-2).

Suppose then that equation (3.1) does have a unique solution
for all Q. Well since equation (3.1) can equivalently be written
as Gg P = q then Gg is invertible.

2) — 3).

From [21] theorem 43.8 we have that the nmn éigenvalues of
Gg are g(Ai,uj). Since det Gg = 1 g(li,pj) and since det Gg# 0
we have that

g(Ai,uj) # 0 for all p.,A.
3) - 4).

If we look at 3) it really says the following: That the
polynomials g(x,y),¢2(x), wz(y) have no common zero in Ag.
But this is statement 4).

4) — 5). _
Now ¥+g(x,y) is a unit iff there exists a Y+f(x,y) such that
(Y+E(x,;y)) (Y*+g(x;y)) = ¥+l
Now
Y+g(x,y) is a unit iff there exists f(x,y) such that
YeE(x,y)e (X,y) = ¥+1,
iff there exists f(x,y) such that
f(x,y)g(x,y)-1=q(x,y) an
~element in V¥,
iff there exist f(x,y),al(x,y),az(x,y)

elements in F[x,y] such that

f(x,y)g(x,y)+a 6, (x)+a,y,(y)=1.
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Assume now that 4) holds (ie the polynomial h=1 vanishes at
every common zero of g(x,y), ¢2(x), vz(y) )« By the Hibert-
Nullstellensatz [35] there exist polynomials f(x,y), al(x,y),
az(x,y) such that
£(x,y)g(x,y)+a; (x,y)0,(X)*a, (x,Y)p,(y) = 1

this means that ¥+g(x,y) is a unit in F[x,y]/¥.
5) —1)

Suppose that ¥+g(x,y) is a unit 1in F[x,y1/Y¥, that is
there exists a y+f(x,y) such that (¥+fi(x,y))(¥+g(x,y))=¥+1.

Let P = fBA(f(x,y)modw, Q) = f,,(f(x,y),Q). Show that

n
BA

this is a solution to (3.1).

st . :
1 J
2: z gijB P A

i=0 J=0

pa (8 (X5Y),P)

£

: A(g(x PYECLY) Q)
. 5
Q

The P so defined is the unique solution to (3.1) since, if

Pl# PZ are two distinct solutions of (3.1) this means

S t s P
3 z:gijﬁlplAJ Q

£oa(8(x,¥),Py) = fpa(g(x,y),Py) = Q
£ua (E(x,7),E5, (8(x,5),P1)) = £, (£0x,¥),£5, (8(x,Y],P5))

Pl = P2 , which is a contradiction.
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Therefore equation (3.1) has a unique solution for all Q. This
completes the proof of Theorem 3.4.

Remark In the above proof we have an explicit expression for
the solution of equation (3.1). A general method for constru-
cting such a f(x,y) is through a constructive proof of the
Hilbert-Nullstellensatz or using Resultant Theory [29]. As

will be seen in later pages of this chapter for several
important equations this generality is unnecessary and easier
methods do exist.

Remark In our entire construction we have been using the

ideal ¥ = (¢2(x),w2(y)). Other ideals can be used, as an
example the ideal ($Z(X),$2(y)) where 62(x) and ﬁz(y) are the
minimal polynomials of A and B respectively. Since ¢2(x)=k(x)$2(x)
and wz(y)=1(y)$2(y) we will be dealing with polynomials of
smaller degree. This may have as an effect the reduction in the
number of arithmetic operations performed.

Remark In the special case in which A is missing from equation
(3.1),( ie suppose that it is of the form iigiBiP =Q, A=1),
then it would seem that the analysis can takgﬂglace in some
quotient ring F[y]/¢. This actually is the case. Let 9 be the
ideal in F[y] generated by wz(y). Then ¢&+g(y) is a unit in
Fly]/¢ iff v+g(y) is a unit in F[x,y]}/¥. This follows from the
fact that if there exist f(y), az(y) elements of F[y] such that
f(y)g(y)+az(y)¢2(y) = 1 then clearly there exist elements
f(x,y) (=f(y)) and al(x,y) (=0) and az(x,y) (=a2(y)) in F[x,y]

such that f(x,y)g(y)+al(x,y)¢2(x)+az(x,y)w2(y) = 1. On the other
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hand if there exist f(x,y), al(x,y), az(x,y) elements of F[x,y]
such that f(x,y)g(y)+a1(x,y)(x—l)n+a7(x,y)¢2(y) = 1 then evalua-
ting at x=1 we get f(l,y)g(y)+a2(1,y)¢2(y) = 1 which means that

o+g(y) is a unit in F[y]/¢, (¢2(x) = (x-l)n since A = In). The

action fB : F[y] x MN —= MN can similerly be defined as

fB(h(y),M) = Z:thjM and MN becomes an F[y]/%- module. The so-
lution to ibjgiBiP = Q is then given by P = fB(f(x)modé,Q).

The situatioﬁﬂis similar if B = L
Remark Let us look at the very specizl c2se when we are dealing

with the equation B p = q where p and g are nxl vectors. In

this case g(x,y) = y. What we want to do is find f(y) such

that  £(y)y+a(y)u, () = 1. If 4,00 = ¥ +k Y™ oL +kg
obvious choices become
” 1 m-1 kp-1,m-2 k1 1
f(y) = - ¢y -0y “- .. -¢ a(y) = ¢
Ko ko kg Ky

since £(y)y + % Uo(y) = 1.
0
Now k0¢0 since for a solution to exist detB=k0#O. The so-
lution p is given by:

p = f(f(y),q)-

get-

o

Analysing this further we
m—1

. e
P =g 2 KjPla

I
—~
'
i
i\
-
d
4
—
ve)
J
~—
o

As would be expected
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We will close this section by proving two Propositions
which make clear the method of solution we have adopted. Let
MN be the vector space of mxn matrices over the field F. Let
Mn be the vector space of mnxl vectors over F. We then have the

obvious vector space isomorphism £ : Mn —— Mn defined as:

r b
Piq
P12
P11 Pi2 Pin
P21 P22 Pop
f p —
1n
P33
pml me pmn
| Prn |

Let Gg be as in (3.3). Let the polynomial 7(u) in F[u] be

the characteristic polynomial of Gg’ 7(u) = det( Imn

u - G ). Let
g
m = (w(u)) be the principal ideal in F{uj.Define
the function h : F[ul]/n —= F[x,y]/¥ in the following manner:
h : T+a(u) F—= V¥Y+a(g(x,y))

Proposition 3.5 The function h is a ring homomorphism.

proof:
We first show that h is well defined. Let TM+a(u) = M+b (u)

(ie a(u) - b(u) = k(u)m(u)). Show that v+a(g(x,y)) = Y+b (g (X,¥)) -
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That is show that a(g(x,y))~b(g(x,y))=c1(x,y)@z(x)+c2(x,y)¢z(y).
Iclaim that 7(g(x,y))=k(x,¥)9, ()0, (¥)+ky (x,¥)8, (X)+k, (X,¥)¥, (¥)
in the unique form (3.2). This is because of the following:

Let Vij be the eigenvalues of Gg. We know that [21] these

are the the mn values g(li,uj). Assume that vii=g(xi,uj). Assume

we are working over K[x,y]. Since w(u) = I (u-vij) we have that
i)

T(g(x,y)) = S (g(x,y)-g(ki,uj)) (3.5)
We now show that each factor g(x,y)-g(li,uj) can be written in
the form g(x,y)-g(ki,uj)=kij(x,y)(x—kij?lij(y)(y-uj). This
can be seen easily from the fact that 1if
t t-1 ;
g(x,y)=g X +g, (X~ TH+...*g (g4 in Fly])
then

t-1 t-2
g(x,y)-g(Ag,my)=lgex™ "+(8e_ytgehy)x 74

ORI NPV R S ELab e
#8148 0 e tg Ay D1 (XAY)
+g(ki,y)~g(ki,uj)

(we divide g(x,y) by x-Ai in x). Now y-uj does divide g(ki,y)-g(kiuj).

This means that (3.5) can be written as

(e}~ g (kij(x,y))(x-ki)+1ij(y)(y-uj))-

In cxpanding this product we see that every term in the sum will

be of either of the two forms a(x,y)¢z(x) oTr b(x,y)wz(y).

Now  m(g(x,y)) = a;(x,y)e,(x) + a,(x,¥)¥,(y) and over K[x,y]

we can write

m(g(x,y))=t; (x,¥) 4, ()Y, (y)+py (x,¥) ¢, (x)*+q (x,¥)¥, (¥)

which is in the form (3.2). Now we know that we can write

m(g(x,y))=t, (x,¥) b,y (XU, (¥)+p, (X, ¥) 0, (X)*+q, (x,¥)¥, (Y)+1(X,Y)

which is in form (3.2).
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But from Lemma 3.1 we have that this expression is unique. This
means that t, (x,y)=t,(x,y), Py (X ¥Y)=p, (X,y) qy (x,y)=a,(x,Yy)
are all elements in F[x,y] and rz(x,y) = 0. Therefore w(g(x,y))
is an element in ¥ and h is well defined.

Now h is a ring homomorphism since

h(l+a(u)+I+b(u))

h(T+(a(u)+b(u)))

Y+ (a(g(x,y))+b(g(x,y)))
Y+a(g(x,y))+¥+b(g(x,Y))
h(l+a(u))+h(I++(u))

and

h((n+afu)) (M+b(u)))

h(n+a(u)b(u))
v+a(g(x,y))b(g(x,y))

(Y+a(g(x,y))) (¥+b(g(x,¥y)))
h(I+a(u))h(T+b(u)).

This completes the proof of Proposition 3.2Z.

Now since MN is an F[x,y]/¥-module and M an F[u]/N-module
and h : F[u]/0 — F[x,y]/¥ a ring homomorphism, MN can be
made into an F[u]/I -module in the natural way. Define multipli-
cation (°) : F[u]/I x MN —= MN by:

(T+a(u))°P = h(lI+a(u))*P

We now have

Proposition 3.6 The map f is an F[u]/T-module isomorphism.

Eroof:

We already know that f is a vector space isomorphism. In
order to show that f is an F[u]/N-module isomorphism we just

need to show that
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f((M+a(u))®*p) = (n+a(u)).£(p) = (f+a(u))®P = h(N+a(u)*P

Let us show that

£f (m¥u)*p) = H(n+u) P,

Well

f((n+u)*p) f(GoR) (with G
& F(g)=Q

a: B g.kBJPAk
ik

P = q)

ua

= (Yeg(x,;¥))"P

= h(N+u)*P
Now by induction we can show that

£(mrut)*p) = h((mew) =P,
Suppose that f£((I+u’ 1)#*p) = h((I+u’ 1))*p.
Now

£C(mew)* [(mrut ) *p) 1)
= f((M+w)#t), t = (T+u'

£((m+ul)*p)

i}

1)*2

= (+u) °£(1)
= (m+u)° (h(a+u’ "1y #p)
= h(m+u)* [h(m+ul 1y#p)
= [h(T+u). (h(m+ul 1y)sp
= h(m+ul)=p.
This makes f an F[u]/Nl-module isomorphism, and completes the proof.

Remark We are now in a position to explain our method of solu-

tion. Suppose that a unique solution exists. Then in order to
construct it we either work with form (3.4) of the equation and
invert Gg (or equivaiently find the inverse of +u in F[u]/ )
or we work with form (3.1) of the equation and obtain the in-

verse of +g(x,y) in F([x,y]/ . Theoretically we have-shown that the
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two methods to be the same. As will be seen later in some situ-
ations (the Lyapunov equation etc.) the second method leads to
fewer arithmetic operations.

In the following sections we will be concerned with the
problem of constructing the solution to several special cases
of the general equation. It will be of course assumed that a

unique solution does exist.
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3.4 The Equation PA + BP = Q

As shown when proving Theorem 3.4, the solution to equation

PA + BP = Q is given by

P = fBA( f(x,y)mod¥, Q)
where f(x,y) is in F[x,y] such that (Y+£(x,y)) (¥+(x+y))= +1.
It has also been mentioned that such an f(x,y) can be found by
using Resultant Theory [29] or from a constructive proof of the
Hilbert-Nullstellensatz. But in simple cases like this we need
not resort to such general theory.

In carrying out computations it may be advantageous instead
of finding f(x,y) such that f(x,y)g(x,y)=k1(x,y)¢2(x)+k2(x,y)w2(y)+1
to find fu(x,y) such that fu(x,y)g(x,y)=El(x,y)¢2(x)+F2(x,y)w2(y)+u
where u is some non-zero element in F. The solution P is then
given by

P = %fBA( fu(x,y)mod?, )

We construct fu(x,y) in this manner:

We do have that

(x+y) | 6,00, (y) - ¢ (¥ (xX)
where ¢, (x) =0, (-x), vy (x) =V, (-x).

Let

¢, (XU, (y) -9 (v (x)

p(x,y) = (3.6)
X+y

Since ¢2(x), wl(x) are coprime, ( ie li+uj # 0 for all 1i,j)
' '
we have Xe(x), ue(x), Ae(x), ue(x) such that
Ao (¥ (x) + Mo (x) 0, (x)

A0, () + B8 ()

Il

e

e (3 7.)

Let £,x,y) = A (ui(y)p(x,y).



-109 -

£,06Y) (x+y) =2 o (Xu g (V) p(x,Y) (x+Y)
A AL ()0, (x)h, () +er () v, (Y)

v g ()8, (x) g ()AL ()8, (x) ¥, (¥) -

With u = -e? we have that
(y+£ (x,y)) (¥+(x+y)) = ¥+u.
A different method for obtaining an f(x,y) such that
f(x,y) (x+y) = kl¢2(x) + kzwz(y) + 1 is the following:
Divide ¢2(x) by x+y 1in Xx
¢,(x) = h(x,y) (x+y) + h(y).
For x = -y we have that ¢2(-y) = ¢1(y) = h(y). Now since ¢1(x),
wz(x) are coprime, there exist A(y), u(y) such that
Ao () +uv,(y) =1
A [6,(x) - h(x,y) (x+¥)] + (¥, (y) = 1
AR (GLY) (x+y) + A6, (x) + w(¥Iv,(¥) = 1.
Let T(x,y) = -A(y)h(x,y).

The Lyapunov Equation PA + A'P = Q.

The Lyapunov equation is a special case of PA + BP = Q;
B=A', A stable. With the appropriate modifications to the first
proc e dure for constructing the solution we have:

Let Te(X), Ae(x) be such that

Te(X)¢l(X) + Ae(X)¢2(X) = e e # 0

p(x,y) = X+y

£,05,5) = 16X 1, (Y)P(x,Y) (3.8)
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Algorithms for solving the Lyapunov equation ca be found in
[12]. Here we comment on the Integer case.

Suppose matrices A and Q contained integer entries. The poly-
nomials qz(x), p(x,y) then have integer coefficients.

Let

n-1
X + ... *a

n
a_x +a
n I

P, (x)
¢y (X)

n-1

n, n-1
dnx fdn_lx + ere od

0

0.

Define the 2nx2n resultant matrix S

a, 0 i 0 dn 0 0
-1 ®n g n-1 dn-l ¢

a d

n n
a0 an~l dO an-l

S =

0 ay 0 do
0 0 0 0

we know that detS # 0 since tl(x),¢7(x) are coprime. Let

e = detS. The linear system of equations
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™ 7 ~ T
xn_l 0
An_z 0

S AO - 0
Tn_l 0
T ! A e ]

has an integer solution and we have integer polynomials
= Ji=1, N n-1
Te(x) =T oot T, Ae(x) = ln-lk +...+)\O
which satisfy
T, (x)9,(x) *+ A (x)9,(x) = e.

This means that fu(x,y) in (3.8) has integer coefficients and
so does fu(x,y)modW, which implies that Pu=fBA(fu(x,y)modW,Q).
has integer entries. The solution is given by P=%Pu, (u=-e2).

The algorithm proceeds as follows:

Il) Find ¢2(x).
¢, (x)0,(y) - ¢7(x)0;(¥y)

X+y

I,) Set p(x,y) =

1 Find Te(x) and e.

z)
1,) Form £,(x,¥) = T ()T (y)P(x,y).
15) Find Pu = fBA(x,y)modW, Q).

16) Set P = %Pu u = -ez.

We now want to comment on the number of integer operations
( addition, subtraction, multiplication, division) involved in
running the Integer algoritm, when A and Q are nxn matrices
using classical operations.

Step 1 There are several methods for obtaining the characte-

1

ristic polynomial ¢2(x) of a stable matrix [19]. Evaluating
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¢2(x) at n distinct points and then solving for the coefficients
requires O(na) operations. If n is small (say n < 20) evaluating
¢2(x) at x=1 where ¢2(1) = A, A= floglOAW and then at x = 10*
allows one to "read off" the coefficients of ¢2(x) from a large
integer. This proceedure requires only O(n3) operations.
Step 12. This step can be done in O(nz) operations:
Step IS' Solving a linear set of 2n equations simultaneously
is an O(ns) operation.
Step 14. Performing the multiplication as re(x)[Te(y)p(x,y)]
requires O(n3) operations.
Step 15. Obtaining fu(x,y)modw requires two polynomial
divisions and can be done in O(n3) operations. To form
fBA(fu(x,y)modW,Q) we use O(n4) operations. In the event that
the matrix Q is a product of vectors this calculation can be
done in O(ns) operations.
Step 16. It can be done in O(nz) operations.

It can therefore be seen that the overall calculation re-
quires O(n4) operations in the general case and O(ns) opera-

tions in the special cases mentioned.
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3.5 The equation P - BPA = Q.
We again wish to construct an f(x,y) such that

(¥+£(x,y)) (¥+(1-xy)) = ¥+1.

Let
SN s 5 s n n-1

¢2(x) = det(Ix-A) a_x'+a_ X to..tag
- _ .m m-1

wz(x) = det(Ix-B) = bmx +bm_1x + .+b0
_ n n-1

¢3(x) = agx +ax to..tay
- m m-1,

ws(x) = box +b1x ""+bm

From the above definition we can see that the Toots of

¢3(x) are the values % where Ai#O. Since we assume that a
i

unique solution exists we must have that ¢2(x),¢3(x) are
coprime, because if they have a nontrivial factor k(x) they

must also have at least one common root (ie xi=% for at least

some 1;3)s !

On the other hand we also have that
a) if nym then 1-xy| yn_m¢2(x)¢2(y)'¢3(Y)¢3(x)
b) if n<m then 1-xy] xm—n¢2(x)$2(y)-¢3(Y)¢3(X)-

We comment on the validity of a). Let

= - -1
Py = y" m¢2(x)w2(y) = g m(anxn+an_1xn +...a0)(bmym+...+b0)

-1 m -1
P, = 4 (X)¥5(¥) = (aoyn+alxn ¥ whly YD R +blxm s o ¥B I

In forming P17P; combine terms from Py and P, of like coeffi-

: . n_m_n-m n-1_m n-m
cients (ie a b Xx"y'y and a b, a_ b x" Ty'y and a__;b_y
k. 1 n-m

in general akblx y'y and akblyn_kxm.1 0<kgn, 0€1¢m).

We then can see that

akbl(xkylyn'm - yn_kxm_l) = k(x,y)(1-x'y)) for some i
and consequently

k1 n-m n-k m-1
1-xy | a b, (x7y y" X il il

Therefore 1-xy | yn-m¢2(x)¢2(y) - 4 (Y5 (x) .



-114-

We are now ready to construct f(x,y).
Since ¢3(x), wz(x) are coprime we have x(x), u(x), A'(x),
p'(x) such that
A (x) + H(x)e,(x) =1

x'(x)wzcx) + u'(x)¢3(x) = 1.

y© e, (), (y) - 05(y) Y5 (x)

1-xy

p(x,y)

Then f(x,y) = A(X)u'(¥)p(x,y)-
The Discrete Lyapunov equation P - A'PA = Q is a special

case.
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3.6 Over Integral Domains.

Suppose now that we are investigating equation (3.1) over E
some integral domain. The next Proposition gives a necessary
and sufficient condition for the existence of a unique solution
to (3.1) for all Q.

Proposition 3.7. Equation (3.1) has a unique solution over E

for each Q iff wy+g(x,y) is a unit in E[x,y]/¥.

Eroof:
Let P = fg,(f(x,y)mody,Q)

where £(x,y)g(x,y) = K (x,¥)¢,(x) + K,(x,¥)u,(y) *+ 1.

S t

> z:gijBiPAj = fpa(g(x,y),P)

i=0 j=0

! 0" = fBA(g(x’y)’fBA(f(x’Y) >Q))
= Q.

The solution P is unique. This follows in the same manner
as in the proof of Theorem 3.4.
Suppose that equation (3.1) does have a unique solution for

each Q. This means that Gg in (3.4) is invertible. We have that

m(u) = det(Iu-Gg) is the characteristic polynomial of Gg’ From
the Cayley-Hamilton theorem if T (u) = “tut+?t_lut'1+...+"0
we have
_ t t-1 _
n(Gg) = thg + nt_ng + +m, I = 0
s ™ ™
o __tGE-l__t-IGt-Z- b
g To & o g
™ = VF ™
Let f£(u) = -=ru®l bl
0 0 0

then f(u)u + % m(u) = 1. Therefore M+u is a unit in E[u]/T.
0
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Now we can see that Proposition 3.5 remains valid when F(=E)

is an integral domain, ( E can be imbedded in its field of

quotients k and let K be the algebraically closed extension of k).

We can now see that

(M+£f(u)) (M+u) = I+1

h((n+£(u)) (M+u)) h(m+1)
h( T+£f(u))h(I+u)

(Y+£(g(x,y))) (¥+g(x,y)) = ¥+l

Y+1

which means that V¥+g(x,y) is a unit in Elx,y]/VY.
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3l A Stability Result
Using the explicit expression for the solution of the Lya-
punov equation A'P + PA = Q, we now prove the following result.

Theorem 3.8. Let A be an nxn matrix. A is stable iff for any c

1xn such that (A,c) is observable there exists a unique solu-
tion to the equation A'P + PA = -c'c which is positive definite.
proof:

Suppose that A is stable and that (A,c) is an observable
pair. Then the equation A'P + PA = -c'c does have a unique solu-

tion which is expressed as

_ i j
P= 3 £55A c'cA’
' n- ¥ 1
= [ ¢, (cA) .., A" yE
cA
T § o
-Sﬁ ]
L

where F=(fij) and detL# 0.

Since A is stable the’ Bezoutian matrix B is positive definite

02 (x) ¢ (¥) -9y (x) 61 (¥)

and so is the polynomial p(x,y) =
X+y

From Lemma 3 of [17] we have that f(x,y) is positive and that
F> 0. Therefore P> 0. On the other hand if P is the unique posi-
tive definite (symmetric) solution of A'P+PA = -c'c then F> 0
and so is the polynomial f(x,y). This means that p(x,y) is posi-
tive and that B> 0. Therefore A is stable.

It would be interesting to investigate whether the explicit

expression of the solution P, can be used to prove necessary and
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sufficient conditions that some matrix has all its roots in a
certain region of the complex plane (more general than the left

half plane) which is described by the polynomial g(x,y) in (3.1).
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Chapter 4

Conclusions and Areas for future Research

4.1 Conclusions

In Chapter 2 by exploiting the notion of matrix fraction
representations we were able to formulate several problems in
the area of General Pole Assignment by dynamic output feedback.
Specifically the Characteristic Polynomial Problem, the Invari-
ant Factor Problem and the Denominator Matrix Problem. As it
has been demostrated the common basis for the investigation of
these problems was the equation XDRP + YNRP = &, The major dif-

ficulty in constructing acceptable solutions to such equations

was the requirement that x1

Y be a proper transfer function.

This requirement was imposed because of the desire to construct
proper compensators to accomplish the required tasks. The manner
in which acceptable solutions were constructed was to use the

general expression for polynomial solutions X = &V - NNLP’

1

Y = oU + ND,, and appropriately choose N so that X Y will

LP
exist and be proper.

Using these ideas we were able to give sufficient conditi-
ons in both the Characteristic Polynomial and Invariant Factor
Problems. We were able to give a constructive proof to Rosen-
brock's State Space result, rederive results due to Brasch and
Pearson using algebraic ideas and suggest ways of using the
freedom afforded by the technique to achieve other design
objectives.

In recognizing the importance of the coprimeness conditions
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the idea of Genericity was introduced and with it the formula-
tion of the Generic counterparts of the Characteristic Polyno-
mial, Invariant Factor and Denominator Matrix Problems. The
hopes of introducing this idea to formulate necessary conditi-
ons have been justified in several situations. Of fundamental
importance was the notion of the Generalized Sylvester Resul-
tants Sk and the interpretation of the equation XDRP + YNRp = ¢
as an operator taking the (X,Y) into ¢, as expressed in terms
of these Resultants. In some of the results ( as in Proposition
2.31) additional requirements to degree constraints are imposed
(such as ni(é,f) # 0, mj(NRP,¢) # 0). We conjecture that these
can be removed. Such and other difficulties which have been
pointed out are matters of continuing investigation.

One last comment is the fact that all of the procedures-
outlined in this thesis can be turned into constructive algo-
rithms, which can be programmed on a digital computer. It will
be especially interesting to implement these on MACSYMA as was
done with some of the equations in Chapter 3 [12].

In Chapter 3 we undertake the study of a family of linear
equations and give necessary and sufficient conditions for the
existence of a unique solution. Cmphasis is also given in sug-
gesting algorithms for constructing the solution, which make
use of finite algebraic procedures . which are easily implemented
on a digital computer. This work is a continuation of research
carried out in my Masters Thesis.

The basic idea is that the set of mxn matrices over an arbi-

trary field F can be thought of as an F[x,y]/¥- module. This is
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done by employing the action fBA' Of fundamental importance 1is
the realization that there 1s a connection between the existence
of a unique solution to a linear set of equations and the Hilbert-
Nullstellensatz Theorem.

Special attention is given to equations PA + BP = Q and
P - BPA = Q. Results are also extended in the case of Integral
domains. Of great importance is the fact that one method of so-
lution does not involve the computation of eigenvalues, some-
thing essential in the Theory of Systems over Rings and allows
for parametric studies. We also show how the theory can be

used in proving stability theorems.
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4.2 Areas for Future Research

1. In constructing polynomial solutions to the equation

XDRp + YNRP = ¢ we are able to construct a Y with e(Y)sﬁl‘l.
The best we can do so far is to bound the row degrees by ul-l
where My is the largest observability index. An improvement, in
terms of reducing the order of additional dynamics, would be
achieved if a method is found so that the row degrees of Y are
bounded by di’ di<u1-1.

2. As has been mentioned the technique cffords freedom that
can be used for achieving other design objectives. Examples for

the single input single output case have been given. Surely

much more can be done, especially in the Multivariable case.

3. Several results have been shown in the section on Genericity.

The work is not complete. It is conjectured that the remark
concerning Proposition 2.31 can be shown to be true.

4. The resultants Sk’ thought of as operators, were essential
in expressing several results in section 2.6. This certainly
suggests a method for obtaining sufficient conditions for
the Characteristic Polynomial Problem. This can be done by
looking more closely in the structure of these operators. A
closer examination might give better sufficient conditions than
the ones presently in existence.

5. All of our work here has been conducted in the frequency
domain. It would certainly be interesting to show connections
with the state space approach. It would also be worthwhile

to apply the ideas presented here to other problems encoutered

in System Theory (Regulator Problem, Servo Probem, etc.)
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6. In chapter 3 we give an explicit expression for the soluti-
on of a general equation (3.1). It would be quite interesting to
investigate whether this can be used, as in section 3.7, to
prove necessary and sufficient conditions that some matrix has
all its roots in a certain region of the complex plain, (more

general that the left half plane), which is described by the

polynomial g(x,y).
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Appendix A
In section 2.1 we introduced the idea cf non-commutative
localization and stated two Propositions without proof. We

now proceed with the proofs.

nxn

Let A = F [s] and T be the set T = {G in A | detG#0}

T is a multiplicatively closed set. We first want to show
that Sl) is satisfied.

Let S and A be elements of T and A respectively. Then

clearly S is invertible in 51 = (F(s))nxr.

ret G =5 S,

IF 7]

a a ‘o a

11 12 In

B11 E12 Bln
a a s a

—21 22 °e 2N

¢ - | P21 P2z 52n
a a a

=nl £n2 —Nn

bnl an bnn

We can write G as

nj; My Nyp dq
nyp Ny Ny, d, 0
G = . ‘ .
0 )
i nnl nnZ nnn dn
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We then have that S “A = 5y which implies that

AT = SB , where B is in A and T is in T.

Let us now show that Sz) is satisfied.
If S is in T and SA = 0 (A in A), then we must have A = 0
because otherwise we will contradict the fact that the n columns
of S are linearly independent. But then AS = 0. Therefore Sz) is
trivially satisfied in our case.

We now have that ann[s][l'l] exists. For the case when

1x1

n=1F [s][I'l] is actually the field of quotients of F[s]

1.

= (F(s))™® and F™[s)[T 7 1=a1T™Y)

and we clearly have that F(s) = F[s][T

Proposition 2.1 The rings A

1
are isomorphic.

proof:
Define f : Ay A[I'l] in the following manner.
Let C be an element of 51.
— - r~ -
a a a n n n
11 =12 1n 11 12 1n
Bll b12 Eln d d d
a a a n n n
21 22 2n 21 22 2n
521 522 BZn d d d
G =
a a a n n n
nl —n2 nn nl N2 nn
LEnl bnz Snn | d d d |
- - p- - _l
Ny My Min d
Nat M3 Ton d
G:
"h1 W) "hn o .
ol ————————— ~ - —————_—————
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where d = T b...
ij 4
Then f(G) = [N,D],
where the notation [N,D] indicates the equivalence class in

which the pair 1lies.

a) We first show that f is well defined. Let E = G with

11 %12t 11 Z3g tin ]
11 12 1n g g g
a3 %22 pae Mo In %22 §2n
Va1 Yigg Von g g g
E = s o
u u . b8 u t -
-nl -—-n?2 —nn =l =n2 —nn
Vil Y2 Von | & g 8 J
i t i i 71
it iz 1n g
tai T2 ton g 0
E - . 0
t
L I'll tnz . 0 e tnn L g_J
H J
Now Eij = %ij ie tijd = nijg.

Show tha% f(E) f(G), ie [H,J] = [N,D], that is show that
there exist X,Y in A such that

NX = HY

DX =.,JY an element in T.

Well let X = J and Y = D. Then clearly DJ = JD , an element

in T,and NJ = HD. Therefore f is well defined.



b) Show that f is a ring homomorphism. We do have that

£(1) = [I,1], the identity element in ann[s][l-l].
i) Show that £f(G+E) = £(G) + f£(E).
ni g + typd mpp *typd .o B8 ¥ty
gd gd gd
Ry * t2d S Nyng * topd
G+E = gd gd
n.48 * tnld E @ B ol ¥ tnnd
g gd gd .
_ 1T r T
n11g+t11d n12g+t12d — nlng+tlnd gd -1
G+E = : : . . .0
0
nn1g+tn1d nn28+tn2d U nnng+tnnd L gd_
p Q

Now f(G+E) = [P,Q], and we also have f(G)=[N,D}, f(E)=[H,J].
We want to show that [N,D] + [H,J] = [P,Q].
Now [N,D] + [H,J] = [NC+HD,DJ] where K=DC=JF an element of T.
Let C=J and F = D then [N,D]+[H,J] = [NJ+HD,DJ].
Show that tere exist X,Y elements in A such that
(NJ+HD) = PY
DJX = QY element of T.
Let X = Q and Y = DJ. Then clearly DJQ = QDJ (all are diagonal)
and (NJ + HD)Q = PDJ.
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ii) Show that f£(GE) = £(G)f(E).
(07 Di2 LR S v tn]
d d d g g g
n t
721 §21
GE =
n n
Lanl ann =nl —Nn
-
[ny t1* gt - 0t T R 1, Rl ¢ g 3
gd gd
Nyyty31tMa2t21% . < onta
GE = gd
nn1t11+nn2t21+ '+nnntn1 nn1t1n+"+nnntnn
| gd gd i
Nyttt Dptnm nyytyip*e - Dinton gd
0
GE = 0.
_nn1t11+"'nnntn1 nn1t1n+"‘nnntnn
—————— o S —
Q p
Now f(GE) = [Q,P], £(G) = [N,D], f£(E) = [H,J] and
[N,D][H,J] = [NC,JU] where DC = HU U in T. Let C =H and

U = D, then DH = HD. Therefore [N,D][H,J] = [NH,JD] and we

clearly see that [Q,P] = [NH,JD] since Q = NH and P = JD.

Therefore f(GE) = f(G)f(E). This shows that £ is a ring

homomorphism.
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c) Show that f is one-one.

Suppose that f(G) = [N,D] = [H,J] = f(E). does this imply

that G = E?

Now G=ND'' , E=HJ ! and there exist X,Y

such that

NX = HY, DX = JY an element of T. Since DX,JY are elements of

T this means that X,Y are elements of T which implies that

X1, (@Y7' exist in A;.
Since NX = HY
NX(DX) T = HY(JY) !
np1 = Hyl
G = E.

d) We finally show that f is onto.

Let [N,D] an element of 5[1‘1] and G = ND ™1

Now G = ND ! where D is diagonal of the form

d
ﬁ:

0
0 3
Do we have that f(G) = [N,D]?

an element in Al'

Well we do have that f(G) = [N,D]. So we just need to show

that [N,D] = [N,D]. From condition Sl), we know
exist X,Y such that DX = DY an element in T.

also mean that NX = NY? Suppose not, ie NX # NY.

NX(DX) 1 # Ny (DY) !

ND' L # Np !t

which is a contradiction. Therefore f is onto.

that there

Does this

We have demonstrated that f is a ring isomorphism.

In a similar manner we could also define the left ring

of fractions of A with respect to T . We would then have

[T 1 EM™ M (5] = (F(s))MX"
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mxn

Proposition 2.2. The right él-modules A,= (F(s)) and
men[s][lcl] = J[I_l] are isomorphic.
proof:
Define q : gz H[I_l] in the following manner:
if G is given by
. -
a a 3 8 a
—11 12 : 1n
b1 P21 bo1
a
i
G =
a a
—mnl —Mmn
bml bmn
- —
N1 M2 1n ¢ 1
Ny, Py B d .
G = .
0 * %
Thl ) " nn . d_
| o N S
N D
where d = 1 bi'
ij
Then q(G) = [N,D].

In a manner similar to the proof of Proposition 2.1 one

can show that q is well defined and that gq(G+E) = q(G)+q(E).

Because of Proposition 2.1 we can think of men[s][I—l]

nxn

as a right (F(s)) -module.



Let L be:
Yia L35 #sr g
g g g
Loq
g
I =
-nl o E-nn
& A
- <4
- - = —-1
t1 oL s d )
L = .
s 0
t 1 .. tm~ L d |
H J
Now L is thought of as an element in (F(s))" " and f£(L)=[H,J].
Suppose that [A,B] is some element in ann[s][z-l], then
[A,B]L is noting but [A,B][H,J].
We now want to show that
q(GL) = Q(G}f(L)-
Let
- B - 11
Mg  Byp =3 Ny d
0
Nyg Tgg =0 Toy a
G o . .
0 -
anl M2 Mmn ! d
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Then
rnllt11+n12t21+'"+n1ntnl W s T e TN e P
gd gd
GL=
nmltll+nm2t21+"'+nmntn1 nmlt1n+nm2t2n+"‘+nmntnn
L gd gd
BT . T S PR ) N e gd b
1 B B I A I (2 o1 | “1171In "7 1ln nn
0
g
nm1t11+"'+nm1t1n nmltln+"'+nmntnn_ = gd-
Q P
Therefore q(GL) = [Q,P].
Now q(GL) = [Q,P]
q(G) = [N,D]
£(L) = [H,J];
We have that q(G)f(L) = [N,D][H,J] [NC,JU] with
DC = HU U an element in T. Let C=H and U=D. Clearly DH = HD.
Therefore
r’ﬁt++nt n..t, +...+n, t__| [d N
0 e I B In nl 11" 1In °°° 1n nn g
0
q(G)f(L)= .
0
_Pm1t11+" +nmntnl nm1t1n+"°+nmntnn_’ & dg~
e -

which is nothing but [Q,P].

Therefore q is an Ql-modulc

homomorphism.
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In a manner similar to the proof of Proposition 2.1 one can
show that q is one-one and onto. This completes the proof of
Proposition 2.2.

What we have done in these two Propositions is to show
that even in the matrix case the familiar ideas of localiza-
tion remain valid. In doing this we have also given a mathe-
matical interpretation of the notion of matrix fraction re-
presentation.

It was hoped that the ideas presentec here would lead to
some group theoretic formulation of the feedback problem. At
the present stage we are not able to do this. These ideas

remain for the future.
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