FINITE MEMORY ESTIMATION AND CONTROL

OF FINITE PROBABILISTIC SYSTEMS

Ъy

Loren Kerry Platzman

S.B., Massachusetts Institute of Technology

(1972)

S.M., Massachusetts Institute of Technology

(1973)

E.E., Massachusetts Institute of Technology

(1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1977

· · · · · · · · · · ·

Signature of Author Department of Electrical Engineering and Computer Science, January 13, 1977

Thesis Co-supervisor

Certified by .

Accepted by (

Certified by .

Thesis Co-supervisor

Chairman, Departmental Committee on Graduate Students

-2-

FINITE MEMORY ESTIMATION AND CONTROL

OF FINITE PROBABILISTIC SYSTEMS

by

Loren Kerry Platzman

Submitted to the Department of Electrical Engineering and Computer Science on January 13, 1977, in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

A finite probabilistic system (FPS) is a stationary discrete-time controlled stochastic dynamical process, having finite input, output, and (internal) state sets. The partially-observable Markov decision process is an example of such a system. FPS formulations provide a convenient framework for the study of problems of state estimation, statistical decision, or control, where state information is available only through a finite memoryless channel, and observation dynamics may depend on the inputs selected.

Notions of reachability and detectability in FPS's (similar to controllability and observability in linear systems) are made precise. It is shown that every FPS can be reduced to components that are either reachable and detectable, or transient, or null-recurrent.

It is well known that the information vector (whose i-th entry is the <u>a posteriori</u> probability that the system is in state i) is a sufficient statistic (for the estimation of future dynamics given past inputs and outputs). A contraction property of the information vector transition function is exploited to obtain procedures for ε -optimal (arbitrarily close) approximation of the information vector by a deterministic time-invariant finite-memory observer. Each observer state corresponds to a particular configuration of most recent input-output pairs. The average error achieved by such an approximation is bounded by the expression $(m/m_0)^{-\tau}$, where m₀ and τ are parameters associated with the observed system, and m is the number of observer states.

Control problems, in which the average reward is maximized over a discounted or undiscounted infinite horizon, may be solved by an iterative procedure which has been given the name perceptive dynamic programming. Successively weaker assumptions that the controller "perceives" unavailable state values transform the problem into a sequence of formulations which may be solved by dynamic programming. Each solution obtained in this manner is used to construct a feasible controller formulation, taking the form of a deterministic timeinvariant finite-state automaton. Monotone geometrically convergent bounds, containing both the supremum feasible performance and that of the current design, are also obtained. Computation may be terminated when these bounds become sufficiently close, or when the number of controller states becomes excessively large. Although computing a solution by perceptive dynamic programming may require considerable time and storage, both are roughly proportional to the number of controller states allowed in the final iteration; thus the cost of controller design reflects the cost of controller implementation.

This procedure was applied to idealized problems of machine maintenance and computer communication, both of which had been investigated by other researchers. The first problem was solved exactly; a design suitable close to the optimum was obtained for the second problem.

NAME AND TITLE OF THESIS CO-SUPERVISORS:

Alvin Drake Professor of Systems Science and Engineering

Sanjoy Mitter Professor of Electrical Engineering

TABLE OF CONTENTS

Page	e
ABSTRACT	
TABLE OF CONTENTS 4	
TABLE OF FIGURES. 8	
ACKNOWLEDGEMENTS	
NOTATIONS	
CHAPTER I PRELIMINARIES	
1. Introduction	
2. The Model	
a. Representation of the Plant	
b. Alternate Representations	
c. Some Important Classes of FPS's	
d. Specification of the Input Process	
e. The Information Vector	
f. Rewards and Performance Indices	
g. Classification of Problems	
3. Illustration of the Solution Procedure	
a. Problem Formulation	
b. Solution Procedure	
c. Discussion	
d. Summary	

-4-

- -91

, **4** 11

	Page	5
4.	Historical Perspective	
5.	Outline of Original Contributions	
	a. Ill-posedness of Certain Undiscounted Infinite-horizon Problems	
	b. Sufficient Conditions for Well-posedness 48	
	c. A Bound on the Value of Information	
	d. Metrics and Contractions	
	e. Existence of ϵ -Optimal Controllers	
	f. Feedback Realization of ϵ -Optimal Controllers 56	
6.	Organization of the Report	
CHAPTER	II ANALYSIS OF FINITE PROBABILISTIC SYSTEMS 62	
7.	Input-output Words	
8.	Memory Sets and Memory States	
9.	Equivalence and Augmentation	
10.	Classification of Problems	
11.	Connectivity	
12.	Metrics	
	a. Definition of the Metrics	
	b. Discussion	
	c. Some Properties of Metric D	
	d. Continuity of Convex Functions	
13.	Contraction Properties of T	

, 18

i

			0
14.	Dete	ectability	105
	a.	Preview	105
	Ъ.	Strong Subrectangularity	106
	c.	Weak Subrectangularity	109
	d.	Strong Detectability	111
	e.	Weak Detectability	114
15.	Deco	omposition of a Free FPS into Detectable Parts	118
16.	Sto	chastic Realization of a Free FPS	121
CHAPTER	III	STRUCTURE OF OPTIMAL CONTROLLERS	124
17.	Fin	ite-horizon Problems	124
18.	Stat	te-observable Problems	128
19.	Exis Prol	stence of a Solution in General Infinite-horizon	134
20.	An A	Alternate Formulation for Irregular Problems	141
CHAPTER	IV	COMPUTATION OF E-OPTIMAL CONTROLLERS	145
21.	Per	ceptive Dynamic Programming	145
	a.	The Basic Algorithm	145
	Ъ.	Discussion	148
	c.	Pseudo-perceptive Dynamic Programming	149
	d.	Recursive Computation of the Memory Sets	150
	e.	Minimization of Memory Size by Selective Pseudo-perception	151
	f.	Initialization Procedures	151

-6-

•**

يشدم

100

, aire

.....

Page

		Page
22.	A Computational Algorithm	. 153
23.	Computational Results	. 158
	a. The Machine Maintenance and Repair Problem	158
	b. A Computer Communication Problem	189
CHAPTER	V CONCLUSIONS	192
BIBLIOGR	АРНҮ	. 196
APPENDIX	A Proof of Theorem 19.3	201
	a. Preliminaries	. 201
	b. A Transformation in W	. 202
	c. A Sequence in V	. 205
	d. Construction of a Convergent Subsequence	209
	e. Summary and Proof of (19.3)	. 213
APPENDIX	B Proof of Theorem 21.6	214
	a. Proof of Part (a)	. 214
	b. A Bound on Perceptive Values	217
	c. A Bound on Pseudo-perceptive Deterioration	. 222
	d. Proof of Part (b)	. 225
APPENDIX	C Listing of the Computer Program	228
SYMBOL T	ABLE	. 259
GLOSSARY		. 263

-7-

TABLE OF FIGURES

	Page
2-1	A Markov Chain
2-2	A Markov Decision Process
2-3	A Partially-observable Markov Decision Process 19
2-4	A Finite Probabilistic System
5-1	Contractions on the Unit Simplex
5-2	Geometric Interpretation of Performance Increase Due to Perception
5-3	Geometric Interpretation of Performance Decrease Due to Pseudo-perception
8-1	A Memory Tree

-8-

-

i

ACKNOWLEDGEMENTS

This research, initiated in my senior year, grew out of an attempt to define the concept of "control in the steady-state" in systems that are neither state-observable nor linear-quadratic-Gaussian. Starting with the simplest such system, which has two inputs, two outputs, and two states, and guided by the adage "that which can be done for two can be done for N," I found myself confronted with a finite probabilistic system. The final report clearly shows the influence of four outstanding educators at MIT who took an early interest in the work and in time formed my doctoral thesis committee, each concentrating on a distinct aspect of the research (as indicated below): co-supervisors Alvin Drake (probabilistic models in applied operations reserach) and Sanjoy Mitter (mathematical system theory), and readers Michael Athans (reduced-order compensator design) and Amedeo Odoni (bounds on suboptimal performance).

In early stages of the research, I also benefited from conversations with Dimitri Bertsekas, Harold Kushner, Georgio Picci, Alan Willsky and Hans Witsenhausen. The doctoral dissertation of Edward Sondik was of invaluable assistance to me. Adrian Segal suggested the application of FPS decision analysis to a slotted ALOHA problem; further advice was provided by Simon Lam and Eberhardt Wunderlicht. The "value of information" interpretation of certain bounds was contributed by James Yee.

-9-

I particularly wish to thank Paul Schweitzer, who read a great deal of a later draft and offered many comments that resulted in improved clarity of presentation in the final report. Additional editorial assistance was obtained from Alvin Drake, Michael Loui, and Kathleen Platzman.

Computations were performed at the MIT Information Processing Center. The illustrations were drafted by Arthur Giordani. The report was typed with superb efficiency by Annie Cooper.

This research was supported at its inception by a Research Traineeship, with funds provided by the Alfred P. Sloan foundation. I am especially grateful for that opportunity to pursue an unorthodox line of research with unqualified financial support. Further support was later provided by the Department of Electrical Engineering and Computer Science (in the form of a Teaching Assistantship), the Air Force Office of Sponsored Research (under Grant 72-2273), and my family.

Finally, I owe a great debt of gratitude to Michael Athans, who as my undergraduate advisor made it possible for me to enter graduate school at MIT, and a greater debt to Alvin Drake, who as chairman of my Graduate Area Examination Committee and advisor in many other matters made it possible for me eventually to leave. The greatest debt of gratitude goes to my wife Kathy, who advised me in all matters not covered by Al Drake, willingly shared the frustrations and exaltations of my graduate career, and afforded me the opportunity to do the same with respect to hers.

-10-

-11-NOTATIONS

If A and B are sets, then A-B is the set of elements in A that are not contained in B. #A is the number of elements in A. B^{A} is the set of mappings from A to B. 2^{A} is the set of subsets of A. Ø is the null set.

<a,b> is the set of integers i satisfying a<i
b. The sequence
{A_a, A_{a+1}, ..., A_{b-1}, A_b} is denoted {A_k}_{k \in <a,b>}. a the denotes integer
quotient rounded down, i.e. the integer q of largest magnitude such that $|bq| \leq |a|$ and sgn(bq) = sgn(a). $\binom{n}{k_{\ell}} = \frac{n!}{k! (n-k)!}$ is the binomial
coefficient for n items taken k at a time.

[a,b] is the set of real numbers x satisfying $a \le x \le b$; similarly [a,b) =[a,b]-{b}. (a)⁺ = max(a,0) and (a)⁻ = min(a,0); clearly a = (a)⁺ + (a)⁻.

 R_N denotes the Euclidean space of column N-vectors. A row vector π is <u>substochastic</u> if its entries are all nonnegative and sum to a quantity not exceeding unity; it is <u>stochastic</u> if it is substochastic and the sum of its entries is exactly one. Π_N and $\tilde{\Pi}_N$ denote the sets of stochastic and substochastic row N-vectors, respectively. A square matrix is stochastic (substochastic) if each of its rows is a stochastic (substochastic) vector. v_i denotes the ith entry of vector v; similarly, P_{ij} is the ijth entry of matrix P, and $row_i[P]$ is the row vector whose ij^{th} entry is P_{ij} . The superscript "T" denotes transpose. e^i is the "unit" vector whose ith entry is unity and whose remaining entries equal zero; 0 is a vector of zeroes and 1 is a vector whose every entry equals unity; the dimension and inclination (row or column) of e^i , 0, and 1, are determined by context. The usual rules of matrix algebra will be observed; thus if $\pi \epsilon \Pi_N$ and $q \epsilon R_N^{},$ then the quantity πq is a scalar.

If $x \in \mathbb{R}_N$, then $|x| = \sum_{i=1}^N |x_i|$. If $x, y \in \mathbb{R}_N$, then x < y is understood to imply $x_i < y_i$, $\forall i \in <1, N>$, and x < y implies $x_i < y_i$, $\forall i \in <1, N>$.

CHAPTER I

-13-

PRELIMINARIES

1. Introduction

This dissertation introduces concepts and associated computational procedures that are applicable to a mathematical problem arising in the context of Operations Research and Stochastic Control. Briefly stated, the problem is to design a strategy for real-time decision-making on the basis of imperfect (state) information and finite memory. The <u>plant</u> (i.e. the object to be controlled) is modelled as a <u>finite probabilistic</u> <u>system</u> (FPS) or stationary discrete-time finite-input finite-output finite-state controlled stochastic process, a generalization of the partially-observed Markov decision model initiated by Drake (1962), which itself generalizes the Markov decision model of Bellman (1957a).

An engineering problem which might be tackled by the methods espoused in this dissertation is the following:

(1.1) <u>Machine Maintenance and Repair Problem (Scenario)</u>. A factory contains a large number of identical machines, each of which may require overhaul from time to time. A repairman maintains a "status report" for each machine and effects the overhauls. Unfortunately, a lengthy inspection procedure must be performed in order to determine whether or not a particular machine is actually in need of an overhaul. Thus it is clearly impractical and undesirable to inspect every machine daily. For example, if a certain machine is believed likely to require overhaul, it might be advisable to overhaul that machine without inspecting it at all. The problem is to determine a simple rule for the repairman to follow in making decisions for individual machines, and in recording each machine's status. A solution to this problem may be visualized as a manual in which every possible machine status is listed, along with a course of action and a new status resulting from that action. The status code must be reasonably concise, for otherwise the manual will assume mammoth proportions. Given the relative undesirability of broken machines and repair costs, as well as a set of admissible actions, the problem may be expressed as that of determining the <u>optimal</u>⁺ (most desirable) <u>strategy</u> for coding machine status and repairing machines, as realized by the policy specified in the repairman's manual.

<u>Generalizations</u>: A similar scenario might involve a crowded hospital in which patients are visited by a doctor who must decide, on the basis of previous visits, how to allocate his time. The controller might also be a computer. Possible applications include: routing "packets" through a telecommunications network, controlling traffic signals at a busy intersection or along a congested freeway, and scheduling shipments from awarehouse serving several retail outlets.

Engineering problems of this type necessarily require that a tradeoff be made between accuracy of the model in depicting the "real" problem and solvability of the problem described by the model. The FPS model is

-14-

The optimum may not exist; ε -optimal strategies are then sought.

more general than a Markov decision model; it is also more difficult to solve. The Markov decision model assumes that perfect state information is available to the decision-maker. In the Machine Maintenance and Repair Problem, this means that, in order to use a Markov decision model, it would be necessary to assume that the repairman knows at all times whether or not a particular machine is operating properly; his course of action is then obvious. The applications envisioned for an FPS decision theory are those in which the decision to seek information is crucial, and for which the Markov decision model is, consequently, inadequate.

More specifically, two possible aspects of "real" control problems are captured by the FPS formulation, but totally ignored in Markov decision theory. One aspect is the "dual control" phenomenon, where the decision-maker must decide whether to seek better state information at the expense of short-term performance, or to seek improved immediate performance at the expense of information forgone in the interim. The other aspect is the "saturation" phenomenon, in which the decision-maker is confronted with more information than may be considered in the time allotted for decision-making. Conventional linear-quadratic-Gaussian control methods, likewise, avoid "dual control" and "saturation" phenomena by requiring that observation dynamics be unaffected by the input process.

In problems such as the Machine Maintenance and Repair Problem, where information is available only at a cost, perfect state information cannot be taken for granted, and separation of input and output dynamics

-15-

does not occur. At the heart of the problem is the determination of what information is important for purposes of decision-making, and what information may be disregarded. An important contribution of this research is a bound on the <u>value of information</u>. When the cost of obtaining information exceeds its value, then it is advisable to do without that information.

The elimination of "dual control" immediately leads to a "saturation" condition, since the decision whether to seek further information must be based on all information acquired thus far. Fortunately, the <u>value</u> <u>of information decreases geometrically with delay</u>, in most FPS's. Thus, for any ε >0, there is an integer ℓ such that the value of all information delayed by ℓ or more time units has value less than ε . This implies that there exists an ε -optimal strategy (a strategy whose performance lies within ε of the supremum feasible performance) for decision-making based on the most recent ℓ inputs and outputs alone. A computational method for strategy optimization, based on this result, has been given the name <u>perceptive dynamic programming</u>.

As the number of most recent input-output pairs retained by the decision-maker increases, the loss in performance from discarded information <u>decays</u> geometrically and the number of memory states (called "status codes" in (1.1)) <u>increases</u> geometrically. Thus, the performance achieved by a decision-maker acting on the basis of m memory states can be made to lie within $(m/m_0)^{-T}$ of the supremum feasible performance, where m_0 is the number of values in a sufficient incremental statistic,

-16-

and

$$\tau = \frac{\text{information value decay rate}}{\text{memory increase rate}}$$
(1.2)

The remainder of this report is devoted to making precise the concepts outlined above. The FPS model is described in detail in the following section. The Machine Maintenance and Repair Problem is formulated as an FPS control problem and solved in Section 3. A review of related work, a compendium of original contributions, and an outline of the report complete this chapter.

-18-2. The Model

a. Representation of the Plant.

The plant will be modeled as an FPS, which is defined by (2.1), below. Conceptually, an FPS is a generalization of a <u>Markov chain</u>, shown in Figure 2-1. A Markov chain has the property that, for any time $k\epsilon < 1, \infty >$, the random variables $\{s(k')\}_{k'\epsilon < 0, k-1>}$ and $\{s(k')\}_{k'\epsilon < k+1, \infty >}$ are conditionally independent given s(k). Thus the <u>transition probability</u> that s(k+1) will assume value j given the values of all past states $\{s(k')\}_{k'\epsilon < 0, k>}$ can be expressed as a function of the value of s(k) alone. The broken arrow leading from s(k) to s(k+1), in Figure 2-1, is intended to convey a sense that s(k+1) evolves probabilitically from s(k) alone.

••• $\rightarrow s(k-1) \rightarrow s(k) \rightarrow s(k+1) - \bullet \bullet \bullet$

Figure 2-1. A Markov Chain

In a <u>Markov decision process</u>, shown in Figure 2-2, the transition probabilities depend on inputs that are provided to the system by a decision-maker. Input u(k) determines the manner in which s(k+1) evolves probabilistically from s(k). If inputs are selected on the basis of the most recent state alone, then the system becomes a Markov chain.

 $s(k-1) \xrightarrow{s(k)} s(k) \xrightarrow{s(k+1)} \cdots \xrightarrow{s(k+1)} \cdots \xrightarrow{s(k+1)} u(k)$

Figure 2-2. A Markov Decision Process

A <u>partially-observable Markov decision process</u>, shown in Figure 2-3, combines a Markov decision process with a process of noisy outputs. Output y(k) depends probabilistically on s(k) alone. It is easy to see that a partially-observable Markov decision process is entirely equivalent to a Markov decision process whose state at time k consists of the pair [s(k),y(k)]; y(k) then becomes a perfect observation of the second state component, and is referred to as an "incomplete" state observation.

Figure 2-3. A Partially-observable Markov Decision Process

-19-

Figure 2-4. A Finite Probabilistic System

A <u>finite probabilistic system</u> is shown in Figure 2-4. Output y(k) now depends probabilistically on s(k-1), u(k-1), and s(k), and may be thought of as a noisy measurement of the most recent state transition. Yet, an FPS is always equivalent to a Markov decision process whose state at time k consists of the pair [s(k),y(k)]. Thus, every partially-observable Markov decision process is an FPS, and any FPS may be transformed into a partially-observable Markov decision process. The distinction between the two lies in their <u>representations</u>, i.e. in the notation used to describe them.

Since s(k) depends probabilistically on s(k-1) and u(k-1), the pair s(k) and y(k) may be viewed as random variables that depend jointly on s(k-1) and u(k-1). In this form, the dynamic evolution of an FPS is

-20-

entirely described by an array of probabilities for the state and output, conditioned on the previous state and input. Except for the requirements that the input, output, and internal state sets be finite, and that dynamics be stationary, an FPS is <u>totally</u> unstructured.

The formal definition of an FPS can now be given.

(2.1) <u>Definition</u>. A <u>finite probabilistic</u> (dynamical) <u>system</u> (FPS) is a 5-tuple (U,Y,S, $\pi(0)$, {P(y|u) : y \in Y, u \in U}) where:

- (i) U is a finite nonempty set of <u>input values</u> (or decisions);
- (ii) Y is a finite nonempty set of <u>output values</u> (or observations);
- (iii) S = <1,N> is a finite nonempty set of (internal) state values;
- (iv) $\pi(0)$ is a stochastic N-vector of initial state probabilities;
 - (v) Each P(y|u) is an NxN substochastic matrix of <u>state</u> <u>transition</u> <u>probabilities</u>, and $\Sigma_{y \in Y} P(y|u)$ is stochastic, $\forall u \in U$.

The dynamic evolution of an FPS is described in the following terminology:

- 1. The initial state s(0) assumes value i with probability $\pi_i(0)$.
- 2. When a decision-maker specifies input u(k), that input is said to be <u>accepted</u> by the FPS. Output y(k+1) is subsequently <u>emitted</u> by the FPS.
- 3. Given that an FPS in state s(k)=i accepts input u(k)=u, it will undergo a transition to state s(k+1)=j and emit output y(k+1)=y with probability P_{ij}(y|u), conditionally independently of the "past history" {s(k')}_{kE<0,k-1>}, {u(k')}_{k'E<0,k-1>},

-21-

 ${y(k')}_{k' \in {1,k}}$

- 4. The Markov decision process consisting of the internal state and input processes of an FPS is called the <u>underlying pro-</u> <u>cess</u> (of that FPS). It is described by the stochastic matrices { $\Sigma_{v \in Y} P(y|u) : u \in U$ }.
- 5. The time set is <0,K> . The terminal time K is called the horizon.

b. Alternate Representations.

The expression "finite probabilistic system" is used in accordance with a classification of systems by Kalman, Falb, and Arbib [1969]. The notation used to specify dynamics for a particular FPS is that of Paz [1971]. It is also called the <u>Mealy form</u> of a FPS, in consideration of its similarity to the Mealy form of a deterministic machine. The <u>Moore</u> <u>form</u> is an alternate representation in which y(k) is expressed as a deterministic function of s(k) alone.

Yet another representation is that of Drake [1962]. Here the transition probabilities of the underlying process are provided, along with a matrix of conditional output probabilities, given internal states. A transformation to Mealy form is readily effected, although some care must be taken to insure that inputs, outputs, and time changes are defined to occur in the correct order, i.e. that y(k) is emitted before u(k) is accepted.

-22-

c. Some Important Classes of FPS's

(2.2) <u>Definition</u>. An FPS is <u>state-observable</u> if each transition probability matrix P(y|u) has at most one non-zero column.

<u>Interpretation</u>: In a state-observable FPS, the internal state may be deduced from the most recent input-output pair alone.

Example: A Markov decision process is a state-observable FPS.

(2.3) <u>Definition</u>. An FPS is <u>state-calculable</u> if each row of a transition probability matrix has at most one non-zero entry.

<u>Interpretation</u>: In a state calculable FPS, knowledge of the previous internal state, along with the intervening input-output pair, is sufficient to determine the present state.

Example: Consider a queuing system, in which only the numbers of arriving and departing "customers" (over each discrete time interval) are observed. This system may be modeled as a state-calculable FPS.

(2.4) <u>Definition</u>. An FPS is <u>free</u> if its input set contains exactly one element.

-23-

<u>Remark</u>: A free FPS may be viewed as a "partially-observable Markov chain" (Drake [1962]) or "stochastic process of finite rank" (Paz [1971]).

d. Specification of the Input Process

A rule for the selection of inputs to an FPS will be called a $(\underline{\text{decision}}) \underline{\text{strategy}}$. A strategy γ is specified by a probability distribution for u(k) conditioned on the past history $[s(0),u(0),y(1),s(1), \ldots, s(k-1),u(k-1),y(k),s(k)]$; however, this representation is cumbersome. It is far more convenient to consider the input process to be generated by a dynamical system called a <u>controller</u>, which is a controlled Markov process having input and state sets to be determined, and output process $\{u(k)\}$.

A particular description of a decision strategy as a dynamical system is called a <u>realization</u> of that strategy. Naturally some realizations are more concise then others. A decision strategy satisfies a <u>finite-memory constraint</u> if it has an FPS realization with input process $\{y(k-1)\}$. In this report, consideration will be limited almost exclusively to decision strategies that can be realized by deterministic timeinvariant finite-state automata.

The interconnection of an FPS with decision strategy γ causes the former's input, state, and output processes to become stochastic processes; the resulting system may or may not be an FSP, depending on the size of its state set (which must include all information required to describe future inputs). This system will be called the <u>free system induced</u> (on

-24-

the FPS) by strategy γ , or, more informally, the system under γ . If γ satisfies a finite-memory constraint, then the system under γ may be represented as a free FPS whose state is a doublet consisting of both the plant and controller states.

The output process of a free FPS is a stochastic process, since the probability distribution of system variables (states and outputs) is well-defined. Such is not the case if U contains more than one element: y(1) then depends on u(0), which is not a random variable (since no probabisistic rule describing it has been provided). The interconnection of an FPS with a decision strategy γ causes all system variables to become random variables. A probability measure, denoted Prob_{γ}, which describes these variables, is specified by the induction:

$$\begin{array}{l} \Pr_{b_{\gamma}} \{s(0)=i\} = \pi_{i}(0) .\\ \\ \Pr_{b_{\gamma}} \{s(k')=s_{k'}, u(k')=u_{k'}, y(k'+1)=y_{k'}, \forall k' \in <0, k-1 >\\ \\ \text{and} \quad s(k)=i, u(k)=u, y(k+1)=y, s(k+1)=j \}\\ \\ = \Pr_{b_{\gamma}} \{s(k')=s_{k'}, u(k')=u_{k'}, y(k'+1)=y_{k'}, \forall k' \in <0, k-1 >\\ \\ \\ \text{and} \quad s(k)=i \} \end{array}$$

Prob {strategy γ causes u(k)=u to be selected|
s(k')=s_k, u(k')=u_k, y(k'+1)=y_k, k'ε<0,k-1> and s(k)=i}
P_{ij}(y|u). (2.5)

-25-

Informally, $\operatorname{Prob}_{\gamma}$ is called the <u>probability under</u> (strategy) γ . (2.6) <u>Definition</u>. $\operatorname{E}_{\gamma}\{\cdot\}$ denotes expectation with respect to probability measure $\operatorname{Prob}_{\gamma}\{\cdot\}$, i.e. expectation given that inputs are selected according to strategy γ .

<u>Notation</u>: Subscript γ may be omitted in Prob_{γ} {•} and E_{γ} {•} when the probability or expectation is the same for all strategies.

e. The Information Vector

(2.7) <u>Definition</u>. The stochastic N-vector $\eta(k)$ having components

$$\eta_{i}(k) = \text{Prob} \{ s(k)=i | u(0) \dots u(k-1); y(1) \dots y(k) \}$$

will be called the information vector at time k.

It is well known that $\eta(k)$ is a sufficient statistic for the estimation of future dynamics given past inputs and outputs; this is a trivial result of the Markov property of the internal state. The following result is similarly self-evident.

(2.8) <u>Proposition</u>. The information vector may be recursively computed according to Bayes' Rule:

$$\eta(k+1) = T(\eta(k), u(k), y(k+1)),$$

where T is the information vector transition function

 $T(n,u,y) = \eta P(y|u) / (\eta P(y|u)1)$

Because $\eta(k)$ is a sufficient statistic, desirable decision strategies may be realized by a deterministic machine having state process $\{\eta(k)\}$. Such a decision strategy would be completely described by a <u>policy</u> on Π_N , i.e. a mapping from Π_N to U specifying the input to be applied when the information vector has a given value. This traditional approach to controller realization leads to horrendous computational difficulties which have yet to be resolved.⁺ The main contributions of this research are approximation schemes for $\eta(k)$, and associated realizations which avoid the use of Π_N as an observer or controller state set.

f. Rewards and Performance Indices

It is convenient to place a mechanism for evaluation of decision strategies within the conceptual confines of the system itself. To this end, consider the process of <u>incremental</u> (immediate) <u>rewards</u> $\{r(k)\}$, each of which is determined from system variables s(k), u(k), y(k+1), s(k+1), on the basis of a given array $\{r[i,u,y,j] : i,j\in S, u\in U, y\in Y\}$, according to the rule

$$r(k) = r[s(k), u(k), y(k+1), s(k+1)]$$

-27-

⁺See the discussion, in Section 4, of previous work in this field.

(2.9) <u>Definition</u>. A <u>valued finite probabilistic system</u> (VFPS) is an FPS along with an incremental reward array, as described above.

(2.10) <u>Definition</u>. The <u>performance index</u> is a function of the decision strategy, taking one of the following forms:

(a) Finite horizon:

$$g({b(k)}_{k\in <0,K>}, \gamma) = E_{\gamma} \{\Sigma_{k=0}^{K} b(k) r(k)\}, K \in <0,\infty>$$

(b) Discounted infinite-horizon:

$$g(\beta,\gamma) = (1-\beta)E_{\gamma}\{\sum_{k=0}^{\infty} \beta^{k}r(k)\}, 0 \le \beta \le 1.$$

(c) Undiscounted infinite-horizon: $g(\gamma) = \lim \inf_{\beta \uparrow 1} [g(\beta, \gamma)].$

<u>Remark</u>: The undiscounted performance index $g(\cdot)$ is generally equivalent to the "time-averaged reward" $\lim \inf_{K \to \infty} E_{\gamma} \{\frac{1}{K} \sum_{k=0}^{K-1} r(k)\}$. For a discussion of the conditions under which these indices may differ, see Flynn [1974]. The definition given above is more convenient, especially when relative values are considered, since these converge as $\beta^{\uparrow}1$.

The incremental reward process may be replaced by a process of expected incremental rewards $\{q(k)\}$ defined by

$$q(k) = q_{s(k)} (u(k))$$
 (2.11)

where

$$q_{i}(u) = \sum_{j \in S} \sum_{y \in Y} P_{ij}(y|u) r[i,u,y,j]$$
(2.12)

denotes the expected reward given that s(k) = i and u(k) = u.

-

Clearly the substitution of process $\{q(k)\}\$ for $\{r(k)\}\$ in (2.10) leaves the value of a performance index, for a particular decision strategy, unchanged.

Also define

$$Q_{\max} = \max_{i \in S} \max_{u \in U} [q_i(u)]$$

$$Q_{\min} = \min_{i \in S} \min_{u \in U} [q_i(u)]$$

$$Q = Q_{\max} - Q_{\min} .$$
(2.13)

g. Classification of Problems

The problems of interest fall into three categories. The first of these is given the name estimation. The finite-memory estimation problem is to learn as much as possible about the current internal state, subject to a finite-memory constraint. Note that in the absence of this constraint, the problem would be trivially solved by computing the information vector according to (2.8). This can in fact be accomplished if the set of values assumed by the information vector is finite, as occurs when the FPS is state-observable or when a finite horizon is contemplated. In general, however, the information vector cannot be exactly computed on the basis of finite memory; the greater the memory allowance, the better the approximation will be. The problem is more accurately described as that of constructing a sequence of finite-memory observers, (i.e. systems accepting plant outputs) that generate successively better approximations of the information vector. A suitable tradeoff between memory size and estimator quality can be made by the designer after this sequence has been computed, up to a maximum acceptable memory size.

The second problem is given the name <u>statistical decision</u>. It concerns a VFPS in which the transition probability matrices do not depend on u. The problem is to maximize a performance index of the form specified in (2.10). This problem may be solved by constructing a finite-memory observer, and using the information vector approximation as the basis for decision-making. A typical statistical decision

-30-

problem is to guess the value of the internal state, according to an array of rewards (penalties) for correct (incorrect) decisions.

The third problem, that of <u>control</u>, is to determine a decision strategy which optimizes a performance index, necessarily taking into account the effect of current decisions on future plant behavior as well as future estimation accuracy. The Machine Maintenance and Repair Problem (1.1) falls into this category.

Since statistical decision is a special case of control, these problems are collectively referred to as FPS control problems. In such problems, as in estimation, a finite-memory optimum may not exist. The problem is then to construct a sequence of controller designs in which memory requirements increase and performance improves, approaching a supremum feasible value. Note that the problem is <u>not</u> to maximize performance subject to a given bound on memory size: such a formulation may lead to an artificial situation where the performance of mixed (randomized) strategies exceeds that of pure (deterministic) ones, thus defeating the main purpose of a memory constraint, which is to limit controller complexity.

3. Illustration of the Solution Procedure

The Machine Maintenance and Repair Problem, first described in (1.1), will now be precisely formulated as an undiscounted infinitehorizon FPS control problem, and solved by perceptive dynamic programming. The solution is also documented (in somewhat greater detail) in Section 23a.

a. Problem Formulation

Consider a single machine which can produce a single item, the product, during each production cycle. The machine contains two identical <u>components</u>, subject to failure, each of which must operate on every product. Depending on the status of the machine, the product may be <u>defective</u> or <u>nondefective</u>. There are four control alternatives (inputs) available during each production cycle. One is to <u>manufacture</u> an item. The second is to manufacture an item, and then to <u>examine</u> it, so as to determine whether or not it is defective. In the third alternative, the machine is dismantled and <u>inspected</u> (at a cost); any component found to be defective is replaced. The fourth alternative is to replace both components, whether or not they have failed.

Although the plant would appear to have four internal states (each of two components is operational or has failed), the number of states can be reduced to three if it is recognized that the order in

-32-

which components fail is unimportant. Thus the state set is taken to be:

The four inputs are:

$$U = \begin{cases} 1 : Manufacture \\ 2 : Examine \\ 3 : Inspect \\ 4 : Replace \end{cases}$$

The three outputs are:

Probabilistic rules governing the breakdown of machines have been modeled as follows: Both components are initially operational. There is a probability of 0.1 that an operational component will fail during the manufacture of a product, independently of the component's age and the condition of the other component. If a component fails prior to or during the manufacture of a particular item, it causes that item to be defective with probability 0.5. Thus the initial probability vector is $\pi(0) = (1, 0, 0)$, and the transition probability matrices are:

$$P(1|1) = \begin{bmatrix} 0.81 & 0.18 & 0.01 \\ 0.00 & 0.90 & 0.10 \\ 0.00 & 0.00 & 1.00 \end{bmatrix},$$

$$P(2|2) = \begin{bmatrix} 0.81 & 0.09 & 0.0025 \\ 0.00 & 0.45 & 0.0250 \\ 0.00 & 0.00 & 0.2500 \end{bmatrix},$$

$$P(2|3) = \begin{bmatrix} 0.00 & 0.09 & 0.0075 \\ 0.00 & 0.45 & 0.0750 \\ 0.00 & 0.00 & 0.7500 \end{bmatrix},$$

$$P(1|3) = P(1|4) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

The value of an item produced is one unit if it is nondefective, zero units otherwise. The cost of examination is 0.25 units. New components cost a unit apiece, with an additional charge of 0.5 units for inspection. Hence, the expected incremental reward vectors are:

$$q(1) = \begin{bmatrix} 0.9025 \\ 0.4750 \\ 0.2500 \end{bmatrix}, q(2) = \begin{bmatrix} 0.6525 \\ 0.2250 \\ 0.0000 \end{bmatrix}, q(3) = \begin{bmatrix} -0.5 \\ -1.5 \\ -2.5 \end{bmatrix}, q(4) = \begin{bmatrix} -2 \\ -2 \\ -2 \\ -2 \end{bmatrix}.$$

The performance index is undiscounted profit over an infinite horizon.

The Markov decision model for machine maintenance was introduced by Drake [1968]. The numbers used here were originally devised by Smallwood and Sondik [1973], to illustrate a computational algorithm that solves finite-horizon FPS control problems.

b. Solution Procedure

A solution to this problem is obtained in several iterations. In each of these, a Markov decision problem will be solved, yielding a controller design, as well as bounds that contain the performance of the optimal controller and that of the design most recently obtained. In early iterations the bounds will be loose; but as computations become more intricate, the bounds will become closer; eventually they will coincide.

In the first iteration, assume that the controller knows the true value of the internal state at all times. (The artificial assumption that a controller has the ability to "see" internal states by means other than computation based on system outputs, will be known as <u>per-</u> <u>ception</u>.) A Markov decision problem that is readily solved (e.g. by Howard's algorithm, described in Howard [1960]) results, yielding the optimal policy, relative value vector, and optimal gain:

$$\lambda^{1} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \quad \hat{v}^{1} = \begin{bmatrix} 2.517 \\ 0.500 \\ 0.000 \end{bmatrix}, \quad g^{1} = .5147.$$

This will be called a <u>perceptive solution</u>. Since the (perceptive) controller which achieved the gain .5147 had access to <u>more</u> information than will be available in reality, it follows that .5147 is an <u>upper</u> bound on feasible performance.

The strategy obtained in this iteration is called a <u>perceptive</u> <u>strategy</u>. It might also have been feasible if the optimal input had

-35-

been the same for all states; but such is not the case; and so it cannot be applied in practice. However, a feasible controller realization might make use of the optimal perceptive strategy in the following way: a value for the current internal state is <u>guessed</u> and the corresponding optimal input is applied. Since this is the first iteration, the guess must be made of the basis of <u>no real-time in-</u> <u>formation whatsoever</u>. Suppose, for example, that the guess is "state = 1" at all times. Then input 1 will be selected at all times; both machine components will eventually fail; and a gain of 0.25 results.

On the basis of these computations, it is concluded that:

- The optimum feasible performance lies between
 0.25 and .5147;
- There is a feasible solution, requiring no memory, which achieves a performance of 0.25.

In the second iteration, a new internal state is devised, taking the form:

x(k) = [s(k-1), u(k-1), y(k)].

Clearly x(k) is the state of a controlled Markov chain, and a new FPS representation may be devised in which inputs, outputs, and rewards remain as before, but the internal state is x(k) at time k (see Brookes and Leondes [1973]). This called an <u>augmentation</u> of the original FPS. Since there are only four functionally
distinguishable input-output pairs, these may be coded and given the representation z(k), according to the following table:

u(k-1)	y(k)	z(k)
1	1	1
2	2	2
2	3	3
3	1	4
. 4	.1 .	4

Using the 12 states of the form x(k) = [s(k-1), z(k)], a new Markov decision problem is solved to obtain a new perceptive solution. However, the perception is "weaker" this time, and the optimal perceptive gain decreases to .4945. The optimal perceptive strategy is again unfeasible, and a feasible solution will be constructed by guessing the internal state <u>delayed by one time unit</u>, the guess being based on knowledge of z(k). For example the state guess might be $\hat{s}(k-1) = 1$ when z(k) = 1, 2, 4, and $\hat{s}(k-1) = 3$ when z(k) = 3. In this case input 1 will again be selected at all times, and the feasible gain is 0.25.

On the basis of these computations, it is concluded that

- The optimum feasible performance lies between
 0.25 and .4945;
- There is a feasible solution, requiring 4 memory states states, which achieves a performance of 0.25.

In subsequent iterations, x(k) will take the form x(k) = [s(k-l), z(k)] where $\underline{z}(k)$ is the memory state, a string of l most recent z-coded input-output pairs. The rules by which a memory state may be

constructed are rather complex, so for the moment regard the memory state during iteration n as the string of (n-1) most recent z-coded input-output pairs:

$$z(k) = z(k+1-m) z(k+2-n) \dots z(k-1) z(k)$$

As computation proceeds, the bounds on feasible performance become closer and closer. Intuitively, this occurs because, as the memory state becomes longer, the augmented state component that is perceived or guessed is an internal state with greater delay, whose influence on the present information vector is weaker. In this particular problem, the bounds eventually coincide. On the ninth iteration, only eight memory states are "recurrent" under the optimal strategy, and for each of these, the optimal input does not depend on the delayed state component of the augmented state. The optimal inputs are in fact given by the deterministic sequence:

$$\{u(k)\} = \{1,1,1,1,1,1,3, 1,1,1,1,1,1,1,3, \ldots\}$$

Eight memory states are required to realize this sequence, using a finite-state automaton. The optimal gain is $g^* = .422$.

c. Discussion.

The optimal decision-making strategy is remarkably simple; but this is merely a consequence of the peculiar rewards specified in this particular problem. For example, first-iteration computations show that the performance achievable with perfect state information is .5147, and the performance achievable on the basis of no information whatsoever is .25. Thus the value of perfect state information is no more than .2647. Examination, which costs .25 and yields little information about the state, appears unlikely to be useful; on the ninth iteration, this option will be eliminated entirely. Had the cost of examination been lower, or the information acquired through examination more useful, the solution might have been considerably more complex, requiring thousands of controller memory states. An optimal solution might not have been obtained at all.

In fact, the method described above cannot be used to generate a solution, since the final iteration would involve a 3·4⁸-state Markov decision process! The algorithm that was actually used to solve the Machine Maintenance and Repair Problem is described in Section 22, and the solution obtained is reproduced in Section 23a, in this report.

ł

The importance of perceptive dynamic programming as an engineering tool is derived from the outcome of early iterations, rather than the solution itself (if any is obtained). During iteration n, two quantities of interest are computed. The first of these, gⁿ, is an upper bound on performance that can be achieved if the (n-1) most recent inputs and outputs constitute the only available information concerning the (n-1) most recent transitions, although states further delayed

-39-

might be perfectly known. The second, h^n , is a lower bound on the performance that can be achieved if decisions are made on the basis of the (n-1) most recent inputs and outputs alone, and all other information is discarded. Consequently g^n-h^n is an upper bound on the <u>value of information</u> concerning events delayed by (n-1) time units.

In a practical engineering problem, it is reasonable to assume that there exists a way to measure the internal state exactly, although the cost associated with such a measurement might be exhorbitant. When g^n-h^n remains large for large n, this indicates that greatly delayed perfect state information remains significantly useful for purposes of decision-making, which in turn suggests the option of periodically measuring the internal state exactly. If the interval separating perfect state measurements is large, then the average cost of periodic state measurements will be small, controller memory will have been reduced and performance enhanced. On the other hand, if g^n-h^n converges rapidly to zero, this indicates that information sufficiently delayed is of little value in decision-making, and that a near-optimal strategy having reasonable controller memory requirements, can be constructed.

d. Summary

Perceptive dynamic programming is a computational procedure that may be used to examine problems of decision-making, under uncertainty contraints, with perfect recall of all information previously obtained.

-40-

This is done by considering a sequence of problem approximations in which information dealing with events sufficiently delayed is either superceded by the "perception" of delayed state values, or ignored. The difference between performances achieved under these information constraints establishes a value of delayed information which may be compared with the cost of periodic state measurements, the cost of retaining greatly delayed outputs in controller memory, and the cost of continuing the design procedure. In the Machine Maintenance and Repair Problem, the value of delayed information rapidly approached zero, and an exact optimum was obtained.

4. Historical Perspective

An FPS decision theory may be associated with several disciplines. Some of these are listed below, along with representative references; this list is by no means intended to be exhaustive. Since an FPS is a probabilistic automaton, and the decision strategy is represented as a finite-state machine, the study of FPS's is closely related to probabilistic automata theory; see Paz [1971] for a summary of recent trends in this field. Since the assessment of unknown state values is involved in decision-making, a theory of FPS decisions is related to statistical decision theory in the sense of DeGroot [1970]. FPS control problems are problems of stochastic control; the introductory text of Kushner [1971] is a standard reference. Analysis of the optimization problem in an appropriate (infinite-dimensional) vector space makes use of techniques described by Luenberger [1969]. Finally, an FPS is a dynamical system; its study therefore belongs to what Kalman, Falb, and Arbib [1967] describe as the "exciting but chaotic new field of system theory."

Most of these disciplines are generally considered to be outgrowths of the pioneering work of Von Neuman and Morgenstern [1947]. A theory of statistical decisions was subsequently initiated by Wald [1950]. The importance of the concept of state in structuring sequential decision problems was enunciated by Richard Bellman [1957b]; he devised a general mathematical approach called <u>dynamic programming</u>,

-42-

which may be applied to the optimization of sequential decisions. The finite-horizon Markov decision problem (Bellman [1957a]) is particularly well-suited to solution by dynamic programming; also see Howard [1960], Derman [1970], Mine and Osaki [1970], Ross [1970], Howard [1971], Hastings [1973], and Bertsekas [1976].

Because Markov decision problems can be solved, and because structural properties of the solution are fairly well understood, a great deal of effort has been devoted to improving the algorithms employed. Schweitzer [1973] has complied a list of hundreds of publications in this area. Among these, Brown [1965], Lanery [1967, 1968], Bather [1971] and Schweitzer and Federgruen [1977?] have studied convergence properties of value iteration, which is regarded as the most efficient form of dynamic programming; see Odoni [1967] for a comparison of convergence rates in various dynamic programming forms. The basic value iteration procedure has been supplemented and improved in many ways: D.J. White [1963] introduced a method for normalizing value functions in order to avoid divergence; Odoni [1967, 1968] generalized a result of MacQueen [1966] to obtain a method for bounding the closeness of suboptimal solutions to the optimum; Schweitzer [1971] accelerated value iteration by adding a damping term; Hastings[1976] devised a procedure for more efficient enumeration and termination when the optimum has been reached; the applicability of value iteration was extended by Platzman [1977] who introduced the concept of connected classes in Markov decision

-43-

processes. Value iteration is currently feasible for problems with thousands of states (Schweitzer [1971]).

Partially-observable Markov decision problems have been studied by Drake [1962], Astrom [1965, 1969], Sawaragi and Yoshikawa [1970], and other as noted below. In each case, the problem was regarded as one of decision-making with perfect state information, considering the information vector to be the state of a transformed system. However, the number of values which may be assumed by the information vector is infinite. Thus the problem becomes one of dynamic programming on the unit simplex $\,\Pi_{_{\!\!N\!\!}}$ (an infinite state set), and describing an optimal decision-making policy, which is a finite-valued function on $\Pi_{\rm M}$. Kaklik [1965] approximated the unit simplex by a finite grid of evenly spaced points; needless to say, the method failed to be practical for all but very small problems. Sondik [1971] (in research also reported by Smallwood and Sondik [1973]) established piecewiselinearity of the value function and finite-memory realizability of the optimal strategy in finite-horizon problems; however this too fails to be feasible if the number of faces on the value function is large. Existence of solutions to discounted problems was established by Sondik [1971] and by Satia and Lave [1973]. C.C. White [1976] has shown that these results are also applicable to a class of partially-observable semi-Markov decision models that are externally indistinguishable from a discrete-time partially-observable Markov decision process.

-44-

Existence of finite-memory solutions to certain infinite-horizon problems had been noted by Drake [1962, 1968]. In the context of statistical decision on a noisy Markov channel, this work has been pursued by Sulmar [1974] and Devore [1974]. Sondik [1971] provided an intuitive explanation for this phenomenon; his work inspired the definition of detectability in the present research. Similar results, regarding the near-sufficiency of a finite string of most recent observations, have been obtained by Černý [1969] and Kajser [1975]. Systems with perfect but delayed state observations were introduced by Brookes and Leondes [1973].

Finite-memory hypothesis-testing and N-armed bandit problems have been studied by Cover and Helman [1970], Hellman and Cover [1970a], Cover, Freedman, and Hellman [1976], and others noted both in these references and in DeGroot [1970]. One may observe, from the titles in subsequent correspondence between Chandresekarin [1970, 1971] and Hellman and Cover [1970b], that there is some controversy over the meaning of this problem. Chandresekarin and Lam [1971] have subsequently proposed an alternative formulation. The issue involved is the manner in which memory should be allowed to increase as performance approaches its supremum value. Similar issues arise in the solution of FPS control problems; they are discussed in Section 20 of this report.

-45-

5. Outline of Original Contributions

The aim of this research is to construct finite-memory observers, to devise a method for bounding the value of information in decisionmaking, and to establish a feasible computational procedure for the design of ε -optimal finite-memory controllers. Such results are meaningful only when supplemented by mathematical machinery which justifies their validity. This section provides an heuristic interpretation of concepts and intermediary results that are introduced for the first time in this report, and which contribute significantly to an understanding of the main results.

a. Ill-posedness of certain undiscounted infinite-horizon problems

Consider a "dual control" problem described by the VFPS:

$$Y = \{1,2\},$$

$$U = \{0,1,2\},$$

$$\pi(0) = (.5, .5),$$

$$N = 2,$$

$$P(1|0) = \begin{bmatrix} .6 & 0 \\ 0 & .4 \end{bmatrix},$$

$$P(2|0) = \begin{bmatrix} 0 & .4 \\ .6 & 0 \end{bmatrix},$$

$$P(1|1) = P(1|2) = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix}$$

$$P(2|1) = P(2|2) = \begin{bmatrix} 0 & .5 \\ .5 & 0 \end{bmatrix},$$

-46-

$$q(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, q(1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, q(2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
(5.1)

The inputs may be assigned the meanings:

$$U = \begin{cases} 0 : Obtain a measurement \\ 1 : The state is probably 1 \\ 2 : The state is probably 2 \end{cases}$$

The outputs, likewise, are interpreted as:

$$Y = \begin{cases} 1 : The state remained unchanged \\ 2 : The state changed \end{cases}$$
.

It is clear that use of input 0 causes the information vector to approach a unit vector, and use of inputs 1 or 2 causes the values of information vector entries to remain unchanged. Hence, when input 0 is used, information is gained, but no reward is received; when inputs 1 or 2 are used, a reward is received, but no information is gained.

If a discounted performance index is considered, then use of input 0 will eventually be discontinued. This is true because a decision-maker in information state $(1-\varepsilon,\varepsilon)$ stands to gain no more $\varepsilon/(1-\beta)$ by seeking further information, and receives an expected reward of $1-\varepsilon$ if he forgoes further information. As $\beta \rightarrow 1$, the point at which use of input 0 is discontinued becomes more and more distant. In the undiscounted case, the value of perfect state information (i.e. a unit information vector) is infinite, relative to the value of any information vector that is not a unit vector. A decision-maker confronted with an infinite horizon will therefore choose input 0 at all times. Consequently, he will receive no reward at all. E. Denardo calls this "the infinitely-delayed splurge."

The infinitely delayed splurge may be avoided in a number of ways. One way is to consider only discounted performance indices. Another is to assume that the decision-maker has access to an infinite past; he will then know the initial state exactly. However, <u>it does not</u> <u>suffice to require that the underlying process be ergodic</u>. In this problem, the internal state process consisted of independent Bernoulli trials; and yet the infinitely delayed splurge occurred.

b. Sufficient conditions for well-posedness

Two conditions which (together) are sufficient to assure wellposedness of an undiscounted infinite-horizon FPS control problem are now identified. The first, <u>reachability</u>, is a generalization of connectivity in Markov decision processes. In a reachable FPS, it is possible to select a finite sequence of inputs, on the basis of the information vector alone, so that the probability of entering a specified state is greater than 1- ρ , where ρ is the <u>reachability</u> <u>index</u>. If ρ =0, then there are reset actions that cause the state to assume any desired value with probability one. As ρ increases to 1, it becomes more difficult to reach a desired state. If ρ =1, then the FPS is not reachable. Reachability is also parameterized by ℓ_{ρ} , an upper bound on the number of transitions required to "reach" a state.

-48-

It will be demonstrated that the state set of any FPS may be decomposed into <u>connected classes</u>, along with a (possibly empty) set of <u>transient states</u>. Within any connected class, the FPS will be reachable. The underlying process of a reachable FPS "looses memory" as it proceeds <u>forward</u> in time, in the sense that unconditional state probabilities in the future depend less and less on the present state.

The second condition has been given the name <u>detectability</u>. In a detectable FPS, the information vector is increasingly insensitive to increasingly delayed information, such as inputs, outputs, or artificially perceived states. A more precise definition of detectability is deferred to section 5d, where appropriate metrices and contractions will be introduced. Detectability is characterized by parameters $\overline{\lambda}$ and $0 \leq \overline{a} < 1$, where information concerning events delayed by $\overline{\lambda}$ time units causes the information vector to vary by a distance not exceeding \overline{a} , on the average. If $\overline{a}=0$ then information sufficiently delayed is of no value in decision-making. If \overline{a} is close to 1, then information greatly delayed is important in decision making, and conversely, the present decision will affect many decisions to come. If $\overline{a}=1$, then the FPS is not detectable.

It will be demonstrated that the information state set of an FPS can be decomposed into <u>detectable classes</u>, along with a (possibly empty) set of <u>null-recurrent</u> information states. The information process of a detectable FPS thus looses information as it is viewed backward in time, in the sense that the present information vector

-49-

depends less and less on state values from the increasingly distant past.

The conditions of reachability and detectability are complementary, in a manner similar to controllability and observability in linear systems.

c. A Bound on the Value of Information

A key result, Theorem (19.3), states that any infinite-horizon FPS control problem satisfying conditions of reachability and detectability has a convex relative value function v*(•) satisfying:

$$\max_{\pi \in \Pi_{N}} \{ \mathbf{v}^{*}(\pi) \} - \min_{\pi \in \Pi_{N}} \{ \mathbf{v}^{*}(\pi) \} \leq \frac{(\ell + \overline{\ell}) Q}{(1 - \rho)(1 - \overline{a})} = \Omega$$
(5.2)

where Q is given by (2.13). The expression on the right of (5.2) is interpreted as the bound on the value of information. v* may become undefined as $\rho \rightarrow 1$ or $\overline{a} \rightarrow 1$.

d. Metrics and Contractions

Consider $\delta[\pi,\pi'] = \Sigma_{i\in S} (\pi_i - \pi'_i)^+$, the <u>Hajnal measure</u>, which is extensively used (as described in Paz [1971]) to demonstrate convergence of <u>unconditional</u> probability vectors, in the theory of ergodic Markov chains. A more appropriate metric for the study of <u>conditional</u> probability vectors is

$$-51- \Delta[\pi,\pi'] = \sup\{\delta[\pi \circ w,\pi' \circ w] : w \in \Pi_N, w > 0\}$$
(5.3)

where mow is a vector in Π_{N} having elements $(\pi \circ w)_{i} = \pi_{i} w_{i} / \Sigma_{i \in S} \pi_{i} w_{i}$. It will be shown that:

$$\delta[\pi,\pi'] \leq \Delta[\pi,\pi'] \leq 1 \tag{5.4}$$

and

$$\Delta[\pi,\pi'] = \frac{1 - \sqrt{c_1 c_2}}{1 + \sqrt{c_1 c_2}}$$
(5.5)

where:

$$c_{1} = \min\{\pi_{i}/\pi_{i}'\} : i \in S, \pi_{i}' > 0\},$$

$$c_{2} = \min\{\pi_{i}'/\pi_{i}\} : i \in S, \pi_{i} > 0\}.$$
(5.6)

The topology induced by Δ on Π_N has many interesting properties which are explored in Section 12d. For example, any convex function is continuous with respect to Δ ; in particular:

$$\mathbf{v}[\pi] - \mathbf{v}[\pi'] \leq \Delta[\pi, \pi'] 4[\max_{\pi \in \Pi_{\mathbf{N}}} \{\mathbf{v}[\pi]\} - \min_{\pi \in \Pi_{\mathbf{N}}} \{\mathbf{v}[\pi]\}]$$
(5.7)

Now consider an input-output pair (u,y) such that P(y|u) is <u>subrectangular</u>, i.e. $P_{ij}(y|u) > 0$ and $P_{i'j'}(y|u) > 0$ implies $P_{ij'}(y|u) > 0$ and $P_{i'j'}(y|u) > 0$. Let

$$\alpha[(u,y)] = \max_{i,i' \in S} \Delta[T(e^{i},u,y), T(e^{i'},u,y)].$$

Now $0 \leq \alpha[(u,y)] \leq 1$, a consequence of the subrectangularity of P(y|u).

The contraction property is:

$$\Delta[T(\eta,u,y), T(\eta',u,y)] \leq \alpha(u,y) \Delta[\eta,\eta']$$
(5.8)

This is illustrated in Figure 5-1. It is seen that (u,y) causes the unit simplex to be mapped into a somewhat smaller set. The greater the number of recent input-output pairs available, the smaller this set will be. Hence, the assumption that the information vector l times delayed had some convenient value, allows an approximation of the information vector to be computed on the basis of the most recent l input-output pairs alone. This approximation is guaranteed to be with a certain distance of the true value; that distance can be computed by measuring the contraction imposed on the information vector by the transition probability matrix corresponding to the most recent l input-output pairs.

Figure 5-1. Contractions on the Unit Simplex

-52-

In the establishment of detectability, subrectangularity plays a role analogous to that of block rectangularity in the establishment of connectivity in Markov chains. An FPS satisfies a condition of <u>strong detectability</u> if there is an integer ℓ such that, for every possible sequence of consecutive input-output pairs $(u_1, y_1)(u_2, y_2)$ $\dots (u_{\ell}, y_{\ell})$, the cumulative transition probability matrix $P(y_1|u_1)$ $\cdot P(y_2|u_2) \cdot \dots P(y_{\ell}|u_{\ell})$ is subrectangular. It follows, from the contraction property stated above, that an estimate of the information vector can be made arbitrarily close (in a Λ sense) by recalling a sufficiently long string of recent input-output pairs. In particular, an estimate made on the basis of ℓ input-output pairs always lies within $\alpha^{\ell, \overline{\ell, \ell}}$ of the true information vector, for some $\alpha < 1$.

<u>Weak detectability</u> is a condition which implies that the <u>expected</u> <u>deviation</u> of the information vector estimate from its true value can be made arbitrarily small in an analogous way. In a weakly <u>detectable</u> system, $\overline{\alpha}$ denotes the average contraction induced by the most recent \overline{k} input-output pairs. The average contraction induced by the most recent k pairs is now given by $\overline{\alpha}^{k \div \overline{k}}$. \overline{a} is a measure of detectability which differs slightly from $\overline{\alpha}$.

e. Existence of *e*-optimal Controllers

Consider the relative value function for a reachable, detectable, FPS. It will be seen that this function spans a range of values which

-53-

cannot exceed $\Omega = \frac{(l_{\rho} + \overline{l})Q}{(1-\rho)(1-\overline{a})}$. Thus, for any stochastic vectors

π,π'εΠ_N,

$$|v^{*}[\pi] - v^{*}[\pi']| \leq 4\Omega$$
.

When state perception is introduced, the information vector changes, at any given time, in such a way that the expected relative value of the new information vector will be greater than that of the old information vector. The difference between these quantities, called the <u>value of perception</u>, is shown in Figure 5-2. If perception of states with an ℓ time-unit delay is assumed, then the gain will

increase by at most $\overline{\alpha}^{\ell \div \overline{\ell}} 4\Omega = \overline{\alpha}^{\ell \div \overline{\ell}} \left[\frac{4(\ell_{\rho} + \overline{\ell})Q}{(1-\rho)(1-\overline{a})} \right].$

The substitution of guessed state values for perceived states is called <u>pseudo-perception</u>. If a delayed state value is guessed, then the controller finds itself acting according to one information vector while actually in another information state. The value of acting according to a particular information vector is <u>linear</u> in the actual information state, because E{value of acting according to $\eta^1|\eta(k)$ } = $\Sigma_{i\in S} \eta_i(k)E\{value of acting according to <math>\eta^1|s(k)=i\}$. Thus the cost of pseudo-perception is as shown in Figure 5-3; this cost cannot

exceed
$$\overline{\alpha}^{\ell \div \overline{\ell}} \left[\frac{4\overline{\ell}\Omega}{(1-\overline{a})} \right] = \overline{\alpha}^{\ell \div \overline{\ell}} \left[\frac{4\overline{\ell}(\ell_{\rho}+\overline{\ell})Q}{(1-\rho)(1-\overline{a})^{2}} \right].$$

-54-

Figure 5-2. Geometric Interpretation of Performance Increase Due to Perception

Figure 5-3. Geometric Interpretation of Performance Decrease Due to Pseudo-perception

~55~

An intuitive justification of these expression is provided by the following argument. Consider an FPS where $\ell_{\rho} = \bar{k} = 1$. Then it costs $Q/(1-\rho)$ units to reach a desired state, if it is assumed that the state is perfectly observed. This is true because Q is the cost (per unit time) of being in an undesirable state instead of being in a most desirable state, and because the expected number of transitions required to reach the most desirable state is $1/(1-\rho)$. Suppose now that state uncertainty is introduced. Then the uncertainty, caused when the most recent state perception occured ℓ time units ago, is $\overline{\alpha}^{\ell}$. Thus the value of a single perception, delayed ℓ time units, is

$$\overline{\alpha}^{\ell}[4Q/(1-\rho)] + \overline{\alpha}^{\ell+1}[4Q/(1-\rho)] + \dots \cong \overline{\alpha}^{\ell} \left[\frac{4Q}{(1-\rho)(1-\overline{a})} \right]$$

The cost of pseudo-perception is similarly derived, resulting in an additional factor of $(1-\alpha)$ in the denominator.

f. Feedback Realization of ε -optimal Controllers

The definition of an FPS, given in Section 2a, is structural rather than functional. Much of the detail provided in the specification of a particular FPS is irrelevant to an observer who has access only to inputs and outputs. For example, the internal states of an FPS may be reordered (by means of suitable row and column manipulations

-56-

on the initial state probability vector and transition probability matrices) to obtain a new system which cannot be distinguished from the first on the basis of input-output histories alone. Two or more FPS's which are indistinguishable in this sense will be called <u>equi-</u> valent.

A valued finite probabilistic system (VFPS) was defined as an FPS, along with a reward structure which allows a performance to be assigned to any control strategy. If two or more VFPS's consist of equivalent FPS's, along with reward structures that result in identical performance indices, these VFPS's will be called equivalent.

The problem under consideration is to compute a control strategy that optimizes the performance index corresponding to a particular VFPS. The concept of equivalence is used to transform this problem into one that is more easily solved: it suffices to compute a strategy which optimizes the performance index corresponding to any particular equivalent VFPS.

A convenient equivalent VFPS is constructed by a procedure known as <u>augmentation</u>. Any augmented VFPS is completely described by the original VFPS from which it was obtained, and a <u>memory set</u>, M, which is a finite set of strings of input-output pairs. An observer is required to select, from the memory set, the element that correctly lists the largest number of most recent input-output pairs; this is called the <u>memory state</u>. An <u>augmented state</u> consists of the internal state delayed by a quantity equal to the length of the memory state, along

-57-

with the memory state itself. Since the augmented state may be regarded as the state of a controlled Markov chain, an equivalent VFPS having augmented internal states in place of internal states may be constructed. This VFPS is the outcome of <u>augmentation induced</u> by M.

An example of augmentation may be found in Section 3. During the n-th iteration, a memory set containing all strings of (n-1) inputoutput pairs is employed. Thus the memory state consists of the (n-1) most recent input-output pairs, and the augmented state consists of the true internal state delayed by (n-1) time units, along with the string of all intervening input-output pairs.

The perceptive or feasible strategy computed during an iteration of perceptive dynamic programming determines inputs on the basis of the current augmented state alone, and thus, it may be viewed as a <u>feedback strategy</u>. This implies that the system under such a strategy is a Markov chain, a fact that is useful in evaluating feasible performances.

-58-

6. Organization of the Report

Mathematical tools for the analysis of FPS's are introduced in Chapter II. A brief outline of this chapter is given below. The notation to be used in representing strings of input-output pairs is presented in Section 7. The concepts of "memory state" and "augmentation" are made precise in Sections 8 and 9. In the computational technique of perceptive dynamic programming, it is assumed that the augmented state (induced by some memory set M) can be "perceived" by the controller; dynamic programming then yields a rule for optimal (perceptive) decision-making, expressed as a policy on the augmented state set. However the performance index is a function of strategy, or rule for decision-making on the basis of all past inputs, states and outputs. The relationship between a strategy and the policy which realizes it is made precise in Section 10. Connectivity and reachability are defined in Section 11. It is demonstrated that both properties are preserved when the state is augmented. Sections 12 and 13 provide the basis for definition, in Section 14, of detectability. This involves the development of appropriate metrics and contractions, as discussed in Section 5d. Solutions to the finite-memory estimation problem are then introduced. The final sections of Chapter II are concerned with applicability of perceptive dynamic programming. In Section 15, it is shown how any free FPS can be decomposed into detectable parts; thus perceptive dynamic programming can always be applied to each detectable component of the problem. Section 16

-59-

establishes that very few FPS's are equivalent to a state-calculable FPS; were this not so, many FPS control problems could be solved by dynamic programming alone.

Chapter III is devoted to a study of the structure of optimal controllers. The finite-horizon and state-observable cases are reviewed in Sections 17 and 18. It is then demonstrated, in Section 19, that (under suitable assumptions) an optimal strategy will exist, although it may require infinite memory. In some cases, however, the notion of an undiscounted infinite horizon is ill-defined, and the problem is meaningless. An alternate formulation, in which irregular features are constrained to finite-horizon consideration, is proposed in Section 20.

Any optimal controller which requires infinite memory cannot, in general, be described exactly. Chapter IV introduces a computational technique which allows the optimal performance to be approached as a memory constraint is weakened. This technique, called <u>perceptive</u> <u>dynamic programming</u>, approximates the problem as a Markov decision problem solvable by dynamic programming. The approximation is obtained by means of an assumption that delayed state values can be artifically "perceived." Like dynamic programming, perceptive dynamic programming is a general approach which can be realized in many ways; these are discussed in Section 21. Results obtained by implementation of a perceptive dynamic programming algorithm are then presented: a solution to the Machine Maintenance and Repair Problem, and an analysis of a

-60-

computer communication problem.

Peripheral ideas, and conjectures regarding potential extentions of the theory, have been collected in Chapter V.

A symbol table and glossary are provided to assist the reader in assimilating the terminology and notation of Chapter II.

CHAPTER II

ANALYSIS OF FINITE PROBABILISTIC SYSTEMS

7. Input-output Words

Because strings of input-output words play a most important role in the analysis of FPS's, it is essential that a compact notation be developed for their representation. Such a notation is introduced in this section.

(7.1) <u>Notation</u>. A finite string $\underline{a} = a_1 a_2 \dots a_k$ of elements in set A is called a <u>word over</u> A. Words are always identified by underscores. The set of all words over A is denoted A*. $\ell(\underline{a})$ is the length of word $\underline{a} \cdot \underline{e}$ is the empty word (over any set). If $\underline{a} = a_1 \dots a_k$ and $\underline{a'} = a'_1 \dots a'_k$ then $\underline{a} \underline{a'} = a_1 \dots a_k a'_1 \dots a'_k$ is called the <u>concatenation</u> of \underline{a} with $\underline{a'}$; clearly $\underline{a} = \underline{a} \underline{e} = \underline{e} \underline{a}$ for any word \underline{a} . If A and B are sets, then the concatenation AB denotes the set of words of the form $\underline{a} \underline{b}$ where $\underline{a} \in A$ and $\underline{b} \in B$. A^k is the set of words consisting of exactly ℓ consecutive elements in A; $A^{\ell*}$ is the set of words consisting of up to ℓ consecutive elements in A.

(7.2) <u>Definition</u>. Z denotes the set of input-output pairs (u,y) such that $P(y|u) \neq 0$.

-62-

<u>Remark</u>: More generally, Z may be defined as the set of equivalence classes of input-output pairs corresponding to identical non-zero transition probability matrices. The tabulation of Z in Section 3 is consistent with this alternate definition.

(7.3) <u>Notation</u>. The following objects will be used interchangeably: 1) a word over Z, i.e. a string of pairs $(u_1, y_1) \dots (u_k, y_k)$, and 2) a pair of words over U and Y, respectively, having equal length, i.e. $(\underline{u}, \underline{y}) = (u_1 \dots u_k, y_1 \dots y_k)$. In a free FPS, the input component of an input-output pair may be omitted.

(7.4) <u>Definition</u>. For $\underline{z} = (u_1, y_1)(u_2, y_2) \dots (u_{\ell}, y_{\ell}) \in \mathbb{Z}^*$, define $P(\underline{z}) = P(y_1|u_1) \cdot P(y_2|u_2) \cdot \dots \cdot P(y_{\ell}|u_{\ell}).$

Also P(e) is the NxN identity matrix.

<u>Interpretation</u>: $P_{ij}(\underline{z}) = P_{ij}((\underline{u}, \underline{y}))$ is the probability that the FPS will emit output word \underline{y} and go to state j, given that it had been in state i and that input word \underline{u} was subsequently accepted.

(7.5) Definition. (a)
$$I(\underline{z}) = \{i \in S : P_{ij}(\underline{z}) \neq 0, \text{ some } j \in S\}$$

(b) $J(\underline{z}) = \{j \in S : P_{ij}(\underline{z}) \neq 0, \text{ some } i \in S\}$

<u>Interpretation</u>: I(z) is the set of states that may preceed the evolution of input-output word \underline{z} ; J(\underline{z}) is the set of states that may follow it.

(7.6) Definition. (a)
$$Z^{+} = \{\underline{z} \in \mathbb{Z}^{*} : P(\underline{z}) \neq 0\}$$

(b) $Z^{+}(\pi^{1}, \pi^{2}, ...) = \{\underline{z} \in \mathbb{Z}^{*} : \pi^{1} P(\underline{z}) \neq 0, \pi^{2} P(\underline{z}) \neq 0, ...\}$

<u>Interpretation</u>: Z^+ is the set of input-output words that might eventually evolve. $Z^1(\pi^1,\pi^2,\ldots)$ is the set of input-output words that might evolve when the information vector equals π^1 , and also might evolve when the information vector equals π^2 , etc.

The information vector transition function was defined in (2.8) for a one-step transition, i.e. the case where the information vector is updated as soon as a single input-output pair becomes available. It is possible to generalize this transformation to the case of a multiplestep transition.

(7.7) <u>Definition</u>. For any $\eta \in \Pi_N$, $\underline{z} \in Z^+(\eta)$,

$$T(\eta,\underline{z}) = \eta P(\underline{z}) / (\eta P(\underline{z})1).$$

(7.8) <u>Lemma</u>. If $\underline{z} \underline{z}' \in Z^+(\eta)$, then

 $T(\eta, \underline{z} \underline{z}') = T(T(\eta, \underline{z}), \underline{z}').$

8. Memory Sets and Memory States

This section makes precise the notion of a memory set, (a vocabulary of recent input-output pairs), and a memory state (a summary, not necessarily complete, of recent input-output pairs, lying in the memory set). Appropriate notation is first introduced.

(8.1) <u>Definition</u>. $\underline{z}(k_1;k_2)$ denotes the word of input-output pairs that evolved between times k_1 and k_2 . Specifically:

$$\underline{z}(k_1;k_2) = ((u(k_1),y(k_1+1)),(u(k_1+1),y(k_1+2))...,(u(k_2-1),y(k_2)))$$

<u>Interpretation</u>: Recall that \underline{z} is a word (i.e. a string) of input-output pairs. $\underline{z}' \leq \underline{z}$ is used to indicate that \underline{z} can be split into two parts so that \underline{z}' matches the rightmost part. $\underline{z} = \max[M]$ is a word in M having the property that all words in M are rightmost substrings of \underline{z} . min[M]

-65-

is a word in M which is a rightmost substring of every (other) word in M. trunc[\underline{z}] is the set of rightmost substrings of \underline{z} , i.e. truncated versions of z. $\underline{z}-\underline{z}'$ is what remains when the rightmost substring \underline{z}' is removed from \underline{z} .

(8.3) Lemma. trunc[\underline{z}] is a finite nonempty set which is totally ordered by " \leq ", and $\underline{e} \in \text{trunc}[\underline{z}]$.

It is now possible to formulate the following definition:

(8.4) <u>Definition</u>. A <u>memory set</u> M is a finite nonempty subset of Z^* which satisfies

(i)
$$M = \bigcup_{z \in M} trunc[\underline{z}]$$

and

(ii)
$$M \subseteq [MZ \cap \{\underline{e}\}]$$
.

The <u>memory state</u> induced by M at time k is

$$\underline{z}^{M}(k) = \max[M \cap trunc[\underline{z}(0;k)]].$$

<u>Interpretation</u>: The memory set may be arranged in the form of a lefthanded tree, called the <u>memory tree</u>, as shown in Figure 8-1. An arrow from <u>z'</u> to <u>z</u> indicates that $\underline{z'} \leq \underline{z}$. The memory state at any time is the element of M that correctly summarizes the largest number of most recent input-output pairs. Following Figure 8-1, a memory state may

 $U = \{1\},\$

1

 $Y = \{1, 2, 3\},\$

 $M = \{ \underline{e}, (1), (2), (3), (1), (1), (2), (1), (1), (1), (1) \}.$

Note: Since the FPS is free, the input component of an input-output pair may be ignored.

Figure 8-1. A Memory Tree

be constructed by following the tree, from right to left, as far as possible. The first condition which M must satisfy in (8.4) guarantees that a memory tree may be constructed, and hence that memory states will be well-defined. The second condition assures that memory states can be recursively computed, as demonstrated in (8.6) below.

<u>Example</u>: $Z^{\ell} \cap Z^{+}$ is a memory set. The memory state induced by that memory set, at times $k \in \langle l, \infty \rangle$, is the string of l most recent inputoutput pairs.

(8.5) <u>Definition</u>. The <u>memory state transition</u> function induced by M is a mapping T^{M} : M x Z \rightarrow M given by

$$T^{M}[\underline{z}, \underline{z'}] = \max[M \cap trunc[\underline{z}\underline{z'}]], \underline{z} \in M, \underline{z'} \in \mathbb{Z}$$
.

(8.6) Proposition.
$$\underline{z}^{M}(k+1) = T^{M}[\underline{z}^{M}(k), (u(k), y(k+1))]$$
.

<u>Proof</u>: If $\underline{z}^{M}(k+1) = \underline{e}$ then the result is trivial. Now assume that $\underline{z}^{M}(k+1)\neq\underline{e}$. Then it follows that there exists a $\underline{z}' \in Z^{*}$ such that $\underline{z}^{M}(k+1) = \underline{z}'(u(k), y(k+1))$. But, by condition (ii) of (8.4),

 $\underline{z}^{M}(k+1) = \max[M \cap trunc[\underline{z}(0;k+1)]]$ $\leq \max[(MZ \cup \{\underline{e}\}) \cap trunc[\underline{z}(0;k+1)]]$ $= \max[MZ \cap trunc[\underline{z}(0;k+1)]]$

-68-

=
$$\max[MZ \cap trunc[\underline{z}(0;k)(u(k),y(k+1))]]$$

= $\underline{z}^{M}(k)(u(k),y(k+1))$.

So $\underline{z}^{M}(k+1) \in \mathbb{M} \cap trunc[\underline{z}^{M}(k)(u(k),y(k+1))]$, and hence

$$\underline{z}^{M}(k+1) \leq \max[M \exists trunc[\underline{z}^{M}(k)(u(k),y(k+1))]]$$

But

$$\underline{z}^{M}(k) \leq \underline{z}(0;k)$$

$$\implies \underline{z}^{M}(k) (u(k), y(k+1)) \leq \underline{z}(0;k+1)$$

$$\implies trunc[\underline{z}^{M}(k) (u(k), y(k+1))] \leq trunc[\underline{z}^{M}(0;k+1)]$$

$$\implies max[M)trunc[\underline{z}^{M}(k) (u(k), y(k+1))]] \leq max[M)trunc[\underline{z}(0;k+1)]]$$

$$= \underline{z}^{M}(k+1).$$

Thus $\underline{z}^{M}(k+1) \leq \max[M \cap \operatorname{trunc}[\underline{z}^{M}(k)(u(k),y(k+1))]] \leq \underline{z}^{M}(k+1)$, which establishes the desired equality.

Certain properties of memory sets are now developed for use in later sections.

(8.7) <u>Lemma</u>. (a) An intersection of memory sets is a memory set.(b) A concatenation of memory sets is a memory set.

-69-

(8.8) <u>Definition</u>. If \tilde{M} is a finite subset of Z^* , then mem[M] denotes the smallest memory set containing \tilde{M} , i.e. the intersection of all memory sets containing \tilde{M} .

(8.9) Definition. The essential part of memory set M is the subset:

ess[M] = {max[M
$$\cap$$
trunc[z]] : $\underline{z}\varepsilon(Z^+-M)$ } $\subseteq M$

<u>Interpretation</u>: There are elements of a memory set which may become memory states only during an initial transient of bounded duration. For example, in the memory set $Z^{\ell \uparrow} Z^+$, the memory state at time k consists of the min(k, l) most recent input-output pairs; if $k \ge l$, then the memory state consists of the l most recent input-output pairs; in this case $\operatorname{ess}[Z^{\ell \uparrow} Z^+] = Z^{\ell \uparrow} Z^+$. In the memory tree interpretation of a memory set, a node in M is contained in $\operatorname{ess}[M]$ if it has branches in Z^+ that are not contained in M.

(8.10) Lemma. If M is a memory set, then mem[ess[M]] = M.

(8.11) Lemma. If $\underline{z} \in \operatorname{ess}[M]$, then $T^{M}[\underline{z},z'] \in \operatorname{ess}[M]$.

Interpretation: Once the memory state enters ess[M], it cannot leave it.

(8.12) Definition. If M is a memory set, then

$$\ell_{\max}[M] = \max\{\ell(\underline{z}) : \underline{z} \in M\}$$
$$\ell_{\min}[M] = \min\{\ell(\underline{z}) : \underline{z} \in ess[M]\}$$

(8.13) Lemma. For any control strategy γ ,

$$\operatorname{Prob}_{\gamma}\{\underline{z}^{M}(k) \in \operatorname{ess}[M]\} = 1, \qquad k \in \mathcal{L}_{\max}[M], \infty >.$$

-71-

Interpretation: The memory state enters ess[M] by the $l_{max}[M]$ -th transition.

The notion of a memory state transition function, introduced in (8.5), may be extended to multiple-step transitions, as follows.

$$\mathbf{T}^{\mathsf{M}}[\underline{z},\underline{z}'] = \max[\mathsf{M} \cap \mathsf{trunc}[\underline{z} \ \underline{z}']], \ \underline{z} \in \mathsf{M}, \ \underline{z} \ \underline{z}' \in \mathsf{Z}^+$$

(8.15) Lemma.

$$\mathbf{T}^{\mathbf{M}}[\underline{z},\underline{z}'\underline{z}''] = \mathbf{T}^{\mathbf{M}}[\mathbf{T}^{\mathbf{M}}[\underline{z},\underline{z}'],\underline{z}''], \underline{z}\in\mathbf{M}, \underline{z}', \underline{z}''\in\mathbf{Z}^{+}.$$

Interpretation: (8.15) establishes consistency of (8.14) with (8.5) and (8.6).

9. Equivalence and Augmentation

This section introduces the "augmented system induced" by a memory set, an FPS whose state consists of a delayed internal state and a memory state. The augmented system will be seen to be "equivalent" to the original system, in the sense that they are indistinguishable on the basis of inputs and outputs alone.

(9.1) <u>Definition</u>. The <u>input-output</u> relation of an FPS is a mapping p: $Z^* \rightarrow [0,1]$ given by $p(z) = \pi(0)P(\underline{z})1$.

<u>Interpretation</u>: $p(\underline{z}) = p((\underline{u}, \underline{y}))$ is the probability that output word <u>y</u> will be emitted initially, given that the word of initial inputs was <u>u</u>. The mapping p is a summary of all externally discernable characteristics of an FPS.

(9.2) <u>Definition</u>. The <u>expected incremental reward function</u> of a VFPS is a mapping q : $Z^+(\pi(0)) \times U \rightarrow R$ given by $q(\underline{z},u) = T(\pi(0),\underline{z})q(u)$.

<u>Interpretation</u>: $q(\underline{z},u)$ is the expected incremental reward if, immediately following the generation of input-output history \underline{z} , input u is selected. The mappings p and q together summarize all externally discernable characteristics of a VFPS.

-72-
(9.3) <u>Definition</u>. Two or more FPS's are (mutually) <u>equivalent</u> if their input-output relations coincide. Two or more VFPS's are (mutually) equivalent if both their input-output relations and their expected incremental reward functions respectively coincide.

The problem of constructing an FPS specification having a given input-output relation is called <u>stochastic realization</u>. Stochastic realization has been extensively studied by Paz (1971). Picci, in hitherto unpublished research, formulated the conjecture that almost every FPS is equivalent to a state-calculable FPS. Picci's conjecture is disproved in Section 18 of this report.

Realization of a particular input-output relation generally entails the incorporation of artificial structure into the model. The smaller the number of states used, the greater the quantity of artificial structure incorporated; consequently state calculability may be inhibited. This is illustrated below:

(9.4) <u>Example</u>. Consider a free state-calculable FPS with U={1}, Y = {1,2,3,4}, N=8, $\pi(0) = e^{i}$, and

-73-

-74-																	
P(1 1)=	.1 .2 .3 .4 0 0 0 0	0 0 0 .1 .2 .3 .4	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0		P(2 1)=		0 0 0 0 0 0 0	.4 .3 .2 .1 0 0 0 0	0 0 0 .4 .3 .2 .1	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	r							_		-							-
P(3 1)=	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	.1 .2 .3 .4 0 0 0 0	0 0 0 .1 .2 .3 .4	0 0 0 0 0 0 0	0 0 0 0 0 0 0	P(4 1)=	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	.4 .3 .2 .1 0 0 0 0	0 0 0 .4 .3 .2 .1

This FPS is not only state-calculable; its state is uniquely determined by the most recent pair of outputs. It is equivalent to the 4-state FPS having transition probability matrices:

$$P(1|1) = \begin{bmatrix} .1 & 0 & .4 & 0 \\ .2 & 0 & .3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad P(2|1) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ .3 & 0 & .2 & 0 \\ .4 & 0 & .1 & 0 \end{bmatrix}$$
$$P(3|1) = \begin{bmatrix} 0 & .1 & 0 & .4 \\ 0 & .2 & 0 & .3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad P(4|1) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & .3 & 0 & .2 \\ 0 & .4 & 0 & .1 \end{bmatrix}$$

\$

Equivalence is verified by using the Markov property of consecutive output pairs. The second process, though equivalent to the first, is not state calculable.

The problem of computing, for a given FPS, an equivalent system having a minimal number of states is (to the author's knowledge) unsolved, and, in any event, very intricate. It is, of course, possible to eliminate states that are overtly redundant (see Paz [1971], Section I.B.2); the elimination of such redundancy may reduce computation time in the algorithms of Chapter IV in this report. On the other hand, it is by increasing the number of states that state-calculability is enhanced, and the problem is eventually solved. This situation is notably different from that found in linear systems, where observability occurs only when the state space has been reduced to a minimal dimension.

(9.5) <u>Definition</u>. The <u>augmented state set</u> induced by memory set M is the set $X[M] = \{[i,\underline{z}] : i \in S, \underline{z} \in M, e^{i}P(\underline{z})1 > 0\}$. The <u>augmented state</u> induced by M at time k is $x^{M}(k) = [s(k-l(\underline{z}^{M}(k))), \underline{z}^{M}(k)]$.

Example: Memory set $Z^{\ell*} \cap Z^+$ induces augmented states consisting of the internal state delayed by ℓ time units and the memory state of ℓ most recent input-output pairs.

(9.6) <u>Proposition</u>. For any FPS along with a memory set M, there is a unique equivalent FPS having internal state process $\{x^{M}(k)\}$.

-75-

<u>Proof</u>: It is sufficient to show that the augmented underlying process is a controlled Markov chain. This occurs provided that the sequence of controlled random variables $\{k-\ell(\underline{z}^{M}(k))\}$ is non-decreasing, a trivial consequence of (8.6).

(9.7) <u>Definition</u>. The FPS which is equivalent to a given FPS, and has internal states that are the augmented states (of the given system) induced by memory set M, is called the <u>augmentation</u> (of that FPS) <u>induced by</u> M, or, more informally, the augmented system induced by M.

A particularly efficient representation of the augmented system is obtained by recognizing that, although the augmented system has approximately N·#M states, each of these may effect a transition to at most N·#Z states. Specifically, $P_{\underline{z}}^{M}(i,j,z')$ may denote the probability that a transition to $[j,T^{M}(\underline{z},z')]$ will occur, given that the system is presently in augmented internal state $[i,\underline{z}]$ and that the input component of z' has been selected. It is given by the formula:

$$P_{\underline{z}}^{M}(i,j,z') = \begin{cases} \frac{\sum_{k \in S} P_{ij} T^{M}(\underline{z},z') P_{jk}(\underline{z}z'-T^{M}(\underline{z},z'))}{\sum_{k \in S} P_{ik}(\underline{z})}, & \text{if } \underline{z} \in Z^{+}(e^{i}) \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

The transformed incremental rewards are described by arrays:

$$q_{\underline{z}}^{M}(i,u) = \begin{cases} T(e^{i},\underline{z})q(u), & \text{if } \underline{z} \in Z^{+}(e^{i}) \\ undefined, & \text{otherwise} \end{cases}$$
(9.9)

Thus, the memory requirement to describe a particular augmented FPS is roughly $\#M \ge [(N^2 \le \#Z) + (N \le \#U)]$ words. The fact that this quantity grows linearly in #M is particularly significant as the augmented system has N $\ge \#M$ states, and the number of transition probability matrix entries might normally be expected to grow as the <u>square</u> of the number of augmented states.

10. Classification of Strategies

A strategy was defined, in Section 2d, as a rule for the determination of inputs, specified by probability distributions for u(k) conditioned on each past history [s(0),u(0),y(1),s(1),..., s(k-1),u(k-1),y(k),s(k)]. In such a form, however, the description of a strategy occupies an infinite tableau, and decisions must be made on the basis of infinite memory. Such difficulties are avoided by introducing a class of strategies that are totally specified by a finite tableau, called a policy.

(10.1) <u>Definition</u>. Let M by a memory set. Then ϕ is a <u>feasible</u> strategy adapted to M if there is a policy $\overline{\phi}$: M-> U such that

$$\operatorname{Prob}_{\phi} \{ u(k) = \overline{\phi}(\underline{z}^{M}(k)) \} = 1, \qquad k \varepsilon < 0, \infty > .$$

 $\overline{\phi}$ is then the <u>policy</u> (on M) <u>which realizes</u> ϕ . Φ [M] denotes the set of feasible strategies adapted to M. A feasible strategy that is adapted to some memory set is called a feasible adapted strategy.

<u>Interpretation</u>: If $\phi \in \Phi[M]$, then the inputs prescribed by ϕ can be determined by a finite memory controller whose memory set is M. Note that the input specified by ϕ and that specified by $\overline{\phi}$ need not coincide in situations which cannot occur when ϕ is used.

-78-

<u>Remark</u>: There exist finite-memory controllers that are not adapted (to any memory set).

(10.2) <u>Definition</u>. Let M be a memory set. Then ψ is a <u>perceptive</u> strategy adapted to M if there is a policy $\overline{\psi}$: X[M]-> U such that

$$\operatorname{Prob}_{\psi} \{ u(k) = \overline{\psi} [x^{M}(k)] \} = 1, \qquad k \varepsilon < 0, \infty >$$

 $\overline{\psi}$ is the <u>policy</u> (on X[M]) <u>which realizes</u> ψ . Ψ [M] denotes the set of all perceptive policies adapted to M. A perceptive strategy that is adapted to some memory set is called a <u>perceptive adapted strategy</u>.

<u>Interpretation</u>: If $\psi \in \Psi[M]$ then the inputs prescribed by ψ can be computed on the basis of $x^{M}(k)$ alone. Note again that the input specified by ψ and that specified by $\overline{\psi}$ need not coincide in situations which cannot occur when ψ is used.

(10.3) Lemma. (a) $\Phi[M] \subset \Psi[M]$.

(b) If MCM', then $\Phi[M] \subset \Phi[M]'$.

A (feasible or perceptive) adapted strategy induces on any FPS a free system whose underlying process is a Markov chain. Thus each augmented state may be characterized as <u>transient</u> or <u>recurrent</u>, under any particular adapted strategy. The memory state, likewise, may be given these attributes. (10.4) <u>Definition</u>. Consider an adapted strategy ψ , along with a memory state <u>z</u> \in M. If there is an i \in S such that the augmented state [i,<u>z</u>] is recurrent under ψ , then <u>z</u> is <u>recurrent under</u> ψ ; otherwise <u>z</u> is <u>tran</u>-<u>sient under</u> ψ .

The concept of transient and recurrent memory states has the following application: Suppose that some optimal (or ε -optimal) strategy has been specified, by means of policy on a memory set to which that strategy is adapted. If the performance index is average gain over an undiscounted infinite horizon, then the policy may be modified in a number of ways without affecting performance. In particular, the input specified for any <u>transient</u> memory state may be replaced by any other value, provided that it does not cause that memory state to become recurrent. In this manner, an optimal or suboptimal strategy adapted to a smaller memory set might be obtained.

-80-

11. Connectivity

Graph properties of Markov chains have been generalized to controlled Markov chains by Platzman [1977]. These concepts are now extended to FPS's.

(11.1) <u>Definition</u>. State i is <u>connected</u> to state j if there exists an input-output word $\underline{z} \in \mathbb{Z}^+$ such that $P_{ij}(\underline{z}) > 0$.

<u>Interpretation</u>: If i is connected to j, then it is possible for the system to travel from state i to state j, provided that appropriate inputs are accepted. This does not imply availability of reset inputs (which transfer the system to a given state with probability one).

(11.2) <u>Definition</u>. A <u>connected class</u> C is a set of mutually connected states, none of which is connected to a state outside C.

Clearly the state set of any FPS contains at least one connected class.

(11.3) <u>Definition</u>. An FPS is <u>connected</u> if its state set is a connected class.

(11.4) <u>Proposition</u>. If an FPS is connected, then there is an integer $\ell_{\chi} \epsilon < 1, N>$ and a $\chi \epsilon [0,1)$ such that, corresponding to any i,j ϵS , an

t

input word $\underline{\hat{u}} \in \mathbb{U}^*$ exists, satisfying $1 - \begin{bmatrix} \Sigma \\ \underline{y} \in Y^{k}(\underline{\hat{u}})^{P} i j((\underline{\hat{u}}, \underline{y})) \end{bmatrix} \leq \chi$.

<u>Remark</u>: ℓ_{χ} and χ may be computed by enumeration on U^{N*} . A more efficient algorithm seeks a least costly path from node i to node j, where $-\log \left[\Sigma_{y \in Y} P_{i'j'}(y|u) \right]$ is the cost of a link from i' to j' labeled with input u.

k

i

ŧ

In a connected FPS, it is possible to select inputs which allow the system to travel from any state to any other, <u>provided that the</u> initial state is known. This assumption is avoided in (11.5), below.

(11.5) <u>Definition</u>. An FPS is <u>reachable</u> if there is an integer ℓ_{ρ} and a $\rho \epsilon [0,1)$ such that, corresponding to every $\pi \epsilon \Pi_{N}$ and $j \epsilon S$, an input word $\hat{u} \epsilon U^{\rho}$ exists satisfying:

$$1 - \left[\sum_{\underline{y} \in Y} \ell(\underline{\hat{u}}) \sum_{i \in S} \pi_i P_{ij}((\underline{\hat{u}}, \underline{y})) \right] \leq \rho$$

<u>Interpretation</u>: If an FPS is reachable, then for any value of the information vector, there exists a sequence of inputs, which will drive the state to a desired value with probability $1-\rho$ or more.

(11.6) Proposition. An FPS is reachable iff it is connected.

<u>Proof</u>: Assume connectivity and set $\ell_{\rho} = \ell_{\chi}$; $\rho = 1 - \frac{1}{N} (1 - \chi)$. For any $\pi \in \Pi_N$, there is an i \in S such that $\pi_i \geq 1/N$. Selection of <u>u</u> according to (11.4),

-82-

for i as determined above and j as desired, satisfies the criterion in (11.5). That reachability implies connectivity is trivial.

<u>Remark</u>: Although reachability is the property required to establish the existence of optimal strategies in FPS control problems, connectivity is the property that can be decided algorithmically.

ĺ

Reachability can be established by inspection in some systems (e.g. a network of finite queues), and the bounds thus obtained will be tighter than those obtained through connectivity arguments.

(11.7) <u>Definition</u>. An FPS is <u>simply connected</u> if its state set consists of a single connected class, along with a (possibly empty) set of states which are transient under all feasible strategies.

(11.8) <u>Theorem</u>. Let C be the connected class in the state set of a simply connected FPS, and let M be a memory set. Then the augmented system induced by M is simply connected, having connected class

$$\hat{\mathbf{X}}[\mathbf{M}] = \{[\mathbf{i}, \underline{z}] : \mathbf{i} \in \mathbf{C}, \underline{z} \in \mathbf{ess}[\mathbf{M}] \cap \mathbf{Z}^{\dagger}(\mathbf{e}^{1})\} \subset \mathbf{X}[\mathbf{M}]$$

<u>Proof</u>: Augmented states of the form $[i,\underline{z}]$ with iES-C are clearly transient. Those of the form $[i,\underline{z}]$ with $\underline{z}\in M$ -ess[M] cannot occur after the $\ell_{\max}[M]$ -th transition, by (8.12). To show that $[i,\underline{z}]$ and $[i',\underline{z}']\in \widehat{X}[M]$ are connected, select j $\in C$ so that $P_{ij}(z) > 0$ and $\underline{z}'' \in Z^+$

-83-

so that $P_{ji}'(\underline{z}'') > 0$, the existence of the latter being guaranteed by (11.1). Then the augmented system may travel from state $[i,\underline{z}]$ to state $[i',\underline{z}']$ when the intervening input-output word is $\underline{z}''\underline{z}'$. \dagger

An algorithm which decides whether a given state-observable FPS is simply connected was introduced by Platzman [1977]. Simple connectivity of the underlying process is not necessarily implied by simple connectivity of the FPS, as is illustrated below:

ł

1.

(11.9) Example. Let U={1,2}, S={1,2,3}, Y={1},
$$\pi(0) = (1/2, 1/2, 0)$$
 and

$$P(1|1) = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1 \end{bmatrix}, P(1|2) = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The single connected class is $\{3\}$; states 1 and 2 are transient under all feasible strategies. Yet there exists a perceptive strategy under which states 1 and 2 form a recurrent class: this is the strategy u(k) = s(k).

The following algorithm will (in principle) determine whether or not a given FPS is simple connected. It does so by seeking to discover a strategy under which the state will never enter the connected class.

(11.10) <u>Algorithm</u>. Let C denote the unique connected class in the state set of a given FPS. Label each nonempty subset H of S-C with a binary digit denoted c(H); initially c(H)=0, for all $H \subset S-C$. Then

-84-

perform the following step, for every $H \subset S-C$, until the c(•) remain invariant: set c(H)=1 if, for every uEU, either

$$\sum_{i \in H} \sum_{y \in Y} \sum_{j \in C} P_{ij}(y|u) > 0$$

or

ł

1.

$$\Sigma_{y \in Y} c(\{j : P_{ij}(y|u) > 0, i \in H\}) > 0$$

Then the FPS is simply connected iff $c(H) \rightarrow 1$, for all nonempty subsets H of S-C.

(11.11) <u>Proposition</u>. If an FPS is simply connected, then there is an integer $\ell \leq 2^{\#(S-C)}$ such that the augmented system induced by M has a simply connected underlying process whenever $\ell_{\min}[M] \leq \ell$.

<u>Proof</u>: Define $H(k) = \{i : n_i(k) > 0\}$ and assume that $H(0) \subseteq S-C$. Then (11.10) implies the following: for any given values of H(k-1) and u(k-1), either H(k) may contain elements in C, or there is a y(k) such that H(k) will be distinct from H(0)... H(k-1). But there are $2^{\#(S-C)}-1$ nonempty subsets of S-C, so $H(2^{\#(S-C)})$ may contain elements in C, i.e. $Prob\{H(2^{\#(S-C)})\cap C \text{ is nonempty}\} > 0$ under any feasible strategy. Thus, internal states lying outside C are transient under any strategy adapted to M, provided that $\ell_{\min}[M] \ge 2^{\#(S-C)}$.

When S-C is a large set, the enumeration of subsets of S-C is computationally infeasible. A <u>sufficient</u> condition for simple

connectivity is now derived.

(11.12) Lemma. If, in the outcome of Algorithm (11.10), c(A)=1 and $B \supseteq A$, then c(B)=1.

(11.13) <u>Theorem</u>. An FPS is simply connected if its underlying process is simply connected.

<u>Proof</u>: Simple connectivity of the underlying process implies $c(\{i\})=1$, \forall icS-C. Hence, by (11.12), c(H)=1 for all nonempty subsets H of S-C. In (11.10), this is the sufficient condition for simple connectivity. -87-12. Metrics

This section introduces metrics that are used to measure the "closeness" of approximations to the information vector. The continuity of convex functions with respect to these metrics is then established.

a. Definition of the Metrics

(12.1) <u>Definition</u>. Consider $\pi \in \Pi_N$, $w \in \mathbb{R}_N$ with $w \ge 0$ and $\pi w \ge 0$. Then $\pi \circ w$ is a vector in Π_N having entries:

$$(\pi_{OW})_{i} = \frac{\pi_{i}^{W}_{i}}{\pi_{W}}$$

<u>Interpretation</u>: This is merely Bayes' operator. For example, π might represent <u>a priori</u> probabilities of some random variable, s, on sample space S. Given an event occurring with conditional probability w_i provided that i is the true value of s, then π ow is the vector of <u>a</u> posteriori probabilities of random variable s.

(12.2) <u>Definition</u>. For $\pi, \pi' \epsilon \Pi_N$, define

ł

(a) $\delta[\pi,\pi'] = \Sigma_{i\in S} (\pi_i - \pi'_i)^+;$ (b) $\Delta[\pi,\pi'] = \sup\{\delta[\pi \circ w, \pi' \circ w] : w \in \mathbb{R}_N, w > 0\};$ (c) $D[\pi,\pi] = 1 - \min[\{\pi_i/\pi'_i : \pi'_i > 0, i \in S\} \cap \{\pi'_i/\pi_i : \pi_i > 0, i \in S\}].$

Remark: An interpretation of these functions is given in section 12b,

following the derivation of certain fundamental properties.

(12.3) Lemma. (a)
$$0 \le \delta[\pi,\pi'] = 1/2 |\pi-\pi'| \le \Delta[\pi,\pi'] \le 1;$$

(b) $0 \le D[\pi,\pi'] \le 1$.

(12.4) Lemma. $\Delta(\pi \circ w, \pi' \circ w] \leq \Delta[\pi, \pi'], \forall \pi, \pi' \in \Pi_N, w \in \mathbb{R}_N, w \geq 0, \pi w \geq 0, \pi' w \geq 0.$

(12.5) <u>Proposition</u>. δ, Δ , and D are metrics on Π_N .

Proof: A metric satisfies

- (i) $f[\pi,\pi'] \ge 0$, (ii) $f[\pi,\pi'] = 0 \iff \pi = \pi'$, (iii) $f[\pi,\pi'] = f[\pi',\pi]$, (iv) $f[\pi,\pi'] + f[\pi',\pi''] \ge f[\pi,\pi'']$.
- (a) Since $|\cdot|$ is norm on \mathbb{R}_N , it defines a metric $|\pi-\pi'|$ on \mathbb{R}_N . By (12.3)(a), $\delta[\cdot, \cdot]$ is a metric on \mathbb{R}_N .

(b) Parts (i) and (ii) are trivial.
(iii)
$$\Delta[\pi,\pi'] = \sup\{\delta[\pi \circ w,\pi' \circ w] : w \in \mathbb{R}_N, w > 0\}$$

 $= \sup\{\delta[\pi' \circ w, \pi \circ w] : w \in \mathbb{R}_N, w > 0\}$
 $= \Delta[\pi',\pi].$
(iv) $\Delta[\pi,\pi'] + \Delta[\pi',\pi'']$
 $\geq \sup\{\delta[\pi \circ w,\pi' \circ w] + \delta[\pi' \circ w, \pi'' \circ w] : w \in \mathbb{R}_N, w > 0\}$
 $\geq \sup\{\delta[\pi \circ w,\pi'' \circ w] : w \in \mathbb{R}_N, w > 0\}$
 $= \Delta[\pi,\pi''].$

- (c) Parts (i) and (ii) are trivial.
 - (iii) $D[\pi,\pi'] = D[\pi',\pi]$ by symmetry.

(iv) For
$$\pi, \pi', \pi'' \in \Pi_N$$
, assume with no loss of generality
that $\pi_1'' > 0$ and $D[\pi, \pi''] = 1 - (\pi_1/\pi_1'')$. If $\pi_1' = 0$,
then $D[\pi', \pi''] = 1$ and $D[\pi, \pi'] + D[\pi', \pi''] \ge 1 \ge D[\pi, \pi'']$.
If $\pi_1' > 0$, then $(\pi_1/\pi_1'') = (\pi_1/\pi_1')(\pi_1'/\pi_1'')$ and $(1-D[\pi, \pi''])$
 $(1-D[\pi', \pi'']) \le 1 - D[\pi, \pi'']$, implying $D[\pi, \pi''] \le D[\pi, \pi']$
 $+ D[\pi', \pi''] - D[\pi, \pi'] \cdot D[\pi', \pi''] \le D[\pi, \pi'] + D[\pi', \pi'']$.

(12.6) Theorem. (Evaluation of Δ). For $\pi, \pi' \in \Pi_N$, define:

$$c_{1} = \min\{\pi_{i}^{\prime}/\pi_{i} : \pi_{i}^{\prime} > 0\},$$

$$c_{2} = \min\{\pi_{i}^{\prime}/\pi_{i}^{\prime} : \pi_{i} > 0\}.$$

Then

$$\Delta[\pi,\pi'] = \frac{1 - \sqrt{c_1 c_2}}{1 + \sqrt{c_1 c_2}}$$

<u>Proof</u>: If $\{i : \pi_i > 0\} \neq \{i : \pi'_i > 0\}$ then $\Delta[\pi, \pi'] = 1$. To see this, assume without loss of generality that there is an iES such that $\pi_i > 0$ and $\pi'_i = 0$. Then $\{w^m\} = \{(\frac{1}{m})1 + (1 - \frac{1}{m})e^i\}$ is a sequence in \mathbb{R}_N for which $\lim_{m \to \infty} \delta[\pi o w^m, \pi' o w^m] = 1$, since $(\pi o w^m)_i \to 1$ and $(\pi' o w^m)_i = 0$. By (12.3)(a), the sequence $\{w^m\}$ is supremal.

It follows from (12.5) that $\Delta[\pi,\pi] = 0$. The case $\pi > 0 \iff \pi' > 0$, $\pi \neq \pi'$ remains. By (12.5), $\Delta[\pi,\pi'] > 0$. Assume without loss of generality that $\pi > 0$ and $\pi' > 0$. Clearly $0 < c_1 < 1$ and $0 < c_2 < 1$; hence

$$-90-$$

0 < c₁ < c₂⁻¹ < ∞ .

Define:

$$\Delta_{\zeta}[\pi,\pi'] = \sup\{\delta[\pi ow,\pi' ow] : w \in \mathbb{R}_{N}, w > 0, \pi'w/\pi w = \zeta\}$$
$$= \sup\{\Sigma_{i \in S} \left(\pi_{i}w_{i} - \frac{\pi' i^{w}i}{\zeta}\right)^{+} : w \in \mathbb{R}_{N}, w \ge 0,$$
$$\pi w = 1, \pi' w = \zeta\}$$

which exists for all $c_1 \leq \zeta \leq c_2^{-1}$. Clearly

$$\Delta[\pi,\pi'] = \max\{\Delta_{\zeta}[\pi,\pi'] : c_1 \leq \zeta \leq c_2^{-1}\}.$$

Now $\Delta_{\zeta}[\pi,\pi']$ may be expressed as the solution of a linear program

$$\Delta_{\zeta}[\pi,\pi'] = \begin{bmatrix} \max: & aw \\ \text{subject to:} & \pi w = 1 \\ & \tilde{\pi}'w = 1 \\ & & w \ge 0 \end{bmatrix}$$

where

$$a_{i} = (\pi_{i} - \tilde{\pi}_{i}')^{+},$$
$$\tilde{\pi}_{i}' = \pi_{i}'/\zeta .$$

Any optimal basic w that solves this linear program has at most two non-zero entries; let these be denoted (i,j). Then

$$\Delta_{\zeta}[\pi,\pi'] = \begin{bmatrix} \max : & a_{i}w_{i} + a_{j}w_{j} \\ \text{subject to:} & w_{i} \ge 0, w_{j} \ge 0 \\ & \pi_{i}w_{i} + \pi_{j}w_{j} = 1 \\ & \tilde{\pi}'_{i}w_{i} + \tilde{\pi}'_{j}w_{j} = 1 \end{bmatrix}$$

Assume without loss of generality that

$$(i,j) \in \Lambda = \{(i,j) : (\pi'_i/\pi_i) < (\pi'_j/\pi_j)\}.$$

Now $a_i > 0$ and $a_j = 0$; for otherwise one of the following must hold:

(i) $a_{i} = 0, a_{j} = 0 \implies \Delta_{\zeta}[\pi, \pi'] = 0$ (ii) $a_{i} > 0, a_{j} > 0 \implies \Delta_{\zeta}[\pi, \pi'] = a_{i}w_{i} + a_{j}w_{j} = (\pi_{i} - \tilde{\pi}_{i}')w_{i}$ $+ (\pi_{j} - \tilde{\pi}_{j}')w_{j} = 1 - 1 = 0.$

(iii)
$$a_i = 0, a_j > 0 \implies (i,j) \notin \Lambda$$
.

Hence ζ must be such that $(\pi'_i/\pi_i) \leq \zeta \leq (\pi'_j/\pi_j)$. The basic feasible solution with indices (i,j) is now seen to take the form:

$$w_{i}^{*} = \frac{\widetilde{\pi}_{j}^{\prime} - \pi_{j}}{\pi_{i}\widetilde{\pi}_{j}^{\prime} - \pi_{j}\widetilde{\pi}_{i}} \ge 0$$
$$w_{j}^{*} = \frac{\pi_{i} - \widetilde{\pi}_{i}^{\prime}}{\pi_{i}\widetilde{\pi}_{i}^{\prime} - \pi_{i}\widetilde{\pi}_{i}^{\prime}}$$

-91-

and the corresponding expression for $\ \Delta_\zeta[\pi,\pi']$ is

-92-

$$\Delta_{\zeta,i,j}[\pi,\pi'] = aw^* = a_i w_i^*$$

$$= \frac{(\pi_i - \tilde{\pi}_i') (\tilde{\pi}_j' - \pi_j)}{\pi_i \tilde{\pi}_j' - \pi_j \tilde{\pi}_i'}$$

$$= \frac{(\zeta \pi_i - \pi_i') (\pi_j' - \zeta \pi_j)}{\zeta \cdot (\pi_i \pi_j' - \pi_j \pi_i')}$$

$$= \frac{\pi_i \pi_j' + \pi_j \pi_i' - \zeta \pi_i \pi_j - \zeta^{-1} \pi_i' \pi_j'}{\pi_i \pi_j' - \pi_j \pi_i'}$$

Now

$$\Delta[\pi,\pi'] = \max \left\{ \Delta_{\zeta}[\pi,\pi'] : c_1 \leq \zeta \leq c_2^{-1} \right\}$$
$$= \max \left\{ \Delta_{\zeta,i,j}[\pi,\pi'] : (i,j) \in \Lambda, (\pi'_i/\pi_i) \leq \zeta \leq (\pi'_j/\pi_j) \right\}$$
$$= \max_{(i,j) \in \Lambda} \left\{ \max_{\pi'_i/\pi_i} \leq \zeta \leq (\pi'_j/\pi_j) \right\}$$

Since $\Delta_{\zeta,i,j}[\pi,\pi']$ is <u>concave</u> in ζ , it achieves a unique maximum at

$$\zeta = \zeta^* = \sqrt{\frac{\pi i \pi j}{\pi_i \pi_j}}$$
. Thus

$$\Delta[\pi,\pi'] = \max_{(i,j)\in\Lambda} \left\{ \Delta_{\zeta^*,i,j} [\pi,\pi'] \right\}$$

t

b. Discussion

The metric δ , also known as the <u>Hajnal measure</u>, has many applications in the theory of ergodic Markov chains; see Paz [1971]. Informally, $\delta[\pi,\pi']$ is the (minimal) "quantity" of probability that would have to be "reassigned" in order to transform probability distribution π into probability distribution π' . Similarly, $\Delta[\pi,\pi']$ is the minimal quantity of conditional probability by which π and π' might differ if they were supplemented by identical observations (in the sense of the interpretation following (12.1)). Consequently two information vectors that are very close in the sense of δ may be far apart in the sense of Δ . This occurs because subsequent observations might cause the two information vectors (representing similar <u>a priori</u> assumptions) to be transformed into radically different conclusions.

(12.7) <u>Example</u>. Consider an FPS in which $\pi(0) = (1-\varepsilon, \varepsilon), \varepsilon <<1$, but it is desired to approximate $\pi(0)$ by $e^1 = (1,0)$. In a δ sense, $\pi(0)$ is "near" the approximation e¹; this indicates that the unconditional expectation of a function of the initial state will not be significantly affected by this approximation. Suppose, however, that every input-output pair which subsequently evolves corresponds to transition

probabilities $\begin{bmatrix} .1 & 0 \\ & \\ 0 & .9 \end{bmatrix}$. Given a sufficient number of input-output

pairs of this form, the conditional initial state probability vector tends to (0, 1); yet if the approximation $\pi(0) \cong e^1$ is used, then the conditional initial state probability vector will remain e^1 . Thus an initial error, of δ -sense magnitude ε <<1, may lead to an eventual error of δ -sense magnitude arbitrarily close to 1.

The distinction between δ and Δ is also illuminated by an examination of the topologies they induce on Π_N : the topology induced by δ is continuous, but Δ causes Π_N to be separated into <u>faces</u> of the form $\Pi_N(H) = {\pi \epsilon \Pi_N : \pi_i > 0 \iff i \epsilon H}$. These are exactly the subsets on which a convex function over Π_N is guaranteed to be continuous (with respect to the Euclidean metric; see Rockafellar [1970], Chapter 10).

c. Some Properties of Metric D

Metric D is introduced mainly for the purpose of making continuity of convex functions more explicit.

(12.8) <u>Proposition</u>. $\Delta[\pi,\pi'] \leq D[\pi,\pi'] \leq 4\Delta[\pi,\pi']$.

-94-

<u>Proof</u>: Let c_1, c_2 be as in (12.6), so

$$\Delta[\pi,\pi'] = \frac{1 - \sqrt{c_1 c_2}}{1 + \sqrt{c_1 c_2}}$$

$$D[\pi,\pi'] = 1 - \min(c_1,c_2)$$

If $c_1 = 0$ or $c_2 = 0$, then the result is trivial. However, if $c_1 \neq 0$ and $c_2 \neq 0$, then $\{i : \pi_i \neq 0\} = \{i : \pi_i' \neq 0\}$ and $c_1, c_2 \leq 1$, since the entries of π and π' (respectively) sum to one. Now:

$$\Delta[\pi,\pi'] \leq 1 - \sqrt{c_1 c_2} \leq 1 - \min(c_1, c_2) = D[\pi,\pi']$$

and

$$D[\pi,\pi'] \leq 1 - c_1 c_2 = 1 - \left(\frac{1 - \Delta[\pi,\pi]}{1 + \Delta[\pi,\pi']}\right)^2$$

$$= \frac{4\Delta[\pi,\pi']}{1+2\Delta[\pi,\pi']+\Delta^2[\pi,\pi']} \leq 4\Delta[\pi,\pi']. +$$

(12.9) Lemma. Suppose $\pi, \pi' \in \Pi_N$. Then $d \in [0, 1]$ satisfies $D[\pi, \pi'] \leq d$ if $\Xi \hat{\pi}, \hat{\pi}' \in \Pi_N$ such that:

$$\pi' = (1-d)\pi + d\pi$$

 $\pi = (1-d)\pi' + d\pi'$

<u>Proof</u>: If d = 0, the proof is trivial. Assume d > 0 and let $\hat{\pi} = [\pi' - (1-d)\pi]/d$, $\hat{\pi}' = [\pi - (1-d)\pi']/d$. Clearly $|\hat{\pi}| = |\hat{\pi}'| = 1$. But $d \ge D[\pi,\pi'] \iff 1-d \le (\pi'_i/\pi_i)$, $\forall i \in S \iff \hat{\pi} \ge 0$ and similarly $\hat{\pi}' \ge 0$.

-95-

Thus $\hat{\pi}, \hat{\pi}' \in \Pi_N \iff d \ge D[\pi, \pi'].$

(12.10) Corollary. Let
$$\pi = \sum_{i=1}^{\infty} \lambda_i \pi(i), \pi' = \sum_{i=1}^{\infty} \lambda'_i \pi'(i), \lambda_i, \lambda'_i \ge 0,$$

 $\pi(i), \pi'(i) \in \mathbb{N}_N$ and $\sum_{i=1}^{\infty} \lambda_i = \sum_{i=1}^{\infty} \lambda'_i = 1.$
Then:

†

†

$$D[\pi,\pi'] \leq \sup_{i,i'} D[\pi(i), \pi'(i)]$$

<u>Proof</u>: Let $d = \sup_{i,i'} D[\pi(i), \pi'(i)]$ and construct $\hat{\pi}(i,j), \hat{\pi}'(i,j) \in \mathbb{N}_N$ as in (12.9) so that:

$$\pi'(j) = (1-d)\pi(i) + d\hat{\pi}(i,j),$$

$$\pi(i) = (1-d)\pi'(j) + d\hat{\pi}'(i,j).$$

Then $\hat{\pi} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_i \lambda'_j \hat{\pi}(i,j)$ and $\hat{\pi}' = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_i \lambda'_j \hat{\pi}'(i,j)$ satisfy: $\pi' = (1-d)\pi + d\hat{\pi}$ $\pi = (1-d)\pi' + d\hat{\pi}'$

and, by (12.9), $D[\pi,\pi'] \leq d$.

d. Continuity of Convex Functions

(12.11) <u>Definition</u>. (a) V is the vector space of bounded realvalued continuous functions on Π_N .

(b)
$$|| \cdot ||$$
 is the "sup norm,"
 $|| v || = \sup_{\pi \in \Pi_N} |v(\pi)|$.

(12.12) <u>Definition</u>. For any vEV, \hat{v} EV denotes the <u>White projection</u> of v, given by

$$\hat{\mathbf{v}}(\pi) = \mathbf{v}(\pi) - \mathbf{v}(\mathbf{e}^{\mathbf{N}})$$

<u>Remark</u>: This projection generalizes a normalizing operation devised by D.J. White [1963], for value functions having finite domain, to avoid divergence in value iteration.

(12.13) Definition.

$$\|\mathbf{v}\|_{\mathrm{D}} = [\sup_{\pi \in \Pi_{\mathrm{N}}} \mathbf{v}(\pi)] - [\inf_{\pi \in \Pi_{\mathrm{N}}} \mathbf{v}(\pi)]$$

<u>Interpretation</u>: $\|\cdot\|_{D}$ is a norm on the subset \hat{V} of V, where $\hat{V} = {\hat{v} : v \in V} = {v \in V : v (e^N) = 0}.$

(12.14) <u>Lemma</u>. $||\hat{v}|| \leq ||v||_{D} = ||\hat{v}||_{D} \leq 2||v||$.

(12.15) Theorem. If vEV is convex, then

$$|\mathbf{v}(\pi) - \mathbf{v}(\pi')| \leq D[\pi,\pi'] ||\mathbf{v}||_{D}, \quad \forall \pi,\pi' \in \Pi_{N}.$$

<u>Proof</u>: Assume without loss of generality that $v(\pi) \ge v(\pi')$. Following (12.9), construct $\hat{\pi}'$ so that $\pi = (1 - D[\pi,\pi'])\pi' + D[\pi,\pi']\hat{\pi}'$. Then $v(\pi) - v(\pi') \le (1 - D[\pi,\pi'])v(\pi') + D[\pi,\pi']v(\hat{\pi}') - v(\pi') = D[\pi,\pi']$ $[v(\hat{\pi}') - v(\pi')] \le D[\pi,\pi'] ||v||_D$. (12.16) <u>Theorem</u>. For every convex function veV, there is a quantity $\| \mathbf{v} \|_{\Delta} \leq 4 \| \mathbf{v} \|_{D}$ such that

$$|\mathbf{v}(\pi) - \mathbf{v}(\pi')| \leq \Delta[\pi,\pi'] \|\mathbf{v}\|_{\Lambda}, \forall \pi,\pi' \in \Pi_{\mathbf{N}}$$

<u>Proof</u>: Trivial, by (12.8) and (12.15).

-99-13. Contraction Properities of T

If P is a stochastic matrix, and

$$\tilde{\alpha}[P] = \max_{i,j \in S} \delta[row_i[P], row_j[P]] < 1,$$

then, for any $\pi,\pi^* \epsilon \mathbb{I}_N$,

$$\delta[\pi P, \pi' P] \leq \tilde{\alpha}[P] \delta[\pi, \pi']$$
,

i.e. the transformation $f[\pi] = \pi P$ is a <u>contraction mapping</u> in Π_N . One consequence of this property is that $\{\pi P^k\}$ approaches a unique limit as $k \rightarrow \infty$; this is, of course, the vector of <u>steady-state probabilities</u> for a Markov chain having transition probability matrix P.

This section generalizes the concept of contractions in state probability vectors to the information vector transition function T [defined by (2.8) and (7.7)].

(13.1) <u>Definition</u>. An NxN substochastic matrix P is said to be <u>subrec</u>-<u>tangular</u> if, for every i,j,i',j'εS,

> $P_{ij} > 0$ and $P_{i'j'} > 0$. $\implies P_{ij'} > 0$ and $P_{i'j} > 0$

(13.2) <u>Definition</u>. If P is a substochastic matrix and $P \neq 0$, then

-100-

(a) $\alpha[P] = \max\{\Delta[row_{i}[P]/(row_{i}[P]1), row_{j}[P]/(row_{j}[P]1)\} : row_{i}[P] \neq 0, row_{i}[P] \neq 0\}.$

Also $\alpha[z]$ denotes $\alpha[P(z)]$.

ŀ

(b) $a[P] = max\{D[row_i[P]/(row_i[P]1), row_j[P]/row_j[P]1)\} : row_i[P] \neq 0, row_i[P] \neq 0\}.$

```
Also a[\underline{z}] denotes a[P(\underline{z})].
```

<u>Remark</u>: The evaluation of $\alpha[P]$ or a[P] by enumeration requires N³ operations. This is comparable to the effort expended in multiplying two NxN matrices.

(13.3) <u>Proposition</u>. (a) $0 \le \alpha[P] \le 1$ and $0 \le \alpha[P] \le 1$ for all substochastic matrices $P \ne 0$. (b) $\alpha[P] < 1 \iff a[P] < 1 \iff P$ is subrectangular. (c) $\alpha[P] = 0 \iff a[P] = 0 \iff P$ has rank 1.

The following lemma states a well-known property of the Hajnal measure.

(13.4) Lemma. If wern , and
$$\pi, \pi' \in \Pi_N$$
, then
 $|\pi w - \pi' w| \leq \delta[\pi, \pi'] \{ [\max_{i \in S} w_i] - [\min_{i \in S} w_i] \}$.

-101-

$$\pi \mathbf{w} - \pi' \mathbf{w} = \Sigma_{\mathbf{i} \in \mathbf{S}} (\pi_{\mathbf{i}} - \pi'_{\mathbf{i}}) \mathbf{w}_{\mathbf{i}}$$

$$= \Sigma_{\mathbf{i} \in \mathbf{S}} (\pi_{\mathbf{i}} - \pi'_{\mathbf{i}})^{+} \mathbf{w}_{\mathbf{i}} + \Sigma_{\mathbf{i} \in \mathbf{S}} (\pi_{\mathbf{i}} - \pi'_{\mathbf{i}})^{-} \mathbf{w}_{\mathbf{i}}$$

$$\leq \Sigma_{\mathbf{i} \in \mathbf{S}} (\pi_{\mathbf{i}} - \pi'_{\mathbf{i}})^{+} [\max_{\mathbf{i} \in \mathbf{S}} \mathbf{w}_{\mathbf{i}}] + \Sigma_{\mathbf{i} \in \mathbf{S}} (\pi_{\mathbf{i}} - \pi'_{\mathbf{i}})^{-}$$

$$[\min_{\mathbf{i} \in \mathbf{S}} \mathbf{w}_{\mathbf{i}}]$$

$$= \delta[\pi, \pi'] [\max_{\mathbf{i} \in \mathbf{S}} \mathbf{w}_{\mathbf{i}}] - \delta[\pi, \pi'] [\min_{\mathbf{i} \in \mathbf{S}} \mathbf{w}_{\mathbf{i}}] \cdot t$$

<u>Remark</u>: (13.4) may be viewed as a stronger version of (12.15), where v is constrained to be linear.

Using (13.4), it is possible to demonstrate (13.5).

(13.5) <u>Theorem</u>. (Contraction property of T). If $\eta, \eta' \in \mathbb{N}_N$ and $\underline{z} \in \mathbb{Z}^+(\eta, \eta')$ then

$$\Delta[T(n,z), T(n',z)] \leq \alpha[z] \Delta[n,n'].$$

<u>Proof</u>: Construct row vectors $\{\pi^i\}$ having elements

$$\pi_{j}^{i} = \begin{cases} P_{ij}(\underline{z})/\Sigma_{j' \in S} P_{ij'}(\underline{z}), & \text{if } i \in I(z) \\\\0, & \text{otherwise} \end{cases}$$

and define:

$$W = \{w \in \mathbb{R}_{\mathbb{N}} : w \ge 0, \ \eta \mathbb{P}(\underline{z})w > 0, \ \eta' \mathbb{P}(\underline{z})w > 0\}$$
$$\hat{W} = \{w \in \mathbb{R}_{\mathbb{N}} : w \ge 0, \ \eta w > 0, \ \eta' w > 0\}$$
$$I(\underline{z}, w) = \{i : \operatorname{row}_{i}[\mathbb{P}(\underline{z})]w > 0\}$$

Since 1, the N-vector of one's, is an element of each, W and \hat{W} are nonempty. Also, if $\underline{z} \in \mathbb{Z}^+(\eta, \eta')$ as required above, and weW, then $I(\underline{z}, w)$ is nonempty. Finally $\alpha(\underline{z}) = \max_{i,i' \in I(\underline{z})} \{\Delta[\pi^i, \pi^{i'}]\}$ by (13.2)(a). Now

$$\begin{split} & \Delta[\mathtt{T}(\mathtt{n},\underline{z}), \mathtt{T}(\mathtt{n}',\underline{z})] \\ & \leq \sup_{\mathsf{W}\in\mathsf{W}} \left\{ \Sigma_{j\in\mathsf{S}} \left(\frac{\Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} - \frac{\Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right\} \\ & = \sup_{\mathsf{W}\in\mathsf{W}} \mathtt{max}_{\mathsf{J}\subset\mathsf{S}} \left\{ \Sigma_{j\in\mathsf{J}} \left(\frac{\Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} - \frac{\Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \right\} \\ & = \sup_{\mathsf{W}\in\mathsf{W}} \mathtt{max}_{\mathsf{J}\subset\mathsf{S}} \left\{ \Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \left[\left(\frac{\Sigma_{j\in\mathsf{J}} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} - \frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{ij}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \left(\frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{ij}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} - \frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{ij}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \right) \right] \right\} \\ & = \sup_{\mathsf{W}\in\mathsf{W}} \mathtt{max}_{\mathsf{J}\mathsf{C}\mathsf{S}} \left\{ \Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \left[\left(\frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \left(\frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{ij}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \right) \right] \right\} \\ & = \sup_{\mathsf{W}\in\mathsf{W}} \mathtt{max}_{\mathsf{J}\mathsf{C}\mathsf{S}} \left\{ \Sigma_{i\in\mathsf{I}(\underline{z},\mathsf{W})} \left[\left(\frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{i}_{j}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \left(\frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{ij}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \right\} \\ & - \frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{n}_{i}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right) \left\{ \Sigma_{j\in\mathsf{S}} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{n}_{j}(\underline{z}) \mathtt{w}_{j}} \right\} \\ & - \frac{\Sigma_{j\in\mathsf{S}} \mathtt{n}_{i}^{\mathsf{P}}\mathtt{n}_{i}(\underline{z}) \mathtt{w}_{j}}{\mathtt{n}^{\mathsf{P}}(\underline{z}) \mathtt{w}} \right\} \right\}$$

Application of (13.4) now yields

\$

÷

$$\Delta[T(\eta, \underline{z}), T(\eta', \underline{z})]$$

$$\leq \sup_{w \in W} \max_{J \subseteq S} \left\{ \left[\sum_{i \in I(\underline{z}, w)} \left(\frac{\sum_{j \in S} \eta_{i}^{*} P_{ij}(\underline{z}) w_{j}}{\eta^{P}(\underline{z}) w} - \frac{\sum_{j \in S} \eta_{i}^{*} P_{ij}(\underline{z}) w_{j}}{\eta^{*} P(\underline{z}) w} \right)^{+} \right]$$

$$\cdot \left[\max_{i,i' \in I(\underline{z}, w)} \left(\frac{\sum_{j \in J} \pi_{j}^{i} w_{j}}{\pi^{i} w} - \frac{\sum_{j \in J} \pi_{i}^{i} w_{j}}{\pi^{i} w} \right) \right] \right\}$$

$$\leq \left[\sup_{\widehat{w} \in \widehat{W}} \left\{ \sum_{i \in I(\underline{z})} \left(\frac{\eta_{i} \widehat{w}_{i}}{\eta_{w}} - \frac{\eta_{i}^{*} \widehat{w}_{i}}{\eta^{*} w} \right)^{+} \right\} \right]$$

$$\cdot \left[\sup_{w \in W} \max_{i,i' \in I(\underline{z}, w)} \left\{ \sum_{j \in S} \left(\frac{\pi_{j}^{i} w_{j}}{\pi^{i} w} - \frac{\pi_{j}^{i} w_{j}}{\pi^{i} w} \right)^{+} \right\} \right]$$

$$\leq \Delta[\eta, \eta'] \cdot \alpha[\underline{z}],$$

where the last inequality follows from (12.4).

†

-103-

(13.6) <u>Corollary</u>. $\alpha[\underline{z} \ \underline{z}'] \leq \alpha[\underline{z}]\alpha[\underline{z}']$.

<u>Proof</u>: By (13.2), $\alpha[\underline{z} \underline{z}'] = \max_{i,i' \in I(\underline{z} \underline{z}')} \{\Delta[T(e^{i}, \underline{z} \underline{z}'), T(e^{i'}, \underline{z} \underline{z}')]\}$ But, following (13.5),

$$\Delta[T(e^{i}, \underline{z} \underline{z}'), T(e^{i'}, \underline{z} \underline{z}')]$$

$$= \Delta[T(T(e^{i}, \underline{z}), \underline{z}'), T(T(e^{i'}, \underline{z}), \underline{z}')]$$

$$\leq \alpha[\underline{z}']\Delta[T(e^{i}, \underline{z}), T(e^{i'}, \underline{z})]$$

$$\leq \alpha[\underline{z}']\alpha[\underline{z}]\Delta[e^{i}, e^{i'}]$$

$$= \alpha[\underline{z}']\alpha[\underline{z}].$$

$$\dagger$$

The corresponding result for a[z] is considerably weaker.

(13.7) <u>Proposition</u>. For $\eta, \eta' \in \Pi_N$, $\underline{z} \in \mathbb{Z}^+(\eta, \eta')$, $\mathbb{D}[\mathbb{T}(\pi, \underline{z}), \mathbb{T}(\pi', \underline{z})] \leq a[\underline{z}]$.

<u>Proof</u>: $T(\pi,\underline{z}) = \Sigma_{i\in S} \lambda_i T(e^i,\underline{z})$ where $\lambda_i = \frac{\pi_i(e^i P(\underline{z})1)}{\pi P(\underline{z})1}$. (12.10)

completes the proof.

Remark: This is not a contraction.

(13.8) Corollary. $a[\underline{z} \ \underline{z}'] \leq a[\underline{z}']$.

+

14. Detectability

a. Preview

Ľ

The intuitive notion of detectability was introduced in Section 5d; essentially, a detectable FPS has the property that the information vector is arbitrarily closely approximated on the basis of the memory state alone, if the memory set is sufficiently large. The extent to which an information vector depends on input-output pairs not contained in the memory state is given by $\alpha[\underline{z}^{M}(k)]$, the contraction induced on the information vector by the input-output pairs contained in the memory state. Recall that by (13.3)(b), $\alpha[\underline{z}^{M}(k)] < 1$ iff $P(\underline{z}^{M}(k))$ is subrectangular.

Four types of detectability will be defined; these are:

- (i) <u>strong subrectangularity</u> (SSR), a condition under which every transition probability matrix is subrectangular.
- (ii) <u>weak subrectangularity</u> (WSR), a condition under which every transition has positive probability of generating an inputoutput pair to which a subrectangular transition probability matrix corresponds.
- (iii) <u>strong detectability</u> (SDT), a condition under which there exists a memory set whose essential elements each correspond to subrectangular transition probability matrices.
- (iv) weak detectability (WDT), a condition under which the memory state at any given time has positive probability of corresponding to a subrectangular transition probability matrix.

-105-

These definitions differ in the type of approximation closeness implied, and in the complexity of procedures which establish this closeness. The following implications are trivially verified:

Each type of detectability will be investigated in turn. It will be shown, for each, that a finite-memory ε -optimal observer may be constructed, and how the estimation error and memory size interrelate.

b. Strong Subrectangularity

(14.1) <u>Definition</u>. An FPS satisfies the condition of <u>strong</u> <u>sub</u>rectangularity (SSR) if P(z) is subrectangular, $\forall z \in \mathbb{Z}$.

(14.2) Definition. For an FPS satisfying SSR, define

 $\alpha = \max_{z \in Z} \{\alpha[z]\}$ $\tau = (-\log\alpha) / (\log Z)$

Remark: The logarithms may be taken to any desired base.

Remark: By (14.1), SSR $\implies \alpha < 1$.

<u>Remark</u>: The definitions of τ given here and later in this section are consistent with (1.2).

(14.3) <u>Proposition</u>. If an FPS satisfies SSR then, for any m ϵ <0, ∞ >, k ϵ <0,m>

$$\alpha[z(k-m;k)] < \alpha^{m}$$

Proof: By (13.6),
$$\alpha[\underline{z}(k-m; k)] \leq \alpha[\underline{z}(k-m; k+1-m)] \alpha[\underline{z}(k+1-m; k+2-m)] \dots \alpha[\underline{z}(k-1; k)] \leq \alpha^{m}$$
 +

(14.4) <u>Theorem</u>. Consider an FPS satisfying SSR, along with the memory set $M = \{Z^{m^*} \cap Z^+\}$. Let $\hat{\pi} : M \to \Pi_N$ be a mapping satisfying:

$$\begin{cases} \hat{\pi}(\underline{z}) P(\underline{z}) \neq 0, & \underline{z} \varepsilon Z^{m} \cap Z^{+} \\ \hat{\pi}(\underline{z}) = \pi(0), & \underline{z} \varepsilon Z^{(m-1)} \cap Z^{+} \end{cases}$$

Define $\tilde{\eta}(\underline{z}) = T(\hat{\pi}(\underline{z}), \underline{z})$. Then

ł

$$\Delta[\eta(\mathbf{k}), \tilde{\eta}(\underline{z}^{\mathrm{M}}(\mathbf{k}))] \leq \alpha^{\mathrm{m}}, \quad k \in \{0, \infty\}$$

<u>Proof</u>: If k<m, then $\eta(k) = \tilde{\eta}(\underline{z}^{M}(k))$. But if $k \ge m$, then $\underline{z}^{M}(k) = \underline{z}(k-m, k)$. But if $k \ge m$, then $\underline{z}^{M}(k) = \underline{z}(k-m, k)$ and, by (14.3) and (13.5),

$$-108-$$

$$\Delta[\eta^{(k)}, \tilde{\eta}(\underline{z}^{M}(k))]$$

$$\leq \Delta[T(\eta(k-m), \underline{z}(k-m; k)), T(\hat{\pi}(\underline{z}^{M}(k)), \underline{z}(k-m; k))]$$

$$\leq \Delta[\eta(k-m), \hat{\pi}(\underline{z}^{M}(k))]\alpha^{m}$$

$$\leq \alpha^{m} +$$

<u>Interpretation</u>: There is a finite-memory observer requiring no more than $(\#Z)^m$ essential memory states which generates estimates of the information vector lying within α^m of its true value (in a Δ sense; (12.3)(a) determines δ and $|\cdot|$ -sense bounds on this error).

<u>Generalization</u>: The approximate relationship between essential memory m and maximum error ϵ is:

$$\varepsilon \approx m^{-\tau}$$
$$m \approx \varepsilon^{-1/\tau}$$
(14.5)

However, the strict bounds are:

$$\varepsilon \leq (m/\#Z)^{-1}$$

$$m \leq (\varepsilon/\alpha)^{-1/\tau}$$
(14.6)

Specifically, this means that no more than $(\epsilon/\alpha)^{-1/\tau}$ essential memory states are required to maintain a maximum error less than ϵ , and that m essential memory states can achieve an error bounded above by $(m/\#Z)^{\tau}$.
c. Weak Subrectangularity

(14.7) <u>Definition</u>. An FPS satisfies the condition of <u>weak subrec-</u> <u>tangularity</u> (WSR) if, for every isS, usU, there is a ysY such that P(y|u) is subrectangular and $e^{i}P(y|u) \neq 0$.

(14.8) Definition. For a FPS satisfying WSR, define

$$\overline{\alpha} = \max_{i \in S} \max_{u \in U} \sum_{y \in Y} \sum_{j \in S} P_{ij}(y|u)\alpha[(u,y)]$$

$$\overline{\tau} = (-\log\overline{\alpha})/(\log \#Z)$$

<u>Remark</u>: By (14.7), WSR $\implies \overline{\alpha} < 1$.

5.

1

1

(14.9) <u>Proposition</u>. If an FPS satisfies WSR, then for any me<0, ∞ > ke<0,m>, $\pi \epsilon \Pi_N$, and any strategy γ

$$\mathbb{E}_{\gamma}\{[\eta(k), T(\pi, \underline{z}(k-m; k))]\} \leq \alpha^{m}.$$

Proof: (By induction) If m=0 the result is trivial. But

$$E_{\gamma} \{ \alpha[\underline{z}(k-m; k)] \}$$

= $E_{\gamma} \{ \alpha[\underline{z}(k-m; k-1)] \cdot E_{\gamma} \{ \alpha[\underline{z}(k-1; k)] | \underline{z}(k-m; k-1) \} \}$
= $E_{\gamma} \{ \alpha[\underline{z}(k-m, k-1)] \cdot E_{\gamma} \{ \alpha[\underline{z}(k-1; k)] | z(k-m; k-1), s(k-1), u(k-1) \}$

-109-

$$-110-$$

$$= E_{\gamma} \{ \alpha[\underline{z}(k-m; k-1)] \cdot E_{\gamma} \{ \alpha[\underline{z}(k-1; k)] | \underline{z}(k-m; k-1), s(k-1), u(k-1) \}$$

$$= E_{\gamma} \{ \alpha[\underline{z}(k-m, k-1)]$$

$$\cdot \{ \Sigma_{y \in Y} \Sigma_{j \in S} P_{s(k-1)j}(y|u(k-1))\alpha[(u(k-1), y)] \} \}$$

$$\leq E_{\gamma} \{ \alpha[\underline{z}(k-m; k-1)] \cdot \overline{\alpha} \}$$

$$= \overline{\alpha} \cdot E_{\gamma} \{ \alpha[\underline{z}(k-(m-1); k)] \} +$$

(14.10) <u>Theorem</u>. Consider an FPS satisfying WSR, along with the memory set $M = \{Z^{M*} \cap Z^+\}$. Let $\hat{\pi} : M \to \Pi_N$ be a mapping satisfying:

$$\begin{cases} (\underline{z}) P(\underline{z}) \neq 0, & \underline{z} \varepsilon Z^{M} \cap Z^{+} \\ \hat{\pi}(\underline{z}) = \pi(0), & \underline{z} \varepsilon Z^{(m-1)} \cap Z^{+} \end{cases}$$

Define $\tilde{\eta}(\underline{z}) = T(\hat{\pi}(\underline{z}), \underline{z})$, then for any strategy γ ,

$$\mathbb{E}_{\gamma}[\Delta[n(k), \tilde{n}(\underline{z}^{m}(k))]] \leq \overline{\alpha}^{m}$$

<u>Proof</u>: If k<m, then $\underline{z}^{m}(k) \in \mathbb{M}^{m-1}$, and $\tilde{\eta}(k) = \eta(k)$. But if k>m, then $\ell(\underline{z}^{m}) = m$, and, using (13.6) and (14.3), $E_{\gamma}\{\Delta[\eta(k), \tilde{\eta}(\underline{z}^{m}(k))]\}$ $= E_{\gamma}\{\Delta[T(\eta(k-m), \underline{z}^{m}(k)), T(\hat{\pi}(\underline{z}^{m}(k)), \underline{z}^{m}(k))]\} \leq E_{\gamma}\{\alpha[\underline{z}^{m}(k)] \leq \overline{\alpha}^{m}.$ + Interpretation: There is a finite-memory observer requiring $(\#Z)^m$ essential memory states which generates estimates of the information vector lying on the average within $\overline{\alpha}^m$ of its true value (in a Δ sense).

<u>Generalization</u>: The approximate relationship between essential memory m and mean error $\overline{\epsilon}$ is:

$$\overline{\varepsilon} \cong m^{-\tau}$$

$$m \cong \overline{\varepsilon}^{-1/\tau}$$
(14.11)

However, the strict bounds are

$$\overline{\varepsilon} \leq (m/\#Z)^{-\tau}$$

$$m \leq (\overline{\varepsilon}/\overline{\alpha})^{-1/\tau}$$
(14.12)

Specifically, this means that no more than $(\overline{\tau}/\overline{\alpha})^{-1/\tau}$ essential memory states are required to maintain a mean error below $\overline{\epsilon}$, and that m essential memory states achieve a mean error bounded above by $(m/\#Z)^{-\tau}$.

d. Strong Detectability

(14.13) <u>Definition</u>. An FPS satisfies the condition of <u>strong detec-</u> <u>ability</u> (SDT) if there exists an integer \hat{k} such that P(z) is subrectangular, $\forall \underline{z} \in \mathbb{Z}^{\hat{k}} \cap \mathbb{Z}^{+}$. (14.14) Definition. For an FPS satisfying SDT, define

$$\alpha_{k} = \max_{\underline{z} \in \mathbb{Z}^{k} \mathbb{Z}^{+}} \{\alpha[\underline{z}]\}$$

$$\hat{\ell} = \min\{k : \alpha_{k} < 1\}$$

$$\alpha = \alpha_{\hat{\ell}}$$

$$\tau = (-\log \alpha) / (\hat{\ell} \log \#\mathbb{Z})$$

<u>Remark</u>: By (14.13), SDT $\implies \alpha < 1$.

<u>Remark</u>: If an FPS satisfies SDT, then definitions (14.2) and (14.14) are consistent, since $\hat{l}=1$.

(14.15) <u>Proposition</u>. If an FPS satisfies SDT, then for any m $\epsilon < 0, \infty >$, $k\epsilon < 0, m >$,

$$\alpha[\underline{z}(k-m; k)] \leq \alpha^{m \div \hat{k}}$$

$$\frac{\text{Proof}}{2}: \quad \text{By (13.7), } \alpha[\underline{z}(k-m; k)] \leq \alpha[\underline{z}(k-m; k-((m \div \hat{k})-1]\hat{k})]$$
$$\cdot \alpha[\underline{z}(k-((m \div \hat{k})-1)\hat{k}; k-((m \div \hat{k})-z)\hat{k}] \cdot \ldots \cdot \alpha[\underline{z}(k-\hat{k}; k)] \leq \alpha^{m \div \hat{k}} + \beta$$

(14.16) <u>Theorem</u>. Consider an FPS satisfying SDT, along with the of memory set $M = \{Z^{m*} \cap Z^+\}$. Let $\hat{\pi} : M \to \Pi_N$ be a mapping satisfying:

$$\begin{pmatrix} \hat{\pi}(\underline{z}) P(\underline{z}) \neq 0, & \underline{z} \varepsilon Z^{m} \cap Z^{+} \\ \hat{\pi}(\underline{z}) = \pi(0), & \underline{z} \varepsilon Z^{(m-1)} \wedge Z^{+} \end{pmatrix}$$

Define $\tilde{\eta}(\underline{z}) = T(\hat{\pi}(\underline{z}), \underline{z})$. Then $\Delta[\eta(k), \tilde{\eta}(\underline{z}^{m}(k))] \leq \alpha^{m \div \hat{k}}$

<u>Proof</u>: If k<m, then $\underline{z}^{m}(k) \in M^{m-1}$, and $\tilde{\eta}(k) = \eta(k)$. But if $k \ge m$, then $\ell(\underline{z}^{m}(k)) = m$, and, using (13.6) and (14.15), $\Delta[\eta(k), \tilde{\eta}(k))] = \Delta[T(\eta(k-m), \underline{z}^{m}(k)), T(\hat{\pi}(\underline{z}^{m}(k)), \underline{z}^{m}(k))] \le \alpha[\underline{z}^{m}(k)] \le \alpha^{\eta \div \hat{\ell}} +$

<u>Interpretation</u>: There is a finite-memory observer, requiring no more than $(\#Z)^m$ essential memory states which generates estimates of the information vector lying within $\alpha^{m \div \hat{\lambda}}$ of its true value (in a Δ sense).

<u>Generalization</u>: The approximate relationship between essential memory m and maximum error ϵ is

$$\varepsilon \approx m^{-\tau}$$

$$m \approx \varepsilon^{-1/\tau}$$
(14.17)

However, the strict bounds are :

$$\varepsilon \leq (m/(\#Z)^{\ell})^{-\tau}$$

$$m \leq (\varepsilon/\alpha)^{-1/\tau}$$
(14.18)

Specifically, this means that no more than $(\epsilon/\alpha)^{-1/\tau}$ essential memory states are required to maintain a maximum error below ϵ , and that messential memory states can achieve a maximum error bounded above by $(m/(\#Z)^{\ell})^{-\tau}$.

e. Weak Detectability

(14.19) <u>Definition</u>. If k is an integer and $\phi : Z^{k^*} \rightarrow U$, then for any $\underline{z} = (u_1, y_1)(u_2, y_2) \dots (u_k, y_k) \varepsilon Z^k$ define:

$$\sigma[\underline{z},\phi] = \begin{cases} 1, & \text{if } u_{j+1} = \phi[u_1,y_1) \dots (u_j,y_j)], \quad j \in <0, k-1 > \\ \\ 0 & \text{otherwise} \end{cases}$$

<u>Interpretation</u>: $\sigma[\underline{z}, \phi] = 1$ if $\underline{z}(0; k) = \underline{z}$ can evolve when inputs are selected according to the rule $u(k) = \phi[\underline{z}(0; k)]$. Thus, if $\pi(0)$ is the initial state probability vector, and inputs are selected according ϕ , then the probability distribution for random variable $\underline{z}(0; k)$ is:

$$\operatorname{Prob}\{\underline{z}(0; k) = \underline{z}\} = \sigma[\underline{z}, \phi](\pi(0)P(\underline{z})1)$$

(14.20) Definition.

$$\alpha_{k} = \max_{i \in S} \max_{\substack{\phi \in U}} (Z^{k*}) \begin{bmatrix} \sum_{\underline{z} \in Z^{k}} \sigma[\underline{z}, \phi] (e^{i}P(\underline{z})1)\alpha[\underline{z}] \end{bmatrix}$$

$$\overline{a}_{k} = \max_{i \in S} \max_{\substack{\varphi \in U}} (z^{k*}) \begin{bmatrix} \sum \sigma[\underline{z}, \phi](e^{i}P(\underline{z})1)a[z] \\ \underline{z} \in Z^{k} \end{bmatrix}$$

<u>Interpretation</u>: $\overline{\alpha}_{\ell}$ is the largest possible value of $E_{\gamma}\{\alpha[\underline{z}(k-\ell; k)]\}$ where γ is a feasible strategy. \overline{a}_{ℓ} likewise is the expectation of $a[\underline{z}(k-\ell; k)]$.

(14.21) <u>Definition</u>. An FPS satisfies the condition of <u>weak detecta-</u> <u>bility</u> (WDT) if there exists an integer \overline{k} such that $\overline{\alpha} \frac{1}{k} < 1$.

(14.22) Definition. For an FPS satisfying WDT, define

•
$$\overline{\ell} = \min{\{\ell \cdot \alpha_{\ell} < 1\}}$$

• $\overline{\alpha} = \overline{\alpha_{\ell}}$
• $\overline{a} = \overline{a_{\ell}}$
• $\tau = (-\log \overline{\alpha}) / (\overline{\ell} \log \#Z)$

Remark: By (14.21), $\overline{\alpha} < 1$.

<u>Remark</u>: If an FPS satisfies WSR, then definitions (14.8) and (14.22) are consistent. If an FPS satisfies SDT then $\overline{\ell} \leq \hat{\ell}$ and if $\overline{\ell} = \hat{\ell}$ then $\overline{\alpha} \leq \alpha$.

(14.23) <u>Proposition</u>. If an FPS satisfies WDT, then for any i ϵ <0, ∞ >, $k\epsilon$ <0,m>, $\pi\epsilon II_N$, and any feasible strategy γ ,

$$\mathbb{E}_{\gamma}\{\alpha[\underline{z}(k-m; k)]\} \leq \overline{\alpha}^{m \div \overline{k}}$$

<u>Proof</u>: Consider a transformed system in which the input is a mapping $\phi_k : Z^{(\ell-1)} \rightarrow U$, specified at intervals of $\overline{\ell}$ time units, each of which describes u(k), u(k+1), ..., u(k+ $\overline{\ell}$ -1) as functions of <u>e</u>, $\underline{z}(k; k+1), \underline{z}(k, k+2), \dots \underline{z}(k, k+\overline{\ell}-1)$ respectively. The output at time k is $\underline{z}(k-\overline{\ell}; k)$. This transformed system satisfies WSR; the desired result follows from (14.9). †

(14.24) <u>Theorem</u>. Consider an FPS satisfying WDT along with the memory set $M = \{Z^{m^*} Z^+\}$. Let $\hat{\pi} : M \to \Pi_N$ be a mapping satisfying:

$$\left\{ \begin{aligned} \hat{\pi}(\underline{z}) P(\underline{z}) \neq 0, & \underline{z} \varepsilon Z^{\mathbf{m}} Z^{\mathbf{+}} \\ \hat{\pi}(\underline{z}) = \pi(0), & \underline{z} \varepsilon Z^{(\mathbf{m}-1)} \overset{*}{\cap} Z^{\mathbf{+}} \end{aligned} \right\}$$

Define $\tilde{\eta}(\underline{z}) = T(\hat{\pi}(\underline{z}), \underline{z})$. Then, for any feasible strategy γ ,

$$\mathbb{E}_{\gamma}[\Delta[\eta(\mathbf{k}), \tilde{\eta}(\underline{\mathbf{z}}^{\mathbf{M}}(\mathbf{k}))]] \leq \overline{\alpha}^{\mathbf{m} \div \overline{\ell}}$$

<u>Proof</u>: If k<m, then $\underline{z}^{m}(k) \in \mathbb{Z}^{(m-1)*}$ and $\tilde{\eta}(k) = \tilde{\eta}(\underline{z}^{M}(k))$. But if $k \ge m$, then $\underline{z}^{m}(k) \in \mathbb{Z}^{m}$ and using (13.6) and (14.23),

$$-117-$$

$$E_{\gamma}\{\Delta[\eta(k), \tilde{\eta}(\underline{z}^{m}(k))]\} = E_{\gamma}\{\Delta[T(\eta(k-m), \underline{z}^{m}(k)), T(\hat{\pi}(\underline{z}^{m}(k)), \underline{z}^{m}(k)]\}$$

$$\leq E_{\gamma}\{\alpha[z^{m}(k)]\} \leq \overline{\alpha}^{m \div \overline{k}} +$$

<u>Interpretation</u>: There is a finite-memory observer, requiring at most $(\#Z)^{m}$ essential memory states, which generates estimates of the information vector lying on the average within $\overline{\alpha} \stackrel{m \div \overline{\lambda}}{\longrightarrow}$ of its true value (in a Δ sense).

<u>Generalizations</u>: The approximate relationship between essential memory m and mean error $\overline{\epsilon}$ is:

$$\overline{\varepsilon} \approx m^{-\tau}$$

$$m \approx \overline{\varepsilon}^{-1/\tau}$$
(14.25)

However, the strict bounds are:

$$\overline{\varepsilon} \leq (m/\# Z^{\overline{k}})^{-\tau}$$

$$m \leq (\overline{\varepsilon}/\overline{\alpha})^{-1/\tau}$$
(14.26)

Specifically, this means that no more than $(\overline{\epsilon}/\overline{\alpha})^{-1/\tau}$ essential memory states are required to maintain a mean error below $\overline{\epsilon}$, and that m essential memory states can achieve a mean error bounded above by

 $(m/\#Z^{\overline{\ell}})^{-\tau}$.

15. Decomposition of a Free FPS into

Detectable Parts

This section is concerned with FPS's that are not detectable. An example of such a system was given in Section 5a. An FPS fails to be detectable when some function of the (internal or augmented) state may be recursively updated, but is never identified exactly. This function depends on the input process, and for this reason, the decomposition of an FPS into detectable parts is meaningful only in the case of a free FPS.

(15.1) <u>Definition</u>. (a) $C_{i}(k) = \{j : P_{ij}(\underline{z}(0;k)) > 0\} \subseteq S$ (b) $C(k) = \{C_{i}(k) : i \in S\} - \{\emptyset\}$ (c) $\mu(k) = \#C(k)$.

<u>Interpretation</u>. $C_i(k)$ is the set of possible present internal states given that s(0)=i. C(k) is the set of possible state configurations which may result from specification of the initial state. In a detectable system, $\mu(k) \rightarrow 1$.

(15.2) <u>Proposition</u>. (a) C_{i} , (k+1) = { $j : P_{ij}(y(k+1)|u(k)) > 0$, $i \in C_{i}$, (k)}

-118-

(b)
$$C(k+1) = \{\{j : P_{ij}(y(k+1)|u(k))>0, i \in C', C' \in C(k)\} - \{\emptyset\}$$

(c) $\mu(k+1) < \mu(k)$.

ł

Consider a free <u>connected</u> FPS, i.e. one whose underlying process has an entirely recurrent state set. If pairs [C(k), s(k)]are considered in place of the internal state, recurrent chains of such pairs may be determined. By (15.2)(c), $\mu(k)$ is constant within each recurrent chain. If every recurrent chain is such that $\mu(k)=1$, then the system satisfies WDT, because if C(k) is at any time reset to $\{\{i\} : \eta_i(k) > 0\}$, it will tend to a value containing one element, indicating that the word of intervening input-output pairs had a subrectangular transition probability matrix. On the other hand, if $\mu(k)$ remains greater than one for all time, then subrectangular inputoutput words cannot occur.

If the free connected FPS is such that $\mu(k)$ need not tend to one, then the process can be described as one of at most N detectable models, which may be asymptotically identified. This decomposition is effected by allowing $\mu(k)$ to reach its minimal value, and by then assuming that the current state lies in a particular element of C(k). This determines the element of C(k) containing the current state at all times, and the likelihood of a particular model can be updated periodically. Since only one model is correct, its likelihood will approach one - unless some models are identical, in which case it doesn't matter which is identified.

Note that, in order to determine whether a free connected FPS is detectable, one determines whether the process $\{\{i : n_i(k)>0\}\}$ (which equals C(k) if $\mu(k)=1$) is simply connected in 2^S . This illustrates a duality between the notions of connectivity and detectability.

The decomposition procedure is readily extended to general free FPS's. Transient states may be ignored since information vector entries corresponding to transient states have expectation that vanishes geometrically as the number of available (most recent) input-output pairs increases, and contemplation of an infinite past eliminates transient states at time zero. If the free FPS has more than one recurrent class, then the test for detectability is performed on the system restricted to one recurrent class at a time; certain recurrent classes may be identified exactly on the basis of a particular output configuration (that eventually occurs); others may be identified on the basis of the infinite past; still others may be identical from an inputoutput point of view.

Since the decomposition depends crucially on a classification of states as transient or recurrent, it cannot be extended to FPS's with inputs; in practical applications, though, it often suffices to consider the free system under a particular adapted strategy.

16. Stochastic Realization of a Free FPS

The stochastic realization problem includes that of deciding whether or not a given free FPS is equivalent to a state-calculable one. Such a property would be desirable because it would indicate that after a sufficiently long initial identification procedure, the present state could be arbitrarily closely known, and the optimal strategy in the steady-state could be computed by assuming that the internal state was known exactly. This property would be equivalent to the following condition: $\{\eta(k)\}$ has a finite number of cluster points in Π_N with probability one. It will be suggested here that such is generally not the case.

(16.1) <u>Theorem</u>. For a given free, connected, strongly subrectangular, FPS in minimal state form (Paz [1971]), the following statements are equivalent:

(a) The FPS is equivalent to one that is state calculable.

(b) The process $\{z(k-N(N-1)/2; k)\}$ is a Markov chain.

<u>Proof</u>: Assume first that every matrix of the form $P(\underline{z})$, $\underline{z} \in \mathbb{Z}^{N(N-1)/2}$ has rank zero or rank one. Then (a) and (b) trivially follow.

Now assume that there is a $\underline{z} \in \mathbb{Z}^{N(N-1)/2}$ such that $P(\underline{z})$ has rank greater then one. Then there is a $\hat{\underline{z}} \in \mathbb{Z}^+$ and i, j is such that

-121-

$$\underline{z} = \underline{z}' \underline{\hat{z}} \underline{z}''$$

$$P_{\underline{i}\underline{i}}(\underline{\hat{z}}) > 0$$

$$P_{\underline{j}\underline{j}}(\underline{\hat{z}}) > 0$$

ł

and, naturally, P(\hat{z}) has rank greater than one, and it is subrectangular (by SSR). By Perron's theorem, P(\hat{z}) has a left eigenvector $\hat{\pi}$ corresponding to the eigenvalue of largest magnitude, and satisfying $\hat{\pi}_{j} > 0$, $j \in J(\hat{z})$. Consider the set $\{T(\pi, (\hat{z})^{k}) : k \in <1, \infty >\}$. Clearly this set either contains exactly one element or else it consists of an infinite number of distinct elements. Using the word \underline{z} selected above, define $\hat{\eta}(\underline{z}) = T(\hat{\pi}, \underline{z}^{"})$. For any $\underline{z} \in \mathbb{Z}^{N(N-1)/2}$ such that $P(\underline{z})$ has rank one, define $\hat{\eta}(\underline{z}) = T(e^{i}, \underline{z})$ for any $i \in I(\underline{z})$.

Now, if it is true that, for any \underline{z}^1 , $\underline{z}^2 \varepsilon z^{(N(N-1)/2)} \cap z^+$,

$$T(\hat{\eta}(\underline{z}^1), \underline{z}^2) = \hat{\eta}(\underline{z}^2)$$

then (a) and (b) follow trivially. On the other hand if

$$T(\hat{\eta}/(\underline{z}^{1}), \underline{z}^{2}) \neq \hat{\eta}(\underline{z}^{2})$$

for some \underline{z}^1 , $z^2 \epsilon Z^{(N(N-1)/1)} \cap Z^+$, then an infinite number of distinct possible information vector values exist (by decomposing \underline{z}^2 in the manner described above), and (a) and (b) are both false. \dagger

An algorithm based on the proof of (16.1) decides whether or not a free FPS is equivalent to one that is state-calculable. A similar algorithm will perform the same test for an arbitrary FPS. The FPS is first decomposed into connected detectable components, following the analysis in Section 15. The possible information vector values are then enumerated. However, whenever an information vector value results from a transition having subrectangular probability matrix of rank greater than one, this information vector must coincide with the Perron eigenvector for that transition probability matrix. Since the enumerations are performed on extremely large sets, this decision algorithm is computationally infeasible in all but the trivial cases. At the same time, it should be clear that in very few cases will the FPS actually be equivalent to a state-calculable system.

A more practical approach to stochastic realization is to <u>appro-</u><u>ximate</u> the FPS by a system whose state is the memory state induced by a large memory set. This FPS is state-calculable because memory states may be recursively computed, and the closeness of the approximation may be established by detectability arguments.

-123-

-124-

CHAPTER III

STRUCTURE OF OPTIMAL CONTROLLERS

17. Finite-horizon Problems

The finite-horizon partially-observable Markov decision problem was solved by Sondik [1971]. His results are reviewed here, in slightly modified form.

Sondik showed that every finite-horizon problem has an optimal finite-memory solution. This may be demonstrated in a number of ways. One of these is to argue that the information vector assumes values of the form $\{T(\pi(0), \underline{z}) : \underline{z} \in \mathbb{Z}^+(\pi(0)) \cap \mathbb{Z}^{k^*}\}$. Since this is a finite set, the problem may be restated as a finite-horizon Markov decision problem with perfect state observation, where the memory state $\underline{z}(0; k)$ is regarded as the state variable. The optimal policy will then determine the input on the basis of this memory state. A dual argument states that at any time k, the remaining strategy (given the present time and information state) can be expressed as a policy $\phi_{[k,\eta(k)]}: \mathbb{Z}^{(k-k)^*} \to \mathbb{U}$. Since there are only a finite number of these, the optimal input may be computed by enumeration. A computational procedure which is based on the latter argument is now described.

Consider a modification of the finite-horizon FPS control problem in which the information vector is regarded as a perfectly-observed state variable. The expected incremental reward at time k takes the form:

$$E\{r(k) \mid \eta(k), u(k)\} = \eta(k)q(u(k))$$
(17.1)

The problem, consequently, is to maximize the performance index $E\{\Sigma_{k=0}^{k}b(k) \ \eta(k)q(u(k))\}$. Application of Bellman's Principle of Optimality yields

$$v^{k-1,K}[\pi] = \max_{u \in U} \{b(k)\pi q(u) + \sum_{y \in Y} (\pi P(y|u)1)v^{k,K}[T(\pi,u,y)]$$
$$v^{k,K}(\pi) = 0$$
(17.2)

where $v^{k,K}$ is a real-valued function on Π_N representing the value of being in a particular information state at time k for a problem with horizon K. For ease of notation, extend the domain of $v^{k,K}$ to $\tilde{\Pi}_N$ by defining

$$\mathbf{v}^{\mathbf{k},\mathbf{K}}[\tilde{\pi}] = \begin{cases} (\tilde{\pi}1)\mathbf{v}^{\mathbf{k},\mathbf{K}}[\tilde{\pi}/(\tilde{\pi}1)], & \text{if } \tilde{\pi} \neq 0 \\ 0, & \text{if } \tilde{\pi} = 0 \end{cases}$$
(17.3)

Then (17.2) becomes

ł

$$\mathbf{v}^{k-1,K}[\pi] = \max_{\mathbf{u}\in\mathbf{U}} \{\mathbf{b}(\mathbf{k})\pi\mathbf{q}(\mathbf{u}) + \sum_{\mathbf{y}\in\mathbf{Y}} \mathbf{v}^{k,K}[\pi\mathbf{P}(\mathbf{y}|\mathbf{u})]\}$$

$$\mathbf{v}^{K,K}[\pi] = 0$$
(17.4)

Now define finite subsets of $R_{_{\rm N}}$:

$$W^{k-1,K} = \{q(u) + \Sigma_{y \in Y} P(y|u)w_{y} : u \in U, w_{y} \in W^{k,K}, y \in Y\}\}$$

$$W^{K,K} = \{0\}$$
(17.5)

Eq. (17.4) may now be expressed as

11

$$\mathbf{v}^{k,K}[\pi] = \max\{\pi \mathbf{w} : \mathbf{w} \in \mathbf{W}^{k,K}\}$$
(17.6)

Thus, each function $v^{k,K}$ is convex and piecewise-linear with a finite number of faces. Each region of Π_N throughout which $v^{k,K}$ is linear, is a region where the strategy-to-go is constant; thus the elements of $W^{k,K}$ may be viewed as controller states. Specifically, if $v^{k,K}[\pi] = \pi \hat{w}$ and $\hat{w} = q(\hat{u}) + \sum_{y \in Y} P(y|\hat{u}) \hat{w}_y$, then an optimal controller faced with information vector π at time k selects input \hat{u} and is assured that $v^{k+1,K}[\eta(k+1)] = \eta(k+1) \hat{w}_{y(k+1)}$.

The size of each set $W^{k,K}$ may be reduced by eliminating elements that correspond to memory states which can never be reached. Specifically, if $w \in W^{k,K}$ is such that $\min_{\pi \in \Pi_N} \{v^{k,K}[\pi] - w\pi\} > 0$, then w can be eliminated from $W^{k,K}$ without loss of generality. This test is effected through the solution of a simple linear program.

Of course, this solution procedure is not necessarily applicable to infinite-horizon problems, because the size of $W^{0,K}$ can increase without bound as $K \rightarrow \infty$. Drake [1962, 1968] and Sondik [1971] have noted that, in certain problems, $W^{0,K}$ converges (except for a constant gain) in a finite number of iterations; a finite-memory realization of the infinite-horizon optimal controller is thus obtained. Although it is true, in the infinite-horizon problem, that existence of a finitememory realization of the optimal controller implies that the value function is piecewise-linear with a finite number of faces, this does <u>not</u> in turn imply that the number of faces in the approximations $v^{0,K}$ is bounded. Thus $\#W^{0,K}$ may diverge as $K \rightarrow \infty$, although, in the limit, a piecewise-linear relative value function with a finite number of faces is approached. Furthermore, many of the faces in $W^{0,K}$ may correspond to transient memory states. In the Machine Maintenance and Repair Problem, the optimal value function is characterized by well over thirty faces, only eight of which are required to realize an optimal controller.

-127-

18. State-Observable Problems

A state-observable FPS is, of course, equivalent to a Markov decision process. This section reviews known methods for its solution; additional references are given in Section 4. Since y(k) uniquely determines s(k), $P_{ij}(u)$ will denote $\sum_{y \in Y} P_{ij}(y|u)$.

The finite-horizon problem is solved by computing value functions:

$$\mathbf{v}^{K-1,K}(\mathbf{i}) = \max_{\mathbf{u}\in\mathbf{U}} \{\mathbf{b}(\mathbf{k})\mathbf{q}_{\mathbf{i}}(\mathbf{u}) + \sum_{\mathbf{j}\in\mathbf{S}} P_{\mathbf{i}\mathbf{j}}(\mathbf{u})\mathbf{v}^{\mathbf{k},K}(\mathbf{j})\}$$

$$(18.1)$$

The optimal decision at time k-1, for a system in state i, is the input u which maximizes (18.1). Thus the optimal strategy selects inputs on the basis of current state and time alone.

If $b(k) = \beta^k$, then $v^{k,K} = \beta^k v_0^{K-k}$ where

$$v_{0}^{m}(i) = \max_{u \in U} \{q_{i}(u) + \beta \Sigma_{j \in S} P_{ij}(u) v_{0}^{m-1}(j) \}$$

$$v_{0}^{0}(i) = 0$$
(18.2)

As $m \rightarrow \infty$, v_0^m approaches a limit v* satisfying:

$$\mathbf{v}^{*}(\mathbf{i}) = \max_{\mathbf{u}\in U} \{ \mathbf{q}_{\mathbf{i}}(\mathbf{u}) + \beta \Sigma_{\mathbf{j}\in S} P_{\mathbf{i}\mathbf{j}}(\mathbf{u})\mathbf{v}^{*}(\mathbf{j}) \}$$
(18.3)

Thus the optimal strategy in the infinite-horizon discounted problem determines inputs on the basis of the present state alone.

Eq. (18.3) can be solved by computing the sequence $\{v_0^m\}$ according to (18.2). This computational procedure is called <u>value iteration</u>.

If β is large (i.e. near unity), then computational instability may occur. This difficulty is avoided by defining:

$$g = (1-\beta)v^{*}(N)$$
(18.4)
 $\hat{v}^{*}(1) = v^{*}(1) - v^{*}(N)$

Eq. (18.3) now becomes

$$\hat{\mathbf{v}}^{*}(\mathbf{i}) = \max_{\mathbf{u}\in\mathbf{U}} \{q_{\mathbf{i}}(\mathbf{u}) + \beta \Sigma_{\mathbf{j}\in\mathbf{S}} P_{\mathbf{i}\mathbf{j}}(\mathbf{u})\hat{\mathbf{v}}^{*}(\mathbf{j})\} - g \qquad (18.5)$$
$$\hat{\mathbf{v}}^{*}(\mathbf{N}) = 0$$

The function \hat{v}^* is called a <u>relative value function</u>, and g* is called the <u>average gain</u>. This follows from the decomposition:

$$v^{*}(i) = \hat{v}^{*}(i) + \frac{g}{1-\beta} = \hat{v}^{*}(i) + \sum_{k=0}^{\infty} \beta^{k} g$$

Eq.(18.5) might be solved by White's algorithm

$$\tilde{v}_{0}^{m-1}(i) = \max_{u \in U} \{q_{i}(u) + \beta \Sigma_{j \in S} P_{ij}(u) \hat{v}_{0}^{m-1}(j) \}$$

$$\hat{v}_{0}^{m}(i) = \tilde{v}^{m-1}(i) - \tilde{v}^{m-1}(N)$$

$$\hat{v}_{0}^{0}(i) = 0$$
(18.6)

On the basis of \tilde{v}^m and \hat{v}^m , <u>MacQueen bounds</u> on g may be computed:

$$\min_{i \in S} \left[\tilde{v}_0^m(i) - \hat{v}_0^m(i) \right] \leq g \leq \max_{i \in S} \left[\tilde{v}_0^m(i) - \hat{v}_0^m(i) \right]$$
(18.7)

Eq (18.5) may also be regarded as a linear program:

min:
subject to:

$$\hat{v}^*(i) \ge q_i(u) + \beta \Sigma_{j \in S} P_{ij}(u) \hat{v}^*(j) - g, i \in S, u \in U$$

 $\hat{v}^*(N) = 0$
(18.8)

As it turns out, an optimal basic solution will satisfy (18.8) with strict equality for exactly one input corresponding to each state. Thus, an optimal policy is obtained.

Now consider the infinite-horizon <u>undiscounted</u> problem. When $\beta=1$, $\{\hat{v}_0^m\}$ is not guaranteed to remain bounded; and even if it remains bounded, it is not guaranteed to converge. Boundedness occurs if the average gain does not depend on the initial state, and convergence occurs if the optimal system if aperiodic.

Assume first that $\{\hat{v}_0^m\}$ is bounded. Then difficulties relating to convergence are avoided by defining the problem as a limit of discounted problems as β^{1} . Thus a solution to the linear program

min: g
subject to:
$$\hat{v}*(i) \ge q_i(u) + \sum_{j \in S} P_{ij}(u)\hat{v}*(j) - g,$$

 $i \in S, u \in U$
 $\hat{v}*(N) = 0$ (18.9)

-130-

is sought. Computationally, convergence is assured by <u>Schweitzer's</u> (damped value-iteration) algorithm

$$\tilde{v}^{m-1}(i) = \max_{u \in U} \{ q_i(u) + \Sigma_{j \in S} P_{ij}(u) \hat{v}_0^{m-1}(j) \}$$

$$\hat{v}^m(i) = \tilde{\beta} [\tilde{v}^{m-1}(i) - \tilde{v}^{m-1}(N)] + (1 - \tilde{\beta}) \hat{v}^{m-1}(i) \qquad (18.10)$$

$$\hat{v}^0(i) = 0, \quad 0 < \tilde{\beta} < 1$$

Odoni bounds on g may be computed

$$\min_{i \in S} [\tilde{v}^{m}(i) - \hat{v}^{m}(i)] \leq g \leq \max_{i \in S} [\tilde{v}^{m}(i) - \hat{v}^{m}(i)]$$
(18.11)

Simple connectivity is a sufficient condition for $\{\hat{v}^m\}$ to be bounded. A general Markov decision problem may be solved by decomposing it into simply connected subproblems, as described below:

(18.12) Algorithm (Solution of a Markov decision problem)

<u>Step 1</u>. Let \tilde{S} denote the "remaining region of S" and set $\tilde{S}=S$. Let $\tilde{U}(i)$ denote the admissible input set when the system is known to be in state i, and set $\tilde{U}(i) = U$, its. Also set $\tilde{g}(i) = Q_{\min}$, its.

<u>Step 2</u>. Determine a connected class C in (\tilde{S}, \tilde{U}) , the Markov decision process with state set restricted to \tilde{S} and input set restricted to $\tilde{U}(i)$ when the system is in state i. Since \tilde{S} is nonempty, such a connected class exists.

<u>Step 3</u>. Solve the Markov decision problem within (C, U) to obtain a gain g. Set $\tilde{g}(i) = g$, $\forall i \in C$. <u>Step 4</u>. Set $\tilde{S} = \tilde{S}-C$. For every triplet $i \in \tilde{S}$, $u \in \tilde{U}(i)$, $j \in S-\tilde{S}$, that satisfies $P_{ij}(u) > 0$, set $\tilde{U}(i) = \tilde{U}(i) - \{u\}$. If $\tilde{U}(i) = \emptyset$, then set $\tilde{S} = \tilde{S} - \{i\}$. Repeat this elimination process until \tilde{S} , $\{\tilde{U}(i) : i \in \tilde{S}\}$ have been minimized. If \tilde{S} is nonempty, then return to step 2.

Step 5. Solve the system of equations:

$$g(i) = \max(\tilde{g}(i), \max_{u \in U} \sum_{j \in S} p_{ij}(u)g(j))$$

This may be done by value iteration:

ŝ

$$g^{m}(i) = \max(\tilde{g}(i), \max_{u \in U} [\Sigma_{j \in S} P_{ij}(u)g^{m-1}(j)])$$
$$g^{0}(i) = \tilde{g}(i).$$

or by solving the linear program:

min: e
subject:
$$g(i) \ge \Sigma_{j \in S} P_{ij}(u)g(j) - e$$

 $g(i) \ge \tilde{g}(i)$

<u>Step 6</u>. Set $\tilde{U}(i) = \{u : g(i) = \Sigma_{j \in S} P_{ij}(u)g(j)\}$, and $\tilde{q}_{i}(u) = q_{i}(u) - g(i)$.

Now solve the Markov decision problem with incremental rewards $\tilde{q}_i(u)$ and admissible input set $\tilde{U}(i)$ while the system is in state i.

Since the average gain has been substracted from the incremental rewards, the transformed system has gain zero, and within any class of states for which g(i) is the same, the correct relative values will be obtained.

<u>Remark</u>: The policy determined in Step 5 is gain-optimal. Step 6 is necessary only if bias optimality is desired as well.

19. Existence of a Solution in General

Infinite-horizon Problems

This section is concerned with well-posedness of optimization problems formulated in Chapter I. Its purpose is to establish conditions under which an optimal strategy exists. In the present analysis, the optimal strategy need not satisfy a finite-memory constraint.

A sufficient condition⁺ for existence of an optimal strategy is that there exist a solution to the infinite dimensional linear program:

$$v^{*}(\pi) = \max_{u \in U} \{ \pi q(u) + \beta \Sigma_{y \in Y}(\pi P(y(u)1) \ v^{*}(T(\pi, u, y)) \} - g^{*}$$
(19.1)

If the relative value function v* exists, then there is a function $\overline{\phi}^*$ which describes the input maximizing (19.1) as a function of π . If $\overline{\phi}^*$ is used to select inputs on the basis of the information vector, then the optimal gain g* will be achieved. $\overline{\phi}^*$ will be called an optimal feasible policy.

(19.2) <u>Definition</u>. An infinite-horizon FPS control problem is called <u>regular</u> if it is either discounted or both simply connected and detecdetectable.

-134-

The straightforward proof parallels well-known arguments for the stateobservable case; see Kushner [1971].

(19.3) <u>Theorem</u>. Suppose either (a) that $\beta < 1$ or (b) that the FPS satisfies conditions of <u>connectivity</u> and <u>(weak) detectability</u>. If connectivity holds, then let ℓ_{ρ} and ρ be as in (11.5); otherwise define $\ell_{\rho} = \rho = 1$. If weak detectability holds, then let $\overline{\ell}$ and \overline{a} be as in (14.22); otherwise define $\overline{\ell} = \overline{a} = 1$. Finally, define

$$L(\beta, \ell) = \Sigma_{k=0}^{\ell-1} \beta^{k} = \begin{cases} (1-\beta^{\ell})/(1-\beta), & \text{if } \beta < 1 \\ \\ \ell, & \\ \ell, & \text{if } \beta = 1 \end{cases}$$
(19.4)

and

$$\Omega = \frac{L(\beta, \ell\rho + \overline{\ell})Q}{1 - \beta^{(\ell\rho + \overline{\ell})}(1 - \rho)(1 - \overline{a})}$$
(19.5)

Then there exists a solution v* to (19.1) having the following properties:

- (i) v* is continuous throughout Π_{N}
- (ii) v* is convex
- (iii) $\|\mathbf{v}^*\|_{\mathbf{D}} \leq \Omega$

<u>Remark</u>. If $\beta=1$, then $\Omega = \frac{(l\rho + \overline{l})Q}{(1-\rho)(1-\overline{a})}$.

<u>Heuristic Justification</u>: Only the undiscounted (β =1), strongly connected (ℓ_{ρ} = 1), weakly subrectangular ($\overline{\ell}$ =1) is considered here.

A solution $v^* = \lim_{m \to \infty} \hat{v}^m$ is constructed by damped value iteration (18.10) where, following (17.3),

$$v^{m+1}(\pi) = 1/2 v^{m}(\pi) + 1/2 \max_{u \in U} \{\pi q(u) + \sum_{y \in Y} v^{m}(\pi P(y|u))\}$$
$$v^{0}(\pi) = 0$$
(19.6)

Then

$$\mathbf{v}^{\mathrm{m}} = \Sigma_{\mathrm{k}=0}^{\mathrm{m}} (1/2)^{\mathrm{k}} {\binom{\mathrm{m}}{\mathrm{k}}} \mathbf{v}_{\mathrm{0}}^{\mathrm{k}}$$
(19.7)

where v_0^k is the finite-horizon value function when k decisions remain. Each v_0^k is convex by an arguments given in Section 17.

It is now demonstrated (by induction) that $||v_0^m||_D \leq \Omega$. Since v^m is convex, it achieves a maximum at some vertex of Π_N . Let j be the state that maximizes $v^m(e^j)$ and let u* be the input that maximizes $\{e^jq(u^*) + \Sigma_{y\in Y} v_0^{m-1}(e^jP(y|u^*))\}$, i.e. j is the most desirable initial state for an m-transition problem and u* is the first optimal input for such a problem when the initial state is known to be j. Then,

$$\mathbf{v}_{0}^{\mathbf{m}}(\pi) \geq \pi q(\mathbf{u}^{*}) + \Sigma_{\mathbf{y} \in \mathbf{Y}} \mathbf{v}_{0}^{\mathbf{m}-1}(\pi \mathbf{P}(\mathbf{y} | \mathbf{u}^{*})), \quad \forall \pi \in \Pi_{\mathbf{N}}.$$

Now:

$$\sum_{0}^{m} (e^{j} - v_{0}^{m}(\pi))$$

$$\leq \{e^{j}q(u^{*}) + \sum_{y \in Y} v_{0}^{m-1}(e^{j}P(y|u^{*}))\}$$

$$- \{\pi q(u^{*}) + \sum_{y \in Y} v_{0}^{m-1}(\pi P(y|u^{*}))\}$$

$$= Q_{\max} - Q_{\min} + \Sigma_{y \in Y} [(e^{j}P(y|u^{*})1) v_{0}^{m-1}(T(e^{j},u^{*},y)) - (\pi P(y|u^{*})1) v_{0}^{m-1}(T(\pi,u^{*},y))]$$

$$= Q + \pi_{j} \Sigma_{y \in Y} (e^{j}P(y|u^{*})1) \left[v_{0}^{m-1}(T(e^{j},u^{*},y)) - v_{0}^{m-1}(T(\pi,u^{*},y)) \right]$$

$$+ (1 - \pi_{j}) \Sigma_{y \in Y} [(e^{j}P(y|u^{*})1) v_{0}^{m-1}(T(e^{j},u^{*},y)) - (T(\pi,u^{*},y))]$$

$$- \frac{(\pi - \pi_{j}e^{j})}{(1 - \pi_{j})} P(y|u^{*})1 v_{0}^{m-1}(T(\pi,u^{*},y))]$$

$$\leq Q + \pi_{j} \Sigma_{y \in Y} (e^{j}P(y|u^{*})1)a[(u^{*},y)] \|v_{0}^{m-1}\|_{D} + (1 - \pi_{j}) \|v_{0}^{m-1}\|_{D}$$

$$\leq Q + [1 - \pi_{j}(1 - \overline{a})] \|v_{0}^{m-1}\|_{D}$$
(19.8)

But, for any
$$\pi \in \Pi_{N}$$
,
 $v^{m+1}(\pi) = \max_{u \in U} \{\pi q(u) + \Sigma_{y \in Y} v^{m}(\pi P(y|u)) \leq Q_{max} + v^{m}(e^{j})$
(19.9)

and, letting \hat{u} be the input for which $\sum_{i \in S} \sum_{y \in Y} \pi_i P_{ij}(y|\hat{u}) \leq 1-\rho$,

$$v^{m+1}(\pi) \ge \pi q(\hat{u}) + \Sigma_{y \in Y} v^{m}(\pi P(y|u))$$

$$\ge Q_{min} + v_{0}^{m}(\Sigma_{y \in Y} \pi P(y|\hat{u}))$$

$$\ge Q_{min} + v_{0}^{m}(e^{j}) - Q - [1 - (1 - \rho)(1 - \overline{a})] ||v_{0}^{m-1}||_{D}$$
(19.10)

where (19.8) was used to obtain the last inequality. Thus

$$\| \mathbf{v}_{0}^{\mathbf{m}+1} \|_{\mathbf{D}} \leq 2\mathbf{Q} + [1-(1-\rho)(1-\bar{\mathbf{a}})] \| \mathbf{v}_{0}^{\mathbf{m}-1} \|_{\mathbf{D}}$$
 (19.11)

Since $||v_0^0||_D = 0$ and $||v_0^1||_D \leq Q$, it follows that

$$\|\mathbf{v}_0^{\mathbf{m}}\|_{\mathbf{D}} \leq \frac{2\mathbf{Q}}{(1-\rho)(1-\mathbf{a})}, \quad \mathbf{m} \in \{0,\infty\}.$$

Hence, by (19.6),

$$\| \mathbf{v}^{\mathbf{m}} \|_{\mathbf{D}} = \| \hat{\mathbf{v}}^{\mathbf{m}} \|_{\mathbf{D}} \leq \frac{2Q}{(1-\rho)(1-a)}, \quad \mathbf{m} \in \{0,\infty\}$$
 (19.12)

The damped value-iteration, (19.6), assures that, if $\{\hat{v}^{m}\}\$ has any (pointwise) limit, then it converges uniformly to that limit; the sequence $\{\hat{v}^{m}\}\$ has a limit because it is convex and bounded; thus v* exists and is a solution to (19.1). v* is convex and bounded, by convexity and boundedness of $\{\hat{v}^{m}\}$.

Continuity of v* is most readily established in strongly subrectangular systems. Here,

{
$$\pi q(u) + \Sigma_{v \in Y}(\pi P(y|u)1)v*(T(\pi,u,y))$$
}

is continuous in π for each uEU, because $\{T(\pi,u,y) : \pi \in \Pi_N\}$ lies in the interior of a face of Π_N (see Figure 5-1) and a convex function is always continuous over a relatively open subset of its domain. Thus the right-hand side of (19.1) is continuous, and v* is continuous. Proof: The complete proof of (19.3) is given in Appendix A.

(19.13) <u>Corollary</u>. Let e^{j^*} be the information vector of maximal value, in a connected, detectable, FPS control problem. Let ℓ_{ρ}, ρ be such that, for any $\pi \epsilon \Pi_N$, there exists an input word $\hat{\underline{u}} \epsilon U^{\rho}$ satisfying:

$$1-\sum_{\underline{y}\in\underline{Y}} \ell(\hat{u}) \sum_{i\in S} \pi_i P_{ij} \star (\underline{\hat{u}},\underline{y}) \leq \rho$$

Then $||v^*||_D \leq \Omega$, where Ω is given by (19.5).

<u>Interpretation</u>: $||v*||_{D}$ may be bounded on the basis of reachability of the most valuable state alone. In a network of queues, the most valuable state is readily identified without solving the problem; (it is the state in which all queues are empty). In this manner, a tighter bound on $||v*||_{D}$ is obtained.

(19.14) <u>Theorem</u>. Consider a regular FPS control problem. If the system is simply connected, then let $l_{\rm C}$, $\alpha_{\rm C}$ be numbers such that the internal state enters the connected class with probability $1-\alpha_{\rm C}$ or more after $l_{\rm C}$ transitions and let Ω be as in (19.3) for the system restricted to C; otherwise define $l_{\rm C}$, $\alpha_{\rm C}=0$, and let Ω be as in (19.3) for the system the system as specified. Then there exists a continuous, convex, bounded, relative value function v* satisfying (19.1), such that

$$\|\mathbf{v}^{\star}\|_{\mathbf{D}} \leq \Omega + \frac{\boldsymbol{\ell}_{\mathbf{C}}^{\mathbf{Q}}}{1-\alpha_{\mathbf{C}}}$$

-139-

<u>Proof</u>: It is necessary only to demonstrate boundedness of values $\{\hat{v}_0^m\}$ in the proof of (19.3). Now

$$\max_{i \in S} \{v^{m}(e^{i})\} \leq \ell_{C}Q + \alpha_{C}\max_{i \in S} \{v^{m}(e^{i})\} + (1-\alpha_{C})\max_{i \in C} \{v^{m}(e^{i})\}$$

and so:

$$\max_{i \in S} \{v^{m}(e^{i})\} - \max_{i \in C} \{v^{m}(e^{i})\} \leq \frac{l_{C}^{Q}}{1-\alpha_{C}}$$

Consequently, arguments given in the proof of (19.3) show that v^* satisfies the desired conditions.

†

-140-

20. An Alternate Formulation for Irregular Problems

Consider the following problem, to which no optimal solution exists.

(20.1) <u>Example</u>. $U = \{1,2\}, Y = \{1\}, N = 3, \pi(0) = (0,0,1)$ and

$$P(1|1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & .5 & .5 \end{bmatrix}, \qquad P(1|2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ .5 & 0 & .5 \end{bmatrix}.$$

The incremental reward vectors are:

 $q(1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad q(2) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$

The performance index is infinite-horizon undiscounted average reward. A suboptimal solution may be obtained by the following argument: if any reward at all is to be achieved, then the system must be made to enter state 1, through initial application of input 2. Once state 1 has been reached, input 1 should be applied at all times. Unfortunately, there is no way for the controller to learn whether state 1 has been entered. If input 2 is applied n times and input 1 is applied thereafter, the performance $1-(.5)^n$ is achieved; this may be made arbitrarily close to 1. The supremum feasible performance g can never be attained: if input 2 is applied at all times, then the gain will be zero; and if input 1 is applied once, at time k, then the system enters state 2 with probability $(.5)^k$ and the performance cannot exceed 1-(.5)^k.

A well-known class of problems, to which no solution exists, is the <u>finite-memory hypothesis testing problem</u> with choice of experiments, also known as the <u>N-armed bandit problem</u>. In the two-armed bandit problem, a gambler is confronted with two slot machines. For each coin invested, one machine returns two coins with probability .6, none with probability .4; and the other machine returns two coins with probability .4, none with probability .6. It is not known initially which machine is the more favorable.

Failure of an optimal strategy to exist is a consequence of the infinitely-delayed splurge phenomenon discussed in section 5a. This, in turn, results from null-transitivity of certain information states in a system that is not detectable. Specifically, infinitely-delayed splurges may occur when:

- (i) Under ε -optimal strategies, for ε sufficiently small, $\mu(k)>1$; i.e. there are recursively-computable functions of the state that may be interpreted as one-time hypotheses;
- (ii) In the limit, where an infinite past is available, the correct hypothesis may be identified exactly, and a detectable problem results;
- (iii) The cost of identifying an hypothesis is infinite.

-142-

Such problems may be solved in two steps, described below.

Step 1 (steady-state)

Under the assumption that the state was exactly known at some point in the infinitely distant past, the problem becomes detectable, and an optimal strategy exists. This strategy might not satisfy a finite-memory constraint, but its performance may be approximated, arbitrarily closely, by a finite-memory controller in the following sense: for any $\varepsilon>0$, there is a finite-memory controller whose average reward, over a given time interval of length K, lies between g*- ε and g* with probability approaching unity as K $\rightarrow \infty$.

Step 2 (initial identification)

The correct hypothesis may be arbitrarily closely identified in a finite number of transitions. Let the terminal reward be 1 if the hypothesis is correctly identified, and 0 if it is not. Then solve the finite-horizon problem by the methods cited in Section 4, or by the algorithm of Sondik. (The initialization procedure will be described in greater detail in Section 21f).

-143-

This report is concerned with hypothesis-testing only to the extent that it occurs in problems of statistical decision and control. As long as a problem is detectable, its "dual control" aspects involve a reasonable tradeoff between information and control; otherwise the problem must be solved in two separate steps. If available memory is limited, then it must be decided how much memory is to be allocated to identification, and how much is to be allocated to steady-state performance. Note that memory allocation in this sense is indirectly determined by the discount β (when $\beta < 1$), since it specifies the manner in which steady-state performance and identification costs are to be compared.

-144-
CHAPTER IV COMPUTATION OF ε-OPTIMAL CONTROLLERS 21. Perceptive Dynamic Programming

a. The Basic Algorithm

It has been demonstrated, in Section 19, that there exist solutions to regular FPS control problems. Yet, it may be impossible to compute or to implement solutions that fail to satisfy a finitememory constraint. This section introduces a feasible computational technique for the solution of such problems.

In the computational technique of <u>perceptive dynamic programming</u>, an increasing sequence of memory sets, $\{M^n\}$, is used to construct approximations to the original problem. Each approximation is parameterized by a memory set; the n-th approximation depends on memory set M^n , but the iteration number n alone may be used to facilitate notation. The approximation corresponding to memory set M is the Markov decision problem that results when the augmented system induced by M is assumed to be state-observable. The solution to this problem is called a <u>perceptive solution</u>; it consists of a <u>perceptive value</u> <u>function</u> v^M : $\hat{X}[M]$ -R and a <u>perceptive gain</u> g[M], obtained by solving the system of equations:

$$v^{M}[i,\underline{z}] = \max_{u \in U} \{q^{M}_{\underline{z}}(i,\underline{u}) + \beta \Sigma_{j \in S} \Sigma_{y \in Y} P^{M}_{\underline{z}}(i,j,(u,y)) v^{M}[j,T^{M}(\underline{z},(u,y))]\} - g[M], \qquad [i,\underline{z}] \in \hat{X}[M] \qquad (21.1)$$

In (21.1), perception of delayed states is assumed only when the memory state is essential. Optimal decisions and relative values for the remaining memory states can be determined by solving:

$$\overline{\mathbf{v}}^{\mathbf{M}} [\pi(0), \underline{z}] = \max_{\mathbf{u}\in\mathbf{U}} \{ \mathbf{T}(\pi(0), \underline{z})\mathbf{q}(\mathbf{u}) + \beta \Sigma_{\mathbf{y}\in\mathbf{Y}}(\mathbf{T}(\pi(0), \underline{z})\mathbf{P}(\mathbf{y}|\mathbf{u})\mathbf{1}) \\ \left\{ \begin{bmatrix} \Sigma_{\mathbf{i}\in\mathbf{S}} \Sigma_{\mathbf{j}\in\mathbf{S}} \Sigma_{\mathbf{k}\in\mathbf{S}} & \pi_{\mathbf{i}}(0) \cdot \mathbf{P}_{\mathbf{i}\mathbf{j}}(\underline{z}(\mathbf{u},\mathbf{y}) - \mathbf{T}^{\mathbf{M}}(\underline{z},(\mathbf{u},\mathbf{y}))) \\ \cdot \mathbf{P}_{\mathbf{j}\mathbf{k}}(\mathbf{T}^{\mathbf{M}}(\underline{z},(\mathbf{u},\mathbf{y}))) \cdot \mathbf{v}^{\mathbf{m}}[\mathbf{j},\mathbf{T}^{\mathbf{M}}(\underline{z},(\mathbf{u},\mathbf{y}))] \\ /[\pi(0)\mathbf{P}(\underline{z})\mathbf{P}(\mathbf{y}|\mathbf{u})\mathbf{1}], \quad \text{if } \mathbf{T}^{\mathbf{M}}(\underline{z},(\mathbf{u},\mathbf{y})) \varepsilon ess[\mathbf{M}] \\ \overline{\mathbf{v}}^{\mathbf{M}}[\pi(0), \underline{z}(\mathbf{u},\mathbf{y})], \quad \text{otherwise} \\ -\mathbf{g}[\mathbf{M}], \quad \underline{z} \varepsilon \mathbf{Z}^{+}(\pi(0)) \cap ess[\mathbf{M}]$$

$$(21.2)$$

The policy maximizing (21.1) and (21.2) is denoted $\overline{\psi}^{M}$.

1

A <u>feasible strategy</u> ϕ^{M} is devised by constructing a policy adapted to M which realizes it. Select any mapping $\hat{s} : ess[M^{m}] \rightarrow S$ satisfying:

$$\hat{s}[z] \in I(z), \quad \forall z \in ess[M]$$
 (21.3)

The substitution of a state guess for a perceived state will be called <u>pseudo-perception</u>. Define the feasible policy to be

$$\overline{\phi}^{M}[\underline{z}] = \begin{cases} \overline{\psi}[\underline{z}], & \text{if } \underline{z} \in \mathbb{M} - \operatorname{ess}[\mathbb{M}] \\ \overline{\psi}[\widehat{s}[\underline{z}], \underline{z}], & \text{if } \underline{z} \in \operatorname{ess}[\mathbb{M}] \end{cases}$$
(21.4)

h[M] will denote the performance achieved by ϕ^M . Clearly:

$$h[M] \leq g^* \leq g[M] \tag{21.5}$$

For a given sequence of memory sets $\{M^m\}$, these bounds may be denoted h^n and g^n , respectively.

A key result is the following theorem, which states that $g^n - h^n \rightarrow 0$ as $n \rightarrow \infty$.

i

(21.6) <u>Theorem</u>. Suppose either (a) that $\beta < 1$ or (b) that the FPS satisfies conditions of <u>connectivity</u> and (<u>weak</u>) <u>detectability</u>, and let $\ell_{\rho}, \rho, \overline{\ell}, \overline{a}$, $L(\beta, \ell)$ and Ω be as in (19.3)-(19.5). Also let $\overline{\alpha}$ be as in (14.22) if WDT is satisfied; otherwise define $\overline{\alpha}=1$. Then:

(a)
$$g[M] - g^* \leq \overline{\alpha}^{\lim_{m \to \infty} [M] \neq \ell} \beta^{\lim_{m \to \infty} [M]} 4\Omega$$

(b) $g[M] - \eta[M] \leq \overline{\alpha}^{\lim_{m \to \infty} [M] \neq \overline{\ell}} \beta^{\lim_{m \to \infty} [M]}$
 $\cdot \left\{ L(\beta, \ell_{\max}[M] - \ell_{\min}[M]) + \beta^{\lim_{m \to \infty} [M] - \ell_{\min}[M]} \left(\frac{L(\beta, \overline{\ell})}{1 - \beta^{\overline{\ell}} \overline{\alpha}} \right) \right\} 2[Q + \beta\Omega]$

-147-

<u>Heuristic Justification</u>: The proof follows an argument given in Section 5e.

Proof: The complete proof is given in Appendix B.

The generalization to systems having transient states is straightforward.

(21.7) Corollary. For any regular FPS control problem:

$$g[M] - h[M] \leq \overline{\alpha}^{\ell_{\min}[M] \div \overline{\ell}} \beta^{\ell_{\min}[M]}$$

$$\cdot \left\{ L(\beta, \ell_{\max}[M] - \ell_{\min}[M]) + \beta^{\ell_{\max}[M] - \ell_{\min}[M]} \left(\frac{L(\beta, \overline{\ell})}{1 - \beta^{\overline{\ell}} \overline{\alpha}} \right) \right\} 2 [Q + \beta\Omega]$$

$$+ \alpha_{C}^{\ell_{\min}[M] \div \overline{\ell}} \beta^{\ell_{\min}[M]} \left(\frac{\ell_{C}Q}{1 - \alpha_{C}} \right)$$

where α_{C} and ℓ_{C} are as in (19.14).

b. Discussion

The upper bounds $\{g^n\}$ are clearly nonincreasing. The lower bounds $\{h^n\}$ might decrease if an unfortunate choice of $\hat{s}(\cdot)$ is made. If $h^n < h^{n'}$, n > n', then $\phi^{n'}$ may be substituted for ϕ^n , since it is adapted to M^n . Hence, the bounds $\{h^n\}$ and $\{g^n\}$ can be made <u>monotone</u>.

If the family of memory sets $\{M^n\} = \{Z^n \cap Z^+\}$ is used, then the bounds will converge geometrically as well. Computational experience

indicates that convergence will occur more rapidly than predicted by (21.6), but that may not be rapid enough to assure feasibility, due to the fact that the computational effort (computer time or memory) required to solve the perceptive problem increases as $n \rightarrow \infty$. Since computational effort is linearly related to the number of memory states, the effort required to place the bounds within $\overline{\epsilon}$ of each other is proportional to $\overline{\epsilon}^{-1/\tau}$, where τ is given by (14.22).

A more favorable rate of convergence is obtained when the memory sets are computed recursively. Memory states that are unlikely to be recurrent under the optimal perceptive policy can be ommited; those which were recurrent during the previous iteration may be extended (by the addition in the memory tree of branches from the nodes to which they correspond).

Problems of decoding a noisy Markov channel (see references listed in Section 4) are subrectangular, and lend themselves to convergence rate analysis. In most problems, however, there doesn't seem to be much use in computing the contraction indices $\overline{\alpha}$ and ρ . Execution of two or three iterations of perceptive dynamic programming yields more reliable indicators of convergence rates.

c. Pseudo-perceptive Dynamic Programming

I

<u>Pseudo-perceptive</u> <u>dynamic</u> programming is a computational procedure in which the delayed state is guessed and substituted into the model

-149-

<u>before</u> optimization is performed, resulting in a reduction, by a factor of N^2 , in the number of augmented states considered during each optimization step. The performance obtained will be an approximation to the optimal performance: if the delayed state is optimized, and not merely guessed, then the performance obtained will be an upper bound as well. However, pseudo-perceptive dynamic programming does not then yield a lower bound to optimal feasible performance.

d. Recursive Computation of the Memory Sets

Experience indicates that the choice of memory sets is crucial to efficient performance of the perceptive dynamic programming algorithm. For example, computation time and storage requirements increase linearly with the number of memory states; yet, certain memory states can be shown <u>a priori</u> to occur very rarely in the optimally controlled system.

Some recommended "tricks" are:

- Do not add branches to node <u>z</u> of the memory tree if, whenever the memory state is z, the optimal perceptive decision does not depend on the delayed-state component of the augmented state.
- 2) Do not add branches to node \underline{z} of the memory tree if \underline{z} is not recurrent under the optimal perceptive strategy obtained during the most recent iteration.
- 3) Do not add branches to node \underline{z} of the memory tree if all entries of P(z) are small.

e. Minimization of Memory Size by Selective Pseudo-perception

The state guess $\hat{s}(\cdot)$ may be selected according to an <u>ad hoc</u> rule which causes the feasible strategy to perform as well as possible (e.g. \hat{s} = most likely state). It might instead be selected so that the number of recurrent memory states under the feasible strategy will be minimized. Such an approach assures that another iteration, with a larger memory set, might be performed, although the current feasible performance lower bound h[Mⁿ] will suffer. During the final iteration, this approach to the selection of $\hat{s}(\cdot)$ may reduce the cost of implementing the solution obtained.

f. Initialization Procedure

Suppose that a perceptive solution has been obtained, and that, from this, a feasible policy has been designed. The feasible policy determines near optimal decisions <u>in the steady-state</u>. It is also necessary to determine an <u>initialization procedure</u> to be followed by the controller.

A particularly simple way of doing so is the following: Represent the system under the feasible strategy as a Markov chain, and determine the relative values of all augmented states. Then solve a finite horizon problem, in which the input set includes the memory set as well as an input representing a memory state indicates that the feasible policy should be used thereafter, starting in the

-151-

specified memory state. The value function will be monotone increasing, in the number of initialization steps allowed.

If the system under the feasible strategy is multiple chained, then the finite horizon problem should be to maximize the eventual gain. In the case of an N-armed bandit problem, the feasible (steadystate) policy is trivially computed, since the previous decision determines the optimal present decision. The initialization procedure then constitutes an identification of the correct hypothesis.

22. A Computational Algorithm

In order to assess the practicality of perceptive dynamic programming, a computer program was written to solve general FPS control problems with undiscounted infinite-horizon performance index. The program is described below. Computational results, obtained using this program, are described in the following section.

The source code, which is written entirely in PL/I, is listed in Appendix C. It has a source length of 1250 cards, and the object code occupies 110K bytes of storage on the IBM 370/168.

The program accepts the following data as input:

Title:

A character string of length not exceeding 32, which identifies the problem to be solved.

Problem dimensions

N, the number of internal states.

NU, the number of inputs.

NY, the number of outputs.

NZ, the number of input-output pairs.

FMT, the output format (1 = "long", 0 = "short").

<u>Termination specifications</u>: (conditions under which execution should be terminated)

MIN_ERR, the minimum value of g^n-h^n .

MAX M, the maximum number of memory states.

MAX_ESS_M, the maximum number of essential memory states. MAX_TIME, the maximum number of seconds to be allowed. Transition probabilities:

Each matrix is preceeded by a list of input-output pairs and a single zero which marks the end of that list; the matrix is then listed in row-major order.

Expected incremental reward vectors:

The vector a(1), ..., q(NU) are entered in turn. Computation then proceeds according to the following outline: <u>Step 1</u>: Create a memory tree (hereafter denoted by M) con-

taining only the empty word \underline{e} ; and set ERR = Q.

- <u>Step 2</u>: Solve the perceptive problem. This is done by damped value iteration (18.10), along with the test for non-optimal actions of Hastings [1976]. The optimization is performed only on $\hat{X}[M]$, the connected class of augmented states consisting of a delayed internal state along with an essential memory state. Computation is terminated when, after k_1 steps of value iteration, the Odoni bounds (18.11) are within ERR (.001)(1.2)^k of each other.
- <u>Step 3:</u> Flag memory states that are recurrent under the optimal perceptive strategy (indicated by a "G" in the printout). For those memory states only, determine the feasible strategy which selects the input most likely to be optimal.

- Step 4: Determine hⁿ by value iteration without optimization of inputs. Computation is terminated when, after k₂ steps, the Odoni bounds are within ERR • [(.001)(1.2)^k] [(.01)(2)²] of each other.
- <u>Step 5</u>: Flag memory states that are recurrent under both the optimal perceptive strategy and the feasible strategy for the present iteration (indicated by an "H" in the printout).
- <u>Step 6</u>: Set ERR = {the upper Odoni bound on g^n } {the lower Odoni bound on h^n }. Print a report of the current iteration. If any termination specifications have been met, then stop.

Step 7: For every triplet (z,u,y) satisfying

- (i) \underline{z} is an essential memory state that was recurrent under the most recent optimal perceptive strategy,
- (ii) u is an optimal input for some augmented state of the form [i,z],

(iii)
$$T^{M}(\underline{z}, (u,y)) < \underline{z}(u,y),$$

add to M the memory state which contains the

 $\ell[T^{M}(\underline{z}, (u,y))] + 1$ rightmost input-output pairs in \underline{z} (u,y). Also add whatever memory states are required to satisfy (8.4). Then return to step 2. Further details regarding execution procedure and methodology, may be found in the source code.

The output consists of a page which lists the input data, followed by an iteration report for each iteration performed. The iteration report heading contains the following information:

- Line 1: The iteration number, the number of memory states, the number of essential memory states, the time at which preparation of the memory tree for value iteration was concluded.
- Line 2: The upper and lower Odoni bounds on g^n , the number of value iteration steps performed and the time at which value iteration was concluded, in Step 2.
- Line 3: The upper and lower Odoni bounds on hⁿ, the number of value iteration steps performed and the time at which value-iteration was concluded, in Step 4.

In the <u>long format</u>, the iteration report heading is followed by a table in which N+1 lines are devoted to each essential memory state. The column headings and data listed are as follows:

RC Recurrent state flags "G" and "H" are listed below. "G" indicates that the memory state is recurrent under the optimal perceptive strategy; "H" indicates that the memory state is also recurrent under the feasible strategy.
I Delayed-state component of the augmented state. U Input selected by the feasible strategy (first line), and optimal perceptive inputs (following lines). An asterisk (*) indicates that the feasible strategy always picks the optimal perceptive input.

V(G) Relative value for the perceptive problem.

V(H) Relative value for the feasible problem.

PROBS For memory state \underline{z} , $P(\underline{z})$ is listed.

MEMORY STATES

The memory states are listed below in the form of a lefthanded tree.

In the <u>short format</u>, only the first line of each memory state table is printed.

23. Computational Results

a. The Machine Maintenance and Repair Problem

The Machine Maintenance and Repair Problem was formulated in Section 3, and a procedure, which in principle leads to a solution, was then described. That procedure is in fact equivalent to perceptive dynamic programming based on the fixed family of increasing memory sets $\{z^{(n-1)}, z^+\}$.

The solution was actually obtained by perceptive dynamic programming on the basis of recursively computed memory sets, as described in Section 21d. The largest intermediary Markov decision problem solved had 93 states.

The steps that lead to this solution are briefly described. During the first six iterations, perceived states determine the optimal input, so feasible performance remains poor. Since pseudo-perception initially takes the form $\hat{s}=1$, input u=1 ("manufacture") is selected at all times. On the seventh iteration, the input u=2 ("examine") is selected whenever u=1 ("manufacture") occurred four times previously; but this is done only for the purpose of obtaining a perception free of delay. In iteration eight, the memory set is augmented by branches corresponding to input u=2 ("examine"); that input is no longer selected and feasible performance increases for the first time. A similar pattern continues until sufficient memory has been allocated to realize the optimal strategy, and to eliminate suboptimal decisions

-158-

motivated by perceptive information structure.

Note that this problem is not detectable. Indeed, there are two possible decompositions into detectable parts: if the machine is <u>never</u> repaired, then there is only one recurrent state and the system is trivially detectable; if the machine is repaired, then all information previous to the repair is dispensable; in either case $\alpha=0$. The rate of convergence of perceptive dynamic programming is determined by the rate of absorption of transient states in the former case which is $\alpha_{\rm C} = .99$, $\ell_{\rm C} = 2$ (very unfavorable). The convergence rate for memory sets used in section 3 is bounded by:

$$g^{n} - h^{n} \leq (.99)^{m-1} \cdot \left[\frac{2 \cdot 3.4025}{1 - .99}\right]$$

The actual convergence obtained was, of course, considerably more rapid.

The input deck for this problem took the form:

```
// EXEC PLIXG,PROG='U.M13014.P10015.PLATZSYS.LOAD(LDMOD)'
//G.SYSIN DD *,DCB=BLKSIZE=2000
'MACHINE MAINTENANCE & REPAIR', 3,4,3,4,1, 20,.01,100,100,
1,1,0,
    .81,.18,.01, 0,.9,.1, 0,0,1,
2,2,0,
    .81,.09,.0025, 0,.45,.025, 0,0,.25,
2,3,0,
    0,.09,.0025, 0,.45,.075, 0,0,.75
3,1,4,1,0,
    1,,1,,1,,,
.9025,.475,.25, .6525,.225,0, -.5,-1.5,-2.5, -2,-2,-2,
/*EOJ
```

The computer-generated report is given on the next 29 pages.

-160-

MACHINE MAINTENANCE & REPAIR PROBLEM SPECS 3 STATES 4 INPUTS 3 OUTPUTS 4 I/O PAIRS TIME LIMIT: 20.00 MIN ERR: 0.010 MAX MEM: 100 MAX ESS MEM: 100

TRANSITION PROBABILITIES: Z (U, Y) P

4

- 24

dil.

1	1	1			
-	-	-	C.81CO	0.1800	0.0100
			C.0000	0.9000	0.1000
			0.0000	0.0000	1.0000
2	2	2			
			C.8100	0.0900	0.0025
			C.0000	0.4500	0.0250
			0.0000	0.0000	0.2500
3	2	3			
			C.0000	0.0900	0.0075
			C.0000	0.4500	0.0750
			0.0000	0.000	0.7500
4	3	1			
	4	1	1 0000	0 0000	0.0000
			1.0000	0.0000	0.0000
			1.0000	0.0000	0.0000
			1.0000	0.0000	0.0000
INCREM	IENT ΔΙ	REWARDS:			
	1	U	C		
		÷	-		
		1	C.9025	0.4750	0.2500
		2	0.6525	0.2250	0.000
		3	-0.5000	-1.5000	-2.5000

-2.0000 -2.0000 -2.0000

MAC	HIN	IE M	AINTE	NANCE &	REPAIR		PAGE 2	TABLE	1.01
+	 I T	ERA	TION	1 M	EM = 1	ESS ME	M = 1	TIME = 0.16	++
! +	0.	499 250	< G < H	< 0.5 < C.4	31 44	17 STE 9 STE	р <u>с</u> Р <u>с</u>	TIME = 0.25 TIME = 0.26	
RC	I	U	V(C)	V(H)	PROBS			MEMORY ST	ATES
GH		1							< E>
	1	1	2.61	2.76	1.0000	0.0000	0.0000		
	2	3	0.59	0.36	6.000	1.0000	0.0000		
	3	4	0.09	-0.79	0.C000	0.0000	1.0000		

-161-

. ...

1.48

MAC	HIN	E MA	INTE	ANCE &	REPAIR		PAGE 3	8 T/	ABLE 2.01
+	 I T	ERAT	ION	2 M	EM = 3	ESS ME	M = 3	TIME =	0.36
 	0.	494 250	<дс <н<	< 0.4 < 0.3	95 95	8 STE 14 STE	P S P S	TIME = TIME =	0.46
RC	T	U	V(G)	V(H)	PRCBS			MEM	DRY STATES
		1							<e></e>
	1	1	2.48		1.0000	0.0000	0.0000		
	2	3	0.48		0.000	1.0000	0.0000		
	3	4 -	0.02		0.000	0.0000	1.0000		
GH		1							1
	1	1	2.07	2.63	0.8100	0.1800	C.01CC		
	2	3	0.38	0.43	0.0000	0.9000	0.1000		
	3	4 -	0.02	-0.80	0.000	0.0000	1.0000		
G		1*							4
	1	1	2.48		1.0000	0.0000	0.0000		
	2	1	2.48		1.0000	0.0000	0.0000		
	2	1	2 48		1 0000	0 0000	0 0000		

-162-

1.

MACHINE MAINTENANCE & REPAIR PAGE 4 TABLE 3.01 ____ ITERATION 3 MEM = 5 ESS MEM = 5 TIME = 0.60 TIME = 0.810.477 < G < 0.47810 STEPS 0.250 < H < 0.385 14 STEPS TIME = 0.89ł RC I U V(G) V(H) PRCBS MEMORY STATES <E> 1 1 1 2.44 1.0000 0.0000 0.0000 2 3 0.46 0.0000 1.0000 0.0000 3 4 -0.04 0.0000 0.0000 1.0000 1 1 1 1 2.01 0.8100 0.1800 0.0100 2 3 0.36 0.0000 0.9000 0.1000 3 4 -0.04 0.0000 0.0000 1.0000 GH 1 1 1 1 1.67 2.27 0.6561 0.3078 0.0361 2 3 0.27 0.39 0.0000 0.8100 0.1900 3 4 -0.04 -0.69 0.0000 0.0000 1.0000 G 1* 4 1 1 2.01 0.8100 0.1800 0.0100 2 0.8100 1 2.01 0.1800 0.0100 3 1 2.01 0.8100 0.1800 0.0100 G 1* 4 1 1 2.44 1.0000 0.0000 0.0000 2 1 2.44 1.0000 0.0000 0.0000 3 1 2.44 1.0000 0.0000 0.0000

-163-

- 1464

-164-

MAC	HIN	E MAINTENANCE	& REPAIR	PAGE	5	TABLE 4.01
+	I T	ERATION 4	MEM = 7	ESS MEM = 7	TIME	= 0.99
 +	0. 0.	462 < G < C. 250 < H < O.	464 382	12 STEPS 13 STEPS	TIME TIME	= 1.30 = 1.43
RC	I	U V(G) V(H)	PROBS		ME	MORY STATES
	1 2 3	1 1 2.41 3 0.45 4 -0.05	1.0000 0.0000 0.0000	0.0000 0.000 1.0000 0.000 0.0000 1.000	0 0 0	<e></e>
	1 2 3	1 1 1.97 3 0.35 4 -0.05	0.8100 0.C000 0.C000	0.180C 0.010 0.9000 0.10C 0.0000 1.000	0 0 0	1
	1 2 3	1 1 1.62 3 0.25 4 -0.05	0.6561 0.0000 0.0000	0.3078 0.036 0.8100 0.190 0.0000 1.000	1 0 0	1
GH	1 2 3	1 1 1.33 1.92 3 0.18 0.34 4 -0.05 -0.58	0.5314 0.0000 0.0000	0.3951 0.073 0.7290 0.271 0.0000 1.000	4 0 0	1
G	1 2 3	1* 1 1.62 1 1.62 1 1.62	0.6561 0.6561 0.6561	0.3078 0.036 0.3078 0.036 0.3078 0.036	1 1 1	4
G	1 2 3	1* 1 1.97 1 1.97 1 1.97	0.8100 0.8100 0.8100	0.1800 0.010 0.1800 0.010 0.1800 0.010	0 0 0	4
G	1 2 3	1* 1 2.41 1 2.41 1 2.41	1.0000 1.0000 1.0000	0.0000 0.000 0.000 0.000 0.000 0.000	0 0 0	4

-165-

MAC	HINE MAIN	TENANCE &	REPAIR		PAGE 6	TΔ	BLE 5.01
+	ITERATIC	N 5 M	EM = 9	ESS ME	M = 9	TIME =	1.55
 +	0.449 < 0.250 <	G < 0.4 H < 0.3	52 74	14 STE 13 STE	PS PS	TIME = TIME =	2.01 2.18
RC	IUV(G) V(H)	PROBS			MEMO	RY STATES
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39 44 06	1.0000 0.0000 0.0000	0.000C 1.00CC 0.00CC	0.0000 C.0000 1.0000		<e></e>
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93 34 06	0.8100 0.0000 0.0000	0.1800 0.9000 0.0000	0.0100 0.1000 1.0000		1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57 25 06	0.6561 0.0000 0.0000	0.3078 0.8100 0.0000	C.0361 0.1900 1.0000		1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 17 06	0.5314 0.0000 0.0000	0.3951 0.7290 0.0000	0.0734 0.2710 1.0000		1
GH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04 1.65 09 0.31 06 -0.49	0.4305 0.0000 0.0000	0.4513 0.6561 0.00C0	0.1183 0.3439 1.0000	1	
G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27 27 27	0.5314 0.5314 0.5314	0.3951 0.3951 0.3951	0.0734 0.0734 0.0734	4	
G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57 57 57	0.6561 0.6561 0.6561	0.3078 0.3078 0.3078	0.0361 0.0361 0.0361		4
G	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93 93 93	0.8100 0.8100 0.8100	0.1800 0.1800 0.1800	0.0100 0.0100 C.C100		4

I

18.478

-44,

MAC	HIN	ΕM	AINTENANCE	3	REPAIR	-100-	PAGE	7	TABLE	5.02
G	1 2	1* 1 1	2.39 2.39		1.0000	0.0000	0.000	0		4
	3	1	2.39		1.0000	0.0000	0.000	С		

-166-

.

a.,

-167-

MAC	HIN	E MAINTENANCE	& REPAIR	PAGE	3 TABLE 6.01
+	I T	ERATION 6	MEM = 11	ESS MEM = 11	TIME = 2.30
	0.	438 < G < 0 250 < H < 0	441 372	16 STEPS 12 STEPS	TIME = 2.98 TIME = 3.23
+					
RC	I	U V(G) V(H)	PROBS		MEMORY STATES
		1			< E>
	1	1 2.37	1.0000	0.0000 0.0000	
	2	3 0.43	0.000	1.0000 0.0000	
	3	4 -0.07	0.000	0.0000 1.0000	
		1			1
	1	1 1.90	0.8100	0.1800 0.0100	
	2	3 0.33	0.0000	0.9000 0.1000	
	3	4 -0.07	C.COOO	0.0000 1.0000	
		1			1
	1	1 1.52	0.6561	0.3078 0.0361	
	2	3 0.24	0.000	0.8100 0.1900	
	3	4 -0.07	0.0000	0.0000 1.0000	
		1			1
	1	1 1.22	0.5314	0.3951 0.0734	
	2	3 0.16	0.000	0.7290 0.2710	
	3	4 -0.07	0.000	0.0000 1.0000	
		1			1
	1	1 0.97	0.4305	0.4513 0.1183	
	2	3 0.08	0.000	0.6561 0.3439	
	3	4 -0.07	0.0000	0.0000 1.0000	
GH		1			1
	1	1 0.78 1.38	0.3487	0.4836 0.1677	
	2	3 0.02 0.26	0.000	0.5905 0.4095	
	3	4 -0.07 -0.40	0.000	0.0000 1.0000	
G		1*			4
	1	1 0.97	0.4305	0.4513 0.1183	
	2	1 0.97	0.4305	0.4513 0.1183	
	3	1 0.97	0.4305	0.4513 0.1183	
G		1*			4
	1	1 1.22	0.5314	0.3951 0.0734	
	2	1 1.22	0.5314	0.3951 0.0734	
	3	1 1.22	0.5314	0.3951 0.0734	

MACHIN	Е МА	INTENANCE &	REPAIR		PAGE 9	TABLE	6.02
G 1 2	1* 1 1	1.52 1.52	0.6561 0.6561	0.3078 0.3078	0.0361 0.0361	4	1 1
3 G 1 2	1 1* 1 1	1.52 1.90 1.90	0.6561 0.8100 0.8100	0.3078 0.1800 0.1800	0.0361 C.01CC 0.01C0		4
3 G 1 2	1 1* 1	2.37	0.8100	0.1800	0.0100		4
2 3	1	2.37	1.0000	0.0000	0.0000		

-168-

MACHINE MAINTENANCE & REPAIR PAGE 10 TABLE 7.01 ITERATION 7 MEM = 13 ESS MEM = 13 TIME = 3.37 1 1 0.437 < G < C.439 13 STEPS TIME = 4.080.195 < H < 0.369 14 STEPS TIME = 4.30 1 L RC I U V(G) V(H) PRCBS MEMORY STATES GH <E> 1 1 1 2.36 2.94 1.0000 0.0000 0.0000 2 3 0.43 0.43 0.000 1.0000 0.0000 3 4 -0.07 -0.91 0.0000 0.0000 1.0000 GH 1 ľ 1 1 1.90 2.40 0.8100 0.1800 0.0100 2 3 0.33 0.24 0.0000 0.9000 0.1000 3 4 -0.07 -0.96 0.0000 0.0000 1.0000 GH 1 1 1 1 1.52 1.93 0.6561 0.3078 0.0361 2 3 0.24 0.07 0.0000 0.8100 0.1900 3 4 -0.07 -1.01 0.0000 0.0000 1.0000 GH 1 1 1 1 1.21 1.51 0.5314 0.3951 0.0734 2 3 0.16 -0.09 0.0000 0.7290 0.2710 3 4 -0.07 -1.06 0.0000 0.0000 1.0000 GH 2 1 2 0.96 1.15 0.4305 0.4513 0.1183 1 2 3 0.08 -0.24 0.0000 0.6561 0.3439 3 4 -0.07 -1.11 0.0000 0.0000 1.0000 2 1 1 2 0.76 0.3487 0.4836 0.1677 3 0.02 0.0000 0.5905 0.4095 2 3 4 -0.07 0.0000 0.0000 1.0000 2 1 0.2824 0.4980 0.2195 1 2 0.59 0.0000 0.5314 0.4686 2 3 -0.04 3 4 -0.07 0.0000 0.0000 1.0000 0.3487 0.4836 0.1677 0.3487 0.4836 0.1677 2* 4 1 2 0.76 2 2 0.76 3 2 0.76 0.3487 0.4836 0.1677

-169-

-170-

. **a**.

MACH	HIN	E M,	AINTENANCE &	REPAIR		PAGE 11		TAB	LE	7.	02
G		2*					4	1	1	1	1
	1	2	0.96	0.4305	0.4513	0.1183					
	2	2	0.96	0.4305	0.4513	0.1183					
	3	2	0.96	0.4305	0.4513	0.1183					
G		1×						4			
Ŭ	1	ĩ	1.21	0.5314	0.3951	0.0734		4			
	2	ĩ	1.21	0.5314	0.3951	0.0734					
	3	ĩ	1.21	0.5314	0.3951	0.0734					
c		1 *							,		
0	1	1	1 52	0 6561	0 2070	0 0261			4		
	1 2	1	1.52	0.6561	0.2070	0.0201					
	2	1	1.52	0.0501	0.2070	0.0301					
	5	T	1.52	0.0001	0.3078	0.0361					
G		1*								4	
	1	1	1.90	0.8100	0.1800	0.0100					
	2	1	1.90	0.8100	0.1800	0.0100					
	3	1	1.90	0.8100	0.1800	0.0100					
C.		1*									4
Ŭ.	1	1	2.36	1.0000	0.0000	0.0000					-7
	2	ĩ	2.36	1.0000	0.0000	0.0000					
	3	ĩ	2.36	1.0000	0.0000	0.0000					
	~	*				0.0000					

MACHINE MAINTENANCE & REPAIR PAGE 12 TABLE 8.01 ITERATION 8 MEM = 15 ESS MEM = 14 TIME = 4.53 0.432 < G < C.435 14 STEPS TIME = 5.36 0.308 < H < 0.400 12 STEPS TIME = 5.72 TIME = 5.36 1 RC I U V(G) V(H) PRCBS MEMORY STATES GH 1 1 1 1 1.76 1.89 0.8100 0.1800 0.0100 2 3 0.19 -0.13 0.0000 0.9000 0.1000 4 -0.21 -0.99 0.0000 0.0000 1.0000 3 GH 1 1 1 1 1.37 1.47 C.6561 0.3078 0.0361 2 3 0.10 -0.22 0.0000 0.8100 0.1900 3 4 -0.21 -0.88 0.0000 0.0000 1.0000 GH 1 1 1 1 1.06 1.10 0.5314 0.3951 0.0734 2 3 0.02 -0.28 0.0000 0.7290 0.2710 3 4 -0.21 -0.76 0.0000 0.0000 1.0000 GH 2 1 1 2 0.81 0.80 0.4305 0.4513 0.1183 2 3 -0.05 -0.33 0.0000 0.6561 0.3439 3 4 -0.21 -0.63 0.0000 0.0000 1.0000

 1
 2
 0.61
 0.3487
 0.4836
 0.1677

 2
 3
 -0.12
 0.0000
 0.5905
 0.4095

 3
 4
 -0.21
 0.0000
 0.0000
 1.111

 2 1 2 1 0.000 0.0000 1.0000 3 4 -0.21 2* 4 0.3487 0.4836 0.1677 0.3487 0.4836 0.1677 1 2 0.61 2 0.61 2 0.3487 0.4836 0.1677 3 2 0.61 2* GH 4 1 2 0.81 0.80 0.4305 0.4513 0.1183 2 2 0.81 0.80 0.4305 0.4513 0.1183 3 2 0.81 0.80 0.4305 0.4513 0.1183

-171-

MACI	HIN	EM	AINTE	NANCE &	REPAIR		PAGE 13	TABLE	8.02
GH		1*						4 1	1 1
	1	1	1.06	1.10	0.5314	0.3951	0.0734		
	2	1	1.06	1.10	0.5314	0.3951	0.0734		
	3	ī	1.06	1.10	0.5314	0.3951	0.0734		
GH		1*						4	
	1	1	1.37	1.47	0.6561	0.3078	0.0361		
	2	1	1.37	1.47	0.6561	0.3078	0.0361		
	3	1	1.37	1.47	0.6561	0.3078	0.0361		
GH		1*							4
	1	1	1.76	1.89	0.8100	0.1800	0.0100		
	2	1	1.76	1.89	0.8100	0.1800	0.0100		
	3	1	1.76	1.89	0.8100	0.1800	0.0100		
GH		1							2
	1	1	2.02	2.16	0.8100	0.0900	0.0025		
	2	3	0.24	-0.06	0.C000	0.4500	0.0250		
	3	4 -	-0.21	-1.06	0.000	0.0000	0.2500		
GH		4							3
	1	3	0.22	0.01	0.000	0.0900	0.0075		
	2	3	0.15	0.01	0.000	0.4500	0.0750		
	3	4 -	-0.21	0.01	0.000	0.0000	C.75CO		
GH		1*							4
	1	1	2.23	2.41	1.0000	0.0000	0.0000		
	2	1	2.23	2.41	1.000	0.0000	0.0000		
	3	1	2.23	2.41	1.CC00	0.0000	C.0000		

-172-

3m

MACHINE MAINTENANCE & REPAIR PAGE 14 TABLE 9.01 ITERATION 9 MEM = 18 ESS MEM = 17 TIME = 5.96I 0.429 < G < 0.431 16 STEPS TIME = 7.111 0.284 < H < 0.404 13 STEPS TIME = 7.73RC I U V(G) V(H) PRCBS MEMORY STATES G 1 1 1 1.75 0.8100 0.1800 0.0100 2 3 0.19 0.0000 0.9000 0.1000 0.0000 0.0000 1.0000 3 4 -0.21 GH 1 1 1 1 1.36 -0.84 C.6561 0.3078 C.0361 2 3 0.10 -2.56 0.0000 0.8100 0.1900 3 4 -0.21 -3.33 0.0000 0.0000 1.0000 GH 1 1 1 1 1.05 -1.19 0.5314 0.3951 0.0734 3 0.02 -2.62 0.0000 0.7290 0.2710 2 3 4 -0.21 -3.22 0.0000 0.0000 1.0000 GH 1 1 1 1 0.79 -1.49 0.4305 0.4513 0.1183 2 3 -0.05 -2.66 0.0000 0.6561 0.3439 3 4 -0.21 -3.09 0.0000 0.0000 1.0000 GH 1 2 1 2 0.59 -1.74 0.3487 0.4836 0.1677 3 -0.12 -2.69 0.000 0.5905 0.4095 2 3 4 -0.21 -2.97 C.COOO 0.000C 1.0000 1 1 1 1 0.43 0.2824 0.4980 0.2195 3 -0.18 0.0000 0.5314 0.4686 2 0.0000 0.0000 1.0000 4 -0.21 3 GH 2* 2 0.59 -1.74 0.3487 0.4836 0.1677 1 2 0.59 -1.74 0.3487 0.4836 0.1677 2 3 2 0.59 -1.74 0.3487 0.4836 0.1677 4 GH 1* 1 1 0.79 -1.49 0.4305 0.4513 C.1183

2 1 0.79 -1.49 0.4305 0.4513 0.1183

1 0.79 -1.49 0.4305 0.4513 0.1183

3

-173-

1 1

I

1

MACHINE MAINTENANCE & REPAIR PAGE 15 TABLE 9.02 4 1 1 1 GH 1* 0.0734 1 1 1.05 -1.19 0.5314 0.3951 2 1 1.05 -1.19 0.5314 0.3951 0.0734 0.5314 0.0734 3 1 1.05 -1.19 0.3951 4 GH 1* 0.6561 0.3078 0.0361 1 1 1.36 -0.84 2 1.36 -0.84 0.6561 0.3078 0.0361 1 3 1 1.36 -0.84 0.6561 0.3078 0.0361 2 GH 1 1.58 -0.62 0.6561 0.2268 0.0196 1 1 0.0700 0.000 0.4050 2 3 0.14 -2.52 4 -0.21 -3.43 0.0000 0.0000 0.2500 3 4 GH 1* 0.8100 0.1800 0.0100 1 1 1.75 -0.41 0.1800 0.0100 2 1 1.75 -0.41 0.8100 3 1.75 - 0.410.8100 0.1800 0.0100 1 2 1 1 1 2.01 0.8100 0.0900 0.0025 2 0.0000 0.4500 0.0250 3 0.24 0.0000 0.0000 0.2500 3 4 -0.21 GH 1 1 0.6561 0.1539 0.0090 1 1 1.81 -0.40 0.C000 0.4050 0.0475 2 3 0.19 - 2.464 -0.21 -3.48 0.000 0.0000 0.2500 3 3 4 3 0.000 0.0900 0.0075 1 0.21 2 3 0.15 0.000 0.4500 0.0750 0.0000 0.0000 0.7500 3 4 -0.21 1 GH 4 1 1 0.14 -2.30 0.0000 0.1539 C.0271 0.07 -2.30 0.1425 0.0000 0.4050 2 1 4 -0.21 -2.30 0.0000 0.0000 0.7500 3 1* 4 GH 1 1 2.22 0.10 1.0000 0.0000 0.0000 0.0000 2.22 1.0000 0.0000 2 1 0.10 3 1 2.22 0.10 1.0000 0.0000 0.0000

-174-

a1.

MACHINE MAINTENANCE & REPAIR PAGE 16 TABLE 10.01 -ITERATION 10 MEM = 23 ESS MEM = 21 TIME = 8.06 0.430 < G < C.431 12 STEPS TIME = 9.120.250 < H < 0.355 14 STEPS TIME = 9.27RC I U V(G) V(H) PROBS MEMORY STATES 1 1 1

 1
 1
 -0.35
 0.6561
 0.3078
 0.0361

 2
 3
 -1.60
 0.0000
 0.8100
 0.1900

 3
 4
 -1.91
 0.0000
 0.00000
 1.0000

 1 1 0.5314 0.3951 0.0734 0.0000 0.7290 0.2710 1 1 -0.66 2 3 -1.69 3 4 -1.91 0.0000 0.0000 1.0000 1 1 0.4305 0.4513 0.1183 1 1 -0.92 2 3 -1.76 0.0000 0.6561 0.3439 0.0000 0.0000 1.0000 3 4 -1.91 1 1

 1
 1
 -1.12
 0.3487
 0.4836
 0.1677

 2
 3
 -1.82
 0.000
 0.5905
 0.4095

 3 4 -1.91 0.0000 0.0000 1.0000 GH 1 1 1 1 -1.27 1.25 0.2824 0.4980 0.2195 2 3 -1.88 0.26 0.000 0.5314 0.4686 3 4 -1.91 -0.37 0.0000 0.0000 1.0000 G 1* 0.3487 0.4836 0.1677 3 1 -1.12 0.4305 0.4513 0.1183 0.4305 0.4513 -G 4 1* 1 1 -0.92 0.4305 0.4513 0.1183 2 1 -0.92 3 1 -0.92 0.4305 0.4513 0.1183 G 1* 4 0.5314 0.3951 0.0734 0.5314 0.3951 0.0734 0.5314 0.3951 0.0734 1 1 -0.66 2 1 -0.66

3 1 -0.66

-175-

.

MACHINE MAINTENANCE & REPAIR PAGE 17 TABLE 10.02 2 1 1 1 1 - 0.480.5314 0.3222 0.0488 1 2 3 -1.65 0.0000 0.3645 0.1105 3 4 -1.91 0.0000 0.0000 0.2500 G 4 1* 1 0.6561 0.3078 C.0361 1 -0.35 2 1 -0.35 0.6561 0.3078 0.0361 3 1 -0.35 0.6561 0.3078 0.0361 2 1 0.6561 0.2268 C.0196 1 1 -0.13 2 3 -1.56 0.000 0.4050 0.0700 3 4 -1.91 0.0000 0.0000 0.2500 1 1 1 -0.30 0.5314 0.2566 0.0310 1 2 3 -1.61 0.0000 0.3645 0.0880 3 4 -1.91 0.000 0.0000 0.2500 3 4 0.000 0.0810 0.0165 1 3 -1.58 0.0000 0.4050 0.1200 2 3 -1.64 3 4 -1.91 0.0000 0.0000 0.7500 G 4 1* 1 1 0.04 0.8100 0.1800 0.0100 0.8100 0.1800 0.0100 2 1 0.04 3 0.04 0.8100 0.1800 0.0100 1 2 1 1 1 0.29 0.8100 0.0900 0.0025 0.0250 2 3 -1.47 0.0000 0.4500 3 4 -1.91 0.000 0.0000 0.2500 1 1 0.09 0.6561 0.1539 0.0090 1 1 2 3 -1.52 0.0000 0.4050 0.0475 4 -1.91 C.C000 0.0000 0.2500 3 1 1 1 -0.10 0.5314 0.1976 0.0184 1 0.0000 0.3645 0.0677 2 3 -1.57 3 4 -1.91 0.0000 0.0000 0.2500 3 4 3 -1.49 0.0000 0.0900 0.0075 1 3 -1.56 0.000 0.4500 0.0750 2 0.0000 0.0000 0.7500 4 -1.91 3

-176-

.4.

MACHINE	E MAINTENANCE &	REPAIR		PAGE 18	TABLE	10.03
1 2 3	4 3 -1.56 3 -1.67 4 -1.91	0.0000 0.0000 0.0000	0.1539 0.4050 0.0000	0.0271 0.1425 C.7500		1 3
1 2 3	4 3 -1.63 1 -1.75 4 -1.91	C.C000 C.C000 C.C000	0.1976 0.3645 0.0000	0.0551 0.2032 0.7500	1	
G 1 2 3	1* 1 0.52 1 0.52 1 0.52	1.0000 1.0000 1.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000		4

-177-

1 -

-178-

MAC	HIN	E MAINTE	NANCE &	REPAIR		PAGE 19		TABLE 11.	01
+	1T	ERATION	11 м	EM = 25	ESS ME	M = 23	TIME	= 9.42	-+
 +	0.	423 < G 259 < H	< C.4 < C.4	27 10	18 STE 12 STE	P S P S 	TIME TIME	= 11.11 = 11.55	י +-
RC	I	U V(G)	V(H)	PRCBS			MEI	MORY STAT	ES
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.36 \\ 3 & -1.60 \\ 4 & -1.91 \end{array} $		0.6561 0.0000 0.0000	0.3078 0.81C0 0.0000	0.0361 0.1900 1.0000		1	1
GH	1 2 3	1 1 -0.68 3 -1.69 4 -1.91	-1.19 -2.61 -3.20	0.5314 0.0000 0.0000	0.3951 0.7290 0.0000	0.0734 0.2710 1.0000		1	
GH	1 2 3	1 1 -0.94 3 -1.76 4 -1.91	-1.48 -2.65 -3.08	0.4305 0.0000 0.0000	0.4513 0.6561 0.0000	0.1183 0.3439 1.0000		1	
GH	1 2 3	2 2 -1.15 3 -1.82 4 -1.91	-1.73 -2.67 -2.96	0.3487 0.0900 0.0000	0.4836 0.5905 0.0000	0.1677 0.4095 1.0000	1		
	1 2 3	2 2 -1.32 3 -1.88 4 -1.91		0.2824 0.000 0.000	0.4980 0.5314 0.0000	0.2195 0.4686 1.0000	1		
	1 2 3	4 1 -1.46 4 -1.91 4 -1.91		0.2288 0.000 0.000	0.4991 0.4783 0.0000	1 0.2722 0.5217 1.0000			
	1 2 3	2* 2 -1.32 2 -1.32 2 -1.32		0.2824 0.2824 0.2824	0.498C 0.498C 0.4980	4 0.2195 0.2195 0.2195			
GH	1 2 3	2* 2 -1.15 2 -1.15 2 -1.15	-1.73 -1.73 -1.73	0.3487 0.3487 0.3487	0.4836 0.4836 0.4836	C.1677 C.1677 O.1677	4		

.

				1/2						
MACI	HINI	E MAINTENANCE &	REPAIR		PAGE 20		TABL	E	11.	02
GН	1 2 3	$1* \\ 1 -0.94 -1.48 \\ 1 -0.94 -1.48 \\ 1 -0.94 -1.48 \\ 1 -0.94 -1.48$	0.4305 0.4305 0.4305	0.4513 0.4513 0.4513	0.1183 0.1183 0.1183	4	1	1	1	1
GH	1 2 3	$1* \\ 1 -0.68 -1.19 \\ 1 -0.68 -1.19 \\ 1 -0.68 -1.19 \\ 1 -0.68 -1.19$	0.5314 0.5314 0.5314	0.3951 0.3951 0.3951	0.0734 0.0734 0.0734		4			
GH	1 2 3	1 1 -0.50 -1.01 3 -1.65 -2.58 4 -1.91 -3.30	0.5314 0.0000 0.0000	0.3222 0.3645 0.0000	0.0488 0.1105 0.2500			2		
GH	1 2 3	1* 1 -0.36 -0.83 1 -0.36 -0.83 1 -0.36 -0.83	0.6561 0.6561 0.6561	0.3078 0.3078 0.3078	0.0361 0.0361 0.0361			4		
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.14 \\ 3 & -1.56 \\ 4 & -1.91 \end{array} $	0.6561 0.0000 0.0000	0.2268 0.4050 0.0000	0.0196 0.0700 0.2500				2	
GH	1 2 3	1 1 -0.30 -0.82 3 -1.61 -2.54 4 -1.91 -3.38	0.5314 0.0000 0.0000	0.2566 0.3645 0.0000	0.031C 0.0880 0.2500			1		
G	1 2 3	4 3 -1.58 3 -1.64 4 -1.91	C.C000 O.C000 O.C000	0.0810 0.4050 0.0000	0.0165 0.1200 0.7500				3	
GH	1 2 3	$ \begin{array}{c} 1*\\ 1 & 0.03 & -0.41\\ 1 & 0.03 & -0.41\\ 1 & 0.03 & -0.41\\ \end{array} $	0.8100 0.8100 0.8100	0.1800 0.1800 0.1800	0.0100 0.0100 0.0100				4	
	1 2 3	1 1 0.29 3 -1.47 4 -1.91	0.8100 0.0000 0.0000	0.090C 0.4500 0.00CC	0.0025 0.0250 0.2500					2
	1 2 3	$ \begin{array}{r} 1 \\ 1 \\ 0.09 \\ 3 \\ -1.52 \\ 4 \\ -1.91 \\ \end{array} $	0.6561 0.000 0.0000	0.1539 0.4050 0.00CC	0.0090 0.0475 C.2500				1	

-179-

*

I

MACH	IN	E MAINTEN	ANCE &	REPAIR		PAGE 21	TABLE	11.	03
GH	1 2 3	1 1 -0.10 3 -1.57 4 -1.91	-0.62 -2.48 -3.41	0.5314 0.C000 0.C000	0.1976 0.3645 0.0000	0.0184 0.0677 C.2500	1	1	2
	1 2 3	4 3 -1.49 3 -1.56 4 -1.91		0.CC00 0.C000 0.0700	0.09C0 0.45CC 0.00CC	0.0075 C.075C G.7500			3
	1 2 3	4 3 -1.56 3 -1.68 4 -1.91		0.000 0.000 0.000	0.1539 0.4050 0.0000	0.0271 0.1425 0.7500		1	
GH	1 2 3	4 3 -1.63 1 -1.74 4 -1.91	-2.31 -2.31 -2.31	0.0000 0.0000 0.0000	0.1976 0.3645 0.0000	0.0551 0.2032 0.7500	1		
GH	1 2 3	1* 1 0.51 1 0.51 1 0.51	0.10 0.10 0.10	1.C000 1.C000 1.C000	0.0000 0.0000 0.0000	C.COCO C.OOCC C.CCCO			4

-180-

.
-181-

MAC	HIN	E MAINTE	NANCE &	REPAIR		PAGE 22		TABLE 12.0
+ 	I T	ERATION	12 M	EM = 31	ESS ME	M = 29	TIME	= 11.94
 +	0.	420 < G 317 < H	< 0.4 < C.4	25 09	18 STE 12 STE	р S Р S	TIME TIME	= 14.10 = 14.38
RC	Ι	U V(G)	V(H)	PRCBS			ME	EMORY STATE
	1 2 3	1 1 -0.37 3 -1.60 4 -1.91)	0.6561 0.0000 0.0000	0.3078 0.81C0 0.00CC	C.0361 0.1900 1.0000		1
	1 2 3	1 1 -0.69 3 -1.69 4 -1.91))	0.5314 0.C000 C.C000	0.3951 0.7290 0.0000	0.0734 0.2710 1.0000		1
	1 2 3	1 1 -0.95 3 -1.76 4 -1.91	; ;	0.4305 0.C000 0.C000	0.4513 0.6561 0.00C0	0.1183 0.3439 1.0000		1
	1 2 3	1 1 -1.16 3 -1.82 4 -1.91)	0.3487 0.000 0.000	0.4836 0.5905 0.0000	0.1677 0.4095 1.0000	1	
	1 2 3	1 1 -1.32 3 -1.88 4 -1.91	<u>-</u> 	0.2824 0.000 0.000	0.498C 0.5314 0.000C	0.2195 0.4686 1.0000	1	
GH	1 2 3	4 1 -1.45 4 -1.91 4 -1.91	-2.29 -2.29 -2.29	0.2288 0.0000 0.0000	0.4991 0.4783 0.00CC	1 0.2722 0.5217 1.0000		
GH	1 2 3	1* 1 -1.32 1 -1.32 1 -1.32	2 -2.14 -2.14 -2.14	0.2324 0.2824 0.2324	0.498C 0.4980 0.4980	4 0.2195 0.2195 0.2195		
GH	1 2 3	$1 \approx$ 1 -1.16 1 -1.16 1 -1.16	-1.96 -1.96 -1.96	0.3487 0.3487 0.3487	0.4836 0.4836 0.4836	0.1677 0.1677 0.1677	4	

۰.

8.

¥6.

-182-

MACI	HINI	E MAINTENANCE &	REPAIR		PAGE 23	TABL	E 12.02
GH	1 2 3	$ \begin{array}{r} 1*\\ 1 & -0.95 & -1.73\\ 1 & -0.95 & -1.73\\ 1 & -0.95 & -1.73 \end{array} $	0.4305 C.4305 O.4305	0.4513 0.4513 0.4513	0.1183 0.1183 0.1183	4 1	1 1 1
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.80 \\ 3 & -1.72 \\ 4 & -1.91 \end{array} $	0.4305 0.C000 0.C000	0.3857 0.3280 0.0000	0.0864 0.1469 C.2500	2	
GH	1 2 3	$1* \\ 1 -0.69 -1.41 \\ 1 -0.69 -1.41 \\ 1 -0.69 -1.41 \\ 1 -0.69 -1.41$	0.5314 0.5314 0.5314	0.3951 0.3951 0.3951	0.C734 0.C734 0.C734	4	
·	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.51 \\ 3 & -1.65 \\ 4 & -1.91 \end{array} $	0.5314 0.C060 0.C000	0.3222 0.3645 0.0000	0.0488 0.1105 0.2500		2
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.64 \\ 3 & -1.69 \\ 4 & -1.91 \end{array} $	0.4305 0.C000 0.C000	0.3266 0.3280 0.0000	0.0620 0.1244 0.2500	1	
GH	1 2 3	1* 1 -0.37 -0.99 1 -0.37 -0.99 1 -0.37 -0.99	0.6561 0.6561 0.6561	0.3078 0.3078 0.3078	0.0361 0.0361 0.0361		4
	1 2 3	1 1 -0.15 3 -1.56 4 -1.91	0.6561 0.C000 0.C000	0.2268 0.4050 0.00CC	0.0196 0.0700 0.2500		2
	1 2 3	1 1 -0.32 3 -1.61 4 -1.91	0.5314 C.COOC 0.COOO	0.2566 0.3645 0.0000	0.0310 0.0880 0.2500		1
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.47 \\ 3 & -1.66 \\ 4 & -1.91 \end{array} $	0.4305 0.C000 0.C000	0.2735 0.3280 0.0000	0.0434 0.1042 0.2500	1	
	1 2 3	4 3 -1.58 3 -1.64 4 -1.91	0.0000 0.0000 0.0000	0.0810 0.4050 0.00CC	0.0165 0.1200 C.7500		3

19**6**.,

.

-183-

4

MAC	HIN	E MAINTENANCE &	REPAIR		PAGE 24	TABLE	12.	03
	1 2 3	4 3 -1.65 1 -1.71 4 -1.91	C.CCCO 0.CCCO C.CCOO	0.1385 0.3645 0.0000	0.0425 0.1330 0.7500	1	3	1
GН	1 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8100 0.8100 0.8100	0.1800 0.1800 0.1800	0.01C0 0.61CC 0.01C0		4	
	1 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8100 0.0000 0.0000	0.0900 0.4500 0.0000	0.0025 0.0250 0.2500			2
	1 2 3	$ \begin{array}{r} 1 \\ 1 \\ 0.07 \\ 3 \\ -1.52 \\ 4 \\ -1.91 \end{array} $	0.6561 0.000 0.000	0.1539 0.4050 0.0000	0.009C 0.0475 0.2500		1	
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.12 \\ 3 & -1.57 \\ 4 & -1.91 \end{array} $	0.5314 0.C000 0.C000	0.1976 0.3645 0.00CC	C.C184 O.C677 O.2500	1		
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.30 \\ 3 & -1.62 \\ 4 & -1.91 \end{array} $	0.4305 0.C000 0.C000	0.2256 0.3280 0.0000	0.0296 0.0860 0.2500	1		
	1 2 3	4 3 -1.49 3 -1.56 4 -1.91	C.C000 0.C000 0.C000	0.09CC 0.4500 0.0000	0.0075 0.0750 0.7500			3
	1 2 3	4 3 -1.56 3 -1.67 4 -1.91	0.0000 0.0000 0.0000	0.1539 0.4050 0.0000	C.0271 C.1425 O.7500		1	
	1 2 3	4 3 -1.63 1 -1.76 4 -1.91	0.000 0.000 0.000	0.1976 0.3645 0.0000	C.0551 0.2032 0.7500	1		
	1 2 3	4 3 -1.70 1 -1.80 4 -1.91	0.000 0.000 0.000	0.2256 0.3280 0.0000	C.0887 O.2579 O.7500	1		

-184-

-

414

MAC	HIN	ΕM	AINTEN	IANCE &	REPAIR		PAGE 25	TABLE 12.04
GH		1*						4
	1	1	0.51	80.0	1.0000	0.0000	0.0000	
	2	1	0.51	0.08	1.0000	0.0000	0.000	
	3	1	0.51	80.0	1.0000	0.0000	0.0000	

MAC	HIN	E MAINT	ENANCE 8	REPAIR		PAGE 26		TABLE 13.01
+	 I T	ERATION	1 1 3 N	1EM = 33	ESS ME	M = 31	TIME	= 14.58
 +	0. 0.	421 < 0 421 < H	< 0.4 < 0.4	23	17 STE 6 STE	P S D S	TIME	= 16.61 = 16.84
RC	I	U V(G	;) V(H)	PRCBS			ME	MORY STATES
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.3 \\ 3 & -1.6 \\ 4 & -1.9 \end{array} $	97 90 91	0.6561 0.0000 0.0000	0.3078 0.8100 0.0000	0.0361 0.1900 1.0000		1 1
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.7 \\ 3 & -1.6 \\ 4 & -1.9 \end{array} $	20 99 91	0.5314 0.0000 0.0000	0.3951 0.7290 0.0000	0.0734 0.2710 1.0000		1
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.9 \\ 3 & -1.7 \\ 4 & -1.9 \\ \end{array} $	96 76 91	0.4305 0.0000 0.0000	0.4513 0.6561 0.0000	0.1183 0.3439 1.0000		1
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -1 \cdot 1 \\ 3 & -1 \cdot 8 \\ 4 & -1 \cdot 9 \end{array} $.7 2 1	0.3487 0.C000 0.0000	0.4836 0.5905 0.0000	0.1677 0.4095 1.0000	1	
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -1 \cdot 3 \\ 3 & -1 \cdot 8 \\ 4 & -1 \cdot 9 \end{array} $	3 8 91	0.2824 0.0000 0.0000	0.4980 0.5314 0.0000	0.2195 0.4686 1.0000	1	
	1 2 3	4 3 -1.4 4 -1.9 4 -1.9	-6 -1 -1	0.2288 0.000 0.0000	0.4991 0.4783 0.0000	1 0.2722 0.5217 1.0000		
	1 2 3	4 3 -1.5 4 -1.9 4 -1.9	5 - 1 1	0.1853 0.C000 0.C000	0.4903 0.4305 0.0000	1 0.3244 0.5695 1.0000		
GH	1 2 3	3* 3 -1.4 3 -1.4 3 -1.4	6 -1.90 6 -1.90 6 -1.90	0.2288 0.2288 0.2288	0.4991 0.4991 0.4991	4 0.2722 0.2722 0.2722		

1

-185-

-1

-186-

MAC	HIN	E MAINTENANCE &	REPAIR		PAGE 27		TABLE	E 13.02
GH	1 2 3	1* 1 -1.33 -1.77 1 -1.33 -1.77 1 -1.33 -1.77	0.2824 0.2824 0.2824	0.498C 0.498C 0.498C	4 0.2195 0.2195 0.2195	1 1	. 1]	1 1 1
GH	1 2 3	$1* \\ 1 -1.17 -1.61 \\ 1 -1.17 -1.61 \\ 1 -1.17 -1.61 \\ 1 -1.17 -1.61$	C.3487 O.3487 C.3487	0.4836 0.4836 0.4836	0.1677 0.1677 0.1677	4		
GH	1 2 3	$ \begin{array}{r} 1*\\ 1 & -0.96 & -1.40\\ 1 & -0.96 & -1.40\\ 1 & -0.96 & -1.40 \end{array} $	0.4305 0.4305 0.4305	0.4513 0.4513 0.4513	0.1183 0.1183 0.1183	4	ł	
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.81 \\ 3 & -1.72 \\ 4 & -1.91 \end{array} $	0.4305 0.0000 C.C000	0.3857 0.3280 0.0000	C.0864 O.1469 O.2500		2	
GH	1 2 3	1* 1 -0.70 -1.13 1 -0.70 -1.13 1 -0.70 -1.13	0.5314 0.5314 0.5314	0.3951 0.3951 0.3951	0.0734 0.0734 0.0734		4	
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.51 \\ 3 & -1.65 \\ 4 & -1.91 \end{array} $	0.5314 0.0000 0.0000	0.3222 0.3645 0.0000	0.0488 0.1105 0.2500		2	2
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.65 \\ 3 & -1.69 \\ 4 & -1.91 \end{array} $	0.4305 0.0000 0.0000	0.3266 0.3280 0.0000	0.0620 0.1244 0.2500		1	
GH	1 2 3	1* 1 -0.37 -0.81 1 -0.37 -0.81 1 -0.37 -0.81	0.6561 0.6561 0.6561	0.3078 0.3078 0.3078	0.0361 0.0361 0.0361		4	
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.16 \\ 3 & -1.56 \\ 4 & -1.91 \end{array} $	0.6561 0.0000 0.0000	0.2268 0.4050 0.0000	0.0196 0.0700 C.2500			2
	1 2 3	$ \begin{array}{r} 1 \\ 1 & -0.32 \\ 3 & -1.61 \\ 4 & -1.91 \end{array} $	0.5314 0.0000 0.0000	0.2566 0.3645 0.0000	0.0310 0.0880 0.2500		1	

1

486.

MACHINE MAINTENANCE & REPAIR PAGE 28 TAPLE 13.03 1 1 2 1 1 1 -0.48 1 0.4305 0.2735 0.0434 0.0000 2 3 -1.66 0.3280 0.1042 3 4 -1.91 0.0000 0.0000 0.2500 3 4 1 3 -1.58 0.0000 0.0810 0.0165 2 3 -1.64 0.0000 0.4050 0.1200 3 4 -1.91 0.000 0.0000 C.7500 4 1 3 -1.65 0.0000 1 0.1385 0.0425 0.000 2 1 - 1.710.3645 0.1830 3 4 -1.91 0.0000 0.0000 0.7500 GH 1* 4 1 1 0.03 -0.41 0.8100 0.1800 0.0100 2 1 0.03 - 0.410.8100 0.1800 0.0100 3 0.8100 1 0.03 - 0.410.1800 0.0100 2 1 1 1 0.28 0.8100 0.0900 0.0025 2 3 -1.47 0.0000 0.4500 9.0250 4 -1.91 0.000 0.0000 0.2500 3 1 1 1 0.6561 0.1539 0.0090 1 0.07 2 3 -1.52 0.000 0.4050 0.0475 3 4 -1.91 0.0000 0.0000 0.2500 1 1 0.5314 1 1 - 0.130.1976 0.0184 2 3 -1.57 0.0000 0.3645 0.0677 3 0.0000 0.0000 0.2500 4 -1.91 1 1 0.4305 0.2256 0.0296 1 1 -0.30 0.0000 2 3 -1.62 0.3280 0.0960 0.2500 3 4 -1.91 0.000 0.0000 3 4 3 -1.49 1 0.0000 0.0900 0.0075 0.0000 0.4500 C.0750 2 3 -1.56 3 4 -1.91 0.0000 0.0000 0.7500 1 4 3 -1.56 0.0000 0.1539 0.0271 1 0.0000 0.4050 C.1425 2 3 -1.67 3 4 -1.91 0.000 0.0000 0.7500

-187-

.....

I

						-188-				
MACH	HIN	EM	AINTEN	ANCE &	REPAIR		PAGE 29	TABLE	13.0	04
	1	4	-1 42		0 0000	0 1076	0 0551	1	1	3
	2 3	5 1 4	-1.76 -1.91		0.000	0.3645	0.2032			
		4						1		
	1 2	3 1	-1.70		0.000	0.2256	0.0887			
сн	د	4 1×	-1.91		0.0000	0.0000	0.7900			4
0.,	1 2 3	1 1 1	0.51 0.51 0.51	0.C7 0.07 0.07	1.0000 1.0000 1.0000	0.0000 0.0000 0.0000	00000.0 0000.0 0000.0			

- An.

١

b. A Computer Communication Problem

The problem to be considered in this subsection concerns several units sharing a single communication channel. If any two units attempt to transmit messages simultaneously, both will fail. As the units have no means (other than the channel itself) of coordinating their efforts, the decision to transmit is made on the basis of imperfect information. A system of this type has been used to link remote terminals to a central computer at the University of Hawaii; because this system is called the ALOHA system, the problem has become known as the <u>slotted</u> <u>ALOHA problem</u>. A more familiar example of this problem is that faced by a newsman attempting to address the President of the United States at a news conference; if he asks a question while another newsman is doing the same, neither will be recognized.

The slotted ALOHA problem has been considered by Kleinrock and Lam [1975], Lam and Kleinrock [1975], and others cited in the first reference. Although the problem has been extensively studied under the assumption that the number of units seeking to transmit is known (to all units), no work known to this author considers the "dual control" aspect of the problem (characterized by the fact that clashes are useful in identifying the number of units seeking to transmit). The formulation to be considered here limits the number of units, but recognizes the "dual control" aspect of the problem. Moreover, previous work resulted in strategies sufficiently complex to preclude evaluation, even by simulation. In the present analysis, the system

-189-

under an adapted feasible strategy is a Markov chain having state set SxM; exact evaluation of the controller performance is therefore possible.

In the model to be considered here, there are four units, each of which may be in <u>idle</u> or <u>retransmit</u> mode. During each time interval, a <u>message originates</u> at an idle unit with probability .1. The unit always attempts to broadcast a newly-originated message. The three outputs are:

A unit that has unsucessfully attempted to transmit subsequently enters retransmit mode. It then selects an input

$$U = \begin{cases} \text{Retransmit with probability .2} \\ \text{Retransmit with probability .9} \end{cases}$$

Since the system, as viewed by a unit in retransmission mode, is symmetric, all units select the same input on the basis of the same input-output history. There results an FPS formulation having 5 states (corresponding to the number of units in retransmit mode), 2 inputs, and 3 outputs. The FPS is reachable and detectable. The performance measure is throughput, i.e. the average number of messages successfully transmitted per unit time.

1b	h ub	و 1b	g essential 1b ub memory effectiveness		time (secs)	
.302	.354	.330	.372	1	<u>></u> 91.2%	. 39
. 309	.331	.332	.336	6	<u>></u> 93.3%	1.54
.313	. 329	.331	.332	26	<u>></u> 94.6%	5.46
.312	.330	.330	.331	98	<u>></u> 94.3%	23.49

The following results were obtained in four iterations:

"Effectiveness" was computed by comparing the lower bound on h with the final upper bound on feasible performance, .331.

These results indicate that memory is not very useful for purposes of decision-making in this problem, i.e. that the performance that may be achieved on the basis of the most recent input-output pair alone (iteration 2) is comparable to that which may be achieved on the basis of an infinite past history. This might be attributed to the small number of units involved; it is possible that a similar computation with a larger number of units might yield entirely different results.

-191-

CHAPTER V

CONCLUSIONS

The mathematical technique of dynamic programming assigns to each state a value representing the expected rewards accrued when the system is initiated in that state. A decision-maker uses these values to compare immediate rewards with potential benefits if the system is made to enter a desirable state.

Problems of decision-making under state uncertainty may, in principle, be solved by dynamic programming, if the state of information is itself considered to be a state. It may, however, be practically infeasible to assign a value to each state of information, when the number of possible states of information is sufficiently large.

The mathematical technique of perceptive dynamic programming assigns a value to certain information that might be acquired at a cost. These values may be used to compare performance achievable on the basis of existing knowledge with potential benefits if further information is sought.

In this report, perceptive dynamic programming has been developed in the context of control of finite probabilistic systems over an infinite horizon. The system is assumed to be <u>reachable</u>, so that performance will not depend on the initial state, and <u>detectable</u>, so that performance will not depend on the initial state of information. Specifically, reachability assures that the most desirable state can be reached from any other state; hence the gain achievable when the system is initiated in the most desirable state can be replicated when the system starts in any other state. Detectability assures that the information vector may be arbitrarily closely approximated on the basis of a sufficiently long string of most recent input-output pairs; hence, whatever information was available initially is irrelevant in the steadystate. Reachability and detectability also imply that a performance arbitrarily close to the supremum feasible performance may be achieved by a finite-memory controller having a sufficiently large memory set.

Reachability and detectability have many implications in FPS's that are similar to well-known properties of finite-dimensional linear systems (FDLS). For example, detectability in a FDLS implies that the observer state may be arbitrarily closely (in some suitable sense) approximated on the basis of a sufficiently long string of most recent input-output pairs. The analogous result for FPS's is given in Section 14. Moreover, any FDLS that is initiated in state zero may be expressed in a form that is controllable and observable. The assumption that a FDLS is initiated in state zero is equivalent to the assumption that it has experienced an infinite past under a stablizing control. Similarly, any FPS that has experienced an infinite past under an appropriate decision strategy may be expressed in a form that is reachable and detectable.

An algorithm for the solution of FPS control problems was implemented on a digital computer, and two simple problems were "solved" to

-193-

demonstrate the efficacy of the method. It appears that more realistic (and hence more complex) problems might be solved in the same manner, but it would then be necessary that the computer implementation be problem-specific.

Possible extentions of the theory which would be beneficial in extending its applicability include the following:

 The recursive computation of memory sets (described in Section
 could be explicitly optimized (e.g. by means of a branch-andbound intepretation).

2) The computational efficiency of pseudo-perceptive dynamic programming (described in Section 21b) might be compared with that of perceptive dynamic programming. It is clear that pseudoperceptive dynamic programming converges less rapidly than does perceptive dynamic programming, but the former requires less memory and less time to complete an iteration.

3) Perceptive dynamic programming is most effective when the index of detectability, $\overline{\alpha}$, lies near zero. In order for this to occur, outputs need not yield good reliable state information; they simply must preclude the possibility of better information being acquired from less recent input-output pairs. Thus the notion of detectability is useful in determining whether a given problem may be solved numerically. If the problem cannot be solved, then the notion of detectability might be useful in

suggesting a different observation structure, one that is more conducive to solution. In particular, the following problem might be posed: Determine outputs for a given underlying process such that, when perceptive dynamic programming is performed up to a maximum allowable memory size, feasible performance is maximized. An output that happens to equal the optimal input given the state would, of course, solve this problem.

4) The notions of reachability and detectability might be extended to systems having a large state set and a great deal of structure (e.g. routing in a network of queues). This could lead to effective rules for decision-making on the basis of imperfect state information when consideration of the exact state is physically feasible, but precluded on grounds of complexity.
5) Notions of cross-reachability and cross-detectability might be defined in decentralized systems, to indicate the extent to which various decision-makers need to coordinate their efforts.

-195-

BIBLIOGRAPHY

ASTROM, K.J. [1965], "Optimal Control of Markov Processes with Incomplete State Information," J. Math. Anal. Appl. 10, pp. 174-205. ASTROM, K.J. [1969], "Optimal Control of Markov Processes with Incomplete State Information II: The Convexity of the Loss Function," J. Math. Anal. Appl. 26, pp. 403-406. BATHER, J. [1973a], "Optimal Decision Procedures for Finite Markov Chains. Part I: Examples," Adv. Appl. Prob. 5, pp. 328-339. BATHER, J. [1973b], "Optimal Decision Procedures for Finite Markov Chains. Part II: Communicating Systems," Adv. Appl. Prob. 5, pp. 521-540. BATHER, J. [1973c], "Optimal Decision Procedures for Finite Markov Chains. Part III: General Convex Systems," Adv. Appl. Prob. 5, pp. 541-553. BELLMAN, R. [1957a], "A Markovian Decision Process," J. Math. and Mech. 6, pp. 679-684. BELLMAN, R. [1957b], Dynamic Programming, Princeton University Press, Princeton, N.J. BERTSEKAS, D. [1976], Dynamic Programming and Stochastic Control, Academic, New York. BROOKS, D.M. and LEONDES, C.T. [1973], "Markovian Decision Processes with State-Information Lag," Opns. Res. 21, pp. 904-907. BROWN, B. [1965], "On the Iterative Method of Dynamic Programming on a Finite State Discrete Time Process," Ann. Math. Stat. 36, pp. 1279-1285. CERNY, J. [1970], "Approximation in the Space of Information Channels," Information and Control 16, pp. 384-395. CHANDRESEKARIN, B. [1970], "Finite Memory Hypothesis Testing--A Critique," IEEE Trans. Inform. Theory, Vol. IT-16, No. 4, pp. 496-497.

CHANDRESEKARIN, B. [1971],

"Reply to Finite Memory Hypothesis Testing--Comments on a Critique," <u>IEEE Trans. Inform. Theory</u>, Vol. IT-17, No. 1, pp. 104-105.

CHANDRESEKARIN, B. and LAM, C.C. [1975], "A Finite-Memory Deterministic Algorithm for the Symmetric Hypothesis Testing Problem," <u>IEEE Trans. Inform. Theory</u>, Vol. IT-21, No. 1, pp. 40-44.

COVER, T.M. and HELLMAN, M.E. [1970a], "The Two-Armed-Bandit Problem with Time-Invariant Finite Memory," IEEE Trans. Inform. Theory, Vol. IT-16, No. 2, pp. 185-195.

COVER, T.M. and HELLMAN, M.E. [1970b], "Finite Memory Hypothesis Testing--Comments on a Critique," <u>IEEE</u> Trans. Inform. Theory, Vol. IT-16, No. 4, pp. 496-497.

COVER, T.M., FREEDMAN, M.Z. and HELLMAN, M.E. [1976], "Optimal Finite-Memory Learning Algorithms for the Finite Sample Problem," Information and Control 30, pp. 49-85.

DeGROOT, M.H. [1970], Optimal Statistical Decisions, McGraw-Hill, N.Y.

DERMAN, C. [1970], Finite State Markovian Decision Processes, Academic, N.Y.

DRAKE, A.W. [1962], "Observation of a Markov Process through a Noisy Channel," Sc.D. Thesis, Department of Electrical Engineering, M.I.T., Cambridge, MA.

DRAKE, A.W. [1968], "Partially Observable Markov Models for Quality Control," <u>Twenty-Second Technical Conference Transactions of the American Society</u> for Quality Control, Philadelphia, PA, pp. 199-205.

DEVORE, J.L. [1974], "A Note on the Observation of a Markov Source Through a Noisy Channel," IEEE Trans. Inform. Theory, Vol. IT-20, pp. 762-764.

FLYNN, J. [1974], "Averaging vs. Discounting in Dynamic Programming: A Counterexample," Ann. Statist. 2, pp. 411-413.

HASTINGS, N.A.J. [1973], <u>Dynamic Programming with Management Applications</u>, Butterworths, London and Crane-Russak, N.Y. HASTINGS, N.A.J. [1976],

"A Test for Nonoptimal Actions in Undiscounted Markov Programming," Management Science 23, pp. 87-92.

HELLMAN, M.E. and COVER, T.M. [1970], "Learning with Finite Memory," <u>Ann. Math. Stat. 41</u>, pp. 765-782.

HOWARD, R.A. [1960],

Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.

HOWARD, R.A. [1971], Dynamic Probabilistic Systems, Vols. I and II, Wiley, N.Y.

KAKALIK, J.S. [1965],

"Optimum Policies for Partially Observable Markov Systems," MIT M.S. Thesis; also reported in MIT Operations Research Center Technical Report No. 18.

KALMAN, R.E., FALB, P.L. and ARBIB, M.A. [1969], Topics in Mathematical System Theory, McGraw-Hill, N.Y.

KAJSER, T. [1975], "A Limit Theorem for Partially-Observed Markov Chains," <u>Ann. Prob.</u> 3, pp. 677-696.

KLEINROCK, L. and LAM, S.S. [1975], "Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation," <u>IEEE Trans. Commun.</u>, Vol. COM-23, pp. 410-423.

KUSHNER, H.J. [1971], <u>Introduction to Stochastic Control</u>, Holt, Rinehart and Winston, N.Y.

LAM, S.S. and KLEINROCK, L. [1975], "Packet Switching in a Multiaccess Broadcast Channel: Dynamic Control Procedures, IEEE Trans. Commun., Vol. COM-23, pp. 891-904.

LANERY, E. [1967], "Etude Asymptotique des Systèmes Markoviens à Commande," <u>Revue Français</u> D'Informatique et de Recherche Operationelle <u>1</u>, pp. 3-56.

LANERY, E. [1968], "Complements à l'Etude Asymptotique des Systèmes Markoviens à Commande," Institut de Recherche D'Informatique et D'Automatique, Rocquencourt, France.

LUENBERGER, D. [1969], Optimization by Vector Space Methods, Wiley, New York.

MacQUEEN, J.B. [1966], "A Modified Dynamic Programming Method for Markovian Decision Problems," J. Math. Anal. Appl. 14, pp. 38-43. MINE, H. and OSAKI, S. [1970], Markovian Decision Processes, Academic, N.Y. ODONI, A.R. [1967], "Alternative Schemes for Investigating Markov Decision Processes," M.S. Thesis, Department of Electrical Engineering; also reported in M.I.T. Operations Research Center Technical Report #28. ODONI, A.R. [1969], "On Finding the Maximal Gain for Markov Decision Processes," Opns. Res. 17, pp. 857-860. PAZ, A. [1971], Introduction to Probabilistic Automata, Academic, N.Y. PLATZMAN, L.K. [1977], "Improved Conditions for Convergence in Undiscounted Markov Renewal Programming," Opns. Res. 25. ROCKAFELLAR, R.T. [1970], Convex Analysis, Princeton University Press, Princeton, N.J. ROSS, S.M. [1970], Applied Probability Models with Optimization Applications, Holden-Day, San Francisco. SATIA, J.K. and LAVE, R.E. [1973], "Markovian Decision Processes with Probabilistic Observation of States," Mgmt. Sci. 20, pp. 1-13. SAWARAGI, Y. and YOSHIKAWA, T. [1970], "Discrete-Time Markovian Decision Processes with Incomplete State Observations," Ann. Math. Stat. 41, pp. 78-86. SCHWEITZER, P.J. [1971], "Iterative Solution of the Functional Equations of Undiscounted Markov Renewal Programming," J. Math. Anal. Appl. 34, pp. 495-501. SCHWEITZER, P.J. [1973], "Annotated Bibliography on Markov Decision Processes," Unpublished.

-

SCHWEITZER, P.J. and FEDERGRUEN, A. [1977?], "The Asymptotic Behavior of Undiscounted Value Interation in Markov Decision Problems," to appear. SMALLWOOD, R.D. and SONDIK, E.J. [1973], "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Opns, Res. 21, pp. 1071-1081. SONDIK, E.J. [1971], "The Optimal Control of Partially-Observable Markov Processes," Stanford Ph.D. Thesis; also reported in Stanford Information Systems Laboratory Technical Report No. 6252-4. SULMAR, J.J. [1974], "Observation of a Markov Source Through a Noisy Channel," S.B. Thesis, Department of Electrical Engineering, M.I.T., Cambridge, MA. VON NEUMAN, J. and MORGENSTERN, O. [1947], Theory of Games and Economic Behavior, Princeton University Press, Princeton, N.J. WALD, A. [1950], Statistical Decision Functions, Wiley, N.Y. WHITE, C.C. [1976], "Procedures for the Solution of a Finite-Horizon, Partially-Observed, Semi-Markov Optimization Problem," Opns. Res. 24, pp. 348-358. WHITE, D.J. [1963], "Dynamic Programming, Markov Chains, and the Method of Successive Approximations," J. Math. Anal. Appl. 6, pp. 373-376.

And and a second se

-201-APPENDIX A

Proof of Theorem 19.3

a. Preliminaries

V has been defined, in (12.11), as the vector space of bounded, continuous, real-valued functions on Π_N . V, along with the sup norm $|| \cdot ||$, is a Banach space. It will be shown that the sequence $\{\hat{v}^m\}$, given by (19.6) or (19.7), is bounded, that it has a subsequence that converges (pointwise) to a convex function v^* , that the subsequence is Cauchy - implying $v^* \in V$, and finally that v^* satisfies (19.1). A corollary states that $\{\hat{v}^m\}$ itself is Cauchy in V, i.e. that \hat{v}^m converges uniformly to v^* .

Since it cannot be shown immediately that v^* is continuous, $\{\hat{v}^m\}$ will be treated as a sequence in W, the vector space of Lebesque measurable functions on Π_N . If $v \in W$, then ||v|| denotes the ess sup norm of w. Naturally VCW.

By abuse of notation, a constant (such as Q or g^{*}) may denote an element of V that is a constant function over Π_N . Following (17.3), vEW may be interpreted as a function on $\widetilde{\Pi}_N$:

v is "convex" (over
$$\Pi_{N}$$
)
 $\iff v(\tilde{\pi}) + v(\tilde{\pi}') \ge v(\tilde{\pi} + \tilde{\pi}'),$
 $\forall \tilde{\pi}, \tilde{\pi}', \tilde{\pi} + \tilde{\pi}' \epsilon \tilde{\Pi}_{N}.$ (A.1)

W is partially ordered by $"\leq"$ where:

$$-202-$$

$$\mathbf{v} \leq \mathbf{v}' \iff \mathbf{v}(\pi) \leq \mathbf{v}(\pi) \quad \forall \pi \in \Pi_{\mathbf{N}}$$
(A.2)

It will also be necessary to consider the restriction of vEW to particular subsets of Π_N that include the range of $T(\cdot,\underline{z})$ when $P(\underline{z})$ is subrectangular. Define:

$$b(\ell) = \min\{T_j(e^i, \underline{z}) : P_{ij}(\underline{z}) > 0, P(\underline{z}) \text{ is}$$

subrectangular, and $\underline{z} \in \mathbb{Z}^{\ell}\}$ (A.3)

$$\Pi_{N}(b(l)) = \{ \pi \in \Pi_{N} : \text{either } \pi_{i} = 0 \text{ or } \pi_{i} \ge b(l), \forall i \in S \}$$
(A.4)

$$\|\mathbf{v}\|_{\mathbf{b}(\ell)} = \sup_{\pi \in \Pi_{\mathbf{N}}(\mathbf{b}(\ell))} \{\mathbf{v}(\pi)\}$$
(A.5)

b. A Transformation in W

(A.6) <u>Definition</u>. $f : W \rightarrow W$ is defined by:

$$fv(\pi) = \max_{u \in U} \{\pi q(u) + \beta \Sigma_{v \in Y} v(\pi P(y|u))\}$$

<u>Interpretation</u>: f is the operator of backward inductive dynamic programming.

<u>Remark</u>: Eq (19.1) may now be expressed as $v^* = fv^* - g^*$.

Transformation f has the following properties:

(A.7) Lemma.
$$v \leq v' \implies fv \leq fv'$$

(A.8) Lemma. $f(v + C) = fv + \beta C$, where C is a constant.

(A.9) <u>Proposition</u>. f is continuous in sup norm; in particular, $|| fv - fv' || \le \beta || v - v' ||$.

(A.10) <u>Proposition</u>. $v \in V \implies f v \in V$; i.e. f preserves continuity in v.

(A.11) <u>Proposition</u>. If $v \in W$ is convex, then fv is convex; i.e. f preserves convexity in v.

Proof:

$$fv(\tilde{\pi}) + fv(\tilde{\pi}')$$

 $= \max_{u \in U} \{ \tilde{\pi}q(u) + \beta \Sigma_{y \in Y} w(\tilde{\pi}P(y|u)) \}$ $+ \max_{u \in U} \{ \tilde{\pi}'q(u) + \beta \Sigma_{y \in Y} w(\tilde{\pi}'P(y|u)) \}$ $\geq \max_{u \in U} \{ (\tilde{\pi} + \tilde{\pi}')q(u) + \beta \Sigma_{y \in Y} [w(\tilde{\pi}P(y|u)) + w(\tilde{\pi}'P(y|u))] \}$ $\geq \max_{u \in U} \{ (\tilde{\pi} + \tilde{\pi}')q(u) + \beta \Sigma_{y \in Y} [w((\tilde{\pi} + \tilde{\pi}')P(y|u))] \}$ $= fw(\tilde{\pi} + \tilde{\pi}'). \qquad +$

Adopting the notation (14.19), multiple applications of f take the form:

$$f^{k}v(\pi) = \max_{\varphi \in U}(z^{k*}) \left\{ \left(\sum_{\underline{z} \in Z} (k-1) * \sigma[\underline{z}, \varphi] \beta^{\ell(z)} \pi P(\underline{z}) q(\varphi(\underline{z})) \right) + \beta^{k} \left(\sum_{\underline{z} \in Z} k \sigma[\underline{z}, \varphi] v(\pi P(\underline{z})) \right) \right\}$$
(A.12)

Continuity of f, established in (A.11), is made stronger below. This will be necessary in order to establish convergence of $\{\hat{v}^m\}$ in FPS's that satisfy only a condition of weak detectability.

(A.13) Proposition.
$$|| f^{k}v - f^{k}v' || \leq (1 - \overline{\alpha} k^{\pm \overline{\ell}})\beta^{k} || v - v' ||_{b(k)} + \overline{\alpha} k^{\pm \overline{\ell}} \beta^{k} || v - v' ||$$

<u>Proof</u>: For any $\epsilon \! > \! 0$, there is a $\pi \epsilon \Pi_N$ such that

1 : *!--}

!

$$\|\mathbf{f}^{k}\mathbf{v} - \mathbf{f}^{k}\mathbf{v'}\| \leq \mathbf{f}^{k}\mathbf{v}(\pi) - \mathbf{f}^{k}\mathbf{v'}(\pi) + \varepsilon$$

Let $\phi \in U^{(Z^{k^*})}$ be the policy maximizing (A.12), where π is as described above. Now:

$$\| \mathbf{f}^{\mathbf{k}} \mathbf{v} - \mathbf{f}^{\mathbf{k}} \mathbf{v}' \| - \varepsilon \leq \mathbf{f}^{\mathbf{k}} \mathbf{v}(\pi) - \left[\left(\sum_{\underline{z} \in \mathbb{Z}} (\mathbf{k}-1) \star \sigma[\underline{z},\phi] \beta^{\ell}(\underline{z}) \right) \right]$$
$$\pi P(\underline{z}) q(\phi(z)) + \beta^{\mathbf{k}} \left(\sum_{\underline{z} \in \mathbb{Z}^{\mathbf{k}}} \sigma[\underline{z},\phi] \mathbf{v}'(\pi P(z)) \right) \right]$$

$$= \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] [v(\pi P(\underline{z})) - v'(\pi P(\underline{z}))]$$

$$= \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] (\pi P(\underline{z}) 1) [v(T(\pi, \underline{z})) - v'(T(\pi, \underline{z}))]$$

$$\leq \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] (\pi P(\underline{z}) 1) \begin{cases} || v - v'||_{b}(k), & \text{if } T(\pi, \underline{z}) \in \Pi_{N}(b(k)) \\ || v - v'||, & \text{otherwise} \end{cases}$$

$$\leq \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] (\pi P(\underline{z}) 1) \begin{cases} || v - v'||_{b}(k), & \text{if } P(\underline{z}) \text{ is subrectangular} \\ || v - v'||, & \text{otherwise} \end{cases}$$

$$\leq \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] (\pi P(\underline{z}) 1) \begin{cases} || v - v'||_{b}(k), & \text{if } \alpha[\underline{z}] < 1 \\ || v - v'||, & \text{otherwise} \end{cases}$$

$$\leq \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] (\pi P(\underline{z}) 1) \begin{cases} || v - v'||_{b}(k), & \text{if } \alpha[\underline{z}] < 1 \\ || v - v'||, & \text{otherwise} \end{cases}$$

$$\leq \beta^{k} \Sigma_{\underline{z} \in \mathbb{Z}^{k}} \sigma[\underline{z}, \phi] (\pi P(\underline{z}) 1) [(1 - \alpha[\underline{z}]) || v - v'||_{b}(k) + \alpha[\underline{z}] || v - v'||]$$

$$\leq \beta^{\mathbf{k}} (1 - \overline{\alpha}^{\mathbf{k} \div \overline{\mathcal{k}}}) \| \mathbf{v} - \mathbf{v}' \|_{\mathbf{b}(\mathbf{k})} + \overline{\alpha}^{\mathbf{k} \div \overline{\mathcal{k}}} \| \mathbf{v} - \mathbf{v}' \|.$$

Taking the limit $\varepsilon \rightarrow 0$ completes the proof.

†

c. A sequence in V (A.14) <u>Definition</u>. $\{v_0^m\}$ and $\{v^m\}$ are sequences in W defined by $v_0^{m+1} = fv_0^m$, $v_0^{m+1} = 1/2 \ v_0^m + 1/2 \ fv_0^m$,

I

;

1

! ~

$$v_0^0 = v^0 = 0$$
.

Clearly (A.14) is consistent with (19.5). By (A.10), v_0^m and v^m lie in V, and by (A.11) they are convex. Boundedness of $\{\hat{v}^m\}$ is now established.

(A.15) Lemma.
$$v_0^m + \beta^m L(\beta,k) Q_{\min} \leq v_0^{m+k} \leq v_0^m + \beta^m L(\beta,k) Q_{\max}$$

<u>Proof</u>: By (A.14), $L(\beta,k)Q_{\min} \leq v_0^k \leq L(\beta,k)Q_{\max}$. (A.7) and (A.8) complete the proof.

(A.16) Lemma.
$$|| \mathbf{v}_0^m ||_D \leq \Omega$$
.

<u>Proof</u>: (By induction). The result is trivial for m=0, and follows trivially from (A.15) for m $\epsilon < 0, \ell_{\rho} + \overline{\ell} > .$

The induction follows a plan given in the heuristic justification of (19.3). Let j be a state that maximizes $v^{m}(e^{j})$ and let $\phi * \varepsilon U^{(Z^{(\overline{\lambda}-1)}*)}$ be a policy that maximizes (A.12) when $\pi = e^{j}$ and $v = v_{0}^{m}$. Now, for any $\pi \varepsilon \Pi_{N}$, and any $m \varepsilon < \overline{\lambda}, \infty >$,

-206-

$$\leq L(\beta,\overline{\lambda})Q + \beta^{\overline{\lambda}} \sum_{\underline{z}\in Z^{\overline{\lambda}}} \sigma[\underline{z},\phi^*][v_0^{m-\overline{\lambda}}(e^{j}P(\underline{z})) - v_0^{m-\overline{\lambda}}(\pi P(\underline{z}))]$$

$$\leq L(\beta,\overline{\lambda})Q + \beta^{\overline{\lambda}}\pi_j \sum_{\underline{z}\in Z^{\overline{\lambda}}} \sigma[\underline{z},\phi^*](e^{j}P(\underline{z})1)$$

$$[v^{m-\overline{\lambda}} (T(e^j,\underline{z})) - v^{m-\overline{\lambda}} (T(\pi,\underline{z}))] + \beta^{\overline{\lambda}} (1-\pi_j) ||v^{m-\overline{\lambda}}||_D$$

$$\leq L(\beta,\overline{\lambda})Q + \beta^{\overline{\lambda}} \left[\pi_j \left(\sum_{\underline{z}\in Z^{\overline{\lambda}}} \sigma[\underline{z},\phi^*](e^{j}P(\underline{z})1)a[\underline{z}] \right) + (1-\pi_j) \right]$$

$$||v_0^{m-\overline{\lambda}}||_D$$

$$\leq L(\beta,\overline{k})Q + \beta^{\overline{k}}[1 - \pi_{j}(1-\overline{a})] \| v_{0}^{m-\overline{k}} \|_{D}$$

But, for any $\pi \epsilon \Pi_N$, there is an input word $\underline{\hat{u}} \epsilon U^{\ell \rho}$ such that:

$$\sum_{\underline{y} \in Y} \sum_{\underline{y} \in Y} \ell(\underline{\hat{u}}) P_{ij}(\underline{y}|\underline{\hat{u}}) \ge 1 - \rho.$$

Thus

р¥

$$v_0^{m+\ell(\underline{\hat{u}})}(\pi) \leq L(\beta,\ell(\underline{\hat{u}}))Q_{max} + \beta^{\ell(\underline{\hat{u}})}v_0^m(e^j)$$

and

$$\mathbf{v}_{0}^{m+\ell(\underline{\hat{u}})}(\pi) \geq L(\beta,\ell(\underline{\hat{u}}))Q_{\min} + \beta^{\ell(\underline{\hat{u}})} \sum_{\underline{y}\in Y} \ell(\underline{\hat{u}}) \mathbf{v}_{0}^{m}(\pi P(\underline{y}|\underline{\hat{u}}))$$

$$\geq L(\beta, \ell(\underline{\hat{u}}))Q_{\min} + \beta^{\ell(\underline{\hat{u}})} v_0^m(\pi\Sigma_{\underline{y}\in Y}\ell(\underline{\hat{u}}) P(\underline{y}|\underline{\hat{u}}))$$

$$\geq L(\beta, \ell(\underline{\hat{u}}))Q_{\min} + \beta^{\ell(\underline{\hat{u}})} \left[v_0^m(e^j) - L(\beta, \overline{\ell})Q - \beta^{\overline{\ell}}[1-(1-\rho)(1-\overline{a})] \right]$$

$$||v_0^{m-\overline{\ell}}||_D .$$

Using (A.15),

Ъ

1

ł

$$\begin{split} \| \mathbf{v}_{0}^{\mathbf{m}+\ell_{\rho}} \|_{\mathbf{D}} &\leq L(\beta, \ell_{\rho}-\ell(\hat{\mathbf{u}}))Q + \beta^{\ell_{\rho}-\ell(\hat{\mathbf{u}})} \| \mathbf{v}_{0}^{\mathbf{m}+\ell(\hat{\mathbf{u}})} \|_{\mathbf{D}} \\ &\leq L(\beta, \ell_{\rho}+\overline{\ell})Q + \beta^{\ell_{\rho}+\overline{\ell}} \left[1-(1-\rho)(1-\overline{a})\right] \| \mathbf{v}_{0}^{\mathbf{m}-\overline{\ell}} \|_{\mathbf{D}} \\ \text{and} \| \mathbf{v}^{\mathbf{m}} \|_{\mathbf{D}}^{2} \leq \Omega \implies \| \mathbf{v}^{\mathbf{m}+\ell_{\rho}+\overline{\ell}} \|_{\mathbf{D}} \leq \Omega \qquad + \end{split}$$

(A.17) <u>Proposition</u>. $||\hat{v}^{m}|| \leq \Omega$, $m\epsilon < 0, \infty >$.

<u>Proof</u>: By (A.14),

$$\mathbf{v}^{\mathrm{m}} = \Sigma_{\mathrm{k} \in <0, \mathrm{m} > {\mathrm{m} \choose \mathrm{k}}} (1/2)^{\mathrm{k}} \mathbf{v}_{\mathrm{0}}^{\mathrm{m}}$$

So (A.16) implies $||\mathbf{v}^{\mathbf{m}}||_{\mathbf{D}} = \Omega$. (12.12) completes the proof. \dagger

d. Construction of a Convergent Subsequence

(A.18) Lemma. There is a subsequence $\{\hat{v}^{m(k)}\}$ of $\{\hat{v}^{m}\}$ having the following properties:

(a) $\{\hat{v}^{m}(k)\}$ converges pointwise to a convex function $\hat{w}^{*} \in W$.

(b)
$$\lim_{k \to \infty} \| \hat{v}^{m(k)} - \hat{w}^* \|_{b(\ell)} = 0, \forall \ell \in \langle \overline{\ell}, \infty \rangle$$

<u>Proof</u>: Theorem 10.9 of Rockafellar [1970] states that any bounded sequence of convex functions on a relatively open set has a subsequence that converges uniformly on closed subsets of its domain. $\{\hat{v}^m\}$ is bounded, by (A.17). Consider the restriction of $\{\hat{v}^m\}$ to $\Pi_N^H = \{\pi \epsilon \Pi : \pi_i > 0 \text{ iff } i \epsilon H\}$, for some HCS. One of the following must hold: Π_N^H is empty; Π_N^H contains exactly one point; or Π_N^H is relatively open (in \mathbb{R}^m). In each case, there exists a subsequence of $\{\hat{v}^m\}$ that converges pointwise on Π_N^H and uniformly on closed subsets of Π_N^H . For any $\ell \epsilon < \overline{\ell}, \infty >$, $\Pi_N(b(\ell)) (: \Pi_N^H$ is closed. Taking subsequences of $\{\hat{v}^m\}$ recursively for each $H \subseteq S$, the desired subsequence is obtained. \dagger

(A.19) <u>Proposition</u>. There is a subsequence of $\{\hat{v}^{m}\}$ that converges in (V, $||\cdot||$), i.e. uniformly on Π_{N} .

Proof: Define:

$$w^{m+1} = 1/2 w^m + 1/2 fw^m$$

 $w^0 = \hat{w}^*$

Let ${m(k)}_{k\in <0,\infty>}$ be the sequence of indices derived in (A.18). Then, for any $\varepsilon>0$, there is a K' such that:

$$\sum_{m \in < 0, m(K') > \binom{m(K')}{m} (1/2)^m \overline{\alpha} \xrightarrow{m \neq \overline{k}} 2\Omega \leq \varepsilon/8$$

and a K" such that:

i

:

۱,

ł

$$\|\hat{\mathbf{v}}^{\mathbf{m}(\mathbf{k})}-\hat{\mathbf{v}}^{\mathbf{k}}\|_{\mathbf{b}(\mathbf{m}(\mathbf{K}'))} \leq \varepsilon/8, \quad \forall \mathbf{k}\varepsilon \langle \mathbf{K}'', \infty \rangle$$

By (A.9), if $m > \tilde{m}$, then

$$|| \hat{\mathbf{v}}^{\mathbf{m}+\mathbf{m}(\mathbf{k}')} - \hat{\mathbf{w}}^{\mathbf{m}}|| \leq || \hat{\mathbf{v}}^{\mathbf{m}+\mathbf{m}(\mathbf{k}')} - \hat{\mathbf{w}}^{\mathbf{m}}||$$

Thus, for $k,k' \ge K = max(K',K'')$,

$$\| \hat{\mathbf{v}}^{\mathbf{m}(\mathbf{k})+\mathbf{m}(\mathbf{k}^{\prime})} - \hat{\mathbf{w}}^{\mathbf{m}(\mathbf{k})} \|$$

$$\leq \| \hat{\mathbf{v}}^{\mathbf{m}(\mathbf{K})+\mathbf{m}(\mathbf{k}^{\prime})} - \hat{\mathbf{w}}^{\mathbf{m}(\mathbf{K})} \|$$

$$\leq \left[1 - \Sigma_{\mathbf{m} \in <0, \mathbf{m}(\mathbf{K}) >} \left(\frac{\mathbf{m}(\mathbf{K})}{\mathbf{m}} \right) (1/2)^{\mathbf{m}} \overline{\alpha}^{\mathbf{m} \div \overline{\mathcal{K}}} \right] \| \hat{\mathbf{v}}^{\mathbf{m}(\mathbf{K})} - \hat{\mathbf{w}}^{\mathbf{0}} \|_{\mathbf{b}(\mathbf{m}(\mathbf{K}))}$$

$$+ \left[\Sigma_{\mathbf{m} \in <0, \mathbf{m}(\mathbf{K}) >} \left(\frac{\mathbf{m}(\mathbf{K})}{\mathbf{m}} \right) (1/2)^{\mathbf{m}} \overline{\alpha}^{\mathbf{m} \div \overline{\mathcal{K}}} \right] \| \hat{\mathbf{v}}^{\mathbf{m}(\mathbf{K})} - \hat{\mathbf{w}}^{\mathbf{0}} \|$$

$$\leq \| \hat{\mathbf{v}}^{\mathbf{m}(\mathbf{K})} - \hat{\mathbf{w}}^{\mathbf{0}} \|_{\mathbf{b}(\mathbf{m}(\mathbf{K}))} + \left[\Sigma_{\mathbf{m} \in <0, \mathbf{m}(\mathbf{K}) >} \left(\frac{\mathbf{m}(\mathbf{K})}{\mathbf{m}} \right) (1/2)^{\mathbf{m}} \overline{\alpha}^{\mathbf{m} \div \overline{\mathcal{K}}} \right] 2\Omega$$

$$\leq \varepsilon/8 + \varepsilon/8 = \varepsilon/4$$

and

$$\begin{aligned} &|| \hat{w}^{m(k)} - \hat{w}^{m(k')} || \\ &\leq || \hat{w}^{m(k)} - \hat{v}^{m(k)+m(k')} || + || \hat{v}^{m(k)+m(k')} - \hat{w}^{m(k')} || \\ &\leq \varepsilon/4 + \varepsilon/4 = \varepsilon/2 . \end{aligned}$$

But now:

$$\begin{split} &|| \hat{v}^{2m(k)} - \hat{v}^{2m(k')} || \\ &\leq || \hat{v}^{m(k)+m(k)} - \hat{w}^{m(k)} || + || \hat{w}^{m(k)} - \hat{w}^{m(k')} || \\ &+ || \hat{w}^{m(k')} - \hat{v}^{m(k')+m(k')} || \\ &\leq \epsilon/4 + \epsilon/2 + \epsilon/4 \\ &= \epsilon . \end{split}$$

Consequently $\{\hat{v}^{2m(k)}\}\$ is a Cauchy sequence in (V, $\|\cdot\|$). \dagger

(A.20) <u>Proposition</u>. If $\hat{v}^* \in V$ is a limit point of $\{\hat{v}^m\}$ then \hat{v}^* satisfies (19.1).

Proof: Define:

$$w^{m+1} = 1/2 w^m + 1/2 fw^m$$

 $w^0 = \hat{v}*$

Then, by (A.9), \hat{v}^* is a limit point of $\{\hat{w}^m\}$. It will now be demonstrated that $\hat{w}^m \equiv \hat{v}^*$.

Define:

a) $t^{m}(\pi) = w^{m+1}(\pi) - w^{m}(\pi)$ b) $t^{m} = \max_{\pi \in \Pi_{N}} \{t^{m}(\pi)\}$ c) $R^{m} = \{\pi \in \Pi_{N} : t^{m}(\pi) = t^{m}\}$

Since \hat{v}^* is a limit point of $\{\hat{w}^m\}$, it follows that \dot{t}° is a limit point of $\{\dot{t}^m\}$ and $t^\circ(\pi)$ is a limit point of $\{t^m(\pi)\}$, $\forall \pi \in \Pi_N$.

Now
$$t^{m} = w^{m+1} - w^{m} = 1/2[fw^{m} - fw^{m-1}] + 1/2[w^{m} - w^{m-1}] \le 1/2[fw^{m} - fw^{m-1}]$$

1/2 t^{m-1} . Thus, by (A.9), $t^{m} \leq t^{m-1}$. Since t° is a limit point of $\{t^{m}\}, t^{m} \equiv t^{\circ}$.

By the Weierstrass maximum theorem, R^m is nonempty. But

 $t^{m} = 1/2[fw^{m} - fw^{m-1}] + 1/2[w^{m} - w^{m-1}] \leq 1/2 t^{\circ} + 1/2 t^{m-1}, \text{ by (A.9).}$ Thus $R^{m} \subseteq R^{m-1}$. Since $t^{m} \equiv t^{\circ}$, there is a $\pi \in \Pi_{N}$ such that $t^{m}(\pi) = t^{\circ}$, $\forall m \in <0, \infty >$. Suppose now that there exists a $\pi' \in \Pi_{N}$ such that $t^{\circ}(\pi') \neq t^{\circ}$ and define

$$\varepsilon = t^{\circ} - t^{\circ}(\pi') > 0$$

Then $w^{\mathfrak{m}}(\pi) = \mathfrak{mt}^{\circ} + \hat{v}^{*}(\pi)$ and $w^{\mathfrak{m}}(\pi') \leq (\mathfrak{t}^{\circ} - \varepsilon) + (\mathfrak{m} - 1)\mathfrak{t}^{\circ} + \hat{v}^{*}(\pi')$.

Hence

$$[\hat{w}^{m}(\pi) - \hat{v}^{*}(\pi)] + [\hat{v}^{*}(\pi') - \hat{w}^{m}(\pi')]$$

=
$$[w^{m}(\pi) - \hat{v}^{*}(\pi)] + [\hat{v}^{*}(\pi') - w^{m}(\pi')]$$

$$\geq m\dot{t}^{O} - \dot{t}^{O} + \varepsilon - (m-1)\dot{t}^{O} = \varepsilon$$

But, for some m $\epsilon < 1, \infty >$, $||\hat{w}^{m} - \hat{v} * || < \epsilon/2$, since $\hat{v} *$ is a limit point of $\{\hat{v}^{m}\}$. This is a contraction; hence $t^{\circ}(\pi) = t^{\circ}$, $\forall \pi \epsilon \Pi_{N}$. Now $w^{1} = w^{\circ} + t^{\circ}$. Identify $g^{*} = 2t^{\circ}$ to see that $\hat{v} *$ satisfies (19.3). \dagger

e. Summary and Proof of (19.3)

By (A.19) $\{\hat{v}^m\}$ has a limit point \hat{v}^* in V. By (A.20), \hat{v}^* satisfies (19.3).

By (A.9), $||\hat{v}^{m+1}-\hat{v}*|| \leq ||\hat{v}^m-\hat{v}*||$, and hence $\{\hat{v}^m\}$ converges in (V, $||\cdot||$), i.e. uniformly on Π_N , to $\hat{v}*$. Thus $\hat{v}*$ is continuous. Since each \hat{v}^m is convex, it follows that $\hat{v}*$ is convex. Boundedness of \hat{v}^m is a consequence of (A.17).

-214-

APPENDIX B

Proof of Theorem 21.6

a. Proof of Part (a)

,

First consider the discounted case, $\beta < 1$.

Define γ^m to be a strategy which selects inputs optimally on the basis of a finite number of delayed state perceptions, taking the form:

$$y^{m}(k) = \begin{cases} [s(k-l(\underline{z}(k))), y(k)], \text{ if } \underline{z}(k) \varepsilon ess[M] \text{ and } k\varepsilon < 0, m-1 > \\ \\ [y(k)], & \text{otherwise} \end{cases} \end{cases}$$
(B.1)

Then the inputs prescribed by γ^m at times $k \in \{m-1, \infty\}$ take the form $\overline{\phi} * [\eta^m(k)]$ where $\overline{\phi} *$ is the optimal feasible policy corresponding to the solution of (19.1), and

$$\eta^{m}(k) = \begin{cases} T(\pi(0), \underline{z}(k)), & \text{if } k \epsilon < 0, m-1 > \text{ and } \underline{z}(k) \notin ess[M] \\ T(e^{s(k-\ell(\underline{z}(k)))}, \underline{z}(k)), & \text{if } k \epsilon < 0, m-1 > \text{ and } \underline{z}(k) \epsilon ess[M] \\ T(\eta^{m}(k-1), u(k-1), y(k)), & \text{otherwise} \end{cases}$$

(B.2)

Note that $\{\eta^m(k)\}$ is the information vector process which results when the observation process is $\{y^m(k)\}$.

Also define strategy $\tilde{\gamma}^m$, which selects inputs $\{u(k)\}_{k\in <0,m-1>}$ according to γ^{m+1} and inputs $\{u(k)\}_{k\in <m,\infty>}$ according to γ^m .

Then

۰ ۲

1

$$g(\beta, \tilde{\gamma}^{m}) \leq g(\beta, \gamma^{m})$$
 (B.3)

since γ^{m} maximizes $g(\beta, \cdot)$ over the set of strategies realizable on the basis of observations (B.2). Thus

$$g(\beta,\gamma^{m+1}) - g(\beta,\gamma^{m})$$

$$\leq g(\beta,\gamma^{m+1}) - g(\beta,\tilde{\gamma}^{m})$$

$$= (1-\beta) [E_{\gamma^{m+1}} \{\Sigma_{k=0}^{\infty} \beta^{k}r(k)\} - E_{\tilde{\gamma}^{m}} \{\Sigma_{k=0}^{\infty} \beta^{k}r(k)\}]$$

$$= (1-\beta)\beta^{m} [E_{\gamma^{m+1}} \{\Sigma_{k=m}^{\infty} \beta^{k-m}r(k)\} - E_{\tilde{\gamma}} \{\Sigma_{k=m}^{\infty} \beta^{k-m}r(k)\}$$

$$= (1-\beta)\beta^{m} [E_{\gamma^{m+1}} \{v*(\eta^{m+1}(m))\} - E_{\tilde{\gamma}^{m}} \{v*(\eta^{m}(m))\}]$$

$$= (1-\beta)\beta^{m} E_{\gamma^{m+1}} \{v*(\eta^{m+1}(m)) - v*(\eta^{m}(m))\}$$

$$\leq (1-\beta)\beta^{m} E_{\gamma^{m+1}} \{\Delta[\eta^{m+1}(m),\eta(m)]\} ||v*||_{\Delta} \qquad (B.4)$$

If m=0 or (with probability one) $\underline{z}(m-1)\notin ess[M]$, then $g(\beta,\gamma^m) = g(\beta,\gamma^{m+1})$. Otherwise

$$-216-$$

$$\left\{ \begin{array}{l} \eta^{m+1}(m) = \eta^{m}(m), \quad \text{if } \underline{z}(m) \notin \text{ess}[M] \\ \eta^{m+1}(m) = T(e^{s(m-\ell(\underline{z}(m)))}, \underline{z}(m)) \quad \text{and} \\ \eta^{m}(m) = T\left(T\left(e^{s(m-1-\ell(\underline{z}(m-1)))}, \underline{z}(m-1-\ell(\underline{z}(m-1)); m-\ell(\underline{z}(m)))\right), \underline{z}(m)\right), \end{array} \right\}$$

if $\underline{z}(m) \in \operatorname{ess}[M]$ (B.5)

so
$$\Delta[\eta^{m+1}(m), \eta^{m}(m)] \leq \begin{cases} \alpha[\underline{z}(m)], & \text{if } \underline{z}(m) \epsilon ess[M] \\ 0, & \text{otherwise} \end{cases}$$
.

$$\leq \overline{\alpha}^{\text{min}}$$
, by (14.23).

Substitution into (B.4) yields

1-ta

$$g(\beta,\gamma^{m+1}) - g(\beta,\gamma^{m}) \leq (1-\beta)\beta^{m} \overline{\alpha}^{\ell} \min^{[M] \div \overline{\ell}} ||v*||_{\Delta}$$
(B.6)

Now $g[M] = g(\beta, \gamma^{\infty}]$, and $g^* = g(\beta, \gamma^{\circ}) = g(\beta, \gamma^{\min}]^{[M]}$. Moreover

 $\|\mathbf{v}^{\star}\|_{\Delta} \leq 4\Omega$ by (12.16) and (19.3). Thus

$$g[M] - g^{*} \leq \sum_{m=\ell_{\min}}^{\infty} [M] g(\beta, \gamma^{m+1}) - g(\beta, \gamma^{m})$$
$$= \beta^{\ell_{\min}} [M] - \beta^{\ell_{\min}} [M] + \overline{\ell} + \alpha \qquad (B.7)$$

Take the limit $\beta\uparrow 1$ to prove (21.6)(a) in the undiscounted case. \dagger
b. A Bound on Perceptive Values

The following intermediary result will be required:

 $\begin{aligned} \left|\mathbf{v}^{M}[\mathbf{i},\underline{z}] - \mathbf{v}^{M}[\mathbf{i}',\underline{z}']\right| &\leq \Omega, \quad \forall [\mathbf{i},\underline{z}], \ [\mathbf{i}',\underline{z}'] \in \widehat{X}[\mathbf{m}]. & \text{Intuitively, this} \\ \text{must be true in the limit as} \quad & \&_{\min}[M] \neq \infty, & \text{for then} \quad \mathbf{v}^{M}[\mathbf{i},\underline{z}] \neq \mathbf{v} \star [\mathsf{T}(\mathbf{i},\underline{z})] \\ \text{and by (19.3)(c), } \left|\mathbf{v} \star [\eta] - \mathbf{v} \star [\eta']\right| &\leq \Omega. \end{aligned}$

In order to bound $v^{M}[i,\underline{z}]$, attention will be focussed on $\overline{v}^{M}[\pi,\underline{z}]$, which is defined by (21.3). The pair $[\pi,\underline{z}]$ may be regarded as a <u>gener-</u> <u>alized perceptive state</u>, signifying that input-output word <u>z</u> has evolved since the information vector was known to equal π . Naturally

$$\mathbf{v}^{\mathrm{M}}[\mathtt{i},\underline{z}] = \overline{\mathbf{v}}^{\mathrm{M}}[\mathrm{e}^{\mathtt{i}},\underline{z}]$$
(B.8)

The following additional properties of \overline{v}^{M} are readily established.

(B.9) <u>Lemma</u>. $\overline{v}^{M}[\pi,\underline{z}]$ is convex in π , for any $\underline{z} \in \mathbb{M}$. (B.10) <u>Lemma</u>. $\overline{v}^{M}[\pi,\underline{z}] \leq \max_{j \in S} \{\overline{v}^{M}[e^{j},\underline{e}]\}$. (B.11) <u>Lemma</u>. $\overline{v}^{M}[\pi,\underline{z}] \geq \min_{j \in S} \{\overline{v}^{M}[e^{j},\underline{e}]\}$.

<u>Proof</u>: The relative value of being in the generalized perceptive state $[\pi, \underline{z}]$ can only decrease if certain information is withdrawn. An observer in generalized perceptive state $[\pi, \underline{z}]$ at time k perceives information of the form

$$\begin{cases} [s(k-\ell(\underline{z}(k'))),y(k')], & \text{if } k'-\ell(\underline{z}(k')) \geq k-\ell(\underline{z}) \\ & \text{and } \underline{z}(k') \in ess[M] \\ [y(k')], & \text{otherwise} \end{cases} \quad k' \in \langle k, \infty \rangle \end{cases}$$

whereas an observer in generalized perceptive state $[T[\pi, \underline{z}], \underline{e}]$ at time k, perceives information of the form

$$\begin{cases} [s(k-\ell(\underline{z}'(k'))), y(k')], & \text{if } k'-\ell(\underline{z}(k')) \geq k \\ & \text{and } \underline{z}(k') \varepsilon ess[M] \\ [y(k')], & \text{otherwise} \end{cases} \quad k' \varepsilon \langle k, \infty \rangle \end{cases}$$

Since, in the former case, more information (specifically, perception of states $s(k'), K' \in \langle k+1-l(\underline{z}), k \rangle$) is available, it follows that

$$\overline{\mathbf{v}}^{M}[\pi,\underline{z}] \geq \overline{\mathbf{v}}^{M}[\mathbf{T}(\pi,\underline{z}),\underline{e}] \geq \overline{\mathbf{v}}^{M}[\mathbf{T}(\pi,\underline{z}),\underline{e}]$$
$$\geq \min_{\pi' \in \Pi_{N}} \{\overline{\mathbf{v}}^{M}[\pi',\underline{e}]\} +$$

(B.12) <u>Lemma</u>. $\|\overline{\mathbf{v}}^{\mathsf{M}}[\cdot,\underline{z}]\|_{\mathsf{D}} \leq \|\overline{\mathbf{v}}^{\mathsf{M}}[\cdot,\underline{e}]\|_{\mathsf{D}}, \forall \underline{z} \in \mathsf{M}.$

Proof: By (12.11)(d),

T

$$\left\| \overline{\mathbf{v}}^{M} \left[\cdot, \underline{z} \right] \right\|_{D} = \max_{\pi \in \Pi_{\mathbf{N}}} \{ \overline{\mathbf{v}}^{M} \left[\pi, \underline{z} \right] \} - \min_{\pi \in \Pi_{\mathbf{N}}} \{ \overline{\mathbf{v}}^{M} \left[\pi, \underline{z} \right] \}$$

But (B.10) and (B.11) imply

$$\min_{\pi \in \Pi_{\mathbf{N}}} \{ \overline{\mathbf{v}}^{\mathbf{M}}[\pi, \underline{e}] \} \leq \min_{\pi \in \Pi_{\mathbf{N}}} \{ \overline{\mathbf{v}}^{\mathbf{M}}[\pi, \underline{z}] \} \leq \max_{\pi \in \Pi_{\mathbf{N}}} \{ \overline{\mathbf{v}}^{\mathbf{M}}[\pi, \underline{z}] \}$$

$$\leq \max_{\mathbf{N}} \pi \in \mathbb{I}_{\mathbf{N}} \{ \overline{\mathbf{v}}^{\mathbf{M}} [\pi, \underline{\mathbf{e}}] \} .$$
 \dagger

(B.13) Proposition.
$$\mathbf{v}^{M}[\mathbf{i},\underline{z}] - \mathbf{v}^{M}[\mathbf{i}',\underline{z}'] \leq \Omega$$
,

$$\forall [i,\underline{z}], [i',\underline{z}] \in X[M]$$

<u>Proof</u>: It suffices to show that $||v^{M}[\cdot,\underline{e}]||_{D} \leq \Omega$. Define j to be the state which maximizes $v^{M}[j,\underline{e}]$, and let ψ * denote an optimal perceptive strategy adapted to M, constructed according to (21.1) for $\pi(0)=e^{j}$; i.e. ψ * selects inputs optimally on the basis of information s(0)=j and $\{x^{M}(k)\}$. Then, by (21.2),

-219-

$$\overline{\mathbf{v}}(\mathbf{e}^{\mathbf{j}}, \underline{\mathbf{e}}] = \mathbf{E}_{\psi} * \{ \Sigma_{\mathbf{k} \in \langle 0, \overline{\ell} - 1 \rangle} \beta^{\mathbf{k}} q(\mathbf{k}) + \beta^{\overline{\ell}} \} \\ + \beta^{\overline{\ell}} \begin{cases} \overline{\mathbf{v}}^{\mathbf{M}} [\mathbf{e}^{\mathbf{j}}, \underline{z}^{\mathbf{M}}(\overline{\ell})], & \text{if } \underline{z}^{\mathbf{M}}(\overline{\ell}) \notin \text{ess}[\mathbf{M}] \\ \\ \mathbf{v}^{\mathbf{M}} [\mathbf{x}^{\mathbf{M}}(\overline{\ell})], & \text{if } \underline{z}^{\mathbf{M}}(\overline{\ell}) \in \text{ess}[\mathbf{M}] \end{cases} \end{cases}$$

$$s(0)=j$$
 - $L(\beta, \overline{\ell})g[M]$

and, for any $\pi \epsilon \Pi_N$,

$$\overline{v}[\overline{\pi},\underline{e}] \geq \Sigma_{i\in S} \pi_{i} E_{\psi^{\star}} \{\Sigma_{k\in \langle 0,\overline{\lambda}-1 \rangle} \beta^{k}q(k) + \beta^{\overline{\lambda}} \begin{cases} \overline{v}^{M}[\pi,\underline{z}^{M}(\overline{\lambda})], & \text{if } \underline{z}^{M}(\overline{\lambda}) \notin ess[M] \\ v^{M}[x^{M}(\overline{\lambda})], & \text{if } \underline{z}^{M}(\overline{\lambda}) \in ess[M] \end{cases}$$

Thus

$$\begin{split} \overline{\mathbf{v}}^{\mathbf{M}} [\mathbf{e}^{\mathbf{j}}, \underline{\mathbf{e}}] &- \overline{\mathbf{v}}^{\mathbf{M}} [\pi, \underline{\mathbf{e}}] \\ &\leq \mathbf{L}(\beta, \overline{\lambda}) \mathbf{Q} \\ &+ \beta^{\overline{\lambda}} \pi_{\mathbf{j}}^{\mathbf{E}} \mathbf{\psi}^{\mathbf{k}} \left\{ \begin{cases} \overline{\mathbf{v}}^{\mathbf{M}} [\mathbf{e}^{\mathbf{j}}, \underline{\mathbf{z}}^{\mathbf{M}}(\overline{\lambda})] &- \overline{\mathbf{v}}^{\mathbf{M}} [\pi, \underline{\mathbf{z}}^{\mathbf{M}}(\overline{\lambda})] \\ &\text{if } \underline{\mathbf{z}}^{\mathbf{M}}(\overline{\lambda}) \notin \mathrm{ess}[\mathbf{M}] \\ &0, & \mathrm{otherwise} \end{cases} \right\} |\mathbf{s}(0) = \mathbf{j} \} \end{split}$$

+
$$\beta^{\overline{\lambda}}(1-\pi_{j}) \max_{[i,\underline{z}] \in \widehat{X}[M]} \{v^{M}[i,\underline{z}]\} - \min_{[i,z] \in \widehat{X}[M]} \{v^{M}[i,\underline{z}]\}$$

$$\leq L(\beta, \overline{k})Q$$

$$+ \beta^{\overline{k}} \pi_{j} E_{\psi^{*}} \left\{ \begin{cases} a[\underline{z}^{M}(\overline{k})], & \text{if } \underline{z}^{M}(\overline{k}) \notin ess[M] \\ 0 & \text{otherwise} \end{cases} \right\}$$

$$\| \overline{v}^{M} [\cdot, \underline{z}^{M}(\overline{k})] \|_{D} |s(0) = j\}$$

$$+ \beta^{\overline{k}} (1 - \pi_{j}) \| \overline{v}^{M} [\cdot, \underline{e}] \|_{D}$$

$$\leq L(\beta, \overline{k})Q + \beta^{\overline{k}} \pi_{j} \overline{a} \| \overline{v}^{M} [\cdot, \underline{e}] \|_{D} + \beta^{\overline{k}} (1 - \pi_{j}) \| \overline{v}^{M} [\cdot, \underline{e}] \|_{D}$$

$$\leq L(\beta, \overline{k})Q + \beta^{\overline{k}} [1 - \pi_{j} (1 - \overline{a})] \| \overline{v}^{M} [\cdot, \underline{e}] \|_{D} .$$

-221- $\begin{tabular}{ll} \label{eq:loss} \begin{tabular}{ll} \label{eq:loss} \label{eq:loss} \label{eq:loss} \begin{tabular}{ll} \label{eq:loss} \$

$$\sum_{\underline{y} \in Y} \sum_{\underline{y} \in Y} \mathbb{P}_{\underline{i}}((\underline{\hat{u}}, \underline{y})) \geq 1 - \rho$$

Thus, for any $\pi \epsilon \Pi_N$,

v

$$\begin{split} ^{M}\left[\pi,\underline{e}\right] &\geq L(\beta,\ell(\hat{u}))Q_{\min} \\ &+ \beta^{\ell(\hat{u})} \sum_{i \in S} \pi_{i}^{E} \left\{ \begin{cases} \overline{v}^{M}\left[\pi,\underline{z}^{M}(\ell(\hat{u})), if \ \underline{z}^{M}(\ell(\hat{u}))\not e ess[M] \\ \\ v^{M}[x^{M}(\ell(\hat{u}))], otherwise \end{cases} \right. \end{split}$$

$$|s(0)=i, u(0)\ldots u(l(\hat{u}))=\underline{\hat{u}}\} L(\beta, l(\underline{\hat{u}}))g[M] - L(\beta, l(\hat{u}))g[M]$$

$$\geq L(\beta, \ell(\underline{\hat{u}}))Q$$

$$+ \beta^{\ell(\underline{\hat{u}})} \sum_{i \in S} E\{\overline{v}^{M} [\pi \sum_{v \in Y} \ell(\underline{\hat{u}}) P((\underline{\hat{u}}, \underline{y})), \underline{e}]\} |s(0)\}$$

where (B.11) was used to obtain the second inequality. Thus:

$$\| \mathbf{v}^{\mathbf{m}}[\boldsymbol{\cdot},\underline{\mathbf{e}}] \|_{\mathbf{D}} \leq \max_{\mathbf{k}\in <0, \boldsymbol{\ell}_{\rho}^{>}} \{ \mathbf{L}(\boldsymbol{\beta},\mathbf{k})\mathbf{Q} + \boldsymbol{\beta}^{\mathbf{k}}[\mathbf{L}(\boldsymbol{\beta},\overline{\boldsymbol{\lambda}})\mathbf{Q} + \boldsymbol{\beta}^{\mathbf{k}}[\mathbf{L}(\boldsymbol{\beta},\overline{\boldsymbol{\lambda}})\mathbf{Q} + \boldsymbol{\beta}^{\mathbf{k}}] \|_{\mathbf{D}}$$

$$+ \boldsymbol{\beta}^{\mathbf{\lambda}}[1 - (1 - \rho)(1 - \overline{\mathbf{a}})] \| \mathbf{v}^{\mathbf{M}}[\boldsymbol{\cdot},\underline{\mathbf{e}}] \|_{\mathbf{D}}$$

$$\leq \max_{\mathbf{k}\in <0, \boldsymbol{\ell}_{\rho}^{>}} \{ \mathbf{L}(\boldsymbol{\beta},\mathbf{k}+\overline{\boldsymbol{\lambda}})\mathbf{Q} + \boldsymbol{\beta}^{\mathbf{k}+\overline{\boldsymbol{\lambda}}}[1 - (1 - \rho)(1 - \overline{\mathbf{a}})] \| \mathbf{v}^{\mathbf{M}}[\boldsymbol{\cdot},\underline{\mathbf{e}}] \|_{\mathbf{D}}$$

which implies
$$\|\mathbf{v}^{\mathsf{M}}[\cdot,\underline{e}]\|_{\mathsf{D}} \leq \Omega$$
. \dagger

c. A Bound on Pseudo-perceptive Deterioration

Let $v^{M}[\hat{i},i,\underline{z}]$ denote the value of being in augmented state $[i,\underline{z}]$ while believing the augmented state to be $[\hat{i},\underline{z}]$, where $i,\hat{i} \in C$. Specifically,

$$v^{M}[\hat{1}, i, \underline{z}] = q^{M}_{\underline{z}}(i, u^{*})$$

$$+ \beta \Sigma_{y \in Y} \Sigma_{j \in S} P^{M}_{\underline{z}} (i, j, (u^{*}, y)) v^{M}[j, T^{M}(\underline{z}, (u^{*}, y))]$$

$$- g[M], \underline{z} \in ess[M] \cap Z^{+}(e^{\hat{1}}, e^{\hat{1}}) \qquad (B.14)$$

where u* maximizes (21.1) in the evaluation of $v^{M}[\hat{i},\underline{z}]$. Eqs (21.1) and (B.14) may also be written:

$$v^{M}[\hat{i},\underline{z}] = T(e^{\hat{i}},\underline{z}) \left[q(u^{*}) + \Sigma_{y \in Y} P(y|u^{*}) 1 \right]$$
$$\Sigma_{j \in S} \left[\frac{P_{\underline{z}}^{M}(\hat{i},j,(u^{*},y))}{T(e^{\hat{i}},\underline{z})P(y|u^{*}) 1} \right] \beta v^{M}[j,T^{M}(\underline{z},(u^{*},y))] - g[M]$$
$$(B.15)$$
$$v^{M}[\hat{i},i,\underline{z}] = T(e^{\hat{i}},\underline{z}) \left[q(u^{*}) + \Sigma_{y \in Y} P(y|u^{*}) 1 \right]$$

$$\Sigma_{j \in S} \left(\frac{P_{\underline{z}}^{M}(i,j,(u^{*}y))}{T(e^{i},\underline{z})P(y|u^{*})1} \right) \beta v^{M}[j,T^{M}(\underline{z},(u^{*},y))] - g[M]$$
(B.16)

Since $\delta[T(e^{\hat{i}},\underline{z}),T(e^{i},\underline{z})] \leq \alpha[\underline{z}]$, application of (13.4), (2.13) and (B.11) to (B.15) yields

$$\mathbf{v}^{M}[\hat{\mathbf{i}},\underline{z}] \leq \alpha[\underline{z}][Q+\beta\Omega] + T(e^{\mathbf{i}},\underline{z}) \left[q(\mathbf{u}^{*}) + \Sigma_{\mathbf{y}\in\mathbf{Y}} P(\mathbf{y}|\mathbf{u}^{*}) \mathbf{1} \right]$$
$$\sum_{\mathbf{j}\in\mathbf{S}} \left(\frac{P_{\underline{z}}^{M}(\hat{\mathbf{i}},\mathbf{j},(\mathbf{u}^{*},\mathbf{y}))}{T(e^{\hat{\mathbf{i}}},\underline{z})P(\mathbf{y}|\mathbf{u}^{*})\mathbf{1}} \right) \beta \mathbf{v}^{M}[\mathbf{j},\mathbf{T}^{M}(\underline{z},(\mathbf{u}^{*},\mathbf{y}))] - g[M]$$
(B.17)

Combining (B.16) and (B.17),

 $v^{M}[\hat{i},\underline{z}] - v^{M}[\hat{i},\underline{i},\underline{z}]$ $\leq \alpha[\underline{z}][Q+\beta\Omega] + T(e^{\hat{i}},\underline{z})\Sigma_{y\in Y}P(y|u^{*})1$ $\Sigma_{j\in S} \left(\frac{P_{\underline{z}}^{M}(\underline{i},\underline{j},(u^{*},y))}{T(e^{\hat{i}},\underline{z})P(y|u^{*})1} - \frac{P_{\underline{z}}^{M}(\underline{i},\underline{j},(u^{*},y))}{T(e^{\hat{i}},\underline{z})P(y|u^{*})1} \right)$ $\beta v^{M}[\underline{z},T^{M}(\underline{z},(u^{*},y))] \qquad (B.18)$

-684a

79**9**

Define:

ł

the second se

400

,**e**ia

.eia

40-**8**6

riste

$$F(\underline{z}) = \max_{\hat{i}, i \in C} \{ v^{M}[i, \underline{z}] - v^{M}[\hat{i}, i, \underline{z}] \}$$
(B.19)

Naturally

$$v^{M}[\hat{j},\underline{z}] - v^{M}[\underline{j},\underline{z}]$$

$$\leq v^{M}[\hat{j},\underline{z}] - v^{M}[\hat{j},\underline{j},\underline{z}]$$

$$\leq F(\underline{z}) \qquad (B.20)$$

Substituting (B.19) and (B.20) into (B.18),

$$F(\underline{z}) \leq \max_{i \in C} \max_{u \in U} \alpha[\underline{z}] [Q + \beta \Omega]$$

+ $\Sigma_{y \in Y} (T(e^{i}, \underline{z}) P(y|u) 1)$
 $\alpha[\underline{z}(u, y) - T^{M}(\underline{z}, (u, y))] \beta F(T^{M}(\underline{z}, (u, y)))$ (B.21)

If M=Z and $\overline{k}=1$, then:

$$F(\underline{z}) \leq \alpha[\underline{z}][Q+\beta\Omega] + \alpha[\underline{z}]\beta\overline{\alpha}[Q+\beta\Omega] + \alpha[\underline{z}]\beta\overline{\alpha}\beta\overline{\alpha}[Q+\beta\Omega] + \dots = \alpha[\underline{z}] \frac{[Q+\beta\Omega]}{1-\beta\overline{\alpha}}$$
(B.22)

In the more general case, multiple step versions of (B.18) and (B.20) are constructed, following (14.19) and (A.13), to obtain:

$$F(\underline{z}) \leq \max_{i \in C} \max_{\substack{\phi \in U}} \{\Sigma_{(k-1)*}, \{\Sigma_{\underline{z}' \in Z}(k-1)*(\sigma[\underline{z}', \phi]T(e^{i}, \underline{z})P(\underline{z}')1) \\ \beta^{\ell}(\underline{z}') \alpha[\underline{z} \ \underline{z}' - T^{M}(\underline{z}, \underline{z}')]\alpha[\underline{z}'][Q+\beta\Omega] + \Sigma_{\underline{z}' \in Z} \{\sigma[\underline{z}', \phi]T(e^{i}, \underline{z})P(\underline{z}')1) \\ \beta^{k} \alpha[\underline{z} \ \underline{z}' - T^{M}(\underline{z}, \underline{z}')]F(T^{M}(\underline{z}, \underline{z}'))\}$$
(B.23)

Finally, note that:

$$v^{M}[i,\underline{z}] - v^{M}[\hat{i},i,\underline{z}]$$

$$\leq v^{M}[i,\underline{z}] - v^{M}[i,\hat{i},\underline{z}]$$

$$+ v^{M}[i,\hat{i},\underline{z}] - v^{M}[\hat{i},\underline{z}]$$

$$+ v^{M}[\hat{i},\underline{z}] - v^{M}[\hat{i},i,\underline{z}]$$

$$\leq 2F(\underline{z}) \qquad (B.24)$$

d. Proof of Part (b)

The proof of part (b) is constructed in exactly the same manner as that of part (a), except that the incremental deterioration in performance due to pseudo-perception, given by (B.23), is used in place of the incremental value of perception. Consider first the discounted case. Define γ^m to be a strategy which selects inputs at times <0,m-1> according to ϕ^M and the remaining inputs according to ψ^M . Then

$$g(\beta,\gamma^{\lim[M]}) = g(\beta,\psi^{M})$$
(B.25)

$$g(\beta, \gamma^{\infty}) = g(\beta, \phi^{M})$$
 (B.26)

Following (B.4), and using (B.23), (14.23), and the convention $\underline{z}(b;a)=\underline{e}$ if a < b,

$$g(\beta,\gamma^{m}) - g(\beta,\gamma^{m+1})$$

$$\leq (1-\beta)\beta^{m}E_{\gamma^{m+1}} \{v^{M}[z^{M}(m)] - v^{M}[s^{m}(\underline{z}(m)), x^{M}(m)]$$

$$\leq (1-\beta)\beta^{m}E_{\gamma^{m+1}} \{2F(\underline{z}^{M}(m))\}$$

$$\leq (1-\beta)\beta^{m}E_{\gamma^{m+1}} \{\Sigma_{k=0}^{\infty} \beta^{k}\alpha[\underline{z}^{M}(m)\underline{z}(m;m+k)-z^{M}(m+k)]$$

$$\alpha[\underline{z}^{M}(m+k)]\} 2[Q+\beta\Omega]$$

$$\leq (1-\beta)\beta^{m}E_{\gamma^{m+1}} \{\Sigma_{k=0}^{\infty}\beta^{k}\alpha[\underline{z}(m-\ell_{min}[M]; m+k-\ell_{max}[M])]$$

$$\alpha[\underline{z}(m+k-\ell_{min}[M]; m+k)]\} 2[Q+\beta\Omega]$$

$$\leq (1-\beta)\beta^{m}E_{\gamma^{m+1}} \{\Sigma_{k=0}^{\infty} \beta^{k}\alpha[\underline{z}(m-\ell_{min}[M]; m+k-\ell_{max}[M])]$$

$$\alpha[\underline{z}(m+k-\ell_{min}[M]; m+k)]\} 2[Q+\beta\Omega]$$

$$\leq (1-\beta)\beta^{m} \{L(\beta, \ell_{max}[M] - \ell_{min}[M])$$

$$+ \beta^{(\ell_{max}[M] - \ell_{min}[M])} L(\beta, \overline{\ell}) (1-\overline{\alpha})^{-1} \}$$

$$\frac{\ell_{min}[M] \div \ell}{\alpha} 2[Q+\beta\Omega]$$

Summing as in (B.7) completes the proof, in the discounted case. Take the limit $\beta \uparrow 1$ to prove (21.6) (b) in the undiscounted case.

†

-228-

APPENDIX C

Listing of the Computer Program

PL/I OPTIMIZING COMPILER

/* DECLARATIONS */

STMT LEV NT

						/*******	******	**	*****		DC10020
						/*			* /		DCL0020
						/*					DCLOUSU
						/*	HODEL PARA	n E	12K5 +/		DCL0040
						/********	*********	**	*****		DC10050
						/********	******		/		DC10080
1		٥	DCT	1	MODET PV	PDNRT					DCL0070
'		U	UCL	'	NODEL EAD	ERDAL .					DCL0080
					3 N 8775						DCL0040
					2 N FIXE	DIN,			NUMBER OF STATES	* /.	DCLUIDO
					2 NU FIAL	D BIN,		-	NUMBER OF INPUTS	<u>.</u>	DCL0110
					2 NI FIAI	D DIN,		-	NUMBER OF CUTPUTS	<u>*/</u>	DCL0120
					2 NG F1XI	SD BIN,	/		NUMBER OF SYMBOLS IN Z	*/	DCL0130
) (M RCC						DCL0140
					2 (1,135	n) FIXED B.	IN.		MEMORY STATES COUNTER	*/.	DCL0150
					2 ERR FLU	DAT BIN,		Ŧ	FREOR, USUALLY G.HIGH-H.LOW	*/	DCL0160
					2 (MAX_M	MAX_ESS_M)	FIXED BIN,				DCL0170
					2 MIN_ERI	FLOAT BIN	• /		USER-SPECIFIED BOUNDS	*/	DCL0180
					2 FMT FID	CED BIN.	/	*	CUTPUT FORMAT	*/	DCL0190
											DC L0200
					2 (P_PRCI	SS, P_RWDS,	P_ZCCDE) 5	'C 1	NTER,		DCL0210
							/	*	POINTEPS TO STRUCT *, BFLOW	*7	DCL0220
					2 P_R001	POINTER,	/	-	ROCT OF MEMORY TREE	*/	DCL0230
					2 P_ESS_1	ODE POIN.	rea, /	*	START OF ESS NODE CHAIN	*/	DCL0240
					a -						DCL0250
					2 G,						DCT0560
					3 (H1GH	I, LOW) FLOA:	r BIN, /	*	BOUNDS ON G	*/	DCL0270
					3 STEPS	5 FIXED BIN	• /	*	DYNAMIC PROG STEPS COUNTER	*/	DCL0280
					2 H LIKE	MODEL.G,					DCL0290
											DC10300
					2 P_NODE	POINTER,	/	*	PRESENT NODE	*/	DCL0310
					2 P_REL I	POINTER,	/	*	RELATIVE NODE, ARG TO SCAN	*/	DCL0320
					2 P_REC I	PCINTER,	/	*	RECURRENT NODE	*/	DCI.0330
					1						DCL0340
					2 (LÉV,MI	AX_LEV,LO,L	00) FIXED B	BIN	•		DCL0350
							/	*	LENGTH OF BRANCH OF P_NODE	*/	DCL0360
					2 (U,Y,Z)	FIXED BIN	: /	*	INPUT/OUTPUT/IO PAIR	*/	DCL0370
											DCL0380
3	1	0	DCL	1	STRUCT_ZC	CODE BASED (P_ZCODE), /	*	TRANSLATES (U,Y) TO Z	*/	DCL0390
					2 (NU1, N)	(1) FIXED B	IN,				DCL0400
					2 ZCODE (I	U REFER(NO	1), NY REFE	R (NY1)) FIXED BIN;		DCL0410
											DCL0420
4	1	0	DCL	1	STRUCT_PE	OBS BASED (P_PROBS), /	*	ORIGINAL TRANS PROBS	*/	DCL0430
					2 (NZ2,N2) FIXED BI	Ν,				DCL0440
					2 PROBS (I	Z REFER (NZ)	2),N PEFEP(N 2), N REFER(N2)) FLOAT BIN;		DCL0450
_											DCL0460
5	1	0	DCL	1	STRUCT_R	DS BASED (P	_RWDS), /	*	CRIGINAL IMM REWARDS ARRAY	*/	DCL0470
					2 (NU3,N	3) FIXED BI	Ν,				DC10480
					2 RWDS (NO	J REPER(NU3)	, N PEFER((N 3)) FLOAT BIN;		DCL0490

/* DECLARATIONS */

PL/I OPTIMIZING COMPILER

STMT LEV NT

DCL0510 /** **/ /* DCL0520 */ DCL0530 ́/* MENORY TREE SPECIFICATION */ . /* DCL0540 /******* DCL0550 DCL0560 DCL 1 NODE BASED (P_NCDE), 2 P_ESS_NODE POINTER, /* POINTS TO ESS_NODE, BELOW */ DCL0570 2 (P_TPH,P_BRANCHES) POINTER,/* POINT TO SUBSTRUCTS OF NODE */ DCL0590 6 1 0 DCL0600 2 P_BACK POINTER, /* IDENTIFIES PREVIOUS NODE */ DCL0610 2 Z_BACK FIXED BIN, /* IDS BRANCH ON PREVIOUS NODE */ DCL0620 2 (NO,NZO) FIXED BIN, 2 ROWSUM(N REFER(NO)) FLOAT BIN, /* ROWSUM(I) = SUM/J TPM(I,J) PLOAT BIN, DCI.0630 DCL0640 DCL0650 */ DCL0660 DCL0670 /* TRANS PROBABILITY MATRIX */ DCL0680 2 BRANCHES (NZ REFER (NZO)), DCL0690 3 P_BRANCH POINTER, /* IDENTIFIES NODE ALONG BRANCH DCL0700 Z FROM CURRENT NODE */ DCL0710 3 E_BRANCH BIT ALIGNED; /* IS BRANCH Z A NODE IN Z+? */ DCL0720 DCL0730 DCL 1 ESS_NODE BASED(P_ESS_NODE), 2 P_NEXT_ESS_NODE POINTER, 7 1 0 DCL0740 /* NEXT NODE IN ESS NODE CHAIN */ DCL0750 2 (NOO, NTOO, NZOO) FIXED BIN, DC10760 DCL0770 2 (P_VG,P_VH,P_W,P_UG,P_PZ,P_QZ) POINTER, DCL0780 /* POINT TO SUBSTRUCTS, RELOW */ DCL0790 DCL0800 2 REC, /* FLAGS WHICH ID REC MEM STS */ DCL0810 3 (TO, FROM, G, H) BIT ALIGNED, DCL0820 2 UH PIXED BIN, /* INPUT - STEP H */ DCL0830 2 UH FIADU JAN. 2 P_NEXT2(NZ REFER(NZOO)) POINTER, /* NEXT (ESS_)NODE, IF NEXT DCL0860 I/O PAIR IS THE SUBSCRIPT Z */ DCL0870 DCL0880 +/ DCL0890 2 VG (N FEFER (NOO)) FLOAT BIN, /* RELATIVE VALUE - STEP G */ DCL0890 2 VH (N FEFER (NOO)) FLOAT BIN, /* RELATIVE VALUE - STEP H */ DCL0900 2 W (N REFER (NOO)) FLOAT BIN, /* WORKSPACE FOR LHS OF DYN PR */ DCL0910 2 UG (N REFER (NOO)) FIXED BIN, /* OPTINAL INPUT - STEP G */ DCL0920 DCC0920 DCL0930 2 PZ (NZ REFER (NZOG), N REFER (NOO), N REFER (NOO)) FLOAT BIN; /* TPN OF AUGMENTED SYSTEM DCL0940 */ DCL0950 2 QZ (NU REFER (NUOO) ,N REFER (NOO)) FLOAT BIN; /* INCREMENTAL REWARDS FOR DCL0960 DCL0970 AUGHENTED SYSTEM */ DCL0980

~

,**m**

-

PL/I OPTIMIZING CONFILFR /* DECLARATIONS */

•

STMT LEV NT

			/******	DCL1000
			· /* */	DCL1010
			A PAST REFERENCE OF NODAL PARAMETERS */	DCL1020
			/* ************************************	DCL1030
			/******	DCL1040
			,,	DCL1050
8	1	0	DCI. (PP TPM_PP BRANCHES.PP VG_PP VH_PP W_PP HG_PP PZ_PP 0Z_PP PIAG)	DCL1060
	•	-	POINTER: /* POINT TO STRUCTURES, BELOW */	DCL1070
				DCL1080
				DCL1090
9	1	0	DCL F TPM (10000) BASED (FP TPM) PLOAT BIN:	DCL1100
-	•	•		DCL1110
10	1	0	DCL 1 F BRANCHES (10000) BASED(FP BRANCHES).	DCL1120
		•	2 F P BRANCH POINTER.	DCL1130
			2 P E BRANCH BIT ALIGNED:	DCL1140
				DCL1150
11	1	0	DCL F VG(10000) BASED(FP VG) FLOAT BIN:	DCL1160
				DCL1170
12	1	0	DCL F VH(10000) BASED(PP VH) FLOAT BIN:	DCL1180
				DCL1190
13	1	0	DCL F W(10000) EASED(FP W) FLOAT BIN:	DCL1200
				DCL1210
14	1	0	DCL F_UG(10000) BASED(FP_UG) FIXED BIN;	DCL1220
				DCL1230
15	1	0	DCL F_PZ(10000) BASED(FP_PZ) FLOAT BIN;	DCL1240
				DCI.1250
16	1	0	DCL F_QZ(10000) BASED(PP_QZ) FLOAT BIN:	DCL1260
				DCL1270
17	1	0	DCL FLAG(10000) BASED(PP_FLAG) FIXED BIN; /* GENERALLY OVER UG(*) */	DCL1280
			-	DCL1290
18	1	0	DCL DP_SKIP(10000) BASED(FP_W) FIXED BIN: /* HASTINGS SKIP, OVER W*/	DCL1300

۰.

			/**************************************	DCL1320
			/* */	DCL1330
			/* MISC DECLARATIONS */	DCL1340
			/* */	DCL1350
			/**************************************	DCL1360
				DCL1370
19	1	0	DCL (NULL,LINENC) BUILTIN:	DCL1390
20	1	0	DCL TIMING ENTRY (PIXED BIN (31,0));	DCL1390
				DCL1490
21	1	0	DCL 1 TIME EXTERNAL, /* TIMES IN SEC/100	*/ DCL1410
			2 (PREP,G,H,LIMIT) FIXED BIN(31,0);	DC11420

-

PL/I GPTIMIZING COMPILER FPS_OPT: PROC CPTIONS(MAIN) RECRDER;

.

SCURCE LISTING

STMT LEV NT

1		0	FPS OPT: PROC OPTIONS(MAIN) FEORDER:	MAIN0010
			-	MAIN0020
2	1	0	SINCLUDE ED1(DCL):	MAIN0030
ų.	1	ō	DCL (PREP G.SCLVE G.PREP H.SOLVE H.REPORT) EXT ENTRY:	MAIN9040
-	•	-		MAIN0050
5	1	0	DCL IT PIXED BIN: /* ITERATION NUMBER *	/MAIN0060
6	1	õ	DCL (TOT PAGE, IT PAGE) FIXED BIN: /* PAGE COUNTERS	/MAIN0070
7	1	õ	DCL TITLE CHAR(32). (T .J) FIXED BIN. B BIT. P POINTER. S FLOAT BIN	MAIN0080
Я	1	ő	DCI BAR CHAR(62) INIT($(++)$ 11 (60) $(-+)$ 11 $(++)$ 1):	MAIN0090
ğ	1	õ	DCI TE CHAR(6) INIT("TIME ="):	MAIN0100
,	•	•		MAIN0110
10	1	0	CN ENDPAGE(SYSPRINT) BEGIN:	MAIN0120
11	2	õ	PUT EDIT (11, 11, 11, 11, 11) (COL(1), A.COL(86), A.PAGE, A.COL(86), A);	MAIN0130
12	5	ň	PUT PDIT (TITLE) (SKIP (6), CCL (14), A) :	MAIN0140
17	2	ň	TOT PAGE = TOT PAGE+1:	MAIN0150
14	2	õ	TP TOT PAGE > 1	MATN0160
	-	Ŭ	THEN PUT EDIT ('PAGE', TOT PAGE) (X(6), A, F(3)):	MAIN0170
15	2	0	TF T > 0	MAIN0180
	•	v	THEN DO:	MATNO 190
16	2	1	TT PAGF = IT PAGF+1:	MAIN0200
17	2	1	PHT FDIT('TABLE', TT*100 + IT PAGE) (X(6), A, F(6, 2, -2));	MAIN0210
18	2	1	IF IT PAGE=1	MAIN0220
	-	•	THEN DO:	MAIN0230
19	2	2	PUT EDIT (BAR, 'I ITERATION', IT, 'MEM =', M,	MAIN0240
• •	~	~	'ESS MEM =', ESS M.TE. "IMF. PREP, '1', '1', '1', '1',	MAIN0250
			G.ICW. ' < G <', G. HIGH. G. STEPS. ' STEPS', TE. TIME. G. '!',	MAIN0260
			'I'.H.LOW.' < H <'.H.HIGH.H.STPPS,' STEPS', TE,TIME.H.	MAIN0270
			11, BAR)	MAIN0280
			(SKTP(2), 2(COL(14), A), F(3), X(4), A, F(3), X(3), A, F(3),	MAIN0290
			x(3) = A = P(6 = 2 = -2) = X(3) = A = CCL(14) = A = CCL(75) = A	MAIN0300
			2(F(0, 1, 1, 4), A, F(B, 3), A, F(B, 3), F(9), A, X(7), A, F(6, 2, -2),	MAIN0310
			X (3) - A) - COI (14) - A) :	MAIN0320
				MAIN0330
20	2	2	TP PMT=1	MAINO 340
20	2	4	THEN PUT EDIT (PC T II V(G) V(H) PPOBS')	MAIN0350
			(SKTD (2) - COL (14) - A) :	MAIN0360
24	2	2	PISE DIT $(PRC P) (COL(14), A)$:	MAIN0370
21	2		DIT FOT (MEMORY STATES) (CCI (63) A):	MAIN0390
44	2	2		MAIN0390
23	S	2		MAIN0400
23	2	4	$I_0 = 0$	MAIN9410
24	2	-		MAIN0420
20	4		FIGE DIT FOTT (IDEOBLEN SPECSI) (COL(63) A):	MAIN0430
20	2	0	Prof for Priff Lunpfru pring / (onstanthuld	MAINO440
21	2	0		

.

PL/I CPTIMIZING COMPILER FPS_OPT: PROC OPTIONS (MAIN) RFORDER;

STMT LEV NT

			/**************************************	MAIN0460
			/* */	MAIN0470
			/* READ MODEL AND PEINT TITLE PAGE */	MAIN0480
			/* */	MAIN0490
			/**************************************	MAIN0500
				MAIN0510
28	1	0	TITLE="":	MAIN0520
29	1	0	MAX LEV, MAX M, MAX ESS M, IT, FMT, TOT PAGE = 0:	MAIN0530
30	1	0	M, ESS M = 1;	MAIN0540
31	1	0	MIN PRR=0.:	MAIN0550
32	1	0	TIME.LIMIT = 3;	MAIN0560
				MAIN0570
33	1	0	GET LIST (TITLE, N, NU, NY, NZ, FMT, TIMF. LIMIT, MIN BPF, MAX M, MAX ESS M)	:MAIN0580
34	1	0	TIME.LIMIT = TIME.LIMIT*100;	MAIN0590
35	1	0	SIGNAL ENDPAGE (SYSPRINT):	MAIN0600
36	1	0	PUT PDIT (N, STATES', NU, INPUTS', NY, OUTPUTS', NZ, I/O PAIRS',	MAIN0610
			TIME LIMIT: ", TIME.LIMIT, "MIN BRR: ", MIN ERR,	MATN0620
			MAX MEN: ", NAX M, "MAX ESS MEN: ", MAX ESS M)	MAIN0630
			(SKIP (2), COL (19), 4 (F (4), A), SKIP (2), COL (22), A, F (6, 2, -2)	"MAINO640
			COL (53), A, F (5,3), SKIP (2), COL (22), A, F (4), COL (51), A, F (4))	MAIN0650
				MATN0660
37	1	0	ALLOCATE STRUCT ZCODE, STRUCT PROBS, STRUCT RWDS, NODE, ESS NODE;	MAIN0670
				MAIN0680
38	1	0	ZCCDE = 0:	MAIN0690
				MAIN0700
39	1	0	$P_ROCT_P_FSS_NODE_1 = P_NODE;$	MAIN0710
40	1	0	P_BACK, P_NEXT_ESS_NOCE = NULL;	MAIN0720
41	1	0	$P_{NEXTZ} = P_{RCT}$	MAIN0730
42	1	0	P_TPM,FP_TPM = ADDR(TPM(1,1));	NAIN0740
43	1	0	P_BRANCHES, FP_BRANCHES = ADDR(BRANCHES(1));	MAIN0750
44	1	0	$P_VG, FP_VG = ADDR(VG(1));$	MAIN0760
45	1	0	$P_VH, FP_VH = ADDR(VH(1));$	MAIN0770
46	1	0	$P_W = ADDR(W(1));$	MAIN0780
47	1	0	$P_UG, FP_UG = ADDR(UG(1));$	MAIN0790
48	1	0	$P_PZ = ADDR(PZ(1,1,1));$	MAINOROO
49	1	0	$P_{QZ} = ADDR(QZ(1,1));$	MATNO810
50	1	0	PEC.G, REC.H = 11B;	MAIN0820
51	1	0	DO I=1 TO N*N;	MAIN0830
52	1	1	F_TPM (I) =0;	MATN0840
53	1	1	END;	MAIN0850
54	1	Û	DO I=1 TO N;	MAIN0860
55	1	1	$F_VG(I), F_VH(I) = 0.;$	MAIN0870
56	1	1	$F_UG(I) = 1;$	MAIN0880
57	1	1	$F_TPM((I-1)*N + I)$, rowsum(I) = 1.;	MAIN0890
58	1	1	END;	MAIN0900

.

PL/I CPTIMIZING COMPILER FPS_OPI: PROC OPTIONS (MAIN) RECADER;

STMT LEV NT

<pre>/* PLACE INPUT PPCES IN PZ */ MAIN0940 /************************************</pre>				/ * * * * * * * * * * * * * * * * * * *	MAIN0920
59 1 0 FUT EDIT('TRANSITION PROBABILITIES:','Z','(U, Y)','P') (SKIP(3),CCL('4),A,SKIP,CCL('5),A,X('7),A,X(9),A); (BAIN0950 60 1 0 D0 Z=1 TO NZ; (BAIN0950) MAIN0960 (BAIN0960) 61 1 IF LINENO(SYSPRINT)+3+(N/10+1)*N > 55 (MAIN0960) MAIN0960 (THEN SIGNAL ENDPAGE (SYSPRINT); (BAIN0960) MAIN0960 (THEN SIGNAL ENDPAGE (SYSPRINT); (BAIN0960) 62 1 1 PUT EDIT(Z) (F (16)) SKIP(2); (BAIN0960) MAIN0960 (THEN SIGNAL ENDPAGE (SYSPRINT); (MAIN1002) 64 1 IF U=0 THEN GOTC GFT_TPM; (COLUMN (22), 2 F (3)); (TAIN10960) MAIN10960 (THEN SIGNAL ENDPAGE (SYSPRINT); (MAIN10960) 65 1 GET_TPM: (THEN SIGNAL ENDPAGE (SYSPRINT); (MAIN10960) MAIN10960 (THEN SIGNAL ENDPAGE (SYSPRINT); (MAIN10970) 66 1 GET_TPM: (THEN SIGNAL ENDPAGE (SYSPRINT); (MAIN10970) MAIN10970 (THEN SIGNAL ENDPAGE (SYSPRINT); (MAIN11070) 70 1 B = '0'0'B; (F LISE((F_PZ (I) EO I=1 TO N*N)); (MAIN1120) MAIN1120 (MAIN1120) 71 1 D I=1 TC N*N; (T I DO I=1 TC N*N;				/* PLACE INPUT PROES IN PZ */	MAIN0930
59 1 0 FUT EDIT('TRANSITION PROBABILITIES:','Z','(U, Y)', 'P') (SKIF(3), CCL('4), A, SKIF, CCL('5), A, X(7), A, X(9), A); MAIN0960 MAIN0960 60 1 0 D0 Z=1 TO NZ; MAIN0960 MAIN0970 61 1 1 IF LTN ENG (SYSPRINT)+3+(N/10+1)*N > 55 MAIN0970 62 1 PUT EDIT(Z) (F(16)) SKIP(2); MAIN0960 MAIN0960 63 1 GET LIST(U): GET LIST(U): CET EDIT((U,F) (CCLUNN (22), 2 F(3)): MAIN1006 MAIN1020 MAIN1006 64 1 FUT EDIT(U,F) (CCLUNN (22), 2 F(3)): MAIN1007 MAIN1020 MAIN1006 65 1 GET CET_UV_PAIR: GET COLUNN (22), 2 F(3)): MAIN1007 MAIN1006 66 1 FUT EDIT(U,F) MAIN1007 67 1 GET CET_UV_PAIR: GET LIST(U): MAIN1007 MAIN1007 71 1 GET CET_UV_PAIR: GET LIST(U): MAIN1007 MAIN1007 71 1 B = '0'B: MAIN1007 MAIN1007 72 I DO I=1 TC N*N: MAIN1107 MAIN1107 73 1 2 F_PZ(I) ED I=(I TO N*N)); MAIN1107 MAIN1107 74 1				/*************************************	MATN0940
59 1 0 FUT EDIT (*TRANSITION PROBABILITIES: *, *, *, *, *, *, *, *, *, *, *, *, *,				· · · · · · · · · · · · · · · · · · ·	MAIN0950
60 1 0 DO Z=1 TO WZ; MAIN0970 60 1 0 DO Z=1 TO WZ; MAIN0970 61 1 1 IF LINENC(SYSPRINT)+3+(N/10+1)*N > 55 MAIN0970 61 1 1 IF LINENC(SYSPRINT)+3+(N/10+1)*N > 55 MAIN0970 62 1 PUT EDT (2) (F(16)) SKIP(2); MAIN1000 63 1 GET_LIST(U); MAIN1020 64 1 IF U=0 THEN GOTC GFT_TPM; MAIN1000 65 1 GET LIST(U); MAIN1020 66 1 GET LIST(U,T) MAIN1020 67 1 ZCODE(U,Y) = z; MAIN1000 66 1 GET_TPM; MAIN1020 71 1 GET_TPM; MAIN1020 72 1 DO I=1 TC N*N; MAIN1020 73 1 F PZ = ADDD(P PZ->P PZ ((Z-1)*N*N + 1)); MAIN1102 74 1 F PZ (I) = 0.; MAIN1102 74 1 F PZ (I) = 0.; MAIN1102 75 1 GET LIST (V); CO I=1 TC N*N; 74 1	59	1	0	PUT EDIT('TRANSITION PROBABILITIES:','2','(U, Y)','P')	MAIN0960
60 1 0 DO Z=1 TO NZ; MAIN090 61 1 1 IF LINENO (SYSPRINT)+3+ (N/10+1)*N > 55 MAIN090 61 1 1 IF LINENO (SYSPRINT)+3+ (N/10+1)*N > 55 MAIN090 62 1 1 DUT EDIT(Z) (F(16)) SKIP(2); MAIN1000 63 1 GET LIST(U); MAIN1020 64 1 IF U=0 THEN GOTC GFT_TPM; MAIN1000 65 1 GET LIST(Y); MAIN1020 66 1 PUT EDIT(U,Y) (CCLUHN(22),2 F(3)); MAIN1000 67 1 ZOODE(U,Y) = Z; MAIN1020 68 1 GCT C GET_UY_PAIR; MAIN1000 69 1 GCT C GET_UY_PAIR; MAIN1020 70 1 B = *0°B; MAIN1020 71 1 PUT EDIT(U,Y) (CCL(J+1)*N* > 55 MAIN1020 71 1 DO I=1 TC N*R; MAIN1020 MAIN1120 72 1 DO I=1 TC N*R; MAIN1120 MAIN1120 74 1 GET LIST((F_PZ(I) ED I=1 TO N*N)); MAIN1120 MAIN1120 75 </td <td></td> <td>•</td> <td>•</td> <td>(SKTP(3), COL(14), A, SKTP, COL(15), A, X(7), A, X(9), A);</td> <td>MAIN0970</td>		•	•	(SKTP(3), COL(14), A, SKTP, COL(15), A, X(7), A, X(9), A);	MAIN0970
61 1	60	1	0	PO Z=1 TO NZ	MAIN0980
THEN SIGNAL ENDPAGE (SYSPRINT);HAIN10006211PUT EDIT (Z) (P(16)) SKIP(2);MAIN1020631GET UST(U);MAIN1020641IF U=0 THEN GOTC GFT_TPN;MAIN1040651GET LIST (Y);MAIN1040661PUT EDIT (U,Y) (COLUMN (22), 2 F (3));MAIN1066671ZCODE (U,Y) = z;MAIN1066681GC TC GET_UY_PAIR;MAIN1067691GC TC GET_UY_PAIR;MAIN1070691GET_TPM;MAIN1070701B = '0'B;MAIN1070711PP Z = ADDP (P_PZ->P_PZ ((Z-1)*N*N + 1));MAIN1107721DO I=1 TC N*N;MAIN1120741P PZ (I) = 0.;MAIN1167741P CT CI (P_PZ (J) EO I=1 TC N*N));MAIN1120751GET LIST ((P_PZ (J) EO J=(I-1)*N+1 TC I*N)) (CCL (36), 5 F (8,4));MAIN120761DO I=1 TC N;MAIN120771PUT FDIT ((P_PZ (J) EC J= (I-1)*N+1 TC I*N)) (CCL (36), 5 F (8,4));MAIN120761DO T = 1 TC N*N;MAIN120771PUT FDIT ((P_PZ (J) =0.;MAIN120782PUT FDIT ((P_PZ (J) ==0.;MAIN120791END;/* COPY PZ INTC PROES741PUT FDIT ((P_PZ (J) ==0.;MAIN120751DC T = 1 TC N*N;MAIN120761DC T = 1 TC N*N;MAIN120771D	61	1	1	IF LINENO (SYSPRINT) + $3 + (N/10+1) + N > 55$	MATN0990
62 1 PUT EDIT (2) (F(16)) SKIP(2); MAIN1020 63 1 $GET_{LIST}(U)$; MAIN1020 64 1 IFU=0 THEN GCTC GFT_TPM; MAIN1020 65 1 GET_LIST(U); MAIN1020 66 1 FUTEDIT (U,Y) (COLUMN (22), 2 F(3)); MAIN1060 67 1 ZCODE (U,Y) = Z; MAIN1060 68 1 GET_LIST (U); MAIN1060 69 1 GET_TPM; MAIN1060 69 1 GET_TPM; MAIN1060 71 1 FP_EZ ADDP (P_PZ->P_PZ (Z=1)*N*N * 1)); MAIN1100 71 1 B = '0'B; MAIN1100 MAIN1100 71 1 FP_Z = ADDP (P_PZ->P_PZ (Z=1)*N*N * 1)); MAIN1100 72 1 DO I=1 TC N*N; MAIN1100 74 1 2 FDZ; MAIN100; 75 1 GET_LIST ((F_PZ (I) EO I=1 TO N*N)); MAIN1100 76 1 DO I=1 TC N*; MAIN1100 76 1 DO I TO N*N; MAIN120 71 2	• .		•	THEN SIGNAL ENDRAGE (SYSPRINT) :	MAIN1000
63 1 1 GET_UY_PAIR: MAIN1020 GET_LIST(U); GET_LIST(U); MAIN1030 64 1 IF U=0 THEN GOTC GFT_TPM; MAIN1030 65 1 GET_LIST(Y); MAIN1040 66 1 PUT EDIT(U,Y) (COLUMN (22), 2 F (3)); MAIN1040 67 1 CCODE (U,Y) = Z; MAIN1040 68 1 GET_TPM; MAIN1040 69 1 GET_TPM; MAIN1040 69 1 GET_TPM; MAIN1040 70 1 B = *0*B; MAIN1040 71 1 P = PZ = ADDP (P_PZ->P_PZ ((Z-1)*N*N + 1)); MAIN1100 72 1 DO I=1 TC N*N; MAIN1120 73 1 2 F_PZ (I) = 0.; MAIN1120 74 1 GET LIST ((F_PZ (J) LC J=(I - 1)*N*1 + 1); MAIN1120 75 1 GET LTC N*N; MAIN1120 78 1 PUT FDIT ((C_PZ (J) LC J= (I - 1)*N+1 TC I*N)) (CCL (36), 5 F (8,4)); MAIN120 79 1 END; MAIN122 MAIN122 81 1 <td>62</td> <td>1</td> <td>1</td> <td>PUT EDIT (Z) $(F(16))$ SKIP(2);</td> <td>MAIN1010</td>	62	1	1	PUT EDIT (Z) $(F(16))$ SKIP(2);	MAIN1010
GET LIST (U); MAIN103C 64 1 IF U=0 THEN GOTC GFT_TPM; MAIN104C 65 1 GET LIST (Y); MAIN104C 66 1 PUT EDIT (U,Y) (COLUMN (22), 2 F (3)); MAIN104C 66 1 PUT EDIT (U,Y) (COLUMN (22), 2 F (3)); MAIN104C 67 1 ZCODE (U,Y) = Z; MAIN104C 68 1 GET_TPM; MAIN104C 69 1 GET_TPM; MAIN104C 69 1 GET_TPM; MAIN104C 70 1 B = '0'B; MAIN104C 71 1 B = '0'B; MAIN112C 72 1 DO I=1 TC N*N; MAIN112C 73 1 2 F_PZ(I) = 0.; MAIN112C 74 1 GET LIST((F_PZ(I) LO I=1 TC N*N)); MAIN112C 75 1 GET LIST((F_PZ(J) LC J=(I-1)*N*1 TC I*N)) (CCL(36),5 F (8,4)); MAIN122C 74 1 PUT SKIP; MAIN12C MAIN122C 74 1 DO I=1 TC N*N; MAIN12C MAIN122C 74 1 DO I=1 TC N;	63	1	1	GET UY PAIR:	MAIN1020
64 1 1 $IP = 0$ $THEN$ GOTC GFT_TPM; MAIN1060 65 1 $GET LISI(Y)$; MAIN1060 MAIN1060 66 1 $PUT EDIT(U, Y)$ COLUMN(22), 2 F(3)); MAIN1060 67 1 $2CODE(U, Y) = Z$; MAIN1070 68 1 GET_TPM ; MAIN1070 69 1 GET_TPM ; MAIN1060 THEN SIGNAL ENDPAGE (SYSPENT); MAIN1000 THEN SIGNAL ENDPAGE (SYSPENT); MAIN1100 THE SIGNAL ENDPAGE (SYSPENT); M			-	GET LIST(U):	MAIN1030
65 1 GET LIST(Y); MAIN1060 66 1 PUT EDIT(U,Y) (COLUMN(22), 2 F(3)); MAIN1060 67 1 ZCODE(U,Y) = Z; MAIN1060 67 1 GC TC GET_UY_PAIR; MAIN1060 69 1 GET_TPM: MAIN1060 69 1 GET_TPM: MAIN1060 70 1 B = '0'B; MAIN1000 71 1 B = '0'B; MAIN1100 72 1 DO I=1 TC N*N; MAIN1100 73 1.2 F_PZ(I) = 0.; MAIN1100 74 1.2 FDZ (I) = 0.; MAIN1100 74 1.2 FDZ (I) = 0.; MAIN1100 74 1.2 FDZ (I) EO I=1 TC N*N; MAIN1100 76 1.1 DO I=1 TC N* MAIN1100 76 1.1 DO I=1 TC N*N; MAIN1100 77 1.2 PUT SKIP; MAIN1100 78 1.2 END; MAIN1200 79 1.2 END; MAIN1200 71 1.0 C T = 1 TC N*N; MAIN	64	1	1	IF U=0 THEN GOTC GFT TPM:	MAIN1040
66 1 $PUT EDIT(U,Y) (COLUMN(22), 2 F(3));$ MAIN1066 67 1 $2CODE(U,Y) = Z;$ MAIN1076 68 1 $GC TC GET_UY_PAIR;$ MAIN1076 69 1 $GET_UY_PAIR;$ MAIN1076 69 1 $GET_UY_PAIR;$ MAIN1066 70 1 $B = *0^*B;$ MAIN1107 70 1 $B = *0^*B;$ MAIN1107 71 1 $PP_Z = ADDP(P_PZ - P_PZ(Z-1) * N*N + 1));$ MAIN1107 72 1 $DO^-I=1 TC N*N;$ MAIN1107 74 1 2 $PDT (I, PZ(I) DO I=1 TC N*N));$ MAIN1107 76 1 $GET LIST((P_PZ(I) DO I=1 TC N*N));$ MAIN1107 76 1 $DO I=1 TC N;$ MAIN1107 76 1 $DO I=1 TC N;$ MAIN1107 76 1 $DO I I TC N;$ MAIN1107 77 1 $PUT ESIT((P,PZ(I) DC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN1207 78 1 PUT EDIT((P,PZ(I) = 0.; MAIN1202 MAIN1202 79 1 DC T = 1 TC N*N; MAIN1204 $	65	1	1	GET LIST(Y):	MAIN1050
67 1 2 CODE (U, Y) = Z; MAIN107 68 1 GC TC GET_UY_PAIR; MAIN1096 69 1 GET_TPM: MAIN1096 10 GET_TPM: MAIN1097 11 GET_TPM: MAIN1007 11 GET_TPM: MAIN1007 11 FP [PZ] ADDPAGE (SYSPRINT); MAIN1107 70 1 $B = *0^{\circ}B;$ MAIN1127 71 1 $FP_PZ = ADDP(P_PZ - > P_PZ ((Z-1) * N * N + 1));$ MAIN1127 71 1 $PPZ = ADDP(P_PZ - > P_PZ ((Z-1) * N * N + 1));$ MAIN1130 72 1 DO I=1 TC N*N; MAIN1160 74 1 $CFT_LIST((F_PZ(I) EO I=1 TO N*N));$ MAIN1160 75 1 GET_LIST((F_PZ(J) EC J= (I-1) * N + 1 TC I*N)) (CCL(36), 5 F(8,4)); MAIN1200 76 1 DO I=1 TC N*N; MAIN1201 71 1 DC T = 1 TC N*N; MAIN1201 71 1 DC T = 1 TC N*N; MAIN1201 71 1 DC T = 1 TC N*N; MAIN1202 71 1 DC T = 1 TC	66	1	1	PUT EDIT(U, Y) (COLUMN(22), 2 F(3));	MAIN1060
6F 1 GC TC GT_UY_PAIR; MAIN1980 69 1 1 GET_TPM: MAIN1980 1P LINENO (SYSPRINT) + (N/10+1)*N > 55 MAIN1100 THEN SIGNAL ENDPAGE (SYSPRINT); MAIN1100 70 1 B = '0'B; MAIN1100 71 1 PP PZ = ADDP (P_PZ->P_PZ ((Z-1)*N*N + 1)); MAIN1120 72 1 DO I=1 TC N*N; MAIN1120 73 1 2 PZ (I) = 0.; MAIN1160 74 1 2 END; MAIN1160 75 1 GET LIST ((F_PZ (I) DO I=1 TC N*N)); MAIN1160 76 1 DO I=1 TC N; MAIN1120 77 1 PUT SKIP; MAIN120 78 1 PUT FDIT ((F_PZ (J) DC J= (I-1)*N+1 TC I*N)) (CCL (36),5 P(8,4)); MAIN120 79 1 2 B = B F_PZ (I) =0.; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 83 1 F_E_EPANCH(Z) = B; MAIN1220 84 1 F_P_E DEANCH(Z) = NULL; MAIN1220 86 1	67	1	1	ZCODE(U, Y) = Z:	MAIN1070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	1	1	GC TC GET UY PAIR:	MAIN1080
IF LINENC (SYSPRINT) + (N/10+1) *N > 55 MAIN1100 THEN SIGNAL ENDPAGE (SYSPFNT); MAIN1120 70 1 B = '0'B; 71 1 PP Z = ADDP (P_PZ->P_PZ ((Z-1)*N*N + 1)); MAIN1120 72 1 DO I=1 TC N*N; MAIN1130 72 1 DO I=1 TC N*N; MAIN1160 73 1 2 F_PZ (I) = 0.; MAIN1160 74 1 2 END; MAIN1160 75 1 GET LIST ((F_PZ (I) EO I=1 TC N*N)); MAIN1160 76 1 DO I=1 TC N; MAIN1100 78 1 PUT SKIP; MAIN1200 79 1 PUT FDIT ((F_PZ (J) EC J= (I-1)*N+1 TC I*N)) (CCL (36), 5 F (8,4)); MAIN1200 78 1 PUT FDIT ((F_PZ (I) =0.; MAIN1200 80 1 DC T = 1 TC N*N; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 81 1 P_P_BRANCH (Z) = B; MAIN1220 82 1 F_P_BBRANCH (Z) = NULL; MAIN1220 86 1 FP_PZ = P_PZ; MAIN1220	69	1	1	GET TPM:	MAIN1090
THEN SIGNAL ENDPAGE (SYSPFINT);MAIN11107011 $B = *0^{\circ}B;$ MAIN11207111 $P = PZ = ADDP(P = PZ - > P = PZ(Z = 1) + N + N + 1));$ MAIN11207211DO I=1 TC N*N;MAIN11407312 $F = PZ(I) = 0 \cdot;$ MAIN11607412END;MAIN1160751G ET LIST((F = PZ(I) DO I=1 TC N*N));MAIN1160761DO I=1 TC N;MAIN1160771PUT SKIP;MAIN11607812PUT FDIT((F = PZ(I) DO J=(I-1) * N+1 TC I*N)) (CCL (36), 5 F (8,4));MAIN12007912END;MAIN1220801DC T = 1 TC N*N;MAIN12208112 $B = B F = PZ(I) = 0 \cdot;$ MAIN12208311 $F = E = PANCH(Z) = B;$ MAIN1220841 $F = P = BRANCH(Z) = B;$ MAIN1220851END;/* COPY PZ INTC PROE5*/ MAIN12208610 $PC = P = PZ;$ MAIN1220871 $D = ADDR(PRCBS(1,1,1));$ MAIN12208810 $DC I = 1 "O N*N*NZ;$ MAIN1330901 $E ND;$ MAIN1330	0.			IF LINENG (SYSPRINT) + $(N/10+1) * N > 55$	MAIN1100
7011 $B = *0^{\circ}B_{1}^{\circ}$ MAIN11207111 $FP PZ = ADDP(P_{2} > P_{2}((Z-1)*N*N + 1));$ MAIN1130721DO I=1 TC N*N;MAIN11607312 $F PZ(I) = 0.;$ MAIN11607412END;MAIN1160751GET LISI((F_PZ(I) DO I=1 TC N*N));MAIN1160761DO I=1 TC N;MAIN1100761DO I=1 TC N;MAIN11207712PUT SKIP;MAIN12007812PUT FDIT((P_PZ(J) LC J=(I-1)*N+1 TC I*N)) (CCL(36), 5 F(8,4));MAIN12007912END;MAIN12007912END;MAIN1200801DC T = 1 TC N*N;MAIN1200811DC T = 1 TC N*N;MAIN1220821F_PZ(I) =0.;MAIN1220831F_E_EPANCH(Z) = B;MAIN1220841F_P_BBANCH(Z) = NULL;MAIN1220851END;/* COPY PZ INTC PROE5*/MAIN12208610F_P_FZ = P_PZ;MAIN12208610F_P_FZ = P_PZ;MAIN12208610C I=1 "O N*N*NZ;MAIN130901FND;HAIN1330				THEN SIGNAL ENDPAGE (SYSPETNT):	MAIN1110
71 1 $PP_{PZ} = ADDP(P_{PZ} > P_{PZ}(Z-1) * N * N + 1)$); MAIN1133 72 1 DO I=1 TC N*N; MAIN136 73 1 $P_{PZ}(I) = 0$; MAIN146 74 1 $EPZ(I) = 0$; MAIN146 74 1 $EPZ(I) = 0$; MAIN146 75 1 $GET LIST((F_{PZ}(I) DO I=1 TO N*N));$ MAIN1160 76 1 $DO I=1 TC N;$ MAIN1160 77 1 $QIT SKIP;$ MAIN1120 78 1 $DO I = 1 TC N;$ MAIN1200 79 1 $DC T = 1 TC N*N;$ MAIN1200 80 1 $DC T = 1 TC N*N;$ MAIN1200 81 $QT T = 1 TC N*N;$ MAIN1200 82 $I = B I F_{PZ}(I) = 0;$; MAIN1200 83 $I = P_{P} BRANCH(Z) = B;$ MAIN1220 84 $I = P_{P} BRANCH(Z) = NULL;$ MAIN1200 86 $I = P_{P} PZ (I) = F_{PZ}(I);$ $MAIN1200$ 88 $I = O DR(PRCBS(1,1,1));$ MAIN1200 88 $I = O DP;$ $PZ = P_{PZ}(I) = F_{PZ}(I);$ $MAIN1300$ 90 <td>70</td> <td>1</td> <td>1</td> <td>$B = 10^{1}B$:</td> <td>MAIN1120</td>	70	1	1	$B = 10^{1}B$:	MAIN1120
72 1 DO^{-} I = 1 TC N*N; MAIN1147 73 1 2 $F_{PZ}(I) = 0.;$ MAIN1167 74 1 2 $END;$ MAIN1167 75 1 GET LIST($(F_{PZ}(I) EO I=1 TO N*N)$); MAIN1167 76 1 DO^{-} I = 1 TC N; MAIN1167 76 1 DO^{-} I = 1 TC N; MAIN1167 76 1 DO^{-} I = 1 TC N; MAIN1167 78 2 PUT FDIT($(F_{PZ}(J) EO J= (I-1)*N+1$ TC I*N)) (CCL(36), 5 F(8,4)); MAIN1200 78 1 2 END; MAIN1200 79 1 DC T = 1 TC N*N; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 81 1 F_{P}_{P}_{DRANCH}(Z) = B; MAIN1220 84 1 F_{P}_{P}_{DRANCH}(Z) = NULL; MAIN1220 86 1 F_{P}_{P}_{P}_{Z} = P_{P}_{Z}; MAIN1220 87 1 END; /* COPY PZ INTC PROES */MAIN1220 88 1	71	1	1	FP PZ = ADDP(P PZ -> P PZ((Z-1) * N * N + 1));	MAIN1130
73 1 2 $F_PZ(I) = 0.;$ MAIN1156 74 1 2 END; MAIN1166 75 1 GET LIST(($F_PZ(I)$ DO I=1 TG N*N)); MAIN1166 76 1 DO I=1 TC N; MAIN1166 76 1 DO I=1 TC N; MAIN1166 77 1 PUT FDIT(($F_PZ(I)$ DC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN1206 78 1 PUT FDIT(($F_PZ(I)$ TC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN1206 79 1 PUT FDIT(($F_PZ(I)$ = 0.; MAIN1226 81 1 DC T = 1 TC N*N; MAIN1226 81 1 P_F_E BRANCH(Z) = B; MAIN1226 83 1 F_F_P_BRANCH(Z) = NULL; MAIN1266 86 1 $F_P_F LZ = P_PZ;$ MAIN1266 86 1 $P_F LZ = P_PZ;$ MAIN1266 88 1 $P -F_F PZ(I) = F_PZ(I);$ MAIN1266 90 1 $P -F_F PZ(I) = F_PZ(I);$ MAIN1266 90 1 $P -F_F PZ(I) = F_PZ(I);$ MAIN1266 88 10 $DC I$	72	1	1	DOT=1 TC N*N:	MAIN1140
74 1 2 END; MAIN1160 75 1 GET LIST((F_PZ(I) EO I=1 TO N*N)); MAIN1167 76 1 DO I=1 TC N; MAIN1167 76 1 DO I=1 TC N; MAIN1167 77 1 PUT SKIP; MAIN1107 78 1 PUT FDIT((P_PZ(J) EO J=(I-1)*N+1 TC I*N)) (CCL(36), 5 F(8,4)); MAIN1207 79 1 END; MAIN1207 79 1 DC T = 1 TC N*N; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 81 1 DC T = 1 TC N*N; MAIN1220 81 1 P_E_BRANCH(Z) = B; MAIN1220 84 1 F_E_BRANCH(Z) = NULL; MAIN1220 86 1 P_P_EZ = P_PZ; MAIN1220 86 1 P_P_EZ = P_PZ; MAIN1220 87 1 P = ADDF(PRCBS(1,1,1)); MAIN1220 88 1 D CI=1 TO N*N22; MAIN1320 90 1 END; </td <td>73</td> <td>1</td> <td>2</td> <td>F PZ(I) = 0.:</td> <td>MAIN1150</td>	73	1	2	F PZ(I) = 0.:	MAIN1150
75 1 GET LIST ((F_PZ (I) EO I=1 TO N*N)); MAIN1170 76 1 DO I=1 TC N; MAIN120 77 1 2 PUT SKIP; MAIN120 78 1 DO I=1 TC N; MAIN120 78 1 2 PUT SKIP; MAIN120 79 1 2 END; MAIN120 80 1 DC T = 1 TC N*N; MAIN120 81 1 DC T = 1 TC N*N; MAIN120 81 1 DC T = 1 TC N*N; MAIN1240 82 1 DC T = 1 TC N*N; MAIN1240 81 1 P_E_BRANCH(Z) = B; MAIN1226 84 1 F_E_BRANCH(Z) = NULL; MAIN1260 85 1 END; /* COPY PZ INTC PROES */MAIN1260 86 1 FP_EZ = P_PZ; MAIN1260 MAIN1260 86 1 P = ADDR(PRCBS(1,1,1)); MAIN1260 MAIN1260 86 1 D C I = 1 TO N*N×NZ; MAIN1260 MAIN1260 90 1 P-F_PZ(I) = F_PZ(I); M	74	1	2	END:	MAIN1160
76 1 DO I=1 TC N; MAIN1186 77 1 PUT SKIP; MAIN120 78 1 PUT FDIT(($F_PZ(J)$ LC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN120 78 1 PUT FDIT(($F_PZ(J)$ LC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN120 79 1 PUT FDIT(($F_PZ(J)$ CC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN120 79 1 PUT FDIT(($F_PZ(J)$ TC N*N; MAIN1210 80 1 DC T = 1 TC N*N; MAIN1220 81 1 P.F_PZ(I) = 0.; MAIN1220 83 1 F_P_BRANCH(Z) = B; MAIN1220 84 1 F_P_PBRANCH(Z) = NULL; MAIN1220 86 1 FP_PZ = P_PZ; MAIN1220 86 1 FP_PZ = P_PZ; MAIN1220 87 1 P-F_PZ = P_PZ; MAIN1220 88 1 DC I=1 "C N**NZ; MAIN130 90 1 FND; MAIN1330	75	1	1	GET LIST((F PZ (I) DO I=1 TO N*N));	MAIN1170
77 1 2 PUT SKIP; MAIN119(7) 78 1 2 PUT EDIT((F_PZ(J) EC J=(I-1)*N+1 TC I*N)) (CCL(36),5 F(8,4)); MAIN120(7) 79 1 2 END; MAIN120(7) 70 1 2 DC T = 1 TC N*N; MAIN122(7) 81 1 2 B = B F_PZ(I) = 0.; MAIN122(7) 81 1 2 B = B F_PZ(I) = 0.; MAIN122(7) 81 1 2 END; MAIN122(7) 83 1 1 F_E_BRANCH(Z) = B; MAIN126(7) 84 1 F_P_BRANCH(Z) = NULL; MAIN126(7) 85 1 END; /* COPY PZ INTC PROES */ (MAIN129(7) 86 1 0 F_P_EZ = P_PZ; MAIN129(7) MAIN129(7) 86 1 0 DC I = 1 TO N*N*NZ; MAIN130(7) MAIN130(7) 90 1 P>F_PZ(I) = F_PZ(I); MAIN132(7) MAIN133(7)	76	1	1	DO $I=1 \text{ TC } N$:	MAIN1180
78 1 2 PUT FDIT(($F_PZ(J)$ EC J=(I-1)*N+1 TC I*N)) (CCL(36), 5 F(8,4)); MAIN1200 MAIN1201 79 1 2 END; MAIN1210 80 1 1 DC T = 1 TC N*N; MAIN1220 81 1 2 B = B F_PZ(I) = 0.; MAIN1220 82 1 2 END; MAIN1220 83 1 F_E_EPANCH(Z) = B; MAIN1220 84 1 F_F_P_BRANCH(Z) = NULL; MAIN1220 86 1 FP_FZ = P_PZ; MAIN1220 86 1 0 FP_FZ = P_PZ; MAIN1220 87 1 DC I=1 TC ON*N*NZ; MAIN1200 99 1 P->F_PZ(I) = F_PZ(I); MAIN1230 90 1 END; MAIN1330	77	1	2	PUT SKIP;	MAIN1190
79 1 2 END; MAIN122(30 1 1 DC T = 1 TC N*N; 31 1 2 B = B J F_PZ(I) $\neg = 0.;$ MAIN122(31 1 2 B = B J F_PZ(I) $\neg = 0.;$ MAIN122(82 1 2 ENN; MAIN122(MAIN122(83 1 1 F_P_BRANCH(Z) = B; MAIN126(94 1 1 F_P_BRANCH(Z) = NULL; MAIN126(85 1 1 END; /* COPY PZ INTC PROES */MAIN128(86 1 0 P = ADDR(PRCBS(1,1,1)); MAIN129(MAIN129(87 1 0 P = ADDR(PRCBS(1,1,1)); MAIN130(MAIN130(88 1 0 DC I = 1 $mO N*N*NZ;$ MAIN132(99 1 P > F_PZ(I) = F_PZ(I); MAIN132(90 1 END; MAIN133(78	1	2	PUT EDIT((P , $PZ(J)$, $CC J=(I-1)*N+1$ TC I*N)) (CCL(36), 5 F(8,4));	MAIN1200
30 1 DC T = 1 TC N*N; MAIN122(81 1 2 $B = B$ $F _ PZ(I) = 0.;$ MAIN123(82 1 2 END; MAIN122(83 1 $F _ E_ BFANCH(Z) = B;$ MAIN125(84 1 $F _ P_ BFANCH(Z) = NULL;$ MAIN126(85 1 END; /* COPY PZ INTC PROES */MAIN126(86 0 $FP_ +Z = P_ PZ;$ MAIN129(MAIN129(87 1 $P_ = ADDR(PRCBS(1,1,1));$ MAIN129(MAIN130(88 1 0 $DC I = 1 = 0 N \# NZ;$ MAIN130(99 1 $P_ FP_ Z(I) = F_ PZ(I);$ MAIN133(90 1 END; MAIN133(79	1	2	END:	MAIN1210
B_1 1 2 $B = B \mid F_PZ(I) \neg = 0.;$ MAIN123(B_2 1 2 END; MAIN124(B_3 1 F_{-E} EFANCH (Z) = B; MAIN125(B_4 1 F_{-P} BRANCH (Z) = NULL; MAIN126(B_5 1 $END;$ /* COPY PZ INTC PROES */MAIN126(B_6 1 $F_{-P}EZ = P_PZ;$ MAIN128(MAIN128(B_6 1 $P = ADDR(PRCBS(1,1,1));$ MAIN128(MAIN128(B_6 1 $D = ADDR(PRCBS(1,1,1));$ MAIN138(MAIN139(B_7 1 $D = ADDR(PRCBS(1,1,1));$ MAIN139(MAIN139(B_8 1 $D = ADDR(PRCBS(1,1,1);$ MAIN139(MAIN139(B_8 1 $D = F_{-PZ}(I) = F_{-PZ}(I);$ MAIN132(MAIN133(9_9 1 $P = F_{-PZ}(I) = F_{-PZ}(I);$ MAIN133(30	1	1	DC T = 1 TC N * N;	MAIN1220
P_2 1 2 END; MAIN1240 P_3 1 P_E EPANCH (Z) = B; MAIN1240 P_4 1 P_P_D BRANCH (Z) = NULL; MAIN1260 P_5 1 P_P_D BRANCH (Z) = NULL; MAIN1260 P_6 1 $P_P_P_D$ $P_P_D_T$ MAIN1260 P_7 1 $P_P_P_Z$ P_P_Z ; MAIN1260 P_7 10 P_P $P_P_P_Z$; MAIN1260 P_7 10 P $P_P_P_Z$; MAIN1260 P_7 10 P $P_P_P_Z$; MAIN1260 P_7 $P_P_P_Z$; $P_P_P_Z$; MAIN1260 P_7 $P_P_P_Z$; $P_P_P_Z$; MAIN1260 P_7 $P_P_P_Z$; $P_P_P_Z$; MAIN1300 P_7 $P_P_P_Z$; $P_P_P_Z$; $P_P_P_Z$; P_7 $P_P_P_Z$; P_P_Z ; P_P_Z ; P_7 $P_P_Z_Q$; $P_P_Z_Q$; $P_P_Z_Q$; P_7 $P_P_Z_Q$; $P_P_Z_Q$; $P_P_Z_Q$; P_7 P_P_Z	81	1	2	$B = B F_PZ(I) = 0.;$	MAIN1230
B_3 1 $P_E = BRANCH(Z) = B;$ MAIN125(94 1 $P_P = BRANCH(Z) = NULL;$ MAIN126(85 1 $END;$ /* COPY PZ INTC PROES */MAIN128(86 0 $P_P = P_Z;$ MAIN129(MAIN129(87 1 $D_P = ADDR(PRCBS(1,1,1));$ MAIN129(88 1 $D_C I = I = 0 N N N NZ;$ MAIN130(99 1 $P - P_P Z(I) = F_P Z(I);$ MAIN133(90 1 END; MAIN133(82	1	2	END:	MAIN1240
94 1 $F_P^{-} BRANCH(Z) = NULL;$ MAIN126(85 1 END; /* COPY PZ INTC PROES */MAIN126(86 0 $FP_{-}FZ = P_{-}PZ;$ /* COPY PZ INTC PROES */MAIN129(87 1 $P = ADDR(PRCBS(1,1,1));$ MAIN130(88 1 0 $C = 1 \mod N*N*NZ;$ MAIN130(99 1 $P - F_{-}PZ(I) = F_{-}PZ(I);$ MAIN133(90 1 END; MAIN133(83	1	1	F E BRANCH(Z) = B;	MAIN1250
85 1 $END;$ MAIN127(86 1 0 $FP_{-}FZ = P_{-}PZ;$ /* COPY PZ INTC PROES */MAIN129(86 1 0 $P = ADDR(PROBS(1,1,1));$ MAIN130(MAIN130(87 1 0 $P = ADDR(PROBS(1,1,1));$ MAIN130(MAIN130(88 1 0 $DC = I = TO N * N * NZ;$ MAIN132(MAIN132(99 1 $P \to F_{-}PZ(I);$ MAIN133(MAIN133(90 1 END; MAIN133(MAIN133(84	1	1	$\mathbf{F} \mathbf{P} = \mathbf{BRANCH}(\mathbf{Z}) = \mathbf{NULL};$	MAIN1260
86 1 0 FP_FZ = P_PZ; MAIN128(MAIN129(87 MAIN129(MAIN129(97 86 1 0 P = ADDR(PRCBS(1,1,1)); MAIN130(MAIN130(99 MAIN131(99 99 1 P->F_PZ(I); MAIN132(MAIN133(90 MAIN133(MAIN133(85	1	1	END	MAIN1270
86 1 0 $PP_{L}E_{Z} = P_{L}PZ_{Z}$; MAIN124 87 1 0 $P = ADDR(PRCBS(1,1,1));$ MAIN130 88 1 0 $DC I=1$ $TO N=N+NZ;$ MNIN131 99 1 $P - F_{P}Z(I) = F_{P}Z(I);$ MAIN132 90 1 END; MAIN133	•••	•		/* COPY PZ INTC PROES	*/MAIN1280
87 1 $p = ADDR(PRCBS(1,1,1));$ MAIN300 88 1 0 DC I=1 "0 N*N*NZ; MAIN131 99 1 $P > F_PZ(I) = F_PZ(I);$ MAIN132 90 1 Image: Empty set of the s	86	1	0	FP + Z = P PZ:	MAIN1240
88 1 DC I=1 "O N*N*NZ; MPIN131 99 1 P->F_PZ(I) = F_PZ(I); MAIN132 90 1 END; MAIN133	87	1	0	$\mathbf{p} = \mathbf{ADDR} \left(\mathbf{PRCBS} \left(1, 1, 1 \right) \right);$	MAIN1300
99 1 P->F_PZ(I) = F_PZ(I); MAIN132(90 1 END; MAIN133(88	1	0	DC $I=1$ "O $N*N*N2$;	MAIN131(
90 1 1 END: MAIN1330	99	1	1	$P \rightarrow F_P Z (I) = F_P Z (I);$	MAIN7320
	90	1	1	END;	MAIN1330

PL/I CPTIMIZING COMPILER

1 0

1 0

1

1 2

1 3

1 3

1 1 4

1 2

1 3

1 3

1

1

1 0

2

4

3 1

B = '0'B; DO I=1 TO N; DO U=1 TO NU;

END;

IF 3 THEN STOP;

END;

END;

S = 0.;DO Y=1 TO NY;

Z = ZCODE(U, Y);

FPS_OPT: PROC OPTIONS (MAIN) RFORDER;

/* VERIFY SUM/Y,J/ P/I,J/(Y(U) = 1. */

END; END; IF ABS(S-1.) > 1E-4 THEN DC; PUT EDIT('ERROF: TRANS. PROBS. DO NOT SUM TO ONE FOR I =',I, MAIN1510 ', U =',U) (SKIP(2),A,F(3),A,F(3)); MAIN1520 MAIN1530 MAIN1540

.

MAIN1350

MAIN1360 MAIN1370

MAIN1380

MAIN1390

MAIN1400 MAIN1410

MAIN1420

MAIN1430

MAIN1440

MAIN1450 MAIN1460

MAIN1470

MAIN1480

MAIN1550

MAIN1560

MAIN1570

STMT LEV NT

.

91

92 93

94

95

96

97

98

99

100

101

102

103

104 105

106

107

 $Z = ZCODE_{(0,x)}$, IF Z = 0THEN DO J = (Z-1)*N*N+(I-1)*N+1 TO (Z-1)*N*N+I*N; S = S + F_PZ (J); END;

PL/I CPTIMIZING COMPILER PPS_CPT: PROC OPTIONS(MAIN) REORDER;

STMT LEV NT

,60

-

.68

			/* * **********************************	MAIN1590
			/* PLACE INPUT REWARDS IN UZ AND RWDS */	MAIN1600
			/****	MAIN1610
				MAIN1620
108	1	0	IF LINENC(SYSPRINT) + $3 + (N/10 + 1) + NU > 55$	MAIN1630
			THEN SIGNAL FNDPAGE (SYSPRINT) :	MAIN1640
109	1	0	PUT EDIT ('INCREMENTAL REWARDS: ', 'U', 'O')	MAIN1650
			(SKIP(3), X(13), A, SKIP, COL(27), A, X(10), A):	MAIN 1660
110	1	0	PUT SKIP(2):	MAIN1670
111	1	Ó	G = HIGH = -1F10:	MAIN1680
112	1	Ō	G.LOW= 1810:	MAIN1690
113	1	0	DC U=1 TC NU:	MAIN1700
114	1	1	$PP \cup Z = ADDE(P \cup Z \rightarrow P \cup Z ((U-1) * N+1))$:	MAIN1710
115	1	1	$GET LIST((F OZ(\overline{I}) PC \overline{I}=1 TO N));$	MAIN1720
116	1	1	PUT EDIT (U) $(COL(25), F(3))$:	MAIN1730
117	1	1	PUT EDIT((F OZ(I) DO I=1 TO N)) (COLUMN(36), 5 $F(8,4)$);	MAIN1740
118	1	1	DO I=1 TO N:	MAIN1750
119	1	2	G_{\bullet} HIGH = MAX (G_{\bullet} HIGH \mathcal{F} OZ (I)):	MATN1760
120	1	2	G.LOW = MIN(G.HIGH, FOZ(I)):	MAIN1770
121	1	2	FND:	MAIN1780
122	1	1	END:	MAIN1790
				MAIN1800
123	1	0	FP OZ = P OZ:	MAIN 1910
124	1	0	$P = ADDB(\overline{PWDS}(1, 1))$:	MAIN1820
125	1	0	DC $T=1$ TC N*NU:	MAIN1830
126	1	1	$P \rightarrow F OZ(I) = F OZ(I)$:	MAIN1840
127	1	1	END:	MAIN1850
				MAIN1860
			<pre>/* MISC PRELIMINARIES</pre>	*/MAIN1870
128	1	0	ERR = G.HIGH - G.LCW:	MAIN1890
129	1	0	IF MAX $M \leq = 0$ THEN MAX $M = 10000$;	MAIN1890
130	1	0	LF MAX ESS M<=0 THEN MAX ESS M=1000:	MATN1900
131	1	0	IF $PMT = 0$ \overline{c} $FMT = 1$	MAIN1910
			THEN DC:	MAIN1920
132	1	1	PUT EDIT(**** INCCRRECT CUTPUT FORMAT', FMT, ' SPECIFIED ****)	MAIN1930
-			(SKIP, X(10), A, F(4), A);	MAIN1940
133	1	1	STOP:	MAIN1950
134	1	1	FND:	MAIN1960

PL/I OPTIMIZING COMPILER FPS_OPT: PROC OPTIONS (MAIN) REORDER;

STMT LEV NT

			/**************************************	*****/	MAIN 1980
			/*	*/	MAIN1990
			/* MAIN SECTION OF THE PROGRAM	*/	MATN2000
			/*	*/	MAIN2010
			/**************************************	******	MAIN2020
				•	MAIN2030
135	1	0	LOOP:		MAIN2040
			IT = IT+1;		MAIN2050
136	1	0	$IT_PAGE = 0;$		MAIN2060
137	1	0	CALL TIMING (TIME. PREP) :		MAIN2070
					MAIN2080
			/***** *******************************	*****/	MAIN 2090
			/*	*/	MAIN2100
			/* SOLVE FOR OPTIMAL GAIN G	*/	MAIN2110
			/* AND OPTIMAL VALUE VG	*/	MAIN2120
			/* (USE VH AS INITIAL GUESS)	*/	MAIN2130
			/* (LEAVE SCLUTION IN BOTH VG AND VH)	*/	MAIN2 140
			/*	*/	MAIN2150
			· · · · · · · · · · · · · · · · · · ·	*****/	MAIN2160
			·		MAIN2170
138	1	0	CALL SOLVE G:		NAIN2180
139	1	0	CALL TIMING (TIME.G) :		MAIN2190
			. ,.		MAIN2200
			/**************************************	*****/	MAIN2210
			/*	*/	MAIN2220
			/* SOLVE FOR FEASIBLE GAIN H	*/	MATN2230
			/* AND CORRESPONDING VALUE VH	*/	MAIN2240
			/* (USING VH AS INITIAL GRESS)	*/	MATN2250
			/*	*/	MAIN2260
			´,************************************	******	MAIN2270
			,	,	MAIN2280
140	1	0	CALL PREP H:		MAIN2290
141	1	0	CALL SCLVE H:		MAIN2300
142	1	0	CALL TIMING (TIME.H) :		NAIN2310
					MAIN2320
143	1	0	CALL REPORT:		MAIN2330
			•		MAIN2340
144	1	0	CALL PREP G:		MAT N2 350
145	1	Ó	GCTO LOCP		MAIN2360
146	1	0	END;		MAIN2370

PL/I OPTIMIZING COMPILER PREP_G: PROC REORDER;

SCURCE LISTING

STMT LEV NT

1		0	PREP_G: PROC REORDER;	PPPG	010
			-	PRPG	3020
2	1	0	KINCLUDE DD1(DCL):	PRPG	0030
			/**************************************	**/ PRPG	3040
			/*	*/ PRPG	0050
			/* ADD NODES AS REQUIPED (FOLLOWING REC.G)	*/ PRPG	0000
			/* COPY V INTC V FFAS	*/ PPPG	0070
			/* PRUNE OUT NODES WHICH ARE NO LONGER ESS	*/ PRPG	0080
			/*	*/ PRPG	1090
				**/ PRPG	5100
			· · · · · · · · · · · · · · · · · · ·	PROG	1110
11	1	0	DCI ADDNORE FIT ENTRY.	PRPC	1120
5	1	õ	DCL (BU(0:NU) BC (0:NZ) B. SA) BTT ALTGNED. (P. PO. P1) POINTER.	PRPC	1130
5	•	· ·	$(T_{2}Z_{2}, Z_{3}) = T_{1}Z_{2}$	DRDC	1140
				PPDC	1150
			A BUD NEW NODES	*/02000	1160
6	1	٥		PPPC	1170
7		0	$D = - \cdot O \cdot D_{\phi}$ $D = N \cap D^{\phi} = D = P \in \mathcal{C} = N \cap D^{\phi} = 1$	D D D D D D D D D D D D D D D D D D D	1100
	,	v		PPDC	1100
9	1	n	N LOCP:	10000	1200
0		v	A_DUCE. TP_EVC C_THEN COTO END A LOOD.	00000	1200
			TE SPECTO THEN GOTO END_A_DOTE;	DPDC	1220
0	1	^		DDDC/	1220
10	4	Ň		P P P G V	1230
11		0		Pares DDDC	1240
11	-	4	$D(L=1, L) \in \mathbb{R}^{+}$	PRPON	12:50
14				PRPG	1200
13		1	END	PRPG	1210
1 //	4	•		PRPG(1200
14		0		PFPG	1290
15	'			PRPG	1390
		2	THEN DO $I = I$ TO NI;	PRPG	1210
10		2	$BZ(ZCODE(0,1)) = \cdots B;$	PFPG	1329
1/	1	4	END;	PEPG	1550
18	1	- T	END:	PRPG	J J 4 0

.

PL/I CPTIMIZING COMPILER PREP_G: PROC REORDER;

STMT LEV NT

-

19 1 DC ZZ = 1 TO NZ; PPPG0360 20 1 IF BZ(ZZ) PPPG0370 21 1 2 P,P0 = P_NODE; PPPG0390 22 1 2 P,P0 = P_NODE; PPPG0390 23 1 2 LEV = -1; PPPG0300 24 1 2 Z_STPING(IEV) = P-> Z_BACK; PPPG0400 24 1 2 Z_STPING(IEV) = P-> Z_BACK; PPPG0400 26 1 2 IF P=RNUL PPPG0400 26 1 2 STRING(IEV) = Z2; PPPG0400 27 1 2 Z_STRING(IEV) = Z2; PPPG0400 28 1 2 P_ENOLE F_RCCT; PPPG0400 29 1 Z_STRING(IEV) = Z2; PPR0450; PPF00500 30 1 Z_STRING(IEV) = Z; PPR0500; PPF00500 31 1 IF =Z_STRING(IZ); PPF00500; PPF00500; 31 1 IF =Z_STRING(IZ); PPF00500; PPF00500; 32 1 IF =P_EP_EPANCH(Z); PPF00500; PPF00500;					
20 1 1 $TF BZ ZZ D$ $FF DZ ZD$ 21 1 2 $P DO = P NODE;$ $PF DO 3P O$ 23 1 2 $LEV = -T;$ $PF DO 3P O$ 24 1 2 $Z = TP NODE;$ $PF DO 3P O$ 25 1 2 $Z = TP IND(1EV) = P - Y = Z = BACK;$ $PP DO 040 O$ 26 1 2 $Z = STP ING (1EV) = P - Y = Z = BACK;$ $PP PO 040 O$ 26 1 2 $Z = STP ING (1EV) = P - Y = Z = BACK;$ $PP PO 040 O$ 26 1 2 $P = P - Y = D = BACK;$ $PP PO 040 O$ 27 1 2 $Z = STR ING (LEV) = Z2;$ $PP BO 040 O$ 27 1 2 $Z = STR ING (LEV) = Z2;$ $PP BO 040 O$ 28 1 $Z = Z = STR ING (LEV) = Z2;$ $PP BO 040 O$ 30 1 $Z = Z = STR ING (LEV) = Z2;$ $PP PR 04050 O$ 31 1 $T = P = P = P P E P E NC C(Z)$ $PP PR 05050 O$ 31 1 $T = P = P = P E P E NC (Z);$ $PP PR 05050 O$ 33 1 $I = P = P = P E P E NC (Z);$ $PP R 05050 O$	19	1	0	DC ZZ = 1 TO NZ:	DBDC0360
THEM DO: PPR0310 21 1 2 P,P0 = P_NODE: PPR0310 23 1 2 A_LCCP1: PPR0310 24 1 2 A_LCCP1: PPR0310 24 1 2 Z_STRING(LEV) = P-> Z_BACK; PPR0320 24 1 2 Z_STRING(LEV) = P-> Z_BACK; PPR0340 25 1 2 P = P-> P_BACK; PPR0340 26 1 2 Z_STRING(LEV) = P-Z_BACK; PPR0340 26 1 2 Z_STRING(LEV) = Z2; PPR0340 27 1 2 Z_STRING(LEV) = Z2; PPR0340 28 1 2 D_STRING(LEV) = Z2; PPR0350 30 1 2 A_LCOP2: PPR0450 31 1 Z TF = P_E P_ENCCT; PPR0500 32 1 Z TF = P_E P_ENCCT; PPR0500 33 1 IF = NECCT; PPR0500 PPR0500 34 1	20	1	1	IF BZ (22)	PPDC0370
21 1 2 IPPO = PNODE: PPPO0390 22 1 2 LEV = -1: PPP00400 23 1 2 A_LCCP1: PPP00420 24 1 2 ZSTRING(IEV) = P-> Z_BACK; PPP00420 25 1 2 P = P-> P_BACK; PPP00420 25 1 2 ZSTRING(IEV) = Z2; PPP00420 26 1 IF P-=NULL PPP00420 27 1 2 ZSTRING(IEV) = Z2; PPP00490 29 1 2 A_LCOP1; PPP00490 29 1 2 A_LCOP2; PPP00490 30 1 2 Z = Z_STRING(LZV); PPP00490 31 1 IF -P_E_PANCHES; PPP00490 32 1 2 F = P_E_PEANCHES; PPP00490 33 1 IF P=PUBACHE(2); PPP00490 33 1 IF P=PUBACHE(2); PPP00500 34 1 IF P_EUGACT OUT_A; PPP00500 35 1.3 FP_UGA = P_UGACT OUT_A; PPP005000				THEN DO:	PPPG0370
22 1 2 1.1 PRP0300 23 1 2 A_LCCP1: PRP0402 24 1 2 Z_STRING(LEV) = P-> Z_BACK; PRP0402 24 1 2 Z_STRING(LEV) = P-> Z_BACK; PRP0402 25 1 2 Z_STRING(LEV) = P-> Z_BACK; PRP0402 26 1 2 Z_STRING(LEV) = P-> Z_BACK; PRP04040 26 1 2 STRING(LEV) = Z2; PPR04040 27 1 2 Z_STRING(LEV) = Z2; PPR04060 28 1 2 P_RANCHES = P_EPANCHES; PPR0400 29 1 2 A_LCOP2; PPR0400 PPR0500 30 1 2 Z = Z_STRING(LEV); PPR05030 PPR05030 31 1 IF P - P_P_P_PANCH(Z); PPR05050 PPR05050 33 1 2 IF P=RUGL PPR0500 PPR0500 34 1 3 IP - REC.G THEN GOTO CUT_A; PPR0500 PPR0500 35 1 9 DCI=1 TC N; PPR05050 PPR05	21	1	2	$P_PO = P_{NODE}$	P8P50380
23 1 2 $A_{\perp}CCPTi$ PPR00010 24 1 2 $Z_{\perp}TPTING(IEW) = P > Z_{\perp}BACK;$ PPR00030 25 1 2 $P = P > P_{\perp}BACK;$ PPR00400 26 1 2 $P = P > P_{\perp}BACK;$ PPR00400 27 1 2 $Z_{\perp}TPTING(IEW) = Z2;$ PPR00400 28 1 2 $P_{\perp}DROLE \in F_{\perp}BCCT;$ PPR00400 29 1 2 $A_{\perp}COP2;$ PERONCHSC; PPR00400 30 1 2 $Z = Z_{\perp}STRING(LEW) = Z2;$ PPR00400 PPR040510 30 1 2 $Z = Z_{\perp}STRING(LEW) = Z2;$ PPR00400 PPR040510 30 1 2 $Z = Z_{\perp}STRING(LEW);$ PPR050510 PPR050510 31 1 $P = P_{\perp}P_{\perp}BANCH(Z);$ PPR050510 PPR050510 33 1 IP = P_{\perp}UP_{\perp}NCH(Z); PPR050510 PPR050510 34 1 IP = REC, G THEN GOTC CUT_A; PPR050500 PPR050500 35 1 0 IF = RUG(I) == 0; PPR060600 PPR060600	22	1	2	LFV = -1	PRPG0390
24 1 2 $LEV = LEV+1;$ PPR0420 24 1 2 $Z_STPING(LEV) = P-> Z_BACK;$ PPR0420 25 1 2 $Z_STPING(LEV) = P-> Z_BACK;$ PPR0430 26 1 2 $IFP P=NULL$ PPR0440 27 1 2 $Z_STRING(LEV) = Z2;$ PPP00400 28 1 2 $P_SRANCHES = P_SPANCHEC;$ PPP00400 28 1 2 $P_SRANCHES = P_SPANCHEC;$ PPP00400 29 1 2 $A_LCOPI;$ PPP00400 71 2 $Z_STRING(LEV) = Z2;$ PPP00400 71 2 $Z_STRING(LEV) = Z2;$ PPP00400 731 1 $Z_S = Z_STRING(LEV);$ PPP00530 731 1 $Z_S = P_SPARCH(Z);$ PPP00530 733 1 $Z_S = P_SPARCH(Z);$ PPP00530 74 1 $Z_S = P_SPARCH(Z);$ PPP005400 75 $IFP = REC, G_THEN GOTC CUT_A; PPP005400 76 IFP = RUG(I) == 0 IFF = REC, G_THEN GOTC CUT_A; PPP005400 76 C $	23	1	2	A ICOP1.	PRPG0400
24 1 2 2_CTFING(12) PP060430 25 1 2 P = P > P_BACK; PP060430 25 1 2 P = P > P_BACK; PP060430 26 1 2 P = P > P_BACK; PP060450 27 1 2 Z_STRING(LEV) = Z2; PP060400 28 1 2 P_NODE = F_BCCT; PP060400 29 1 2 A_LCOP2; PR05050 30 1 2 T = Z_STRING(LEV) = Z2; PP060400 31 1 2 T = Z_STRING(LEV) = Z2; PP060400 33 1 2 T = Z_STRING(LEV): PP060500 30 1 2 T = P_P_DPANCHSC; PP060500 31 1 2 IF = P_NULL PP060500 32 1 2 IF = P_D_DPANCH(Z); PP060500 33 1 1 IF P=NULL PP060500 34 1 3 IF = REC.G THEN GOTC CUT_A; PP060500 35 1 0 CL = T < N;	2.0	•	2	IEV - IEVA1.	PRPG0410
25 1 2 2.5 FING(I2V) = P = P > BACK; PPPC0400 26 1 2 IF P == NULL PPC0400 27 1 2 STRING(LEV) = Z2; PPC0400 28 1 2 STRING(LEV) = Z2; PPC0400 29 1 2 A_LCOP2; PPC0400 29 1 2 A_LCOP2; PPC0400 30 1 2 Z = Z_STRING(LZV): PPC0500 31 1 IF P_E_PENACHES = P_EPANCHES; PPP00500 31 1 IF P_E_PENACHES; PPP00500 31 1 IF P_E_PENCH(Z) PPP00500 32 1 2 P = P_D_PBANCHES; PPP00500 33 1 IF P_E_PENCH(Z); PPP00500 34 1 IF P_EUL PPP00500 74 1 IF P_EUC; PPC0400 75 1 IF P_UG = P_UG; PPP00500 76 1 IF P_UG = P_UG; PPP00500 76 1 IF P_EUC = TC N; PPP00500 76 1 <td>2.0</td> <td>1</td> <td>2</td> <td>$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$</td> <td>PPPG0420</td>	2.0	1	2	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$	PPPG0420
25 1 2 P	25	1	2	$\Delta_{O}(R) = P \times P = X BACK;$	PRPG0430
20 1 2 1 P P=4NULL PPBG040 27 1 2 2.STRING (LEV) = Z2; PPBG040 28 1 2 PRODE = F_RCCT; PPBG040 29 1 2 A_LCOP2; PPR00510 30 1 2 Z = Z_STRING (LZV); PPBG050 31 1 Z T = PPERANCHES = P_PBANCHES; PPBG050 31 1 Z T = Z_STRING (LZV); PPBG050 31 1 Z T = Z_STRING (LZV); PPBG050 31 1 Z T = Z_STRING (LZV); PPBG050 32 1 2 T = PPBANCH(Z) PPBG050 33 1 2 IF P_E REANCH(Z) PPBG050 34 1 IF = REC.G THEN GOTC CUT_A; PPBG050 35 1 3 IF = REC.G THEN GOTC CUT_A; PPBG050 36 1 U = UH; PPBG050 PPBG050 37 1 3 DC I=1 TC N; PPBG050 39 1 G CALL ADDNCDE; PPBG050 PPBG	20	-	2	P = P - P - BACK;	PRPG0440
27 1 2 2 STRING (LEV) = ZZ; PPPG0470 28 1 2 P_NODE = F_RCCT; PPPG0490 29 1 2 A_LCOP2; PPPG0500 IPPROVED: PPERNCHED; PPPG0500 30 1 2 Z = Z_STRING (LEV); PPPG0500 31 1 2 T = P_P_P_BPANCH20; PPPG0500 32 1 2 P = P_P_P_BPANCH(Z); PPPG0500 31 1 2 I = P_P_P_BPANCH(Z); PPPG0500 33 1 2 I = P_P_D_BPANCH(Z); PPPG0500 34 1 3 I = NUL PPPG0500 THEN BOT PPPG0500 34 I 9 PIG(S) 37 I 3 I = P_IEG; PPPG0500 37 P_FEG050	20	,	2	IF P→=NULL TUTY SOTO D ISING	PRPG0450
27 1 2 2.STRING (LEV) = 22; PPPG0400 28 1 2 $P_{_}NODE = F_{_}RCCT;$ PPPG0400 29 1 2 $A__LOP2;$ PPPG0400 30 1 2 Z = Z_STRING (LZV); PPPG0500 31 1 Z = Z_STRING (LZV); PPPG0500 31 1 Z = Z_STRING (LZV); PPPG0500 33 1 Z = Z_STRING (LZV); PPPG0500 34 1 TF +P_E P_E PRANCH (Z) PPPG0500 35 1 3 FP = P_D_PPNCH (Z); PPPG0500 34 1 IF P = REC.G THEN GOTC CUT_A; PPPG0500 35 1 3 FP_UG = P_HG PPG0500 36 1 J U = UH; PPPG0500 PPPG0500 37 1 3 DC I=1 TC N; PPPG06100 PPPG0620 39 1 G C ALL ADDNODE; PPPG0650 PPPG06400 40 1 S GOTO OUT_A; PPPG0650 PPPG06400 41 1 GOTC CUT_A; PPPG0650 PPPG0650				THEN GOTO ALLCOPT:	PPPG0460
27 1 2 STRING(LEV) = ZZ; PPPG0490 29 1 2 A_LCODZ; PPR0550 30 1 2 Z = Z_STRING(LEV); PPPG050 31 1 2 TF = R_P_PERANCHES; PPPG050 31 1 2 TF = R_P_PERANCH(Z); PPPG050 32 1 2 P = P_P_PERANCH(Z); PPPG050 33 1 2 IF = R_P_P_PERANCH(Z); PPPG050 34 1 3 IF = REC.G THEN GOTC CUT_A; PPPG050 35 1 3 IF = REC.G THEN GOTC CUT_A; PPPG050 36 1 3 U = UH; PPG0600 37 1 3 DC I=1 TC N; PPPG0600 39 1 GOTO OUT_A; PPPG0620 PPPG0640 40 1 5 GOTO OUT_A; PPPG0640 41 1 GOTO OUT_A; PPPG0640 PPPG0640 42 1 F GOTO OUT_A; PPPG0640 43 1 END; PPPG0700 PPPG0710 <td></td> <td></td> <td>2</td> <td></td> <td>PPPG0470</td>			2		PPPG0470
28 1 2 P KODE = P_ECCT; PPPG0490 29 1 2 A_LCOP2; PPPG0500 30 1 2 Z = Z_STRING(L2V); PPPG0510 31 1 2 T = Z_STRING(L2V); PPPG0530 31 1 2 T = Z_STRING(L2V); PPPG0530 31 1 2 T = P_EPRANCH(Z) PPPG0530 32 1 2 IF = P_EPRANCH(Z); PPPG0550 33 1 2 IF = P_EPRANCH(Z); PPPG0550 33 1 2 IF = P_EPRANCH(Z); PPPG0550 34 1 3 IF = P_EDFANCH(Z); PPFG0550 35 1 3 IF = P_EDFANCH(Z); PPFG0500 36 1 3 D = UH; PPFG0500 37 1 0 I = T C N; PPFG0500 39 1 5 CALL ADDNODE; PPFG0640 40 1 5 GOTO OUT_A; PPFG0640 41 1 S GOTO OUT_A; PPFG0640 42	21	1	2	$2_STRING(LEV) = ZZ;$	PPPG0480
29 1 2 A_LCOP2: PPP00500 30 1 2 Z = Z_STRING (LZV): PPP00520 31 1 2 IF = P_EPANCH(Z) PPP00530 32 1 2 P = P_EPANCH(Z): PPP00540 32 1 2 P = P_EPANCH(Z): PPP00550 33 1 2 IF = P_EVANCH(Z): PPP00550 34 1 3 IF = NULL PP00550 35 1 3 U = UH; PP00550 36 1 3 U = UH; PP00550 37 1 3 D = UH; PP00570 36 1 3 U = UH; PP00570 37 1 3 D = UH; PP00610 39 1 G C I = T C N; PP00620 PPP00620 39 1 S C ALL A DDNCDE; PPP00640 40 1 5 G OTO OUT_A; PPP00650 41 1 G OTC OUT_A; PPP00670 PPP00640 42 1 END; <td>28</td> <td>1</td> <td>2</td> <td>P_NODE = F_RCCT;</td> <td>PPPG0490</td>	28	1	2	P_NODE = F_RCCT;	PPPG0490
$PP_{PRANCHES} = p_{PRANCHES}$; $PPP0520$ 30 1 2 $Z = Z$ STRINC (LZV); $PPP0520$ 31 1 2 IF $\neg P_{P} \in PPANCH(Z)$ $PPP05520$ 32 1 2 IF $\neg P_{P} \in PPANCH(Z)$; $PPP00520$ 33 1 2 IF $P = P_{P} \in PPANCH(Z)$; $PPP00580$ 33 1 2 IF $P = P_{P} \in PPANCH(Z)$; $PPP00580$ 34 1 3 IF $P = NULL$ $PP00580$ 35 1 3 FP_UG = P_UG; $PP00580$ 36 1 3 U = HE; $PP00580$ 37 1 3 DC I=1 TC N; $PP00580$ 39 1 5 CALL ADDNODE; $PPP00640$ 40 1 5 GOTO OUT_A; $PPP00580$ 41 1 GCTC CUT_A; $PPP00580$ 42 1 GCTC CUT_A; $PPP00580$ 43 1 $END;$ $PPP00710$ 44 1 GCTC CU	29	1	2	A_LCOP2:	PRPG0500
30 1 2 Z = Z_STRING(LZV); PPPG0520 31 1 2 IF = F_E_ERACH(Z) PPPG0530 32 1 2 P = F_P_BPANCH(Z); PPPG0540 32 1 2 P = F_P_BPANCH(Z); PPPG0540 33 1 2 IF = P_BPANCH(Z); PPPG0540 34 1 3 IF = REC.G THEN GOIC CUT_A; PPPG0540 35 1 3 IF = REC.G THEN GOIC CUT_A; PPPG0540 36 1 3 U = UH; PPPG0540 37 1 3 DC I=1 TC N; PPPG0540 39 1 5 CALL ADDNOD; PPPG0540 40 1 F F_UG (I) == 0 & F_UG (I) == U PPPG0640 PPF06640 41 1 5 GOTO OUT_A; PPPG0640 42 1 5 GOTO OUT_A; PPF06640 42 1 5 GOTO OUT_A; PPF0670 44 1 3 GCTC CUT_A; PPF0670 44 1 GCTC CUT_A; PPF07070 PPF0710				FP_BRANCHES = P_BBANCHES;	PRPG0510
31 1 2 IF $\neg F_E _ FFANCH(Z)$ PPP0530 32 1 2 P = P_D_EPRNCH(Z); PPP0550 33 1 2 IF P=NULL PP0550 33 1 2 IF P=NULL PP0550 34 1 3 IF P=NOC(T); PP0550 34 1 3 IF P=NOC(T); PP0550 35 1 3 IF P=NOC(T); PP0550 36 1 3 U = UH; PP0550 37 1 3 DC I=1 TC N; PP06050 39 1 4 IF F_UG(I) = 0 & F_UG(I) = U PP06050 39 1 5 CALL ADDNODE; PP060610 40 1 5 BA = '1'B; PP060640 40 1 5 GOTO OUT_A; PP060640 41 1 GCTC OUT_A; PP060640 42 1 GCTC OUT_A; PP060700 43 1 END; PP060700 44 1 GCTC OUT_A; PP060700 <td< td=""><td>30</td><td>1</td><td>2</td><td>$Z = Z_STRING(LEV);$</td><td>PPPG0520</td></td<>	30	1	2	$Z = Z_STRING(LEV);$	PPPG0520
THEN GOTO CUT_A: PPP0540 32 1 2 P = P_BPANCH(Z): PR0550 33 1 2 IF P=NULL PR0550 THFN DO: PP0570 PP0570 34 1 3 IF P=NULL PP0590 35 1 3 IF P=NULL PP0590 36 1 3 U = UH; PP00590 36 1 3 U = UH; PP060610 37 1 0 C I = T T C N; PP060620 39 1 4 IF F_UG(I) == 0 & F_UG(I) == 0 PP006620 THEN DC; PP00650 PP00650 PP006600 40 1 5 BA = '1'B; PP00650 41 1 5 GOTO OUT_A; PP00650 41 1 5 GOTO OUT_A; PP00670 43 1 4 END; PP00670 44 1 GCTC CUT_A; PP00670 45 1 END; PP00710 47 1 LEV = LEV -1; PP00700 48 1 IF P.NODE = P0; PP00730 70 I END; PP00700 71 1 END;	31	1	2	IF ¬F_E_BPANCH(Z)	PRPG0530
32 1 2 P = P_P_BBANCH(Z); PRP0350 33 1 2 IF P=NULL Prp0350 THFN D0; PPP00570 PP00570 34 1 3 IF P=NEC.G THEN GOTE CUT_A; PPP00570 35 1 3 IF P=UG = P_UG; PP00570 36 1 3 U = UH; PP006010 37 1 3 DC I=1 TC N; PP006010 39 1 5 CALL ADDNODE; PPF00620 0 THEN DC; PPF00640 PPF00640 40 1 5 BA = '1'B; PPF00640 41 1 GOTO OUT_A; PPF00670 PPF00670 43 4 END; PPF00670 PPF00700 44 1 GCTC CUT_A; PPF00700 PPF00700 45 1 END; PPF0070 PPF00700 44 1 GCTC CUT_A; PPF00700 PPF00700 45 1 END; PPF00710 PPF00700 46 1 IF LEV-1; PPF00710<				THEN GOTO OUT_A;	PPPG0540
33 1 2 IF P=NULL PRP0560 THPN D0; PP00570 34 1 3 IF ¬REC.G THEN GOTC CUT_A; PP0570 35 1 3 IF ¬REC.G THEN GOTC CUT_A; PP0570 36 1 3 U = UH; PP00670 37 1 3 DC I=1 TC N; PP00610 39 1 GC I=1 TC N; PP006020 PP00620 39 1 CALL ADDNODE; PP006620 PP006620 40 1 5 GOTO OUT_A; PP006620 PP006620 41 1 5 GOTO OUT_A; PP006620 PP006620 41 1 5 GOTO OUT_A; PP006620 PP00700 43 4 END; PP006710 PP00700 44 1 GCTC CUT_A; PP00700 PP00700 45 1 END; PP00710 PP00710 46 1 PN0; PP00710 PP00730 48 1 OUT_A; PP00710 PP00770 49	32	1	2	$P = F_P_BPANCH(Z);$	PRPG0550
THFN D0; PPBG0570 34 1 3 IP ¬REC.G THEN GOTC CUT_A; PPBG0580 35 1 3 IP ¬REC.G THEN GOTC CUT_A; PPBG0580 35 1 3 U = UH; PPBG0580 36 1 0 U = UH; PPBC0610 37 1 3 DC I=1 TC N; PPBC0610 38 1 4 IF F_UG(I)¬=0 & F_UG(I)¬= U PRB0660 39 1 5 CALL ADDMODE; PPBC0610 40 1 5 GOTO OUT_A; PPB0660 41 1 5 GOTO OUT_A; PPB06670 43 1 4 END; PPB06700 43 1 4 END; PPB06700 45 1 3 ECTC CUT_A; PPB06700 46 1 2 P_NCDE = P; PPB0770 48 1 IP LEV>=0 PPB0770 PPB0770 49 1 END; PPB0770 PPB07750 50 1 2 END; PPB0770 <td>33</td> <td>1</td> <td>2</td> <td>IF P=NULL</td> <td>PRPG0560</td>	33	1	2	IF P=NULL	PRPG0560
34 1 3 IF ¬REC.G THEN GOTE CUT_A; pppG0590 35 1 3 FP_UG = p_HG; ppB0590 36 1 3 U = UH; pPB0610 37 1 3 DC I=1 TC N; pPB0620 38 1 4 IF F_UG(I) ¬= 0 & F_UG(I) ¬= U pPB0620 39 1 4 IF F_UG(I) ¬= 0 & F_UG(I) ¬= U pPB06620 40 1 5 BA = '1'B; pPF06640 40 1 5 GOTO OUT_A; pPB06670 41 1 5 GOTO OUT_A; PPB06670 42 1 5 GOTO OUT_A; PPB06670 44 1 3 GCTC CUT_A; PPB06700 44 1 3 GCTC CUT_A; PPB0720 44 1 3 GCTC OUT_A; PPB0720 45 1 2 IF LEV=1; PPB0720 46 1 2 P_NODF = P0; PPB073750 50 1 2 UT_A: PPB03750 7 1				THFN DO:	PPPG0570
35 1 3 FP_UG = P_HG; PPBG0590 36 1 3 U = UH; PPPG0610 37 1 3 DC I=1 TC N; PPPG0610 39 1 4 IF F_UG(I) = 0 & F_UG(I) = U PPPG0620 39 1 5 CALL ADDNODE; PPPG0660 40 1 5 GOTO OUT_A; PPPG0660 41 1 5 GOTO OUT_A; PPPG06670 43 1 4 END; PPPG06700 44 1 3 GCTC CUT_A; PPPG0770 44 1 3 GCTC CUT_A; PPPG0770 44 1 3 GCTC CUT_A; PPPG0770 46 1 2 P_NCDE = P; PPF0770 46 1 2 IP LEV=0 PPF0770 47 1 LEV = LEV-1; PPF0770 48 1 2 JUT_A: PPF0770 91 2 JUT_A: PPF0770 91 1 END; PPF0770 92 </td <td>34</td> <td>1</td> <td>3</td> <td>IF -REC.G THEN GOTC CUT A:</td> <td>P2PG0580</td>	34	1	3	IF -REC.G THEN GOTC CUT A:	P2PG0580
36 1 3 U = UH; PRPG0600 37 1 3 DC I=1 TC N; PPPG0610 38 1 4 IF F_UG(I) =0 & F_UG(I) = U PPPG0620 39 1 5 CALL ADDNODE; PPPG0630 39 1 5 CALL ADDNODE; PPPG0640 40 1 5 GOTO OUT_A; PPPG06600 41 1 5 GOTO OUT_A; PPPG06600 42 1 5 GOTO CUT_A; PPPG0670 43 1 4 END; PPPG0700 44 1 3 GCTC CUT_A; PPPG0710 45 1 3 LEV=1; PPFG0720 46 1 2 P_NCDE = P; PPFG0720 48 1 2 IF LEV=0; PPFG0730 7 1 2 DUT_A: PPFG0770 7 1 2 END; PPFG0770 7 1 2 END; PPFG0770 7 1 2 DUT_A: PPFG077	35	1	3	FP UG = P UG:	P P D G 0 5 9 0
37 1 3 DC I=1 TC N; PPPG0610 38 1 4 IF F_UG(I) = 0 & F_UG(I) = U PRPG0620 39 1 4 IF F_UG(I) = 0 & F_UG(I) = U PPPG0630 39 1 5 CALL ADDNODE; PPFG0640 40 1 5 BA = '1'B; PPFG0640 40 1 5 GOTO OUT_A; PPFG0660 41 1 5 GOTO OUT_A; PPFG0660 42 1 5 GOTO CUT_A; PPFG0670 44 1 GCTC CUT_A; PPFG0700 PPFG0700 43 1 4 END; PPFG0720 44 1 GCTC CUT_A; PPFG0720 45 1 3 END; PPFG0720 46 1 2 IF LEV=1; PPFG0720 PPFG0720 47 1 2 DUT_A: PPFG0720 PPFG0720 49 1 2 DUT_A: PPO3750 PPFG0770 50 1 2 END; PPFG0780 PPFG0780	36	1	3	U = UH:	PRPG0600
39 1 4 IF F_UG(I) =0 & F_UG(I) = 0 PRPG0620 39 1 5 CALL ADDNODE; PPPG0630 40 1 5 BA = 11*B; PPF06650 41 1 5 GOTO OUT_A; PPPG06600 42 1 5 GOTO OUT_A; PPPG06600 42 1 5 GOTO CUT_A; PPPG06700 43 1 4 END; PPPG0700 44 1 3 GCTC CUT_A; PPPG0700 45 1 3 END; PPPG0700 46 1 2 P_NCDE = P; PPFG0700 48 1 CIEV = LEV-1; PPFG0720 48 1 IP LEV=0 PPFG0740 71 2 DUT_A: PPFG0750 751 1 END; PPFG0780	37	1	3	DC I = 1 TC N:	PPPG0610
THEN DC; THEN DC; PPG0630 39 1 5 CALL ADDNCDE; PPF0640 40 1 5 BA = '1'E; PFPG0650 41 1 5 GOTO OUT_A; PPF06660 42 1 5 END; PPF06660 43 1 4 END; PPF06660 44 1 3 GCTC CUT_A; PPF00700 45 1 3 END; PPF0700 46 1 2 P_NCDE = P; PFPG0720 48 1 2 IF LEV>1; PFPG0720 48 1 2 IF LEV>2 POC 71 2 LEV = LEV-1; PFPG0720 48 1 2 DUT_A: PPF070 75 1 END; PPF070 PPF0770 751 1 END; PPF070 PPF0770 751 1 END; PPF070 PF070 752 1 0 END; PF070790 PFP00790 753	39	1	4	TF = F = HG(T) = 0 & $F = HG(T) = H$	DBDG0620
39 1 5 CALL ADDNODE; PFPG0640 40 1 5 BA = '1'B; PPPG0650 41 1 5 GOTO OUT_A; PPPG0660 42 1 5 END; PPPG0660 43 1 4 END; PPPG0670 43 1 4 END; PPPG0680 44 1 3 GCTC CUT_A; PFPG0700 45 1 3 END; PPPG0700 46 1 2 P_NCDE = P; PPFG0720 47 1 2 LEV = 1EV - 1; PPFG0730 48 1 2 IP LEV > 0 PPFG0740 49 1 2 DUT_A; PPFG0750 9 NODF = PO; PPFG0770 PPFG0770 50 1 2 END; PPFG0770 51 1 1 END; PPFG0770 52 1 0 END_A LOOP; PPFG0780 9 NODE = P_NEXT_ESS_NODE; PPFG0800 PPFG0800		,		THEN DO.	PRPC0630
40 1 5 BA = '1'B; PF00630 41 1 5 GOTO OUT_A; PF00660 42 1 5 END; PF00660 43 1 4 END; PF00660 44 1 3 GCTC CUT_A; PF00660 45 1 3 END; PF00700 46 1 2 P_NCDE = P; PF00700 47 1 2 LEV-1; PF00720 48 1 2 IF LEV-1; PF00720 49 1 2 OUT_A: PF00730 7 1 2 DUT_A: PF00770 751 1 END; PF00770 51 1 END; PF00770 52 1 0 END; PF00770 53 1 0 IF P_NOPE = NULL PF00810 7HEN GOTO A_LOOP; PF00820 PF00820	30	1	5	CALL ADDNODE+	PEPCOGUO
41 1 5 GOTO OUT_A; PPE00600 42 1 5 END; PPE00600 43 1 4 END; PPE00600 44 1 3 GCTC OUT_A; PEPG0700 44 1 3 GCTC OUT_A; PEPG0700 44 1 3 GCTC OUT_A; PEPG0700 44 1 2 P_NCDE = P; PEPG0700 46 1 2 P_NCDE = P; PEPG0700 46 1 2 IEV = LEV-1; PEPG0720 46 1 2 IEV = LEV-1; PEPG0720 47 1 2 IEV = LEV-1; PEPG0720 48 1 2 OUT_A; PEPG0740 49 1 2 OUT_A; PEPG0750 9 1 2 OUT_A; PEPG0780 9 1 END; PEPG0780 PEPG0790 9 NODE = P_NOEXT_ESS_NODE; PEPG0800 7 1 D	цÓ	1	Ś	$B\lambda = 11E$	
42 1 5 END; PPPG0600 43 1 4 END; PPPG0670 44 1 3 GCTC CUT_A; PPPG0700 45 1 3 END; PPPG0700 46 1 2 P_NCDE = P; PPPG0700 47 1 2 LEV = LEV-1; PPPG0720 48 1 2 IF LEV>=0 PPPG0730 7 1 2 UT_A: PPPG0730 7 1 2 DUT_A: PPPG0770 7 1 2 DUT_A: PPPG0770 7 1 2 END; PPPG0770 7 1 2 END; PPPG0770 7 1 END; PPPG0770 PPPG0770 7 1 END; PPPG0770 PPPG0770 7 1 END; PPPG0780 PPPG0780 7 1 END; PPPG0790 PPPG0790 7 9 PNODE = P_NOEXT_ESS_NCDF; PPPG0820 7	u 1		5		PPP00000
43 1 4 END; PPPG05070 44 1 3 GCTC CUT_A; PPPG0690 45 1 3 END; PPPG0700 46 1 2 P_NCDE = P; PPPG0710 47 1 2 LEV = 1EV - 1; PPPG0720 48 1 2 IEV = LEV - 1; PPPG0730 49 1 2 DUT_A: PPPG0740 49 1 2 DUT_A: PPPG0750 50 1 2 END; PPPG0770 51 1 END; PPPG0770 51 1 END; PPPG0770 52 1 0 END; PPPG0790 P_NODE = P_NEXT_ESS_NODE; PPPG0810 PPPG0810 53 1 0 IF P_NODE; PPPG0820 53 1 0 IF P_NODE; PPPG0820	12	4	5		PPPG0600
44 1 3 GCTC CUT_A: PFPG0690 45 1 3 END; PFPG0700 46 1 2 P_NCDE = P; PFPG0710 47 1 2 LEV = LEV-1; PFPG0720 48 1 2 IP LEV>=0 PFPG0720 49 1 2 OUT_A: PFPG0730 49 1 2 OUT_A: PFPG0770 50 1 2 END; PFPG0770 51 1 1 END; PFPG0770 52 1 0 END; PFPG0770 52 1 0 END; PFPG0790 P_NODE = P_NEXT_ESS_NODE; PFPG0810 53 1 0 IF P_NOP; PFPG0820	42	1		END,	PPPG0B70
44 1 3 6.10 6.11 PPPG.700 45 1 2 P_NCDE = P; PPPG0700 46 1 2 P_NCDE = P; PPPG0700 47 1 2 LEV = LEV-1; PPPG0720 48 1 2 IF LEV>0 PPPG0730 7 1 2 IF NGOTO A_LOOP2; PPPG0730 49 1 2 DUT_A: PPPG0750 9 1 2 DUT_A: PPPG0770 50 1 2 END; PPPG0770 51 1 I END; PPPG0770 52 1 0 END_A_LOOP: PPPG0810 753 1 0 IF P_NODE = P_NEXT_ESS_NODE; PPPG0810 53 1 0 IF P_NODE; PPPG0820	45	4	3		P5P60650
45 1 3 LND; PPG0700 46 1 2 P_NCDE = P; PPG0720 47 1 2 LEV = LEV-1; PFG0720 48 1 2 IP LEV>=0 PRPG0730 74 1 2 IP LEV>=0 PRPG0730 74 1 2 UT_A: PPG0750 9 1 2 OUT_A: PPPG0750 50 1 2 END; PPPG0770 51 1 1 END; PRPG0780 52 1 0 END_A_LOOP: PPG0810 9 NODE = P_NEXT_ESS_NODE: PPG0800 PPG0810 53 1 0 IF P_NODE-=NULL PRPG0820 7 THEN GOTO A_LCOP; PPF0820 PPF0820	44	-	2	GUTU OUT_A;	PEPGOEGO
40 1 2 P_MODE = P; PFPG0710 47 1 2 LEV = LEV-1; PFPG0720 48 1 2 IF LEV = 0 PRPG0720 49 1 2 DUT_A: PFPG0740 49 1 2 DUT_A: PPPG0750 50 1 2 END; PPPG0760 51 1 1 END; PRPG0770 51 1 1 END; PRPG0770 52 1 0 END_ALOOP: PRPG0770 9 NODE = P_NEXT_ESS_NODE; PRPG0810 PRPG0810 53 1 0 IF P_NODE; PRPG0820 7 THEN GOTO A_LCOP; PRPG0820 PRPG0820	40	-	,	END;	PPPG0700
47 1 2 LEV = LEV-1; PFgG0720 48 1 2 IF LEV > 0 PFgG0730 49 1 2 DUT_A: PFgG0750 9 1 2 DUT_A: PFgG0750 9 1 2 DUT_A: PFgG0750 9 1 2 DUT_A: PFgG0750 50 1 2 END; PFgG0770 51 1 1 END; PFgG0780 52 1 0 END_ALOOP: PFgG0790 9 NODE = P_NEXT_ESS_NODE; PFgG0810 PFgG0810 53 1 0 IF P_NOPE=NULL PFPG0820 7 THEN GOTO A_LCOP; PFPG0820 PFPG0820	40		4	P_NCDC = P;	PFPG0710
48 1 2 IF LEV>=0 PRPG0730 THEN GOTO A_LOOP2; PPPG0740 49 1 2 DUT_A: PPPG0750 9 1 2 DUT_A: PPPG0750 50 1 2 END; PPPG0770 51 1 1 END; PPPG0770 52 1 0 END_A_LOOP: PPPG0770 9 NODE = P_NEXT_ESS_NODE; PPPG0810 PPPG0800 53 1 0 IF P_NODE = NULL PRPG0810 THEN GOTO A_LCOP; PPPG0820 PPPG0820	47	1	2	LEV = LEV-1;	PEPG0720
TH*N GOTO A_LOOP2; PPPG0740 49 1 2 DUT_A: PPPG0750 9 1 2 DUT_A: PPPG0750 50 1 2 END; PPPG0770 51 1 1 END; PRPG0780 52 1 0 END_A_LOOP: PPPG0810 53 1 0 IF P_NOPE*=NULL PRPG0810 53 1 0 IF P_NOPC*=NULL PRPG0820	48	1	2	IP LEV>=0	PRPG0730
49 1 2 DUT_A: PPPG0750 PD PDDF PPPG0760 PPPG0760 50 1 2 END; PPPG0770 51 1 1 END; PPPG0770 52 1 0 END_A_LOOP; PPPG0790 PNODE = P_NEXT_ESS_NODE; PPPG0810 PPPG0810 53 1 0 IF P_NODE; PPPG0820 THEN GOTO A_LCOP; PPPG0820 PPPG0820	_			THEN GOTO A_LOOP2;	PPPG0740
P_NODF = P0; PPPG0760 50 1 2 END; PPPG0770 51 1 I END; PPPG0770 52 1 0 END_A_LOOP: PPPG0790 P_NODE = P_NEXT_ESS_NODE; PPPG0810 PPPG0810 53 1 0 IF P_NODE = NULL PPPG0820 THEN GOTO A_LCOP; PPPG0820 PPPG0820	49	1	2	CUT_A:	PRPG0750
50 1 2 END; PPPG0770 51 1 1 END; PPPG0770 52 1 0 END_A_LOOP: PPPG0790 0 P_NODE = P_NEXT_ESS_NODE: PEPG0800 53 1 0 IF P_NODE = NULL THEN GOTO A_LCOP; PPPG0820				$P_NODF = PO;$	PPPG0760
51 1 1 END; PRPG0780 52 1 0 END_A_LOOP; PRPG0790 P_NODE = P_NEXT_ESS_NODE; PRPG0810 PRPG0810 53 1 0 IF P_NODE = NULL PRPG0810 THEN GOTO A_LCOP; PRPG0820 PRPG0820	50	1	2	END;	PPPG0770
52 1 0 END_A_LOOP: PEPG0790 P_NODE = P_NEXT_RSS_NODE: PEPG0800 53 1 0 IF THEN GOTO A_LCOP: PEPG0820	51	1	1	END;	PRPG0780
P_NODE = P_NEXT_ESS_NODE;PEPG08005310IF P_NODE = NULLPEPG0810THEN GOTO A_LCOP;PEPG0820	52	1	0	END_A_LOOP:	PRPG0790
5310IFP_NODEP_RPG0810THEN GOTO A_LCOP;P_RPG0820				P_NODE = P_NEXT_ESS_NODE:	PEPG0800
THEN GOTO ALCOP: PPPG0820	53	1	0	IF P_NODE == NULL	PBPG0810
				THEN GOTO A_LCOP;	PPPG0820

• PL/I OPTIMIZING COMPILER PREP_G: PROC PEORDER;

STAT LEV NT

			/* CHECK: WAS ANYTHING ADDED?	*/PRPG0840
54	1	0	IF ¬BA	PRPG0850
			THEN DO:	PRPC0860
55	1	1	STGNAL ENDDAGE (SYSDRINT) .	0000000
56	1	i	NTW PDD = 1 pla.	
57	- i	1	DIM DAT - 10 DIV. DIM DTM (1444 NA KRKARY CONDER INDER - 10 NACO AND MADE TODRING	
5.	•	•	FOI ADIT ("THE NO REPORT STATES ADDED - AT HOST ONE HORE I" "RAIL	UN PRPGUB90
			([* WILL BE ALLOWED ++++) (SKIP(2),I(10),A);	PRPG0900
50	1	1	RETURN	PRPG0910
59	1	1	END;	PPPG0920
	_		/* CLEAN CUT RSS NODE CHAIN	*/PRPG0930
60	1	0	P_NODE = P_ESS_NODE_1;	PRPG0940
61	1	0	PRE_LOOP:	PRPG0950
			$P_{REL} = P_{NODE};$	PRPG0960
62	1	0	$P_NODE = P_NEXT_ESS_NODE$:	PRPG0970
63	1	0	IF P NODE-P1 THEN GOTO PRE LOCP:	PRPG0980
64	1	0	GOTO ENTER LOOP:	PRPG0990
				PRPG1000
65	1	0	PRINE LOOP:	PRPG1010
•••	•	-	D PRI = D NODR.	PRPG 1020
66	1	٥	D NORE = D NEYT FSS NOR:	PRPG1030
67	1	ň	r = 0 D $r = r = 0$ $r = 0$	DPDC1040
07	,	0	IT F_BODE-NOLL INEW REIORN;	PPDC1050
60	4	•		PAPGIOJO
00		v		PEPG 1000
			PP_BRANCHES = P_BRANCHES;	PRPGI070
69	1	0	DO Z=1 TO NZ;	PRPGIUSU
70	1	1	$IP F_E BRANCH(Z) & F_P BRANCH(Z) = NUL$	PRPG1040
			THEN DO;	PRPG1100
71	1	2	$PP_UG = P_UG; PP_VG = P_VG; PP_VH = P_VH;$	PRPG1110
74	1	2	DO I=1 TO N;	PRPG1120
75	1	3	IF $P_UG(I) \rightarrow = 0$ THEN $F_VH(I) = F_VG(I)$;	PRPG1130
76	1	3	END:	PRPG1140
77	1	2	GOTO PRUNE LOOP:	PRPG1150
78	1	2	END:	PRPG1160
79	1	1	END:	PRPG1170
• •	•	•		PRPG 1180
80	1	0	ESS M = ESS M-1:	PRPG1190
81	1	ň	P RET -> P RES NODE -> P NEXT ESS NODE = P NEXT ESS NODE:	PRPG1200
82	1	ŏ	PREF ESS NOTE:	PRPG1210
93		ň		PRPG1220
03		2	$r_{1} = r_{2} = r_{1} = r_{1$	DRDG1230
04		Ň	$r_{\rm RODE} - r_{\rm REL}$	00001240
85	1	2	GUID FRUNE_LUCCF;	pppc1250
96	1.	0		PRPG (200

-240-

PL/I OPTIMIZING CONPILER ADDNODE: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1		0	ADDNODE: PROC REORDER;	ADDN0010
				ADDN0020
2	1	0	%INCLUDE DD1(DCL);	ADDN0030
				ADDN0040
			/**************************************	**/ ADDN0050
			/*	*/ ADDN0060
			/* ADD BRANCH Z TO NODE P NODE	*/ ADDN0070
			/* ALSO ADD OTHER NODES AS REQUIRED TO MAINTAIN	*/ ADDN0080
			/* RECURSIVE PROPERTIES OF THE MEMORY SET	*/ ADDN0090
			/*	*/ ADDN0100
			/**************************************	***/ ADDN0110
			-	ADDN0120
4	1	0	DCL SCAN EXT ENTRY;	ADDN0130
				ADDNO 140
5	1	0	DCL 2_ADD FIXED BIN INIT(Z), PO POINTER INIT(P_NODE);	ADDN0150
			/* REGISTERS TO SAVE IN	ITIAL ADDN0160
			VALUES OF Z AND P_NO	DE #/ADDN0170
			_	ADDN0180
6	1	0	DCL R(N) FLOAT BIN: /* ROW SUM OF NEW TPM	*/ADDN0190
7	1	0	DCL Z STRING (O: MAX LEV) FIXED BIN:	ADDN0200
8	1	0	DCL P_NEW (O:MAX_LEV) PCINTER;	ADDN0210
				ADDN0220
9	1	0	DCL (S,SV,E) FLOAT BIN, (I,II,J,K,UU) FIXED BIN, (B,BB) BIT	ALIGNED, ADDN0230
			(P, P1, P2, FP_PROBS, FP_RWDS, FP_TPM2) POINTER;	A DDNO 240
10	1	0	$PP_RWDS = ADDR(RWDS(1,1));$	ADDN0250
				ADDN0260
			/* FILL IN Z_STRING WIT	H ADDN0270
			DESCRIPTION FOR P_NO	DE #/ADDN0290
11	1	0	$Z_STRING(0) = Z_ADD;$	ADD NO 290
12	1	0	DO I=1 TO MAX_LEV;	A D D N O 300
13	1	1	$P1 = P_BACK;$	ADDN0310
14	1	1	IP P1=NULL	ADDN0320
			THEN GOTO OUT;	ADDN0330
15	1	1	$Z_STRING(I) = Z_BACK;$	ADDN0340
16	1	1	$P_NODE = P1;$	ADDN0350
17	1	1	END;	ADDN0360
18	1	0	OUT:	ADDN0370
			MAX_LEV = MAX(MAX_LEV,I);	A D DN 0 38 0
19	1	0	LEV, LO = I;	ADDN0390

-

PL/I OPTIMIZING COMPILER ADDNODE: FROC REORDER;

STMT LEV NT

20	1	0	LCOP1: LEV = LEV-1;	/*	THIS LOOP ADDS BRANCH Z_ADD TO PO & UNIQUE PRECEDENTS	ADDN0410 */ADDN0420 ADDN0430 ADDN0440 ADDN0440
21 22 23 24 25	1 1 1 1 1	0 0 1 1 1	P_NODE = P_ROOT; DO I = LEV TO 0 BY -1; P = P_NODE; P_NODE = P_BRANCHES->P_P_BRANCH(Z END;	_s1	FIND P_NODE FOR GIVEN Z_STR FRING(I));	*/ADDN0450 ADDN0470 ADDN0480 ADDN0490 ADDN0500 ADDN0510 ADDN0510
26	1	0	IF P_NODR-=NULL THEN GOTO NO_MORE_ADD;			A D D N 0 5 2 0 A D D N 0 5 3 0 A D D N 0 5 4 0 A D D N 0 5 5 0
27	1	0	ALLOC NODE, ESS_NCDE;	/*	ALLOCATE NEW NODE	*/ADDN0560 ADDN0570 ADDN0580
28 29 30	1 1 1	0	Z_BACK = Z_ADD; P_BACK = P; P=D BBANGHES=DE B_BBANGH(7_ADD) =	/*	LINK TO OLD NODE	*/ADDN0590 ADDN0600 ADDN0610 ADDN0620
50		Ū	F / F DURNCUFS / L F DURNCU (C NDU) -	/*_!	PLACE NEW NODE AT START OF RSS NODE CHAIN	ADDN0620 ADDN0630 ADDN0640 */ADDN0650
31 32	1	0	P_NEXT_ESS_NODE = P_ESS_NODE_1; P_NEW (LEV), P_ESS_NODE_1 = P_NODE;			A DDN9660 ADDN9670 ADDN9680
33 34 35 36 37 38 39 40 41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	$P_TPM = ADDR (TPM (1, 1)); FP_BFANCHES, P_BRANCHES = ADDR (BPANC P_VG = ADDR (VG (1)); FP_VH, P_VH = ADDR (VH (1)); P_W = ADDR (W (1)); FP_UG, P_UG = ADDR (UG (1)); P_Z = ADDR (PZ (1, 1, 1)); FP_QZ, P_QZ = ADDR (QZ (1, 1)); BRC.G. BEC.H = '0'B:$:H8	5(1));	A D D N O 690 A D D N O 700 A D D N O 710 A D D N O 720 A D D N O 730 A D D N O 740 A D D N O 750 A D D N O 760 A D D N O 760
42 43 44	1 1 1	0 0 0	M = M+1; ESS_M = ESS_M+1; P_NODE = P;	/*	UPDATE MEMORY COUNTERS	*/ADDN0780 ADDN0790 ADDN0800 ADDN0810 ADDN0810 ADDN0920

PL/I OPTIMIZING COMPILER ADDNODE: PROC REORDER;

STMT LEV NT

;file,

-

-886

				/* COMPUTE TPM, VH AND QZ		*/ADDN0840
				/* PRESET UG TO SHOW R(I)	> 0?	*/A DDN0850
45	5 .	1	0	$FP_VG = P_VG;$		A DDN 086 0
46	5 °	1	0	DO T = 1 TO N;		ADDN0870
47	, .	1	1	SV, P(I) = 0.;		A D D N O 98 O
48	3 .	1	1	<pre>FP_TPM = ADDR(P_ESS_NODE_1->P_TPM->F_TPM((I+1)*N+1));</pre>		ADDN0890
49) '	1	1	$FP_PZ = ADDR(PROBS(Z_ADD, I, 1));$		A DDN0900
50) '	1	1	$DO^{-}J = 1 TO N;$		ADDN0910
51	1 '	1	2	s = 0.;		ADDN0920
52	2 '	1	2	II = 1;		ADDN0930
53	3 .	1	2	<pre>FP_TPM2 = ADDR(P_TPM->F_TPM(J));</pre>		ADDN0940
54	ŧ .	1	2	DO K = 1 TO N;		A D D N O 95 0
55	5	1	3	$E = F_{PZ}(K) * FP_{TPM2} - F_{TPM}(II);$		ADDN0960
56	j '	1	3	$II = \overline{II} + N;$		A DDN 097 0
57	7	1	3	S = S + E;		ADDN0980
- 58	3 .	1	3	$SV = SV + E * F_VG(K);$		ADDN0990
59	9	1	3	END:		ADDN1000
60	о [.]	1	2	$P_{\rm TPM}(J) = S;$		ADDN1010
6	1	1	2	F(I) = R(I) + S;		A D D N 1 0 2 0
62	2	1	2	END;		ADDN1030
6	3	1	1	$P ESS NODE 1 \rightarrow ROWSUM(I) = R(I);$		ADDN1040
64	4	1	1	$\mathbf{IF} = \mathbf{R}(\mathbf{I}) > 0$		ADDN 1050
				THEN DO;		A DDN 1060
6 5	5	1	2	$\mathbf{F}_{\mathbf{U}}\mathbf{U}\mathbf{G}\left(\mathbf{I}\right) = 1;$		ADDN1070
66	<u>5</u>	1	2	$\mathbf{F}_{\mathbf{V}}\mathbf{H}(\mathbf{I}) = \mathbf{S}\mathbf{V}/\mathbf{R}(\mathbf{I});$		ADDN1080
6	7	1	2	$v\overline{v} = 0;$		A DDN 1 090
68	8	1	2	DO $U=1$ TC NU;		ADDN1100
69	9.	1	3	s = 0.;		A DDN 1 1 1 0
7()	1	3	DO $J=1$ TO N;		ADDN1120
7	1	1	4	S = S + F_TPM(J) * FP_FWDS->F_Q2(UU+J);		A DDN 1 1 3 0
7:	2	1	4	ENC;		ADDN1140
7	3	1	3	$\mathbf{F}_{QZ}(\mathbf{UU}+\mathbf{I}) = \mathbf{S}/\mathbf{R}(\mathbf{I});$		ADDN1150
70	4	1	3	$n\overline{v} = vv + n;$		ADDN1160
7 9	5	1	3	END;		ADDN1170
76	5	1	2	END;		ADDN1180
7.	7	1	1	$ELSE \ F_{JG}(1) = 0;$		ADDN1190
78	8	1	1	END;		A D D N 1 200

-243-

PL/I OPTIMIZING COMPILER

ADDNODE: PROC REORDER;

STMT LEV NT

- 184

			/* COMPUTE E_BRANCH, P_BRANCH	*/ADDN1220
79	1	0	DO $Z=1$ TO NZ;	ADDN1230
80	1	1	$PP_PZ = ADDP(PROBS(Z, 1, 1));$	A DDN 1240
81	1	1	$\mathbf{F}_{\mathbf{P}} = PPANCH(\mathbf{Z}) = NULL;$	ADDN 1250
82	1	1	$P_ESS_NCDE_1 - > P_ESS_NODE - > P_NEXTZ(Z) = NULL;$	A DD N 1 2 6 0
83	1	1	DC I=1 TO N:	ADDN1270
84	1	2	IF R(I)>0	A D D N 1 2 9 0
			THEN DO $J=1$ TC N;	ADDN1290
85	1	3	$IF F_{PZ}((J-1)*N+I) > 0$	ADDN1300
			THEN DC;	ADDN1310
86	1	4	$F_E_BRANCH(Z) = 11B;$	ADDN1320
87	1	4	GCTO NEXT Z:	ADDN1330
38	1	4	END;	ADDN1340
89	1	3	END;	A D D N 1 3 5 0
90	1	2	END;	ADDN1360
91	1	1	$F_EBRANCH(Z) = *0*B;$	4 DDN 1 370
92	1	1	NEXT_Z:	ADDN1380
			ĒND;	A DD N 1 3 9 0
93	1	0	GOTO LCOP1:	ADDN1400

PL/I OPTIM	ZING C	CMPILER
------------	--------	---------

STMT LEV NT

*

- 1584,

, **4**46,

488

ADDNODE: PROC REORDER;

94	1	0	NO_MORE_ADD:	ADDN1420
			P_REL = P_NODE;	ADDN1430
95	1	0	$L\overline{0}0 = LEV$;	ADDN1440
96	1	0	B = 11B;	ADDN1450
				ADDN1460
97	1	0	DO LEV = $L00+1$ TO $L0-1$;	ADDN1470
98	1	1	z = 1;	ADDN 1480
99	1	1	P NODE = P NEW (LEV):	ADDN1490
100	1	1	FP UG = P UG: FP TPM = P TPM:	ADDN 1500
102	1	1	CAIL GET F PZ:	A DDN1510
103	1	1	DO Z=2 TO NZ	ADDN1520
104	1	2	CALL GET PZ:	ADDN1530
105	1	2	END:	ADDN1540
106	1	1	END:	ADDN1550
	•	•		ADDN1560
107	1	0	L E V = L 0.0:	ADDN1570
108	1	õ	P NODE = P REL.	ADDN1580
109	1	õ	P RFL = P ROOT	ADDN1590
110	1	ň		ADDN1600
111	1	ő	$P_2 = P$ FSS NODE 1.	100N1610
112	1	ň		1620 ADDN 1620
117	1	ă	TE P RES NODE=NULL THEN GOTO NEXT SCAN+	ADDN 1630
1.3	,	v	IT I_DS_RODE-WHE THER GOTO WERL_SCAR,	ADDN1640
114	1	0	10022.	ADD 1650
	'	v	TE D NEYTA(Y) = NULL THEN COTO NEYT SCAN.	10011660
115	1	٥	D=D NORF	ADDN1670
116	1	ň		ADDN1680
117	1	1	$\int dr = \int dr dr = D - D - D - D - D - D - D - D - D - D$	10011690
110		4	L = D = D = D + C + C + C + C + C + C + C + C + C +	ADDN1030
110	-	1	$r + r^{-} r^{-}$ EACA,	ADDN1700
120		2		ADDN1710
120	-	0	$r_1 - r_{\perp}$ KbL;	ADD31720
121		0	4 - 1; PD HC - D HC, PD TOM - D TOM.	ADDN 1730
122	-	0	rrug - rug; rrur - rur;	ADUN1740
124	1	0	CALL GES_R_PZ;	ADDN1750
405		•		ADDN1700
125		0	NEXT_SCAN:	ADDN1770
400		•	CALL SCAN;	AUDN1780
126	1	0		ADDN1790
			THEN GOTO LOOPZ:	AU0N1800
		•		ADDN1810
127	1	0	FINISHED: /* RESTORE CALLING Z, P_NODE	▼/ADDN1820
		•	$P_NODE = PO;$	ADDN1830
128	1	0	Z = Z + ADD;	ADDN1840
129	1	0	RETURN:	· ADDN 1850

-244-

PL/I OPTIMIZING COMPILER ADDNODE: PROC REORDER;

STMT LEV NT

ļ ł ł

æ

i

130 131 132	1 2 2	0 0 1	GET_R_PZ: PROC; /* THIS ENTRY COMPUTES R(*) FIRST DO I=1 TC N; R(I) = ROWSUM(I);	*/ ADDN1870 ADDN1880 ADDN1890
133	2	1	END;	ADD#1900
	~	•		#/ADDN1920
134	2	0	GET_PZ: ENTRI: /* CURFULE F_NEARL,FD	05614004
135	2	0	$\mathbf{P} = \mathbf{P}_{\mathbf{K}} \mathbf{O} \mathbf{O} \mathbf{I} - \mathbf{P}_{\mathbf{D}} \mathbf{G} \mathbf{K} \mathbf{K} \mathbf{C} \mathbf{n} \mathbf{S} \mathbf{S} \mathbf{F}_{\mathbf{D}} \mathbf{F}_{\mathbf{D}} \mathbf{G} \mathbf{K} \mathbf{K} \mathbf{C} \mathbf{n} \mathbf{S} \mathbf{S}$	ADDN1940
136	2	^	TR 0-1011	ADDN 1950
130	2	U	IF P=NULL MURN COMP. COMP.	ADDN1960
			Then Gold Comp2;	ADDN1970
477	-	•	<i>a b i</i>	ADDN 1980
137	2	U	IT D	ADDN 1990
430	~			ADDN2000
130	2	-	$FZ \rightarrow NULL;$ $D_{0} T = T F T T O O F T = 1$	ADDN2010
1.0	4	5		ADDN2020
140	2	2	TUP: PD REANCHES = ADDR (D->P REANCHES->P E BRANCH (Z STRING (I))):	ADDN2030
141	2	2	DI = P D BRINCH (1):	ADDN2040
1/1 2	2	5	TP = T = P BANCH(1)	ADDN2050
142	2	2		ADDN2060
			Inter (Distant)	ADDN2070
143	2	2	TP P1 = NULL	ADDN2080
143	~	*		ADDN2090
9 L L	2	3	$P_2 = P_2$	ADDN2100
145	2	4	P = P ROOT:	ADDN2110
146	2	3	GOTO TOP:	ADDN2120
147	2	ž	FND:	ADDN2130
148	2	2	P = P1:	ADDN2140
149	2	2	END:	A DDN 2150
	-	-		ADDN 2 160
150	2	1	IFP2 = NULL	ADDN2170
	-		THEN DO:	ADDN2180
151	2	2	P2 = P1;	ADDN2190
152	2	2	$P1 = P_ROOT;$	ADDN2200
153	2	2	END;	ADDN2210
154	2	1	END;	ADDN2220

PL/I OPTIMIZING COMPILER

ADDNODE: PROC REORDER;

-246-

STMT LEV NT

ł

 COMPUTE PZ WHERE P1, P2 AKE
 D2000

 Z (P_NODE) ||Z = Z (P1) ||Z (P2)
 ADDN2250

 */ADDN2260
 */ADDN2260
 /* COMPUTE PZ WHERE P1, P2 ARE 155 2 0 IF P_NEXTZ(Z)=P2 ADDN2270 THEN RETURN; ADDN2280 156 2 2 0 P_NEXTZ (Z) = P2; ADDN2290 P_NEALD(a) - F2, DO J=1 TO N; S = 0.; PP_TPM = ADDR(P1->P_TPM->F_TPM(J)); PP_PZ = ADDR(P_PZ->F_PZ((Z-1)*N*N+J)); S = P2 -> ROWSUM(J); 157 ADDN2300 0 158 2 ADDN2310 1 159 2 ADDN2320 1 160 2 1 ADDN2330 161 2 1 ADDN2340 II = 1; DO I=1 TO N; IF F_0G(I) →=0 THEN F_FZ(II) = F_TPH(II) * S / R(I); 2 2 ADDN2350 162 1 ADDN2360 163 1 2 2 164 ADDN2370 ADDN2380 165 2 2 II = II + N;ADDN2390 166 2 2 END; ADDN2400 167 2 1 END: ADDN2410 RETURN: ADDN2420 2 168 /* COMPUTE PZ WHERE ADDN2430 $P_NEXTZ(Z) = P_ROOT$ */ADDN2440 169 2 0 COMP2: ADDN2450 BB = '0'B; ADDN2460 BB = '0'B; IF P_NEXT2(Z)=P_ROOT THEN RETURN; P_NEXT2(Z)=P_ROOT; DO I=1 TO N; IF P_UG(I) =0 THEN DO; FP_TPM = ADDR(P_TPM->F_TPM((I-1)*N+1)); FP_PZ = ADDR(P_PZ->F_PZ((Z-1)*N*N+(I-1)*N+1)); DO J=1 TC N; FP_PROBS = ADDR(PROBS(Z,1,J)); S = 0.; II=1; 170 2 0 ADDN2470 ADDN2480 171 2 0 ADDN2490 2 172 0 ADDN2500 173 2 1 ADDN2510 ADDN2520 174 2 2 1DDH2530 175 2 ADDN2540 2 2 22 176 ADDN2550 177 3 ADDN 2560 22 178 ADDN2570 3 S = 0.; II=1; DO K=1 TO N; S = S + P_TPM(K) * FP_PROBS->P_P2(II); II = II+N; 179 3 ADDN2580 2 2 180 3 ADDN2590 ADDN2600 181 4 2 4 ADDN2610 182 22 BND; ADDN2620 183 4 184 <u>,</u> 3 $F_{PZ}(J) = S/R(I);$ ADDN2630 185 2 3 BB = BB(S>0;ADDN2640 END ADDN2650 2 186 3 22 END; ADDN2660 187 2 1 188 ADDN2670 END; 189 2 0 IP -BB THEN P_NEXTZ (2) = NULL; ADDN2680 2 RETURN; 190 0 ADDN2690 191 2 0 ADDN2700 END: ō END: ADDN2710 192

PL/I OPTIMIZING COMPILER

PREP_H: PROC REORDER;

SOURCE LISTING

STMT LEV NT

PRPH0010 1 0 PREP_H: PROC RECEDER; PRPH0020 2 PRPH0030 1 0 %INCLUDE DD1(DCL); PRPH0040 PRPH0050 */ PRPH0060 /* '/* */ PPPH0070 CCMPUTE UH AND REC. * PRPH0080 /* */ PRPH0090 PRPH0100 DCL (BU(0:NU), RZ(0:NZ), B, BB) BIT ALIGNED, PP POINTER, (S,T) PLOAT BIN, I FIXED BIN: PRPH0110 1 0 4 PRPH0120 PRPH0130 /* STEPO COMPUTE UH = MOST LIKELY OPTIMAL INPUT
/* P_REC = LIKELY G-RECURRENT NODE */ PRPH0140 */ PRPH0150 PPPH0160 P_NODE, P_REC = P_ESS_NODE_1; LOOPO: PRPH0170 5 1 0 6 1 0 PRPH0180 $PP_UG = P_UG;$ PRPH0190 T = -1.;DO U=1 TO NU; 7 1 0 PRPH0200 PRPH0210 8 1 0 S=0.; DO I=1 TO N; IP P_UG(I) = 11 THEN S = S + RCWSUM(I); 9 PRPH0220 1 1 10 11 PRPH0230 1 1 2 PPPH0240 1 PRPH0250 END; IF S>T+1E-4 THEN DO; UH = U; 12 1 2 PRPH0260 1 PRPH0270 13 1 PRPH0280 14 1 2 PRPH0290 15 1 2 T = S; PRPH0300 16 2 1 END; PRPH0310 1 **PRPH0320** 17 1 END; PRPH0330 IF REC.H THEN P_REC = P_NODE; REC.G, REC.H = *0*B; 18 1 0 PPPH0340 19 1 Ō PRPH0350 PRPH0360 P_NODE = P_NEXT_ESS_NODE; IF P_NODE -= NULL THEN GOTO LOCPO; PRPH0370 20 1 0 PRPH0380 21 1 0 PPPH0390 PRPH0400 /* FIRST PASS FINDS REC.G 22 1:0 BB = '1'B;*/PRPH0410

^

PL/I OPTIMIZING COMPILER PREP_H: PROC REORDER;

STMT LEV NT

			/* STEP1 SET P_REL = LIKELY RECURRENT NODE AND SET RTO=0	*/	PRPH0430
			-		PRPH0440
23	1	0	STEP1:		PRPH0450
			P NCDE = P ESS NODE 1		PRPH0460
					PRPH0470
24	1	0	LCOP1:		PRPH0480
			P REC = P NODE:		PRPH0490
25	1	0	\overrightarrow{PEC} . TO = $\overrightarrow{10}$ · B:		PRPH0500
26	1	0	P NODE = P NEXT ESS NODE:		PRPH0510
27	1	0	IF P NODE-=NULL		PRPH0520
			THEN GOTO LOOF1:		PRPH0530
					PRPH0540
			/* STEP2 SET REC.FROM = 0	*/	PPPH0550
					PRPH0560
28	1	0	STEP2:		PRPH0570
			P NODE = P ESS NODE 1;		PPPH0580
29	1	0			PBPH0590
			REC.FROM = "O"B;		PRPH0600
30	1	0	P NODE = P NEXT ESS NODE		PRPH0610
31	1	0	IF P_NODE -= NULL		PPPH0620
			THEN GOTO LOOP2:		PRPH0630
					PRPH0640
32	1	0	RPT2:		PRPH0650
			$P_{NODZ} = P_{REC}$		PRPH0660
33	1	0	REC.TO, REC. PROM = '1'B;		PRPH0670

PL/I OPTIMIZING COMPILER

PREP_H: PROC REORDER;

.

STMT LEV NT

celle.

			/* STEP3 FILL REC.TO AND REC.FROM	*/	PRPH0690
					PRPH0700
34	1	0	RPT3:		PRPH0710
			$B = {}^{1}0{}^{1}B;$		PRPH0720
35	1	0	P_NODE = P_ESS_NODE 1;		PRPH0730
36	1	0			PRPH0740
			IF ((¬REC.TOIREC.FROM) & (BB(REC.G))		PRPH0750
			THEN DO:		PRPH0760
37	1	1	$BZ = 0^{\circ}B;$		PRPH0770
38	1	1	IF BB THEN DO:		PRPH0780
39	1	2	BU = '0'B:		PRPH0790
40	1	2	PP UG = P UG:		PRPH0800
41	1	2	DC I=1 TO N;		PRPH0810
42	1	3	BU(F UG(I)) = "1"B;		PRPH0820
43	1	3	END:		PRPH0830
44	1	2	DO U=1 TO NU:		PRPH0840
45	1	3	IF BU(U)		PRPH0850
			THEN DO Y=1 TO NY:		PRPH0860
46	1	4	BZ(ZCODE(U,Y)) = '1'B;		PRPH0870
47	1	4	END:		PRPH0880
48	1	3	END:		PRPH0890
49	1	2	BND;		PRPH0900
50	1	1	ELSE DO Y=1 TO NY;		PRPH0910
51	1	2	BZ(ZCODE(UH, Y)) = 1B;		PRPH0920
52	1	2	END;		PRPH0930
53	1	1	DO Z=1 TO NZ;		PRPH0940
54	1	2	IF BZ (2)		PRPH0950
			THEN DO;		PRPH0960
55	1	3	$PP = P_NEXTZ(Z);$		PRPH0970
56	1	3	IF PP-=NULL		PPPH0980
			THEN DO;		PBPH0990
5 7	1	4	PP = PP->P_ESS_NODE;		PPPH1000
58	1	4	IF (-REC.TO) &PP->REC.TO		PRPH1010
			THEN $B_{REC.TO} = 1B;$		PPPH1020
59	1	4	IF (¬PP->REC.FROM) & REC.FROM		PRPH1030
			THEN B, PP->REC. FROM = '1'B;		P R P H 1 0 4 0
60	1	4	END;		PRPH1050
61	1	3	FND;		PRPH1060
62	1	2	END;		PRPH1070
63	1	1	END;		PRPH1080
64	1	0	P_NODE = P_NFXT_ESS_NODE;		PRPH1090
65	1	0	IF P_NODE -= NULL		PRPH1100
			THEN GOTO LOOP3;		PRPH1110
					PPPH1120
66	1	0	IF B THEN GOTO RPT3;		PRPH1130

PL/I OPTIMIZING COMPILER PREP_H: PROC REORDER;

STMT LEV NT

-250-

			/* STEP4 CHECK FOR CHAINS NOT CONTAINING P_REL	*/	PRPH1150
67	1	0	PP = NIIII.		PAPA1100
68	1	ŏ	P NODE = P RSS NODE 1.		FRE1170
69	i	õ			PRP81100
•••	•	v	TE REC. PROM & (-REC. TO) & (BBIREC.G)		PRPH1300
			THEN DO:		DRDH1210
70	1	1	P REC = P NCDE		0000120
71	1	1	GOTO STRP2.		00001220
72	1	1	END:		DBDH1240
73	1	ò	IF (REC. TO) & (REC. FROM) & (BBIREC. G) THEN PP=P NODE:		PRPH1250
74	1	ō	P NODE = P NEXT ESS NODE:		PRPH1260
					PRPH1270
75	1	0	IF P NODE - NULL		PRPH1280
			THEN GOTO LOOP4:		PRPH1290
			·····		PRPH1300
76	1	0	IF PPNULL		PPPH1310
			THEN DO:		PRPH1320
77	1	1	$P_{REC} = PP;$		PEPH1330
78	1	1	GOTO RPI2:		PRPH1340
79	1	1	END;		PRPH1350
					PRPH1360
			/* STEP5 FILL IN REC.G/REC.H (ACCORDING TO BB)	*/	PRPH1370
					PRPH1380
80	1	0	P_NODE = P_ESS_NODE_1;		PRPH1390
81	1	0	LCCP5:		PRPH1400
			IF BB		PRPH1410
			THEN REC.G = REC.TO & REC.FROM;		PRPH1420
82	1	0	ELSE REC.H = REC.G & REC.TO & REC.FROM;		PRPH1430
83	1	0	P_NODE = P_NEXT_ESS_NODE;		PPPH1440
84	1	0	IF P_NODE -= NULL		PRPH1450
			THEN GOTO LOOF5;		PRPH1460
					PPPH1470
85	1	0	IF BB		PPPH1480
			THEN DO:		PPPH1490
86	1	1	BB = "0"B;		PRPH1500
87	1	1	GOTO STEP1;		PRPH1510
88	1	1	END;		PRPH1520
89	1	0	END;		PRPH1530

.

PL/I OPTIMIZING COMPILER

SOLVE_G: PROC REORDER;

SOURCE LISTING

STMT LEV NT

SOLV0010 SOLVE_G: PROC REORDER; SOLV0020 SOLVOORO P_LHS = ADDR (WRK (1)); PP_FLAG = ADDR (STRUCT_FLAG (1)); SOLV0090 RT = RT_G; G.STEPS,H.STEPS=0; TOL = ERR*1E-3; ERR = 1E10; Ō SOLV0100 SOLV0110 SOLV0120 SOLV0130 SOLV0140 P_NODE = P_ESS_NODE_1; G_LOCPO: PP_W = P_W; PP_UG = P_UG; DO I=1 TO N; DP_SKIP(I) = SIGN(F_UG(I)) - 1; END; P_NODE = P_NEXT_ESS_NODE; IF P_NODE = NULL THEN GOTO G_LOOPO; SOLV0150 SOLVO160 SCLV0170 SOLV0180 SOLV0190 SOLV0200 19 Ó SOLV0210 Ō SCLV0220 SOI V0230

PL/I OPTIMIZING COMPILER

SOLVE_G: PROC REORDER;

STMT LEV NT

i

21 1 0 G_LCOP: SOLV0250 G. HIGH = -1E10; SCLV0260 $G_{\bullet}LOW = 1E10;$ $G_{\bullet}STEPS = G_{\bullet}STEPS+1;$ 22 1 SCLV0270 0 23 SCLV0280 0 1 24 1 0 TOL = TOL * 1.2;SOLV0290 25 1 0 s=0.; SCLV0300 26 1 0 P_NODE = P_ESS_NODE_1; SCLV0310 SOLV0320 G_LOOP1: /* COMPUTE VG = MAX/U/ Q(U) + SUM/Y/ PZ VH */SOLV0320 FP_UG = P_UG; FP_VG = P_VG; FP_W = P_W; DO I=1 TO N; F_VG(I) = -1.E5; SOLV0340 27 1 0 28 1 0 30 Ō 1 31 1 1 32 1 1 END; SOLV0370 SOLV0380 DO U=1 TO NU; FP_QZ = ADDR (P_QZ->F_QZ ((U-1)*N+1)); 33 1 0 1 SCLV0390 34 SCLV0400 1 SOLV0410 BB = '0'B; DO I=1 TO N; 35 1 1 SOLV0420 36 1 1 SOLV0430 B = DP_SKIP(I)=0 | (F_UG(I)=U&DP_SKIP(I)>0); 37 1 2 SOLV0440 SCLV0450 38 1 2 IF B THEN DO: SOLV0460 STRUCT_FLAG(I) = 1; WRK(I) = F_QZ(I); BB = '1'B; 39 1 3 SOLV0470 40 1 3 SOLV0480 41 1 3 SOL ¥0490 42 1 3 2 END: SOLV0500 43 ELSE STRUCT_FLAG(I) = 0; SOLV0510 1 21 END; IF -BB THEN GOTO NEXT_U; 44 SOLV0520 1 45 1 SOLV0530 SOLV0540 46 1 1 GOTO DP_OP; SOLV0550 RT_G: DO I=1 TO N: 47 1 1 SOLV0560 SOLV0570 IF DP_SKIP(I)=0 48 1 2 SOLV0580 THEN DO: SOLV0590 49 1 3 IF WRK(I)>F_VG(I) SOLV0600 $\begin{array}{l} II & WRR(1) > I \\ THEW DO; \\ WRK2(I) &= P VG(I); \\ P VG(I) &= WRK(I); \\ F UG(I) &= U; \\ \end{array}$ SOLV0610 1 50 Ц SCLV0620 51 SOL ¥0630 1 4 52 1 4 SOLV0640 . END; 53 4 SOLV0650 1 54 3 ELSE WRK2(I) = MAX (WRK(I), WRK2(I)); SOLV0660 1 55 1 3 ENC; SOLV0670 56 57 1 2 END; SOLV0680 NEXT_U: END; SCLV0690 1 SOLV0700

-252-
PL/I OPTIMIZING COMPILER SOLVE_G: PROC REORDER;

STMT LEV NT

-

.

-194

dia.

58	1	0	DO I=1 TO N;	SOLV0720
59	1	1	IF DP_SKIP(I)>0	50LV0730
			THEN DO;	SCLV0740
60	1	2	$DP_SKIP(I) = DP_SKIP(I) - 1$;	SOLV0750
61	1	2	$F \overline{V}G(I) = WRK(I)$;	SOLV0760
62	1	2	END:	SOLV0770
63	1	1	ELSE IF DP SKIP(I) = 0	SOLV0780
			THEN \overline{DP} SKIP(I) = MIN(100., (F VG(I)-WRK2(I))/ERP);	SOLV0790
64	1	1	IF F UG(I) $\neg = \overline{0}$ THEN S = (S+F VG(I)) $\overline{*}$. 5:	SOLV0800
65	1	1	END:	SOLV0810
66	1	0	P NODE = P NEXT ESS NODE:	SOLV0820
67	1	0	IF P NODE -= NULL	SCL V0830
			THEN GOTO G LCOP1:	SOLV0840
				SOLV0850
68	1	0	P NODE = P ESS NODE 1:	501.00860
69	1	õ	G LOOP2: Z* VH = VG - S AND GET ODONT BOUNDS	*/SOLV0870
70	1	õ	FP IIG = P IIG; FP VG = P VG; FP VH = P VH;	501.00880
72	1	õ	DO I=1 TO N:	501.00890
73	1	1	$\mathbf{IF} = \mathbf{IIG}(\mathbf{I}) = 0$	SOLV0900
		•	THEN DO:	SOL V0910
74	1	2	SS = F VG(T) - F VH(T)	501.00920
75	1	2	$G_{\rm H}$ TGH = MAX (SS.G. HTGH) + G.LOW = MTN (SS.G. TOW) +	SOL V0930
77	1	2	F VH(I) = $(F$ VG(T)+ F VH(T)- S) * 5:	501.00940
78	1	2		SOT V0950
79	1	1	END:	501,0960
80	1	ò	P NODE = P NEXT ESS NODE+	501.00970
81	1	õ		501.0980
•••		•		SOLVO990
				501 1 1000
82	1	0		501 1010
83	1	õ	TE TIME.G. S. TIME.IIMIT THEN RETURN.	SOLV1020
00	•	.,		SCLV1030
84	1	٥	$FRR = G_{-}HTGH - G_{-}IOW$	SOLV1040
85	1	ň		501 1050
	•	v	THEN GOTO G LOOP:	501.11060
				SOLV1070
86	1	0	RETURN.	SOLV1080
~ ~	•	•	The source of the second s	5, 5, 10,00

-253-

PL/I OPTIMIZING COMPILER SOLVE_G: PROC REORDER;

STMT LEV NT

87	1	0	SOLVE H: ENTRY.	SOLV1100
88	1	Ó	BT = BT H:	SOL V1110
89	1	Ó	TOL = TOL + 1E - 2	501.11120
		-		SOLV1130
90	1	0	H LOOP:	SOLV1140
91	1	ō	$H_{-}HTGH = -1E10; H_{-}LOW = 1E10;$	501.01150
92	1	ō	$H_{\bullet}STEPS = H_{\bullet}STEPS+1$:	SOLV1160
93	1	Ó	TOL = TOL *2	SOLV1170
94	1	0	S=0.:	SOLV1180
95	1	Ō	P NODE = P FSS NODE 1:	SOLV1190
96	1	0	H LOOP1:	SOLV1200
			IF TREC.H THEN GOTO H OUT1:	501.01210
97	1	0	FP $FLAG = P$ UG : FP W , P $LHS = P$ W :	501.11220
99	1	0		SOLV1230
100	1	0	FP OZ = ADDR(P OZ -> F OZ((U - 1) * N + 1)):	SOLV1240
101	1	0	DO I=1 TC N:	SOLV1250
102	1	1	IF FLAG(T) = 0	SOLV1260
			THEN $F W(I) = F OZ(I)$:	SOLV1270
103	1	1	END:	SOL V1280
104	1	0	GOTO DP OP:	SCLV1290
105	1	0	RT H:	SOLV1300
			DO I=1 TO N:	SOLV1310
106	1	1	IF $FLAG(I) = 0$	SOLV1320
			THEN S = $(S + F W(I)) * .5$:	SOLV1330
107	1	1	END:	SOL V1340
108	1	0	H CUT1:	SOLV1350
			P NODE = P NEXT ESS NODE:	SOLV1360
109	1	0	IF P NODE-=NULL THEN GOTO H LOOP1:	SOLV1370
110	1	0	P NODE = P ESS NOCE 1:	SOLV1380
111	1	0	H_LOCP2:	SOLV1390
			IF -REC.H THEN GOTO H OUT2:	SOLV1400
112	1	0	$FP_UG = P_UG; FP_W = \overline{P}_W; FP_VH = P_VH;$	SOLV1410
115	1	0	DO I=1 TO N;	SOLV1420
116	1	1	$IF F_UG(I) \neg = 0$	SCLV1430
			THEN DC:	SCLV1440
117	1	2	$SS = F_W(I) - F_VH(I);$	SOLV1450
118	1	2	$H \cdot HIGH = MAX(SS, H \cdot HIGH); H \cdot LOW = MIN(SS, H \cdot LOW);$	SOLV1460
120	1	2	$P_VH(I) = (F_W(I) + F_VH(I) - S) * .5;$	SOLV1470
121	1	2	END;	SOLV1480
122	1	1	END;	SOLV1490
123	1	0	H_OUT2:	SCLV1500
			P_NODE = P_NEXT_ESS_NODE;	SOLV1510
124	1	0	IF P_NODE-==NULL THEN GOTO H_LOCP2;	SOLV1520
125	1	0	CALL TIMING (TIME.H);	SOLV1530
126	1	0	IF TIME.H > TIME.LIMIT THEN RETURN;	SOLV1540
127	1	0	IP H.HIGH - H.LOW > TCL	SOLV1550
			THEN GOTO H_LCOP;	SOLV1560
128	1	0	RETURN;	SOLV1570

-254-

PL/I OPTIMIZING COMPILER

SOLVE_G: PROC REORDER;

STMT LEV NT

150

1 0

END;

129 1 0 DP_OP: SOLV1590 SOLV1600 SOLV1610 SOL #1620 SOLV1630 SOLV1640 SOLV1650 SOLV1660 DO Y = 1 TO NY; Z = 2CODE(U,Y);SOLV1670 130 1 1 SOLV1680 IF Z-=0 131 1 1 SOLV1690 SOLV1700 THEN DO; $P = P_NEXTZ(Z);$ IF P-=NULL 132 1 2 SOLV1710 133 1 2 SOLV1720 THEN DO; SOLV1730 THEN DO; FP_VH = P->P_ESS_NODE->P_VH; P = ADDR(P_PZ->P_PZ((Z-1)*N*N+1)); DO I=1 TC N; IF FLAG(I) ¬= 0 THEN DC; FP_PZ = ADDR(P->F_PZ((I-1)*N+1)); SS = 0.; DO J=1 TO N; SS= SS+ F_PZ(J) * F_VH(J); END; 134 135 136 1 3 SOLV1740 SOLV1750 1 3 3 SOLV1760 137 4 SCLV1770 1 SOLV1780 138 1 5 SOLV1790 139 1 5 5 SOLV1800 140 1 SOLV1810 141 1 6 SOLV1820 142 1 6 END: SOLV1930 143 5 $P_LHS \rightarrow F_W(I) = P_LHS \rightarrow F_W(I) + SS;$ SOLV1840 1 144 5 END; SOLV1850 1 145 1 4 END; SOLV1860 146 147 1 3 2 END; SCLV1870 END; 1 SOLV1890 148 1 END; SOLV1890 1 149 0 GOTO RT; SCLV1900 1

SOLV1910

•

PL/I CPTIMIZING COMPILER REPCRT: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1		0	REPORT: PROC REORDER;	RPT0010
				RPT0020
2	1	0	%INCLUDE DD1(DCL):	RPT0030
			/**************************************	RPT0040
			/* */	RPT0050
			/* PRINT RESULTS */	RPT0060
			/* */	RPT0070
			/**************************************	RPT0080
4	1	0	DCL (I,J) FIXED BIN, P POINTER, C CHAR(1) ALIGNED;	RPT0090
5	1	0	DCL SCAN EXT ENTRY;	RPT0100
				RPT0110
6	1	0	SIGNAL ENDPAGE(SYSPRINT):	RPT0120
				RPT0130
7	1	0	ERR = G.HIGH - H.LOW + 1.E-10;	PPT0140
8	1	0	P NODE, P REL=P ROCT;	EPT0150
9	1	0	$L\overline{E}V$, LO, $L\overline{O}O = O$	
10	1	0	IF P ESS NODE-=NULL	RPT0170
			THEN GOTO PD:	RPT0180
				RPT0190
11	1	0	LOOP:	PPT0200
			CALL SCAN:	RPT0210
12	1	0	IF P NODE-=NULL	RPT0220
			THEN GOTO PD:	RPT0230
				RPT0240
13	1	0	IF ERR<= MIN ERF M >= MAX M ESS M >= MAX FSS M	PPT0250
			TIMF.G >= TIME.LIMIT	RPT0260
			THEN DO:	RPT0270
14	1	1	PUT EDIT(' ',' *STOP*') (COL(1),A,COL(86),A):	RPT0280
15	1	1	STOP:	RPT0290
16	1	1	END	RPT0300
17	1	0	RETURN;	RPT0310

18	1	0	PD:	RPT0330
			IF LINENO(SYSPPINT) > 55-N*FMT	RPT0340
			THEN SIGNAL ENDPAGE(SYSPRINT):	RPT0350
19	1	0	PUT SKIP(2);	RPT0360
				RPT0370
20	1	0	IF REC.G THEN PUT EDIT('G') (COL(14), A):	PPT0380
21	1	0	IF REC.H THEN PUT EDIT ("H") (A) :	RPT0390
				PPT0400
22	1	0	J = UH;	RPT0410
23	1	0	PUT EDIT(J) $(COL(19), F(3))$;	PPT0420
				RPT0430
24	1	0	$FP_UG = P_UG;$	RPT0440
25	1	0	C = '*';	RPT0450
26	1	0	DO I=1 TO N;	RPT0460
27	1	1	IP $P_{IIG}(I) = 0$ & P UG $(I) = J$	RPT047
			THEN DO:	PPT0480
28	1	2	C = 1	RPT0490
29	1	2	GOTC STAR OUT:	RPT0500
30	1	2	END:	RPT0510
31	1	1	END;	RPT0520
32	1	0	STAR OUT:	RPT0530
			PUT EDIT(C)(A):	RPT0540
				RPT0550
33	1	0	IF P NODE = P ROOT	RPT0560
			THEN PUT $EDIT(' \le >)$ (COL(73).A):	RPT0570
34	1	0	ELSE DO:	8970580
35	1	1	PUT EDIT (Z BACK) (COL(MAX($1,76-1,EV = 3$)), $F(3)$):	FPT0590
36	1	1	P = P NODE	RPT0600
37	1	1	DO $I = \overline{IEV} - 2$ TO LO BY -1 :	RPT0610
38	1	2	$F = P \rightarrow P BACK$:	RPT0620
39	1	2	PUT EDIT ($P \rightarrow Z$ BACK) (F(3)):	RPT0630
40	1	2	END:	RPT0640
41	1	1	END:	3PT0650
				PPT0660
42	1	0	IF FMT=0	RPT0670
			THEN GOTO LOCP:	RPT0680
				RPT0690
43	1	0	PP TPM = P TPM: FP VG = P VG: FP VH = P VH:	RPT0700
46	1	0	DO I=1 TO N:	RPT0710
47	1	1	IF F UG (I) $\gamma = 0$	RPT0720
			THEN DO:	RPT0730
48	1	2	PUT EDIT (I, P UG(I), P VG(I)) (COL(16), 2 P(3), $P(6, 2)$):	PPT0740
49	1	2	IF REC.H THEN PUT EDIT (F VH (I)) (F (6.2)):	PPT0750
50	1	2	PUT EDIT ((F TPM ((I-1) *N+J) DO J=1 TO N)) (CCL (34) -5 F(8.4)) :	RPT0760
51	1	2	END:	RPT0770
52	1	1	END;	RPT0780
53	1	0	GOTO LOOP;	RPT0790
54	1	0	END;	RPT0800

PL/I CPTIMIZING COMPILER REPORT: PROC REORDER;

STMT LEV NT

, .**A**s

-257-

PL/I OPTIMIZING COMPILER SCAN: PROC PFORDER;

SOURCE LISTING

STMT LEV NT

1		0	SCAN: PROC REORDER;	SCAN0010
				SCAN0020
2	1	0	%INCLUDE DD1(DCL):	SCAN0030
			/* FIND NEXT ESS NODE AFTER P NCD? IN TREE CROFE */	SCAN0040
				SCAN0050
4	1	0	DCL I FIXED BIN:	SCANDOGO
5	1	0	LO = LFV:	SCAN2070
6	1	0	NFW NODE:	SCANDORO
			I = 0:	SCAN0090
7	1	0	CLIMB:	SCAN0100
			FP BRANCHES = P BPANCHES:	SCAN0110
8	1	0	$D_{\Omega} = I + 1 T_{\Omega} NZ$	SCAN0120
9	1	1	IP F E BRANCH(Z) & F P BRANCH(Z) →=NULL	SCAN0130
			THEN GOTO NEXT LEV;	SCAN0140
10	1	1	END;	SCAN0150
			/* ALL BRANCHES HAVE BEEN	SCAN0160
			EXPLORED, GC BACK DOWN	*/SCAN0170
11	1	0	DCWN:	SCAN0180
			IF LEV=LOO	SCAN0 190
			THEN DO:	SCAN0200
12	1	1	P NODÉ = NULL:	SCAN0210
13	1	1	FETURN:	SCAN0220
14	1	1	END;	SCAN0230
15	1	0	LEV, LO = LEV-1;	SCAN0240
16	1	0	$I = Z_BACK$	SCAN0250
17	1	0	$P_NODE = P_BACK;$	SCAN0260
18	1	0	$P_{REL} = P_{REL} \rightarrow P BACK;$	SCAN0270
19	1	0	GCTO CLIME;	SCAN0280
			/* CLIMB BPANCH 2	*/SCAN0290
20	1	0	NEXT_LEV:	SCAN0 300
			LEV = LEV+1;	SCAN0310
21	1	0	$P_NODE = F_P_BRANCH(Z);$	SCAN0320
22	1	0	$P_{REL} = P_{REL} \rightarrow P_{BRANCHES} \rightarrow P_{P}_{BRANCH}(Z);$	SCAN0330
23	1	0	$PP_BPANCHES = P_BRANCHES;$	SCAN0340
24	1	0	DOZ = 1 TC NZ;	SCAN0 350
25	1	1	IF F_E_BRANCH(Z) & F_P_BRANCH(Z) = NULL	SCANO 360
			THEN PETURN;	SCAN0370
26	1	1	END;	SCAN0380
27	1	0	GOTO NEW_NODE:	SCAN0390
28	1	0	END;	SCAN0400

-259-

SYMBOL TABLE

a[P], a[<u>z</u>],	D-sense spread of normalized range, 100
a	Detectability index, 49,53,115
{b(k)}	Finite-horizon weights, 28
С	Connected class of states, 81
C(k)	Detectable classification of states at time k, 118
D	Metric on $\Pi_{N}, 87, 94-96$
e ⁱ	Unit vector, 11
<u>e</u>	Empty word, 62
ess[M]	Essential part of memory set, 70
_{Εγ} {•}	Expectation under strategy γ , 26
g(b,γ), g(β,γ), g(γ)	Performance indices, 28
g[M], g ⁿ	Perceptive gain, 145
h[M], h ⁿ	Pseudo-perceptive gain, 147
$I(\underline{z}), J(\underline{z})$	Possible states (preceding, following) evolution of \underline{z} , 63
k	Time, 21-22
К	Horizon, 22
ℓ(<u>z</u>)	Length of word \underline{z} , 62
l _p , Ī	(Reachability, detectability) time constant, 48-49, (82,115)
L(β, l)	Discounted time interval, 135
М	Memory set, 66
m	Value-iteration step, 128,136
Ν	Number of states, 21

n	Iteration number, 37-38,145
$P_{\underline{z}}^{M}(i,j,\underline{z})$	Transition probabilities of augmented system, 76-77
P(y u)	Transition probability matrix, 21
Prob _y { }	Probability under strategy γ , 25-26
q(k)	Expected incremental reward at time k, 28
q(u)	Expected incremental reward vector, 29
$q_{\underline{z}}^{M}(i,u)$	Expected incremental rewards for augmented system, 76-77
Q _{max} , Q _{min} , Q	Bounds on expected incremental rewards, 29
r(k)	Reward at time k,
row _i [P],	Row of a matrix, 11
R _N	N-dimensional Euclidean space, 11
s(k)	State at time k, 21
S	State set, 21
Τ(η,u,y), Τ(η,<u>z</u>)	Information vector transition function, 26,64
$T^{M}(\underline{z},\underline{z}')$	Memory state transition function, 68
u(k)	Input at time k, 21
U	Input set, 21
v ^{k,K}	Finite-horizon value function, 125
v*	Infinite-horizon relative value function, 134
v	Banach space of continuous bounded real-valued functions on ${\rm II}_{ m N}$, 96
x ^M (k)	Augmented state at time k, 75
X[M]	Augmented state set, 75

-260-

ł

Ŷ[М]	Connected class of augmented states, 83
y(k)	Output at time k, 21
Y	Output set, 21
$\underline{z}^{M}(k)$	Memory state at time k, 66
Z	Set of input-output pairs, 62
z ⁺	Set of input-output words, 64
() ⁺	Positive part, 11
<a,b>, [a,b], [a,b)</a,b>	(Integers, reals) between a and b, 11
-	Subtraction of rightmost part of word, 65
0	Bayes' operator, 51,82
•	Sum of vector components, 12
•	Sup norm, 96
$\left\ \cdot \right\ _{\mathrm{D}}$, $\left\ \cdot \right\ _{\Delta}$	Variation of convex function, 97-98
α[P], α[<u>z</u>]	Δ -sense contraction, 100
α, α	Detectability index, 53,106,109,112,114
β	Discount, 28
γ	Decision strategy, 24,78
δ	Hajnal measure, 87,93
Δ	Metric on Π_{N} , 87,89
η (k)	Information vector at time k, 26
μ (k)	Number of detectable classes, 118
π(0)	Initial state probability vector, 21
$\Pi_{\mathbf{N}}, \tilde{\Pi}_{\mathbf{N}}$	Unit simplex of (stochastic, substochastic) vectors, 11

-261-

	-262-
ρ	Reachability index, 48,82
σ[<u>z</u> ,φ]	Policy compatability flag, 114
τ φ, φ	Elasticity of memory effectiveness, 16-17, 106,109,112,114 Feasible strategy and the policy that realizes it, 78
$\phi^{\mathbf{M}}$	Pseudo-perceptive strategy derived from ψ^{M} , 146-147
$\frac{1}{\phi}$ *	Optimal feasible strategy, 134
Φ[M]	Set of feasible strategies adapted to M, 78
χ	Connectivity index, 81-82
ψ , $\overline{\psi}$	Perceptive strategy and the policy that realizes it, 79
ψ^{M}	Optimal perceptive strategy adapted to M, 146
Ψ[M]	Set of perceptive strategies adapted to M, 79
Ω	Value of information, 50,135

-263-

GLOSSARY

accept: The action in which a system receives an input, 21.

<u>augmentation</u>: Transformation of an FPS to one having augmented states, 58,76.

<u>augmented</u> <u>state</u>: Transformed state consisting of a delayed internal state and a memory state, 57,75.

<u>concatenation</u>: Two or more words (strings) placed end to end so as to form a single word, 62.

<u>connectivity</u>: A relation between states i and j indicating that the system in state i may eventually enter state j provided that suitable inputs are selected in the interim, 81.

controller: A dynamical realization of the decision strategy, 24.

<u>control problem</u>: The problem of designing a controller which realizes an optimal or ε -optimal strategy, 31.

<u>decision</u> <u>strategy</u>: A (possibly probabilistic) rule for the selection of plant inputs, 24.

<u>detectability</u>: A condition under which the information vector is increasingly insensitive to increasingly delayed information, 105-106,53.

emit: The action in which an output is generated by the system, 21.

essential memory state: A memory state that is recurrent under some policy, 70.

<u>estimation problem</u>: The problem of recursively computing an estimator or sufficient statistic. In the case of an FPS, the estimator is the information vector, 30.

<u>feasible</u>: A strategy is feasible if it can be realized on the basis of available information; otherwise it is perceptive, 78.

<u>finite-memory</u> <u>constraint</u>: The constraint that a decision strategy be realizable by a finite-state automaton, 24.

<u>finite probabilistic</u> system: A discrete-time, finite-input, finite output finite-state stationary controlled stochastic process, 13,20-22.

FPS: See "finite probabilistic system."

<u>free</u> <u>FPS</u>: An FPS whose input set contains but one element, i.e. an FPS whose input process may be ignored.

free system induced by a decision strategy: The system which results when a plant and its controller are considered as a single unit, 23-24.

horizon: Length of the time set, 22.

infinitely delayed splurge: Phenomenon arising in the absense of detectability, 48,142.

information vector: A vector, which may be computed by an observer, whose i-th entry is the <u>a posteriori</u> probability that the system is in state i, 26.

information vector transition function: The rule by which an observer updates the information vector, 26.

<u>memory</u> <u>set</u>: A vocabulary of input-output words available to the observer, 57,65-66.

<u>memory</u> <u>state</u>: The word of most recent input-output pairs retained by the observer, 57,65-66.

memory state transition function: The rule by which an observer updates the memory state, 68.

memory tree: A graphical representation of the memory set, 66-68.

observer: A system which accepts plant outputs and computes the information vector (or an approximation thereof), 30.

perception: An output which has been artificially added to the plant to facilitate computation, 35,54.

plant: The system to be observed or controlled, 13,18.

policy: A finite array which specifies the decision strategy, 14,78-79.

<u>pseudo-perception</u>: An approximation to a perception, obtained by guessing the value of the perception on the basis of the memory state, 54,146.

<u>reachability</u>: A condition under which the state of an FPS can be made to assume a desired value with probability bounded from below, for any initial state probability vector, 48,82.

<u>realization</u>: Specification of system components which will act according to a given rule, e.g. a controller realizes a decision strategy, 14,24.

representation: Specification according to a particular system of notation, 20,22.

reward: The component of a performance index which depends on an particular input-output pair as well as the states preceeding and following it, 27; the expected incremental reward depends only an input and the state preceeding it, 28-29.

state-calculability: A possible FPS property, given by (2.3), 23.

state-observability: A possible FPS property, given by (2.4), 23.

statistical decision problem: A control problem in which plant dynamics are unaffected by input values, 30.

strategy: See decision strategy.

<u>subrectangularity</u>: A property of substochastic matrices given by (13.1) 99; also, a possible property of FPS's given by (14.1) and (14.7), 105,106,109.

SDT: Strong detectability.

SSR: Strong subrectangularity.

valued finite probabilistic system: An FPS, along with a process of incremental rewards or expected incremental rewards, making possible the definition of performance indices as a function of strategy, 28.

VFPS: See "valued finite probabilistic system."

WDT: Weak detectability.

WSR: Weak subrectangularity.