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ABSTRACT

In this thesis a new approach to the approximation and analysis
of stochastic processes is developed. A novel formulation of the
mathematical approximation problem is introduced for the approximation
of sample-functions from a stochastic process defined over a finite
(time) interval for which a large but finite set of realizations is
available. In this formulation, ensemble, as well as sample-function
cost functionals, are considered in order to exploit the statistical
nature of the underlying process and to allow approximations to adapt
optimally to the particular sample-function being represented. Global
measures of the approximation error as well as local constraints on
that error over an arbitrary prescribed subset of the global interval
are considered. The number of parameters needed to characterize each
sample-function of the process via the approximation is obtained by
minimizing a cost of feature extraction.

The novel approach is a generalization of the Karhunen-Loeve expansion
and also incorporates desirable aspects of deterministic piecewise poly-
nomial approximation with free knots. An optimally segmented local
Karhunen-loéve expansion is obtained as a result of the novel formulation
of the approximation problem in which coefficients, expansion functions,
knot locations, local expansion orders, and the total number of segments
are determined in an optimal sense. In the new technigque, both linear
coefficients and highly nonlinear (knot locations, local expansion orders
and number of segments) approximation parameters result. Also, arbitrary
norms of the error, and in particular the Chebyshev norm, can be used.



Some qualitative and asymptotic results amenable to numerical
techniques are derived for the behavior of the estimated expected error
of a truncated K-L expansion obtained from a finite data-base.

The techniques developed here are applied to the approximation and
analysis of vectorcardiograms. A comparison of the new method with the
Karhunen-Loéve and piecewise polynomial methods indicates that the new
method is generally superior from the point of view of data compression
for vectorcardiograms. Furthermore, the nonlinear features that result
may carry important diagnostic information not obtainable using linear
feature extraction schemes. The off-line and on-line computational time
and memory requirements for the new approach are comparable to the require-
ments for the Karhunen-Loéve and piecewise polynomial techniques and
indicate that the new approach leads to a viable practical feature
extractor for vectorcardiograms. The general approach and techniques
developed in this thesis should also be applicable to the analysis of
time series and other signals arising from physical processes.

Sanjoy Kumar Mitter, Ph.D.
Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

1.1 The General Approximation Problem

The approximation and analysis of mathematically defined deter-
ministic functions is a highly developed and extensively studied branch
of modern mathematics. The linear theory for the approximation of such
functions has become fairly well understood [1,2]. On the other hand,
a general nonlinear theory of approximation for deterministic functions
is yet to be developed, although certain specialized techniques and
approaches have been studied for specific problems [3,4].

The approximation and analysis of stochastic processes, however,
is an open field with little previous work. The major approximation
technique, to date, for second-order stochastic processes, is the
truncated (finite-order) Karhunen-Loéve kK—L) representation which
enjoys certain optimality properties among linear, unconstrained,
global techniques. Developing a nonlinear approach for the approxima-
tion of stochastic processes has not been previously studied to any
extent in the literature.

The problem of approximating curves.that arise from the physical
world takes on a radically different character than the problem of
approximating deterministic mathematicallfunctions. Curves that arise
from physical data (i.e., cardiograms, brain waves, seismic waves, economic
time series, load-demand data for electric power, etc.) possess certain
attributes which distinguish them from mathematical functions (see Rice

[51):



1) There usually exists noise in the measurements.

2) The underlying physical process is usually stochastic in nature
and the measurements are sample-functions of a process. Therefore
the uncertainty for a particular realization must be considered,
and statistical regularities over the ensemble should be exploited
in the approximations.

3) The frequent occurrence of "disjointed" behavior is observed.

The properties of a curve in one specific region are often
independent and little related to its properties in another.
In contrast mathematical functions (which are analytic) are
determined exactly everywhere by their behavior in any infini-
tesimal region.
The objectives in approximating data from the physical world also differ
from the objectives in the approximation of mathematical functions. Some
of these objectives for physical data approximation, discussed by Rice
[5] are:

1) Representation of certain inherent properties of the process.

2) Extraction of information and characterizing features for each
sample-function.

3) Data compression and compactification by elimination of redundancy.

4) Smoothing and noise rejection.

5) Computational tractability for obtaining and evaluating
approximations.

Of the above objectives, only the last is relevant to the approxima-

tion of mathematical functions. The remaining objectives are difficult
to translate into quantifiable requirements on the nature of the approxima-

tions to be used. Therefore the problem for stochastic processes arising
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from the real world must be tackled with a general approach flexible
enough to achieve one or more of these desired objectives.
The assumption of disjointed behavior, and the need to extract
compact salient characteristics for each sample-function, motivated
the formulation of an approach to the approximation of stochastic pro-
cesses that addresses itself to the following central issues:
1) Approximations must minimize well-defined ensemble cost func-
tionals -- they should therefore exploit the statistical regulari-
ties and modes of the underlying process.

2) The approximation of each sample-function of the process must

be accurate enough to capture the particular characteristics of
the sample being approximated =-- the approximation should there-
fore be capable to adapt to the sample-function in consideration
and not merely reflect how well that sample-function reproduces
the statistical regularities of the process in general.

3) A global measure of the approximation error in the entire region
over which the process is defined must be minimized.

4) Imposition of local constraints on approximation error in given
specific regions of the global interval should be allowed so that
independent control of representation accuracy can be achieved
to suit the particular needs of the approximation problem at hand.

5) The number of parameters needed to characterize each sample

function of the process via the approximations should be minimal.
6) Since in practice a full characterization of the stochastic process
will not be available, the approximation method must be derived

from the statistics of a large but finite data-base of realizations

of the process.
10



The general approach to the classical problem of approximation involves
a rather fixed sequence of steps. One first chooses, based on physical
intuition or other considerations, the approximating functions and the
form of the performance measure to be used (various norms or "distance"
functions of the error). Once these choices are made, the existence, unique-
ness, and other characterizing properties of the solution are investigated.
Then, if possible, a computational scheme for obtaining an optimal solution
is developed. The ultimate objective is, of course, to construct an algorithm
for obtaining the approximation.

In the present investigations for approximating stochastic processes,
the classical approach valid for deterministic functions is considerably
generalized to allow the algorithms to deal with the six central issues
formulated above. The optimal approximations are explicitly exhibited
and algorithms to compute them are provided, which, from the practical
point of view, are efficient, reliable, and flexible for constraint imposi-
tion. Both the Lp and Chebyshev (yw) norms of the error are considered in
formulating approximation problems. The use of the Lz-norm leads to certain
elegant optimality properties, whereas the Chebyshev norm is a very valuable

norm in practical applications since it imposes absolute bounds on errors.

1.2 The Feature Extraction Problem

The approximation of sample functions from stochastic processes
subject to the considerations discussed finds application in the field of
feature extraction for pattern recognition and classification studies of
line patterns in general, and cardiograms in particular. This study has
been initiated and motivated by efforts to develop signal analysis techniques

to automatically classify vectorcardiograms into various disease classes

l6,7,8].
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The feature extraction problem in pattern recognition is concerned
with the assignment of analytically and computationally tractable, compact
representations to patterns with minimal loss of information for a given
number of allowed features. The feature extraction problem arises naturally
in the problem of pattern recognition, although its applicability and
significance extends to a much wider context [9]. The problem of pat-
tern recognition is generally divided into two stages: feature extraction

and classification as depicted in Figure 1.1,

Pattern ; Feature Features Classification

Extractor ———————> Classifier

Figure 1.1: The Pattern Recognition Problem

Ideally, the feature extractor preserves only information relevant for
classification and neglects all other information. Hence the ideal cri-
terion by which the design of the feature extractor should be carried out
is classification error. However, such an overall integrated approach
to pattern recognition is in general not feasible. A sub-optimal and
widely used approach is the independent design of the feature extractor
and the classifier operating on the features.

In such an approach the design of the feature extractor must essenti-
ally be guided by the accuracy with which the original data can be recon-

structed from the features. Decoupling of the classification and feature

12



extraction stages therefore makes the feature extraction problem into an
approximation problem subject to the considerations discussed in sec-
tion 1.1.

Feature extraction has received considerable attention in the recent
literature [10,11]. Nonlinear feature extraction has been considered by
Sebestyen [12], Calvert and Young [ 9], and others, but to date there is
no general approach independent of the geometry of the underlying patterns.
In particular, nonlinear feature extraction for highly nén—stationary
vector stochastic processes, such as cardiograms, has not been considered.

The class of problems to which this study is directed involves non-
stationary second-order vector stochastic processes defined over a finite
interval of the real line. The averaged, "typical", heartbeat waveform
(see [ 13]) is modeled as such a process. ‘Although the cardiac process
is highly non-stationary in time and over the ensemble of possible heart
conditions, cardiographers have found it useful to segment the heartbeat
cycle into distinct intervals (P,Q,R,S,T waves) each related to a certain
phase of the underlying physical process (see e.g. [14]). The appropriate
segmentation for each sample waveform is highly variable over the ensemble.
However, statistical (ensemble) regularities are observed over these
sample-dependent (variable) segments, enabling cardiographers to distinctly
identify the various phases.

The Karhunen-Loéve expansion has enjoyed a great popularity among
theoreticians [15]. Although the K-L expansion is an optimal linear repre-
sentation, it is based solely on ensemble information (the process covariance
function), and takes into account only expected global errors with an
L_-norm. In the cardiogram approximation problem, the P-wave region,

2

although possessing small signal energy, contains important diagnostic
13



information and is therefore a local region that needs to be well
approximated. The L2 error criterion, in contrast, will largely ignore
the P-wave region due to that region's small contribution to the total
signal energy. Similarly, due to the large variance of cardiograms about
the ensemble mean a particular sample-function (patient's record) may be
poorly approximated although the expected (ensemble) error is made to be
very small. The risk associated with misclassifying any single patient
makes it mandatory that each sample-function be approximated well, regard-
less of its being a very rare case in the ensemble. An important feature

of the class of problems considered in this study, therefore, is that the

actual approximation accuracy for each sample-function must be controlled

on a local basis in time.

An approach that allows localization of accuracy, and is compatible
with the notion of segmentation of the process, is the generalized variable-
knot spline method. This method, however, ignores the statistical nature
of the problem and no use is made of ensemble information in representing
individual sample waveforms.

It is the above considerations, originally motivated by the feature
extraction problem for cardiograms that led to the formulations and
general methods developed in this study for the approximation of stochastic

processes subject to the central issues discussed earlier.

1.3 Overview of Thesis

In Chapter 2 the K-L expansion for second-order stochastic processes
is considered. This expansion is derived from its global Lz—error minimizing
property. Then the effect of the finiteness of the data base used for

14



estimating the K-L basis functions in practice is analyzed. It is
shown how an elegant result of Dyson [l6] may be applied to this problem
to obtain practical error bounds for the expected error rate of using
truncated expansions.

In Chapter 3 piecewise polynomial approximation is considered and
a dynamic programming solution for obtaining optimal segmentation is

developed for both the L_ and Chebyshev norm cases. The fixed-knot

2
ensemble and the variable-knot sample-function problems are treated.

Error analyses from spline-theory are adapted to obtain performance

bounds.

In Chapter 4 a novel representation is developed that combines
aspects of the K-L and variable-knot spline techniques. Ensemble and
sample-function based, minimal-order representations, allowing for local
error constraints, together with global-error optimization, are obtained
for both the L2 and Chebyshev norm cases. Some theoretical comparisons
of this novel representation to the K-L and piecewise polynomial methods
are discussed.

In Chapter 5 the approximation techniques developed in this thesis are
applied to the problem of cardiogram representation and analysis. Evalua-
tion of methods and extensive experimental results are provided for this
problem.

In Chapter 6, recommendations for further study in this field

are suggested.



The specific contributions of this thesis can be summarized as

follows:

1)

2)

The asymptotic analysis of the K-L eigenvalues and estimation
of the expected error rate using Dyson's result.

The generalization of Bellman's dynamic programming solution
for the linear approximation of curves to

i) the general piecewise polynomial case.

ii) the case for the Chebyshev norm (L ).

iii) the ensemble case for stochastic problems.

3) A novel global-local, ensemble-sample-function formulation of

4)

5)

the approximation problem for stochastic processes.

The derivation of a unified segmented-KL representation with
optimal fixed or variable knots and local constraints.

The application of the techniques developed to feature

extraction for cardiograms.
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CHAPTER 2
THE KARHUNEN-LOEVE EXPANSION

2.1 Introduction

The Karhunen-Loeve expansion is a representation for second-order
stochastic processes which is well documented in the theoretical litera-
ture [ 10,15] and which is being used as a practical technique for data
reduction [6,15]. The expansion is in terms of orthonormal basis functions
and the coefficients of the representation are linear in the data. The
basis functions for the exp;nsion are derived from the second order statistics
of the process. For a discrete sampled process, the basis functions are
the eigenvectors of the covariance matrix. For a continuous waveform they
are eigenfunctions of a Fredholm type integral equation [17 ], and may in gen-
eral be difficult to obtain. The corresponding eigenvalues measure the
expected energy along each eigenvector component. If the terms of the
expansion are ordered so that the associated eigenvalues decrease in magnitude,
the expansion can be truncated after m-terms. The first m-eigenvectors span
the subspace of RN (in the vector case) which contains on average the greatest
proportion of the energy in the process. Some optimality properties of the
expansion are:

1) Over the set of all orthonormal functions, for a given number of
terms in the expansion, the K-L minimizes the mean-square error [15];

minimizes the coefficient entropy defined by

— —_
S= —Z;_da logexf 2.1

17



here C‘i is the ccefficient in the representation of the i-th basis function
— 2 Fa
and C£: denotes the expected value of cli [15]., The K-L also maximizes

the population entropy defined by

k:-—%{‘gnfa(e.‘)} 2.2

where o is the vector of m-coefficients [ 9]; maximizes the distance between
independent samples from a single distribution [ 10] as defined by the scatter

measure:

E{d = E{la-=l’]

2’3

2) The coefficients cil are uncorrelatéd and are linear in the data.

3) For a wide-sense stationary periodic process the K-L expansion reduces
to a Fourier series.

4) Young has defined a concept of reliability from an information-
theoretic view and proved that K-L is the most "reliable" linear feature
extractor [18].

The K-L expansion has also been extended to the case of multiple
processes by Chien and Fu [11l]. In this section a generalization of the
basic K-L method to treat the case when errors over various regions of
waveforms are weighted differently is considered. This essentially amounts
to redefining the norm of the error using a weighting function. Analogous
results follow directly for the weighted K-L expansion [ 71. The effect
of using a time-weighting in the performance index has been considered in

the work reported in [7]. This extension of the K-L expansion is an

18



interesting modification and has been tried on the cardiographic problem,
as discussed in Chapter 5.

In this Chapter the Karhunen-Loeve expansion is derived from its error
minimizing property. The K-L expansion is obtained by seeking a linear, m-term
representation with orthonormal functions, that minimizes the global expected
(ensemble) squared error. The original and standard derivation of the K-L
is not based on the optimality properties mentioned but rather follows from
a Hilbert space approach to random processes [19]. Below is stated the
nain Karhunen-Loeve expansion theorem for reference [ 20].

Karhunen-Loeve Expansion: Let )((‘tjq)),t QEO,T] and C._)€.-Q. (T finite,

._Q a probability sample space be a continuous-parameter second order
random process with zero mean and continuous covariance function R (t,‘t) .

Then

x (£,0) :Zo(i(u)ch(t) tefo,T] b
=1 |

where the {d?} are eigenfunctions of the integral operator corresponding to
L

R;
T

R(t)4 () dT= X, (t)

2.5
O

and form an orthonormal basis for the space spanned by the eigenfunctions

corresponding to the non-zero eigenvalues. The O(l-(‘d) are given by

T
J x(t,w) (h(t) dt and are orthogonal random variables (CE {g(i(w) °(J'(w)}=o
[o]

for l#J') with zero mean and variance )\i , Where )\i is the eigenvalue

corresponding to ¢> ¥

L oo
The series Eo(t(u))#(t) converges in mean square to X(t)w)
= ‘
19



uniformly in t, that is

g {x(t,u)—idi(w) ¢, (t)}z—’ 9 Ll 2.6
=1t

uniformly for all t[O,T].

The problems associated with using truncated Karhunen-Loeve expansions

that have been derived from a finite data base are also analyzed in this

chapter.

2.2 Ensemble Global Cost Function

Let ‘{C*i } denote a set of complete orthonormal basis functions
with respect to the weighting function w(t) over the interval [O,T].

Then, by definition,
T
J#D_L(t)w(t)ch(t)dt = gﬂj 5 B
(o)

An m-th order truncated representation of the sample-function X(t)u))

is defined as:

m
)?(t,w) = Z‘XL(“’) C#L(t) 2.8
i=1

A
The representation error is simply (X —X)_ Consider the following

ensemble global L2—cost, given m, the number of terms in the expansion:

[T
i) = € frmdeofdt

20



where W(‘t) 20 )VLt é_[O)T] is a given time-weighting function for the

error. The optimization problem considered is to determine

T =

= in j 2.10
o {dl]!){cbi&

€

2.3 Determination of Coefficients

In view of the orthonormality of the basis functions, as given by
equation 2.7 any sample function )((‘t‘(d) can be expanded over the

interval [_O,T] using the complete orthonormal set {d}} . That is:
t

X(‘t,w) —3 ZQ(;_(&J) 4>£(f) t e [O,T] 2.11

=1
The coefficients can easily be determined by the orthonormality

condition for the {CP }
L

T o T
e wbOdt = )6 | bty win) by dt
k ' t k - 232
0 = 0
T oo
x(‘t)w)w(t\ Ch(t) dt = Z"(L("’) SLR :dk(w)
0 i=L 2.13

21



One may at first suspect that for an m-term truncated expansion of
X(t,w) one may better approximate by the finite set {Cbi ,4}2 P 4’"‘}
]
using coefficients Q(‘;(U) which are different from those °(‘..(m)given by equation

2.13. It is now shown that this is not so.

T

L 2
E tw) / o (w)‘-f?(t)]w(t\dt< (g x(t)w)-ZT(}(u)q‘j(tﬂw(t)dt

O =

o

)
whenever O(i(w)#o{l.(u». The left hand side of equation 2.14 is simply

T %
£ {Z:(j)@(t)}zw(t)dt = ‘E w(t) Zm;ja:w)“{,-(@t(ﬂ%(t)dt
o (o)

Interchanging the integration and summations (which is allowed due to the

uniform convergence in t of the representation) the following is obtained:

Z Z_°<(u)o<(w> ‘f’(t (¢) () at 2,18

L’m+| J—Mfl

22



which is just

g{z Zo(;(w)%(w)géj} = Zo—?i:,)

L=m+i j=mt (=m+ti

Expanding x(‘t,w) on the right hand side of equation 2.14

T o9 m
J [ Zdi(“’) ¢.(t) = _Zf;(“’)%(t)] w(t)dt =
=

& J[ Z (ot 1 - %)) b () i% (w)cziﬁ(t )le(t)dt

J:M*l
2.18

Expanding the integrand of the right hand side of equation 2.18

T

.
£ J{ (; (w)-ed(w))c#i&)}@(adt + f J { Z"‘ @)4;(”} wio)dt

=M+
o J

~™N13

+2 € Z("‘M )Pt Z°< @) () wit)dt

'—M‘I'I

° 2.19

23



The last term of 2.19 vanishes due to the orthonormality of the {dDL}

The first two terms of equation 2.19 become, by analogy to equation 2.15

m oo
Z [qi(“’)““i}(“’)r * Z N;(w) 2.20
- i=1 J=m+l

Now, using equations 2.20 and 2.17 to rewrite equation 2.14

oo oo m
> o < Z L) + Z[oq(w)- ()]
i,'—"WH'l J=m+' i:i 2.21

Equation 2.21 holds true whenever Ol,i(w)#o(-t(w) and the assertion is
proved. Therefore the optimal coefficients for an m-term K-L expansion
are the {O(;_(w)} given by equation 2.13.

The integrand of the global cost of equation 2.9 can now be
expanded and the orthonormality of the basis functions and equation 2.13

%
for the {o{i(uﬂ} used to obtain:

T wm
T, =€) | Keomndt — ) lui)]’

< i=1

24



Substitute for 52:( C«)) from equation 2.13 to obtain

T m % 2
3’ - vgxz(tw)w(t)dt-z cf{ X(t}w)v/(-(_-){é({-)dt}
- N =1 :
2.23

But, by definition, ?{X(t,w)x(t’,w)}‘: R@Jt’> Thus

T m AT T
) J ) )
3’& = JR(t‘f)W(t)dt - Z R(t,t )w(t)w(t )cﬁ(t—) 4’1& )dtdt
°© =4 ¢ =0 2.24
Now it remains to minimize j& over the set of {4} } subject

L
to the constraints of equation 2.7. ’

2.4 Optimization for the Basis-Functions.

The following problem must be solved:

32:—. {ril?; Ié({e(i(w)},{fh(t)}lm) .

25



such that

-

Jcﬁm QL ACELEEN
0

Dynamic programming [ 21] is used for this minimization.

Define:

T =M T (b= Min T, (56
b.b P

Equation 2.27 is a recursion relation for the minimal cost (with appropriately
simplified notation) where the recursion is on the index m indicating the number
of basis functions used. This minimization must be carried out using the con-
straints of equation 2.26 which are adjoined to the cost using Lagrange
multipliers.

Consider using one basis function. From equation 2.24

TT
T (o ) = J[R(t’f)w(t)dt = Jcl:l(t)v«(t)R(t,t')W(t‘)CFL(t')df dt’
o O

(o,
T

+ A, CE(t)W(t) $t)dt-1
0

2.28

Then set ﬂ(d*, d’):: O
Jb,(®)

2.29

26



which yields
T

R(t,£)wEwW(t)d(t)dt = A w(t) S, (+)

0
t €loT] .
since W(t) -‘ft- (O identically on [0,T], it must be that
T
Rt ) w(t) b (t)dt’= ), (B
© € [-O’T] 2,31
Rewriting equation 2,28
T T £ id
T W)= |REbwEdt- | o {SR(t,t‘) w(t)d (&) obt’} w()dt
vq J 4 1
0 t=0 t'=0
T
+ A, { G (b wit) b (Odt -1
2.32

o)

The inner integral in the second term of equation 2.32 becomes, using
equation 2.31 , simply )\i Cbi(‘t) . Then that second term reduces to AL
due to the normalization of 4)1({) . The last term cf equation 2.32 is

cancelled since 43({-) satisfies the constraint .
1
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Thus

T
( 4’)—§ (t,B)w(t) ) dt - A*

o

x
Clearly )\L must be the maximum eigenvalue of the integral equation of 2.31

since this will minimize Jl.

*
The next stage is to look for 43 (‘t) . Clearly:
2

T T
T(a $)= T, (o) - 'SECQ(t)w(t)R(t,t') w(t') ()b dt’

c 0 2.34

The following optimization is required:

J(a*c{:) a J (%)
T

-tgén j’éx $*)- (jd) Jwit)R(E E)w(t' ) (t) i

<
+)\1{J¢2 Jw(t)d t)dt i}

28
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Setting

3TES _ g

—
—

o Cbl(f) 2.36

the integral equation of 2.31 is again obtained

.
R E)w(t)d@)dt = A (t)

o telo,T]

Note that the constraints of equation 2.29 are satisfied when Ct)(tﬁ

2
is normalized because 43 and d%_ are eigenfunctions of a symmetric operator,
and are therefore already orthogonal. Substituting from equation 2.37

into equation 2.35,
A
:)';("4*, CP*) = 3;("(*; 4’*) - Az 2.38

*
where )& must be the second largest eigenvalue of equation 2.31 or

2.37 in order to minimize J2.

Proceeding in this manner it is concluded that if the eigenvalues of the

integral equation of 2.3l are ordered monotonically as

* * *
>\1>X2>...>)\ 2.39

m
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*
then the optimal basis function 4) (t) is the eigenfunction corresponding to
k
*
‘Ak . Therefore the K-L expansion of equations 2.4 and 2.5 has been derived
from L2 global-error minimization using a linear expansion with m-terms.

Finally, Mercer's theorem [19] can be invoked to rewrite the optimal

cost. By this theorem

R(t,t) = Z L b®a(t) tt elor]
{=1

2.40
Hence
R(t,t) = Z)L Chz(t) teloT]
i=1 2.41
Therefore
¥ N~ T oo
R(t,t)wltldt = ZAL ¢L(t)W(t)¢L(t)dt = ZA"
1=1 i=1
2 L ° 2.42
Thus the optimal cost using m features is:
oo
T, (47 = 2N
L=m+4i
2.43
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or in terms of the expected eneray of the process ’((+/') this can be

restated as:

T m
T (5 d%)= |R(tpwieldt - Z A »
o (=1 )

2.5 Asymptotic Statistical Analysis for Large Data-Bases

2.5.1 Introduction

In practical applications of K-L methods, the discrete case is usually
considered. The process X(t,-) is sampled in time and replaced by an
n-dimensional vector random variable x. The integral equation with the
covariance kernel of equation 2.31 is then replaced by the following

matrix equation:
(o]
R C_hzkfg jzi;z:"‘:n

where

x
o
Jl
e
—~
X
1|
S~
P
I
|
1X)
| —

2.46

with g = E(x). Here )\J and 4) are the j-th eigenvalue and eigenvector of the
covariance matrix R? respectively. The Fredholm integral equation problem for

the K-L basis functions is therefore transformed into a matrix eigenvalue-

eigenvector problem.
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In practice the covariance matrix of the n-dimensional random vector
L
x is usually not available. Instead, a data-base of sample vectors x must

be used to derive the required ensemble information. Normally, an estimated

~
covariance matrix Rp is obtained using the sample-mean of outer products

G
{(E-Z)(§°?S) } , and the eigenvectors of this estimated covariance
matrix are used as the (estimated) K-L basis functions.
A P P
C ‘ g L
R.o= L ) (F-Fax-%)= L /R
P p-1 p-1
=14 =1 2.47

The data-base available is assumed to be the set
i .
{.’.‘. IL-1,2,_--,P} 2.48

: i . : . .
with each X~ representing a particular sample vector from the n-dimensional

~
distribution for x. In equation 2.47 , X  denotes the sample-mean of Xx,

P

T :
and R* is as given below

| X

. BT
Xo= - 2 x' 5 Ry=(x-%p)(x'-2p)

P
i=1

A
Note that Rp is therefore an estimate of R which is derived sclely from
the data-base. The reason for using (p-1l) as the divisor in equation 2.47
A

rather than p is to make E(Rp) exactly equal to R° , that is, to

A : ¢ o
make Rp an unbiased estimator of R~ {221.].

Assuming that the original process x(t,«) possesses fourth order

n(n+1) ; : . .

moments, the - upper diagonal entries of the symmetric random matrix

A ; . ; : . : n(n+1) : .
Rp will form a k-dimensional distribution (k = 3 with finite mean

,._.i. and positive definite covariance matrix iG;t} q,t =1,...k. That is,
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define

(R, =R, =), 5 & (B, -p)'= {om}

2.50

. o B g 5
Here it is assumed that the matrix Rp is expressed as a k-dimensional vector
~ { A "
fp- The element 1,m of Rp corresponds to the component s of Ep' The matrix
{a:it} involves joint fourth-order moments of the components of the original
vector x.
. 3 ~ A

As the data-base size increases, the sample-mean estimators E(p and R
can be updated to include new information on the underlying process x(t, * ).
Then the estimated K-L basis functions should also be updated; they will be

A

the eigenvectors of the updated covariance estimate Rp. Since the optimality
properties of the K-L method derend on choosing the optimal basis (which in
practice can only be estimated using a finite data-base), it is of interest
here to analyze the asymptotic bkchavior of practical K-L schemes as the data

base becomes large.

2.5.2 Estimated Eigenvalue Behavior

A
The eigenvalues of the random matrix Rp themselves are random variables.
. ) SA A
Define the random variable )\J L(‘r) as the j-th eigenvalue of Rp. AJ is

k
a function from [R into [Ri Ji.e.
k x
X : R — R 2.51
J

It is now shown that )J(E) poss<sses first derivates, ?_.)J (f) S=1..k,

2

w

at all points in some neighborhond of r =M.
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A well-known result [23] relates the differential change in a matrix
to the differential change in its eigenvalues. If dAJ denotes the differen-
tial change in the j-th eigenvalue of a symmetrical matrix A when the matrix
changes by dA, and Yj denotes the j-th (right and left) eigenvector of A

then the result is:

— N , 2.52
d>\J = -\-/J dAyJ

If only the entry {,m of A changes by (dA){ 5 then the résulting change in
’

)\- is

d).:(\_/J.){-(V.)m-(dA){m 2.53

where the scalars (\‘/J){ and (\!J)m denote respectively the 1-th and
m~-th components of the eigenvector \_/j. Hence it is concluded that in the

problem considered here,

A
S| -

r A
~=0

where the scalars (?J)Q and (CPJ)M denote respectively the 1-th and m-th

components of the j-th eigenvector of the estimated covariance matrix Rp.

The index s refers to the component of the vector form r that corresponds
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to the entry (,m of the matrix form R.

oA

It is clear that __J‘ is well-behaved in some neighborhood of

X = /&_ (It has been assumed that M exists and is finite; therefore

the eigenvectors {C-b.j‘s corresponding to /;( , Or Ro, will be well-behaved) .

It is also clear that not all of a__kd(r) s =1,...k can vanish
o) )
so that, for at least some s and some j, %_AJ (f) ;{:O .
()

This is obvious since changing some element of the true covariance matrix
Ro will definitely change at least one eigenvalue. For example, changing
a diagonal element will change the trace which is the sum of eigenvalues.
Therefore at least one eigenvalue must change.

At this point a theorem by Wilks [ 22 ] can be applied to determine
the asymptotic behavior of >\.J (fP» as p2062 . This theorem is stated
below using the notation developed in this section:

Theorem: Suppose {f" li,= 1,2,---,P} is a sample from a k-dimensional
distribution with finite mean}i and positive definite covariance matrix
{th} , 9, £t =1, ...k. Let AJ(I) be a function which possesses first
derivatives —j ¥l = s’ say, s = 1, ...k at all points in some neigh-

borhood of , and let o é (_) . Then if at least one of the 2
M s = 9, 9%

A
is # 0, then )\J ([‘P) has the asymptotic gaussian distribution:

k
1 o q°
N( )\J(/A),"F;‘Z 0_%‘t 3q 8t
q,t=1
Therefore the eigenvalues of the K-L methods used in practice are asymptotically

gaussian random variables with means which correspond exactly to the eigenvalues

g ; 0 g . -
of the true covariance matrix R~ and variances which depend on the joint
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fourth-moments of the random vector x, but converge to zero at the rate of
(-%;) , where p is the size of the data-base.

No special assumptions are imposed on the process x(t, - ) to which the
K-L method is applied except that it should possess fourth-order moments.
Fukunaga derives equivalent results in [10 ] but does not consider the

asymptotic normality of the eigenvalue estimates.

2.5.3 Estimated Expected Error Behavior

It is now of interest to observe the expected error for a truncated
K-L expansion with m-terms, when the K~L functions are estimated using the
sample statistics. The expected error is now a random variable dependent
on the size of the data base used to estimate the K~L expansion basis

functions. The actual expected error for an m-term discrete expansion

n
Em= Z )J(}é) 2.55
J=mti

o
where { AJ( A})}’ are the eigenvalues of the true covariance matrix R
(recall that /L denotes the vector form for RP).

Now let

n
A ~
(E"‘)P: Z )J(fr) 2.56

J=m+1

be the expected error using m terms of a K-L basis estimated from a data-base

of size p
e : A
é;,ao ( n \P )
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A

(Er\f&n is a random variable which converges to the expected error for
an m-th order true K-L expansion as the size of the data base increases to
infinity. The behavior of (/E\M)P can be analyzed to determine the

A

sensitivity of the K-L approach to the size of the data base. (cc.m\P is
a r.v. obtained by summing asymptotically normal r.v.'s, the eigenvalues.
Since the eigenvalues are not jointly normal it cannot be concluded that

A A
(£..) is normal. € ..). is, however, unbiased.

E (&, =& Z%CW»PZAJ(&): Em
J =T J:mﬂ 2. &8
and i .
Var[(ém) ] =E Z[)j(ff5->‘J(fi‘)]z
J=mti 2.59

The )\' S are not uncorrelated and hence the above cannot be easily
J

simplified. To advance further a result on the joint density of k‘“ )2,- .- )
is needed.

Dyson [16], [24], and others [24,25] have studied correlations
between eigenvalues of a random symmetric matrix in the context of statistical
theories of nuclear spectroscopy. Dyson [16] has derived a complete, general
result concerning the joint distribution of a finite stretch of eigenvalues.
)‘hla,"‘) )m. of a random Hermitian matix of order n >> m, in the

limit as the order of the matrix, n, tends to infinity. The results

obtained involve only trigonometric functions of eigenvalue differences and
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a quantity D, denoting the mean level-spacing of the eigenvalue series.

For the real symmetric case, the joint density function of m-eigenvalues,

in the limit N->°°, is

:f“m( Aykz,"u >m) = = Q Det [ O-( %-")%,\J)]

DY Lj=1,--um
2.60
where
S(x) s’ (x)
X
c X) - !
( js(x’)dx—u(x) s(x) e
0
with  JO.
p—— +
Sixy = T2 ux)= { 5 x=o
X 1
7 X <O
2.62
d s(x)

‘S' = =
(x) T

and Q Det M is the quaternion-determinant for the matix M of quaternions.
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The elements of the nxn matrix M are themselves 2%X2 matrices called

quaternions. Then, by definition,

n-1 ¢
QDM = % (-1) _lj %_:(Mab Mg My )

.63

whenever M is self-dual, that is

MJ;,: MLJ 2.64

P in equation 2.63 is any permuation of the integers (1,2,..n) consistiry of

‘e cycles of the form

(a_.,b_)ce---—‘s—ao.) 2.65

-2
and (—l)n is the parity of P.

As a special case, note that

X
352()«1)1): .11)_1 1- S(x)+ s’(x)( s(x)dx'- ux)

()
2.66

where X = (Z—i:—-)—"z)

39



Dyson's results can be applied to the K-L problem if the order of the
covariance matrix is taken to be very large; i.e. if a very high time-
sampling rate is used. Then the joint distribution of any finite set of

m eigenvalues for the random matrix ﬁ; becomes available for any f>(size of
data base).

Rewriting equation 2.56
m :
(‘Em}P:tr(RP\— Z).i(rf’\ ' 2.67
=1

If it is assumed that the expected energy in the process is known
or estimated accurately a priori, then a modified expected error can be

defined as

A ) _ Ef _
(Em)g

45

()

m
J'=1_ 2.68

where E is a known constant, the expected energy in the process, and does

not depend on.P, the size of the data-base. Then Dyson's result for the finite
: l o ON

stretch of eigenvalues ,Ai,n-, mof the large random matrix Rp can be

AU
applied to get the distribution function for (EM)P

Rob. (€0, <E,)= Prob. (E =) N <E,) =Frob ( JZ‘AJ >E-E,,)
i= :

2.69
40



where {}.""km is given by equation 2.60.

Dyson's result is well adapted for numerical computations and thus
the distribution function for (53";{; can be calculated exactly using
numerical techniques.

It is, in general, difficult to discuss the behavior of the probability
of the density function of (gm)P for arbitrary processes and data
bases. However, it is expected that for data bases with randomly selected
data, the density function for the expected error will behave as shown in
Fig. 2.1l. Note that 5’(Céin)F) is skewed since the probability that

(Em)‘o is less than zero is identically zero ﬁor any P; i.e. the error
can never be negative. If the density function is unimodal and otherwise
well behaved, the likelihood of the expected error (é:n)P being less than
the true rate is higher than the likelihood of its being greater than the
true expected error. This implies that the expected error is more likely

to be underestimated for any fixed m and finite data base.
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}(g YA Probability Density
mp

'

Expected Error
with m-Term
K-L

True Expected Error

with m-th Order K-L

Figure 2.1l: Probability Density Function for Finite
Data-Base Expected Error of m-Term K-L

Expansion.
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CHAPTER 3

PIECEWISE POLYNOMIAL APPROXIMATION WITH OPTIMAL KNOTS

3.1 Introduction.

Piecewise polynomial approximation is a subject that has received
considerable attention from the mathematical viewpoint only recently.
Schoenberg [26] first studied an important subclass of piecewise poly-
nomials, the spline functions, in 1946, and these becameé the object
of intensive research ever since [27,28]. Spline functions are piece-
wise polynomial functions of m-th degree joined smoothly (at points
called knots) so as to have (m~1l) continuous derivatives; i.e. the only
discontinuity allowed is for the n-th derivative at the knots. Piece-
wise polynomials are polynomials of m-th dégree which are not necessarily

smooth across knots (so called deficient splines where knots are allowed

a multiplicity k < m encompass piecewise polynomials) .

When the knots are given, piecewise polynomial and spline approxima-
tions are linear in the parameters and approximations are relatively easy
to compute. Fixed knot splines and piecewise polynomials have been
extensively studied and the theory is well developed and documented for
this class of approximation functions (see [29,30]).

It has more recently become clear, however, that the real advantages
to splines lie in the possibility to have the knots as variables. This
makes them nonlinear approximating functions with a nonlinearity not

encountered previously in approximation theory.
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Piecewise approximation, as with spline functions, is an approach
ideally suited for practical applications. Ordinary polynomials or
other (global) functions are inadequate in many situations that arise
from the physical rather than the mathematical world. Functions (or
data) which express physical relationships are often of a disjointed or
disassociated nature and their behavior in one region may be unrelated
to their behavior in another region. Global polynomials_along with most
other smooth global functions have just the opposite property: namely,
their behavior in any infinitesimal region determines their behavior
everywhere. For example, analytic functions are determined everywhere
via Taylor's expansion by the value of the function and all its deriva-
tives at one point. Piecewise polynomials and therefore splines do not
suffer this drawback and can be adapted to the functions represented on
a local basis. The approximation power of spline functions and, more
generally, piecewise polynomial functions, therefore, seems to lie pre-
cisely in the possibility of placing the knots in a usuaily quite non-
uniform way to suit the peculiarities of the given function. It being
a somewhat nasty nonlinear minimization problem, no satisfactory charac-
terization of a best approximation has been found in general, see e.g.
Braess [31] for the case of Chebyshev approximation.

De Boor and Rice [32], De Boor [33], Burchard [34], Schumaker [35],
and McClure [36] have worked on the problem of variable-knot splines and
their results indicate that approximation with optimal knots is much
superior to fixed knot splines. The computational algorithms developed
by researchers in the field of variable-knot splines are all based on
some descent method (Esch, Eastman [4], De Boor and Rice [32],

Dodson [37]) and therefore suffer from the following serious shortcomings.
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(i) Only locally best approximations can be obtained.

(ii) Initial conditions on knot locations are important for
convergence of algorithms.
(iii) Computational time is quite high.
(iv) Conjectures and ad hoc schemes are used for optimization
(see Rice [ 3] and Schumaker [28]).
In this chapter piecewise polynomial approximation is considered
from the perspective of representing individual sample-functions from
a second order vector random process over a finite interval [O,T] of
the real line. The starting point for the results of this chapter is
Bellman's paper [38] on the approximation of curves by line segments.
Bellman's formulation is extended in the following ways:
(i) The general case of piecewise polynomials with various
continuity constraints at the variable knots is considered.
(ii) The problem for the Chebyshev norm is formulated and
considered.
(iii) An ensemble cost functional is considered for the case of
ensemble-optimal knot locations.
The methods developed in this chapter produce globally optimal
best knots with computational times comparable to those required by
the local descent algorithms mentioned. The development in this chapter
forms a basis for the extensions and results of the next chapter where the
approximating functions in each interval as well as fhe knots are selected
in an ensemble sense. Moreover the dynamic programming approach to vari-

able-knot splines is also novel.
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Obtaining error bounds for the representations formulated here
is a difficult problem. Some of the bounds developed in the field
of fixed-knot and variable-knot spline theory are adapted to the pre-

sent formulations, and the limitations of these bounds are discussed.

3.2 Formulation of Approximation Problem.

3.2.1 Introduction

The problem considered is that of polynomial approximation over
variable segments of the waveforms. The problem can be'visualized as
in Figure 3.1. Consider for simplicity the problem of approximating
a scalar process; the generalization to the vector case is straight-
forward. Let x(‘t)w) denote the W-th sample function over the fixed
time interval OStsT and consider segmenting this interval into N

regions delimited by the set of knots TT

‘IT = {O,'E_,_Q,...,T;_UT} 3.1

A
Let xj ('t,w) denote the approximation to X(t,u) over the segment

LT

-1 ).TJ] 5 J = 1)...,N (Define T°= 0 and TN =T ). Within each
interval between knots the data x(t',w) is approximated by a finite
order polynomial the coefficients of which must be determined. The N-1
interior knots themselves are free, and optimal locations for them must
be determined. Various constaints can be imposed on the estimate at the
knots (exact fit of function and up to (m-1)st derivatives if m-th order
polynomials are used). The parameters of the estimate will therefore

be the locations of the optimal knots and the coefficients of the poly-

nomials used for approximation between knots.
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There are two possibilities with respect to the knots, which are

to determine
(i) A set of optimal knot locations over the ensemble of
waveforms: the ensemble-based problem.
(ii) Optimal knot locations for each sample waveform: the
sample-based problem.

In the first alternative the knot locations are determined once for
the entire population and therefore do not form part of the set of
features needed to characterize any single sample waveform. The optimal
ensemble knots are then analogous to KL basis functions in this sense.
They form a canonical basis for segmenting and representing the process.
The second alternative, in the case of feature extraction, is computa-
tionally much more demanding since this operation has to be performed
on-line. In the next chapter it will be shown how the approach taken
here for the knots can be extended to the more general case of knots
and approximating functions.

The approximation (or representation) problem is considered for the
LP ) i\< f’< oo) and the Chebyshev, P'—'-°° , norms separately. In
practice the l.z and the Chebyshev norms are the most useful ones and
therefore examples will be worked out for these cases. The case of the
Chebyshev norm is not simply the extension of the L-P norm case and
therefore requires independent consideration.

Various variants of the basic formulation can be considered depend-
ing on the desired behavior at the knots. 1In the simplest case no

constraints on the representation at the knots are imposed. Another
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possibility is to require an exact fit at the knots thereby assuring con-
tinuity of the representation. In this case the approximation becomes
an interpolation with free knots. Assuming that derivatives of the data
are available, yet another variant is to require the representation to fit
the data and its derivatives, up to the (k-1)st, at the knots (for k-th
order piecewise polynomials).,

For the problem to be soluble with the methods of this chapter,
the essential requisite is that the estimate ;:(tﬁd)in the region
Eﬁ}-‘ﬂg ] be computable (expressible) solely based on the data (and
possibly its derivatives in the region [1}_‘n}]. For the problem to
separate recursively the estimate ;EJ (t,w) should not depend on para-
meters or data outside segment‘j . Hence it cannot be required, for
example, that )(j (-GIU) = ;(:n:‘(_{})w) = 0)1"' , without specifying

A _ ny

further that XJ 1},(.))-)( (Tj,w). The estimates in each segment must

be decoupled and independent. This requirement is in line with the philo-

sophy and need for local approximation discussed earlier.

x(t,w)
T =1 T
T=0 : ! /-\ Nt
0 g & B o
T T ~ T

Figure 3.1: Segmentation of Waveform via Knots
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3.2.2 The Lp-Case.

The gencral (1< p<09) global cost functional appropriate for
P

this class of problems is

Jen(T)

1
)
N -
LY
-
.=
3

where the optimal Lp segment cost for sample-function €V is

S 1
T /

T )= Min e, to 1t
g () € A() J

TJ'-: 3.3
and the pointwi imati i
wise approximation error 115\ 1}-‘\< £ < .5
g(gj,t,u)= X(t,w)‘xj(t;“’) j=1,2,..4 N
with the estimate in segment J given by 3.4
m
i - T
X L Wiy Lt § J
_ - . (w) t J
XJ(f,w) Z I.J _]'_-1121""‘N
=0

3.5
The coefficient vector ?.(J (w) is formed of the set {°<LJ (W) l [_‘—'i)...)rﬂ}
where m21 1s the order of polynomials used in each segment. The
constraint soi AJ(“") to which °<J‘ (w) is restricted accounts for any
special conditions that may be imposed on the approximation of sample-
function W over segmentj (e.g. exact fit at knots, exact fit of derivatives

at knots, exact fit at midpoint of segmentJ , etc.).
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The expectation operation in equation 3.2 is defined by

g f(x(t,w)) = jf{(x(tw)) d P (x(t,w)) e

where df(X) denotes the Lebesgue probability measure for the process X('t)‘)
The expectation of equation 3.2 can be taken over the complete
sample-space. In that case Fz—Q-, the underlying sample-space for
the stochastic process, and the approximation problem becomes an
ensemble-based one.
The second alternative of interest is when F=C«)f,, where CJF refers
to one particular sample-function. In that case the expectation opera-
tion is trivial and the approximation problem becomes a sample-based
deterministic one.
The partition Trconsists of N segments and is defined by
equation 3.1. The problem is to minimize j;,fsn) over the set of all
possible partitions of the interval
In practice the computation of the expected value of equation 3.2
over the sample space -n- is not possible since the probability density
function of X(t, ’) is usually not available. However in most statistical
problems of interest a large data base of sample-functions will be
available; i.e. a set {X(‘tlw) lU=1,2,--',P} where P , the total

number of samples in the population, is large. In such a problem, when F:ﬂ

% X
E éTP (1}_‘;1310.:> can be replaced by the sample mean -%‘- ir? ('Ij_';)})h))

w=|
in computations. In any case the summands of equation 3.2 must be

evaluated, or approximated, numerically in any real application. The
application.of this approach to the cardiographic problem, discussed in
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Chapter 5, has shown its use and practical feasibility.

3.2.3 The Chebyshev Case.

The Chebyshev (Lw) global cost functional appropriate for this
class of problems is

*
T) = Max M T,
J-OOJN( ) w:’}:‘ 1\<?§N goo ( J J)w)

where the optimal Loo segment cost is

X ;
I (Ti,,T,w) = Min Max le,(gj,t,w)l
% Q{j(w)éAj(w) T StsT) 3.8

The pointwise error 6(01‘) ,t)u.)) and the estimate in segment j are given
by equations 3.4 and 3.5 respectively. Since the powers of t form a
Chebyshev set this problem will have a solution for any interval (see
[1]). Sophisticated algorithms for Chebyshev approximation by poly-
nomials over discrete (finite) point sets are available [28]. For
continuous problems the De La Vallee Poussin algorithm [l] can be used
to obtain the optimal estimate.

The constraint set AJ (0)) and the two alternatives of interest for .[1
are defined as for the L -case section 3.2.2. The problem, as for the

p

Lp case, is to minimize J;O,N(Tr) over the set of all possible partitions
of the interval [_O)TJ :

In practice the maximization over the sample-space n for the ensemble-
based problem cannot be carried out due to limited information on the
statistics of the stochastic process X(‘t") . Assuming that a finite,

denumerable set of sample functions is available, as discussed for the L

case, a finite search can be carried out. The application of this approach
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to the cardiographic problem is discussed in Chapter 5.

3.2.4 Constrained Approximations.

The piecewise polynomial approximations formulated can be required
to satisfy various constaints at the knots. For the unconstrained case
a discontinuous representation with jumps at knots will result. This
may or may not be desirable from the point of view of representation. As
mentioned earlier, a number of variants can be formulated to control the
behavior at knots. Any set of constraints relating the actual data and
the piecewise estimate in segmentj is allowed, provided the estimate in
seg'mentJ depends solely on data over segmentJ. .

For the linear Ll sample~-based approximation (polynomials of degree

m = 1) the following problem must be solved

8l

T = Min x(-tw}-—o(*-—dT-t dt
2,N Tl,T.z,"'ﬂ;/.l Z [ 7 o y J

T : 3.9

Tj
‘_)._. [x(t;"’)'“ﬁ"q{jtlldt';o

K 3.10
5 ),
r .
g [x(t,w)-"‘cj°°‘l_j” dt=0
adu — 3.11
J-
T ]
o(# == 1 3 12 ‘tx(t,w)d-t - 6(7:, 1:5—1) x(‘t,w)d.t
:) (T; —1]-, 13_| ‘G._l
3.12
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For linear segmented approximation we can also require that the line
segments fit the data exactly at knots. Then the following constrained

estimate is obtained

X (t,w) = 4G X(U-“w) (t'.]}-.) i X(T:j-n)“))
J (73-1]--.) T <t<T 3.14

J-! J

If such is the case, then there is no parameter to optimize over and
the knot locations, together with the data at the knots, uniquely deter-
mine the approximation; the representation is obtained by merely joining
the data at the knots with straight lines. This leads to a continuous
representation. This case has been studied experimentally for the
cardiographic problem, as discussed in Chapter 5.

For a quadratic segmented approximation (polynomials of degree m = 2)
it can be required that the quadratics fit the data exactly at knots. Then

the following must hold for segment‘j :

A
<o+l T+l 1Y ] = x(Tio,w) = %,
[ g &/ lt;']-. J J
[woj + ot e oit™]] = x(T,w) R,
t=T; J 3.15

53



The constraints of equation 3.15 imply that one of the three coefficients

{°(°j'°<'j»°(1J} is free. Solving for da‘j and Q(U in terms of O(zj i

for example:

o(oJ-

n
? S
L_)(
&
i
|
AR
‘T_
S~
+
—~
[
e |
2
o

°(,J- = ()iL:_XJ_'_') -(T-ﬂ],,)o(

the remaining independent parameter C‘ij can be optimized by minimizing the

appropriate cost over segment‘j . For the L2 case the following problem
results

T

X =X T, X =X:_, )
MLﬂ. X(tw)-(J_‘_L_J._J )-—TT-_'O(J-"(_J J ‘t+(’r.+’r._ )b(l‘t_as't}dt
’ =T JI AT JIT
oy S B {1
J
Tj-1

3.17

Differentiating with respect to O(lj and setting equal to zero

i To=x:T:. vl 2 NER
{x(t,w) —( - irJ_TJ ! )'B‘Tj-?‘zj “(x;%j{f' \}’( +(Tj *-’]'-n\t"(.zj"d-?jtj{t(ﬁ'”J‘-n\"J' 1 t,{dt
J ) J J O

3.18
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This equation can easily be solved for c&l.in terms of data, X(@CO, and
knots T: and 13 .
J-i

The following minimization problem must be solved for the case of

Chebyshev approximation.

- X'-.T--)(-T'_' X:=Xi_ 2
Min Max ‘X(t'w)_( b J)_(;‘ ’ n)t oty (T T 5= (7] +73,,\t)l
o(aj 1}_‘\<t\<13 S
3.19

This is, in general, a difficult problem. In the discrete case, however,
this problem can be solved using available algorithms discussed in [ 28].

For higher order piecewise polynomials, an exact fit at the knots
can still be required. Then the optimization must be carried out over the
remaining parameters. It can also be required that the approximation fit
the derivatives of the data at the knots. In the cubic case specifying
that the approximation fit the data and its first derivative at both ends
of every segment leaves no parameters for optimization. In general, due
to the difficulties with differentiating data (since all real observations
are noisy), it appears that requiring exact fit at the knots and deter-
mining the remaining parameters via best fits is more appropriate than
fitting derivatives if continuous representations are desired.

By sacrificing smoothness at knots, it is clear that better interior
fits can be obtained. The unconstrained minimization for the coefficients
will always yield a cost lower than, or at most equal to, the cost
incurred for a constrained case. The trade-off of continuity and
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smoothness at knots versus ccst must be judged for the particular repre-
sentation problem at hand. It has been shown here that the representation
formulated is general enough to allow various degrees of smoothness at

knots.

3.3 Determination of Optimal Knots.

3.3.1 Introduction.

The problem of determining optimal knot locations is essential and
computationally demanding in general. No satisfactory characterization
or computational scheme has been developed by researchers in the rela-
tively new field of variable-knot splines. The first consideration of an
optimal segmentation problem is treated in Stone's paper [39]. The problem
considered there is the determination of the 2 N+2 constants Cli) bi i:lumlN+1
and the N points of subdivision 1:,7;)...)7; so as to minimize

the function

Nt 13
[
T (0, byt Ty ) = 1 | [F1-0; -4t e
J=1 -,3__. 3.20

where To =0 and T_N-Hz—r and TOS T|\<T1\<'“\< T . uhe gunceton
f{t) is a given function. Stone derives the necessary conditions for
minimizing ]- and shows that the problem has an easy computational solu-
tion only when -f(t) is a quadratic function. Bellman in [38 ] suggests
a dynamic programming approach to this problem and gives the basic
recurrence relation.

In this section the recurrence relation is derived in general and
developed to treat the various approximation problems formulated in the

previous sections. 1In particular the Chebyshev norm case is developed and
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both the sample-function and ensemble-based knot-determination problems
are considered. The solutions obtained are guaranteed to be the globally
optimal ones in all cases due to the principle of optimality which under-
lies the dynamic programming algorithm [21].

Various specific formulations have been tried for the cardiographic
problem and have proved the computational tractability and feasibility

of the approaches discussed here. These will be discussed in Chapter 5.

3.3.2 The LP-Case .

The optimal knot determination problem for the Lp—case ( 1< P <oo )
is the problem of solving for

‘TP;:’ (TT*)'-' Mﬂi'n PIN(TF) 3.21

*x
It will now be shown how J;’/N of equation 3.21 can be computed

recursively by imbedding the cost functional in a class of functionals
dependent on the last knot.

Assume that only one interior knot (two segments j= 1,2 ) is

allowed in the interval 1;\<t$t at t =T.-l - Then define
*
J_,_(’C)= {Ej(T uw) EJ(T T‘a)
’ T
o
Te [O)T] 3.22

Note that J- (T) is the optimal cost associated with subdividing
P2
the total interval [O,T] into two segments. Now if two knots, at

't:Ti and t= 1;_ , (thus three segments), are allowed in the interval
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<t<T, then

J- (T)— ,\']'/'ll:rn {53(7\: l;w)+EJ( Tz,w)+E)SP(T2)t}w>}
T<T, , T, elot]; TELOT] 3.23

Since the minimization over -lz only involves the first two

terms of equation 3.23, that equation can be rewritten as

J = T‘n{Mlﬂ(‘E I, T €T )
FEJm )

3.24

But by equation 3.22, the first term in the brackets of equation 3.24

X
is simply J— 1('1"2\ Thus equation 3.24 becomes
J

AT EMGATE 2 a0}
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It can now be seen that the general recursive functional equation is

J;TM(r): Mm {g— (To) +g§‘ (T tw)}

M=1,2,---,N-L 3,26
TeloT]

For N=i, the initial cost is

J_Pfi(t)f- & 3:(0;?3@) TeloT]

3.27
T) is simply the optimal L -cost incurred by a global fit of an
Pl 2

m-th degree polynomial over the total interval [O)T’] subject to any
relevant constraints. In the case of M=i no interior knots are used
and the interval [O, T] constitutes one segment.

Hence eguations 3.26 and 3.27 give a computational scheme for
determining the N optimal knots. Note that at each stage of the
dynamic programming J;’M(t) must be computed and stored over O\< ‘C\< T ’
for use in the next stage. Finally J;’N (C) is obtained which, when

evaluated at T=T gives the optimal cost of equation 3.21. That is:

3.28

T sl = Ty (T4 o= r# T 1T

Also note that, at each stage, all knots are readjusted. In other
words, all previous knots vary when one more knot is added. The actual

dynamic programming algorithm for obtaining the optimal knot locations
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MON STOP

YES -
CS)=C() K(M)= KS(T,M)
+=0teT

Z,e= Min {5 +W(tT) K(M-T)= KS (K(M-T+1), M-1
"e 0\<t€t'{ ; (u-1=Ks( »* )M-1)
T =time at which ZM?CCCUTS I=1 to M-1

— 1

C(T')‘_' Trmax

Ks (TIH) = Tmax

[O'T] Total time interval to be segmented

wtT) = (8 jp(tft:“‘) Cost-to-go matrix
N Total number of interior knots desired
K(I) Array of optimal knot locations

ZM.‘_ 5 Tonaxs CS,C, KS 1Intermediate variables and storage arrays

Flow Chart 3.1l: Dynamic Programming for Optimal Knot Locations

in the L -Case.
P
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is summarized in Chart 3.1.

In practical applications, the expected value in the integrands can
be replaced by sample means, as discussed in section 3.2.2.

The computational aspects of the ensemble and sample-based Lp
problems are very 51mllar except that setting up the estimate of the
expected cost _.iE:iS'Q,lﬁgln the ensemble-based case can be gquite
demanding for large data bases. The advantage, however, from the point
of view of approximation, is that the knots are determined only once,
off-line, and do not form part of the set of parameters needed to charac-
terize sample-waveforms.

The ensemble and sample-based Lp knot optimization algorithms have
been developed and applied to the cardiographic problem as discussed in

Chapter 5.

3.3.3 The Chebyshev Case.

The optimal knot determination problem for the Chebyshev case ( Lao)

is the problem of solving for

*N (TT%) = Min Joo N(Tr) 3.29
Tr J

It will now be shown how qsz of equation 3.29 can be computed recursively
by imbedding the cost functional in a class of functionals dependent on
the last knot.

Assume that only one interior knot (two segments"j: 1J2 ) is allowed

in the interval To\< t<T at t=T1 . Then define

J‘ ('c)- M:n Max Max[ﬁ(T g:(Ti'tJ“)]

Tt wel

3.30



Note that :E;acho is the optimal Chebyshev cost of using two segments
over the total interval [O)T]. Now, if two knots, at t=71 ,

and t=1;, , (thus three segments) are allowed in the interval Ta\<t\<?-‘,
then

J;;(’t): _p.;, Max Max[ T nne); I ) T ()

T<T, ;s T,LeloT]; Telo,T]

But the maximum function commutes with other maximum functions and also

enjoys the following property:

Max(a, b,c) = Mox {Max(a,k);cj

3.32

®*
Thus goo 3(1') can be rewritten as

J-*g,(‘C): Min MQ.X[Hax(Ma.x 3" (To,T1, @) Mczx éf (T, w)).
o T el

Max é]:( T ,’l“,w)]

el

T,<T,

L, 3T, LEeL0T]; TElOT]
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Let

.34

Then equation 3.33 reduces to

J;;('c): f‘:\rin Min MCLX[MC{X(CL(TL); B(TJ_,TZ));C(T;_)]

2
3.35
Now also define
FL) = Max {a(m); b(1,T)} S
Then
];:3(1:) = Min Min MQX{)((ETz ) SC(E)}
B T 3.37
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Suppose _T; is fixed and consider the minimization over -Tl . Suppress

the Tz dependence in the notation since the problem now considered is

M_rin. Max { }(K);C}

i

3.38
Define
L) = Min (1) |
11 3.39

Then by definition

'S'(Tl*) $ )((TL) ¥ Ti € [D)TJ 3.40
Therefore it is clear that

Ma,x{{(TL);C} = Ma"{“ﬂ*)m} ¥T,eloT]

3.41
In particular

Min Max{ $(T)ic} > Max {§(1) 5]
N 3.42

But by definition of the minimum

Min qu{—}(TL);c}S MQX{{(TL)}C} VT eloT]

Ty

3.43

In particular

Min Max{f—(‘r‘l);c } < Max {j((“l‘l*);c}
11 3.44
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By equations 3.42 and 3.44 it is concluded that

Min Max {-&(TL‘))(_}T- Max { ]C(Tf)ﬁ} = Max{M_{in)C(‘q);c}

T, L
3.45
Therefore using equation 3.45 in equation 3.37
% . .
Joor, (©) = Min. Max{ Min {(1,1,) 57|
J o T1
Z >
3.46

Substituting for ]C ('rl ,T,.) and C (Tz) from equations 3.34 and 3.36

the following is obtained

_— K ; .
o,3(T) = MT‘; Max{ MT'i“ Max §a(my); b1, 1)} 5 c(n)}

3.47

But the first argument of the first maximum function can be recognized
*x
in equation 3.47 as :y QYT;) of equation 3.30. Thus equation 3.47
)

becomes :

By induction it can be seen that the recursive functional equation

for the Chebyshev norm is:

3 *
Too, wea©= M Max§ T'(T0) 5 Max 27,5
ST ST ’ el
M=, N1
Tel[o,T] e
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The estimate used in equation 3.49 is the optimal fit of an m-th degree
polynomial to X(‘t)&)) over each region subject to any constraints
that may be imposed. The optimal fit may be chosen to be optimal in
any desired norm. A consistent choice would be to use the Chebyshev
norm. However, if computational expediency requires it, any other
estimate may be used in conjunction with the Chebyshev norm for the
knot optimization problem.

For M"i , the initial cost is

*
I, (@ = Max ] (o,tw) TeloT]
oo
’ wel
3.50

*

J— (t') is simply the Chebyshev cost (maximum absolute deviation)

e0,1
incurred by a global optimal fit of an m-th degree polynomial over the
total interval [O)T ], subject to any relevant constraints on the
estimate. 1In the case of M = i, no interior knots are used and the
interval [O,T] constitutes one segment.

Hence equations 3.49 and 3.50 provide a computational scheme for
determining the N optimal knots provided the ﬂ space is a countable
finite set, so that the maximization with respect to &) can be accomplished
via a finite search.

Note that, if an expectation of the sample-function costs over
the ensemble for this Chebyshev case had been taken, the problem would
not have been tractable since expectation and maximization do not commute
in general. The formulation given, however, does lead to a soluble

problem as shown.
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[O,T] Total time interval to be segmented
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K(T)

Array of optimal knot locations

ZMT' e CS,C, KS. Intermediate variables and storage arrays

Flow Chart 3.2: Dynamic Programming for Optimal Knot Locations in

the Chebyshev Case.
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Note that, as in the Lp-norm case, each stage of the algorithm requires
that J- * (’C’) be computed and stored for O TS T for
ij - = N ’
*
use in the next stage. Finally, J;o N (1-) provides the optimal
)

cost of equation 3.29. That is

Tou(T) = 22, (%) = Min T,

Here again it must be noted that, at each stage, all knots are readjusted.
Thus when one more knot is added, all previous knots mugt vary, as
expected. Chart 3.2 summarizes the actual algorithm for obtaining the
optimal knot locations.

The computational aspects of the ensemble and sample-based Chebyshev
problems are very similar except for the setting up of P1c1x Ciﬂx,(t,;tl)ﬁa)

wel

which can be computationally quite demanding for the ensemble-based case
with large data bases. The advantage, again, from the point of view of
approximation, is that the knots are determined off-line and are not
characterizing parameters (features) for sample-waveforms.

The ensemble and sample-based Chebyshev knot optimization algorithms
have been developed and applied to the cardiographic problem as discussed

in Chapter 5.

3.4 Error Analysis.

3.4.1 Introduction.

Upper bounds on the errors incurred by the various approximations
formulated in this chapter are generally difficult to obtain due to the

nonlinearity of the knot determination problem. Nevertheless various
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useful bounds from spline-theory may be extended and adapted to the
formulations developed here. In particular Burchard's [34] and Phillips'
[5] results on the degree of convergence of variable-knot splines

can be applied to the deterministic sample-function problem for both

the Lp and Chebyshev cases.

For the ensemble-based representations, the error analysis of
fixed-knot (linear) spline approximation of De Boor [40 ] is applicable.
Error bounds for fixed-knot splines are discussed in Prenter [30] and
Schumaker [ 28] as well.

The direct theorems of analysis relating smoothness properties of
classes of functions to the order of the error in approximating them
by classes of polynomials are well known and date back to Jackson's
work [ 28]. Even for classes of global polynomials the methods for
obtaining these error estimates are not particularly simple and upper
bounds obtained can be misleading without more information on their
sharpness. Such information is usually gained only through extensive

computational experience with the approximations.

3.4.2 The Ensemble-Based Problems.

Let
N T)-* 17,
e = o]
Em)N(x(t,m,O,T)- Z [x(t,w)-%j )] ]
Uil

3.52
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A
%*
denote the L'2 error incurred by the optimal fit XJ' to X using

the fixed ensemble-optimal knots {13*} , Where ;ZJ* is an m-th degree
polynomial for each segment of [ O)T ]. The error E:;N is that
incurrred for representing a particular sample-waveform x(t)w)
using the ensemble-based formulation.

The most immediate error analysis for spline approximates (including
deficient splines) to a given function 5' on an interval [ OJT] follows
from the so-called first and second integral relations for odd degree

splines. The basic result developed by Ahlberg, Nilson, and Walsh [ 29]

for the Chebyshev norm is

EC (x(t w) O)T) = Max Max IX(‘t,w)—-%.*(t,w)l
oo,m,N § %I i . "
) iSJ\<N -l}_|\<-t\<"5

3.53

A
*
where XJ is the optimal estimate in the sense defined in this chapter.

The error estimate result is

e 2M'i
< KIlA
o € KA
with
w %
1A = May [F—U—J
i <N 3.55
and K a constant dependent on the smoothness of x(t)w) .
Hall [41] proves similar error bounds for X(‘t)u.))C. tl‘i D51 ¥
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For such a case the result is:

T " 7
E{ < 5 cl:_’f_(t"‘))} dt
Sl ) |

(@

Prenter [30 ] discusses various other error bounds of this sort for
fixed-knot splines.

From the practical point of view, these bounds are of little use
since they require estimation of high order derivatives of )((t,a))
which may not exist, or may not be obtainable due to noisy measurements.

De Boor, however, using a very elegant projection method has
obtained a result on the order of Chebyshev approximation by splines
as a function of knot spacing (i.e. for the fixed-knot problem) that

can be adapted fruitfully to the formulations developed here:
E< = B(Q)LX:HAM]) -
oo, m,N s

where UA” is given by equation 3.55 and W (X . ) is the modulus
of continuity of the sample function X represented [30]. The modulus
of continuity of a function x(t) given over an interval ]? is defined

as follows
co(x:h) 2 sup {tx(uﬁ )-xt®)] [t,t+h e TRl <h, h>0}
3.58
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ror fixed h , ) is a measure of the oscillatory nature of X . For

example, if X(‘(:): Ain.—% on (O,TT) then C.)(-f : h)-—)i for all
h , no matter how small. On the other hand one can prove that x(‘t)
is uniformly continuous on an interval I if and only if Q)(X'-k) >0

as "1-—)0

Marsden [42] sharpens De Boor's result for M}Z by the following

Ee'MN £ I\’ -1'—"2- +1JCJ(X= HAH> m> 2

3.59

bound

The modulus of continuity can be estimated easily for each sample-function
in practice. Hence bounds of the form of 3.59 are applicable and useful

for the ensemble-~-based formulations.

3.4.3 The Sample-Based Problems.

Let
Nl 73
A ) T
E  (x(tw) o,T)= Inf Z [X(t,0)- X (t,w)] <t
m,N o
J=i -57_'
3.60
denote the Lz_ error incurred by the optimal fit ;ZJ to X over

all possible partitions {U lj=011,---,N}°f the interval [O) T] ,
A

where the estimate X. is taken from the class of m-th degree polynomials.

J

Assume, furthermore, that no constraints at knots are imposed. Then
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Phillips' extension [5] of Meinardus's formula [2] gives the

following error bound:

m N N 2m+3 2m+2 2N (M-H.)' OstST dtmﬂ

7

3 m+
AN gmet [_[J"“zi Max d.|(tco)

m+l
3.6l

This result has limited applicability in practice since even for W= i
(linear segmented approximation) the bound involves second derivatives
of the sample-function X(‘tlu)) which are difficult to estimate for
real (noisy) data. In general such derivatives may not even exist,
depending or the smoothness of the process X(t)-)

Asymptotic results on the behavior of the error as the number
of knots tends to infinity have been obtained by Ream [43 ] and Mc Clure
[ 36] as well. Phillips' bound of equation 3.61 leads to the following

asymptotic result for the problems studied here:

&m{ g, ("(t“’)lo T)} \jz +3 7 ztmz) @:u)!

m+1
m+_§__
m+\
i d><(t ) & /2
.2 dth
(o]
3.62
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For the Chebyshev case the analogs of equations 3.61 and 3.62,

also treated in [ 36], are:

m+i Ci mrtl
E <L [ T7] L Max | EX(tw)
somN 2™ N | (ml)loce<T | fpm
2 3.63
and
T 1 m+l
m+1 mii Y+
-{i,n. .{;q E = —Jtﬁ {.!; ( fi:iﬁtau)) {
N->c0 oo, M)N 2 2 M+ (m+1)!
O
3.64
where
A
E = Inf Max Max Ix(t)w)-xj(t,w)l
0o, MmN , <T
1$J\<N E,,st\ J
3.65

Burchard in [ 34 ], generalizing on an interesting result of Rice
[ 271, obtains bounds on variable-knot polynomial spline approximations.
These bounds apply to the present variable-knot formulations for both the

Lp and Chebyshev norms.
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The bounds give for large N

T " 1
e ek L[

e g =—
N m N L arm* m+3/,
0
3.66
T d mrl G j/0‘

with Km a constant. Note that Burchard's results, although

obtained using a very different approach, are equivalent, for large N ’

to the asymptotic results of equations 3.72, and 3.74 derived by Phillips.
Rice's interesting result which Burchard generalizes is reported

in [27]. It is a special case of equation 3.77 for M =0. Rice,

however, shows his result to hold for both M =0 and M*= 1 (approxi-

mation by constants and straight line segments). The result is:

< ¥ =04
Eryrs § o =0,
where V is the (bounded) variation of )((‘t, Ld) over the interval

[O)T ]. The only conditions on X(t,u)) are that it be continuous
and of bounded variation over [0)1— ]. As such this result for line
segment approximation is probably the most useful from the practical

viewpoint.
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Although equation 3.68 is very simple, it is more powerful than
results obtainable by classical approximation theory involving fixed
knots or global polynomials. Bernstein's and Zygmund's converse theorems
discussed in [ 34 ] prove that such results could not hold for global
polynomial approximation. That variable-knot splines converge much
faster than fixed knot ones can be seen from comparing Burchard's result
to the order of convergence of fixed-knot splines (for further discussion

see [34]).
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CHAPTER 4

OPTIMAL SEGMENTED FEATURE EXTRACTION

4.1 Introduction.

Data reduction, or feature extraction in general, is largely
dependent on the choice of structure for the feature extractor
(linear, nonlinear, etc.) as well as the cost criterion to be
optimized. The strictly mathematical question of the cémputability
and tractability of the data reduction process often directs the
choice of structure and cost to be used. The feature extraction prob-
lem is concerned with the assignment of such analytically and computa-
tionally tractable representations to patterns, that concisely eliminate
redundancy, while optimally preserving the salient global and local
characteristics of individual sample waveforms.

The global L2 measure of error leading to the K-L expansion

is in many ways a compromise in which accuracy of representation in

specific local regions of waveforms and for individual sample waveforms

is traded-off for simplicity of the feature extractor. For a given
number of allowed features, and restricting the feature extractor to

be linear, the global L2 —-error has been shown to be minimized with a
K-L system. This property, discussed in Chapter 2, however, does not
indicate how best to increase the number of features such as to achieve
higher representation accuracy in a given region. Taking higher order

K-L terms may be inefficient as too many may be required to approximate
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the given region to the desired accuracy. It is easy to see the problem
in the limiting case where, say, a certain point of the waveform needs to
be known precisely, while the error in other portions of the waves is
unimportant. In this case all terms of the K-L expansion would be
required although a much more efficient feature extractor could be
devised by taking as the single feature the value of the waveform at
the time in question. The K-L expansion does not provide a means to
independently control the approximation accuracy in local regions. The
first few terms of the K-L expansion very efficiently approximate global
characteristics of waveforms. But once the desired level of accuracy is
reached for any portion of the waveforms, the efficiency of approximation
in other regions, where subtle deviations are important, may be highly
increased by use of methods other than taking more global K-L terms.

Another major limitation of the K-L method is that the representa-
tion accuracy for a particular sample waveform cannot be controlled
independently. The number of allowed features is fixed a priori based
on expected error rates over the ensemble. The truncated K-L representa-
tion may perform very poorly for certain sample waveforms, although the
number of terms has been fixed to yield a low expected error for the
ensemble. Hence two of the major limitations of the K-L method derive
from the fact that representations are based solely on global and ensemble
considerations. These considerations are closely linked to the lirearity
of the K-L method as will be seen in the context of a more general non-
linear approach.

In Chapter 3, an entirely different approach to the representation
problem was investigated. In order to achieve local control of the error
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and to ensure that each sample waveform is represented accurately,
approximation-theoretic formulations have been studied. A variable-knot
(nonlinear) segmented function approximation theory has been introduced
and developed. The formulation considered is a generalization of spline
function approximation. It was shown how the error could be controlled
locally with the introduction of variable-knots. Allowing the knots to
adapt to the specific waveform being represented, made the problem highly
nonlinear. Feature-extraction was thus reduced to deterministic curve-
fitting on a sample by sample basis. The characteristics of each wave-
form could now be captured accurately via variable-knots.

The essential drawback of this approach is that no use of ensemble
information is made in the design of the feature extractor. Each sample
waveform is treated deterministically and the statistical structure of the
underlying process is disregarded. In a sense the methods of Chapter 3
stand in sharp contrast to the K-L method of Chapter 2, and their
essential limitations derive from the fact that such representations are
based solely on local and sample-function considerations.

In this chapter, a nonlinear representation which incorporates the
desirable aspects of both the K-L expansion and the generalized spline
approximation methods is developed. This novel representation reduces
to either the K-L expansion or to a spline function type approximation
under specific restrictions. The feature extractors developed, therefore,
subsume the previous linear and nonlinear approaches discussed, as special
cases. The proposed schemes retain analytic and computational tractability

while successfully unifying global-local and ensemble-sample function
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considerations and satisfying optimality with respect to well-defined

error criteria.

4.2 Structure of Representations.

Let X(‘t,w) denote the &2 ~th sample-function from the real-
valued, L‘2, , non-stationary stochastic process x(t’,‘) defined over
the interval [O,T ], with mean zero and covariance function R(t,’f}

A finite-dimensional representation of x(t'w) for all C«)E.-Q denoted
by Q(ﬁ,w) is sought. The process X(t, ') is defined over the
probability space introduced in Chapter 2.

In the approximations of this chapter, the sample function x(t,w)
is allowed to exhibit "segmented behavior" by virtue of the following
representation structure.

Let

T = {1;} ; j=0,4,2,...,N 4.1

form a partition of the interval [O,T] such that
O=TL ST Qoo STy =T 4.2

The set Tr will be referred to as the set of knots for the sample
function X (t,w)
Let

m.:

;(t:“’) = Qj(tlw) = z °<i-j (=) #’Lj (t) 7}-|‘<t‘<1}
i=1
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where
{
ol (@) € R
<bij(t) e |, [oT] s

The following conditions are imposed on the set { ci; (t)} :

P

J
j 4>.Lj(t)w(t)4>&j(t)dt = §, Tuj.k

T-

wit) >0 ¥teloT] 4.5

and

4.6

¢Lj(t) =0 t ¢ [-1}-1 )1;] )V‘ L'j

Hence ;(t,‘*’) denotes the finite-dimensional representation
which, for t in the j-th segment, is an m_ -term linear expansion of
X(t,w) using the orthonormal basis functions { ‘f) (t)g
appropriate for the partition TT . The set {54(“3)} denotes the
coefficients of the linear expansion for the partition TI— and sample-
function W . The parameters of the estimate ;((t,w) are, 1-:herefore:

the coefficients of the expansion ) {él (U)} , the basis functions
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of the expansion’ {_{#J(t)} , the set of knot locations) TT ;
the local expansion orders , {mJi , and the total number of segments, N

There are two possibilities with respect to each of the above
parameters which are to determine optimal parameters (i) over the ensemble
waveforms: the ensemble-based problem; (ii) for each sample-wave form:
the sample based problem.

The above alternatives have been discussed as they apply to the
optimal knot 1ocations-TT_, in section 3.2.1. From the point of view
of feature extraction, or data compression, selecting basis functions for
each sample-waveform must be precluded in order that a low-dimensional
feature space may be obtained. The basis functions { fkj(f)}
should therefore not be made sample-dependent. BAll of the remaining
parameters may be chosen on an ensemble or sample-basis independently.
The coefficients {51 ("‘))} are always sample-dependent regardless
of whether the ensemble or sample-based problem is considered. They
constitute the linear (also the only) features of the fully-ensemble-
based feature extractor, and the linear components of the nonlinear
feature extractor that results when any of the parameters are selected
on a sample basis. The features, then, consist of the coefficients and
any of the nonlinear parameters that are selected on a sample basis.

The representation problem is considered for the L2 and Chebyshev
norms. The L2 norm is treated since it leads to an analytically and
practically soluble problem. The Chebyshev norm is treated because of
its usefulness in practice, Obtaining ensemble (or sample)-optimal basis

functions using the Chebyshev approach, however, is not considered due
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to the lack of a tractable analytic or computational characterization

of an optimal solution for this case. In both the ensemble and sample-
based Chebyshev problems, the basis functions of the L2 ensemble case
are selected as the canonical basis for expansion. The basis functions
(and therefore the coefficients) having been selected a priori for the
Chebyshev case, the remaining parameters (knot locations, local expansion
orders, and the total number of segments) may be treated, as for the
case, on either an ensemble or sample-basis.

In the approach taken, coefficients, basis functions and knot
locations are parameters used to minimize a global cost. The local
expansion orders and the total number of segments are parameters selected
with a view to obtaining a minimal number of features consistent with
satisfying a set of specified L2 or Chebyshev local error constraints
imposed on an ensemble or sample-basis.

A weighting function in the cost functionals is included for the L2—
problems. It is shown how weighting functions can be chosen to improve
the smoothness of the representations across the knots, since the
representations considered are not necessarily continuous at the knots.
It is shown how the error at the knots can be made arbitrarily small by
suitable penalty techniques. Then the magnitude of the discontinuity in

Q(ﬁ,h)) across knots can be controlled, thereby improving smoothness.

Finally the feature extractors developed here are compared to
the global K-L and piecewise polynomial approaches of the previous
chapters. It is pointed out how both of these previous methods are

special cases of this more general approach to feature extraction.
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4.3 The L2-—Case.

4.3.1 Global Cost Function.

In this formulation consider the following global cost functional:

];N({gj}'{?i}:{mi}'w) = ‘6 Z g_z("ij'{%jg,mjﬂ;. ,—l}',w)
koo’ o

4.7
where the segment L2 cost 1is
&
2
: . T ) = t) dt
gl (1(,] ' {éji ) mJ )—(;—( )-1.-1_} C«)) - [e(O_(_J )ii’)‘, MJ )t) U)} W( ) d
{=1_—§-| 4.8
and the pointwise approximation error is
£,
e(2 g fmtw) = xlew) =X te) TS ES
J= ,2).. )N
4.9
with the estimate in segment j given by
- ts T,
A R
X (t,w) = Zdi.(w)é..(t) =1<5(“)-<_fj-(t) 1oy i
| Sl J ‘) . N
\=0 J:I'Z'...,
4.10
The function w(t) is a given weighting function such that
w(t) 20 vteloT] 4.11
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The expectation operatiocn in equation 4.7 is defined as in
equation 3.6 leading to the two alternatives considered throughout:
the linear ensemble-based problem, and the nonlinear sample-based
problem. The same considerations discussed in section 3.2.2 apply to
this formulation.

The optimization problem considered here is

3o (L 141 Am), 1) M T ({4 i)
2,N {:‘j}.{‘?j},ﬂ I

4.12

The local orders of expansion {Yﬂjs and the total number of seg-
ments Pd are parameters to be optimized in later sections with the
objective of satisfying local error constraints and minimizing a "fea-

ture extraction cost" (related to the total number of features used) .

4.3.2 Optimal Coefficients.

In view of the orthonormality of the basis functions as given in
equation 4.5, any sample function )((t,uJ) can be expanded over any

segment j using the complete orthonormal set {_Chj(tl} . That is:

x(t,w) = Z °(1J' (w) CPLJ & v te [-T}“‘Tj-]
i=1

4.13
The coefficients °(i'@°) can be determined by the orthonormality
J
condition for the {_4njct)} . The approach here parallels closely
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that of section 2.3 for the K-L expansion

T

i oo

x(t,w)w(t)qbkj({) dt = Zo(l._j (w) 47 () w J §dt

e T 4.14

Tj" J-t

T 00
S x(t,w) W(t)ik_(t)c{t = Z‘%Lj (w) 3“‘ = °<‘<j (('_')>

! =\ ,

Tj-‘ 4.15

One may at first suspect that for an m-term truncated expansion of
X(t,f-d) one may better approximate by the {é'J (f), 4’21-(*),"') 4",“'({)}

using coefficients 0(,_1 (w\ which are different from those O(LJ-(w)

given by equation 4.15. But it is easy to see that this is not the

case. It will be shown that

T
s bR
)
~ Sl t)]wit)dt
[x(t.0) - 2« @& OTuwdt S | [xew -ZT(" e ] wee)
t=
Tt T 4.16

whenever °( (w) ?é°( ("") . The left hand side of equation
4.16 is simply: ‘-6 Z*l:_"(tj(w)]
Therefore, expanding o x tw) on the right hand side of 4.16 and
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using the orthonormality of {d’"j (t)}

s
oo J o A
€ Z [%j@I S € [ 24 )~ D = () b ()] wit)dt
L=l i=1
L TJ" 4.17
oo m oo
‘E_ Z[«Lj(w)] S ‘E thijcw)—du(w)] + £ ZWUWU
Sl L=t L=mtl
4.18

Equation 4.18 obviously checks and equality holds only when dtj (W)= “i,j (w)
Thus the O("J (w) given by equation 4.15 are optimal.

The integrand of the cost of equation 4.7 can now be expanded and
the orthonormality of the basis functions and equation 4.15 for { Q(; (w)}

used to obtain:

I

N J N m;
2
3—251 = ‘E Z xl(t,w)w(ﬂdt-— Z [o(ij(w)]
) )=| » j_.;‘ L=t

3-|
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Now substitute for Qiéj(“’) from equation 4.15 to arrive at:

T:

= t)d (Hdt
3 = Z E () witldt Z Z‘ﬁ it
: 1= =t =) 2
J Tj"' J t T}-l
4.20
Define
A )
f {x(t,u)x(’c',w)} 2 R(t,t)
4.21
For E“ﬂ- this is the covariance function of the process.
and for D: COP it is simply the product of the value of the sample-
function a)r at two different times.
Then
: T
N Tl N m; 1] B
T =z Rt t)wit) dt - Z Z R(t, ) e )41, ¢l dt
2N
’ 1=1 = (=1
) T il T T
4.22
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Now it remains to minimize over the set {cbij(t{} subject to

the constraint
2
chj(t)W(t)Ci’kj(t)dt = g.‘,‘k 4.23

Tt

4.3.3 Optimal Basis Functions.

Consider the problem:

* _ Min it {m, o
i = ?d?_.'} T (], 14, b )

Dynamic programming will be used to solve this problem. The solution
parallels closely that of section 2.4 for the K-L expansion.

Define

Tlm "‘N(d 4’ )‘_ Min JI—TI’" N(Q(*’dj)
-6 3
‘ 'V'J
— Min jm‘mz---('”k‘l)“' m, (o(*) 4,*)
¢

m, k 4.25
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Equation 4.25 is a recursion relation for the minimal cost (with
approp: iately simplified notation) where the recursion is on the index
My indicating the number of basis functions used in segment X.

The minimization must be carried out using the constraint equation
4.5 which is adjoined to the cost using Lagrange multipliers {\(LJS

Consider using one basis function in segment k.

N T m; T
% (x34) = R(t,thw(e)dt - b (EwIR (L w(t) (t)dtdt’
mu',"mk:'"'mu = T~ j ;
T t,t'=T,
N ™ T
# Y( & @wi b ) dt—1
! i v 4,26
j=r i=i Tigy .
Then set "
3:Ym.. m=l---m (°< /4;) s O
QP (t
5
4.27
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which yields

T
k
—ZJ wit)R(E, ) w(t) ‘#u‘(t') dt’ + 2 Xu( wit) Cbi 6=
=T 4.28
T
w(t)J tt)w(t)d: Vdt'= 1kw(t) 4>ik(t)
t'sz-; . 4.29
Since W(t) #0 V‘t G'[Tk_' »Tk] it must be that
T
R(£t)w(t) ‘#1 H)dt' = ):k cbik(t)
T 4.30
1= k-1
Substituting from equation 4.30 into J as given by equation 4.26
N g ]
B A [ wit)R(t t)dt —Z (t)w(t) R(tt)w : 4>(t>dt}dt
K= ...m“
J:l . l*lt=1_i-‘ T
N
+Z ¥, d b, (BIwt)¢ (t)dt—i)
ji=1 - -
j#k - T 4.31
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The inner integral in the second term becomes Xlk Ch.k( )
x
in segment k (for j=k). Then the second texrm becomes Xik for j=k

due to the orthonormality of the {.43)} 's

N T; m; 13 TJ'
J, ,.-m,‘., )= Z w(’c)R(tt)dt-—Z-Z ¢Lj(t)w(t) R(tt )W(t)chj(’c )dt'dt
i 13—‘ j"#il‘ =5 Jj" =T
N T
Y, Y. | (twi)d (Hdt-1
Y%k ¥ 3] Lj "J

The constraint for j=k is satisfied, hence that term drops out
*
of the summation over the constraints. Clearly b/“‘ must be the
maximum eigenvalue of the integral equation of 4.30 since this will
minimize In .m, = o .m,,
Staying in segment k, the next stage is to look for CP (t)

Clearly,

Ty
ez, b $) = 7,...m,=1.‘.7f:;“’)" & BWEIRELW(E)h (£)dt dt’
ey, 4.33
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Now using the recursive relation of equation 4.25 it is only required

to minimize over C% (f)
2k

Tk
(ot*,‘b) — Mi.n I o j d>(tW(f)Rtt) Cé t')dt'dt
M.--- mk=2"'mﬂ ¢ (t) m‘..mk_
%% t)t'zn_‘
Tk |
cu [pnn- 4
4.34
Tk—|
Setting

it is again obtained that

1;
R(t,t’)w(t')cbzk (t)dt' = Xde)zk(t) 4.36

t,=Tk—|

Substituting from equation 4.36 into equation 4.34

4.37
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X
Clearly ‘6;L< must be the second largest eigenvalue of the integral equa-
tion of 4.36 in order to minimize the right-hand-side of equation 4.37.

Proceeding in this manner it is concluded that, if the eigenvalues

of the integral equation of 4.36 are ordered monotonically as

Xi.: > >Xk-.. k:i,Z,..,N

3

then the optimal basis function tiQk Ct) is the eigenfunction
X L
corresponding to Zﬂk

Finally Mercer's theorem [19] can be invoked to rewrite the

optimal cost. By Mercer's theorem

Q8= ) G b 04O FEEE[LT
=1 :

e

Thus 4.39
R(tt) = lekdz;(t) vtel[T, Tl
bk 4.40
Therefore
(0 = ,
wtiR(t,t)dt = Z Z (i .Lj(t)w(t)c{:.kj(t)c(t
i=tL j=1 t=1
T v oo Tj-t
= Xij
=1 =1 4.41
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Hence the optimal cost using Yﬂi,rﬂzln-,n1~ features respectively

in segments i,Z,---,N is: N

T80 )%

j:i L= mJ'fi

or in terms of the expected energy of the process X(tu') , this can

be restated as:

N e m;

x

N COT Ve WER(EDAE = ) Y,
j: 1 -5-| =1

4.43
4.3.4 Optimal Knots.

The next stage of the optimization is to determine the partition
11-*- with respect to which the general ensemble respresentation is truly
optimal. Given a set of knots, a set of local-expansion orders, and a
fixed number of segments for the representation, the representation that
minimizes the expected global cost over the ensemble has been obtained in
the last sections. It is now desired to optimize this ensemble representa-
tion with respect to the set of knots,-TT: still assuming hl and {'nji

to be given. The problem considered is therefore
* L3
' 1 44} {md TT)
,\_?_Fn J;‘N ( {-J y L=JJ, J )T-r
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Dynamic programming is again used to determine the optimal
segmentation. Now the cost functional of equation 4.44 is imbedded
in a class of functionals dependent on the last knot. Define

X
LulT)= Min . T (T, T T T)

i) 2"

4.45

(Note that -I;= O ana TN =T are fixed) .
The derivation of section 3.3.2 is followed to obtain the recursive

equation for the cost. The recursion is on the number of knots used as

before
* ) *
J;,M*'(T)z TPZ;T S'C{ IZ,”(-’:‘) N hl(r“'t)}
B 4.46
and O&’CST for M:i,z,---, N-1 with
T = h,(©T) Telo,T)
21 o  4.47
and
h(t t % j(g,{cb} m,t 1) llw)
0$t1$tz
t,e00,T]
4.48
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'J’.?'i(t) of equation 4.47 is just the expected global K-L cost over
the interval [O)T'J for a K-L -expansion with m’_ terms. The incremental
cost kz(m,’t) is just the cost incurred in the segment from -1;1 to €

This cost has been computed in section 4.3.3 and is simply

(W)= ) K= R Yo

i'>mMﬂ Ta : t=4
where {_ H‘fl} are the ordered eigenvalues of the local covariance
kernel over the segment [TM ] Hence the recursive equation of
4.46 now becomes
T mm»i
% x d Y*
T (2)= Min{ T (Tu)* RO ) X,
2,M+1 O<T, ST 4 - i=i
M
=1{,2..,N-1
M=1.2,- 4.50
or
* : * ‘ *
3 @=Ma T m) ) W)
2,MtL 0 TyXT ‘ :
M= 1-,2‘ A N-i
4.51
for

In order to carry out the dynamic programming of equation 4.51,

the following needs to be computed

t.Z
E(t, t,)= \R(, t)wu;)dt ¥« %, t,e[o,T]
tx 4.52
where E(tutz) is the weighted expected energy of the process X(t)-)
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in the interval [ti ;tz} or the weighted energy of the single
sample—-function O-J', depending on whether F is .Q_ or CAJr =
The dominant mmueigenvalues and eigenfunctions of the

following integral equations must also be computed:

t,
R(t,t)w(t)C#('c)dt: ¥pE) ¥ £ <t
t 4. elon]

T=tl 4.53

where

Mmax = Max {mi,mz,.--,m,,} 4.54

Once E(tl,tz) and all the above basis functions and eigen-
values are available, the recursive equation 4.51 can be solved for
the optimal cost ];:I(T) for using N segments (or N-1 xnots)

J
over the interval EO,T] and the optimal knot locations can be
determined as well as in section 3.3.2. In the next section it is
demonstrated how optimal local orders {m:.} can be determined by
constraining the error to satisfy local constraints. Then it is not

needed to compute as many as M eigenfunctions for each region.

4.3.5 Local Error Constraints and Optimal Local Expansion Orders.

In the optimization problem only an ensemble global-error has

so far been considered. Suppose that an ensemble local-error tolerance
function &(t,_,'tz) can be defined as follows. The total expected

energy of the weighted error allowed in region [f“'fll is at most

&(fiitl) ¢
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That is:

oT
hz(tl,t2) $ E(tutz) %Lt_‘_(tz tlit«ze’[ / ]
4.55
The local-error tolerance function E(t“tz) is assumed to be
prescribed for the problem at hand. Note that &(tutz) must

obey the following positivity and monotonicity requirements since it

is a cumulative error function over the interval [tg»tz] :

E—(ti rtl) 2 0 v ti< tZ tj_ )tz € [O)TJ

with

E.(tptz) =O L{-JL At.lztl

Also given t’_ct'z ) t3<t¢r , and [ti’tl] ( e [t3)‘t".] ,

it must be that

E(ti,tz) < & (t_,)t,,) Y t1 :tz )t3;t4 € [_O,TJ

4.57
Finally the following upper-bound must hold:

E(t_utz) N E(tutz) ¥ t1<t2 ti»tz € [O)T-]
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Equation 4.58 states that the expected error energy in any interval
is upper bounded by the expected energy of the process over that interval.
Therefore to make the local constraints inactive over any interval
[t.)t{] , one only need prescribe E(t3J t,‘) to satisfy equation
4.58 with equality for all [_-t,)t,'] C. [-ti;t,_].

Assuming that the &(tiatl) appropriate for the problem is
given, the local constraints of equation 4.55 can be directly incorporated
into the dynamic programming for the knots of equation 4.46. From

equation 4.49, and constraints of equation 4.55, the following is

obtained
¥F <
hz(tutz)z L > E'(t“tz') 4.59
L>m
Therefore mm , denoting the order of expansion needed over

the interval Lttltz_] , must be chosen to satisfy equation 4.59.

Since the objective is to achieve a representation with a minimal number
of features, the smallest order m* to satisfy the local
constraint for the region [tl;tlj must be selected.

The dynamic programming of equation 4.46 or 4.51 is now constrained
to satisfy equation 4.55. The appropriate local orders of expansion can
be incorporated directly into the computation of hZ (tj_ttl) The
number of dominant eigenfunctions of the integral equations 4.53 needed
will be determined uniquely via the constraints of equation 4.59. The
local constraints bound the expected error energy in any particular

interval for the ensemble-based formulation ) .E':.D. . In the sample-

based problen, F-‘- QJP , the actual error energy for sample-function
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is bounded on each interval.

4.4 The Chebyshev Case.

4.4.1 Global Cost Function.

In this formulation, consider the following global cost func-
tional:

J:o,»z({‘i‘i},{cg‘},{mj},ﬂ)r— Max Max J:o(%’{g'}’”if’—g“’-rﬁw)

wel' j=1.N

4.60
where the segment Chebyshev cost is
g (9.",') f‘Pj},mj,Tj_.:‘}, w): Max I e(alJ-, {C_PJ}J m; ,t,w)’
® Tj;lst 51} 4.61

The pointwise error e(g{J-‘{c_bj})mJ',f)w) and the estimate
in segment j are given by equations 4.9 and 4.10 respectively. The
ensemble-based and sample-based alternatives result, again, depending
on whether f-:-Q or P;UP . For the case f:.n. the same considerations
discussed in 3.2.3 apply.
The optimization problem considered here is
NEEREARCE AU ERICINS CARt AL
J;,N =T Uy T ao —d 2t 1D

g
4.62

Optimizing for the basis functions é (and thereby coefficients
J
{&(J} ) is not meaningful in the case of the sample-based problem
( P““’P ) if the objective is feature extraction. The reason is
that basis functions then become features leading to an infinite-dimensional

feature space as discussed earlier. 1In case of the ensemble-based
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Chebyshev problem, optimizing £or the basis functions is analytically
intractable and is a difficult problem in practice. Therefore optimiza-
tion with respect to the basis functions is not considered for either
the ensemble or sample-based Chebyshev problems. Instead, the L2 -ensemble-
optimal basis functions (here denoted by {431} ) derived in section
=)

4.3.3 for I?=~§L, are chosen as a canonical basis that incorporates
ensemble information. Having selected this basis, the optimal coeffi-
cients iﬁfj} follow as before (section 4.3.2). |

The local orders of expansion {'"j} and the total number of
segments Pq are parameters to be optimized in later sections with the
objective of satisfying local error constraints and minimizing a

"feature extraction cost" (related to the total number of features used).

4.4.2 Optimal Knots.

Dynamic programming is again used by formulating a recursion on
the knots. Following the derivation of section 3.3.3 a closely similar

recursive equation is obtained

S* (t) = Min Ma.x[," (M) 5 h, (T, t’)}
M:i‘l’...)N‘L

with

J‘ l—, (o, T) € [O,T]

4.64

The cost :I; 1( ) of equation 4.64 is the actual maximum weighted

pointwise error over the interval [C);T ] incurred in representing
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sample-function W, using a gliobal K-L expansion with ?’ﬂi terms.
in order to carry out the dynamic programming of equation 4.63

the quantity gw(%j’{cbj}’mj't’-l;};fo must be computed on line, that is,

hy, (t, 1) = [;100.1{.1 Jw(%,{?S,M,Q t,w) i
we

To compute hoo(t ,tl) the set {m,l} and N are required.

These parameters can be chosen based on some ensemble consideration.

it is, however, also feasible to impose sample function local constraints
to determine a set of sample-dependent local expansion orders (features).

$his consideration is treated in the next section.

4.4.3 Local Error Constraints and Optimal Local Expansion Orders.

With the Chebyshev formulation, it can be required that the
representation satisfy pointwise local constraints. Given an appropriate
measure of tolerance Eo‘(t ,tz) , the following constraints are
imposed.

heo (t4,12) € € (ty,t2)

4.66

The error tolerance function im(t;-@) must obey the same positivity
and monotonicity reguirements as given by equations 4.56 and 4.57. The

wpper bound of equation 4.58 must now be replaced by

< Max Max x (t,w)|
£ty o) wél tlsts'tz‘ 4.67
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Letting Eoo(tlitz) satisfy equation 4.67 with equality for all
L‘tth] - Lti ,tz] will render the local constraints inactive over
the interval [_tintl] .

Assuming that the £ o (tixt.z) appropriate for the problem at
hand is given, the local constraints of equation 4.67 can be directly
incorporated into the dynamic programming for the knots of equation
4.63. Again, the smallest local expansion order m; to satisfy the
local constraint for the region indexed by j must be selected. The
dynamic programming of equation 4.63 is now constrained to satisfy the
local constraints of 4.67. The appropriate local orders of expansion
are thus directly incorporated into the computation of hoo(ti,t;).

The Chebyshev norm approach is a highly desirable one in practice
since the representation error is then controlled for each time-point
and possibly for each sample-function if the sample-based case is used.
Choosing an appropriate tolerance function &oc(tixtk> is also rela-
tively easy since this corresponds to the maximum absolute error allowed

over the region <[t1;t1] .

4.5 Optimal Number of Segments for Feature Extraction.

4.5.1 Introduction.

Throughout the optimization of the feature extractor N , the
number of segments used was considered to be fixed a priori. So far,
the optimal segmented representation, given the number of segments,PJ ’
that minimizes expected global error while satisfying local expected

error constraints was determined.
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Since the goal of the representation is feature extraction, a
measure of the cost of using the features required to achieve the local
constraints must now be optimized while minimizing expected global error.
The features needed to characterize a sample waveform X (t,w) will
depend on whether the ensemble or sample-based problem is considered.

The measure of the "cost of feature extraction" can be taken to be the
total number of features in the case of the linear ensemble-based problem.
In the case of the nonlinear sample-based problems various weight factors
should be considered to account for the "relative cost" of using linear

vs. nonlinear or real vs. integer features.

4.5.2 Linear Feature Extraction.

In the ensemble-based problem for the L2 -norm, where f:ﬂ and

the expectations are therefore taken over the whole sample space, the
* -

optimal basis functions {d_DJ , the optimal knots Tr , and
the minimal local expansion orders {m;} , are determined once and
fixed for the entire ensemble. These parameters are common to all
sample-functions and are therefore not features. The only sample-
function-dependent parameters are then the coefficients {9_(: (‘J)} 3
These coefficients are linear in the data X(t'w) as shown earlier.
Thus the ensemble-based problem leads to a linear feature extractor.

In the ensemble-based problem, the total number of features

required for a given number of segments N , is then

N

x
F(N) = mJ. 4,68
j=t
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For N=1 the global K-L expansion over the 1 segment (the total
interval) [O/T] is obtained. The guantity F(l) is the total
Number of global X-L terms needed to satisfy the local constraints
SPecified by the local error tolerance function E(t“‘tl) =
2

The behavior of F(N) as a function of N will depend on

the problem at hand and on the choice of the error tolerance function.
x

The optimal number of segments, N , to use, from the point of view

of feature extraction, can be determined by searching for:

N ;
*) = Min F(N)= M; m
F(NY) Nm ( ) N" Zt g 4.69

Note that F(N) can be computed very easily at each stage of the
dynamic programming for the knots. The behavior of the (constrained)
fewture-extractor as N increases can thus be tracked, Suppose that
thexe js an upper limit, Nma.x , to the number of features allowed,
The absolutely minimum number of local features needed is one per segment,
regawndless of the number of segments. Therefore, if &(1’1 ,'tz)< E(tl,tz)
for a11 t,_(t,_,ti,tz&]'_o)ﬂ) then

F(N) 2 Nma.x -for N >Nm°'x

Thus the search for the minimum of F(NJ of equation 4.69 can then

be rwilaced by a finite search:

F(N®) = Min {F(1),F(),. -, F(Npma)] -
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o't . In Figure 4.1 the following reasonable assumptions
were made:
i T,
(1) £ty ) < E{tts) for t,<t, , and t,t,€[0T)
4.72
(ii) The longest segment tends to zero as N tends to infinity;

i.e.

L‘m {max 1]} =0 _ 4.73

N->c0

(iii) The error incurred with the single dominant K-L term

tends to zero, as the segment length becomes vanishingly

small, faster than the tolerance function, i.e.:

t+at t+at
lim [ R(tm)dT— ¥ (¢ t+At)] < dim g @paat) < lim  |R(g)dT
At>0 At->0 At>0
t t
4.74
If conditions (i) and (ii) hold, then
T |
*x
Ritt)dt- ¥, (Tl < &(T0T) ¥, ¥ N =N,
Tise 4.75
for some sufficiently large, fixed, hg.. Then
FIN) =N & N >N
4.76

as depicted in Figure 4.1.
* .
Note that rd is fixed once for the entire ensemble and as such

does not become a feature in the feature extraction problem.
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The general behavior of F(N) is depicted in Figure 4.1.

A F(N)
F(N)=N

Global
KL -

max
FINY -———

b - .t e — - — —— ———— — - -

>
N

Fl———
B RS-

=
*I
z

Figure 4.1: Total Number of Features as a Function of the Number of

Segments for Linear Feature Extraction.

The F(N) curve can never lie below N . The behavior of F(N) as N

becomes large will depend on the behavior of Ez (t ,t:l) as ti tends
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4.5.3 Nonlinear Feature Extraction.

In the sample-based problems (for L2 and Chebyshev norms),

where P:a) and the expectations become trivial, the optimal knots

P
1T*, the minimal local expansion orders {m;§ as well as the coeffi-
cients {g(?(u»} become sample-dependent. As discussed earlier,
the {CP} can be chosen in an ensemble-sense to lead to a meaning-
ful and finite-dimensional feature extraction problem. In that case,
the basis functions used are common to all sample funct_:ions and therefore
not features. Although the coefficients {9_[}(00)} are still linear
in the data [ X (‘t,u) )], the knots Tr , and the local expansion orders
{m';} are highly nonlinear functions of the data.

The optimal total number of segments N* is also a parameter that
varies with each sample-function in the sample-based problems. It too
is a feature and is highly nonlinear in the data. Therefore the
resulting feature extractor is a nonlinear one.

Let K( N ) denote the total "cost of features" for the sample-based

nonlinear representations with N segments. Then

N
KM =6) ™+ G0+ W+ R e

=1
linear nonlinear nonlinear nonlinear
coefficients knot local number of
locations expansion segments
N orders
+*
KN =10 ) 5+ (m) N +(5n) -
.j =1
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The weights Y;) r,_, Q, (‘3 (all non-negative reals) have been
included to account for the fact that coefficients and knot locations
are real numbers whereas local expansion orders and the number of seg-
ments are (non-negative) integers. The "relative cost" of using real
vs. integer or linear vs. nonlinear features in the feature extraction
proc:ass can thus be accounted for by use of these weight factors.
The behavior of K (N) as a function of N will depend on the
problem at hand and on the choice of the error tolerance function.

x
The optimal number of segments, N , to use, from the point of view of

feature extraction, can be determined by searching for

N
. 4 *
K(N*) = Min K(N)=Min{r, 2 m+((r0INL+ (r-1)
4.79

Note that K(N) can be computed very easily at each stage of the
dynamic programming for the knots. The behavior of the (constrained)
feature-extractor as N increases can thus be tracked. The absolutely
minimum number of coefficients needed is one per segment, regardless of
the number of segments, if ez(t-l'tl) < E(ti,tz) for all t1<tz
and tL ,'tz € [O,T]. Therefore,

K(N) = (for 6 )N +(6,-1)
4.80

Suppose that there is an upper bound, Kmax , to the total cost

of features allowed. By virtue of equation 4.80.

K(N) > K, for N 2 Kooy ~(1=13)

(Torn+1,)

110



Thus the search for the minimum of K ( N) of equation 4,79

can be replaced by a finite search

K(N™) = Min{K(i), K@), -+, K<Imu)} 4.82

Kmax_ (fy- r.l)
where I;“ax is the smallest integer larger than .
fo+ r1+ r-{ /

Provided the dynamic programming for the knots is carried up to I;nax -
the optimal number of segments to use for representing x(tacd) can be

automatically determined.

The general behavior of }(( N) is depicted in Figure 4.2.

7 K(N) = (Y1) + (G-)

~—

I

H s . e ————— - ——— - - ———— — ——— — - ——— -

|
l
|
|
|
l
|
|
|

. L mu L
x
N
Pigure 4.2: Total Number of Features as a Function of the Number of

Segments for Nonlinear Feature Extraction,
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The K( N) curve can never lie below (f,+T1, + f)_)N + (G-—('l) :
It is conjectured that for most problems of interest and useful tolerance
functions, K(N) tends to (n+ﬂ+n§N +(Q“n) for
very large N . In any case, in practice, it is the behavior of K (N)
for small PJ that is important. This behavior is entirely problem
- * )

dependent. However the finite search for K ( N ) can easily be
performed together with the dynamic programming for the knots.

The case N =1 , again, corresponds to a global K-L expansion
over the 1- segment (the total interval) [ C))T' ]. The quantity

K1) -(n+n)
=)

is the total number of global K-L terms needed

to satisfy the local constraints specified by the error tolerance
function. Hence the global K-L is also a special case of these

optimal, nonlinear, sample-based representations.

4.6 Error Weighting for Improving Smoothness.

The segmented representations introduced in this chapter are

not necessarily continuous across knots. In other words

lin R(Tme,0) # Lim R(Te80) e
<0 >0

A way to control non-smoothness at knots is by penalizing the
actual representation error at knots. The estimates are then forced
to approach the same limiting value (the actual data point) on either

side of knots, as the penalty weights are increased.

112



Let the weighting functicn W(‘t) be given by

wit) = [1+A®]] 8 (t-T )+ 8(t-T))] T St<T;

4.84

where )\(’c\éo , a continuous function on [O,T ], is the penalty for
non-smooth behavior at time point t. The following convention for 6 -func-

tions will be followed

T
J &
T
The global cost of equation 4.7 now becomes:

N T, N-L .
I =€ Z [x(t,0) =K ()] dt + ZMTJVE[%GP)-*(GN)]
\.i:i J'zj,

Tj-t

F L AOEIXO@-REAT AN EIXT)-A (1]

4.85

4.86

This is the unweighted expected global cost plus the weighted variance

of the error at the knots. The expected error is zero everywhere by

construction of the process and the estimate [zero mean process x(t)-)
and unbiased estimate )/(\(t,') ]. Hence it is the variance at the knots
that is penalized.

The weighting function of equation 4.83 can be used to independently
control the smoothness at knots by an appropriate choice of A(t) As
A({)-)OO the optimal eigenfunctions will tend to delta functions centered
at the knots in order to pick out the data points X (T},w) exactly and

keepJ; Nfinite. For finite )\(t), the eigenfunctions and coefficients
4
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will be such as to increase accuracy of representations at knots.

Given A(‘t) the weighting function, W(t) , can be incorporated into
all phases of the optimization. In practice, the problem will be dis-
cretized so that the discrete S-function will replace the continuous
5-—function and no computational difficulties will arise.

The weighting function \N(t) of the L. representation problem is thus

2
determined by )\(t) and the optimal set of knots TT* This weighting
function, in turn, determines the optimal set of ensemble basis functions
{‘égt} (everything is actually co-determined via the dynamic programming) .
Controlling smoothness for the Chebyshev case will be achieved directly

via the local constraints. Since the global cost here is a pointwise cost,

estimation error at the knots is treated the same way as estimation error

over the segment intervals. Upper bounds to both can be specified using

the local constraints. The Lboapproach is again very desirable in practice,
this time from the point of view of controlling continuity across the knots.
An independent weighting function in the cost is unnecessary here since

the same effect can be obtained via the tolerance function.

4.7 Comparisons to Global K-L and Piecewise Polynomial Approximations.

It is worthwhile to compare the K-L expansion of Chapter 2, piece-
wise polynomial approximation of Chapter 3, and the optimally segmented
local K-L methods of this chapter of the basis of their conceptual and
fundamental differences. This is done in Table 4.1 for 10 relevant issues.
The principal advantage of the KL technique is smoothness and minimization
of glokal L2 cost for a fixed number of features. The methods of this
chapter are superior to the K-IL in every other respect and tc piecewise
polynomials in every respect. Piecewise polynomials, on the other hand,

are superior to the K-L in local adaptability and error control, and the
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fact that timing (dynamic) information is available in features. The K-L
is superior to piecewise polynomials in its use of ensemble information
and in its noise rejection capability and smoothness. The optimal methods
of this chapter attempt to exploit the advantages of both the K-L and
piecewise-polynomial methods, while minimizing the disadvantages, by
combin&ng them in a systematic way.

The general methods developed in this chapter reduce to the global K-L
or to piecewise polynomials as special limiting cases under specific
conditions. Piecewise polynomials are special cases when

1) Basis functions are fixed a priori

2) The orders of expansion are fixed a priori via the order of the

approximating polynomials.

3) Local constraints are not imposed.

4) Knots are fixed a priori in the case of fixed-knot piecewise

polynomials.

The K-L expansion is a special case when

1) Only l-segment is allowed (only two knots, at O and T).

2) Local constraints are not imposed.

3) The cost is restricted to be a weighted ];2 norm.

4) The order of the expansion is fixed a priori.

It is also of interest to rank the piecewise polynomial (P.P) and
optimally segmented local K-L (OSKL) methods according to the global

expected error for a fixed number of features. The following rankings

will clearly hold "ceteris paribus", for any measure of the global error

115



(disregarding the number of features).

1) Fixed-knot OSKL no worse than fixed-knot P.P.

2) Variable-knot OSKL no worse than fixed-knot OSKL.

3) Variable-knot P.P. no worse than fixed-knot P.P.

4) Variable~knot OSKL no worse than fixed-knot P.P.

(1) holds since the P.P. case is a special case of the OSKL case.

(2) and (3) hold since the fixed-knot case is a special case of the
variable-knot case. (4) holds because of (1) and (2). The only remaining
comparisons are:

5) Variable-knot P.P. vs. fixed-knot OSKL.

6) Variable-knot OSKL vs. variable-knot P.P.

It is in general difficult to rank comparisons (5) and (6).

For (5) the error bounds for variable-knot P.P. of Section 3.4 can be
tried and compared to the precomputable expected error rate for the fixed-
knot OSKL. This approach may or may not provide a ranking depending on
the tightness of the bounds of section 3.4. For (6) the ranking should

be obtained via experience with the data to be approximated,

The global K-L of chapter 2 is better than all fixed-knot approaches
(since they are linear) for a fixed number of features if the Lz-norm is
used. For other norms and for variable-knot methods the KL may be inferior
even for global error minimization for a fixed number of features, depending

on the process to be approximated.
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Issue K-L P.P. P.P. OSKL OSKL |
Fixed-Knots Variable Knots Fixed-Kncts Variable Knots
i
Type of Feature Linear Linear Non-Linear Linear Non-linear |
Extractor ]
i
Features Coefficients Coefficients Coefficients, Coefficients Coefficients, I
Knots Knots, Expansion |
Orders, Numkber of !
Segments \
Cost Function Global Arbitrary Arbitrary Local Arbitrary
Weighted L, weighted L, :
]
) . |
Optimal Basis Func- Knots over Knots for Knots and Knots for Each
Aspects tions over Ensemble Each Sample Basis Func- Sample, Basis
Ensemble tions over Functions over
Ensemble Ensemble
(Expansion Crders
and Number of t
Segments) {
i
{
Use of Ensemble
SEatisties Yes Yes No Yes Yes
(A Priori H
Information) |
Adaptability
to''Individual No Variable Yes Yes Yes
Sample-Func-
tions
Possibility
for Local .
Control of No Variable Yes Yes Yes
Error
Noise Y N
Rejection a9 @ Ro Yes Yes
Smoothness Yes Variable Variable Variable Variable but !
but generally generally good '
good !
]
On-Line Fast . : :
Computation as Fast Medium Fast Medium-to-Fast i
with Suboptimal i
Schemes l
_J
Table 4.1

Comparison of K-L, P.P., and OSKL Techniques
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CHAPTER 5

APPLICATION TC APPROXIMATION OF CARDIOGRAMS

5.1 Introduction

The global K-L techniques of Chapter 2, the piecewise polynomial
techniques (P.P.) of Chapter 3, and the optimally segmented local
K-L techniques (OSKL) of Chapter 4 have all been applied to the approxi-
mation of cardiographic waveforms.

Cardiography generally deals with the potential différences
resulting from the activity of the heart and measured on the surface
of the body. The mechanical events of the heart cycle are initiated and
accompanied by electrical events. This relationship is exploited by
physicians to assess the physiological condition of the heart. There
is a considerable body of empirical knowledge that relates the heart's
physical condition with potential differences measured by strategically
placed sensor leads on the human torso. One of the standard recordings used
for clinical diagnosis consists of three time signals known as the vector-
cardiogram (VCG) [l14]. BAn idealized plot of the potential difference
between two electrodes for the duration of a complete heart cycle is
given in Figure 5.1. For a fuller discussion of the generation of the
electrical fields and cardiography in general the reader is referred to
standard texts [44,45].

The routine analysis of cardiograms is costly in terms of a trained
physician's time. Starting in the late 1950's there have been numerous

efforts to automate the classification of cardiograms into either normal
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Figure 5.1: Idealized Plot of a Heart Cycle

or various abnormal groups. With most of these techniques, the effort

has been to abstract from the waveforms those criteria which physicians
have empirically correlated with important aspects of the heart's
functioning. These computerized techniques are essentialiy designed to
mimic the cardiographer. However, the imprecise nature of present clinical
diagnosis techniques has been illustrated by a study in which 125 patients
were analyzed twice indpendently by nine experienced interpreters. The
results were consistent on the average in only 73% of the cases [46]. This
is both an argument for automatic classification, and a warning that
diagnostic rules based on imitating the cardiographer are not very reliable

or consistent.
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Although interest in cycle to cycle variation in cardiograms is
increasing, most attention to date has been focused on morphological
analysis of a single beat, usually a "typical" or average beat taken from
a recording. The approximation and analysis here is directed to the
morphology of the cardiograms rather than their rhythm characteristics.

Any automated scheme for cardiographic classification must involve
basically three steps:

l. Noise, artificat and "bad data" removal;

2. Reduction of the clean typical data;

3. Design of an algorithm for classification.

The study here is concerned with the second step above with respect to

the VCG problem. This step represents feature extraction that the VCG must
undergo prior to pattern recognition. The pattern recognition problem itself
is not investigated here. For studies on the classification of cardiograms
using some of the techniques developed here see [6,7,8].

As discussed in section 1.2, in the conservative approach to feature
extraction considered here, the objective is to minimize approximation
error, over a specified ensemble of records (the data-base), of the
reconstructed estimates of each member of the ensemble. Clearly, if all
members of an appropriately chosen ensemble can be accurately reconstructed
(using visual inspection as a criterion) from lower-dimensional estimates,
then diagnostic information will have been retained.

In previous works [6,7] the K-L expansion and the P.P. methods
have been used on VCG data with promising results. The objective of

these efforts has been to perform a series of extensive trade-off studies
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on a data base of 936 patients carefully selected and supplied by the
U.S. Air Force School of Aerospace Medicine (USAFSAM). As a result of
these studies a prototype VCG Interpretation System which is operational
on an IBM/360 computer at USAFSAM has been developed [6].

The original analog VCG data for each patient is sampled at 250 Hz
and processed to remove baseline noise and to produce a typical heartbeat
wave by averaging up to about 30 heartbeat cycles synchronized at the
peaks of the R-waves for averaging. This preprocessing of VCG's is docu-
mented more extensively in [13,6]. The resulting discrete data consists
of a total of 600 samples for each patient: 200 samples per lead for the

3-lead VCG recorded using a Frank-lead system [45].

5.2 Karhunen-Loéve Techniques

Extensive analyses using K-L techniques on the 936 patient data base
are reported in [6]. Various factors such as the effects of sampling
rate, of using combined vs. separate lead expansions, and of using a
weighting factor in the P wave region to reduce the reconstruction errors
in that region are studied.

Experimental results indicate that K-L reconstructions require up
to 60 terms in the expansion (20 vectors per lead separate, or 60 vectors
combined expansion) to approach a generally tolerable level of accuracy
from the point of view of a cardiographer. However, even with 60 global
K-L features, the 5 or more worst case reconstructions over the 936 patient
data-base may not be acceptable. Furthermore using a weighting over the

P wave region causes the T wave reconstructions to deteriorate.
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Figure 5.2: Ensemble Mean VCG waveforms for Data-Bise

of 936 patients.
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Figure 5.4: Convergence of 60-th Order Combined-Lead

Global K-L as a Function of the Order of Expansion.
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Figure 5.5: 60-th Order Ccmbined-Lead K-L Reconstructions for

Patients 9498 (in "Worst" Class) and 8324 (in First 10).
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On the other hand, most of the patients in the ensemble are recon-
structed to within visual accuracy by using 20 vectors per lead (60 total
features). The data compression is from 600 samples to 60 features, or
10 to 1 with the 60-th order K-L.

In Figure 5.2 the ensemble mean VCG waveforms over the data base
of 936 patients are shown. Figure 5.3 depicts the first two normalized
eigenvectors of the 60th order separate lead K-L expansion for lead 2.

The percentage of residual expected error energy not captured by the
expansion is plotted as a function of the order of the expansion in

Figure 5.4. (Note that this is the percentage of expected energy of the
deviation from the mean). The reconstructions of VCG lead 2 and lead 3 data
are shown for patients 9498 and 8324 respectively in Figure 5.5. Patient
9498 is among the five patients of the whole data-base for which the

60-th order K-L expansion yields the largest absolute pointwise error
uhocost). Patient 8324 is a typical case. All reconstruction plots depict
the original and the reconstructed waveforms superposed on each other for
comparison. The location of the largest pointwise absolute error is indicated
by a pointer and the actual error at that point is printed next to the

label "worst". The L_ cost incurred is also shown next to the label "cost".

2

The vertical axes are all scaled in milivolts (mv).

5.3 Piecewise Polynomial Techniques

Extensive analyses using P.P. techniques on 60 of the 936 patients

are reported in [6]. Several variants of P.P. were tried:
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1) Linear (L): This metiiod uses a linear segmented approximation

with the estimate constrained to match the data exactly at the knots as

discussed in section 3.3.

2) OQuadratic (Q): This method uses a quadratic approximation with

the estimate constrained to match the data exactly at the knots and at the
central sample points between knots: i.e., over each segment the estimate
is obtained as the least squares constrained fit of a quadratic to the
data.

3) Linear Envelope (LE): This method uses knots computed to minimize

approximation error over the vector magnitude (envelope) of the 3-lead VCG
data. The same knot locations are then used on each of the separate leads.
In all the methods presented here the optimal knot locations were
found for each individual VCG record separafely (the sample-based problem,
[‘= Odr ), with the number of knots fixed a priori. Fixing knots on an
ensemble basis yielded results which were generally inferior and unaccept-
able. Therefore the ensemble-based problem has not been pursued further.
Table 5.1 shows the number of features corresponding to several
different numbers of knots. The number of features is the total number
of parameter values per lead which must be stored to reconstruct the wave-
form approximations. The linear features (coefficients) and the nonlinear
features (knot locations) are given equal weight in computing the total
number of features here. As discussed for the OSKL approach later, the
nonlinear features do not require as much storage space as the linear ones
because they are unsigned integer parameters while linear features are signed
real parameters. In the P.P. data presented in Table 5.1, this is not

accounted for. The dynamic programming for the knot locations is performed
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P.P. Approximation Method Used

Number of
Interior Knots L Q LE

7 16 24 11.33
11 24 36 16.67
14 30 20.67
15 32 22
22 46 31.33

Table 5.1: Number of Features vs. Number of
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on the full set of 200 possible knot locations for each lead and no

suboptimal approaches are used to reduce computations.
Reconstructions for patients 9498 and 8329 using P.P. techniques

are shown in Figure 5.6. The optimal knot locations are marked above

the time axis and the P.P. variant used is also indicated.

5.4 Optimally Segmented Karhunen-Loeve Technigue

The OSKL methods developed in Chapter 4 were applied to the cardiogram
problem. Lz—norm ensemble-based, and Chebyshev norm sample-based formula-
tions were tried. In all cases, due to the limited on-line memory avail-
able on the computer used for the OSKL technique (a CDC 6400), the
original data's sampling rate was halved yielding data of 100 samples per
lead, or 300 samples in total per patient, instead of the 600 used for the
K-L and P.P. techniques. The computational experience, with this approach,
however, indicates that using the original sampling rate is entirely
feasible on a computer with larger memory, say an IBM 360, as used for the
K-L and P.P. techniques. For purposes of the dynamic programming for the
knot locations, a suboptimal approach was used. The total interval, [O,T]
in continuous time, or [1,100] in the discrete case, was partitioned into
10 equal regions with 9 interior knots. The only knots considered for the
optimization over knot locations were the 9 equally spaced interior knots.
This approach, although clearly suboptimal, still yielded successful results
that can be compared with the previous K-L and P-P techniques. Ideally
the grid of allowed knots should have a spacing which is within the resolu-
tion of the QRS complex. The computational experience gained with the

suboptimal scheme presented here indicates that it is entirely feasible
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to take a grid twice as dense as the current one (20 regions, 19 interior
knots). This has not been pursued here since the results with the coarse
grid are sufficient to demonstrate the desirable aspects of the OSKL
techniques.

With the suboptimal scheme using a maximum of 9 interior knots for
segmentation, there are 55 possible regions to consider for the dynamic
programming. Local K-L basis vectors over each of the 55 regions are first
determined. The local expansion orders are limited to a ﬁaximum of 10.
(Note that over the shortest regions between consecutive grid points,
there are only 10 time samples). Each lead of the VCG is considered
separately, again due to memory limitations in the CDC 6400. A combined
lead vector approach, as with the global K-L, is entirely feasible on a
large computer.

Several studies were made corresponding to the various formulations
of Chapter 4. Methods (1) and (2) described below correspond to the ensemble
based problem, I?:-SD., with the L. norm. Methods (3) and (4) correspond

2
to the sample-based problem,F: (.«JP , with the L, norm.

1) Fixed Knots, Fixed Uniform Local Orders of Expansion (FKULO) :

The knot locations are fixed for all patients and are optimal with respect
to the entire-data base. The local expansion orders are fixed in all
cases to be 5 (mj = 5). The total number of segments is fixed to be 4

(N = 4). The number of segments N = 4 is chosen in view of the behavior
of the Lz-ensemble cost as a function of the number of segments shown in

Figure 5.7. It can be seen that the ensemble cost reduces slowly for N > 4.

The four resulting fixed segments correspond roughly, in order of importance,
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to the QRS, ST, T, and P waves. Note that the actual segmented modes of
the data could be better captured if a finer grid was allowed for the
dynamic programming. The orders of expansion were fixed to yield 20
features per lead once the number of segments was selected. Typical

reconstructions are shown in Figure 5.8.

2) Fixed Knots, Fixed Non-Uniform Local Oxders of Expansion (FKNLO) :

The knots are again fixed for the entire data base. The local orders of
expansion are fixed but determined to satisfy local L, constraints on

an ensemble basis. The local constraints are chosen such that 2.8% of the
total expected energy of the deviation of the sample waveforms from the mean
is uniformly distributed over the total interval. Here the local error

tolerance function is

-+
tot) (.87) |R(tE)dL
E(tu‘t.z) = |2 (2'8/9) (’ 5.1
T o
where _ 2
R(tt)= € [xo-%®]
5.2
In the discrete case considered
't "ti o, t
§t,t) = |2t (2.e%)tr R
4100 5.3

where R is the 100x100 covariance matrix for the random vector X. A

plot of the expected L_ global error versus the number of segments is

2
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Optimal
Knot Locations

Required Local
Expansion Orders

Total Number
of Features

T =0
T, = 40
T, = 50
T, = 60
T, = 70
T, = 80
T = 90
T, = 100

m = 1
m, = 5
m3 =5
m, = 1
m5 = 2
m6 = 2
m, = 1

T
.=1?

Table 5.2: FKNLO Parameters

for Expected Error

not Exceeding 2.8% of Total Expected

Energy in Process Deviation from the Norm.
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shown in Figure 5.9. The total number of features required is plotted in
Figure 5.10. It can be seen that the minimum expected Lz-error is achieved
for 7 segments. The local expansion orders required to meet the local con-
straints and the optimal knot locations are given in Table 5.2. The num-

ber of required features is 17 to capture 97.2% of the total expected energy
in the deviation of the sample-functions from the mean. Furthermore the
expected error is spread uniformly throughout the interval -- a result diffi-

cult to achieve with a weighted global K-L approach. Typical reconstructions

are shown in Figure 5.11.

3) Variable Knots, Fixed Uniform Local Orders of Expansion (VKFULO): The

optimal knots are determined using an Ly cost for each patient individu-
ally. The local expansion orders are fixed to be 5 per segment. It is

again observed that using 4 segments is often needed and also enough for most
patients analyzed. Therefore N is set to 4, hence yielding a total of 23
features composed of 20 linear local K-L coefficients and 3 nonlinear interior
knot locations. The knot locations, being integers, require much less stor-
age space than K-L coefficients as discussed in section 5.3. 1In fact, since
knot locations are positive integers between 1 and 9 in this suboptimal
scheme, and K-L coefficients are signed real numbers with at least four

or five significant digits, the feature cost of knots is at least 4 times
smaller than the feature cost of a K-L coefficient (1 significant digit

with no sign, vs. 4 significant digits with a sign). Thus if a K-L coeffi-
cient is counted as a unit feature, then a knot location should be counted,
with a conservative approach, as 1/4th of a feature. Then the total number
of effective features is only about 20.75 rather than 23 with this method.

Typical reconstructions are shown in Figure 5,12.
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4) Vvariable Knots, Variable Local Expansion Orders, Variable Number

of Segments (VKLON): In this method every parameter, other than the basis

functions, is determined optimally for each patient individually using an
L oo coOst.

Since local expansion orders and the total number of segments are
positive integers that do not exceed 10, these nonlinear features also carry

storage costs not exceeding 1/4th that for a K-L coefficient.

The local Lg, constraints tried here have been chosen to be uniform
over the whole interval. This way the pointwise global and local error
is controlled uniformly. 1In table 5.3, results are shown for a uniform
pointwise error constraint of .02 for the first ten patients of the
data base. Extensive comparisons of this method with the previous fixed
and variable knot OSKL methods have shown that this variant, where every
parameter is allowed to adapt to the VCG waveform approximated, yields in
all cases a lower L, cost with a lower total number of effective

features. Typical reconstructions are shown in Figure 5.13.

5.5 Comparison of Approximation Techniques

A comparison of the global K-L, P.P., and OSKL methods for 20 of the
936 patients is shown in Table 5.4. The first five patients indicated by
W yield the worst pointwise absolute approximation errors over the data
base with a 60th order combined-lead global K-L. The next five patients
indicated by a B yield the lowest pointwise absolute errors, The remaining
patients are the first ten patients of the data-base which is not ordered
in any particular way. The lead used for the comparisons indicated by the
lead number is chosen to be the lead for which the global 60th order K-L

pointwise absolute error is largest.
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Lead 3 1_-Cost Number of Features
Patient Number Segments Linear Nonlinear Total
8322 .01946 3 13 6 14.5
8323 .01981 2 16 4 17
8324 .01953 2 10 4 11
8325 .01979 3 18 §. 19.5
8327 .01858 4 23 8 25
8328 .01762 3 23 6 24.5
8329 .01677 2 16 4 17
8330 .01566 4 24 8 26
8331 .01517 4 26 8 28
8334 .01556 4 24 8 26
Table 5.3: VKLON Results for Uniform L _ Error

10 Patients.
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Of the various P.P. methods studied, the one yielding the lowest
error is shown together with the number of corresponding features per lead.
For the last 7 patients only the L and Q methods were tried as indicated.
The OSKL method used for comparison is variant (4) where every parameter
is allowed to adapt to the waveforms. The optimal number of segments N,
the total number of linear features L (coeffficients) and the total number

of nonlinear features NL (knot locations, local expansion orders and N)

are displayed separately. Finally a total number of effective features
TOT is computed using TOT = L + NL/4. 1In the OSKL methods, the point-
wise absolute error constraints are set to achieve the error performance
of the global K-L. The resulting total number of features for OSKL is
then compared to 20 which is the number of features per lead used in the
K-L method. For the first five patients, the P.P. method performs better
than the global K-L and therefore the OSKL approach is compared to the P.P.
method separately in Table 5.5 for these patients by setting the point-
wise absolute error constraints in the OSKL method to the level of error
achieved by the relevant P.P. method. Finally, average wdrst pointwise
absolute errors and average total number of features per lead are computed
for all methods. Also an average of the cost per feature for each method
is obtained by averaging the ratios of error to number of features used
over the 20 patients studied. This number is indicative of the amount of
features used in achieving a certain error level.

Table 5.4 indicates that, except for patients 8324 and 8327, the
OSKL approach is clearly superior to the global K-L since it achieves
lower error and uses fewer effective features. For these two patients,
the costs are lower with OSKL but the total numbers of features used are

23 and 23.5 vs. 20 for the global K-L. Hence neither method has a distinct
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advantage in those two cases. For all but the first five patients (the W
class) the OSKL technique is distinctly superior to the P.P. technique

as well. The average numbers indicate the general superiority of the

OSKL technique: for an average cost of .045 the P.P. uses an average cof
22.7 features, for an average cost of .044 the K-L used 20 features, whereas
for an average cost of .040 the OSKL uses an average of 16.7 features.

The average cost per feature is also higher for the OSKL technique
than the other techniques, indicating that relatively similar costs were
achieved with fewer features on the average: in some sense, there is
more "information" per feature with the OSKL approach. The most striking
improvements of the OSKL method over the global K-L are for patients which
are at the extremes of the performance range of the global K-L; e.g.
patients 9426 and 9168 which fall respectively among the five worst and the
five best category. This indicates that the OSKL method tends to out-
perform the K-L in cases for which K-L does poorly and cases for which
it performs best.

In Table 5.5, the OSKL method is compared to the P.P. method for the
first five patients. It appears that for roughly equivalent L,o -cests
the P.P. method uses fewer features than the OSKL method for these patients.
It is interesting to note that these patients are the ones that yield the
five worst pointwise errors over the data base of 936 patients for the
K-L method. The OSKL technique improves greatly over the K-L for these
patients and does almost as well és the P.P. technique for which, however,
these five patients are not essentially different than the rest since no

use of ensemble information is made in the P.P. technique. The OSXL retains
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some of its K-L character by performing more poorly for these patients
than a ncon-statistical deterministic curve-fitting apprcach such as the
P.P. method. Nevertheless the OSKL's performance is not far from that of
the P.P. technique even for these worst case patients. It should be
noted that the OSKL approximations are much smoother than P.P. approxi-
mations regardless of the pointwise errors. Also the optimal of three
different P.P. techniques is compared to OSKL and the OSKL method may be
improved when a finer grid is used in the dynamic programming. A further
consideration is that in a combined-lead OSKL scheme the number of fea-
tures required for 3 leads may not be three times the number required
for each lead separately just as is the case with the LE vs. L P.P.
cases.

The computaticnal requirements of the various techniques developed
here are shown in Table 5.6. It can be seen that the OSKL technique with
the suboptimal scheme used here is a practicable and superior method for

on-line application to the cardiogram approximation and analysis problem.
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CHAPTER 6

CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

In this thesis, a new technique, the optimally segmented K-L method
for the approximation and analysis of stochastic processes, was developed.
This approximation method attempts to unify the desirable aspects of
the Karhunen-Loéve expansion and variable knot piecewise polynomial
approximation. The novel approach is formulated such that expansion
functions, knot locations, the total number of segments, and local
expansion orders are selected on an optimal basis. Furthermore, the
approximations are flexible enough to allow imposition of local error con-
straints and use of arbitrary norms. The formulation of the approximation
problem can be considered on an ensemble or sample-function basis such that
various possibilities exist with respect to use of statistical information
on the stochastic process in the approximations. Finally, this new approxi-
mation technique can be derived using a finite-data base of realizations
of the stochastic process being analyzed. Some statistical guestions
related to the convergence of finite-data base K-L methods were investigated
and qualitative results as well as results amenable to numerical techniques
for describing the asymptotic behavior of expected errors for truncated
expansions were obtained.

The OSKL method was then applied to the feature extraction problem
for vectorcardiograms and shown to yield generally better results than
either the global K-L expansion or piecewise polynomial approximation from

the point of view of data compression. The nonlinear features that resulted
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may also capture important timing and phase information for the cardio-
graphic problem that cannot be extracted using only linear methods. The
information content of the OSKL features for the cardiogram problem is an
important topic that needs thorough investigatiocn.

Some suggestions for further research in this field are listed
below:

1) A rigorous theoretical error analysis for the OSKL approach
including practically useful error bounds should be devgloped. It is
conjectured that the OSKL approach is superior to many currently available
techniques for approximating process realizations for a large class of
stochastic processes.

2) The nonlinear features are essentially different from the linear
ones. An information-theoretic approach to the feature extraction problem
in which nonlinear features are allowed should be investigated. A theo-
retical study of the information content of nonlinear features would be
invaluable.

3) The classification part of the pattern recognition problem must
be reconsidered if the OSKL method is used for feature extraction. The
feature space, and clustering techniques in this new feature space, must
be studied. Hierarchical schemes may have to be developed for dealing
with the nonlinear features.

4) The OSKL approach may find application in some central problems
of systems science such as system identification and reduced-order fil-
tering. In problems where a minimal state space must be obtained from
input-output data, the OSKL approach may yield a systematic approcach and

allow flexibility for constraint imposition.
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5) From a practical and theoretical point of view it would be
desirable to develop efficient suboptimal schemes tc determine knot
locations causally from the data. Alternatively it may be possible to
devise a suboptimal dynamic programming algorithm with reduced computational
requirements. Also developing parallel processing implementation for OSKL
may be.practically important.

6) Finally, the application of the OSKL approach to the study of
other physical data such as seismic waves, economic time series, or

brain waves may provide new insights into the nature of the physical

processes underlying the observed associated phenomena.
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