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ABSTRACT

The objective of this thesis is to apply Shannon In-
formation Theory to Modern Filtering (estimation) theory. The
thesis begins with a comparison of the information theory and
filtering problems. From this comparison an information theo-
retic formulation of the filtering problem (linear and nonlin-
ear) is synthesized that realistically imbeds the filtering
problem in an information framework. Subject to a basic but
reasonable assumption this formulation explains the useful re-
lation between information and distortion (e.g., MSE) in fil-
tering and makes possible optimum and suboptimum filter design,
evaluation and comparison. The theory developed is applied to
the linear Gaussian Reduced Order Filter problem where, since
computability is elementary, all concepts can be clearly illu-
strated in a simple example.

Lower bounds are developed for optimum and suboptimum
filters based on Shannon's lower bound on the rate distortion
function. TFirst application is made to the Reduced Order Fil-
ter problem where the easy to compute lower bound gives an in-
dication of how good a suboptimal filter can perform given its
information. Secondly a formula for a lower bound on optimum
MSE applicable to both the discrete and continuous nonlinear
filtering problem is obtained based on the Bucy representation
theorem. The formula is then applied to the Phase Locked Loop
where it is shown that in the nonlinear, high noise to signal
ratio, region the bound performs significantly better than
other rate distortion lower bounds.
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TITLE: Professor of Electrical Engineering
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Objectives

The objectives of this thesis is to apply Shannon
Information Theory to Modern Filtering (estimation) theory.

The technological requirements of the second world
war brought about the development of two mathematical theories
for solving the problem of extracting desirable information
out of signals corrupted with undesirable noise. These two
approaches, Shannon's Inforﬁation Theory and Wiener's Filtering
Theory, not only shared a common objective but utilized prob-
ability theory as a basis for modeling the attendant physical
phenomenon. Nevertheless, these two disciplines started and
have continued to develop along different paths guided by
seemingly different applications, communications and control.

The relation betwecen these two bodies of knowledge in
terms of their mutual relevancy has remained to a great extent
an unanswered question. The opinions usually given range
from "they are essentially the same' to '"they are essentially
different" to an uncommital '"there must be some connection."
The question of how precisely do the filtering problem and the
information theory problem compare has not been adequately

addressed. And in particular the question of how can
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information theory be profitably used in filtering has not been
given careful consideration.

These questions are certainly more than an inteclectual
curiosity. Thanks to the celebrated works of Kalman and Bucy
and that of Kushner and Stratonovich modern filtering theory,
liberated from the difficulties of Wiener's formulation, has
emerged as the area of modern system theory with perhaps the
greatest practical importance. Its versatility and applic-
ability has been proven time and again in diverse physical
situations too many to mention in the present context. New
applications arise every day.

Success in filtering applications however has been in-
Variably accompanied with considerable difficulties in going
from theory to practice which continue to make filter design,
evaluation, and comparison an uncertain art. At the heart of
these obstacles is a persistent trend in filtering research
towards development in the two separate areas of theory. and
practice. Thus in nonlinear filtering a number of represen-
tation theories that characterize the '"solution" to the problem
have been derived but in practice the optimal estimator cannot
be realized nor is it possible to compute the error associated
with the optimal solution or that associated with that of the
various ad hoc suboptimal filtering schemes (except perhaps
through expensive and not always reliable Monte Carlo simu-

lation). In linear filtering an analogous situation exists

18



for hile in theory the Kalman filter provides the solution to
the problem, in practice the optimal estimator cannot be real-
ized due to excessive computational requirements Or poor sSen-
sitivity to modeling errors. The dichoﬁomy between theory and
practice can therefore be attributed to the lack of a general
framework into which optimal and suboptimal filtering can be
imbedded and within which suboptimal filter design, evaluation,
and comparison can be straightforwardly executed.

The objectives of this study are (1) to analyze the
difference between the information theory and filtering problem;
and (2) based on this analysis, to apply information theory to
practical filter design, evaluation, and comparison. We shall
see that the central question is the relation between informa-
tion and distortion in the filtering context and that informa-
tion theory, when properly used, can provide a general frame-

work for optimum and suboptimum, linear and nonlinear filtering.

1.2 Chapter by Chapter Summary
The specific ways in which the study of information
and distortion in filtering is conducted is as follows.
Chapter 2 begins with a summary of the main concepts
of information theory followed by a description of the various
information theory problems. The object of the presentation
is to precisely delineate the features that characterize the

information theory problem and thus lay the groundwork for a

19



critical comparison in Chapter 3 of the information and fil-
tering problem. Also included in this chapter is a short sur-
vey of the work that has appeared in the literature on the
subject of information and filtering.

Chapter 3 contains the basic results of this study
upon which subsequent chapters elaborate. First, based on the
conclusions of Chapter 2, the differences between the infor-
mation theory and filtering problems are first presented. From
this comparison an information theoretic formulation of the
filtering problem* is synthesized that realistically imbeds
the filtering problem in an dinformation framework. Subject to
a basic but reasonable assumption this formulation explains the
useful relation between information and distortion (e.g. MSE)
in filtering and makes possible filter design, evaluation, and
comparison based on information. Also included in this chapter
are lowerbounds on distortion (e.g. MSE) for optimum and sub-
optimum filters based on Shannon's lowerbound on the rate dis-
tortion function.

Chapter 4 considers the linear gaussian reduced order
filter problem where computation of the various information
quantities is elementary. Most of the development is carried
out in terms of a simple numerical example for which it is easy

to show that the necessary assumptions hold and which clearly

*"Filtering problem" is taken to include both linear and non-
linear filtering.

20



ijllustrates the relation between information and distortion in
filtering and thus the concepts and methods of filter deéign,
evaluation, and comparison developed in.Chapter 3. A general
lowerbound on MSE for the reduced order filter problem is also
derived based on the bounds derived in Chapter 3.

In Chapter 5 a specific formula is derived for the
lowerbound on optimum filtering MSE of Chapter 3 applicable
to both the continuous and discrete time nonlinear filtering
problem. This formula offers several advaniages over the
Zakai-Ziv bound (38) as discussed in Section 5.2.

Finally in Chapter 6 the results of Chapter 5 are
applied to the phase locked loop and it is seen that in the
nonlinear high noise to signal ratio, region the perfcrmance of
the lowerbound of Chapter 5 is superior to that of the Zakai-

Ziv bound.

13 General Remarks

Historically this study was motivated by the paper
by Zakai and Ziv '"Lower and Upper Bounds on Optimal Filtering
Error of Certain Diffusion Processes'" (38) which is sum-
marized in Section 5.1. Originally the object was to gen-
eralize the bound in (38) to produce an improved version of
the rate distortion bound. This in turn led to the question
of what could be a meaningful way to relate information and

error in filter design. Special mention must also be made of

21
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the Ph.D. Thesis by T. Duncan (3) where the Bucy representation
is given a careful and complete analysis and which influenced
the development of Chapter 5.

In regard to mathematical sophistication, rigor has
been sacrificed in places where it would stand in the way of
concepts and make the presentation lengthy with irrelevant
technicalities. On the other hand, advanced mathematics has
been used whenever necessary.

A special effort has been made to clearly label all
results taken from the literature with the name of the relevant
source. In particular lemmas and theorems available in the
literature are accordingly referenced (e.g. "Lemma 1 (Bucy-
Mortesen-Duncan)').

Finally we call attention to the existence of the
Table of Symbols and Abbreviations as well as the Table of

Lemmas, Theorems, Corollaries, and the Bibliography.

22
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CHAPTER 2

INFORMATION AND FILTERING: A SURVEY

This chapter is basically a survey of relevant concepts
in filtering and information that we shall need, and of the work
that has appeared in the literature relating these two disci-
plines. It is written primérily for the filtering specialist
who has had little acquaintance with information theory.

In Section 2.1 the filtering problem is precisely de-
fined and as a byproduct the'notation that will be used in the
sequel is introduced. Section 2.2 contains a brief exposition
of the elements of Shannon's Theory of Information. The pre-
sentation includes both intuitive and formal definitions of the
basic information and the rate distortion function as well as a
summary of the central results in information theory -- the
various coding theorems. Finally a survey of the various con-
tributions that have appeared in the literature on the subject
of information and filtering is given in Section 2.3 together
with a discussion of the difficulties common to these studies.
In the next chapter we shall show how these difficulties can be

overcome by properly formulating the filtering problem.

2.1 The Filtering Problem
In this section we first define precisely the nonlinear

filtering problem (NLFP) in continuous and discrete time and
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A

then give their "solution'" in terms of the_Bucy—Mortensen—Duncan
representation theorem. While there are other continuous time
representation results available (e.g. Kushner (1), Frost-Kailath
(2) we choose to present the Bucy-Mortensen-Duncan representa-
tion because we will use it later in Chapters 3 and 5. TFinally
what we will refer to as '"the filtering problem'" is defined.
Unless otherwise stated states, observations, etc. are vectors
of arbitrary and compatible dimensions.

The NLFP: Continuous Time (See, e.g., (3))

(1) Let Cn[O,t] be the space of R® valued continuous functions.

Let
o =40 % 2= 20,81 x C'0,%)

Let

——
los)
~N
g
N’
Il

wg: se[0,t]} on (2, B

——
o)
~
€
N
1l

Bs: se[0,t]1} on (5, B,, P)

be independent Brownian motions with parameters Q(t), R(t)

respectively and take as the basic probability space

P) =(2 x &, B, xB,_, P - P)

(2) E t t?

t’

(2) Consider the Ito equations

dx a(xt, t) dt + b(xt, t) dBt (2.1)

t

dy, = g(x,, t) dt + dB (2.2)

t t

24



where the usual conditions required for the processes x to

tr g
exist, to be unique, and to be diffusion processes are assumed :
a, b, g are measurable in both arguments and satisfy a global
Lipshitz condition on the first argument;

(3) The problem then is to find the functional §t cf the obser-
vation process {ys, se[0,t]} that minimizes the mean-squared

error (MSE)

e, = EB {(xt—xt)(xt-xt)’}.

The discrete time nonlinear filtering problem is ana-
logous to the continuous time problem except that the various
conditions can be relaxed since existence and uniqueness do not
present a problem.

The NLFP: Discrete Time (See e.g.(4))

(1) Let RE be the space of sequences with k entries in R®. Let
2=0x Q=R xRy

Let
{Bj(w) = uy | je [0,k]1} on (9, Bk’ P)
{B,(w) = w, | je [0,k]} on (2, B,, P)

J J k’

be sequences of independent Gaussian random variables such that

for 1, .Jelo,kl

25



E{BiBj] = Q; 8(i-J), E{BiBj} = R;8(i-J)
E{BiBj} =0 for all i, j

where
Sy = 1 if i=j

0 otherwise
Take as the basic probability space
k k <K 2

(2, BS, P) = (2 x Q, B x BY, P - P)

(2) Consider the difference equations

X a(x.

g 4) * b(xy, 3B (2.3)

J+1

Vijep = 8(Xjuq. JH1) + Byyy (2.4)

where a, b, g are assumed to be measurable in both arguments.
(3) The problem is to find the functional §k of the observa-

tion sequence {yj, jel0,k]} that minimizes the MSE
£ = Eg(xk—xk) (xk—xk)

As is well known, the solution to the NLFP in both
continuous and discrete time can be expressed in terms of the

conditional expectations

A ot A k
x, = BE(x 1y ) , % = E(x|y)

26



where gg and yg are the sub-o-fields of g?, Ek induced by the
observation processes {ys, se[0,t]}, {yj, jel0,k]} respectively.
These conditional expectations can be expressed (leaving all
technical difficulties aside) in terms of the conditional den-
sities p(xtlyg ), p(xklyg) and these densities can in turn be
obtained from a representation theorem first proposed by Bucy(5)
in terms of a discrete to continuous time limit. The theorem
was rigorously proved by Mortensen(6) without recourse to
"discrete-continuous arguments'" but under severe restrictions
(which, for example, excluded linear systems). Duncan (3) re-
moved these restrictions. The theorem has also been proved by
Wonham (7) for the case of Markov chains and by Kaliampur,
Striebel, and Fujisaki (8, 9, 10, 11, 12).

The Bucy-Mortensen-Duncan representation theorem which
we now present is central to both the information theoretic
formulation of the filtering problem that we introduce in
Chapter 3 as well as for the rate distortion lower bound on
filtering MSE that we derive in Chapter 5. The continuous time
version (Lemma 1, below) is based on Duncan (3) while the dis-
crete time version (Lemma 2) is taken from Bucy (4). The proofs
of these theorems can be found in the indicated references --
the discrete time proof follows almost immediately from Bayes
rule while the continuous time version is considerably more

difficult (see Jazwinski (13) for an intuitive demonstration).
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Lemma 1 (Bucy-Mortensen-Duncan, (5), (6), (3)). Con-

tinuous time NLFP defined above. Let PX be the measure induced

on Bt by Eq. 2.1; Py be the measure induced on Et bt Egqs. 2.1,

2.2. Let y, = ofy_, sel[0,t]}CB,. Then,
t S =t

y t E = 3 7
dp ) Py wt[ X, x} ) 0 - % a,O,;S,se[O,t])

X
TCRALTS) (2.5)

dp T E .
X Py {vt}

where:

o Vg sel0,t]) = exp {z (xg,v ,sel0,t])]

-wt(x

Ty (x5 Vg s [0,%]) = {Lf g(s,xs)’R—l(S)dyS

-3 I(;t g(s,xs)’Rﬁl(S)g(S,Xs)dS}

Yt
Py (A)

]

k pGx, tla,0,y,se(0,t])dx

Py (A) = [ p(x,t[a,0)dx

for A eBt, B ¢ the Borel field and the derivative on the left
hand side of (2.5) is a Radon-Nikodym derivative (50,78,93).

E.O.L.

Lemma 2 (Bucy, (4)). Consider the discrete time NLFP
defined above. - Let PX be the measure indiced on Bk by BEq. (2.3):

Py be the measure induced on ék induced by Egs. (2.3),(2.4). Let
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Yy = o{yj,j e[0,k]}. Then

l .
K Epy (o | x = %) pGxk | ,0,5,3¢(0,K1)
dPX EPX {wk} p(x,k|a,0)

<
o
~
»
.
<
[
(N
™
o
23
o
It

exp {ck(xj,yj,j€[0,k])}

k 1
= I yiRTT(3elxy,3)
j=0 .

-
Z
J

Il o~

. [ .
Og(xj,J) R (J)g(xj,a)

Yk )
Py (8) ng(x,kla,o,yj,gs[o,k]) dx

Py (A) = [yp(x,k|a,0) dx

for AéBk, Be the Borel field. E.O.L.

Except in very simple cases (14,15), the Bucy-Mortensen-Duncan
representation theorems, cannot be used to compute the optimal
estimate. However, the characterization it offers is, as will
become apparent in later chapters, particularly suited to the
jnformation study of both the NLFP and the Filtering Problem
which we now define.

The Filtering Problem. The term "Filtering Problem"

will be used here to denote the situation where the functional
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of the data that defines the estimate ﬁt or ﬁnxnaytmeconstrained
to a given class (e.g., when the filter is constrained to have a
specific structure such as being recursive or of a certain dimen-
sion). Compare with the NLFP where virtually no constraint is
placed on the class to which the filter belongs.

Having introduced the pertinent definitions and results

of filtering theory that we shall need in the sequel we now pro-

ceed to do likewise with information theory.

2.2 Elements of Shannon Information Thecry

In this section we give a brief introduction to the
main concepts of Shannon information and rate distortion theory.
The presentation starts with a simple and intuitive definition
of information in subsection 2.2.1 followed by more general and
rigorous definitions in subsection 2.2.2. In subsection 2.2.3
the basic information theory problem is defined and its central
result (the various coding theorems) is presented. Next in sub-
section 2.2.4 we introduce the rate distortion function and de-
scribe its rol¥ in information theory. Finally in subsection
2.2.5 a modification of the information *heory problem which
arises when the are '"remote'" sources and users is presented.

It is important to emphasize that the choice in the

aspects of information theory presented in this section is

determined by what is needed in the remainder of this study.
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In particular the concepts introduced in this section play a

key role in the logical development that leads to the synthesis
in Chapter 3 of a realistic and useful information theoretic
formulation of the filtering problem. Naturally, then, no
attempt is made at presenting a comprehensive treatise of in-
formation theory, this being readily available in standard texts

(16,17,18,19,20) and the original work of Shannon (21,22).

2.2.1 Intuitive Definition of Information

This section borrows heavily from Carlson (23) and also
from Gallagher (16).

Shannon Information Theory is based on a precise yet

intuitively appealing quantizing of uncertainty. That is, the

information associated with an event is intended to be a mea-
sure of the uncertainty of the event, where in turn the uncer-
tainty of the event is measured by its probability of occurrence.
Consider a set of events {A,B,C,...} with which we
have associated corresponding probabilifies of occurrence {PA,
PB’ PC,...} and suppose we wish to find a function f defined on
these probabilities that will give us a measure of the informa-

tion {IA = f(PA), I_ = f (PB), I, = f(PC)..Z} contained in

B C
these events -- i.e., the self-information of these events.
It seems 'reasonable" to require that f have the following pro-

perties:

(1) That f be always positive.
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(2) That if P 1 (no uncertainty associated with event

A
0 (there is no information contained in

A) then IA
the event)
(3) That if PA > PB (event B more uncertain that A) then

I, > IA (event B has more self-information than event

B
A)

(4) If events A and B are independent (P(A,B)=P(A)-P(B))
then the information contained in the event (A,B) is
simply the sum IA + IB of the informations associated

with events A and B. The only function f that satis-

fies the above properties is

. _ o A
I, = f(PA) = -log PA P

A

and IA is called the self-information associated with
event A.

Generalizing the concept of self-information a bit,
consider the random variable x(w) which takes values in the

alphabet set say that the self-information contained in the

event {x(w)=j}, jed is given by
I (x(w)=j) = -log P (x(w)=J)

and we can define the average self-information of the alphabet
J (corresponding to the probability assignment PX) or associa-
ted with the random variable X as
H(J) or H(x)=] [-log P _(x(w)=j)] P(x(w)=j)
jed
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H(x) or H(J) is called the entropy of x or J and the random
variable I(x(w)) is called the self-information of x.

Suppose now that jointly defined with x we have another
random variable y taking up values in the alphabet set K = {1,2
...m} with marginal probability assignment Py’ joint probability

assignment Px and conditional assignment ley/Py. We can

.y’
then define the conditional self-information and conditional

entropy (average conditional self-information) of X given y as:

I(x(w)]y(w)) = -log Py (x(w)|y(w))
H(x|y) = - | I 1log Px|y(X(w)=j|y(w)=k)
jed kekK
. P,y (x(©)=3,y(w)=k)

Just as the self-informationof x was a measure of the uncer-
tainty contained in x, the self-information of x given y is a
measure of the uncertainty about X remaining after y is'given
or observed.

Consider now the difference A = H(x) - H(x{y). This is
the difference between the apriori (average) uncertainty in x
and the remaining uncertainty in x once y has been observed --
i.e., A is a measure of the reduction in uncertainty in x
caused by the observation or a measure of the information about

X contained in y. It is called the average mutual information

between x and vy,

I(x;y) = H(x) - H(x|y)
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P

and
i(x(w); y(w)) = I(x(w)) - I(x(w)|y(w))

is called the mutual information or information density. A

little arithmetic shows that

_ ) P ly(x@)y(w)) Py (x(w),y(w))
1(x(e);y(w)) = 108 =% (w)) T OB P )P (v(e))

and similarly

Il
0~

P, (x=ily=k)
1(x;¥) ) [}og xly ] Py (x=3,y=K)

jed Kkek Px(x=j)

I

P (x=3, y=k)
z 1 Xy . r=4 =
kek Px.y(x Jj, y=k)

p og g =
jed P (x J) Py(y k)

The average mutual information I(x;y) (often called

the mutual information or just information for short) is the

fundamental quantity in information theory. In fact the other
quantities can be expressed in terms of mutual information
e.g., H(x)=ZIx;x)) or in terms of conditional mutual information

Pry z(X(@),y(w)]z(w))
L (x(@)[z())P ), (y(w)]2(w))

i(x(w);y(w)|z(w)) = log 3

x| vz

. o P(x=3,y=kl|z(w))
I(f,ylz(w)) ng kgk 108 Bryef oo} b Or=KT20m))

P(x=j-y=k|z(w))
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I(x;ylz) = ] I(x;y|z=t) P, (2=1)
2eL

(e.g. H(x y)=I(x;x[y)) where z is another random variable jointly
defined with x, y and taking values in the alphabet set L.
Mutual information has the following properties:
I(x;y)=I(y;x)
i(x;y) 2 0 with probability one
I(x;y¥) >0

I(x;y) < H(x)

Similar properties can be derived for conditional mutual infor-
mation.

The purpose of this section has been to give an intui-
tive understanding of what the quantities arising in Shannon
Information Theory represent. We may summarize the preceding

discussion as follows:

Information of required to eliminate
X uncertainty about x

H(x) = [Average Self- } = [Total information ]

I(x;y) = [Average mutual] = [Info provided about
info between X X by y
| and ¥y

H(x|y) =

entropy of x given about x by y

[Average conditional’] = [Info not provided]
| ¥

= [Uncertainty about x|
remaining after y
has been observed
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A more extensive introduction to Shannon information can be

found in many places in the literature, for example;

Gallagher (15) Chapter
Carlson (23) Chapter 8
Sakrison (17) Chapter 6

Toby Berger (20) Chapter 2

2.2.2 Formal Definition of Information
This section is based on Sakrison (17) and Pinsker (19).
In the preceding section we defined the various information
quantities associated with random variables x, y, 2 -- i.e.,
with real valued measurable functions (a.s. finite) on some pro-
bability space. We now wish to extend these definitions to
random variables taking values in arbitrary spaces; more pre-
cisely to random entities of countable dimension (Sakrison (17))
such as a random vector, a random sequence, or a separable sto-
chastic process. Thus, taking (0, Sw’ Pm) as our basic pro-
bability space we will speak of the measurable maps x, y, 2z,

etc.,

x: (@, S, P)) —=(X, S, P)

y: (Q: S ’ Pw)—'—’(Y, S

w Py)

y,

z: (9, Sw’ Pw)-————>(Z, Sz’ PZ)
where X, Y, Z are the spaces where x, y, z take sample values,
S., S, S_ are associated o-fields, and P_, P_, P_ are the

X y Z X y Z
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induced measures (e.g., P_ =P - X 7). We will also speak of

maps such as

(x, ¥):(R, S, P)) ——=(X X ¥, S xS, P )

One way to extend the definition of I(x:y) from random
variables to arbitrary random entities is to consider a sequence
of partitions, say Hn’ compqsed of rectangles of X x Y, ordered
by refinement as done by Gelfand-Yaglom(24). We thus have

associated with partition i

P__(A,, Bj)

n z _ Xy 1 A%
I'(x:y) = ) L |10 5355 (B

< J

] P y(A;, By) (2.6)

I(x;y) can be defined in terms of this sequence (which is mono-
tonically increasing) as

sup o I
I(x;y) = all " I"(x;y) (2.7)

whenever the sup exists.

This definition can be shown to be equivalent with one
that makes the concept of mutual information considerably
clearer thanks to the theorem of Dobrushin. Dobrushin's thorem
states that we need not look at rectangles but only at the mea-
surable sets so that in effects mutual information is a pro-

perty of the probability spaces involved:

Lemma 3 (Dobrushin, 19) Let & be a field (50) that

generates Sx X Sy and let R be a family of partitions of X x Y
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whose elements belong to 9: . The I(x;y) as defined by Egs.

(2.6), (2,7) is given by

(x;¥) (E.JeR 711 xy F1) P_(E.)
I(x;y) = 1E. e og o :
i i PX 5 y(hi) Xy i
provided every partition of sets of ZL has a subpartition that
belongs to R (where Px Xy is the product measure).

E.O.L.

Lemma 4 (Gelfand-Yaglom (24), Perez (25)). If ny is

absolutely continuous with respect to PX Xy then

ap |
I(x;y) = [ log —=—¥— (x,y) P_._ P_.  (dx,dy) (2.38)
- X X Y dPx x y X*y X°*y

Otherwise I(Xx;y) = .

E.O.L.

A similar development can be made for conditional
mutual information resulting in the following analogue to

Lemma 4.

Lemma 5 (Dobrushin, (19)). If P is absolutely

x'ylz
continuous with respect to Px-ylz then
dP .o 12(%:¥+2)
I(x;y]z) = [ log 35 Px_y.z(dx,dy,dz)
XXYXZ xxy |z (2.9)

provided the conditional pr's are regular (see Translation
remarks to Pinsker(19) Chapter 3). Otherwise I(x;ylz) = o™,

E:O0.L; 38



There are many interesting and useful relations that
can be derived in terms of mutual information and conditional
mutual information for abstract valued random variables. (See
for example Pinsker.) Among the properfies, two that we shall
need in what follows are Kolmogorov's formula and a result on

the invariance of information due to Gelfand-Yaglom.

Lemma 6 (Kolmogorov). Let x, y, 2z be random entities of

countable dimension as defined above. Then

i(x; vy, 2) = i(x; ylz) + i(x;2) a.s.

I(x; 'y, 2) = I(x; y|z) + I(x;2)

E.O.L.

Lemma 7 (Gelfand-Yaglom, (24)). Let x, y, z be ran-
dom entities of countable dimension as defined above. Further
suppose that z=A - y where A: (Y,Sy)——»(Z,SZ) is measurable.

Then

I(x;y) > I(x;2) = L(x;A « y) | (2.10)

and the equality holds if A is one-one.

E.O.L.

The inequality in this last lemma makes sense in the

light of Dobrushin's Theorem (Lemma 3, above) since clearly

Sy:)A_l. Sz. The sufficiency of one-oneness is equality clear.

The question naturally arises as to whether one-oneness is also
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necessary for the equality to hold. It turns out that one-oneness
can be relaxed by introducing the concepts of subordination and
everywhere dense. These concepts are more natural in informa-
tion than the concept of measurability and we shall find them
useful in later sections.

Consider the random entities x, y as defined above*.

y is subordinate(19) to x if O{X}CZSw is Pw—everywhere dense in

o{y}. y is everywhere dense (19) in x if (1) y is a measurable

function of x and (2) is subordinate to y.

Observe that

[y e.d. in x] =>[y is a meas. function of x] =

[y subordinate to x]

so that subordination and denseness are weaker and stronger
respectively than measurability. Also observe that "y every-
where dense in x'" is stronger than y and x mutually subor-
dinate. Mutual subordination in fact allows us to relax the
condition for equality in Lemma 7 as evident from the following
lemma.

Lemma 8 (Pinsker 19). As far as information relations
are concerned, mutually subordinate random entities may be con-

sidered equivalent in the sense that replacing one of them by

* . 3 . A

Recall that the notation o{x} means sigma field induced by x.
For a more detailed exposition of the concepts of subordina-
tion and everywhere dense see Pinsker (19).
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the other effects no change in such a relation.

E.O.L.

Thus in Lemma 7 we can replace "A measurable and one-
one'" with the weaker "y and z=A-y mutually subordinate'". This
is still a sufficient condition, however, and it seems that a
necessary and sufficient condition for equality in Eq. (2.9),
if one exists, must involve as well the random entity x.

Intuitively, y subordinate to x implies that with
knowledge of x, y can almost be determined so that if X is
given, y provides almost no information. In precise terms,

then, we have the following lemma which we shall need later.

Lemma 9 (Pinsker, 19). Let x, y, z be random entities
as defined above and suppose y is subordinate to x. We then

have

1}
o
Y
1)

i(y,z|x)

]
o

I(y,z|x) (2.11)

E.O.L.

Having considered in this section the basic informa-
tion quantities and some of their properties we now proceed
to outline how they cna be used in the definition and solution

of the information theory problem.
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2.2.3 Main Results of Information Theory (16,23)

Since Shannon's formulation in the 1940's, a consider-
able amount of scientific work has been done in developing and
applying information theory. As in the previous sections, our
objective here is not to give a complete survey of important
results in information theory, but rather to bring out the
main results that characterize information theory and that will
be useful later on in our study. In particular we wish to
bring out the basic features of information theory that would
permit a meaningful comparison with filtering and allow a
formulation of the filtering problem in an information theoretic
context. As it was done in Section 2.1 for the filtering pro-
blem, we begin in this section with a formulation of the

Information Theory Problem (ITP) and then follow it by the

problem's '"solution."
The information theory problem is illustrated in

Fig. 2.1 in its simplest form and can be stated as follows:

SOURCE X 5!  ENCODER ,
plx), H(x]
CHANNEL plzly)C
A z
USER r( DECODER <
Figure 2.1 Simplified Information Theory Problem
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Given: A probabilistic source whose output is the

random variable x with* PDF p(x).

A probabilistic transition called the channel

described in terms of the conditionsal PDF p(z]y).

Find: The encoder and decoder which, if possible, will
achieve zero (i.e., arbitrarily small) probability

~
of error in reproducing X as x to the user.

It turns out that the sclution to the information theory pro-
blem (which will be given below after introducing a model more
realistic than that of Fig. 2.1) can esentially be expressed
in terms of the information quantities defined in the previous
section. Specifically for the purposes of the solution to the
theory problem the source can be characterized by its entropy
H(x) and the channel can be characterized by its capacity C
which in the elementary case is given by (the maximization is

over all possible channel inputs as characterized by their

PDF's p(y))

C max (y;2z)

p(y)

max [ | [log Eiélll] p(z|y)p(y) dy dz

p(y) v 2 (=)

where p(z) is clearly a funciton of p(y) (Bayes rule). A simi-

lar definition can be given for the case when y, z are vectors

*
PDF stands for probability density function.

43



P Et—— P —

and for the case when y, 2z are random processes in terms of the
appropriate Radon-Nikodym derivative.

A more realistic version of the information theory pro-
blem is illustrated in Fig. 2.2 where time enters into the pic-
ture and the encoder and decoder have been divided into source
and channel encoders and decoders with respective buffer memo-
ries. The source produces for simplicity independent indenti-
cally distributed random variables with entropy H(x) at the
rate of r=1 letter per second. A block of L of these letters
are stored in the buffer and then this block gets passed to the
source encoder which converts this sequence into binary data.
That this conversion can be accomplished without distortion is

guaranteed by the important coding theorcm.

Co ] 1
|
| I i |
%% FFER Yy o¥pe s
| T SOURCE Ly Speeuil 3 CHANNEL Bl
SCE e EA b s > MEMORY > e
~OURCE e 'f‘;' GRY ™1 EncooeR ] S 2 g ENCOORR [
1 L | |
| i | |
Ccerenmae Mepgenpnn e sz J o]

r— - 3 e S 1
| ; } (
| : | '
SER ol SOURCE BuFFeR | ! f crannet | | eurrer 2y
Hak = CEcooEr [ meEmcry T 1 DECODER MEMORY : 3ty
l | |
| I ! |
b i e o e g o] R e R ORI AP —
Figure 2.2 More realistic version of

Information Theory Problem
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Shannon Source Coding Thecorem for discrete

memoryless sources (21, 16). The block of

source letters Xy Xy (Fig. 2.2) can be

converted by an appropriate source encoder

into a sequence of L'=L-H(x) binary digits

with zero probability of error provided L

is sufficiently large.

Next consider the channel encoder. The buffer stores
a block of N binary letters and then passes it to the channel
encoder whose purpose is to code this sequence into signals to
be transmitted through a possibly noisy channel, in such a way
that they can be decoded and delivered to the user with zero
probability of error. That this is possible is assured by the
celebrated Shannon Channel Coding Theorem which is the funda-
mental result of information theory when no distortion is
allowed.

Main Result of Information Theory (no distor-

tion case): Shannon Channel Coding Theorem.
There exists a channel encoder such that trans-
mission through the possibly noisy channel can
be achieved with arbitrarily small probability
of error provided H(x) < C and the block length
N is sufficiently large. More specifically the
probability of error Pe is bounded by

Pe < exp [-N f(H,C)]
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where f(H,C) is a function only of the source
entropy* and the channel and has the general
properties illustrated in Fig. 2.3, so that for
H < C it is possible to make Pé—*—O by choosing

N large enough.

HHﬁ)A

Figure 2.3 Sketch of f(H,C) as a Function of H

The channel coding theorem is a remarkable result since, when
taken together with the source coding theorem, it given con-
ditions in terms of information quantities under which it is
possible to have error free communication even in the presence
of noise by choosing an appropriate coder-decoder combination
and using large enough sequences. In fact, the starting point
of information theory problems is to prove a specialized ver-
sion of the coding theorem directly applicable to the parti-
cular situation in order to assure the feasibility of approxi-
mately solving the problem by the various coding techniques.

The purpose of the above presentation has been to

bring out five specific characteristics for our future use of

- .
Actually a function of the entropy rate rH but here r=1

letter/secc.
46



the information theory problem (ITP) which can be summarized as

follows:

1. In the ITP both the encoder and decoder
are to be designed.

2. The performance index in the ITP is an
interval* performance index.

3. The solution té the ITP is asymptotic in
nature in the sense that it holds for
block lengths approaching infinity.

4. The solution to the ITP is an existence
result (and no technigue presently exists
of synthesizing this solution).

5. Perfect communication is the object of the

ITP considered in this section.

In the next section we consider the ITP problem where
less than perfect communication is allowed -- i.e. a certain
amount of distoriton is tolerable. In order to study this
situation we introduce Shannon's Rate Distortion Theory. We
will find that analogous ''coding theorems'" can be formulated
and that conclusions analogous to 1, 2, 3, and 4 in the pre-

vious paragraph will be reached.

*
For a discussion of interval vs. point performance indices
see Van Trees (42). 47
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2.2.4 Rate Distoriton Theory (20, 16, 17, 22)

The most comprehensive treatment.of rate distortion
theory available is Berger(20). This section is based on this
as well as on Sakrison(17) and Gallagher(16). Shannon's funda-
mental paper is reference (22).

Rate Distortion Theory treats the case of the ITP
where a certain level of distortion is tolerable. Naturally
the starting point is to define distortion and in order to do
this consider Fig. 2.4. The distortion measure between X4 and

its reproduction

. - [ Xy iBgin
SOURCE 3~ TRANSITION P USER
S0) al%[x) pi2): [alk|x)pix) dx
Figure 2.4
§1 is simply defined as a function dl(xl’ §1) taking up values

in the nonnegative reals. The particular distortion méasure

we will be interested in is the squared error,

R A B
dy(x4,%4) = (x5 = X4)

but there are many other possible choices (see subsection 3.3.3).
In a more general context we need a measure of dis-

tortion between words x = {xl,...,x }
a4 n ’

[™ >

- {xl,...,xn}, say

d (x,X). The set F, of all possible d_(x, X),
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F, = {d (x, X), 1 < n< «)

is called a fidelity criterion. One possible way to define dn

is in terms of a function d(xk, §k),

o
I
=2l

n A
Z d(xy, X))

k=1

in which case Fd is called a single letter fidelity criterion.

Since d and dn are random variables, we can form their averages,

e = [ a(x,%) p(x,x) dx df

Observe that for a given source since p(xk,xk) = q(xklxk) p(xk),

e and €, are functions of the conditional PDF q:

e = €(q), B = en(q)

The information theory problem with distortion (ITPWD)

can be defined as follows:
Given: A source and a fidelity criterion
Find: A communication system that achieves

average distortion (e or en) D.

Thus we are interested in delivering to the user the X
sequence of Fig. 2.4 with no more distortion than, say, D. The

question is then how much information need X have about x in

order that the distortion does not surpass D. The answer can be
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given in terms of the rate distortion function R(D). In the
case where the scquence Xis Xgyon is composed of independent
jdentically distributed random variables we can define R(D),

the rate distortion of the source relative to fidelity criterion

Fd’ in terms of the PDF of one single random variable:

R(D) = min I(x;X) 62:12)
qeQp

QD = {q(x|§) e conditional PDI ; c(q)fD}

In the case that the sequence Xqo Kopeoe is not formed of inde-

pendent identically distributed rv's

R = min
QEQD

S

I (x;X) (2.13)

Qp {a(x|x) : e, (a)<D}

where x and g have n letters each and the rate distortion func-

tion becomes

R(D) = lim Rn(D)
n-w
if the 1limit exists. More generally if X1 Koy oo is a sequence
independent random entities of countable dimension with identi-
cal probability law we can define the rate distortion function
as in Eq. (2.12) (since in section 2.2.2 we have defined

I(x;%) in general) and for the case where the X, are not
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independent and with equal pr. law we can define it as in Eq.
(2.13) provided some regularity conditions are met (see Berger
(26), (20), Sakrison (17)). The rate distortion function is

convex in D as shown in Fig. 2.5.

R(D) A

Figure 2.5 Typical Rate Distortion TFunction

An alternate and perhaps more intuitively pleasing way
of defining R(D) is as a distortion-rate curve D(R). Refering
to Figs. 2.4 and 2.5 consider all transitions q',qa,qe,qy,...
which give mutual information I(x;§)=I'.at corresponding dis-
tortion levles D',Da, DB’DY"°' thus specifying the points
illustrated in Fig. 2.5. Among all these "iso-information"
transitions choose the one (in this case q') that achieves the
minimum distortion. A point on the rate distortion curve
(I',D') (or on the distortion-rate curve (D', I')) would then
be specified.

While arguments may shed some light on the somewhat
obscure definition of R(D) of Egs. (2.12,13) it is important to

realize that in information theory the raison d'etre for. the
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rate distortion function is that as defined it can be used in

proving a coding theorem. Specifically the solution to the

ITPYD can be given in terms of the rate distortion function. We

now proceed to present this solution.

Observe that, as illustrated in Fig. 2.4, the rate
distortion function and the formulation of the ITPWD are con-
cerned with the overall performance obtained and not on what
is inside the transition defined by q(glx) (i.e., whether in-
side the transition there is a "poor coder'" and a 'good channel
viceversa, etc.). In order to produce the solution to the
ITPWD, however, we model the transition as illustrated in Fig.
2.6. We observe that if we can code the sequence Xq5 A OTRRE
into a binary sequence §1, §2,... of finite entropy H' while
preserving fidelity € < D then by the Channel Coding Theorem of
the previous section we can recover this sequence at the output
of the decoder (provided H'< C, proper channel coding, long
sequences, etc.) with no further distortion. Thus the solution
to the ITPWD reduces to proving a source coding theorem and
only the Reduced Transition of Fig. 2.6 need be considered.

Main Result of Rate Distortion Theory:

Shannon Source Coding Theorem with distortion.
For any D>0 and 6>0 there exists a source en-

coder such that for the block length N suffi-

ciently large the Xy Xg,... Sequence can be
reproduced by the El, 22,... with average
distortion e <D+ 3§

52



i |
| pre———y |
| o
| BUFFER & | R INE l
XX s Ve .| SOURCE 11X CHANNEL
SOURGE i.i' Qf??ﬁ; | ENCODER } 7| ENCODER, {
|
|
| St |
| /
EDUCE ITION ¥ l
TRANSITION=_ | REDUCED TRANSITIO I
{ CHANNEL }
C
| |
Xpkg i | CHANNEL =
USER -« l AND SOURCE f=¢ |
| DECODER
l |
| |
e s i s s s ]
Fig. 2.6 Transition model for solution of ITPWD

It can also be shown that the channel capacity required by the
channel such that the average distortion of the overall system

of Fig. 2.6 is arbitrarily close to D is R(D). Thus R(D) is

the effective entropy of the source when distortion D is allowed.
As in the case of the ITP, the starting point of problems where
distortion is allowed is to prove a specialized version of the
coding theorem directly applicable to the particulaf situation

in order to be able to ascertain the feasibility of approximately
solving the problem by various coding techniques.

Summarizing the features of the ITPWD which are rele-

vant for our study we observe that they are analogous to those

of the ITP of the previous section, namely:

1. In the ITPWD both the encoder and decoder

are to be designed.
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2. The performance index in the ITPWD (the
fidelity criterion Fd) is an interval
performance index.

3. The solution to the ITPWD is asymptotic in
nature in the sense that it holds for block
lengths approaching infinity.

4. The solution to the ITPWD is an existence
result (and no technique presently exists

of synthesizing this solution).

2.2.5 Remote Sources and Ugers

We now introduce a modification of the basic ITPWD
presented in the last section first considered by Dobrushin
and Tsybakov (41) and more recently by Wolf and Ziv (40) and
Berger (20). The concepts involved in this modified ITPWD
(in particular that of a random map) will be useful in the next
chapter. We concentrate on the work of Wolf and Ziv, indicating
at the end the ways in which the results of Dobrushin, Tsybakov,
and Berger differ.

The basic situation of remote sources and users 1is
illustrated in Fig. 2.7 where a source puts out a signal xg

(or xg for the discrete time case) denoted by x. The source

and encoder are separated by a random map* over which the de-

signer has no control and similarly the decoder and the user

are separated by another random map so that the source and the

*See (40), (20).
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user are thought of being at locations 'remote'" to the communi-
cation system composed of encoder-channel-decoder. The random
maps, blocks 2,3,6, are specified by conditional probability
measures q;, do; ag wherecas the encoder and decoder are de-
scribed by deterministic maps f, g which are to be chosen. The
cascade of maps formed by blocks 1 through 7 are defined to be

such that random entities x, s, vy, §, s, § form a Markov chain.

The distortion measure is taken to be

T

N
T AT, _ 1 (T s |2 No N, _1
d(x, X)) = 7 IOE(xt—xt) or d(x_ X, )=F z

7
l |
1 x ) 2 s | 3 <
SOURCE 3| SOURCE MAP {31  ENCODER f |
X]...XN . 5 .SN_1 | = I
xy.te[0,T] o (oTx] sptef0T) l
| ' |
| Y |
| ¢ 5
| | cHANNEL o (3]¥)]-
COMMUNICATION | 2 ;
SYSTEM | = l
\Hl y l !
| Y }
| 5
| DECODER | g %
|
| |
N
7 ; 6 ls\
USER < USER MAP <
q4(%]3)
Figure 2.7 ITPWD For Remote Sources and Users
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The main result of Wolf-Ziv is that the average dis-
tortion for this problem is given by (e.g. in the continuous

case)

T AT 1 2 1 A~ 2
d(xo, X )= ETIIX—E(XIS)ll + ETIIu—E(u]y)ll

+ Byl [x-ECuly) || (2.14)
where
1112 = 5 ()%t
u = E(x]|s)
v = E(uly)

so that the optimum distortion is given by

d(xz,xg) = E% ]|x—E(x]s)||2 +

+ 30 L | Ju-ml$H11? + B 15-E@I5N? (2.15)

These equations in effect say that the structure of the optimum
encoder and decoder must be indicated in Fig. 2.8. Both the
encoder and decoder must include a conditional mean computer,
the distortion incurred in this extimation step being an un-
avoidable component of the overall distortion.
The above development does not in principle solve the

problem since it does not assure that reliable (up to a certain
distortion level) communication is possible. That is, a coding
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Figure 2.8 Structure of Optimal Communications System

for Remote Source-User Problem

theorem needs to be proved. This has been done by Dobrushin and
Tsybakov (41) for the more restrictive case where the source is
Gaussian, the source and receiving maps are additive indepen-
dent* Gaussian noise and naturally T»«. Berger (20) proves
coding theorems for two versions of the problem. In the more
elementary case, the source puts out a sequence of independent
identically distributed random variables and the source and
user maps are memoryless random transformations. The prescribed
distortion can be achieved for 'long enough' sequences. In the

more complex version, X is a stationary Gaussian random process

*
Independence is not required for the source mapping noise.
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(or sequence), the source and user maps are allowed to have
memory, and the distortion measure is a ''frequency weighted
squared error criterion" (see(20)). The rate distortion func-

tion is defined as (referring to Fig. 2.7)

1

TI(s;s)

R(D) = lim inf
T+ q(s|s)eQ
and the coding theorem assuring distortion level D for large
enough T is proved in terms of this rate distortion function.

The basic purpose of.this section has been to intro-

duce the concept of the source and user maps as it has been

used in the ITPWD nroblem. In particular we note that the four

fundamental features of the ITP and ITPWD listed at the end of

sections 2.2.3,4 are still found in the remote source and user

problem: (1) Both the encoder and decoder are to be designed;
(2) The performance index is an interval performance index; (3)

While Egs. (2.14), (2.15) hold for finite T, the solutions are

_still asymptotic statements; (4) The solutions are existence

results.

Our next step is to begin to study the interaction be-

tween filtering, distortion, and information, based on the brief

discription of the filtering and information theory problems
(with and without distortion) given above. The approach to be
followed is to‘first, in Section 2.3 summarize the work that
has been done in this area and to point out the limitations
associdted with these contributions. Then in Chapter 3 a more

58



natural information theoretic framework with which to treat the

filtering problem will be given.

2.3 Information in Filtering: Survey of Previous Work

In this section we present a short survey of the work
that has been done relating information, filtering and dynami-
cal systems. Since our principal concern is filtering as de-
fined in Section 2.1, contributions to (parameter) estimation
are omitted. The order of presentation is almost chronological.

Goblick 1965. (27) The problem consider by Goblick is

illustrated in Fig. 2.9. The signal {a(t), te[0,T]} is a sta-
tionary process which is to be transmitted through a communica-
tion system that includes a channel of capacity C subject to a

constraint of the form

e=E {& [] (a(t) - a(t)? at} <D (2.16)

EEEREREEESSSS —

] { |
aft)te[0,7] } |
SOURCE L—-|  ENCODER |
|
I 1
Y {

TRANSITION

CHANNEL I

<
|
1 Y ' |
USER 4ol DECODER }
| :
- - J

Figure 2.9 Model Considered By Goblick
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The specific question considered is, given the source and the
channel, what is the minimum error € min that can be obtained.
Using results as presented in the previous section Goblick con-

cludes that €nin must be given the solution to the equation

R(e ) =C (2.17)

min
where R(D) is the source's rate distortion function subject to
the fidelity criterion defined by Eq. (2.16)

R(D) = inf RL(D)
T T

_ o1 t At
RT(D) = min 5 I(ao,ao)

which is of form analogous to Eq. (2.13). While Eq. (2.17) is
very difficult to sovle in general since R(D) is very difficult
to compute, Goblick considers some Gaussian examples where
(2.17) can be used particularly in the above threshold (linear)
region.

Weidemann and Stear 1970 (28,29). The situation con-

sidered by Weidemann-Stear(28) and by Weidemann(29) is illus-
trated in Fig. 2.8 where the say kth entry in the finite dimen-
sional vectors x, y, s, w, etc. corresponds to the kth time
éample. As in the Wiener filter problem the object is to pro-
duce an estimate of the ideal signal y obtained by a transfor-
mation of the signal x where no particular model for X is

assumed. In this case, however, the transformation D, as well

as all others, are not necessarily linear nor realizable (e.g.,
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for j<k, yj may depend on xk). The distortion measure used is
the entropy of the error signal H(y). Using information identi-
ties and the rate distortion function with respect to the error
entropy fidelity criterion, Weidemann and Stear arrive at the
following conclusions in regard to the model of Fig. 2.10:
(1) The entropy of the error can be lower
bounded as follows:
H(y-y) > H(y) - 1(y;2)
(2) Minimizing I(y-y;z) is equivalent to
minimizing H(y—§).
(3) Define
CT = I(x;2z)
as the '"channel transmittance" of the
sensor. Then
H(y) - H(y-y) < CT
so that if C is the channel capacity of the
sensor channel (since by definition I(x;z) < C)
H(y) - H(y-y) < CT < C (2.18)
Eq. (2.18) in particular is a result similar. to a coding
theorem and a consequence of the "coding theorem nature' of
Weidemann's formulation. In effect Eq. (2.18) says that the
performance of the estimating system as measured by the left
side of the inequality is bounded by the channel transmittance
and channel capacity of the sensor.

Bucy 1968 (4). Bucy devotes a page of his book to

the following very interesting result.
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Lemma 10 (Bucy). Consider the linear-Gaussian special
case of the NLFP defined above where dynamcis and observation

equations are given by:

dxt

a(t)xt dt + b(t) dB xo: Gaussian random variable

t )

dy g(t)x, dt + dﬁt

t

Let a4 be the set of all maps A:C(0,t)»R. Then a necessary con-

dition for Aoca/ to be the optimum MSE estimator is that it

maximizes I(xt; Ayg) where yg = (ys, 0 <s < t). Furthermore
B gy g -
I(xy3¥g) = 138750 = 8up T(x A, )

Ae

The proof of this theorem relies completely on the Gaussianness
of the random entitities involved. Specifically, Bucy computes

I(xt;yg) and I(xt;Qt) where x, is the Kalman-Bucy estimate,

t
according to the formulas derived for Gaussian processes by
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Gelfand-Yaglom(24) and shows that these two informations are
equal. The results then follow from Lemma 7, above, since for
. - -
all Ae , I(xt,Ayo) < I(Xt’ yo).
In Chapter 3 we shall see that under the proper assump-
tions this Lemma 10 can be proved for the general NLFP.

Duncan 1967, 1969, 1970 (3,30,31,32,33).

Following Duncan (30), who considered the linear case, Kailath's
likelihood ratio formula (31,32) can be used to prove the
following result that we shall need later.

Lemma 11 (Kailath, Duncan). Consider the NLFP as

defined above,

-

dxt = a(xt,t)dt + b(xt,t)dBt , t >0
- 5 332 =
dy, = g(x,,t)dt + dB , (dB )" = R(t)dt
Then
t.t=lt _" "1 2y
I(x5;¥,)= 3E[y (gg - 8y)' R(t) (gg -g4)ds - (2.19)

where
~ i S
g8, = E(gglyy)-

Eq.(2.19) is similar in nature to the formula derived by
Gelfand-Yaglom(24) for the information about a Gaussian

random variable x, contained in a (jointly defined) Gaussian

t

-t
random process Vs>

-1
I(xy3ve) = -} log 3[E(Xt'E(xtly2))2:’ [= =] §
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in that both depend on a filtering error. Unfortunately both
of these formulas in themselves say little about the optimal
estimate nor about suboptimal estimates.

Gray 1969, 1270 (34,35). Gray.has computed the rate

distortion function R(D) relative to (among other distortion

measures) MSE of sources modeled as autoregressive processes:

n
X = - ) ax + z
n k=1 k" n-k n
n
1 v & (@
e== ) E(x, - %)
noy2q k k

and we recall from Eq. (2.13)

R (D) = 2 min  I(x;X)
qeQ,

R(D) = 1lim R_(D)
n->c n
where as usual Q = {conditional densities q(§|§) 2 € & Dis HE
also proves the corresponding coding theorems in terms of R(D).

Toms and Berger 1971 (36,37). Toms and Berger compute

the rate distortion function of sources modelled by discrete
time linear dynamic systems and the channel capacity of chan-
nels also modelled as linear dynamic systems. A channel coding
theorem is also proved for these models.

We observe that with the notable exception of Bucy's

result all of the above investigations are strongly influenced

64



by the ITPWD as typified by the four characteristics listed at

the end of section 2.3. Thus note in Goblick's work the sta-

tionarity requirement, the interval nature of the performance
index and especially the inherent interval and asymptotic nature
(and apparent validity for large T only) of channel capacity

and the rate distortion function. The ITPWD and coding theorem
influences on the work of Werdemann-Stear is also evident as can
be seen for example from the interval nature of the results
(e.g. Eq. (2.18) as well as the non-causality of the situation
(just as a block encoder is not causal within a block). Gray,
Toms, and Berger are explicitly concerned with the ITPWD and
their interest in using dynamic and autoregressive systems for
models of channels and sources is directed towards obtaining
more explicity results for the solution of the ITPWD.

The formula of Kailath-Duncan (Eq. (2.18), above),

-1

Ixlv0) = 3 E [ (g8 BTH(s) (g8 )ds (2.20)

is sometimes taken as establishing the relation (or even equiva-
lency) of the ITP and NLFP. It should be noted however that
while, it may be true that if for 0 < s < t §s is a '"'good"

suboptimal estimate of Xg and és = g(ﬁs, s) we may have that

I(x,;¥g) = I(x ;%) 7 3E [ (g,~84) R (s) (g -g )ds

it does not say that

(. R T DR D
o7 3B [ (8,8 )R (s) (848, )ds (2.21)

o

t,
I(xo,
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and in fact the right hand side of (2.21) is greater than the
right hand side of (2.20) whereas one wouid expect that the
left hand side of (2.21) be less than the left hand side of
(2.20). TFormula (2.20) also says little about the precise na-

ture of the two problems. It thus seems more appropriate to

consider the Kailath-Duncan formula as a relation -- and to be
sure an important one -- between quantities arising in the ITP
and NLFP.

We have not mentioned in this section what we consider
to be the most important work we have encountered in this study,
the paper "Lower and Upper Bounds ..." (38) by Zakai and Ziv,
since we devote a full section to it in Chapter 5. We mention
at this'point, however, that while their derivation was re-
stricted to stationary processes (apparently for pedagogical
reasons) they were not hindered by the 'coding theorem influ-

ences" typical in the above mentioned studies.
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CHAPTER 3

A NEW INFORMATION THEORETIC FORMULATION
OF THE FILTERING PROBLEM*

3.1 Preliminary Remarks

In the preceding chapter we presented a short descrip-
tion of the ITP and ITPWD emphasizing five key characteristics
of these problems listed at the end of subsections 2.2.3 and
2.2.4 which we repeat here for easy reference. For both the

ITP and ITPWD:

" [ Both encoder énd decoder are available for
design.

2. The performance index is an interval PI.

3. The solution is asymptotic in nature (and

so are the entities, such as channel capa-
city and rate distortion functions, in
terms of which this solution is expressed).
4, The solution is an existence result.
And for the ITP:
5. The object is perfect reproduction.
We also summarized at the end of Chapter 2 the various con-
tributions relating filtering to information and observed that

(with the noted exceptions) these studies had been influenced

*We use '"filtering'" for "filtering problem" as was defined in
Section 2.1.
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by the above features of the ITPWD and implied that this in-
fluence was adverse in nature, thus hinting at the following

important conclusion of our study:

We claim that the above four features of the

ITPWD are forecign to practical filtering and

that the NLFP and ITPWD are basically different

Qroblems.

Thus, while in both problems the object is to repro-
duce at the destination a signal x(t) subject to some fidelity
requirement, in the filtering problem the sensor (g in Egs.
(2.2), (2.4)) is not available for design while encoder design
is an inherent part of the ITPWD.*

| Further, the Performance Index (PI) in the NLFP is a
point PI as opposed to an interval PI** in the ITPWD. Only in
the case of stationary processes would interval and point PI's
coincide and this is not, in general, the case of Egs. (2.1),
(2.3), nor is it even the case in the linear Kalman filter
problem. It should also be noted that in 'steady state fil-
tering" the PI is also a point PI, namely the error at « or
large T, and behavior in [0,«) or [0,T) is not an issue.

The asymptotic nature of the solution to the IPTWD

imposes severe restrictions on the processes that can be

*¥* This fact was observed by Weidemann-Stear (28, 29).

**¥See VanTrees (42) Chapter 3 for a discussion of point and
interval PI's.
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usefully considered since in order for the necessary quantities
to merely exist, stationarity and some form of ergodicity must
be required. These conditions are too demanding for the fil-
tering problem since even the Kalman filtering problem is non-
stationary in nature. Turthermore, the "long words'" nature of
the solution to the ITPWD eliminates causality -- an important
feature of the filtering problem -- since block encoding is
clearly not causal within the block (and the block must be
long for the desired performance to be achieved).

Since, in view of the above comments the ITPWD and
NLFP are different in nature, an existence result for the
ITPWD would not contribute to the solution of the NLFP. 1In
any case, existence results are not among the most pressing
problems in filtering.

Finally, with regard to item (5) above, the object of
the ITP is perfect reproduction which is clearly not a realis-
tic goal in filtering.

The preceding remarks should not be taken as saying

that information theory is useless in filtering, and in fact

the remainder of this thesis is devoted to demonstrating that

on the contrary information concepts and an information the-

oretic framework can be exceedingly useful in practical fil-

tering. The point is that considerable advantage can be de-

rived from bypassing the classical ITPWD as epitomized by the

coding theorems -- that is by modifying the information .theory
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problem to fit the filtering situation rather than by distort-

ing filtering (or taking a very special case) in order to

"shoe-horn-it" into the ITPWD.

The objectives of this chapter are: (1) to provide a
formulation of the filtering problem -- including both the
NLFP where filter structure is unconstrained as well as the
case where the receiver is restricted to a given class -- in
information theoretic terms that makes clear the interplay and
usefulness of information concepts in filtering; and (2) as a
byproduct, to derive a number of useful filter performance
lowerbounds.

In Section 3.2 such a formulation is presented making
use of the Bucy-Mortenson-Duncan representation and the concept
of a random source map introduced in the subsection on Remote
Sources and Users (subsection 2.2.5).

In order to understand how, based on the above formu-
lation, filtering can be imbedded in information terms we in-
troduce in Section 3.3 constrained rate distortion functions.
This is the key concept in understanding the implications of
information on filtering both when the filter structure is
unconstrained as in the NLFP as well as when structure is con-
strained as is the case in reduced order filtering to be con-
sidered in the next chapter. Effectively constrained rate

distortion functions imbed in an information framework not only
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optimal but also suboptimal filtering, and both at a concept-
ual level and in the form of design guidelines.

Also based in the formulation of Section 3.2, a num-
ber of useful performance lowerbounds for both optimal and sub-
optimal filters are derived in Section 3.4. The bound for op-
timum MSE will be further developed in Chapter 5 where expli-
cit formulas are obtained and in chapter 6 where these formu-
las are applied to a concrete example, the phase lock loop. The
bound on suboptimal MSE will be applied in Chapter 4 to the
reduced order filter problem where, because of the gausianness
of the situation, the computation of information loss is ele-
mentary.

Sections 3.2 through 3.4 are formulated in discrete
time for clarity of presentation and in order to avoid unduly
complicating the issues with measure theoretic concepts. It is
very clear, however, that all results are valid in continuous
time since no difficulty arises that could not be cured by a
proper choice of a separable and measurable version of the pro-
cesses involved (and these versions obviously exist for the
kind of processes we consider). Furthermore, ''translation”
from discrete to continuous time can be done in a straight-
forward way upon providing the necessary technicalities since
none of the arguments depend on the usual pitfalls (e.g., in-
novations reasoning, time limits, etc.). Consequently it is

only necessary (and then only for reference in the sequel) to
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give in Section 3.5 continuous time versions of only a few
of the results of the previous sections.

Finally we note that while special attention is given
in this chapter to MSE the entire development is applicable to
a wide variety of distortion measures.

The chapter closes with a short summary in Section 3.6.

3.2 A New Information Theoretic Formulation of the Filtering
Problem

Our objective is to provide a framework for the fil-
tering problem that, first, realistically models the problem;
and second that allows treatment by information concepts while
at the same time avoids the inadmissible features of the ITPWD
discussed above. Such a formulation is illustrated for dis-
crete time* in Fig. 3.1. It is described in this section and

profitably used in Sections 3.3 and 3.4.

Py (xp) px|z_(xnlyl"'yn) . O.QIZ(inyI...yn)
source f—" 5| source mar Eri el TRANSITION
X,
X
USER
Figure 3.1 New Information Theoretic Formulation of the

Filtering Problem in Discrete Time. (Variables
are as Defined in Section 2.1)

*Continuous time counterparts can be obtained by replacing

2 n t
throughout xp, yi, X by x,, yg, X;.
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First note that we are interested only in X and its
reproduction %n, although n is arbitrary. (Alternatively we

may consider the source to put out a sequence of independent

identically distributed random variables ..., Xpo X0 c..). We
take as the associated distortion the point PI
g (% = 5.7 (3.1)
n n ’

The observation constraint is incorporated into the model by

means of the random source map characterized by p whose

x|y
existence in both discrete and continuous time is assured by
the BMD representation* (Lemmas 1, 2 of Section 2.1). This
source map is obviously a figment of the imagination and does
not correspond to a physical device. Since in what follows we
will operate on this problem using rate distortion theory we
simply characterize the (causal) filter by a transition speci-
fied by its conditional probability density q§|y as was noted
in Section 2.2.4 (e.g., see Figs. 2.4, 2.6).

Since the three random entities xn,(yl, Sy yn),§n
form a Markov chain we can write the following expressions
noting that at this point our concern is that the quantities

jnvolved exist and are well defined rather than whether they

can be easily computed.

*As discussed below, py specifies p ]x so that in effect p l
determined the random source map. y X
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where y

from x
n

P, (+) : Defined by Eq. (2.3)
n

py(~) : Defined by Eq. (2.4)

pxnly(° *) : Defined by Lemma 2

px (*,*) : Defined by Bayes rule from the preceding
n¥ PDF's

P l (*]|*) : Defined by Bayes rule from the preceding

MESY PDF's

qﬁnll(' *) : Arbitrary

pﬁni(.’.) : Defined by Bayes rule from the preceding
PDF's

Pz (*) : Defined from the prededing PDF

n

14 (+]+) : Defined by Bayes rule from the above
AR PDF's
= (Ve ooy yn) and in what follows we suppress the n

and ﬁn since no confusion is possible. Further:

g T Pxly qﬁl pl (3.2)

R Izenn Px|y %y Py U . 88

Hxig) = IRIRnglog p;i" Py X dy (3.4)

I(x;%) = fp [g 3log —Eﬁgj p__ dx dX (3.5)
px px XX

where the notation has been abused as is customary and X, §,

Yy

have been taken in R for simplicity in notation but clearly

without loss of generality. The above are all the information
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quantities we shall need. We note that the necessary probabil-
ity density functions and Radon Nikodym derivatives exist both
in discrete and continuous time and that, unlike in the ITPWD
stationarity, ergodicity and the like afe not issues here. (Al-
ternatively we may consider the different rv's involved as
being part of independent identically distributed sequences

and the various maps as being memoryless.). Thus, the above
formulation contrasts sharply with that of classical rate dis-
tortion theory (the ITPWD) which is centered around a coding
theorem as evident the development in Chapter 2. (For example
compare with the formulations of Gray, Toms, Berger, Goeblik,

Weidemann-Stear cited in Section 2.3.)

3.3 Constrained Rate Distortion Functions*

Based on the preceding formulation we introduce in
this section several '"constrained" rate distortion functions,
CR1(D), CR2(D), CRN(D) corresponding to. constraints in the

variational problem defining the rate distortion function.

3.3.1 CR1(D) and CR2(D)
First consider the NLTP where filter structure is un-

constrained.

*The word ''rate'" present in 'constrained rate distortion func-
tion" is a leftover from rate distortion theory. In the pre-
sent contact, however, information rate is irrelevant (unlike
in the ITPWD) as evident from the formulation of the preceding
section.
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CR1(D) is defined, with reference to Fig. 3.1 and

Eqs. 3.1 to 3.5, as follows:

A2 ~
d(ag),) = fp Jrn Jp (x=%)7 pyoq dxdydX

dxdydx (3.6)

|
—
j=v]
—
mlﬂ
Sy
oo}
~
b
|
A
Nt
Do
(o}
»
Q

wl: set of all conditional PDF's q§lx

cQip = fagy svpi dlag)y) > b} (3.7)

x|y x|y

If D is such that CQlD is not empty then

CRL(D) & inf 1(x:%)

q £ CQD (3.8)

x|y
where I(x;§) is given by Eq. (3.95).

Observe that the minimization is not over all transi-
tions pﬁlx but rather over all transitions qﬁll so that the
constraint imposed by the sensor is incorporated into the de-
finition since leX’ as determined by the sensor, is fixed in
Eq. (3.6). None of the five difficulties discussed above arise
in the definition of CR1(D) as should be expected since the
definition is based on a model that avoids these difficulties.

We now prove a number of properties of CR1(D). Before
proceding to do so, however, we make two assumptions of a tech-
nical nature tpat will simplify the discussion and proofs

throughout this chapter:
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(1) It is assumed that whenever we spcak of
CR1(D), CR2(D), etc. these functions are
defined, that is, the corresponding sets

CQ1 CQ2 etc. are not empty. The in-

D’ D’
tervals where they are not defined -- for
example CR2(D) for D less than the optimum
MSE in the NLFP -- are clearly not of inter-
est.

(2) It is assumed that the infimums over the
set of conditional probability density func-
tions (CPDF's) used in defining CR1(D),
CR2(D), etc. are achieved. This is a mere
technicality which avoids clouding the rele-
vant concepts by worrying constantly over
whether or not infimums are achieved. VWe
are dealing with minimizations over the set
of CPDF'ss. Whether or not any infimum is
achieved in a particular topology is not of
practical significance (since performance
within an arbitrarily small epsilon can be
realized). Thus the problem is with the
topology and not with the physical situation.

Lemma 12. CR1(D) is non-increasing in D.

Proof:; Suppose D2 > Dl' From (3.7) CQDl(: CQD2 SO

that by (3.8) CRl(Dl) > CRl(Dz).E
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Theorem 1.

CR1(D) is convex in D.

Proof: Assume that CR1(D') is achieved by g
and CR1(D") is achieved by q§|y. Define qX

r ¢ [0,1), r' = 1-

X|y

= rq + r'qy |

|y XIy
r which is a valid transition. Since

d(qA ) is linear in qu we have

* = 242 *
d(afy) [g [an Iy (x-%) ly 9|y Py 9x dy d%
= r d(ga + r'd(qk
r (qXIX) r (leX)
=r D' + r' D"
so that CerD'+r'D' is not empty, CR1(rD'+r'D") is defined,

and qily € CQl.oi ipne

By definition of CR1 (adding, for greater clarity,

Q
WO*
=<

CR1(rd'+r'D") < I(x;X;q%

]

x|y

Pxx(q:|v) ; &

I n P q* Py d_y_
!an{lo g Px|y %Xy } Pys (qxl}:) dx d&
PX-IRIRn pxlz xl pz dydx
[y log [r IRnPYIVQSEIVP}_d}v] + [rv !Rnpﬂzqﬁ'vpde]
R’R [ .
[r Px IRIR“ Pxly x|yp dsdx]+[r Es J‘RIRn x|y xlxp dyd]
" Pyglag)y) dx ak
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Using in the last expression the well known inequality

(V1+V2) % Vi
(Vi * %) 108 v. log —
1 2 (u1+u2) j=1 1 7 9y
for'v., u, > 0, we obtain
i i

CR1(rD' + r'D") £

[ [gn Pxly 9|y Py dX]

]RIR - " '
[ Jmo Pxly 915 Py ag]+ [0 fon iy o)y Py 4

A}
r [on Px y 9%y Py dy i
log i l P A(thy)dxdx

T Py fRfRn Pxly xly Py dy dx

[r' IRn Px|y qﬁly Py dy]

D'IR“ Pxly qég Py dg] * [ I Pxly xlz P dv]

+ Jplg

Jpn P agy py dy .
Sog g Px|y 98y Py pxﬁ(qily) i d3
1 " e =
v Py Jplpn Py|y 93y Py ¥ 9

[l o By o B O :
R’R

1
; Py frfpn Py|y 9z|y Py 9¥ OX

r[IR“ Pxly x|y Py dz] Ox gx

f [pn Px|y 9%]y Py ¥

IRIR log

-+

1"
Py * IRIRD Pxly %|y Py dg

[IR" Prly %Iy Py dy] B

rCR1(D') + r'CR1(D")
{ 79
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where the next to the last equality follows from the identity

o)
>
~
Q
WoOx

= *
| [gn Pyly %y Py dy

<
[<

"
x|y 9%y Py

My -

=1 fgn Py|y 9|y Py ¥ *+ ' fpn P

4] i«%

Corollary 1. CR1(D) is continuous and strictly de-

creasing in D.

Proof: This follows immediately from the convexity
proved in Theorem 1. (3

Lemma 13. R(D) < CR1(D).

Proof: This followis from the definition of R(D) and
CR1(D) since CQlDCfQD.E

From the statement just proved we conclude that CR1(D)
has the shape and relation to R(D) illustrated in Fig. 3.2. For
a given D, CR1(D) does not coincide with R(D) because of the
effect of the random map that characterizes the sensor. It is
reasonable to expect that the '"better" the sensor the '"closer'"
CR1(D) would be to R(D) and perhaps under some observability
requirement they may coincide. Thus the effect of constrain-

ing the set of allowable transitions p; is to '"'separate' the

Ix
corresponding rate distortion curves. Since, as mentioned in
the previous chapter, rate distortion curves can be viewed as

distortion rate curves (defined as the minimum distortion D

that can be achieved at a certain level of information I) we
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CrRI(D)

T

D

Figure 3.2 Comparison of R(D) and CR1(D)

see, as illustrated in Fig. 3.2, that 'separation” corresponds
to greater distortion for a given information level I.

In the definition of CR1(D) no constraint whatever
was placed on the transition qﬁlz since wl includes all con-
ditional PDF's. Thus the set CQlD of allowable transitions
for a given distortion contained not oniy measurable functions
of the data, but also random transformations (see subsection
2.2.4) —— random filters -- of the data. While it is conceiv-
able that random filters could perform better than determinis-
tic ones, we must, if we are to realistically model the filter-
ing problem, restrict transitions to measurable functions* of

the data. We recognize this as a further difference between

*As discussed by Duncan in (3), differential (and difference)
equation filters are measurable functions of the data. The
solution to the NLFP is of course a measurable function of
the data. '
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ITPWD and filtering problem concepts and are therefore led to

the following definition (compare with Eqs. (3.6), (3.7)).

d(ag|y) = [pfpnfp (- %)° Py 9%|y-Py 9% g dX (3.9)

CQZD = {q§ly L 3 l})z : d }
v, = set of all CPDF's of the form qilv(5|ﬂ) = §(&-f(n))
for f a measurable function of y. '
inf T(x:%)

CR2(D) = ag|, © CQ2 (3.10)

It is important to emphasize that while in what follows we will
speak loosely of "CR2", CR2(D) is the constrained rate distor-
tion function of the source X relative to a given distortion
measure (MSE here), relative to the sensor, and relative to the
set wz of allowed filters.

CR2(D) has the following properties.

Lemma 14. CR2(D) is defined for all D >e* =

E(x - E(xnly_))2 and is non-increasing in D.
Proof: Clearly CR2(D) is defined as D = e€*, Consider

now the estimate of X given by (b is a constant)

X = X* + b
n n
We have:
d(% ) = B(x_, - k* - b)?
n n n
A D ~ 2
] — xX* — t -
E(xn xn) 2bE(x x;) + b
=C*+b2
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Thus CQ2D is not empty for all D > e*. The second assertion

follows from the fact that for D2 2 D CcQ2

1)
Lemma 15. R(D) < CR1(D) < CR2(D).

C cQz2, .I3
p, & “¥p,

Proof: This follows from the definitions of R, CR1,
CR2.[3
The shape of CR2(D) is therefore as illustrated in

Fig. 3.3.

R(D)
CR1(D)
CR2(D)

Figure 3.3 Illustration of CR2

Associated with CR2(D) we can define a constrained
distortion-rate function CD2(R) as was done in Section 2.2 for

the rate distortion function.

CD2(R) = ag A cozy, dlagy) (3.11)

|y
coz,, = {q§|y e Uyl TCx ;3 X)) = R}

wz: as defined for Eq. 3.18.
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Thus CD2(R) is the minimum error that can be achieved at a
given level of information I(xn; ﬁn) subject to the constraints
of the NLFP.

In order for CR2(D) to be usefﬁl in the NLFP, it must
have certain properties as will become evident in the develop-
ment of this section. We are therefore led to make the follow-
ing definition which will be used in the form of an assumption
in the hypothesis of all propositions in this section.

Definition. CR2(D) is said to be Acceptable if

it satisfies the following conditions:
A. CR2(D) is continuous in D.
B. CR2(D) is strictly decreasing* in D in the
sense that for any point (D,I) on CR2 (i.e.,
any point such that CR2(D) = I), if there
is an element of wz producing information
I(x; X) =1 + AI, AI > 0, then for some
AD > 0, CR2(D - AD) is defined and CR2(D - AD)=
I + AI.
The assumption that CR2(D) be acceptable allows us to prove
the following lemma which in turn is essential to the other
theorems in this section.

Lemma 16. If CR2(D) is acceptable, then:

*¥*A function f(x) will be called strictly decreasing if
Xq > Xq implies f(xl) < f(xz).
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A. CR2(D) and CD2(R) form identical curves*.
B. The infimums on Egs. (3.10) and (3.11) are
achieved by an element of wz which determines a
point on the CR2(D) and CD2(R) curves.
Proof: A. This follows from the definitions of
Egs. (3.10) and (3.11) just as in the case of the (unconstrained)
rate distortion function. B. Consider CR2(D1) and suppose that
the infimum for Dl is achieved at qgll and that d(qgll) =

D, < D.,. Then CR2(D) is constant for D E[Dl, D2] violating

2 1
the strictly decreasing hypothesis.&

Unfortunately the convexity proof of CR1 in Theorem 1
does not extend easily to CR2 since y,, unlike Yy is not con-
vex. Néither is it easy to show that CR2 so that CR2 and CDh2
need not coincide and the infimums need not be achieved on the
curves. Nevertheless the concepts of CR2 and CD2 effectively
imbed filtering in an information framework. In fact with
every filter we can associate a transition q%ly which speci-

fies a point (sa, Ia) in information-distortion space as

*The question may be raised why not deal with CD2 and forget
about CR2. Three reasons not to do this are: (1) CR2 is
useful only when it coincides with CD2, and naturally when
they coincide and can deal with either. (2) CR2 seems much
easier to deal with than CD2 when proving properties of the
curve. See for example the trivial proof of Lemma 14 and
consider the difficulty of showing that CD2(R) is defined for
every R. (3) Traditionally information theory has used the
rate distortion formulation is more convenient when access-
ing traditional results such as the Shammon lowerbound on the
rate distortion function used extensively in this study. On
the other hand, the CD2 may be more intuitively pleasing.
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illustrated in Fig. 3.3. We say that all filters that lie on
Ia belong to the same "iso-information surface" (IIS) and we
thus can parametrize the IIS by associating with a particular
filter "iso-information parameters" (IIP) —-— that is parameters
that without changing the information, may change the error.
We see that according to Lemma 8 and the discussion of subsec-
tion 2.2.2 filters that produce mutually subordingte random
variables lie on the same IIS and transformations relating
these mutually subordinate random variables constitute IIPs.
Thus the concepts of subordination and everywhere dense pre-
sented in Chapter 2 allow the closest* characterization of the
IIS, IIP concepts.

To give an example of the meaning of IIS and IIP con-

sider the filter
X, = fl(z)

We can in principle compute I(xn; X ). Consider now

n
the filter whose output is §n as follows (remember y, §n’
§n are random variables)

X, = fl(X)

~

fz(xn)

~
X
n

where f2 is a one-one function. Clearly (see Lemma 7)

*Closer than one-onec. See for example proof of Theorem 3.
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but, in general

A A
ED#SH

where En and én are the respective MSE's. Thus filters X and
§ are on the same IIS (say,_they both lie on Ia in Fig. 3.3),
and the parameters that determine f2 are IIP's of the filter.
While the computations involved are certainly non-trivial --
as is simply inherent in general nonlineér problesm -- we can
put them immediately to use.in the case of the linear-Gaussian
reduced order filter considered in the next chapter.

If CR2(D) is acceptable then by Lemma 16 CR2(D) and
CD2(D) coincide and every point in these curves can bé achieved

by an acceptable filter. The objectives of filter design are

then, as illustrated on Fig. 3.4, (1) to optimize information,
and (2) whether or not a particular filter optimizes informa-
tion, to manipulate the IIP's to bring the filter to operate
on CR2 (hence as close as possible to CR1 and R). The follow-
ing two theorems concern each of these two steps.

Theorem 2. Assume that CR2(D) is acceptable. If a

given filter o achieves information I(x; §a) = Ia and MSE €42

then another filter «¢' in the same Ia IIS achieves MSE €t < €.
given by the solution to the equation
CﬁZ(ea,) = Ia

Proof: Theorem follows from Lemma 16.03
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Figure 3.4 Illustration of Objectives of Filter Design
for the MLFP (CR2(D) Assumed Strictly
Decreasing)

Theorem 3. Consider the NLFP of Section 2.1 and

assume that CR2(D) is acceptable. Let a be the set of all
measurable maps A: Rn—>R, X->§n. Then a necessary condition
for A0 € a to be the (Kushner) optimum MSE filter so that

x¥ = E(x |ly) = A y is that it maximizes I(x,; Ay) Qvef all

i A € a. Furthermore the Kushner filter looses no information:

k) 2 : _ :
( IL(x¥) 2 I(x.5 ¥) - I(x; Aj ¥)
‘ _ . _ sup . _
‘ I(xn, y) iig a I(xn, Ay) 0 (3.12)

(An equivalent result holds for the continuous time NLFP).
| Proof: The first assertion is clear from the hypo-

thesis that CR1 be acceptable.
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From Lemma 7

I(x,; ) 2 I(x.; &%) (3.13)

n’ §

Let Y = (Rn, SX, PY) be the probability space associated with
the measurements y. Clearly the measure algebra (Y(PY)'pY)
(Halmos (78)) associated with Y is separable, non-atomic, and
normalized. By Halmos' Isomorphism Theorem (78) there is an
isomorphism Aé between (Y(PY),PY) and the measure algebra of
the unit interval. Thus y and Aé y are mutually subordinatex*
and there is at least one map that looses no information. By
the previous theorem (Theorem 2) there is a filter in the same
IIS as Aé with error €q such that CR2(ea,) = I(xn; y). Since
CR2 is acceptable, if I(xn; y) > I(xn; ﬁ;) then there would
be a filter even better than the Kushner filter. Hence only
the equality can hold in Eq. (3.13).[3

The prededing two theorems emphasized the role of CR2
in filter design. The following theorem is concerned with fil-
ter comparison (see Fig. 3.95)

Theorem 4. Assume that CR2 is acceptable. Suppose

that filters a, Bawz achieve respectively informations

I(x; X ) = Ia and I(x;xB) = IB’ MSE's €2 and that Ia > 1

a 88’ g*

Then we can obtain a filter o' in the Ia IIS with MSE €t such

that for any filter B' with MSE SB’ in the IB I1IS

*Basically Aé is "almost surely one-one."
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cr2(0) A

€a>€pB
€g<€g
=
Figure 3.5 Illustration of Filter Comparison

According to Theorem 4

, ; S -
irrespective of whether &, 86’ E. EB, 5 8"

Proof: Follows from Lemma 16. 3

3.3.2 CRN(D)

Consider now the case where, unlike the‘NLFP, con-
straints are placed upon the allowed filters (e.g., constrain-
ing the estimator to be recursive, to be of a certain dimension,
etc.). We then replace wz in the definition of CR2 (Egs. (3.9),
(3.10)) with one of its subsets wN containing only filters that

obey the prescribed constraint and proceed to define CRN(D).
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gly) ~
(3.14)

= .' <
ca, {qﬁlz e vy ¢ dlag)y) D}

wN = subset of wz satisfying prescribed constraints

associated with N

_ inf T(:R)

As with CR2 we emphasize that while in what follows we will
speak loosely of "CRN", CRN(D) is the constrained rate distor-
tion function of the source x . relative to a given distortion
measure (MSE here), relative to the sensor, and relative to
the set wN of allcwed filters. We can also define the corre-
sponding constrained distortion rate function CDN(R) in fash-

ion analogous to Eq. (3.11):

3 inf d(qga o
CDH(R) = éf — (agy) (3.16)
Ry R
CONR = (qﬁly € wN I(xn; Xn) = R)

Yy = as in Eq. (3.15)

The entire development of CR2 in the previous subsec-
tion can be duplicated for CRN with exceptions as noted below.
We begin with the corresponding definition of an '"acceptable
CRN" and then summarize all results for CRN in Lemma 17 and
Theorem 3.

Definition. CRN(D) is said to be Acceptable if it

satisfies the following conditions:
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A. CRN(D) is continuous in D.

B. CRN(D) is strictly decrcasing* in D in the
sense that for any point (D,I) on CRN (i.e.,
any point such that CRN(D)'= I), if there is
an element of wN producing information I(x;X) =
I + AI, AT > 0, then for some AD > 0, CRN(D-AD)
is defined and CRN(D-AD) = I + AI.

Lemma 17.

A. If CRN(D) is defined at D = € then it is defined
for D > €. (Compare with Lemma 14; observe that while the
proof of Lemma 14 may not hold for CRN, the definition of CRN
alone is sufficient proof.)

B. R(D) < CR1(D) < CR2(D) < CRN(D). (Compare with
Lemma 15.)

C. If CRN(D) is acceptable then CRN(D) and CDN(R)
form identical curves and the infimums on Egqs. (3.15), (3.16)
are achieved by an element of wN which determines a point on
the CR2(D), CD2(R) curves. (Compare with Lemma 16.)

Theorem 5.

A. Assume CRN(D) is acceptable. If a given filter

aewN achieves information I(Xx; ﬁa) = Ia and MSE € then

another filter a'ewN in the same Ia IIS achieves MSE ey o €4

given by the solution to the equation

*See subsection 3.3.1.
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CRN(e,,) = I,

(compare with Theorem 2.)

B. Assume CRN(D) is acceptable. Then a necessary
condition for an element aewN to achieve minimum MSE is that
it maximizes I(x; ﬁa) over wN. (Compare with Theorem 3; ob-
serve that the proof of the zero loss of information does not
carry through in this case since Aé, along with mény other
elements of wz, may not belong to wN.)

C. Assume that CRN(D) is acceptable. Suppose that
filters a, Bsz achieve respectively informations I(x; X ) =

o

I and T(x; ﬁs) = IB’ MSE's ¢ Then

o and that Ia > I

a’ €’ B"
we can obtain a filter a‘ewN in the Ia IIS with MSE €t such

that for any filter B‘SwN with MSE SB‘ in the I8 IIS

irrespective of whether €4 > € € = €

B, o .8,

€, < €g- (Compare

B
with Theorem 4.)

3.3.3 CRN(D), N > 2, For Non-MSE Distortion Measures

Up to this point we have considered exclusively MSE
as a measure of disto-tion. While MSE is a useful PI many
physical situations arise where other measures of distortion
are more relevant. Shannon's rate distortion theory is ap-
plicable to a wide variety of distortion measures and there-

fore it is only natural that information concepts can be equally
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applied to filter design under non-MSE distortion and in fact
the preceding development for CR2 and general CRN can be iden-
tically reproduced (with the obvious exceptions noted below)
for non-MSE measures is distortion.*

First we define distortion following Shannon and in
reference to the formulation of Section 3.2 (so that we only
need to consider a per letter or point PI). A distortion

measure p 1is defined as a function**

p ¢ (x,X) > r, reR
such that
p(*,*) > 0 for all x, X € R

p(x,%) = 0 for at least one (x,X) pair

Average distortion d is defined as

d = E p(x(w), X(w))

provided the expectation exists and is finite. 1In what follows
the terms "distortion,' "distortion measure' are used for
either distortion or average distortion, the meaning being

clear from the context.

* See Fig. 3.6 of Section 3.4 for an example of a non-MSE dis-
tortion measure.

**As in the prévious development the state X and estimate X are
taken as scalar for simplicity in notation, but all thec re-
sults apply in analogous way to the vector casec.
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Consider any N > 2%, Let be an arbitrary distortion
measure as just defined. Ye can then define CRN by replacing

Eqs. (3.9), (3.14) with Eq. (3.17):

dlag|y) = fpfpnlp 00,8 by, ag)y Py dx dy dR (3.17)
CQNy, = {q§!b ey 1 dlag)y) < D}
wN = subset of wz satisfying prescribed constraints
(if any) associated with N.
CRN(DY = DT I(x;%) | (3.18)

qﬁli € CQND

As with CR2, CRN of the previous subsections we empahsize that
while in what follows we will speak loosely of "CRN,'" CRN(D)
is the constrained rate distortion function of the source x,
relative to the given distortion measure 0, relative to the
sensor, and relative to the set wN of allowed filters. We

can also define the corresponding constrained distortion rate

function CDN(R) in fashion analogous to (3.16)

i A .1
o

*We recall that for N=2 we deal (as in subsection 3.3.1) with
Y2, CR2 and the NLFP where receiver structure is unconstrained.
For filter constraints characterized by N, we deal (as in sub-
section 3.3.2) with Yy, CRN.
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CONp = {qﬁlx eby ¢ I(x ;R ) = R}
wN = as in Eq. (3.17)

As in the previous subsections we now give the defini-

tion of the acceptable CRN and then summarize in Lemma 18 and

Theorem 6 the relevant version of the previous results.

Definition. CRN 1is said to be Acceptable for the

distortion measure p if it satisfies the following conditions:

A. CRN(D) is continuous in D.

B. CRN(D) is strictly decreasing* in D in the
sense that for ‘any point (D,I) on CRN (i.e.,
any point such that CRN(D) = I), if there
is an element of wN producing information
I(x;%) = 1 + AI, AT > O, then for some AD > O,
CRN(D-AD) is defined and CRN(D-AD) = I + AI.

Lemma 18.

A. If CRN(D) is defined at D = d then it is defined
for D > d. (Compare with Lemmas 14, 17A; comments in Lemma 17A
apply.)

B. R(D) < CR1(D) < CR2(D) < CRN(D). (Compare with
Lemmas 15, 17B.)

C. If CRN(D) is acceptable then CRN{D) and CDN(R)
form identical curves and the infimums on Egs. (3.18), (3.19)
are achieved by an element of wN which determines a poinl on

the CRN(D), CDN(R) curves. (Compare with Lammas 16, 17C).

*Seec subscction 3.3.1.
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Theorem 6.

A. Assume CRN(D) is acceptable. If a given filter
ach achieves information I(x; ﬁa) = Ia and distortion da’ then
another filter a'ch in the same Ia IIS achieves distortion

d < da given by the solution to the equation

a'

CRN(d,,) = I,

(Compare with Theorems 2, S5A.)

B. Assume CRN is acceptable. Then a necessary con-
dition for an element aewN to achieve minimum distortion is
that it maximizes I(x;ﬁa) over wN' (Compare with Theorems 3,
5B; comments in Theorem 5B apply; also observe that the
Kushner estimate is a minimum MSE estimate.)

C. Assume that CEN(D) is acceptable. Suppose that
filters a, Bsz achieve respectively informations I(x; ﬁa) =
I, and I(x; ﬁB) = I,, distortions d,, dg, and that I > I,.

Then we can obtain a filter a' in the Ia IIS with distortion

d such that for any filter B' with distortion dB' in the IB

al
IIS

irrespective of whether da > dB’ d = dB’ d < dB' (Compare

with Theorems 4, 5C).
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3.3.4 Summary
Summarizing, the concept of the constrained rate dis-
tortion function introduced in this section, used in connection
with the filtering problem furmulation of Section 3.2,
(1) Establishes the relation between information
and distortion, including MSE, in filtering.
And provided the relevant constrained rate distortion functions
are acceptable,
(2) Establishes the following two step filter design
procedure:
A. Optimize tlie information that the esti-
mate has about the state (alternatively
minimize the information lost in the
filter).
B. Adjust the IIP's to achieve good perform-
ance relative to any desired distortion
- measure.
Observe that the first step is independent of
any distortion measure. In the second step,
by adjusting the IIP's of a filter we can tailor
filter performance to minimize a particular
distortion measure. Naturally the particular
IIP's that are best for one distortion measure

may not be desirable for a different one. Thus
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(3)

The

(1)

(2)

information design is more general than desing
for a particular distortion measure. Further-
more, the ensuing decoupling in processor space
search evident in this design procedure may be
computationally advantageous. (See Fig. 3.4 and
Theorems 2, B5A, 6A, 3, 5B, 6B.)

Establishes a basis for suboptimal filter com-
parison in terms of the information about the
state contained in the suboptimal estimate
(alternatively in terms of the information lost
in a suboptimal filter). Thus, regardless of
the relative performance of any two filters
(e.g., regardless of their MSE's), the filter
with more information (alternatively the fil-
ter that looses less information) has the po-
tential for better performance. (See Fig. 3.5
and Theorems 4, 5C, 6C.)

questions that remained unanswered are:

Whether the constrained rate distortion
functions are acceptable.

Given a filter what are the IIP's that can

be used to obtain optimum performance for

a distortion measure.

That the constrained rate distortion functions are

acceptable is a reasonable thing to expect in view of --
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other reasons -- both the intuitive and formal definitions

of Shannon information.
In regards to the second question we note that the
n

theorems in this section have been worded in terms of

then there is another filter in the IIS..." rather than

... then by adjusting IIP's another filter can be achieved...

Clearly both statements are equivalent since by definition
I1IP's parametrize the IIS so that indeed any element of the
I1IS can be achieve by "adjusting IIP's.'" Thus the relevant
question is not whether IIP's exist but rather what are the

IIP's of a problem.

Finally we remark that all the concepts of this sec-
tion will be clearly illustrated in terms of a simple example

when the design of reduced order filters is consdiered in the

next chapter.

3.4 Distortion Lowerbounds for Optimum and Suboptimum
Filters

Computation of the constrained rate distortion func-

tions of the previous section is in general very difficult. In

this section, using the Shannon lowerbound on the rate distor-

tion function applied to the formulation of Section 3.2, we

derive formulas for distortion lowerbounds for optimum and sub-

optimum filters that, in addition to being useful in their own

right, resscemble and illustrate Theorems 2, 4 and their counter-

parts on subsections 3.3.2, 3.3.3.
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3.4.1 MSE Distortion Measure

The Shannon lowerbound on the rate distortion function
is as follows.*

Lemma 19. (Shannon). Let R(D) be the (per letter)
rate distortion function with respect to the MSE fidelity cri-

terion defined as in Eq. (2.11). Then
R(e) > H(x) - %log(2mee) (3.20)

As was noted in subsection 2.2.4, R(e) is the effecctive en-
tropy (average self-information) of the source. Thué, intui-
tively, Eq. (3.20) says that the entropy of the source H(x) is
decreased by a quantity which iﬁcreases with the MSE €.

| We now obtain a lowerbound on optimum MSE for the
discrete time NLFP of Section 2.1 (the continuous time results
is given in Section 3.5). This bound is implemented in Chap-
ter 5 and applied in Chapter 6 to the Phase Locked Loop.

Theorem 7. Consider the discrete NLFP of Section 2.1

as modeled by the fqrmulation of Section 3.2. Let (recall

Y = (yl’ e yn))

Tk =
XX E(ani)» €

*Zakai and Ziv (38) were the first to apply Shannon's lower
bound to compute a lower bound on optimal filtering MSE for
messages modeled by dynamical systems. See Section 5.2 for a
summary of their paper.
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Then

* : — I ‘

ex > 5ne ©XP 2 (H(xn) I(xn, v)) (3.21)
Proof: By definition of CR2 and Lemma 7,

CRZ(eg) = I(xn; %%y £ I(xn; y) (3.22)

By Lemmas 19 and 15
i * *
H(xn) slog(27e en) < R(cn) & CRZ(eﬁ) (3.23)
Combining Egs. (3.22) and (3.23)
- X * ;
H(Xn) 2log(2me en) < I(xn, y) (3.24)

Upon solving for a; in Eq. (3.24) we get Eq. (3.21).03

A The above proof could be made simpler by suppressing
CR2 from Egqs. (3.22), (3.23) since CR2 plays no essential part
in this proof (nor is it relevant whether CR2 is acceptable).
The extra detail just illustrates where'”bounding” takes place.

Perhaps more important than a lower bound on optimum

MSE is a lower bound for suboptimum MSE which would tell us,
given the information loss of a particular suboptimum filter
(or alternatively the information about the state contained in
the estimate of the filter), how well can this filter perform
Such a bound is derived in Theorem 8 and will be applied in
Chapter 4 to rgduced order filter design where computation of
information is elementary. Before proving Theorem 8, we derive

a formula for information loss in the following lemma.
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Lemma 20. Consider the discrete NLFP of Section 2.1.
Let §n be an optimum or suboptimum estimate of X0 based on the
data y, i.e., ﬁn is a measurable function of y. Define the
information loss produced by the filter (i.e., produced by the

transition in Fig. 3.1) as

IL(R ) 8 I y) - T0x ) (3.25)

n
Then the information loss is given by
IL(x ) = I(x.; Xlxn) (3.26)

Proof: By Lemma 6 (Kolmogorov's formula) we have

Il

I(x 5 ¥,8) = I(x; yl& ) + I(x 5 %)

I(x 5 % |y) + I(x; ¥) (3.27)

Now in is a measurable function of y and afortiori subordi-

nate to y. Hence by Lemma 9,
I(x,; anl) = 0
Eq. 3.13 then gives

Iz, wlE) * Ilx: 2.0 = 1z

* ¥)

n’

so that indeed

IL(X ) = I(x; ylx )@
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We note that Eq. (3.26) "makes sense'" from an intui-
tive point of view since the information about Xn lost is that

A
remaining in the data y if the estimate x_ 1S given.

n

Theorem 8. Consider the formulation of the filtering

problem of Section 3.2 and suppose that ﬁn is the estimate of
X, produced by a certain filter (%n is a measurable function
of the data). Suppose further that, using the terminology of
Section 3.3, this filter is constrained to belong to a class

wN where as before we let N=2 for the NLFP). Let

_ & \2
e, = B(x, - %)
Then,
1 } . PN
€ 2 g * ©XP 2 (H(xn) - I(xn, xn)) (3.28)
so that
1 a ;
€, 2 gyg ° ©XP 2 (IL(xn)) exp 2 (H(x ) - I(x, s v))
(3.29)
and
1 : N < :
€, 2 5rg ° eXP 2 (I(x,; Xlxn)) exp 2 (H(x ) - I(x; ¥))

(3.30)
Proof: Clearly if (3.28) is true, (3.29) and (3.30)
follow immediately so we need only show (3.28). By the defini-

tion of CR2,
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CR2(en) < I(xn; xn)

By Lemmas 19 and 195,
H(xn) -~ 3log(2me en) < R(en) = CRZ(En)
so that

T | o
H(xn) 2log(2me an) < I(xn, X

)

n

Solving for e gives (3.28).0

The formulas derived in Theorems 7 and 8 are intui-
tively pleasing. Eq. (3.21) says that the greater I(xn; y)
is -- hence the greater the information about X, contained in
the data y, i.e., the better the sensor is -- the smaller will
the best possible error e: be.

The bound for suboptimum error given in Eq. (3.29)
has two terms. The first term is identical to the right hand
side of Eq. (3.21) and accounts for the error due to sensor
performance. The second term, exp 2(IL(X)) accounts for the
error produced by the information lost in the filter, the
greater this loss the greater the expected error.

Finally we note that the suboptimum error bound given
by Theorem 8 clearly applies to all filters in the same IIS as

the filter under consideration.
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3.4.2 Non-MSE Distortion Measures

Consider now the general class of distortion meausres
defined on subsection 3.3.3. The Shannon lower bound (Lemma
19) is readily applicable to difference distortion measures
(See Berger (20), Shannon (22)) as follows.

Lemma 19A (Shannon). Let R(D) be the rate distortion
function of a source x relative to a distortion measure as
defined in subsection 3.3.3 where in addition* p(x,y) = p(x-y).
Let d be the associated average distortion as in Eq. (3.17).

Then R(D) is lower bounded by

H(x) - ¢(D) < R(D) (3.31)
where
$(D) = gggn | [-log g(£)] g(£) dt (3.32)

Lo e}
G = {g: POF:[ [ p(z) g(z) dz] < D}
- 00
Using the calculus of variation on Eq. (3.21) gives

¢(D) = [ [-log g (8)] g (&) d&

where
ese(u)
gg(u) = fwesp(z) iz

*I.e., p is a difference distortion measure.
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for s such that

©o

[ o(z) g (2) dz = D

The function ¢(D) is positive, non-decreasing and
convex N in D. It is evaluated for different distortion mea-
sures in the literature. 1In particular we mention Pinkston
(43) who considered the interesting distortion medsure of Fig.

3.6.

p (x-%)

A

-b b

Figure 3.6 A Distortion Measure Considered
' By Pinkston '

Clearly as b becomes small we obtain a lower bound for MAP
filtering.
The counterparts of Theorems 7 and 8 can now be ob-

tained.

Theorem 7A. Consider the discrete MLFP of Section

2.1 as modeled by the formulation of Section 3.2 but with ar-
bitrary difference distortion measure dn' Then the optimal

error d; that can be achieved is lower bounded by
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ax > 671 (H(x) - TG ¥)) | (3.33)

where ¢“1 is one of the solutions of
¢(D) = H(x ) - I(x 5 ¥)

Theorem 8A. Consider the formulation of the filtering

problem of Section 3.2 and suppose that ﬁn is the estimate of
X, produced by a certain filter (§n is a measurable function
of the data). Suppose further that, using the terminology of
Section 3.3, this filter is constrained to belong to a class
wN (where as before we let N=2 for the NLFP). Let p be a dis-
tortion measure as defined on subsection 3.3.3 where in addi-
tion p(x,y) = p(x-y). Let dn be the associated average dis-

tortion as in Eq. (3.105) so that

d = dn(xn - X))

n n
Then

a_>e™h (H(x ) - I(x; &) © (3.34)
so that

a_ 2 671 (IL(R ) + H(x) - I(x; ¥)) (3.35)
and

a2 67 (I(x 5 ylR )+ H(x) - (x5 ¥)) (3.36)
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where again ¢-1(a) is one of the solutions of ¢(D) = a.
Proofs: The proofs of the above theorems follow from
the properties of ¢ as those of Theorems 4 and 5. &3 |
Observe that since ¢ is strictly increasing in D the
same comparison of Egqs. (3.33) and (3.35) is possible as in
the case of Egs. (3.27) and (3.29) for MSE. Thus, the bound
in the distortion increases with information loss above the

bound for optimal error.

3.5 Continuous Time Results

All of the preceding definitions and result extend
without difficulty to the continuous time case. In particular
we note‘that the existence of the source map of Fig. 3.1 is
assured by the Bucy-Mortenson-Duncan representation theorem.
We give here continuous time counterparts only of the bound
theorems since we shall need then in the sequel and to give
more would be repetitious.

Theorem 7C. Consider the continuous NLFP of Section

2.1. Let

A t b 3 A 2
X = — -— *

X¥ E(xtlyo), e (t) E(x xt)
Then

) ) . -
e¥(t) > Tme ©XP 2 (H(xt) - I(xt, yo))

where H(xt) is the entropy of Xy
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Thcorem 8C. Consider the continuous NLFP of Section

2.1 and suppose that ﬁt is the estimate of X produced by a

certain filter based on the data yg (X, is a measurable func-

t
tion of the data). Let

e(t) = E(x, - %,)°
Then,
e(t) > 1 exp 2 (H(x,) - I(x,; x.))
2ne t t t
so that

e(t) > 5%5 exp 2 (IL(%.))* exp 2 (H(x.) - I(x; yz))

and
e(t) > 1 exp 2 (I(x,; yt|§ )) » exp 2 (H(x,) - I(x,; yt))
- 27e 2 O t Tt ¥

where IL(ﬁt) is the information loss associated with the filter.
In Chapter 5 a concrete formula will be provided for

the lowerbound of Theorem 7C.

3.6 Summary and Conclusions
In this chapter we first gave a comfortable formula-
tion of the filtering problem, a formulation that avoids all

the unnatural* features of the ITPWD arrived at in Chapter 2.

*Insofar as the filtering problem is concernecd.
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Based on this formulation the concepts of CR1, CR2, CRN were
introduced. The constrained rate distortion functions effec-
tively imbced the filtering problem in an information thecoretic
framework and establish design and comparison basis for opti-
mum and suboptimum filters, for MSE and non-MSE distortion
measures. Distortion lowerbounds also applicable to optimum
and suboptimum filters, MSE and non-MSE distortion measures,
were then developed based on the above mentioned formulation
and the Shannon lowerbound on the rate distortion function.

The net result has been to establish the relation*
between "Information and Distortion in Filtering Theory.'**
In particular we note that information is not distortion in
filtering but rather is related to distortion. That, if the
relevant constrained rate distortion functions are acceptable,
Shannon information is information in the common sense of the
word which can be used to minimize any distortion measure. And
that, when properly formulated, Shannon information is rele-
vant in the filtering problem outisde of a coding context.

In the next chapter it will‘be possible to put the
concepts of Chapter 3 to good use in the design of reduced

order filters.

¥ Perhaps "a relation' would be more appropriate terminology.
**The quotes emphasize that this is the title of this study.
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CHAPTER 4

REDUCED ORDER FILTERING

4.1 The ROFP

The objective of this chapter is to illustrate the
usefulness of the concepts developed in the previous chapter
by applying them to a very relevant problem, the design of
reduced order filters, which on account of being set in a
linear gaussian environment exhibits special computational
tractability.

In the reduced ordér filter problem (hereafter abbre-
viated as ROFP) we start with the usual linear gaussian filter-

ing problem with MSE performance index defined by *, **

Xp41 = d(k+1, k) Xy + Gk Wi (4.1)

Yy = Hk X Vv (4.2)
where

X, = N(O, PO)

W = N(O, Qk) (4.3)

v, = N(O, R,)

are mutually uncorrelated as usual. While the Kalman filter

*
The development in this chapter is in discrete time matching
the presentation of Chapter 3 and simplifying the numerical

computations. An analogus development can be carried out in
continuous time.

*
The dimensions of all the vectors and matrices are of course
assumed to compatible.
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provides the best performonce, it presents very often an un-
acceptable computational burden for online implementation (sce
Gelb et.al.(79), Chapters 7,8). The search for a '"smaller"
suboptimum filter of '"'reduced order'" characterizes the ROFP.
There are many variations of the ROFP but the basic
problem is to estimate some (or all) of the n state variables
in Xy (or linear combinations of them) by a filter constrained
to belong to a given class. The optimal solution is inherently
a two point boundary value problem (i.e., a terminal cost is
present) as has been shown by Johansen(80) and as is evident
from the matrix minimum principle (81), (82). This solution,
however is usually more computationally taxing than the Kalman
filter énd optimization over everything need not be the best de-
sign approach. Different techniques of reduced order filtering
have appeared in the literature among them Aoki-Huddle (88),
Center (84), Damiani (90), Joseph (85), Hutchinson-D'Appolito
(83), Meditch (86), Pentecost (87), Uttam-O'Halloran (94), (95).
The approach taken in this chapter is as follows. With
one exception the development in this chapter is given in terms
of a simple example, that illustrates concretely (by specific
graphs and equations) the abstract notions of the previous
chapter. This simple example (defined in Section 4.2) will be
refered to as the ROFE (reduced order filter example) to dis-
tinguish it from the general ROFP. The one exception is the
derivation of a performance lowerbound (Section 4.3) which is

applicable to the general ROFP. Section 4.4 contains a number
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of necessary computational lemmas which are then used in
Section 4.5 to implement the information design and comparison

for the ROTFE.

4.2 The ROFE and Its Information Theoretic Formulation
The example that we will consider is an oscillator
with a random bias that can be modeled as a three dimensional

continuous time system by the equations (Damiani (90))

e -

Xy 0 O 0 Xq 0

: 2

X6 = |0 0 -w Xo | F 0} w . (4.4)
Xq L. A 0 Xq 1

with random initial condition

= - - 4
xl(O) X01 0 0

xz(O) = N(O, 0 X092 0 ) (4.5)
_XB(O)_ i 0 0 x03‘

and process noise

w, = N(0,q) (4.6)

The elliptical unforced (wt=0) phase plane trajectory is illus-
trated in Fig. 4.1. We take noisy discrete measurements of Xq

according to

ytk=[o 0 1] |x,|+ v - (4.7)

114



V
ux

Figure 4.1 Uirforced Continuous Time
Trajectory of the ROFE

where

Vi T N(O, R) (4.8)

We are interested in estimating the bias Xy with a one dimen-
sional filter, that is, without recourse to the full three

dimensional* Kalman filter.

The numerical values of the parameters used are as

follows:

- = 2 _ 2
x = 2% , xgp = (.02)° , x,. = (.25)

w = 21 radians/hour , q = (.05)2 , R = (.02)2
Sampling rate: One sample every 3 minutes

Units of time variable: hours

*
This loose terminology of course ignores the Ricati variables
as filter state. 115



We observe that the system is detectable (91,92) (but not ob-

servable).
Equations (4.4) to (4.8) can be cast into the discrete

time in the usual manner so that we obtain the equations of

the ROFE:
Xp41 © 0(tk+1, tk) Xy + Wk (4.9)
Vs = H X + Yy (4.10)
where

[Xk = B ok N9k X3,k]

=2 1 0 0
®(tyyq, ty) |
~1+cosw(tk+1—tk) cosumtk+1-tk) -w 31n(tk+1-tk)

» _ ¥
Ssin o (tk+1-tk) o sin wlty 4q tk) cos w(ty 4 t)

(4.11)

]

W, = N(O, Q)

v 0 0 O

Q = [Pk+1 @(ty 1, ) [O O O} @” (ty .4, S) ds
tk 0O 0 q.

H = [0 0 1]

and Vi and the initial conditions are as in Egs. (4.5), (4.8).
Letting

Vg = {class of all one dimensional filters of
* S = % 7
the form X1 Ak Xy + Bk Yy where
Ak’ Bk are chosen sequentially at each Kk}

*
The bias x-; has zero mean so that it is not necessary to in-
clude a bias in the class of all one dimensional filters.
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the problem in the ROFE is to select an element of ws that
gives good performance in terms of the NMSE* -

2

= - X 4
€y E (x1 Xk) (4.13)
Naturally the best performance possible is obtained
by ﬁk* = E(xklyg) as given by the Kalman filter and illustrated

in Fig. 4.2. By the definition of the problem, however, we
cannot use the Kalman filter and are forced use the Kalman fil-
ter and are forced to choose a suboptimal scheme within ws. We
choose for comparisoﬁ* a very interesting apprcach to the ROFP
advanced by Hutchinson and D'Appolito (83) who obtain filters of
lower order by using for filter dynamics the projection of the
dynamics of the original system to the subspace of the part of

* K x

the state that is of interest. For the ROFE the subspace of

interest is that of Xq and the Projection of Dynamics filter

(PDF) takes the form

X = x, + K

x ¥ Kpp Y41 (4.14)

KPD: Chosen according to the Projection of Dynamics
algorithm (Egqs. (4.54) of Section 4.4)

The performance of the PDF for the ROFE is also shown in Fig.4.2.

* - - -
Since the bias is constant we often omit the "k'" in X k-

*ok
Wg emphasize that the object here is not to assess the,rela—
tive performance of this suboptimal scheme in general nor
even on this example but rather to illustrate how information
concept enter dinto reduced order filter design.

* % ; R 3
*The equations for the projection of dynamic filter of (83) are
listed in subsection 4.4.2.
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A question that naturally arises is what performance
results if we choose filter gain in Eq. (4.14) by optimizing

the information I(xl : xk):

X = x, + K (4.15)

k+1 k INFO Yk+1

K Selected at every k to optimize

INFO' ©
I(xl; xk)(Eq. (4.48) of Section 4.4)

As will be shown later such a filter obtains the maximum infor-
mation I(x1 : §k) (minimum information loss) err all (one di-
mensional) filter in class ¢3 of Eq. (4.12). The performance of
this filter is as shown in Iig. (4.2).
Without the theory of Chapter 3 one may be tempted to
reach the following conclusions:
(1) Select (possibly as a starting point in the
design process) the PDF, or in any case do
not select the information optimizing filter.
(2) Information says little if any about MSE
design.
Or else,
(2°) Information is just a different performance

index which perhaps is useful in some problem.

The theory of Chapter 3, however, says otherwise and in the
remainder of this chapter we will demonstrate how all threce of

these conclusions are incorrect.
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Figure 4.2 Comparison for the ROFE of the Performance

of the Kalman, Projection of Dynamics, and
Information Optimizing Filters
We now start to introduce the theory of Chapter 3 into

the ROFE. The information theoretic formulation of the filter-
ing problem of Section 3.2 is illustrated in Fig. 4.3. The
source puts out only Xl,k (although k is arbitrary)* which gets
mapped into yg by the random map characterized by p(xl,klyg).
The filter is restricted to the class ws of Eq.(4.12) and it
will be useful to associate with any filter** ﬁk in ws its in-

formation loss at sample k

* 5
Or else the source puts out a sequence X <
of independent identically distributed rvs.

* %

As is common practice we confuse the concepts of "estimate'" and

"estimator'" by saying '"the filter xk”.
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. ks N
IL (xk) = I(Xl,k : yo) I(Xl,k : xk) (4.16)
= . ek - . R
I(x1 ;X3 k) I(Xl,k : xk) (4.17)

b

where Eq. (4.17) follows from the fact that according to Lemma
10 (Bucy) of Chapter 2 the Kalman filter looses no information.
As in Eq. (3.15) of subsection 3.3.3 we define the

constrained rate distortion function CR3(D) for the ROFE:

d(qz

XIX) = as in Eq. (3.14)

wa = as in Eq. (4.12)
CQ?D = {qX|X epg - d(q;ly) < D}

CR3(D) = inf I(x1 : xk) (4.18)
ly

Eq. (4.18) defines the constrained rate distortion function of
the source xl,k relative to the MSE distortion measure €1 of
Eq. (4.13), relative to the given sensor, and relative to the
class w3 of allowed filters. We can also defined tﬁe corres-

ponding constrained distortion rate function as in Eq. (3.16)

CDE(R) = inf d(ag (4.19)

lz)

COSR = {qﬁll € Yg I(x1 : Xk) = R}

The role and interaction of CR3 and CD3 is as discussed in

Chapter 3.
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Finally we introduce IIP's into the picture as illus-

trated in Fig. 4.4. We pass the estimate X through a non-

k
singular (i.e., Ck # 0) output map to obtain an estimate Ek

according to

(4.20)

>

Not only is the resulting filter &k in class ws but also on the

same IIS as ﬁk since

I(xy 5 %) = I(xg 5 &) (4.21)
so that Ck is an IIP of the filter. Getting more specific we
introduce IIP's into the filters of Eqs. (4.14), (4.15) to

obtain from Egs. (4.20),

A _ —1 ~

Ex+1 = Ck+1 Ok Sk T Cx+1 Xpp,k+1 Vi1 (.22
Kpp ge1 = AS in Eq. (4.14)

£ .=0C..cl: +c .. K v (4.23)
k1 = Ck+1 Ok Sk * Cke1 Kinro, k+1 Vi1 '

where Eq. (4.21) clearly holds for both filters.

We now pause to derive a lowerbound theorem in the
next section and some computational results in Section 4.4 both
of which we shall need before we proceed with the application

of information concepts to the ROFE.
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Figure 4.3 Information Theoretic Formulation
of the ROTE.
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Figure 4.4 Introduction of IIP's
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4.3 The Lowerbound Theorem

The following theorem is simply an application of
Theorem 8 of Chapter 3, Section 3.4. As evident from the hy-
pothesis, this theorem is applicable to the general ROYP.

Theorem 9. Consider Eqs. (4.1) to (4.3) in the con-

text of the formulation of Section 3.2 so that we have a
source putting out an n dimensional vector Xy and passed through
the sensor random map. Suppose that a (suboptimal) filter

produces an m dimensional estimate ﬁk’ m < n of the first m

components of Xy Using the notation

X, = (xl,k""’ xj,k""’ Xn,k)
Xy = (Xl,k""’ Xj,k""’ xm,k)
let as usual for j =1, ..., m

~ _ . k _ B
IL(XJ,k) - I(X k yO) I(xj,k, xj,k)

€ = E(x. ,- X
( 3 )

J,k
be the information lost by the filter and MSE for each com-

ponent. Let the optimal Kalman errors be

™
*
1l
=
~~
X
|
X
*
N
DN

k
E(xj’k yo)

Then we have the following equivalent* relations (ordered from

conceptually enlightening to computationally expedient):

*
The right hand sides of Egs. (4.24) to (4.26) are identical.
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> g exp {2 IL(x, )}

Ej’k - J:k ooy
€ > E(x2 ) exp (-2 I(x X )}
j,k = jak ’ j’k ? ‘j’k
€ > E(x2 ) (1 -r )
j;k s j7k j’k
where
~ 2
) ) [E(X%,k Xj,k;]
hy [ - )
B By,
for j=1,..., m.

Proof: From Theorem 8 Chapter 3,

1 o B
85,5 2 Gng P B Y < L0 5 § By 000

Substituting

_ 1 2
H(xj,k) g log {2me E(Xj,k)}

in (4.28) we get
€ . > E(x2 ) exp {-2 I(x X )3
J:k = j;k j’k’ j,k

proving (4.25). Further substituting

2

E(x BER2

j,k) J,k)

=1
=3 log

in (4.30) proves (4.26).

We now prove (4.24). From (4.28) we have
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exp{2 H(xj,k)—ZI(xj,k;X)}vexp{z IL(x.’k)}
(4.32)

. - . D% . 2
Now scnse I(Xj,k ; V) I(xj K xj,k)’ using an expression

H

similar to (4.31) together with (4.29) we get

1 ;
sre oxp{2 HOq ()-21(x5 o 5 ¥))

’

2 N 2 2ok 2
E 3 E(x* - [E g :
= (XJ,k) (XJ,k) 5 [ (XJ,k XJ,k)] (4.33)
E(x3 )
A A ~ ~ 2

- * * = * == *
But E(xj,k xj,k) xj,k 0 so that E(Xj,k xj,k) E(Xj,k)
so that

_ 2 g2

(4.33) = E(xj,k) - E(Xj,k)
=t B

Corollary 2. Hypothesis of Theorem 9. Then ietting
[xk]m be the vector formed by the first m components of Xy
trace E{(Ix, ] - x.) (Ix ) - x.)7}>
m ~
* ==
Zl ej,k exp {2 IL (Xj,k)}

J

2 . oA
E(xj,k) exp {-2 I(xj,k : xj,k)}

(4.34)



where r‘j Kk

)

is as in Eq. (4.27).

Proof: Follows immediately from Theorem 9. 3

Corollary 3. Continuous time version of Theorem 9.

Hypothesis of Theorem 9 with k replaced by t. Then:

* ~
Ej,t > sj,t exp {2 IL(xj,t)} (4.35)
2 .8
sj,t > E(Xj,t) exp {-2 I(xj,t s xj,t)} (4.36)
e, . > B(x2 .) (1-r, .) (4.37)
j)t— J’t J,t ' .
where
o ~ 2
g, [“(Zj,t xj,t;]
J> 2
E(xj,t) E(Xj,t)
for j=1,...,m.

Proof: Clearly the proof of Theorem 9 holds in continuous

time. B

Eq. (4.24) is the most pleasiné of the three bounds
of Theorem 9. Basically the bound is obtained by multiplying
IL > 0. Thus Eq. (4.26) illustrates how the best possible per-
formance of a suboptimal filter deteriorates as the information
loss by the filter increases starting from the performance of
the Kalman filter.

In Eq: (4.25) when I(X',k; ﬁj k)=O then as would be

J
expected the best performance that can be achieved is given by

the apriori error E(x? k). The estimation process effectively

b
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multiplies the apriori error by a factor less than one, allow-
ing better performance as the estimation process becomes more
effective (i.e., as I(Xj,k : gj,k) increases).

Eq. (4.26) provides an easy to compute MSE lowerbound
in terms of the correlation coefficient and has interpretation
similar to that of Eq. (4.25).

These bounds provide an indication of how good a per-
formance of a filter and its lower bound gives an indication of
whether we are putting to use all the available information.

Using the equations derived in the computational
lemmas of the next section we will see in Section 4.5 that

these bounds are actually achieved for the ROFE (i.e., equality

holds in Eqgs. (4.24) to (4.26)).

4.4 Computational Lemmas

4.4.1 The General Element of w3

This subsection simply considers the general element
of WB as defined in Eq. (4.12) and lists formulas for the
relevant quantities (such as MSE, covariances, information,
etc.) involved in the ROFE. Since all these equations can be
neranked out' straightforwardly no proofs are given. The
formulas derived will be put to use in Section 4.5.

The general element of ws is of the form

X = A X. + B

kt+1 k+1 Xk k+1 Yk+1 (4.38)
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Upon introducing IIP's as in Egs. (4.20) to (4.23) of Section

4.2 we get

= C A C

bk+1 k+1 k x v C

ir B P (4.39)

where for brevity we abbreviate Ak+1’ Bk+1 by A, B.- We also

use the notation

T8 011 0 0] (4.40)
so that
xl,k =T Xy (4.41)
Lemma 21. Consider the general element of ¢3 as
defined in Egq. (4.3b). Then the MSE €rtl E(Txkfl - £k+1)

and partinent correlations are given by:

-1 ~
K,  #(Cq + A [’_ii] y =

ACs

= -1 2 aop B &
= [Ack ] Ck+1 {E(gkgk) + 2 [———I] H E(ngk)
k

2

B 1 ' 1 J ! ' <

* [Ac'l] [HOE (x) x; )" H+HE (W, Wy )H +E(vy vy )1}
K

AC,

~1 5T 7 _B__ x 1 1o DWW 1
=2 ECR:]Ck+1{TQE(xk€k) + [ 1] [HQE(xkx ()T + HE(W W )T ]}
k

(4.42)

> |l ' 1 ] 1
+ TOE(x x/)9'T' + T E(WW)T
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) = PE(x “ )e” + E(W, W)

E(X) 41 Xga1 k *k Kk Mg

(. B _ 1.2 5 2
E(Epi1bken) = (CraahCy ) B(EE)

+ 2(C B) H@E(xkék)

-1
k+1ACk )(Ck+1)(ck+1

2 " - -~ .‘ ) » -~
+ (Ck+lB) [H@E(xkxk)é H™ + HL(Wka)H + E(Vk+1Vk+1)]

. ) i e i
D.  E(X4q1b44q) = [Ck+1A o ] ¢E(x, B,) + [Ck+1B] O (x, %, )H

[ (W v
+ LCkﬂB] E “k‘k

Lemma 22. Hypotheéis of Lemma 21.

A. Minimizing Eq. (4.42) over C gives, calling C¥

K&l k+1

the minimum,

1 B \ _ B
9k+1<cﬁ+1’ ACL™, - J1> = E1\+1< “i)
AC; AC}

B %5 " - - - ¢ -
Siail =" TQE(Xk xk)¢ T + TE(Wka)T'
ACk

N > ” -~ -~ ; ” 2
{T¢E(xkgk) + T | [HOE(x, x[)e"H" + HE(Wka)T]}

B(E 8 ) + 2 HOE(x, &, ) +

AC

2
B - - - v ,;
+ [ -1} [HéE(xkxk)Q H” + HE(W W/ YH” + E(vk+1vk+1)]
k

(4.43)
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4,.4,2 Selected Elements of w3
In this subscection we given expressions for the para-

meters of selected elements of ws, namely:

(1) Gain K in Eq. (4.15) for the filter

INFO

that maximizes information (Lemma 23).

(2) Parameters Ak+1’ Bk+1 in Eq. (4.38) for

the optimal filter in ws (Lemma 24).

(3) Gain K for the projection of dynamics

PD
filter of Eq. (4.14) (Lemma 25, Hutchinson-

D'Appolito (83)).

Lemma 23. For the ROFE the gain KINFO in
Xk+1 ~ Xk Xinro Vi1 (4.47)
* - - - " - -
KINFO’ that maximizes I(Txk+1, xk+1) at each (k+1) is given by

K¥nro = [n¢E(xkgk)] [T¢E(xk€k)] - E(§.&y) [T¢E(xkx£)¢'ﬂ’ + TE(Wkwi)H’]

[HéE(xkgk)] [TQE(xkx£)¢'H’ + TE(wkw;)H] -

N

- [T¢E(xk€k)] [HQE(xkxk)o H® + H E(WWOH" + E(vy 4 vk+1)]

(4.48)
The information achieved by this filter is the maximum that can

be achieved among elements of w3. (This last statement is

~1

evident from the parameterization in terms of B/ACk

in.Eqs.
(4.44), (4.45).)

E.O.L.
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Lemma 24. For the ROFE the element

~ el
X = A

*
k1 = Bfer ¥ Y E

k+1 Yx+l (2-42)
of w3 that minimizes E(TXk+1 - §k+1)2 is defined by

T¢E(xk£k)[H¢E(xkxk)® H® + HE(kak)H + E(vk+1 vk+1)

-H¢E(xk£k)[H¢E(xkxk)¢ T + H@E(WkWR)T ]

BEer = DEN (4.50)
{E(Ekﬁk)[ﬁéE(xkxk)é T + H¢E(Wkwk)T]

" - T¢E(xk€k) H@E(xkgk)} | i B
k+1 DEN (4.51)

where

DEN = E(gkgk) [H@E(xkxk)¢ H® + HE(Wka)H + E(vk+1vk+1)]

. [H¢E(xk§k)]2 (4.52)

Lemma 25 (Hutchinson-D'Appolito (83)). For the ROFE
the gain of the Projection of Dynamics filter as given in (83)

are¥:

X1 = ¥k ¥ Kpp Yiua (#:58)
where KPD is obtained according to the following equations. For
"extrapolation:"

*

As listed here these equations do not illustrate the interest-
ing way in which the "projection of dynamics effect" is achieved.
See (83). 132



T = pseudo inverse of T

-
Il

identify matrix

Geak” %k Ck|x ¢ * %

s ! + +
o, =| ¢ i (TT-1)¢T 1

1
Cpr1lr = | Pxlk-1 | Mk|k-1
Rk i B il
Milk-1 | Yk|x-1
For update:
= e e Y -1
Kpp = TPieq (i B CH Pipg 87+ BGViyg Viap)) (4.54)
Gyep|ks1 = Bret Cketlk Biet * Kirn BVien1 Viern) Kina
_ g
Gk+1|k+1 _?gil__l My+1
-~ r ——————
Mper ! Vi1 |
B, .. =[(l-TK,H) | O
Kk+1 - T Rppt) 1 1
] —
Kpp 1 T

E.O. L.
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4.5 Information Design and Comparison for the ROFE

In Section 4.2 we started to apply the results of
Chapter 3 to the ROFE. In this section we continue this
development armed with the formulas derived in Sections 4.3,
4.4.

First we compute the lowerbound of Theorem 9,

& > cﬁ exp {2 IL (xk)} (4.55)

k

to the filters whose performance appeared in Fig. 4.2. The
results are as illustrated in Fig. 4.5. For the Kalman filter*
IL(§§) = 0 and its lowerbound coincides with its performance.
The information optimizing filter of Eq. (4.15) is the filter
in WB that looses least information and consequently it is
natural that its performance lowerbound be below the projection
of dynamics filter.

The difference observed in the lowerbounds is caused
by the difference in information loss or alternatively by the
difference in the information I(Txk; §k) about the bias Txk
contained in the different estimates. I(Txk; ﬁk) is plotted
in Fig. 4.6 from the formulas of Section 4.4. We know from
Theorem 5A,B,C that provided CR3 is acceptable we may have the
situation of Fig. 3.5 as also illustrated on Fig. 4.7. Not
only is CR3 acceptable but by varying the Ck IIP we can achieve
the performance of the lowerbounds of Fig. 4.5 as proved in the

following lemmas.

*
See Lemma 10 (Bucy) in Chapter 2
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OPTIMIZING FILTER
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A
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- e DYNAMICS FILTER
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DYNAMICS FILTER
o v v T T T v
LOWER BOUND
-U\'—INFORMAUON
OPTIMIZING FILTER
o T T 2 e KALMAN FILTER

0 1 2 3 .4 5 6 7 8 9 10
) TIME SAMPLE k

Figure 4.5 Theorem 21 lowerbounds for the filters
whose performance appears in Fig. 4.2.
Observe that for almost all samples
the lowerbound for the Information
Optimizing Filter is slightly above
the Kalman filter; and that the lower-
bound for the Projection of Dynamics
Filter is almost achieved by the fil-
ter as it approaches steady state.
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Figure 4.6 Comparison of Information About The
Bias Contained in the Different
Estimates.
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CR3(D), k=3 é

1.4}
1.2 |-
1.0
08t
0.6

04

0.2f

0 1 1 1 i | -
0 0.5 1.0 1.5 2.0

D (MSE)

a, a': IMFORMATION OPTIMIZING FILTER BEFORE, AFTER 1IP OPTIMIZATION
B, B' : PROJECTION OF DYNAMICS FILTER BEFORE, AFTER 1IP OPTIMIZATION
Y : KALMAN FILTER

Figure 4.7 CR3(D) for the ROFE at Sample k=3
(compare with Fig. 3.6).
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Figure 4.8 Illustration of the Two Step Design
Procedure for the ROFE
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Lemma 26. Consider an arbitrary filter asws that

achieves at sample k+1 information I Then by choosing

o,k+1°
appropriately the IIP Ck+1 in Eq. (4.39) we can achieve the

lowerbound of Theorem 9 so that as evident from Egq. (4.55) a

performance of

= g*k

¥l ©Xp £2 I(Tx

- 21

a,k+1}

x+1 g+l 0 V)
is obtained.
Proof: Follows by noticing that Egs. (4.43) and

(4.46) of Lemma 22 are identical. B

Lemma 27. CR3 is acceptable for the ROFE (in fact

£k P
(I(Txk ; ¥) - 3 log Ei where y = [y1 T yk] Yo

CR3 (ek) =

Proof: Consider an arbitrary element of ws with

parameters Ao, B in Eq. (4.38) which achieves a point

o
(eo,Io) in the information distortion plane. By Lemma

26 by proper choice of IIP Ck+1 we can achieve a point
(e;,IO) on the lowerbound to CD3 and hence on CD3. Further-
more as evident from Eqs. (4.44), (4.45) information

((Txk+1 : Ek+1) is a continuous function of the filter para-
meters B/A that achieves a bounded maximum (Lemma 23). Thus
by varying B/A we see that below this maximum CD3 coincides
with its lowerbound, thé rate distortion function and CR3
thus making clearly acceptable. (The given expression for
CR3 follows from the equality that holds in Eq. (4.55). 1

By virtue of lemma 26 and 27 we can now give the

following versions of parts A, B, C of Theorem 5.
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Theorem 5A for the ROFE ({filter design): If at sample

k+1l a given filter aew3 achieves information Ia and MSE €4

then by proper choice of IIP C in Eq. (4.55) onc can obtain

k+1
a filter a’ews in the IG‘IIS with MSE €y < €4 given by the

solution to

CR3(€a’) = Ia

As illustrated in Fig. 4.7 this is the case for both the infor-
mation optimizing filter (filters o, o”) and the projection of
dynamics filter (filters B, 87)*%. Thus in the design process
one can proceed along the alternatives that maximize information
confident that at the end one can select the IIP that would

translate the information available into good MSE performance.

Theorem 5B for the ROFE (filter design): A necessary

condition for a filter aewB to achieve minimum MSE at sample
k+1 is that it maximizes the information I(Txk+1 : Xa,k+1)'

In fact as can be shown from Lemmas 23, 24 of subsection 4.4.2
the information of the MSE-optimal element of ws (as defined by
Egs. (4.49) to (4.52)) and that of the information optimizing
filter (as defined by Eqs. (4.47), (4.48)) are identical (and
naturally their MSE performance coincides after IIP optimiza-
tion.

Together the two preceding paragraphs suggest the two

step design procedure of Fig. 3.4 reproduced again in Fig. 4.8.

£ 3
It is interesting to note that in steady state the projection
of dynamics filter practically achieves its lowerbound.
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Theorem 5C for the ROFE (filter comparison): suppose

that filters a, B¢ wsachieve respectively at sample (k+1) infor-

mations I(Tx =1 I(Tx

ket Fpogmy) = Ly k+1 ° %g,x+1? = Igo

o’ eB, and that Ia > IB' Then by adjusting the Ck+l IIP in

Eq. (4.55) we can obtain a filter a”ey, in the Ia IIS with MSE
3 3

MSE's

€

in the I, 1IS

€, such that for any filter B7e w3 with MSE €g- 8

€y~ < €4~

B

irrespective of whether €4 < e = € > g€,. Thus when

®8> fa T ®p’ fa 7 fp
comparing two (or more) filters it is rather irrelevant to look
at their MSE. Instead one should ask the question, how much

information do these filters lose (or else how much information

is contained in these estimates).

We note that for the ROFE we have considered MSE as
a measure of distortion and in the design process we have ad-
justed the IIP's to translate the information available in
the estimate into good MSE performance. By a different choice
of IIP we could translate this information into good.perfor—
mance for another non-MSE distortion measure provided the rele-
vant constrained rate distortion functions were acceptable. The
starting point in both of these situations is the same: Maxi-

mize information, minimize information loss*.

*An application. that comes to mind is in the navigation system
of, say, an aircraft where it may be desirable to use different
performance measures for different missions. An information
optimizing filter would only require a change in the IIP pro-
gram.
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Summarizing, two objectives have been achieved in this
chapter. First in a general context an easy to compute perfor-
mance lowerbound was developed that gives (as dramatically
jllustrated in the ROFE) an indication of whether all the in-
formation contained in an estimate is being put to good use.
And second a simple example -- the ROFL -- has been used to
jllustrate the concepts developed in Chapter 3 and the features
of this approach to filter design and comparison listed in sub-
section 3.3.4. 1In particular, because of the ease with which
information quantities could be computed for the ROFE, the
imposition of an "information-distortion grid" on the design
procedure was easy to implement as was the decoupling in the
search over processor space. I.e. rather than over Rz, the

search was over KINFO € R and then over IIP Ck+1 eR.
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CHAPTER S

A LOWER BOUND ON OPTIMUM MSE

The main objective of this chapter is to implement
the formulas derived in Theorems 7 and 7C of the previous
chapter for a lower bound on optimal filtering MSE for both
the discrete and continuous time MLFP. The resulting expres-
sions for the bound will be in terms of the moments of the
g(xs,s) process of the NLFP and will be applied in the next
chapter to the phase locked loop.

For comparison and.historical perspective we begin
the chapter (Section 5.1) with a summary of the important
paper by M. Zakai and J. Ziv (38) where the Shannon lower bound
(Lemma 16) was first used in the dynamical systems context. In
Section 5.2 we derive the main formula in continuous time for
the implementation of Theorem 7C and compare our approach with
that of Zakai and Ziv. The next two sections, Sections 5.3
and 5.4, are devoted to evaluating the two "components' (de-
nominator and numerator) of the formula derived in Section 5.2.
The results developed in Sections 5.2 to 5.4 are applied in
Chapter 6 to the phase locked loop. Finally in Section 5.5 we
consider the important discrete time case and derive the main

formula for the lower bound on optimum MSE based on Theorem 7.
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5.1 Zakai and Ziv's Paper (38)%

For our purposes we divide the fesults obtained in
(38) into two areas. The development dealing directly with the
lower bound is presented in some detail in subsection 5.1.1.
Other results obtained in the paper are summarized in subsec-

tions 5.1.2.

5.1.1 The Zakai-Ziv Lower Bound

Zakai and Ziv (38) derive a lower bound on optimum
MSE for a subclass of the NLFP based on the Shannon lower
bound. The specific problem they consider is as follows. The

message model is given by (see Fig. 5.1)

dx,(t) = x,(t)dt
dxz(t) = x3(t)dt
dx_(t) = a(x(£))dt + b(x(£))aw(t), te (-=,«)  (5.1)

where w(t) is standard Brownian motion. The observation model

is given by

dy(t) = g(x (t),t)dt + \N_ dv(t) te(-=,=) (5.2)

*The kind of patient assistance in the understanding of this
paper extended by Prof. Moshe Zakai is gratefully acknowledged.
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of+)

b{+)

dw/dt
Figure 5.1 Model Considered by Zakai and Ziv
(k and j need not be in the order
shown) '

where again v(t) is standard Brownian motion independent from

w(t). The filtering problem considered is
estimate xj(t), jell,n] Dbased on (y(s), sel0,t])
Thus the bound desired is a lower bound on

e, = E(xjéw - EGe(0)|y(s), sel-=,t1))2 (5.3)
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The reason for choosing the above model is that stationarity
of x(t) will be used in what follows and x(t) as given by
Eq. (5.1) is indeed stationary since a and b do not depend on
t, w(t) is standard Brownian motion (so that the associated
white noise has stationary covariance), and the prdcess starts
at t = -,

Zakai and Ziv begin by considering two other errors

in addition to that of €, in Eq. (5.3) as follows:

A
ep = B(xj(t) - ECx (£)Iy5,))7 (5.3)
ep = E(x;(t) - E(x;(0)Iys, , x(0))? (5.4)

ec(t,x(0)) = E{(x;(t) - Ex(t)]yS, x(0)))? x(0)}  (5.5)

Observe that EA is a constant becausec of the stationarity as-
sumption and that €g» € are functions of the indicated argu-
ments. Further note that on an inutitive basis it is clear
that the following relation holds among those three errors

(making use of stationarity of x(t)),

5 B (t,x0000) = %P e (#) 2w, (5.6)

since eB(t) = E{Ec(t,x(O))} on account of (x(t),y(t)) being
a Markov process.

The objective is therefore to derive a lower bound on

N t 2
ec(t,x(0)) = E{(xj(t) - E(xj(t)lyo, x(0))“|x(0)}
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since such a bound will yield a lower bound on €, upon averag-
ing over all x(0) as indicated in Eq. (5.6). Thus, condition-
ing throughout by x(0), consider the following two incqualities
for an estimate ﬁj(t) based on yz and x(0) and its correspond-

ing error eC:

Hj(t]x(O)) - 3 log 2me e, < R(sc,xj(t)lx(O)) (5.7
R(eq,x;(£)1x(0)) < T(x;(1); #5(0)|x(0)) < (5.8)
£ T(xy(t); yo|x(0)) = (5.9)
= I(xp(t); ySIx(0)) < (5.10)
< B (E) w [=00)) = (5.11)

1 5 2
- 2N, f; Ec0) [g(x,(s),s) ~ g(x, (s),s)]%ds
(5.12)
o ft B [g(x,(s),s) - Eg(x,(s) s)]2d°
2N, 10 "x(0) g(xXk(S), g(x, (s), s

IA

(5.13)

where B(x,(s),s) = E{g(x,(s),s)|yg}

Hj(tlx(O)) : conditional entropy of xj(t)

conditioned by x(0)

R(ec,xj(t)lx(O)) : MSE rate distortion function of

xj(t) conditioned on x(0)

and Eq. (5.7) follows from Shannon's lower bound (Lemma 16)

and Eq. (5.12) from Kailath-Duncan formula (Lemma 11). Solving
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for EC in the leftmost and rightmost terms of (5.7) through
(5.13), substituting in (5.6), and using Jensen's convex in-
equality (Lemma 28A, below) gives the lower bound

sup f 1 oyp[ef.(t) - = jt oz(s)]}ds & B (5.14)
t>0 \2re °xP[2H;(t o B A .
where ﬁj(t) = E{Hj(tlx(O))} and 02 is the apriori variance

of g.

5.1.2 Other Results

Zakai and Ziv also develop an upper bound based on
linear filtering arguments._ Specifically, they produce a
(suboptimal) linear filter whose error is easy to compute.
Naturally this error constitutes an upper bound to the optimum
MSE. They further show that their lower and upper bounds are
tight up to a factor of 1.6 for small observation noise -- that
is in the "above threshold" or approximately linear region of
operation of the receiver.

Appendix I of (38) is devoted to deriving bounds on
moments of the process x(t) of Eq. (5.1) making use of its
stationarity. These bounds are used in the section on systems
with small observation noise as well as in some of the examples.
In Appendix B a very interesting method‘of lower bounding the
entropy ﬁj is given which makes use of the equivalence between
the measure induced by Egs. (5.1) and the Gaussian measure in-

duced by an appropriately chosen system of linear equations.
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5.2 Main Formula -- Continuous Time

5.2.1 Motivation and Comparison

In this section we present the basic formula for the

implementation of the continuous time lower bound on optimum

filtering MSE of Theorem 7. The derivation is carried out in

subsection 5.2.2. In subsection 5.2.3 properties of the two

terms composing the bound will be studied. Machinery to evalu-

ate these terms will be presented in the next two sections

(Sections 5.3 and 5.4).

The formula derived here differs from that of Zakai

and Ziv presented in the previous section in the following

three respects.

(1)

(2)

Our formula is applicable to the important
discrete time observation case (e.g., radar
tracking). The Zakai-Ziv formula is based
on the Kailath-Duncan formula (Lemma 11)
which does not have an immediate counter-
part in discéete time since the "innoQa—
tions process'" in discrete time is not
Gaussian with observation noise covariance
(see (31), (32), (33)).

In reference to the inequality in Egs. (5.8)

to (5.13), our formula is based on Eq. (5.10)

which is a tighter bound on the rate distortion
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function that Eq. (5.11) especially in

e . . ., %
situations where I(Xt’ yo) << I(xo, yo).

The exact factor of improvement is diffi-

cult to evaluate in general since just as

t ot
o’ yO
has to be bounded by Eq. (5.13), I(x; vg)

I(x ) cannot be evaluated exactly but
cannot be evaluated exactly either and will
have to be bounded as done in Section 5.3

and 5.4. Nevertheless, we can conjecture

that the relation << will hold in the highly
noisy and nonlinear region (below threshold)
since it is possible to argue from an intuitive
point of view that when the observation noise

is considerable we may have
+ 3 ty ty

Twsy per =) Bl gy )
i=0 ti—é ti—é

£t . .t

>> I(%¢_s5 Vig) i (5:15)
and
. = t . .t ~ t . .t
I(x.t; yt) e/ I(xt-—é’ yt—é) I(Xt—(s’ yO)
T I(x,; yo) (5.16)
y’ 0 )
where ti = id§, § is "small'", and tN = t.

While whether or not this conjecture is true
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in general is difficult if not impossible
to ascertain, the results of Chapter 6 seem
to support its veracity.

(3) The formula derived here is directly appli-
cable to the general NLFP and not limited
to a specific canonical form or stationary
processess over infinite intervals. While
the Zakai-Ziv procedure is upon slightly
modifying some of the development equally
applicable, the importance in filtering for
dynamical systems of non-stationary processes
and systems of arbitrary form cannot be over-

emphasized.

5.2.2 Derivation of MMain Formulas

We will need in what follows the following well known
results.

Lemma 28. (Jensen-Holder). Let X be a random varia-
ble and f, g, h be scalar valued functions of a reai variable.
Then, provided the obvious integrability requirements hold:

A. [g convexu] - [g(EX) < E g(xX)]

B. [f convexn] - [E £(X) < £(EX)]

c. [Pn(trat T < (b-2)%"1 [f: hr(t)dt]

Theorem 10. Consider the continuous time NLFP of

Section 2.1. Let e*(t) be the associated optimum MSE. Then a

lower bound on e€*(t) is given by
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2
exp B, log E (expl) [

1 W p . _x...y X
ex(t) > Sne exp 2H(t) Ep (exp C.)
t
Xy
(5.17)
where
t ot v =
Ct = Ct(XO’ yO> t) == IO g(XS,S)R (S)dys =

_
3 IO g(XS,S)R_l(S)g(xS,s)'ds

]

t
2 g(x,,S)B T (s)g(xg,8) ds +

t s
+ [ g(x ,s)R'l(s)dB' (5.18)
0 s S
H(t) : Entropy of Xy
provided the necessary expectations exist. (If the processes

defined by the NLFP are stationary then e*¥(t) is constant and
bounded by the supreme over all t of the right-hand side of
Eq. (5.17})).

Proof: By Lemma 4,
—_— yt
& sz.y dP,
I(xt; yo) = Ep log ap = EP log —ap
Xy XXy Xy X

where ¢, = o{ys,se[o,t]}. Using Eq. (2.5) of Lemma 1 (continu-
ous Bucy-Mortenson-Duncan representation),

Egixt}(exp ct)

E, (exp i)
X

|
=4
=
O
U]

.t
I(xt) YO) - P

log Eg{xt} (exp ¢.) - Ep log Eé (exp Z.)
Xsy X Xy X

k5.19)

I
=
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where Ct is as given by Eq. (5.18). By Jensen's inequality

(Lemma 28B) we have

E log Eo{xt}(exp z,) < log E Eo{xt}(exp e )
P P t P_- p t
X*y X X'y X
= log EP (exp §t) (5.20)
X*y :

where use was made of the smoothing property of the conditioned
expectation. Substituting (5.20) into (5.19) gives
t
I(x,; yn) £ log E (exp ¢,) - E log E. (exp C_.)

t 0 Px-y t Px~y Px t
Substituting this last expression into that given in Theorem
7C (Section 3.4) gives (5.17). The stationarity part follows
from reasoning analogous to those of Zakai-Ziv presented in
Section 5.1.E3

A more computable expression can be obtained for the
numerator in Eq. (5.17) as follows.

Lemma 29. Hypothesis of Theorem 10. Let

N(t) = EP log Ep (exp Ct(g)) (5.21)

Xey X
where ct(g) is as defined by Egs. (5.19). Then

i el
t pr(gs R “(s)gg V)

N(t) = E / ds
Px-y 0 EPx(ws)
¢ il
£ pr(wsgs)R (s) pr(wsgs)
-3 E, 5 ds " (5.22)
xy O (Ep  ¥y)
X
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s).

where ¥ _(w) = exp ¢ _(w) and g g(x
SN s — S

Proof: Define

Yt(w) EP exp Ct

>4
Ft(w) = log EP exp Ct
> 4
4 4 < >
Observe that exp Ct > 0 a.s. Px-y’ Ep exp Ct 0 a.s. PX so

X
that Ft(E) is defined taking values on the reals. Consider

the Ito process defined by Eq. (5.18),

dr, = 3 B(xg,t)' RTH(E) B(xp, 0t + BCxy, 1) R (0)dBy

t

By the Ito differential rule (change of variable formula)
wt(g) = exp Ct satisifes the equation
-1
= BN '
dp, = (exp ty)dry + 3 g(x,t)'R (t) g(x,,t) exp g, dt
or equivalently
ap, = {g(x,,t)'RTI(t) glx,, v dt + b 8(x £y R Y(t)}dB
t t’ £ t t L2 t
Invoking the Fubini theorem we have EP dwt-= d(EP wt) so that
% X
— -1
= = []
dy, = d(prwt> E, {8(x;,t)'R77(E) g(xy,t)vgjdt +

t X

|"1 R
+ prgwt g(x,,t)'R (t)}dB,
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ar, = Yit ar, - ;1_2 , {q)_tg'(xt,-t)}n"l(t):z(t)n‘l(t)nplg(xt.t)rJJL}dt

Yt X x‘
so that
-1 -1
| 1
Ep t¥y 8¢ B T(2) g4} Ep (Vg 8LIR T(D)Ep {e by

dPt = dt - % 5 dt

Yt Y

-1
Ep {¥t 8¢ B S

akonee dB
¥ t

Po = log T 0

Making use of the usual properties of the Ito integral the
previous equation becomes

¢ ped
t pr{gs B (s) Es ws}

N(t) = E I, = E / ds
Px-y L Px-y 0 EPX{ws}

' =l o
t pr{ws gt (S)EPX{°S Vst

x+y 0 (pr{ws})z

~ds

as desired.™

Theorem 11. Hypothesis of Theorem 10. A lower

bound on e€*(t) is given by

2
ex(t) > {E%E expfzﬂ(t)]} . 395%%%%321 (5.23)

where
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v Bd
¢ Ep (85 R(s) g5 ¥)
ds

Il
=

N(t) = E, [

4 ’
xy O EPX(VS)

iy ok
¢ pr(ws gs) R 7 (s) pr<ws gg)

5 ds
xy O (pr bg)

Bty = Bp G
where again ws = exp cs’ Cs is as in Eq. (5.18) and By = g(xs,s).
(As with Theorem 10, if the processes defined by the NLFP are
stationary then €*(t) is constant and bounded by the supremum
over all t of the right-hand side of Eq. (5.23)).

Proof: Eq. (t.23) follows upon substituting Eq.
(5.22) into Eq. (5.20).8

The formula given in Theorem 11 is the main formula
of this section. We note that by the use of the Jensen in-
equality in Eq. (5.20) the difficult tq compute conditional
expectation in function space present in the BMD representa-
tions has been eliminated -- this step being the only bound
(in addition to the Shannon lower bound) used in the derivation
of Eq. (5.23). While Eq. (5.23) may seem formidable, we will
be able to apply it in the next chapter to the phase locked
Joop.

For problems of form similar to that considered by

Zakai and Ziv an equivalent result can be given. Specifically
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we have the following corollary to Theorem 11 for a case a
little more general than that of Egs. (5.1) to (5.3).

Corollary 4. Consider the subclass of the NLFP re-

sulting when Egqs. (2.1) and (2.2) are replaced by

dxl(t) = xz(t)dt

dx,(t) = xg(t)dt
dxn(t) = a(x(t),t)dt + b(g(t),t)dBt, te{0;t]
dy(t) = g(x,(t),t)dt + dét (5.24)

all other conditions and notation remaining unchanged. For

jell,n] let
2
* = -
ej(t) E(xj(t) E(xj(t)lys, se[0,t]))
Then a lower bound on E;(t) is given by

1
e3(t) 2 {5 expl2i(e)]}

¢ Fp (£g/R(s)) N EX0) L
exp |E / ds - 3E 2
PX'Y 0 EPX(WS) pX‘Y 0 EPX(WS) R(s)
E )
Proy' &

(5.25)
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where as before ws = exp { r 1is given by Eq. (5.18) and

s’ s

g = g(xk(s),s). (If the processes defined by Eq. (5.24) are

S
stationary then eg(t) is constant and bounded by the supremum

over all t of the right-hand side of Eq. (5.25).)

Proof: Eq. (5.25) follows upon substituting Eq.
(5.24) in (5.23).03

The above corollary gives a lower bound on optimum
MSE for the jth component of x(t) for systems of the form of
Eq. (5.24). TFor the general NLFP we can obtain a formula for
a bound on the jth component (and consequently on the entire
error) by the following theorem which we mention in passing
(we will not make use of this result in this study).

Theorem 12. Consider the continuous time NLFP of

Section 2.1. Let e§(t) = E(xg(t) - E(xg(t)lyg))z. A lower
bound for a;(t) is given by

EgiXt}‘eXp Ceh

ex(t) > {5%5 exp 2Hj(t)}/EPX.Y prfeXp £ (5.26)
for all j so that
. s e fexp oy
. | X
ex(t) > {jzl Sag ©XP ZHj(t)}/EPX.Y pr{exp e, (5.27)

where Hj(t) is the entropy of xj(t) and Ct is as in Eq. (5.18)
above provided the necessary expectations exist.
Proof.: If (5.26) is true so is (5.27). By the defi-

nition of mutual information,
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" dPXIY,X],
Ifx.(t); ¥o5) =B YOg s
3 0 Py.y dPX,Xj

where Xj = c{xj(t)}. Hence

dP

£ : XIY
I(x.(t); y~) = E log EXJ
J 0 PX°Y PX dPX
dpP
<log B, — X
XY X
oix(t)
Epi }{exp Ct}
= log E

PX°Y pr{exp Ct}

where we have made use of the properties of the conditional
expectation, the Jensen unequality (Lemma 28) and the Bucy-
Mortensen-Duncan representation (Lemma 1). Eq. (5.26) now

follows from Lemma 16.8

5.2.3 Properties of Terms
The computation of the main formula developed in the
previous subsection, Eq. (5.23) of Theorem 11, depends on the

evaluation of two terms* which for obvious reasons we call the

*We do not address hereto the computation of the entropy H(t)
since for the partiuclar example to which this material is
applied in Chapter 6 this computation presents no problem. As
mentioned in Section 5.1 Zakai and Ziv (38) present a useful
bound on the entropy. In the most general case the entropy
can be obtained by solving Kolmogorovs equation which while
certainly a difficult task is of an order of magnitude easier
than solving the Kirshner equation.
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R e ety 2,

numerator N(t) and denominator* D(t) given by

N(t) = E log E., exp ¢
Poiy Py t
E. (g! R I(s) g_ ¥_)
ft PX S S 's
= E ds
Px.v ‘0 EPX(WS)
E. {b_ g {R 1(s) E, (g_ ¥
t Pxi s s} ‘PX{ s s}
- 3 Ep 5 ds (5.28)
XY O (Ep V)
X
D(t) = E exp g (5.29)
Pyoy t

In this subsection we study some of the properties of the terms
composing N(t) and D(t) leaving for Sections 5.3 and 5.4 their
evaluation.

First we address the question of the hypothesis of
Theorem 10 and the other propositions.of the previous section
specifically in what regards to integrability requirements.
What is at issue is whether the expectations in Egs. (5.25)
and (5.29) exist and are finite.

Lemma 30. Let as before wt(w,&) = exp Ly and Ft(&) =
log EP exp Ct where Ct is as in Eq. (5.18). If g(xt,t) is

X
used in the definition of the NLFP is Px — a.s. bounded then
for se[0,t] (1) Ep y_ exists and is finite (y_ is integrable);
x.y S S
(2) Ep I' exists and is finite (T _ is integrable).
x-y S - s

*D(t) is not to be confused with distortion D.
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Proof: (1) Since L satisfies

= . o~ - i1 15
dz, = 3 g(x,,t)'RT(t) g(x,,t) + glx ,t)'RT(t)aB,, ¢

Yy = exp g, satisfies
t -1
Yp =1 ¢ fo g(x,,8)'R "(s) g(xg,s)yy ds +

t %
* f v g(x_,8) R (s)dB_

Since Ve 2 0, Ep wt exists and we may apply the Fubini

X.Y
theorem to obtain

t

= : s~k - &
pr.Y Y = 1 4 1 Ep . {e(xg,s)'R 7 (s) glxg,s)y }ds

since the expectation of the stochastic integral vanishes. By

hypothesis there exists a constant K < o such that
0 < g(x_,8)' R (s) g(x,,s) < K P, . - a.s.

Hence since Vs > 0,
ft
E y, =1 + K E Y ds
Pyey * o Px.y S
which by the Gronwal-Belman inequality gives the desired re-

sult

161



———

———

o

(2) TFirst note that

E exp ¢, < « P
PX t

since, as just proved, exp Ct is integrable. Further

0 < EP exp T, PX-Y - a.s.
X
since, for K as in part (1), Ep z, £ Kt so that in fact
Xy °©

Ct is a.s. finite. Hence

-© < log EPX exp L, < Pe.y — 2.s.
which implies that EP Tt exists and is finite.[d

XY

It is possible to relax the hypothesis that 8q be
a.s. bounded and still carry out all the development of this
chapter by dealing with stopped processes (40, 50, 47) in the
same way that Duncan (3) was able to extend Mortensen's (6)
version of the Bucy-Mortensen-Duncan representation (Lemma 1)
by using such arguments. In this study we will not go into
the details involved in relaxing the a.s. boundedness df gq
for the following reasons:
(1) This is a technicality which, although
very important, has been effectively re-
solved in the literature. See for example
Duncan's (3) excellent treatment of the

subject.
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(2) The hypothesis that g be a.s. bounded is
sufficient for the particular example con—
sidered here, the phase locked loop of
Chapter 6. '

(3) Bounded modulator or sensor output is not
an unreasonable requirement especially for
nonlinear systems. .

The second item considered in this subsection is the
martingale (49, 50, 47, 44, 45) nature of the expressions de-
fining N(t) and D(t). We have the following two lemmas.

Lemma 31. Hypothesis of Lemma 30*{exp Ct’ B

=t

t > 0} is a submartingale (where as before is given by

Lt

Eq. (5.18) and B, is defined in the definition of the NLFP in

t
Chapter 2).

Proof: is certainly B, measurable since

¢ t

dx

t a(xt,t)dt + b(xt,t)dBt

dz, = % g(x,,t)' R (1) g(x,,t)dt + g(x,, )R (t) dB,

where the usual conditions are satisfied. Making use of

Jensen's inequality (Lemma 18) for 0 < s < t,

*Again if the hypothesis of g _ a.s. bounded is not satisifed
an analogous treatment can beé followed using local martin-
gale treatment (3, 44, 47).
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EPS (exp Ly) 2 exp EES ¢, =

t
= exp EBS gfz 3 g, R—l(r)gr dr + IZ g R-l(r)dﬁrf
= Bs IZ gl R—l(r)gr dr + IZ g, R’l(r)dﬁrs
. ex B I: - R’l(r)gr ar + j: g R'l(r)dﬁrg

B

t
= exp g * exp E—ng 3 g R-l(r)gr dr +

S

t :
+f gl R 1(r)dBr§
S

g, = (x

where EES = E%
T

; ,r), and the last equality follows
X+ Y ¥

from cs being Es measurable. Since the conditional expecta-
tion of the stochastic integral vanishes,

B B f +" =1

E=S(exp t,) > exp rg exp E=S [ % gl R (r)g, dr

S S T iy

Further

Sy ELS ft L P-l(r) dr > 1

P - 2 gr t gr

so that as desired

ES _ *
EPX Y(exp ct) > exp Lo PX~Y a.s.*@A

*This lemma caﬁ also be proved by showing that {c B ,tzo} is
a submartingale and then using the standard submdrtingale
formation thecorem of Doob (49).
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Lemma 32. Let Y, (®) = E exp L,, W € Q , and as
—_— t PX t
before , is as given by Eq. (5.18). {Yi» Beo t 2 0} is a
submartingale.

Proof : wt(w,&) = exp T, satisfies the equation

=1 ) ___1 ~
dy, = g{ R T(t)g, v, At + b gy R T(1)dBy

where gt = g(xt,t) and wt > 0. Hence by the Fubini theorem

= ! h
E dwt d Ep Ui so that

av, = d By ¥, = Ep_{e Rh(ey vef + Tp {ve el R ()} by

X X X
Yo = 1
or
* 2
—3 1
ve =1+ B, {ep B (0 bpar +
0 %
/ (oo} af
+ [ E {w g' R (r)}dB
0 PX b S T
For 0 < s <t and E'S = Egs = Egs,
XY Y

~

Bs. _ Bs ° o gl
ESy, =1+E° [ Ep {gr R “(r)s, wr}dr i
0 X
B i 1 ~
S 1 o
+ E Io pr{wr g. R (r)}dBr +

Bs. ot -1
LB By {6 R (e, bppdr +
S

By 1 -1 <
+ 25 [ Ep {op gp R (r)} ab,
S
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Noting that the first two integrals are ﬁs measurable anc¢ that
the last term vanishes we have

= &3 t
Bs - Bg
E75Yy =Yg 7 E J EP

B {e R (g, ¥ pdr

so that as desired

Bs =
B %% & Vg PX-Y é.s.

since

~ ot
EBSf

. Px{g;. R—l(r)gr Y jdr > 0 B

These lemmas describe the 'general behavior" of the
terms in the numerator and denominator in terms of the classi-
cal properties of submartingales (Doob, 49). For example we
know that D(t) is monotone increasing in t and that wt’ Yi
obey the standard submartingale inequalities and convergence
theorems (Doob, 49). In addition Lemma 32 makes possible an
alternate derivation of Lemma 29 (hence of the main formula
of Theorem 11) using the following result of Ito-Watenabe (55)
and Doleans-Dade (53).

Lemma 33 (Doleans-Bade, 53, 54). Let (Yt’ ct) be a
local submartingale (44) with Meyer decomposition (47, 51, 52)

Yt = Mt + At’ Then

Y¢ = €(U) (V) (5.30)
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where

t dMS
Ut = IO = a local martingale
S
t dAS
vV, = f a natural increasing process
t 0 dYS—

2 : . c <
and for z, a local semimartingale with z, as the continuous

part of the associated martingale,
= - c c
e(zt) exp {Zt 2 <Zt: Zt >}

For the particular case of Yy 2s in Lemma 32, Eq.

(5.30) reduces to
g a2 (e ¢

thus providing an explicit expression for N(t) in Eq. (5.28)

without the logarithm and exponential as follows:

N(t) = E log EP exp Ct

Pr.y X
= E log Y
Po. t
= . _a C C
Ep log ekp{Vt 2 <Ut’ Ut>}
XY
=E, V,-%E <ug, U (5.31)
XY XY

The EV, and —%E(Ug, Ui) terms are obtained by the following

prescription:
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(1) Define W, = [ —2 ds;

(2) Meyer decompose W. into W, = w% + W

r
t
(3) Meyer decompose Wi Wz into Wz we = EV

r
- & giex _ wlwC we
(4) Then EVt = EWt and E<Ut’ bt> E[h Wt]

where the expectations are E .
Px-y

Evaluated in this manner the EV and ECU,U) terms of Eq. (5.31)
correspond to the two terms in Eq. (5.22) of Lemma 29 thus pro-
viding an alternate proof of this lemma and hence to the main
formula of this chapter given in Eq. (5.23) of Theorem 11.

Evaluation of EV and ECU,U) will be considered in Section 5.4.

5.3 Evaluation of Main Formula: Denominator
The objective of this section is to derive formulas
for the numerical evaluation of the denominator* of the main

formula (Eq. (5.23) of Theorem 11), that is, the evaluation of

E = exp L, (w,d) (5.32)
Peoy Pyoy t

where as in Eg. (5.18),

*The numerator of Eq. (5.23) will be evaluated in the next sec-
tion.
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t
Clund) = & [ g(xg,SIRTI(s) glxg,8)'ds +

t %
+ [ g(x_,s)R I(s)dB! (5.33)
0 s S
The expressions derived in this section will be applied in
Chapter 6 to the Phase Locked Loop. The formulas for EYy are
obtained in subsection 5.3.2 after an integration result is

derived in subsection 5.3.1.

5.3.1 Integration Result
We shall need the following standard result.

Lemma 34 (Multinomial Theorem of Algebra, 56). The

general term in the expansion of (a + bx + cx2 + ...)n, n an
integer; is
n! Yy . ¥ q+2r+3s+...
pT qf r! a” bt ec ... x
where p + q + r + s + ... = n. The greatest coefficient in

the expansion is

n!
(@)™ (q + 1)

7 where gm + k = n

The next lemma is an immediate consequence of the
multinomial theorem and the usual rules of permutations.

Lemma 35. Consider the two expressions

N ° n
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R,

—

a . a . e oo QA

§ 2 2 2
=1 J1 J2 In/2

1 JE
2
where n and N are positive integers, n 1is even, and N > n.

Conisder the "expansion'" of the expressions for S1 and S2

into distinct terms of the form

a?l agz a?B coe BED
1 %2 3 5
where i, iy, ig, ..., ij 649,28y N
D: 5 Da o Py 3 sy Py iare: @kl positive even integers
117 12 '3 3
'ﬁ‘ ~
Y p; =n , B £n/2
. i
i=1
Let i i, ln/2 be distinct but otherwise arbitrary
elements of {1,2,...,N}. Then:
(1) TFor the "expansion" of Slz
.. 2 2 2 ;
A. The coefficient of ajq aiz — ain/z is
n!
2n/2
B The coefficient of at‘-1 a2 az is
¥ 11> %12 " “1(n/2-1)
n!
6 - 2n/2

C. The maximum coefficient of all the terms

in the expansion is n!/Zn/2
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(2) For the expansion of Sz, the coefficient of
2 2 2 : n
the term ail aiz “ % " ain/z is (ﬁ)
Proof: (1-A) This follows from the first part of
2 2 2 2

Lemma 34 with x = 1,a" = ajqs b™ = Ajgs +ee- (1-B) This fol-
lows from the first part of Lemma 34 with x = 1, ad = a%l,

b2 = a%z, ve.. (1-C) This follows from the last part of Lemma
34 with g = 2, m = 3, k = 0.

(2) The summation in 82 goes through all (%)! permu-
. . . . .
tatin of i1, dgs vees ln/Z'.

Finally we have the following integration result.

-~

Lemma 36.* As before let {BS : se[b,t]} on (&, BY,

ﬁ) be a (separable) Brownian motion with variance parameter
R(t). Let {Ws : ss[b,t]} on (Q, Bt, P) be a separable stochas-

tic process. Also as before let P = P x P be the product mea-

t = Bt st i ¥

sure on B x BY so that BY and B' are P-independent. Let

n be a positive integer and {ws : se[b,t]} have finite ntB
moments. Then the following stochastic integrals are well

defined and

—

[t n
E|f] w_ dB = 0 if n is odd (5.34)
0 S S
[ & In y t n/2
E|f w_aB | - - E[{ w2 R(s) ds if n
. O N (n/2)! 2 0 is even
(5.35)

where E = Ep throughout.

*Wiener uses this result in Ref. (57). Since he does not give a
proof (and since the author, unaware of Wiener's result, spent
a considerable amount of time deriving this result), a proof
is included here.
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Proof: The result will be shown for simplicity for
t = 1 but it is valid for an arbitrary t. That the stochastic
integrals are well defined and that Eq. (5.34) is true are
clear, the later folloiwng from a consideration of

1 . | n

E|/f w_dB
0 i

1l
=]
-
)_J-
=
o~
jary
=
n
H-
o
n
|
o
)]
H
~—
=

1im o - o A8
B How B 21 wS.<BS - BS.> (5.36)
= 1 1

since the resulting n-fold sum will involve only odd moments

of (ﬁ _ B Consider rniow the case when n is even. Let
: 5 , 1Y S
a; = . BS - Bg ) Then
i i+l i
1 n ’ N n
glf wab | =3P E| ) a
s s N-c % i
0 i=1
IO S B
= E . a. a, a
Noe ™ 329 4,21 i=1%1%2 o
1 2 n
(5.37)
where the general term is of the form
ay ay ...a; = wblwP2 . uPi <§S - B )
L .2 . 31 3 Iz \ Td1e1 32
. pl(ﬁ - B )pZ Ty <§ - B Pr
S. S. S. S.
Jo+1 Jg JH+1 3ﬁ>
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i e (1, 2, 3, ..., N)

8 8 5 ewey By E[O,l],s. # s. for k # i
I Ik Ji
By hypothesis and the properties of the Brownian motion the

expectation of the general term is

Efa. a. ...a. = gfwPl P2 ... wPi \ E/B - B P1
i X i S5 S5 S5 s . S5
1 2 n 1

E(B - B >p2...E1§ - B )pﬁ
S. S. S. S.
Jot1 J2 I+ i

(5.38)
We now investigate the contributions of the various terms on
the right side of Eq. (5.37) to the left side of that equation.
Conisder the general term of Eq. (5.38). There are two pos-
sibilities: Either at least one of the‘pi is odd, in which
case the right side of Eq. (5.38) vanishes and there is no
contribution; or else all the p; are even. We separate the
later (i.e., those terms in the right side of Eq. (5.37) with
all the Py even) into two groups as follows:
Group 1: All terms having p; = 2. 1= Ly wusy n = n/2. That

: 2 2 ; : .
is all terms of the form E(ai, .. A ) with the 11""’ln/2

i
n/2
distinct. Call their contribution (i.e., the sum of all such

terms on the right side of Eq. (4.31)) Hl.
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n < N(N-1) ... (N-n/2+1 _n! 1

K
;i § (n/2)! 2n/2 Nn/2
- Nn/Z + o(Nn/z) n! K
NB/2 (n/2)1 2°/2
=0 n K) as N » o
(n/2)1 2°/2
so that Hl, in addition to remaining finite, is of order

M, = 0(1) as N » =

where we have used the usual Landau symbols (58, 59, 60) o and
O. On the other hand we can show that the contribution of the
terms of group (2) is of the order 1/N as N » », In fact,

consider the contribution Hé of all terms of the form E(a?

b

1
a? s % a? ). In manner analogous to the computations of
2 n-1
2
Hl,
C 1
H'S_Np._lo__n'—._oKo 3
2 2 & 2n/2 Nn/2

where n!/(6 - 27/2) is, from Lemma 35 part 1-B, the coeffi-

cient of E a? a? ...a? A ¢ is the number of combinations
) s | i n
1 2 n 1 ‘5—1
5=
of N things taken (n/2-1) at a time; K is as before; and

3/Nn/2 comes from the moments of the Brownian motion incre-

ments. Thus
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Group 2: All terms having Py > 4 for at least one 1 in 1

1’
~ : 4 2 2
., n. An example of such a term is a; ay ... a2y . Call
1. 2 n
their contribution T,. Now as N » « the value of T

the right side of Eq. (5.37) is finite and is determined solely

by terms of group (1). In fact, from Egqs. (5.37) and (5.38)

C
2 n! 1
n, < N B/2. . K - (5.39)
1 2n/2 Nn/2
1
where 2)2 is, from Lemma 35 part 1-A, the coefficient of
2
C
E<€? e a? \ in the expansion of Eq. (5.37); N n/2 is the
1 n/2/

number of combinations of N things taken n/2 at a time,

C

N n/2 N!

= (N-nj2)t (n/2)71 ° (5.40)

K is a constant (whose existence is assured by hypothesis)

such that (see Eq. (5.38))

E(wz w‘z >$K < ;
A n/2

and, lumping without loss of generality the variance parame-

ter R(s) into the corresponding wi, 1/Nn/2 = E ﬁs = B )2...
i 2y
1 T
BB, - B 2. Substituting Eq. (5.40) into (5.39) we have
lﬂ+1 i,
2 2
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PSR

N(N-1) ... (N- n/2 + 2) n!

t —————————
iy < (/2 = 1)1 R ¥
I el 3 i W 3K n!
N2 (n/2 - 1)1 6 » 2/2
= O(1/N) as N » o
Thus Hé is not only bounded but Hé = O(1/N) as N > =, It is

clear then from Lemma 35 part 1-C and the definition of NCn
that the contributions of other 'types" of terms in Group 2

? a? e..a; , etc.) are o(1/N). Hence, since the
T i
1 72 n_,

number of such ”ty%es” is finite and depends cnly on n (and

(e.g., a

not on N), we have as desired

Kl
H2 S‘TT and Hz = O(1/N) as N » =

so that in the right side of Eq. (5.37) we need only con-

sider terms of Group 1. Consider now

§ § - % E(%z a? ¥ v a? )

ey : 2 ‘ - i i i
i,=1 i, 1 iy/2 1 gl 2 n/2
We claim
11 1w y - — s L .1 1 B2 a2
R a, &, ...8 = - avele a
1,51 1,71 1=1 R I Y T A S 1,0, n/2
+ O0(1/N) as N + = (5.41)
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This follows from the fact that the equality is certainly true
if the coefficients of each of the terms E(a? a? ...a? ’

11 12 n/2
Group 1 match on both sides of the equation, the O(1/N) account-

) of

ing for terms of Group 2. Now by Lemma 35 parts 1-A and 2 the

coefficient of E(a? a? ..a?
1. %8 n/2
tions in Eq. (5.41) are n!/20/2 and (n/2)! respectively so

) on the left and right summa-

that Eq. (5.41) is indeed correct. Substituting Egq. (5.41) into
Eq. (5.37) we have

1 In N N N

- 1im n! 2 2 2
E w_ dB = e —————g I { g 2 E(a AT ceel ) + O(1/N)}
[!o s SJ L {(n/2)! 2% g s gm0 /2" 19747 g2

2 n
N N N 1
cpm )y " L Fee I B e T
(n/2)! 2 1,51 1,51 4,
n! Yim o f 012 ¥ o2 3
> 772 Ne= B} 0 Iowe W
(n/2)! 2 k=l 4,71 °1

' /2 Y 4m Y 2 1
» v n?EE{n :‘:r: ! Ys., K
(n/2)! 2 =1 1.=1 Sy

n! E[’I 2 R(s) as i
- = w S

(n/2)! "2 o S ]
where the variance parameter R(s) has been restored in the
last step. The above proves the lemma for a specific t and
by the usual separability arguments (e.g.(3)) this can be made

to apply to all rational and real t.
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5.3.

Denominator Formulas

We are now in a position to prove Theorem 13 below.

Theorem 13 has four parts which provide both an exact expres-

sion (part 1) as well as an upper bound (part 2) for the de-

nominator term D(t) of Eq. (5.32) and yield respective MSE

lower bounds (parts 3 and 4). While in general the bound on

D(t) is easier to evaluate than the exact expression, we will

find in Chapter 6 that the exact expression (Eq. (5.42) below)

can also be easily evaluated for the phase locked loop.

Eq.

(1)

(2)

(3)

(4)

Theorem 13. Hypothesis of Theorem 11. Recall from

(5.29) that D(t) = EP exp Ct where Ct is as in Egs.
E

XY
(5.18). Then, with E = p for short:
XY
. © © 1 t so-1 n-r/2
D(t) r_°'2§4'... ngr T e R E[}o g(xg,8)'R7(s) s(xs.s)ds}
(5.42)
D(t) < DUB(t) where
i - - (-r/2-1 t . | n-r/2
Dyp(t) "0'2&'“_ ibe Tt o A Io E[s(xg.8) R (s) g(x,,s)ds] ds
£ pce) (5.43)
cx(t) > i explon(ey} JexeNCE) |7
2 Sre p €D (5.44)
where D(t) is given by Eq. (5.42);
exp N(t) 2
* et pstiel 0Ron T, Wn i AR
eX(t) 2 5o exp{2H(t)} Dy () (5.45)

where DUB(t) is given by Eq. (5.43), N(t) is as in Egs.
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(5.28), and the terminology and stationarity comment of
Theorem 11 apply.

Proof: First we note that if Eq. (5.42) is true then
the upper bound of Eq. (5.43) and Egs. (5.44) and (5.45) follow
from Lemma 28C and from Eg. (5.23) of Theorem 11. Thus we
only need to provie Eq. (5.42). By a formal expansion, noting

that by hypothesis the expectation exists,

o cg
E(exp ¢,) = 2 El—7 (5.46)
n=0
We now derive an expression for E(gg/n!). It is seen that

for n=0, E(g¢./n!) = 1; and for n=1, E(Cz/n!)

t
= 2 fo E(g(XS,S)'R_l(s) g(xg,s))ds.

More generally, for arbitrary n (and with 8g g(xs,s) for short),

t 1 ¢ -1 t E YT
B\;7) = a7 E{? ;o g(x,.8)'R77(5) g(xg,s)ds + !o R(xg.S)R “(5)dB

t t

n t n-1
1 1 TS | n yo=1 S § =
-5 E{-——zn []0 geR T (s)gg ds] + _2n-1 [fo geRT(s)gg ds] [[0 g.R (s)st]}

t n-2( t o
+ 3—1%111[} gL 2 (s)e, ds] [Io z;R"<s)dss] .

2" < 210

t -3 t 3
n (n-1)(n-2 vp=1 S § =
+ 273 3 []0 gLR T (s)gg ds]n [!o roR (s)st] +
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t n-r [t s . |
+ Mn-1)(n=2) ... (p-red) [}o gLR 1 (s)eg ds] [lo ReR 1(s)das] .

2™T ri
E _2 : _ t -1 n-r-1 t Vo1 o o
4+ D(n ;3\5201)(;;1)?’ r) I:Io g;R (s)gs ds] [Io gsR (s)dBs
...+

a1 t oy t -1 . ]n-1
MR CE P08¥‘<smsﬁ%106¥‘<sw%
t - In
+ !ossn (s)dBy (5.47)

Suppose r is even and consider the r and (r+l1l) term in the

above expression. For the (r+1)th term, let

t -1 n-r-1 -1
— ' L4 '
W IO gL {r)e. dr] r+1 - glR " (s)

so that

t -1 n-r-1[ t -1 - |r+l
E fo g R (s)gg ds] fo gLR (s)dBg

0

t _ Jr+1
E|[ w.dBg

0 (5.48)

where the last equality follows from Lemma 36 since clearly

W, as defined here satisfies the hypothesis of this lemma.

Similarly for the rth term let

n-r

t
Wy = [IO gLk (r)g,, dr} T glR ()

so that
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. x:[[t g 'R 1(e)s <1={i.n.r[/t z'R’I(u)dﬁ]r - :[f v aé]t
[} 3 L] 0 8 8 0 8 8

where the second equality

rt t : r/2
- (r/2)1 27 . lo R
! S -y per e oy < r/2
- (—r/-;;:——zm s[fo £LR (g, dr] [fo EoR T (@)R(8) R (0)g as]

rt t o1 n-r/2
BT A R (5.49)

follows from Lemma 36 since again

the independence hypothesis is clearly satisfied. Egs. (5.48)

and (5.49) can now be substituted into Eq. (5.47) and this

equation can be substituted into Eq. (5.46). The net result

can be cast into a double series by "summing across'" as illu-

strated by the following diagram,

r=0
r=1
r=2
r=3
r=4
r=5

n=0

n=2 n=3 n=4 n=95
* * * * |
0 0 0 o .
* * * *
0 0 o .

* *

0 .

where O indicates a vanishing term corresponding to Eq. (5.48)

and * denotes a term obtained from applying Eq. (5.49). Thus,

the coefficient of the general non-vanishing term is (5.47),

r!

1

(r/2)!

g 1
2r/2 nt

n(n-1) ... (n-r+1)

n-r ?
2

r: even, n: arbitrary
r!

181



so that as desired

<« @

1
D(t) = 5
r—0,2§4,.. nzr (r/2)!(n-r) 12" T/2

t 1 n-r/2
- E IO g(x,,8)'R " (s) g(xg,s)ds F3

Summarizing, we have produced in this section two
computable expressions —- an exact formula and a bound -- for
the denominator D(t) of the main formula of this chapter, Eq.
(5.23) of Theorem 11. While these expressions are in the form
of infinite series, they are rapidly convergent (roughly as
1/(n!)2 for the phase locked loop of Chapter 6). The numera-
tor N(t) of the main formula is now considered in the next sec-

tion.

5.4 Evaluation of Main Formula: Numerator

The objective of this section is to obtain machinery
for the numerical evaluation of the numerator N(t) of the main
formula of this chapter (Eq. (5.23) of Theorem 11), that is

for the evaluation of
N(t) = v(t) - % u(t) (5.50)

where, from Egs. (5.23), (5.31)

.|
" & pr(gSR (s)gg v)
v(t) = E V, = E i ds (5.51)

Py vt Pxuvo pr(ws)
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-1
E, (v_g')R “(s) E; (b _g_.)
<U§, Ui) ) ft PX s®s _ PX s®s -
0 (LPX WS)

u(t) = E

X-Y
(5.52)

and as before
g = 8(xg,8)
wt = exp Ct

PR S | P | =
t, = 3 [g 8LR (s)gg ds + [ g R T (s) dBg (5.53)

By "evaluation of N(t)" we mean the procurement of a lower-—
bound to N(t) in terms of the moments of the g process since
such a lowerbound will provide us with an MSE lowerbound when
used in Theorem 11.

The evaluation of N(t) is more complex than that of
D(t) as is evident from a comparison of Egs. (5.32), (5.50),
(5.51) and (5.52). To simplify the notation we make the fol-
lowing assumptions and simplifications:

(1) g = g(xs,s) is assumed to be a scalar

(2) R(s) is assumed to be a constant

(3) Epg.y and Epy are written as EXy and E_,

respectively.

While the case of assumptions (1) and (2) will be sufficient
for the application considered in Chapter 6, it is clear that
no loss in generality is suffered assuming R constant since R

can be lumped into g (Egqs. (5.51), (5.52)). Similarly it will

become apparent that the case of vector gg can be handled
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analogously to that of scalar g although the notational com-
plexity is naturally increasecd.

This section is divided into three subsections. First
in subsection 5.4.1 the basic nature of the difficulties in-
volved in evaluating the numerator is idscussed and elementary
solutions are presented. Subsections 5.4.2 to 5.4.6 contain
a more sophisticated evaluation method parts of which will be
used in Chapter 6. In particular lowerbounds on the numerator
are derived in subsection 5.4.2 while the machinery to evalu-

ate these bounds is developed in 5.4.3 to 5.4.6.

5.4.1 Basic Problem and Elementary Solution

Inspection of Eqs. (5.50), (5.51), and (5.52) shows
that the basic problem in the computation of the numerator is
the evaiuation of the expectation of a quotient of random vari-

ables of the form

~ E, a(w,® :
where w and ® are as in the definition of the NLFP (Section 2.1).
Further, in the evaluation of the denominator considered in
Section 5.3, Exy could "operate on" the w-stochastic integrals
involved (see for example Egs. 5.48 and 5.49) while here it
cannot. Finally, we note that since we desire a lower bound
on N(t) we must find a lower bound on v(t) and an upper bound

on u(t).
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An elementary approach to the evaluation of N(t) is

then to use standard inequalities in lower and upper bounding

v(t) and u(t) respectively.

Lemma 37. Consider N(t),.v(t), and u(t) as defined

in Egs. (5.50) through (5.52). Then

t
—4 -
u(t) < IO (E_ gz) \[Exy_ wi ‘fExy V" R 1 4s
t Y - =25
ut) £ Io Exy 8. Vs VYExy v.,© R ds

t
i 14 =4 -1
u(t) < [ ‘JEL g- v V% P R™™ ds
0 Xy °s 'S Xy 'S

t 2 -1
N(t) =% | E . (g R 7) ds
o s

v(t) > [

(5.

(5.

(5.

(5.

.55a)

55b)

55c¢)

55d)

55e)

Proof: Equations (5.55a) through (5.55e) follow from

applying Holder's and Jensen's inequality to the integrand in

the definition of u(t), Eq. (5.52). Eqgq. (5.55d) follows upon

applying the convex Jensen's inequality (Lemma 28B) to N(t) as

defined in the statement of Theorem 11. Finally,

follows by noting that for all Ke (0,«]

185

(5.55¢)



4
= =

ol
™
4
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K

optimizing over K (see proof of Lemma 39), and using Holder's
inequality.H

We note that the net effect of this lemma has been to
bring Exy —- rather than just Ex -—- to act on all quantities
which are defined in terms of W-stochastic integrals. Once
this objective has been achieved exact formulas and bounds for
the resulting EXy expectations can be obtained by methods ana-
logous to those used in deriving the denominator expressions
of Theorem 13. Specifically we have the following formulas
for the EXy eépectations appearing on Egqs. (5.55a) through
(5.55f).

Lemma 38. Consider Egs. (5.55) of Lemma 37. Expres-
sions and bounds for the equations appearing in these equa-

tions are given by:

m E E m? i { ft 2 -1 n-r/2} :
Fxy Ve T g. R 7 ds
%y 't 1e0,204,... ner (a-r)i(r/2)12"7T/2 W {0 7S _ (5.56a)
s o m? t ’ 2 -1 n-r/Z!
y Fev)l®s R ds (5.56b)
rx0,2§4,,,, nzr (n-r)!(r/2)!2n'r/2 lo Xy [ s ]
» -m - © (_m)n { t 5 e n=r/2 }
5 W = E g R dS 0.560
xy t r:O,z),:d,.., an (n-r)!(r/Z)!zn'r/z Xy [IO s ] ( )
g . - " .
: ! n-r/2
r=0,2,4,... n=r,ré2,r4d,... (n-r)i(r/2)12 (5.56d)

t n-r/2 t e
a n-r/2-1 D oy o 3 i
{t IO Exy {(‘:S R ™) }ds T Z(n+i-r) [IO Exy(gs R )ds] }
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K my . = % m" g {[rt k D ““’/2}
Exy{g‘ Vt} r=0,2§4,... ngr (n-r)t(r/2)12""2% X¥ {0 Ef:;77 fs .
(5.56¢)
k m) . b b m" tn-r/2—1] (t g {oF 20Tl
E""{gt vt}—r=o,2§4,... ngr (n-r)i(r/2)1277F/2 [1{“"”2 ‘o ""'{L‘ fs }S
' (5..5861)
K © © n I't _k_/_,, 5 " ]“"'/2
o m E__ g~ %/= R “ds
E"Y{g‘ Jt} * r=0,2§4,... ngr (n-r)t(r/2)12""7/2 L[o xy Bt s (5.56g)
where
m=o0, 1, 2, 3,
k=0, 2, 4, 6,
and as before
gy = 8(x;,1) . .
2 -1 -1 .3
Yo = eXp Ly = exp{% i g, R~ ds + IO g, R dBS}
0

Proof: The identities in Egs. (5.56a), (5.56c), (5.56e)
can be proved by using Lemma 36 in manner analogous to the proof
of Theorem 13. The inequalities in Egs. (5.56b), (5.56d),
(5.56f), (5.56g) can be obtained by using the Holder and Jensen
inequalities of Lemma 28 in the respective identities (Egs.
(5.56a, c, e)). &

The results of Lemmas 37, 38 are simple to apply* and

may yield satisfactory results in some problems. Unfortunately

*In fact, for the phase locked loop of Chapter 6 there is no
need to use the bounds (Egs. (5.56b, d, f, g)) in Lemma 38
since the exact expressions (Egs. (5.56a, c, e)) can be easily
evaluated. .
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these formulas proved to be inadequate for the phase locked
loop of Chapter 6. In the next two subsections we develop

better although more complex methods to evaluate the numera-

tor N(t).
5.4.2 Numerator Bound

In the previous subsection the technique was '"to bound
until"

(1) the quotient form of Eq. (5.54) was
bypassed, and
(2) all Ex had been eliminated so that only
Exy expectati&ns remained.
In this subsection we tolerate the presence of the Ex in the
interest of bound tightness and at the expense of increased
computational complexity. The quotient form of Eq. (5.54),
however, must still be bypassed and this is the objective of
the following lemma.
Lemma 39. Consider N(t), v(t), u(t) as defined in
Egs. (5.50) to (5.52).

A. In general we have:
2
2
¥ {Exy[gs wS]} “1
v(t) > [ 5 : R~ ds (5:57)
0 B, {E, (g2 v B (v

u(t) < It E {(E V_)(E v )(E w"z)} R ds
= xRy x s Ys x s Ys X 's

0 (5.58)
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so that

| _fmafe2 w])

2
o By {E (o2 ) E (o)

N(t) > |

-1 m {8 v (B, 8y v TR as

B. Consider the special case* where for a positive constant A
_ A
v(t) = gx t (5.59)
and where there exists a function Z (t) such that

E (V) 2 E(t) B - a.s. (5.60)

Then

b it B, {E (g vg) B (eg ¥} N

N(t) > {— £ (5.61)
R 2R 7, = (3)2 }

Proof: From Egs. (5.50) to (5.52) it is clear that

we need only prove Egs. (5.57) and (5.58). Let

£(K) = 2 AB + 2 A, Ke(0,%]
K
where A and B are two positive constant. Clearly for all
Ke(0,«],
A
g 2 f(X) (5.62)

*This will indeed be the case in Chapter 6.
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Letting A, B be a.s. positive random variables on ({,B,P) we

note that the inequality in Eq. (5.62) holds a.s. so that

A v _ -1 2 .
Exy{ﬁ} = Exy £(K) = Eﬁ Exy(A B) + ¢ E(A), Ke(0,«] (5.63)

Choosing K in Eq. (5.63) such that éExy f(K)/39K = 0 and letting
fea 2 —
A(w) = E (g ¥g), B(w) = E (V) we have

2

; {_<___1} A,
Xy Ex(ws) - Exy{Ex(gz lps) EX(wS)}

so that Eq. (5.57) is indeed true. By the convex Jensen in-

equality (Lemma 28B) we know that

Hence

2
(E, 85 V)
Exy { }.s Exy{(Ex g V) (E

-2
5 g ¥ (B, i)
(E, ¥,) |

p ¢
from which Eq. (5.58) follows. Eq. (5.61) follows directly from
Eq. (5.59), (5.60), and (5.50) to (5.52).

The next theorem summarizes in Part A the general de-
velopment in this chapter and contains in the special case of
Part B the specific formula for the MSE lowerbound that will
be applied in Chapter 6 to the phase locked loop. The impor-

tance of the formulas of Theorem 14 is that -- as we shall see
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in the remaining of this section -- they provide MSE lower-
bounds that can be evaluated exactly provided the moments of
the g, process are available.

Theorem 14. Hypothesis of Theorem 10. A lowerbound

on £¢*(t) is given by
2
expiN, . (t)
ex(t) > { = exp[ZH(t)]} { { 2 }} (5.64)

2ne D(t)

4

D(t) = E {w

- ! (5.65)

t

is as given in Eq. (5.42) of Theorem 13; H(t), g ws have the
same meaning as in Theorems 10 and 11; and:

A. In general NLB(t) can be taken as

v {Byled v}

2
0 Exy{Ex<gS v Ex(ws)}

2

Npp(t) = [

\ -2 -1
-
2B {8, g V(B g V) (E, vZT) R }ds
(5.66)
B. In the special case for which Egs. (5.59), (5.60) of

Lemma 39 hold, NLB(t) can be taken as

t B 4B (g. ¥.) E. (8. V)
_JA 1 xy{ xt28 S X'°s s } §
Nin(t) = {R t - 3% / 5(5) db}(5.67)

0
As in Theorems 10 and 11, if the processes defined by the NLFP
are stationary then e*(t) is constant and bounded by the supre-

mum over all t of the right hand side of Eq. (5.64).
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Proof: Eqs. (5.64), (5.66) and (5.67) follow upon
substituting in Theorem 13 the results of Lemma 39. 3

The next four subsections provide the machinery for
handling the added computational complexity arising from the

presence of the Ex expectations in Egs. (5.66) and (5.67).

5.4.3 Integration and Series Results

The objective of the present subsection is to express
the expectations appearing in Egs. (5.66) and (5.67) in terms
of products of stochastic integrals. 1In Egs. (5.48) to (5.50)
all such stochastic integrals will be reduced to ordinary in-
tegrals of the moments of the g process. The net result will
be the evaluation of the MSE lowerbound of Eq. (5.64) both in
the general case as well as in the special case considered in
Chapter 6.

Of all the Exy expectations appearing in Theorem 14,
formulas for Exy(wt) and Exy(gi wt) have already been derived
in Theorem 13 and Lemma 38. Thus, in order to evaluate'Eq.

(5.64) what remains is to obtain computable expressions for

B,y {E, (e} ¥y B (v} (5.68)

E {E<g¢)g(g w)Ecw‘2>} (5.69)

Xyl x'°t"t X '°t 't X't 2

B {E (8 0,) Eyle, v (5.70)
where
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gy = g(xy, t)

<
ct
|

= exp Ct

t 2 -1 t -1 .=
= 1 4
ct % IO 8q R ds + IO g R dBS (5.71)

We first note the "product of infinite series nature"

of statements (5.68), (5.69) and (5.70). In fact, let

= X k =1 o3
a; = 37 By Ty) » by = 37 B, (2p)
=1 Kk _ ok m
¢, = w1 Ex(8¢ o¢) » dp = T Ex(8y T¢)
n
_ (=2)" n
e, —=)_F_(c3) (5.72)

Then from Egs. (5.68), (5.69), and (5.71) we see that

2 _ o] ‘oo
Exy{Ex(gt V) Ex(wt)} - Exy {izo a4 ij bj} (%731
B, {B, (g, ¥) By(g, ¥ B (40)}= E Jee la-le
xyl x*°t "t x'°t "t x' 't XV k=0 ¥ m=0 ™ pn=0 B
(5.74)
Exy{Ex(gt v,) E (g wt)} =By {kZO &y ¢ mEO dm} (5.75)

We will need the following result from the algebra of infinite
series.

Lemma 40. (Cauchy (61), (62), (63), (64), (65)). Let
fai}, {bi}, {ci}, {di}, {ei}, i=0,1, 2, ... be real sequences
with correspon@ing Fuclidean norm convergent infinite series

Zai, Zbi’ Zci, Zdi, Zei. Let for j = 0, 1, 2,
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= + ... + a, + a. 5.76
s aobj # albj—l aJ_lb1 ano ( )
= + + c, + c. .
Yj codj + Cldj—l e Cg—ldl cho (5.77)
Bj = Yoej ¥ Ylej—l ke wE Yj—lel + Yjeo (5.78)

Then the Cauchy products

e~ 8
Q
II.MS
<
o~ 8
™

converge in the Euclidean norm and furthermore

) o, = ] a;, » } b, (5.79)
k=0 i=0 1  j=0
) Ty = le, = ld - (5.80)
3=0

.= Gy, d - e 5.81
jzo 3 kzo X mZO . nZ-O n ( )

From the preceding lemma we can immediately write
the following expressions for the expectations in statement
(5.68) and (5.69).

Lemma 41. Hypothesis of Theorem 11.* Let ay, bi’ Cso

di’ €45 G5 Yy Bi be as defined in Eqgs. (5.72), (5.76), (5.77),

(5.78) respectively. Then

*We recall that the relevant part of the hypothesis of Theorems
10 and 11 is that the expectations that define N(t) and D(t)
exist and are Tinite. We also recall that by Lemma 30 a suffi-
cient condition for this hypothesis to be true is that gg be
a.s. bounded as indeed is the case for the phase locked loop
of Chapter 6. See the discussion in subsection 5.2.3.
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5=0 xy- ) 3=0 Xy ' J 3=0 ‘XY J
norm:
2 _ o
C. E,, E (g} ¥¢) E,(¥) = jzo E,v%; (5.82)
. T
Eyy (By 8¢ V(B 8p V(B ¥.7) = jZO E ¢85 (5.83)
iy Bx(By V¢) Eylgg ¥p) = jZo Bo¥ (5.84)

Proof: If A is true then clearly, making use of Lemma
40, so are B and C. But by hypothesis and Lemma 30 Ct as de-
fined in Egs. (5.71) is P-a.s. finite so that indeed -- since
the exponential series is absolutely convergent on the entire
real line —- Eaj, Zyj, ZBj converge for almost all w.H

What remains, then, is to find expressions for. the
Qigs Bj,
hand side of Egs. (5.82), (5.83), and (5.84). The philosophy

and Yj appearing in the Cauchy products on the right

of the approach here is not to produce one single two-page-long

uncomprehensible formula for a Bj’ or Yj’ but rather to find

J')

an expression for the typical terms in aj, B and Yj' Once

J' )
an expression for the typical term has been derived, a digital
computer can be used to efficiently perform the pertinent evalu-

ations and sums. For example, once we find a procedure to
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evaluate E__a b_, a computer can evaluate E

a b, for different
Xy mn n

Xy k

n, k and perform the sum in Eq. (5.76) to evaluate Exyaj' The

resulting procedure for the evaluation of the aj, Bj’ Yj will
then be easier done than said.

In the next three subsections we consider respectively

the evaluation of the aj, Bj’

volving sums of products of stochastic integrals* to sums of

Yj from their present form in-

products of ordinary integrals of the gs process.

5.4.4 Integration and Series Results: The aj
Consider first the aj. From Egs. (5.76), (5.72) it

is clear that the typical term in the evaluation of aj is

(a_ Db

N T 5} 2 .n k .
Exy n k) " n! k! Exy{Ex(gt Z"t) Ex(ct)} (5.85)

Furthermore, from Egs. (5.71) we see that the typical term in

Eq. (5.85) is composed of constants multiplying integrals of

t T t T
2 2 1 = 2
Exy{Exigt [IO gs ds} |:f0 €s st:l

[It e dS}ml [fz g dés}ng} (5.86)

0

the form

Il(rl,r2,m1,m2)

E
X

where ry, Tg, My, My are non-negative integers. We observe

that:

*The presence of the stochastic integrals in the ay can be seen
from Eqs. (5.71), (5.72), and (5.76) and similarly for the Bj’

Yj-
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(1) Once we find an expression for I1 of Eq. (5.86) we then
have a well defined computer amenable procedure for
evaluating o and Exy{Ex(gf 0,) Ex(wt)} of statement
(5.68). ‘

(2) In order to evaluate I1 of Eq. (5.68) we must first
eliminate all stochastic integrals and replace them
by deterministic integrals. Once this is done and if
we know the moments of the g process (as is the case
for the phase locked loop of Chapter 6) we then have
an explicit computable expression for Il'

Before proceding to evaluate I we need the following lemma due

to Wiener.

Lemma 42. (Wiener (57)). Let rz, my be two non-negative

2 2

1 m
integers with my, 2 Ty Let F:[0,t] + R and G:[0,t] + R

be two functions symmetric in their arguments in the sense

that*

F(sl, Sgs ++w» S ) = F(si g e 8 anEm B3 )

L) T 2
where {11, ig, o) irz} is a rearrangement of {1, D, wESEs rz}
and similarly for G. Let ﬁs be Brownian motion as in the defi-

nition of the NLFP. Then if r,, my are either both odd or

both even,

For example, F(Sl""’srz) = Ex(gS seens
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t t t 5 e
Exy{ / / srove / F(Sy, Spu vnes srz)dnslcss .- .dB_

5170 5,70 Sr,=0 2
[t ft jt G( )dB_ dB dB
B 8y Wi O
om0 070 ompm0 1 2 LR Tk °m2}
1 t t t
m
-[<2>(2v-1)(2v—3)... 5-3°1JRV i [ e I o -
2v ;=0 2,=0 A =0 R
; jt jt )dB_ dB B
« E F(S,, 8pn¢ ssss 8

“y{s{-o 5,0 srp=0 2 Ty 8y % Sr,

; ¥ [ ¢ Ay, A A, X )eB_ dB eB
. 05 O v O ey
o, =0 02=0 cm2=0 1 2 5 1 1 °3 °r2}
(5.8'F)
where
m, — T
5 2 2
2
m
m,!
2 L 5
2y (m2—2v)!(2v)!
If my, Ty are not either both odd or both even the left side

of Eq. (5.87) vanishes.

We observe that the net effect of this lemma is to
eliminate (m2-r2) of the Brownian motions so that both inte-
grals on the right hand side of Eq. (5.87) have r, Brownian
motions. This result is useful in obtaining an expression for

I of Eq. (5.86) in the following Theorem. *

Theorem 15. Conisder Il(rl, Ty, My, m2) as defined

in Eq. (5.86) where r m, are arbitrary non-negative integers;

S |

*The principles used in the proofs of Theorems 15, 16 and 17
are described by Wiener (57) in a more elementary context.
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m, are even integers; and r, < mz.*

2

Ly

& 3
I,(ry, Tp My, M) = {K22><2v-1)<2v-3)...5-3-{Jn

v

2*T2
2

£2 2 T, 2
e f ( )(2n-1)(2n-3)...5-3-{] (ry-22)!
n=0 2n

2 2

2 2 2

where

(2n-1)(2n-3)...5-3-1]8 1

n=0
My M!
N/ = (M-N)! N!

m - T
o s 2 5 2
I1(n) = ry +n
JI(n) =my + v +n
123(11) = ]?2 - 271

= il 4 i B }ds v ds
9y °J1(n) sy SIZ(n) 1 I1(n)

2
E el 62 ... o2 Bg +: 8 b
g0 SUE Ty *1(n) 51 ®12(n)

dol'"doJl(n)dsl“'dsl2(n)

(5.88)

Proof: First we note that I(rl, Ty, My, m2) of Eq.

(5.86) can be written as (upon using Fubini):

*In Chapter 6 we will only need the case where rg and mg are

even since E(gsl...gSN) = 0 for N odd.

An identical formula

results for the case where rg, mg are both odd except that
(ro-1)/2 is the upper 1limit of the sum over n in Eq. (5.88).

For rg, mg not either both odd or both even,

I vanishes. An

analogous formula can be derived for the m2 < rg case simply

by interchanging mg and rg
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t t t t
I,(ry, Ty, my, mp) = _[ . / _] . B [ -
51-0 §_ =0 01-0 O =0
L "1
t t ” s 2 B A
E {! e 62 e g }cm ds_ -
F30 PR bp XAt O $ s s s s
Sy 0 sr2 0 1 Ty 1 Ty 1 Ty
t t
: 2 2 = -
| E {;;- 82 €, +--8, }aB  ...dB }
o g X170 o o o ("o ¢
o,=0 omz 0 1 ny b § my 1 ™y
d51 dsx_1 dol dcm1 (5 N 89)

(mz) [t. It [t It
I.(ry, r,, m,, m,) = (2v=-1)...5+3+1 asee 000
1% % e Mg . 50 &, =0 31=0 3 =0

L | s |
t t t t
2 2 = =
. | E {g g2 ...g2 g g }dB ...dB
A,=0 A =0 XY {s =0 s =0 XUt 7Sy Sr, 51 Sr 53 Sr
v ry 1 2
4 % 2 ¢B 4B
. E {g g~ g 8 B. «++E }
01-0 o =0 *U0 °m1 x1 Av % °r2 24 arz
2
x - = =~ = 3
diy...dr d8) dsrl 3, doml (5.90)

where v = (m2 - r2)/2.

Now there are many ways to pairing the Brownian motions appear-
ing in Eq. (5.90). Suppose that pair 2n of the Brownian motions
appearing in the first integral among themselves. Clearly

0 < v < r2/2. Such a pairing can be done in

(o) '

(2n-1)(2n-3) ... 5+3-1 (5.91)

2n :
T

ways insce there are (2§>ways of selecting 2n items from r,

items and these 2v items can be paired in (2n-1)...5-3+1 ways.
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The pairing of 2n of the Brownian motions appearing
in the first integral among themselves requires the pairing
of 2n of the Brownian motions in the second integral among
themselves (else some of the Brownian motions will remain un-—
paired and the EXy expectation of the integral will.vanish).
Such a pairing in the second integral can also be done in
<f2> (2n-1)(2n-3) ... 5°3-1 (5.92)
2n
ways.
Finally observe that there are (r2 - 2n) unpaired
Brownian motions in both integrals. They can be paired (pair-
ing one Brownian motion of one integral with one of the other)

in
(r2 - 2n)! (5.93)

ways.
Thus, for each n, 0 £ n < rz/z, the pairing process

will give (multiplying statements (5.91), (5.92), (5.93),

2
[(r2> (2n- 1) ... 5-3-1] (ry, = 2n)!
2n

identical terms. Substituting these results in Eq. (5.90) and

summing over all possible n gives

201



My +Ty

m‘)
L my) = [(2;> (2v—1)..5‘3'1]R, é

S1=0 s;?ln G,=0 G +§Qv s4=0 Sr2—2n"0
5 3g2 o2 o2 . o ;
x([°t ©sy S, +n S1 B _an
1 2

2 2 .
E §g~ g~ conf
¥(7%1 Om +n+v S1 Sp-2n
dsy...ds 44 doq...d0 . 4n4y dsl"'dsrz—zﬂ (5.94)

Equations (5.88) and (5.94) differ only in the notation.[®
Comparison of Egs. (5.86) and (5.88) shows that as

desired the net effect of Theorem 15 is to produce an expres-

sion for Il(rl’ Ty, My, m2) without stochastic integrals and

in terms of the moments of the gy process. We have therefore

achieved a procedure for evaluating aj —-— and consequently

E Ex(gg ws) Ex(ws) —— that can be easily implemented in a

Xy
digital computer.
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5.4.5 Integration and Series Results: The Bj

Consider now the Bj arising in Eq. (5.83) of Lemma 41.
The approach to be followed and objectives to the attained are
analogous to those in the evaluation of Bj just completed.
Specifically, we seek to isolate the typical term in Bj and
find an expression for it without Brownian motions and in terms
of the moments of the g, process. Computer loops can then be
"built around'" such an expression to evaluate Bj and conse-

-2 :
quently EX (Ex 8 wt)(Ex gt dzt)(Ex wt ) of statement (5.69).

y
From Eqs. (5.72), (5.77), (5.78) it is clear that the

typical term in the evaluation of Bj is

k
: 1 1 (-2) k
Exy{cndmek} " n! m! k! Exy{(Ex £t Vi) (Ey 8y l'Dt)(Exgt)}

(5.95)

Furthermore, from Eq. (5.71) we see that the typical term in
Eq. (5.95) is composed of constants multiplying integrals of

the form

o Tl . T2
12(115 12: Jl' .12. kll k2) = Exy EX Gt o ﬁ’s ds !o gs st } .

J J k 13
Ex{srt [[: gz ds] l[f; gs_dﬁs] 2} Ex{[[: gg ds] 1[[: gg dés] 2}!

(5.96)

k kz are non-negative integers. It is

1} Jl! 12’ 32’ 1)

clear that I2 will vanish unless

where i
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12 = Jz = kz =
odd cdd even
even even even
odd even odd

(even odd odd)*

since whenever (i2 + j2 + k2) is odd the Exy expectation of
the resulting stochastic integral will vanish. Wh}le in Chap-
ter 6 we shall only need the odd-odd-even case (since
E(g51...gSN) = 0 for N odd), formulas analogous to that of

the following theorem can be derived for the other cases.

Theorem 16. Consider 12(11, iz, jl, Jos kl, kz) as

defined in Eq. (5.96) where i k, are arbitrary non-

10 J10 By

negative integers and iz is odd, j2 is odd, k2 is even. Then

Iz(il) i2! jl! jz’ kl' kz) =

i-1  jo-1 |
2 2

== I /2 kymdvy

v Eo vz=o \;éo z=0 By Vg Ngs Tk Mage Magd 7
1 2 3 a3 :

t t . t t t
el 0 8 J 0 5! o & J 0 ﬁf o F I 0
s = = = o_.= (o] —] = =
1 1,49, 1 34V, 1 ky+vg
t t t t t t

*This case is identical to the odd-even-odd case since chEdn.
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i

E {g 82 sei2 g g g g }
x\°t ®s, " "®s s, ' ®s o, o
1 14y 71 Njg 1 N3
2 2
E {g g> g g g g }
x{°t "o g, s s k] kil
Jl+v2 1 n12 1 n23
E {g g2 g g g g }
P& = P T g,'""®¢ | ST ;
1 kitvg 1 ngz 1 N3
ds.. s d8; dG....dd ¥ T |
1 iqtvy; 1 Jitvg 1 ki+vg
ds,...ds do,...do dm_...dmw (5.97)
1 nlz 1 nls 1 n23
where:
= > 0: i, = + +
k {Vl VgrVgiMiigiNygiNgg 2 0 g = 2vy + nyg + My
Jg = 2Vy * Ngg * Nyy
& +
Ky = 2v3 + Mg *+ Nag)
Nig = Jg = 2Vy — Nyg (5.98)
Nyg = iz =2V — Ny (5.99)
K(Vy:VgsVgeNiaeNygsNag) = [k2C2v3(2v3—1)(2v3-3)...5~3-1] .

. [chzv2(2v2'1)(2v3‘3)...5-3-1][12C2V1(2v1-1)(2v1-3)___5.3,1] .

[(k;-zvs)cnza(n23!)][Jz_zvzcnza(nlzgﬂ.

12¢324k2
2
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Proof: First we note that 12 in Eq. (5.96) can be

written as (upon using Fubini):

Iz(lluizujlnjznklpkz) =

{f‘ f foo b g S S
E e ves
xy sl-o éll-o 01-0 011-0 ul-o nkl-o 81'0 312-0 01-0 gjz-o wl-o "kz
2 2
E (g, g5 ---83 By -+-Bg )
% 81 1, S 512
E_(g, g% .g? g g, )
X t 01 °J1 01 0‘2
2 2
E (8; -85 €, g, )
* Ky 1 Ky
d5....d5, d3,...d5, di,...di, dB_ ...dB dB_ ...dB dB_ ...dB
1 £y 1 ¥ 1 Ky “Tay s, o o, ™1 "‘2} (5.101)
As in Theorem 15 the objective is to account for all possible
pairings of the Brownian motion increments
dB_ ...dB dB_ ...dB B_ ...dB 5.102
S4 si 01 o. d “1 Wk ( 02)
2 Jo 2

Call the 1,...,12 group of Brownian increment in (5.102) the
"first group" and similarly the 1,...,j2 and 1,...,k2 iﬁcre-
ments the "second" and '"third" groups respectively. Suppose
we make

vy pairs within the first group, 0 < vy < (12—2)/2;
v, pairs within the second group, 0 < v, < (j2—2)/2;

Vg pairs within the third group, 0 < Vi, & k2/2. ¢5.103)

Such pairings can be done in
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C,. (2n -1)...5-3-{]-[. C,.. (2v -1)...5-3-1]o
[#2 2n, "3 g 2v, V2

. [12C2v1(2v1—1)...5‘3°1] (5.104)

_ N!

ways where as usual NCK = N-K)T NT
Now let

Ngg = pairings between ‘groups 2 and 3, O L fNym & (k2—2v3);

Nyg = pairings between groups 1 and 2, Nyg = j2-2v2—n23;

Myg = pairings between groups 1 and 3, Nig = iz—Zvl-nlz.
Such pairings can be done in

o nC (o] oo (D]
[kkz 2v3) Noq 23 J 532 2v2) Ny 12
@1 . C (n !ﬁ (5.105)

Furthermore we must require that every selection of vl, v2,

Vgs Nggs MNygs Nyg

equations
ipg = 2vy + nyy *+ Nyq
Jg = 2Vg * Ngg + Mgy
kg = 2v5 + nyz + Nyqg

according to (5.103) and (5.105) obeys the

(5.106)

From Egs. (5.101) to (5.106) it is now clear that Eqgs. (5.97)

to (5.100) are ‘indeed true. In fact, the summation in (5.97)

arises from the allowed values in (5.103) and (5.105) and
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membership in P is equivalent to satisfaction of Egs. (5.106).
Further K(.,.,.,.,.,.) appearing in (5.97) and defined in
(5.100) arises by multiplying (5.104) and (5.106). TFor any
particular Vl’ Vo v3, n23 in the sum in (5.97), N9 and N3
are indeed defined as in (5.98) and (5.99) as.is evident from
Eqs. (5.106). Finally the correctness of the integrand of

v

(5.97) follows from the definition of the v Vv

15 ¥gi vgw Nygs
&

nyg, and nyg. B

Comparison of Egs. (5.96) and (5.97) shows that as
desired the net effect of Theorem 16 is to produce an expres-
sion for 12(11, i, 3415 Jg» kl’ k2) without stochastic inte-
grals and in terms of the moments of g, process. We have
therefore achieved a procedure for evaluating the Bj ~— and

3 o .
consequently Exy%(EX 8¢ wt)(Ex gt \pt)(Ex wt )s that can be
easily implemented* in a digital computer once the moments of

the g, process have been obtained.

5.4.6 Integration and Series Results: The Yj
Finally consider the Yj‘ From Egs. (5.72), (5.78)

it is clear that the typical term in the evaluation of Yj is
=1 1 f n k
By (@nPk) = AT &7 ExyBx(8y Ty) E (e 0e)) (5.107)

Furthermore, from Egs. (5.71) we see that the typical term
in Eq. (5.107) is composed of constants multiplying integrals

of the form

*E.g., in (5.97) the sum over P is trivial to computer imple-
ment.
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r

>

I m

B(rl’rZ)m1!

t 1P 2
E._{E 1z |/ g2 ds [ g._ dB .
vl X%t o S o S s
t Myt o
Eldg. |[ g2 das| |/ g aB (5.108)
x)°t 0 S 0 S s E

where rys To, My, m, are non-negative integers.

The situation here is analogous to that of the aj
and Il("""’) defined by Eq. (5.86) and thus we can proceed
immediately to the counterpart of Theorem 15.

Theorem 17. Consider IB(rl,rz, my mz) as defined

in Eq. (5.108) where r m, are arbitrary non-negative inte-

1’ 71
. 3 . *

gers; ro, m, are odd integers; and r, < m, - Then

lllz*l‘2

m
I,(ry.rp.my.my) = [(23) (2\:-1)(2\;-3)...5-3-1]R B

(ry-1)/2 v, 2 t t t t
. 1 2n) (20-1)(20-3)...5:3:1} (rp-2m)! [ ... | | R |

n=0 51-0 su(n)-o 61-0 5J1(n)"°
t t
2 2
o T swa Egg-...z- €; B, B
8170 Byp(nym0 “L o1 1wy teg T CSista)
- £ {2 . €2 Ly el s dsy...dspy g 63)...d5,) 0 d8)...d8 J
1 Ji(n) 1 I2(n) L Al

(5.109)

*In Chapter 6 we only need the case where rg and m2 are odd
since E(ggq..-8sy) = 0 for N odd. An identical formula re-
sults for %he case where rg, mg are both even except that the
upper limit of the sum over in Eq. (5.109) is rg/2. For r2,
m2 not either both odd or both even, I vanishes. An analogous
formula can be derived for the mg < rg case simply by inter-
changing mg and rg.
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ne>

where: [(2n—1)(2n-3)...5°3-1

® = aEmtwr

n=0

I1(n) = ry +n
Ji(n) =my + v+
I2(n) = ry - 21

Proof: Analogous to the proof of Theorem 15. 3

Comparison of Eqs. (5.108) and (5.109) shows that as
desired the net effect of Theorem 17 is to produce an expres-
sion for 13(r1’ Ty, My, m2) without stochastic integrals and
in terms of the moments of the g, process. We have therefore
achieved a procedure for evaluating Yg -- and consequently
Exy{EX(gt wt) Ex(gt wt)} —— that can be easily implemented in

a digital computer.

Summarizing Section 5.4, the objective has been the

evaluation of the numerator N(t) of the main MSE lowerbound
formula given in Eq. (5.23) of Theorem 11. The basic nature

of the difficulties involved was first discussed and elementary
solutions presented. More sophisticated methods involving

Cauchy products of infinite series were then developed. The-

orem 14 of this section is the main computational result of
Chapter 5 since together with Theorem 14 and the theory of sub-
sections (5.4.3) to (5.4.6) it allows the computation of a lower-
bound on optimum MSE for the continuous time NLFP in terms of

moments of the g, Process, or more precisely, in terms of
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integrals of moments of the g, process. In Chapter 6 we will
see that these integrals and consequently their corresponding
Cauchy products can be computed exactly (i.e., with no approxi-
mation or further bounding) in the case of the phase locked
loop. Before proceding to this example we briefly give in the
next section the discrete time version of the bound and bring
attention to the direct applicability of all the material in

this chapter to non-MSE distortion measures.

5.5 The Discrete Bound and Non-MSE Distortion Measures

A lowerbound on optimum filtering MSE can now be de-
rived for discrete time problems in fashion analogous to the
foregoing continuous time bound. The similarity hinges on the
fact that the Bucy-Mortensen-Duncan representation theorem --
unlike Kailath's likelihood ratio formula -- has a discrete
time counterpart as given in Lemma 2 of Chapter 2 which is
identical in form to the continuous version (compare Lemmas 1
and 2). In deriving the continuous time bound we used Lemma 1
of Chapter 2 and Theorem 7C of Chapter 3 to .prove Theorem 10
in Chapter 5. Here we simply use Lemma 2 instead of Lemma 1
and Theorem 7 instead of Theorem 7C to prove the following
Theorem.

Theorem 18. Consider the discrete time NLFP of Sec-

tion 2.1, Let_;ﬁ be the associated optimum MSE. Then a lower-

bound on eﬁ is given by
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exp E log E (exp ¢, ) |2
o - T Py k
(exp T,) (5.110)

-
-

jesiies

3
eﬁ = B exp{ZH(k)} n
XY

where the notation is that of the NLFP and

Ty = tk(X5 ¥y jel0,k])
k 4 k =g
= Iyy RO gxy,3) - 3 1 8(x5,3)' RT3 &(xy,3)
Jj=0 3=0
k k ~
_ R N ; ¢ & yusdi o
=3 [} e, )R 8(xy5,0) + 1 g(x,3)'R(J) By
j=0 j=0
(5.111)
H(k): Entropy of Xy
provided the necessary expectations exist. (If the processes

defined by the NLFP are stationary then eﬁ is constant in k and

lowerbounded by the supremum over 111 k of the right hand side

of Eq. (5.110)).

Proof: By Lemma 4,

ap ap_K
K X+Y X

I(x,; V~) = E log =——=—— = E log —+—
E* 70 Pyey 7 Pxyy  Pxey Py

where the probability measures are as in the definition of the
discrete NLFP and Lemma 2 of Section 2.1 and y, = c{yj,jelo,k]L

Using Lemma 2 (discrete Bucy-Mortensen-Duncan representation),

212



DA g, )

| D rcstng )

e2 1%kt (exp ¢, )
K P =
I(xk; yo) = EP log 5
X-Y Py (exp z,)
of{x
& B log E { k}(exp g,) - E log E. (exp g,)
pX'Y PX k pX'Y PX k

(5.112)
where Ck is as given by Egs. (5.111). By Jensen's inequality

(Lemma 28B) we have

EP log Eg{xk}(exp Ck) £ log Ep Eg{xk}(exp Qk)
XY X XY °X
= log E (exp £,) (5.113)
pX-Y k

where use was made of the smoothing property of the conditional

expectation. Substituting (5.113) into (5.112) gives

k
I(x,; Ya) < log E (exp z,) - E log E; (exp T, )
k* Y0 Py.y k Py.y Py k

which when substituted into Eq. (3.31) of Theorem 7 (Section
3.4) gives (5.110). The stationarity part follows from reason-
ing analogous to that of Zakai-Ziv presented in Section 5.1.H
While an evaluation of the formula of Theorem 18
could proceed along lines similar to those of the continuous
bound it is not pursued in the present context since the speci-

fic application we have a mind in this study, the phase locked
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loop of Chapter 6, is a continuous time problem. The impor-
tance of the discrete time NLFP (and hence that of Theorem 18)
cannot be overemphasized since, as is widely accepted, discrete
time problems are at least as important in applications as con-
tinuous problems.

Finally we note that the entire development of this
chapter in both continuous and discrete time is directly and
immediately applicable to non-MSE distortion measures. In
fact, the central problem in Chapter 5 has been the evaluation
of I(Xt; yg) by means of an upper bound. Once this evaluation
is performed it can be substituted in Eq. (3.33) of Theorem 7A
in Chapter 3 to yield a lowerbound on filtering distortion for
the desifed (non-MSE) distortion measure. The generality of
Shannon information and the fact that it is an adequate measure
of "information" is --- as was emphasized in Chapter 3 -- evi-

dent in the lower bound computation ccntext.
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CHAPTER 6
THE PHASE LOCKED LOOP PROBLEM*

6.1 Preliminaries

The objective of this chapter is to apply the formu-
las derived in Chapter 5 to obtain a lowerbound on the steady
state optimum filtering'MSE associated with the phase locked

loop problem (PLLP) defined below.

6.1.1 The PLLP

The importance of the PLLP in communications is well
known and amply discussed in most text books in this area
(e.g., Van Trees (66,42), Sakrison (17,67), Viterbi (68)). In
recent research Bucy (69), Gustafson (69), Gustafson-Speyer
(70) and Willsky (71) have successfully applied modern system
theory to produce suboptimal filters that in Monte Carlo simu-
lations perform significantly better than the classical loop in
the important below threshold (nonlineaf) region of receiver
operation. The question that naturally arises is how well do
these suboptimal filters perform when compared to the Kushner
filter, that is, how much room for improvement is left. Since

the conditional mean and associated optimal estimation error

*The computations in this chapter were enormously expedited by
the use of MACSYMA, MIT's Project MAC Symbolic Manipulation
system developed by Prof. J. Moses, et.al. The kind assis-
tance of Prof. Moses in this matter is gratefully acknowledged.
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are impossible to compute, a tight lowerbound on this error

sheds considerable light in the performance limitation question.

For our purposes it suffices to define the PLLP as
the subclass of the NLFP of Section 2.1 with message model and

observations described by

o 2 _
dxt = dBt ; (dBt) = dtfr , €20 (6.1)
5 5 NS
dyt = y2A sin(wt + Xy + ¢) + dBt’ (dBt) = o gk (6.2)

¢ : uniformly distributed over [-w,m] and

independent of Bt’ ét

where ¢ represents the effect of a uniform initial condition
on xt and A, No’ T, w are positive constants. Thus, in the
nomenclature of Section 2.1 used in the formulas of the pre-

vious chapters we have that for the PLLP considered here

a(xy,t) = 0, b(x,,t) =1

g(x,,t) = /2A sin(wt + X, + ) | (6.3)
Q(t) = 1/t (6.4)
R(t) = N_/2 (6.5)

The problem can be naturally parameterized in terms of the

normalized time t”° and noise to signal ratio P2

¢ B
o= '  (6.6)
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P” = 55— (6.7)
Throughout this chapter we shall also use the notation
0, = wt + X + ¢ (6.8)

B, = Bgy

where the last statement emphasizes that expectation over X
should include its effective initial condition ¢.

The basic procedure followed in this chapter is to
substitute Egs. (6.3), (6.4), (6.5) into the relevant equaticns
of Chapter 5 and then to evéluate the resulting expressions.

It is important to emphasize that the formulas from Chapter 5

that we shall use here will be evaluated exactly for the PLLP

*
and there is no further bounding in the present chapter

6.1.2 Outline of the Chapter

The remainder of this chapter is organized as follows.
The evaluation of the steady state MSE lowerbound for the PLLP
is executed in Section 6.4 entirely "from scratch'": We depart
from Theorem 14 of Chapter 5 and arrive at specific equations
for the desired lowerbound which are then summarized in Theorem
20. The numerical results are presented in Section 6.5 where

the bound of Theorem 20 is compared for different noise to

* -
A minor exception to this statement is included in Section 6.3.
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signal ratios with the Zakai-Ziv bound (38) described in Section
5.1 and with the Snyder-Rhodes bound (77);

Sections 6.2 and 6.3 contain the evaluation for the
PLLP of many of the formulas derived in Chapter 5. Only a few
of these results are actually used in the development of Section
6.4 —-- namely those that proved to give the tighter bound --
and the rest are presented merely to illustrate the relative
tightness of some of the bounds as well as the straightforward
nature of the computations involved for the PLLP. Consequently,
most, if not all, of Sections 6.2, 6.3 may be skipped on a

first reading.

6.2 Denominator Evaluation; Elementary Numerator Formulas*
The objective in this section is to obtain computable

expressions for Egs. (5.56) of Lemma 38 of Chapter 5. These
expressions will enable us to compute the denominative D(t) of
Eq. (5.42) of Theorem 13 as well as the Exy expectatioqs ap-
pearing in the elementary numerator formulas of Lemma 37.

The desired formulas follow quickly from the next lemma which
also contains all the basic techniques that will be used over

and over throughout this chapter.

*
Of all the development in this section only Lemma 43 and
Eq. (6.32) of Theorem 19 will be needed in Section 6.4.
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Lemma 43. Let Xt’

(6.1), (6.2), (6.3), (6.8) so that 8¢ =

wt + xt + ¢. Then:

A. For j,

B. For 0 < Sy rj <t < o« for all i,

where

E
X

E
X

E
X

E
X

E
X

sin j¢o = Ex cos k¢ =

sin jet = Ex cos ket

sin(eS + ... + 6
1 Sm
cos(#® + ... + 6
Sq Sm
cos(es + .. 80
5 Sm
= cos 9 ex {-3; X
) p 2T
m
izl w(s1 - Sm+1)
2m
Z a. s
j=31 + 2

0

= 0
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J,

sin et, et

%, gy = g(xt,t) be as in Egs.

(6.

(6.

(6.

(6.

€6

(6.

(6.

9)

10)

117

12)

13)

14)

15)



| o e

and the a; are integers that depend only on the order of the

Sy - In particular
E_ sin(®© -8 _)=0 (6.16)
X S Sq
m2
E, cos m(eSl = 682) = cos m(wsl-wsz) exp ; 5 Isl—sz|€
(6.17)
C. For n: even,
s S \n/2 |1 « 3 « 5 e+ (n-1)
By 8y = (28 [2 T4 -6 - n (615
D. For n: odd and S;€ [O,tj, 1 <i<n, t< o
E (g g .. g2 )=0 (6.19)
X'7sy sy By
E. For n: even and w arbitrarily large
o
’ E (g g ... g_)ds, ds, ... ds
$,=0 5,0 s, =0 £ 8y 8 By = @ B
. (6.20)
wT
F. For n a non-negative integer and w arbitrarily large
t 2 n :
2 _ t i
Ex { IO g ds] = [2A 2] + 0 (mr) (6.21)
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Proof:

A. Eq. (6.9) is clear since for k # O
T 4 :
Exs1nk¢=£“§;s1nk¢d¢=o
L
E, cos k¢ = {ﬂ 5. cos k¢ dp = 0

Further

Ex sin ket = Ex sin k(wt+xt) Ex cos k¢ + Ex cos k(wt+xt) Ex sin k¢ = 0

where use has been made of the independence of Xeo

Eq. (6.9) similarly

E_ cos k6, = 0
X t

B. Consider Eq. (6.11),

Ex sin(8 + ... + 0 - 0 - ... = 08_)
o | m

where

fos)
I
—~
3
1
=
~
-
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Now EX sin a = 0 since o is a Gaussian random variable and
Ex sin B = 0 from Part A so that (6.11) is indeed true.

Consider Eq. (6.12). If m#n,

E_ cos(6 + ... + 0 - 0 = vagenes = 70~ )
X Sq s 5 8 r

=E cos a E_cos B - E sin o E sin B
X X X X

where o and B are as in (6.22), Eq. (6.12) now follows by noting
from Part A that Ex cos B = EX sin B = 0 since m#n. Consider
Eq. (6.13).

E.  cos(f_  + ... +6_ -8 S e & B
% Sl Sm Sm+1 Szm

cos EX cos B - sin Q Ex sin B (6..23)

cos 2 E. cos B
X

where now B = xs1 + ... F xsm - xsm+1 - e, - xSzm and the fact
that B is a Gaussian rv has been used. Let B have variance
02. Since
o E an
n  x
E,cos B = ] (-1)
n=0 (2n)!
and Ex an =1 .3 - 5 ... (2n—1)02n, we have
s wn e B
Ex cos B = exp { 5 O } (6.24)
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Now we determine 02. Clearly

62 = [1]° [% mi (si,sj)][l] (6.25)

where [1l] is the vector formed by m ones followed by m negative

ones and Ex xSi X

entries of the 2m x 2m matrix. Thus from Egs. (6.23), (6.24),

S5 = min (si,sj)/r i,j =1, ..., 2m are the

(6.25) it is clear that for any given s we can find

17 ++» Sop
integers as, i=1, ..., 2m such that (6.13) holds. Finally
(6.16) follows from (6.11) and (6.17) from Egs. (6.23), (6.24),

(6.25).

; o 1 | :
C. For n even the expansion of sin « for any a is

sinn a =W + a, cos ko
n k

e~ 8

k=1

where ak are the Fourier coefficients and

2m
& . _1-3-5... (n-1)
W 5= SR G = g (6.26)

n 0

Hence using Part A,

(oo}

n _ n/2
E. g, = (24) [Wn + kzl a, E_ cos ket]

n/2
(2A) W

as desired.
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D. Consider Eq. (6.19),

= n/2 . . .
Ex(gS e 8By ) = (2A? : Ex(s1n Gs sin es )
A n 1 n

For n odd the sines in the above expression can be combined
using repeatedly the trigonometric identity sin a sin B =

(cos(a-B) - cos(a+B))/2 into a sum of terms of the form

n
E cos(_z (a; ws; + by x_ ) + k¢> (6.27)
i=1 i

where the as, bi are either +1 or -1. Since k # 0 because n

is odd all these terms vanish and Eq. (6.19) is obtained.

E. Consider Eq. (6.20). By an argument similar to that of
Part D we conclude that if the integrand in Eq. (6.20) is ex-
panded using repeatedly the identity sin a sin B8 = (cos (a-B)

- cos(a+B))/2, only terms of the form

E coséi + o ¥ 0 - 0 - ... - b ) (6.28)
% S. . 5.
iy : |

n
2

i_ is a reordering of 1, n) will not vanish

g3 e n e e ey

since only such terms will give a k=0 in Eq. (6.27). From Egs.

(where i
(6.13), (6.14), (6.15) of Part B the integral of Eq. (6.28) is

of the form (replacing il, ais 55 in with 1, ..., n for simplicity

of notation)
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where the ai are integers function of the Si' Taking w arbi-
trarily large we can invoke the Riemann-Lebesgue lemma (58) to

conclude that (6.29) and therefore (6.20) are indeed O(i%).

F. Consider Eq. (6.21).

el = o g csin? ‘atn?
E g_ ds - e (2A)" E_(sin”™ 8 ... sin“ @_ ) ds; ... ds
x|’ '8 81_0 s =0 x sy Sh 1 n
n
2 o o8 t
=@ [ ... A {(1 - cos 28_ ) ... (1 - cos 28 )} ds, ... ds
sl-o 5,0 2 S1 Sn 2

where the last expression follows by arguments analogous to
those of Part E. @

We note that in Parts E and F of the previous lemma
what enables us to obtain simple expressions like Egs. (6.20),
(6.21) is the fact that we can choose w as large as we please
so that all w dependent terms can be ignored. This will also
be the case in all equations to follow in this chapteri It is

important to emphasize that there is no approximation whatever

involved in this assumption since the optimal processor does
not depend on the carrier frequency w.
The computable expressions for Egs. (5.56) of Lemma

38 are given in the following theorem.

Theorem 19. Consider EXy ¢$, E g? w? with k even and m an

Xy
arbitrary integer for the PLLP of Egs. (6.1) through (6.5)
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PFEtaiants,

|t s en )

| ot |}

where as usual wt = exp Lt and Lt is as in Eq. (5.18). Then:

m m t”
Boo Was = ) ) ")
Xy "tT r20,2,4,... n=r (n-r)!(r/2)t 2°7T/2 [p{l
(6.30)
B K/21 + 3 + 5 «os (k-1) T s mP - A-Xie
Exy gt Vt (24) 2 * 4 » 6 een rzo'z.q-.. nzr (n-r)1(r/2)! 2n—r/2 [;E]
(6.3%)
so that
s & n-r/2
- 5 5 -
D(t7) = ] ! n-r/2 EE
r=0,2,4,... n=r (n-r)!(r/2)! 2 g P
(6/32)
2

where the normalized time t~ and the noise to signal ratio P

are as in Eqgs. (6.6), (6.7)*.

Proof: Consider first Eq. (6.30). Substituting Eq.
(6.21) of Lemma 43F in the typical term of the sum in Eq.

(5.56a2) of Lemma 38 we get

*

Observe from Eqgs. (6.30), (6.31), and Lemma 43C that
k m _ k m. fee 1 .

Exy 8y~ wt’ = Exy 8¢~ Exy wt . This is reasonable since as

w becomes large we would expect, in view of the definition of

wt’ gﬁ, and wﬁ, to become uncorrelated as indeed they are.
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n + ' n-r/2
= 5 B [ g2 rt ds
(n-r)t(r/2)1 2P"T/2 7%y l o °©
n-r/2
= mn zn.‘r/z 2A E. I_ /
(n-r)!1(r/2)! oh-T /2 Ng—r/z 2T :

- n-r/2
(n-r)1(r/2)1 2P7T/2 [pz}

as desired.
Consider now Eq. (6.31). From the typical term in

the sum of Eq. (5.56e), Lemma 38, with R = N0/2

| ki k[, 2 -1 e ¥
m KX
E R d
(n-r)1(r/2)1 2n-x‘/2 Xy By [IO Bs s]

t

m? 2 \Im¥/e i (k 2 2 )
- b~ .o E 4 s d o-acotilh
(n-r)1(r/2)1 2°°7/2 (50) s{-o sﬂér/z xy Pt Fsy gsn—r/:.’ "1 “n-r/2
(6.33)

As in the proof of Lemma 43C we know that for k even
k _ k/2
By = (24) [Wk + ) a) cos ket]

where as before a, are the Fourier coefficients in the expan-
sion of sink (3% et = wt + xt + ¢, and Wk is as given in Eq.

(6.26). Thus,
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Kk 2 2 k/2 + n-r/2 . s
E (g g7 e B )=(2A) E_;(\'. + ] a, cos k@
Xy t S sn_z_/2 Xy k k=1 k t

-T_ln—/i(l—cos 28 )...(1 - cos 26 )2
2 i § n-r/2
(2A)k/2 + n-r/2 : :

= 2n—r/2 Exy{“k + a, cos ket + f(wsl, e, wsn_r/z)}

k/2 + n-r/2
- (2A) ;
- {0 Py, Blamy, oevo 88,z 9 (6.34)

where Lemma 43A has been used and f is a sum of a finite number
of terms all of which depend non-trivially on WSy, -, wsn_r/2
and all of which are of the form of Egs. (6.11) to (6.15) of
Lemma 43B. Upon substituting Eq. (6.34) in the integral of

Eq. (6.33) we see that by reasoning as in Lemma 43E and F the
integral of EXy f is 0(5%) so that Eq. (6.31) is indeed true. 3

Summarizing, in this section we have obtained in

Theorem 19 exact expressions for the denominator D(t) as well
as for the EXy expectations appearing in the elementary numera-
tor formulas of Lemmas 37 and 38. In the process'of obtaining
these results we have presented in Lemma 437the basic concepts

that are to be used in the numerator evaluation of the follow-

ing section.

*
6.3 Numerator Evaluation
From Theorem 14 of Chapter 5 it is evident that in

order to evaluate the numerator N(t) we need to compute

*
Only the development of subsection 6.3.1 will be needed in
Section 6.4.
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Exy {E (g, ¥v,) E (g V)
2
Exy {Ex(gt wt) Ex(wt)}
2
E ., (E (8 ¥y) E (8¢ v) B (W)}

These three expectations are considered respectively in the

following three subsections.

6.3.1 I3(.,.,.,.) of Theorem 17

In subsection 5.4.86 a procedure for evaluating
EXy {Ex(gt wt) Ex(gt wt)} was given in terms of the expression
for 13(r1’ To, My, m2) given in Eq. (5.109) of Theorem 17.
The objective of the present subsection is to produce compati-
ble formulas for 13(r1, To, My, m2) for pertinent ry, Ty, My, m,.
The derivation can be divided into three steps.

Step 1. The first step is contained in the following
lemma.

Lemma 44. Consider IS(rl’ rz, my m2), defined in Eq.

(5.108), and given by Eq. (5.109) of Theorem 17 where without
m

loss of generality we take r to be arbitrary non-negative

1?2 3
integers; r,, My even integers; and r, < m, - Then for the

PLLP 13(., ., ., .) reduces to
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—(r1+r +m

+m, )
& 2717020 1.(r,, 1y, my, my)
mz-rz
= (24) [(m"’) (2v-1)(2v-3)... 5 . 3 1] 22 ot il
2v = tee Tt : T, m,
(pz)’x*“1‘ 2tz
(rp-1)/2 (- 2
{0 [K2;) (2n-1)(2n-3)... 5 . 3 . 1] (r, - 2n)!
n= =
2 - - 2
i s 3 ( . s
- E sin 8_. sin 6_. ... sin &_. ds;...d
[2] 8£=° s; {2n'0 [ x t 3 sr2—2n 51 sr2—2n
(6.35)
where the R_( ) factor multiplying the I3 arises naturally from
the R—1 omitted from each of the integrals in Eq. (5.108) (see
5 :

Eq. (5.71)), v = (m2-r2)/2; P, s;, t” are the noise to signal
ratio and normalized times as in Eqgs. (6.6), (6.7) and es, is
the normalized version of eS in Eq. (6.8).

Proof: Substituting g = v2A sin 6_ in the integral in
Eq. (5.109), normalizing time and using the identity sin2 o =

(1 - cos 20)/2, we get

Q@(2Ar)11+J1+12 It ft t t” t° t°
SI1+J1 e / [ / /
s1=0 sIl=° ol=0 0J1=0 sl=0 s12=0

E {(1 - cos 26~.)...(1 - cos 20. ) sin 6,. sin 6 . ... sin 6 . }
%X % S11 t 81 S12
E {(1 - cos 26~.)...(1 - cos 206~.. ) sin 6,. sin & . ... sin 8 . }
X 5 631 t sy S1o
ds1 o ds11 do1 e d°J1 ds1 Suee dsi2
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where as before I1(n) = ry +n, J1(n) = my + v+, I2(n) =

r, - 2n.

2
When the products in the integrand of Eq. (6.36) are
multiplied, we can eliminate by argumenfs analogous to those

in Lemma 43E, F all terms that are nct of zero frequency so that

114J1+12  t° i L 5 t° t°
24) (2A1
Eq. (6.36) = & >(2113J1 | I° s I /
sl-o SII=° 01=O 0J1=0 sl=0 512’0
2
[Bx(sin et, sin es. v+ Sin es. )] ds1 ......... ds12
1 12
(28)(2ar)yI 1491412 p9a91 Y *
= TT+71 (t7) [ . ]
2 sl=0 512-0
2
E (sin 6_,. sin 6_. ... sin 6_. )] ds; ... ds7,
[ X t s1 512 1 I2 (6.37)

Eq. (6.36) can now be obtained by substituting Eq. (6.37) into
Eq. (5.109), using the definition of P2 and regrouping con-
stants. @

Step 2. The net effect of Lemma 44 and Step 1 has
been to reduce the entire computation of Exy{Ex(gt¢t)Ex(gtwt)}

to the evaluation of

1

2

% t

I,(3,) = I s ¥ [Ex(sin 6, sin 6 . sin eSJ )} dsy ... dsjz
2

sl=0

Jo =1, 3,5, ... (6.38)

where to avoid further clutter in the notation the facts that

we are dealing‘with normalized times (e.g., si) and that I3 is
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also a function of t”“ are not explicit. The reason that TB
does not vanish from Eq. (6.35) is that as we shall see it
possesses a zero frequency component.

~

Exact evaluation of 13 is stréightforward though
tedious. Rather than produce general formulas (which is per-
fectly possible) we shall illustrate the evaluation process in
Steps 2 and 3 by considering the case j2=3 in Eq. {6.38).

The particular objective of Step 2 is to reduce Eq.
(6.38) to '"simple integrals'" -- that is, to integrals that can
be found in the teble of integrals of just about any engineer-
ing or scientific handbook (e.g. (73), (74), (75)).

Consider then TB(j2=3). As most of the development
of this chapter, the following relies heavily on the material

included in the statement and proof of Lemma 43. From Eq.

(6.38),

3 t t t
I,(3) = / / / 5 [Ex(sin 6, sin 8

2
sin © )] ds, ds, ds
S, 0 Sg (0] Sq 3

sin ©
s

1 2

(6.39)

Now making use of trigonometric identities such as
. . 1
sin o sin B = 3 (cos (a-B) - cos (a+B))

and of Lemma 43 we can show that
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Ex(31n et sin es sin es sin es )

1 2 3
- % E_{cos(6, -8, -0 +06_)+cos(6, -6_ +6_ -0_)
X sl 52 SS t Sl 52 83
+ cos(6, +0_ -6_ -8 )i (6.40)
t Sl 52 S3

Substituting Eq. (6.40) in (6.38) we see that, up to O(i%),

~ . i '— _
1,3 =& /] [Ex cos(B, - 6. -6  +0_)
1 2 3
+ Ex cos(et - esl + esz ~ 983)
2
+ Ex cos(et + esl - Gsz - 853)] dsl d52 ds3
L ‘ T
= —— E_ cos(8, - 8 - 8 + 8 _ )
64 X t Sy Sy Sq”
-2
+ [E cos(6, - 8 + 8 -90_.)
X t S4 Sy Sq7
{ -2
+ |E_ cos(6,_ + 6 -8 -0 ) ds, ds, ds
X t Sy Sg s3” | 1 2 3
3 t t t 2 :
i s]= sj= sf=o [Ex cos(8, + es1 - es2 - 953)] ds, ds, dsg
1 2 3
3 [t ft ft |: 2
= — E_ cos(x, + x - X - X )] ds, ds, ds
128 sl=0 S,= 550 X t Sq Sy S3 1 2 3

(6.41)

Parenthetically we mention that we can show that Eq. (6.41)

generalizes to
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1,(3,) 1 a0 2T ;e
e T Y + see cos|x, + Xx + ... X
3'ds (3,40 2 2 L " o ST s
2 2 sy 0 sJ2 0 1 12-1
G
2
- X - - X ds ds
3,41 512)] 1 P

(6.42)

We can write an expression for the integrand of Eq.

(6.41) provided there is a definite order between the t, Sy
Sgs Sg- Thus the integral in Eq. (6.41) can be broken up into
3! = 6 integrals since R3 can be partitioned, up to a set of

Lebesque measure zero, into 3! regions where a definite order
exists between the variables. Fortunately most of the result-
ing integrals will turn out to be identical so that we need
only evaluate 2 integrals rather than 3!. For j2=5, 5! = 120
regions result but we need only evaluate less than 5 different
integrals. For j2=7, 7' = 5040 regions result but we need
only evaluate less than 14 different integrals.

Naturally it is necessary to determine beforehand
the different types of integrals (rather than to compufe j2!
integrals and then see which are the same). This can be ac-
complished by the following two methods.

The first method is based on observing that

i ! !t lt It 1

I,(3) = E cos(x + X - X - X ) d d d

3 15,45, s, =0 s, =0 8, =0 b 23 2 5 ] %31 3, g
(1,203 8 Yz h . :

11?12113
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where the sum is over all possible reorderings of 1, 2, 3.

Two types of identical terms arise: Terms of the form

+ (xs. =X ) + <xs' - xt> (6.44)
Ji Jo J3

and terms of the form

* (Xs‘ + X > e (xs_ + xt> (6.45)
J1 Jg J3

where it is assumed that s. < < t

-
J1 SJQ Jg
Terms of the form of (6.44) can be selected in

2+1+«1+1+«21=4

ways which yield integrals which are identical up to a change
of variables. Similarly terms of the form (6.45) can be chosen

in

ways. Thus Eq. (6.43) becomes

~ t Sg Sq 2
I,(3) =4 | J / [E cos (xs Wik e ¥ X ds; ds, ds
s,=0 s,=0 s.=0 1 o2 S3 .
3 2 1
t s s
+2 2 i 2 [E cos (xs +x, -x, - xt)]z ds, ds, ds,
$3=0 §,=0 ;=0 1 2 ®3

(6.46)
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Naturally 4 + 2 3!'. Now for s, < s, < s, < t,

E cos(x
S

|
]
|
"
+
]
ct
~—
]
0]
e
o]
pous Gy
|
~
|
n
ju—y
+
0
[\}
1
0
w
+
t
~
\—V—/

1 Sa 83
E cos(x + X - X - X
2l 89 S3 .
- =1
= exp { 5 (—s1 - 3s2 + 353 + t)}

Substituting these results into Eq. (6.46) we have

~ t Sg 8,
I,(3) = 4 _ )
3(3) sI=O sI=O sf=o exp(s; - s, + s5 - t) ds; ds, dsg
3 2 1
t S3 sz
+2 D - -
Sf=0 SI=O sI=o exp(s; + 3s, - 3s; - t) ds; ds, dsg
3 2 1
(6.47)

Clearly the integrals in Eq. (6.47) can indeed be evaluated
with the aid of an ordinary table of integrals.

A second and perhaps more convenient and reliable
way of arriving at Eq. (6.47) is to have a digital computer

go through the j,! possible orders of s checking
2

10 o sJ.2
which yield identical integrands. Such a program, producing
as output the coefficient of each integral (i.e., number of
repetitions of each integral) as well as the parenthesis of
the exponential in each integrand, was satisfactorily imple-
mented in this study.

Finally we note that if necessary i3(3) can be upper

bounded by
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- S
I.(3) < 31 3 2 o -8, + s, - t) ds, ds, d
3 s£=0 Sf=0 szo Xp(Sy - S, + S5 - t) ds, ds, dsg

2 1

(6.48)
and

% 3 s
13(3) < t (6.49)

as is evident from Eags. (6.47) and (6.39) respectively. Gen-

eralizing, 13(32) of Eq. (6.38) can be similarly upper bounded

by
-~ t 83 s
‘alda) Sy’ s£2=0 Sjél=: si=§ s A i
ds1 oo dsJz
(6.50)
& 3o
13(J2) X % (6.51)

These bounds were useful in evaluating the '"tail'" of the series
where negligible numerical improvement is obtained by evaluat-
ing is(jz) exactly.

For the PLLP it was necessary to obtain exact ex-
pressions for f3(j2) for j2 =1,3,5,7. For j2 > 9 a combina-
tion of the bounds of Egs. (6.50), (6.51) was used (Eq. (6.50)
for j2 =9, ..., 21 and Eq. (6.51) for j2 = 23, siey B91).

The presence or absence of all the j2 > 9 "tail" terms made
a difference only in the fifth significant digit (or fourth

on rare occasions).
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Step 3. Once an expression of the form of Eq. (6.47)
is obtained, what remains to be done is the evaluation of the
resulting integrals. We note that as evident from Lemma 43B

the integrals are always of the form

where the ai are integers. While the necéssary integrations
could be performed by anybody with a knowledge of elementary
integral calculus, more efficient and reliable ways can be
used. Observe that numerical integration is not an attractive
alternative* since (1) the integration is in j2 - dimensional
Euclidean space and (2) the integrands are quite simple. The
approach that seems ideally suited to this problem is the use
of a symbolic (non-numerical) integration program. The paf—
ticular integral used in this study was MACSYMA developed by
Prof. J. Moses et al at MIT's Project MAC. Thus for j, = 3,

Eq. (6.47) evaluates to

-t

I5(3) = 43t’e + 2e + t‘—2$

+2)-t7e b /3 - 27t 9 - &7 /36 + 174}

*
Attention has been given in the literature to the evaluation
of multiple integrals. See for example (76).

238



e PEACE D A

As is evident, all the 33(j2) turn out to be, as is reasonable

-nt .
for m, n non-negative

to expect, linear combinations of ™ e
integers.
Summarizing, what has been accomplished in this sub-
section is to reduce the computation of the typical term in
i }
the Canchy product expression for Exy {Ex(gtwt) Ex(gtvt)} as

given in Eq. (5.10¢) of Theorem 17 to the computation of ele-

mentary integrals.

6.3.2 Il(" ., «, +) of Theorem 15
In subsection 5.4.4 a procedure for evaluating
2 - . .

: ; £
Exy {Ex(gsws) Ex(ws)} was given in terms of the expression for
Il(rl, Ty, My, m2) given in Eq. (5.88) of Theorem 15. The ob-
jective of this subsection is to produce computable formulas
for Il(rl’ Ty, My, m2) for pertinent ry, Tg, My, My. Since
this development is not needed in the bound evaluation of
Section 6.4 -- only the results of subsection 6.3.1 are nec-
essary -- this subsection is continued in Appendix B to Chapter

6 with the sole purpose of illustrating the ease of evaluation

of the formulas of Chapter 5.

6.3.3 12(., ey «3 +5 +5 «) of Theorem 16
In subsection 5.4.5 a procedure for evaluating
-2 . ;
Exy {(Exgtwt)(Exgt\pt)(Exqzt )} was given in terms of the ex-

pression for Iz(il’ 12, jl, j2’ kl’ kz) given in Eq. (5.97)
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of Theorem 16. The objective of this subsection is to produce

computable formulas for 12(11, 12, 31s dg» kl, k2) for perti-

nent 1, i, Jqs dgs kl, k2. Since this development is not
needed in the bound evaluation of Section 6.4 -- only the re-
sults of subsection 6.3.1 are necessary -- this subsection is

continued in Appendix C to Chapter 6 with the sole purpose
of illustrating the ease of evaluation of the formulas of

Chapter 5.

6.4 Bound Evaluation for the PLLP
In this section we derive formulas for the steady
state filtering MSE lowerbound almost "from scratch'": We

begin with Theorem 14B and, using a few of the results of

Sections 6.2, 6.3 arrive at the desired formulas which we

summarize in Theorem 20. Since we are interested in the
steady state error we can in effect consider Eqs. (6.1), (6.2)
in the infinite time interval te(-«,») so that prior to any
time t we have an infinite observation interval. We can then
use the Zakai-Ziv reasoning outlined in Section 5.1 (i.e., de-

fining errors e etc.) to allow us to take the supre-

A! EBJ EC’
mium over t > 0 of Eq. (5.62) of Theorem 14 so that a lower

*
bound on the steady state error €es is given by

% {t’ exp{2 Nig (t’)}}

€ > sup 5
D(t7)

(6.52)
ss T {-30
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where we have made use of the fact that since xt is a Gaussian

source,

72-115 exp[2H(t)] = t~

t” is the normaliged time (see Eq. (6.6)); D”(t) is the nor-
malized version of Eq. (5.63); and NLB(t’) is the normalized
version of Eq. (5.67) provided the hypothesis of Part B of
Theorem 14 is valid ~-- that is provided Egs. (5.59) and (5.60)
hold for the PLLP. Verifying these hypothesis is therefore
the first order of business.

In regards to Eq. (5.60) we simply observe that from

the convex Jensen inequality (Lemma 28A) we surely have for

the PLLP
t t
_ 1 2 -1 =il 2
EV, =E exp%i fo g, R~ ds + fo g R dBSE
; il t -

= E_ exp EJ% [ sin® 6_. ds” + %é /] sin 6_ dB $
P“ 0 _ o 0 S
t/

> exp % 2% (6.53)

2P

where Lemma 43A and the nomenclature of Eqs. (6.3) to (6.8)

has been used. Thus Eq. (5.60) holds with

Z (t) = exp ;%% (6.54)
op

241



Equation (5.59) is clear from an intuitive point of view since

upon substituting in the expression for v(t) the identity

sin2 a = (1 - cos 2a)/2 we have

2
tE (g v.) _
v(t) = B, [ E S5 R 1 ds
0 X''s
A t
=R EXy {) 1 - EX [COS 2(ws + X+ ¢) exp {CS}] ds

and choosing w arbitrarily large, the second term in the
integrand becomes O(j%).

Lemma 45. For the PLLP Eq. (5.59) holds. That is,

2
t E_(g_ V)
v(t) = E Ees Rlds =gt (6.55)
Y "o “x's
so that

o B
v(t) = > (6.56)

P

where again the nomenclature of Egs. (6.3) to (6.8) is used.
Proof: Clearly (6.55) implies (6.56). That (6.55) is
true is shown in Appendix A. H
Having verified the hypothesis of Theorem 14B we can
use Eq. (5.67) for NLB(t’) appearing in Eq. (6.52) so that

using the usual normalized terminology,
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Nip(ts) = 2 tT - 3%

(¢ By {B (Bgvg-) Eg(eg v )

exp {s’/Pz} ds’}

o

(6.57)
where we have made use of Eq. (6.54). We recall that
Exy {Ex(gsws) Ex(gsws)} can be expressed, by using Egs. (5.84),
(5.77), (5.72) in terms of 13(., ., «, .) of Eq. (6.35) which
in tgrn can be expressed in.terms of f3(°) which can be eval-
uated by the procedure of subsection 6.3.1. We can now sum-
marize the previous development in the following theorem.

Theorem 20. Cons@der the PLLP. A lowerbound on the

optimum steady state filtering MSE is given by the following
equations where the nomenclature of Egs. (6.3) to (6.8) is used.

From Eq. (6.52):

- _ exp{2 N (t)}
€ > sup T LB

5 (6.58)
£*50 D(t”)

From Eq. (6.30):

(-] 55 n-r/2
» 1 . t/
D(t”) = L
r=0§2,4... ngr (n-r)1(r/2)! oh-T/2 [p2}
(6.59)
From Eq. (6.57):
- 1
N, (t7) = 1 t” It 2A Exy {Ex(gs'ws’) Ex(gs’ws’)}d ,$
LB -3 - 5 S
P 0 exp {S’/P }
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From Eq. (5.84):
(e
1 1
. | = e
28 Exy 1Bg (8 -¥¢-) Ex(gt’vt')g jzo 2A
From Eq. (5.77):
.
1 _ 1
2A Exy(Yj) B iZO 2A “xy (cl dj-l)
From Egs. (5.72), (5.71):
_ n
_ k
d}$ - E){(g;t“C1:’)
£ £
— _J; 2 —1 - - "1 -
Gy =5 / g, R ds” + / gl R dB_.
0 0
) ; i
- E__(c_d,) =
24 "xy . "n'k £4oL:3,5, P.=1,3,5;
where if ry STy
1 2f1 1
A(rl' ¥3) = (n-ry)1(k-r,)! ' aD-T1 k-T2 : Ty -1 .
2 2 (.2§_£)|
k| ]
P
(ry-1)/2
C Y { 135 ... (20-1) 1
=0 (ry-2m)! 2.4.6 ... 2n 22“(2n)!
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(v;) (6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

. fa(rl-zna

(6.67)



R ——,

Fvriimpou—y

T WY

and if ry > Tos

T
2
1 2 1
A(ry, T,) =
1 2 (n-rl)l(k—rz)T oh-T} 2k-r2 ry -

2 21%@%;%1

7 ]
(rg 222 1 1.3.5 (2n-1) 1 2
' nZO {(r2-2n)! R 22 22n(2n)l (™" I3(ry - 2“4
(6.68)
where
1 « 3 « 5 (2n-1)
5 . 4 - 6 ... 2n - A1 (6.69)
From Eq. (6.38) for 32 odd:
i e -
I.(3,) = E(sine,sine,...siue, ds; ... ds?
32 83=0 832 [x t sy 832)] 1 Jg
(6.70)

which can be evaluated by the method of Section 6.3.1 E.O.T.
Since 53(j2) reduces to a linear combination of

t" exp(-mt) what has been accomplished is to reduce the evalu-

ation of a lowerbound on the steady state optimum filtering

MSE* to such a linear combination. In particular we note that

there is only one numerical integration that needs to be per-

formed -- the simple scalar integration in Eq. (6.60).

*
As noted in Chapter 5 all the preceding development (whose
object was to obtain an upper bound on information) applies
for other non-MSE distortion measures.
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6.5 Numerical Results

The bound of Theorem 20 is presénted in Fig. 6.1 as
compared with the Zakai-Ziv bound of Section 5.1 and as com-
pared with the Snyder-Rhodes bound (77). We can make the
following observations.

(1) All the bounds shown in Fig. 6.1 are lower bounds
on E(xt—ﬁt)z, for t +- «, where as usual ﬁ: is the Kushner
estimate. They are not mod 2w quantities which naturally is
the more relevant quantity for the phase modulation problem.

(2) Large Noise to Signal Ratio P. As initially con-
jectured in Subsection 5.2.1, the bound of Theorem 20 exhibits
jts best behavior relative to the Zakai-Ziv bound in the high
noise to signal ratio (highly nonlinear) region of operation.
Thus, as evident from Fig. 6.1, the bound of Theorem 20 is
tighter than the Zakai-Ziv bound for approximately P > 1.1.
On the other hand the case with which the Zakai-Ziv bound can
be evaluated is certainly a valuable feature.

(3) Small Noise to Signal Ratio P. The behavior of the
bound of Theorem 20 in the smaller P region is disappointing
and may be traced to the technique used in eliminating the ét
from the denominator in the integrand of u(t), Eq. (5.52).

This technique involved lowerbounding Exwt by Z(t) as evident

in Egs. (5.67), (5.60), (6.54):
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Figure 6.1 Comparison of Bound of Theorem 15 with
Zakai-Ziv and Snyder-Rhodes Bounds

e _ t”
Z(t) = exp (;;§> < Exwt’

However Exywt’ = exp (t'/Pz) which suggests that tightness is
lost here. Thus the difficulty may lie in the evaluation
technique rather than being an intrinsic limitation of the

bound.
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(4) The Snyder-Rhodes bound (Fig. 6.1) is not based on
rate distortion theory but on the Cramer-Rao inequality and
the Karbunen-Loeve expansion. Again the bound of Theorem 20
behaves better in the high noise region perhaps because, as is
well known, the Cramer-Rao inequality is tightest in the low
observation noise almost linear region. As in the case of the
Zakai-Ziv bound the simplicity of evaluation of the Snyder-
Rhodes bound should be noted as well as its remarkable perfor-
mance in the significant low P region.

(5) Finally we mention that the lowerbound developed in
Chapter 5 (specifically in Theorem 11) can always be evaluated
by Monte Carlo simulation -- the usual drawbacks of simulation
being reliability and computation time. In terms of computa-
tion time, the bound of Theorem 20 takes an average of 0.55
minute per point (i.e., per noise to signal ratio) in an IBM
360 although naturally program development time is consider-

ably more.
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APPENDIX A
PROOF OF LEMMA 45

The purpose of this appendix is to complete the proof

of Lemma 45 of Chapter 6. Specifically we need to prove

Eq. (6.55):
E_(g20.) |
A t TxX¥g's -1 _ A 1
v(t) = Exyfo —m—)—- ds = Rt + 0(_wr) (A.1)

where as throughout Chapter 6

g, = sineS (A.2)
6, = ws + X_ + ¢ (A.3)
t 9.1 t -1 ~}
E— ¢ 1
ws ekp{gfo gSR ds + fo gsR dgp (A.4)

Now using sin2q = (1-cos2a)/2 in Eq. (A.1) we get:

E_i{cos26 v
v(t) 24 E ft{l— X{ S s}}ds

2R “xyo E Vg
(A.5)
A " E, {cos26_ v _}
==t - [ E
R o "Xy Est

Clearly Eq.(A.1) follows from Eq. (A.5) provided the second
term in Eq. (A.5) is O(j%) as the carrier frequency w-w.
First we simplify the notation somehow. We note that

the first term in the exponential defining Vg is

t 2 _‘1 .__‘gé b Y o t
fo gSR =i LA, fo coszosd%] (A.8)
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24 t . ot t_. .
T %t—é!ocos&us cos:,(:\s+¢)ds+éfos1n2ws sm2(xs+¢)ds

(A.6)

- A 1 &
= ﬁt + O(wr) as w~> a.s.

by the Rieman-Lebesgue lemma since almost all of the xg are
continuous. While we could wait to let w»>« at the end of the
proof, it unclutters the notation if we use Eq. (A.6) to
cancel exp{At/R + O(1/wT)} from both numerator and denominator
of the integrand in Eq. (A.5). If in addition we take

2A=R=1 we have that for the purposes of this proof we can take

_ ) SO ~ o\
wt = exp{fo 51nes st} (A.7)
es = ws + Xg + ¢ (A.8)
define { }
E_{cos20 Y
t7x s 's
vi(w,t) = E__J ds (A.9)
L xy'oT B jug]
and show that
lin ey 2o (A.10)
W+ 1 ) *

We take for every integer N>2 the random time of

B ‘[n

By, 14, as the first passage time at which yg=n. We can then

speak of the stopped process Ygarn where as usual A means
minimum (49,50). Further in whatsfollows we let I{ } be the
indicator (characteristic) function.

We begin with a necessary strengthening of Doob's

submartingale inequality.
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Lemma Al. For every integer k>1, n2>1

, .
pirNce} < explkot/2}) (A.11)
¢ LK |
n exp{kztjz}
P>t 21 - - (A.12)
)

Proof: First observe that Ey Y, as defined in Eq.

A.7 is a submartingale of %t (a convex function of'a

martingale). Furthermore for every integer k21 [Exwt]k is

also a ét submartingale (since f(x) = xk, k21 is monotone non-
decreasing convex for x20 and ExthO). Applying Doob's (49)

submartingale inequality we get for any a>0

P{Zzt[Est]kza} P Exy[ifwt}k

k
E_ (V.)
Z Xy b (A.13)

- a
where the last step follows from Jensen's inequality (50).

Now

max _ max k k}
p{sst Ex¥s 2 L} - P{s_<_t [Ex”’s] 2 L (A.14)

Combining Eqs. (A.13), (A.14) with a=L¥ we have

max > < EX (wl‘é) ;
p{sSt EXwS_L} < —V—Lk (A.15)

Multiplying now Eq. (A.15) by -1 and adding one to both sides

258



-~

we get

maxp = g AR
P{s<t xw L} = & P{sst EstzL}
k
E ()
S R (A.16)
L

Finally the desired results follow from Egqs. (A.15), (A.16)

upon observing that

p{mai v >L}

max
P{s<t < }

and for wt as defined in Eq. (A.7)

Il
J
P
-
ot 3
IN
d-
N

I
o)
e~
=)

(e t=}
v
(—+.

N~

k _ 2
Exywt = exp{k“t/2} B

Lemma A2. Define for integers j>0, n>2

Jpn A ]
Rz(w,t) n 'Exygsfo E (cosZO w )I{ 2 S}dsi (A.17)

Then for every integer k>j+2 and n>2

. 2
Jen 1 exp(k“t/2)-1 :
Rz(w,t) < nk°(j+2) { o } (A.18)

Proof: Clearly

Exy Ex(cos28s ws)I{Tg<s}§s ExygEx(ws)I{Tg<S}%

exp{k?s/2}
Lk

<I:L dL (A.19)
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o w———p

1 exp{kzsjz}

nk_z k-2

(A.19)

where the next to the last step follows from Eq. (A.11) of
Lemma Al. Integrating Eq. (A.19) with respect to s gives
Eq. (A.18) as desired. .

Lemma A3. Define for integers j>0, n>2

J A t yo1d
Rl(w,t) = Exy{sio Ex{cos2esws}[Ewa] ds} (A.20)
jon A t J
Rl(w,t) = Exy{sio EX{COSZGSws}[Ewa] I{Tn>s}ds} (A.21)

Then for any integer k>j+2

; 2
§ _ Jxn 1 exp(k"t/2)-1
Ig, (01 - TRy(0, 1) < nk‘(J'*z){ e Gio) } (A.22)

Proof:

t J
E S7 E_(cos26 U E_ Y 1-1
xvelo g€ sV (Ev ) ( {12>S}

le(m,t) e jR;(w,t) yds

. . .
E i~ B 20 E I d
xys=0 x(cos svs)( x‘ps)J {T:<S} 8

I

]

t Jj+1 -
E _J  (Eyp ) 1 ds
XY i) S {T2<S} (A.23)
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Hence using Eq. (A.11]) of Lemma Al,

¢ o3t expOPs/2) o o1 exp(k®s/2) (A pa)

E _Jz p )y } . -
xy{( xVs) I{Tg<s} BRI LK nk-(J3+2) k-(3+2)

Integrating Eq. (A.24) with respect to s and substituting
this result in Eq. (A.23) gives Eq. (A.22) as desired. E2
Lemma A4. Define as in the previous lemma

IR (w,t) = Exy{ftoEx(coszosws)(Est)jds} (A.25)
S=

where j is a non-negative integer. Then for every el>0 and

every j there exists a w>0 such that for w>w

le(w,t) < € (A.26)

1

Proof: Substituting Eq. (A.7) in Eq. (A.25) we get

J -
Ry(w,t)
/ Tl
" v EX cos20s ¥ f% /S sineﬂdé
y s=0 \ i=o ~ " |m=0
@ 5 & S _u ot
EX E -r—!' f— smeo dBO
r,=o 1! 04=0 1 1 ;
;
© 3 i
*E_ E ke /7 sin6_dB J
x)i.=o r., _ o: O.
J j! Jos=o j o

Making use of Lemma 43 we can eliminate some of the terms in

the summations to get
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t P 1 5 .
Ex S Ex cos29 z iT s sinendBn !
Y| s=o i=2,4,6,... " |m=0
E T 2 [IS in6 _ dB T
. — sS1in
%Y i _ o o
11—0,2,4, 1! 04=0 2 B l_
© 1 S o TlJ

Ex z T J sine0 dBo (A.27)

ij=0’2;4: j! Oj=o g J

Clearly by the methods of Chapter 5 we can eliminate all
stochatic integral from Eq. (A.27). We can then use the
Rieman-Lebesgue Lemma since the resulting expression contains
a sum of multiple ordinary integrals with continuous inte-
grans containing at least one sinusoid, namely that arising
from coszes= cos(2ms+2(xs+¢)). Each integral containing a
sinusoid introduces a 0(1/w) factor so that not only there is
no '"dc" component -- except one of 0(1/w) -- but also an
increase in j would introduce more 0(1l/w) factors and indeed
for any j we can find a w>0 such that for w>w the right hand
side of Eq. (A.27) can be made less than any given 61>O.ﬂ

Lemma A5. Define for integers j>0, n>2

jon A Lt J
R(w,t) = é Exy{Ex(COSZBSwS)(wSATn) }ds (A.28)

Then for any j and any cl>o we can find a w>o0 such that for

w>w
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198" (w, t) | <e, + ;;:{%:57 (exp(kzt/z)—l)Lh{§+2) - kfz] (A.29)

for any k>j+2 and any n>2.
Proof: Recall the definitions of jRg(w,t), Jerl(w,t),
and JR,(w,t) as defined in Egs. (A.18), (A.21), (A.20)

respectively. Clearly

IR (0, t) = IR](w,t) + TR (0, 1) :
since
jon J ‘
R (w,t) = E E (cos26 w Y(p ) I ds
Xy n n.
=0 sAT - {1 >s}
s s
E {E ( 20 ) ( )jI d
+ coSs w P s
=0 %Y SATg {T2<S}
= E E._(cos26 w ) wJ I ds
=0 xy{ e {T2>S}
+ E E (cos29 w )n I ds
. xy{ {TQ<S}}
Furthermore,

1R (w, £) |2 9R(w, £) - IR (0, t) + IR (0, t) + TRD(0, 1))
<IPRJCu,t) - IR, t)] + PRy(w, )] + [PRG(w, )]

Eq. (A.29) now follows from Lemmas A2, A3, A4.
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Theorem Al. Consider

t Ex(coszesws)

vo(w,t) = E__ S ds (A.30)
1 Xy o E (V)
where
t -
ws = exp/S s1nGSdBS
o)
Then
lim (A.31)

0 vl(w,t) =0
Proof: Define for integers n>2

t B.(cos20 1.)
vi(w,t) 8E s XS5

XY o E_V

ds (A.32)

SATS
where the optional stopping time TZ is as previously defined.
It is clear that

lim _n _
") (w,t) = vl(w,t)

so we need to show that

lim 1im _n _
ks peho vl(w,t) =0 . (A.33)

Recall the series expansion

o . i
- 5t {z=2n) (A.34)
i=o (2n)
for
o<z<2n . (A.35)

and any integer n>2.
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. » |
Since O EszATg

Hence

o (2n)" j

<2n we have from Egs. (A.32), (A.34), (A.35),

© it i
n t) = E T i:llT / Exy{Ex(COSZOSwS)(Exw n-2n) }ds

SNl g

I i i : . 3 & J
- E ("1) _Eo (—l)j <;>(2n)1 Jfo Exy{Ex(coszele)S)(EstATg) }ds

: G)(zn)i'j]jn"(w.t)l (A.36)
=0

where JRn(w,t) is as defined in Eq. (A.28) of Lemma A5.

Consider the i=o term of

n>2 we can find a number

(i=o term of (A.36))

for w>w
="o

Consider the i=1 term of
any given integef n>2 we

w>w
: 4

(i=1 term of (A.36))

Eq. (A.36). For any given integer

w éuch that for w>w
(o) (o)

Ex(coszesws) ds|

- 10 0.5
= |"Ry(uw,t)| < == (A.37)

Eq. (A.36). From Lemmas A4, A5 for

can find a number w1 such that for

t
= lé Exy Ex(cos268ws)ds
1 t
* on 4) Exy Ex(coszesws)ExméATg) ds |

%Ry (0, )] + |TR"(w, )]
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0.125 0.125 1 2 1 3
S N = s t/2‘1>[m * kTs]
for any integer k>3. Clearly for say k=4 we can find an

integer N1 such that for all nle the last term is smaller than

0.25/n and

(i=1 term of (A.36)) < 01'15 (A.38)

for wal, nle.
Consider the i th term of Eq. (A.36) for iz2. From Lemmas A4,
A5 we can find, for any 81>O, a number Wy such that for

wW2wW.
1

(i th term of (A.36))

. i . .
o 1 i i-jijon
T K J_il(j)(Zn) 198" (w, 1) |
TR ; (i)(zn)i'je +
1™ Goni® 4oakd 1 (A.39)
gl 3 (1) ) g R SR oy 0 W I S .
(2n)" j=1\J gt (4#2) k=(j+2)  (k-2)

for any k j+2. 1In particular for any integer n, we can choose
Wy to make €4 SO small that the first two terms of (A.39) are
less than O.S/nl. Furthermore we can find a k>j+2* such that

it is possible to find an integer Ni such that for n>Ni the

*For example k=(j+2) + (i-j) + 25.
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last term of (A.39) is less than 0.5/n1. Consequently we can

find a real number L and an integer Ni such that

(ith term of (A.36)) ¥ = # —4r'='1? (A.40)
n n n

for w>w., n>N..
i i

We can thus bound every term in Eq. (A.36) such that, from

Eqs. (A.37), (A.38), (A.40), for w2supw , n2sup N_
i

1 1 1

n 0.5 4 .0:5 o 4
4+ = 4 —_—
lvyCw,t)] < = = +i£2 =
.- |
I
n

+ 0 as n,ws®
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APPENDIX B

CONTINUATION OF SUBSECTION 6.3.2

As was the case with the development of subsection
6.3.1 the following derivation can be divided into three
steps.

Step 1. The first step is contained in the following
lemma.

Lemma Bl. Consider I,(rl, T m2), defined in

2> My
Eq. (5.86) and given by Eq. (5.88) of Theorem 15 where without

loss of generality we take Ty, My to be arbitrary non-negative

intergers; r m, even integers; and Ty < my, . Then for the

2’
PLLP I,(.,.,.,.) reduces to

-(r +r,+m,+m,) _
17271 2 I(rl,rz,mz,mz) =

R
+m, +1r +m
(28) B 1oy Noys
- Ky(rg,mgy).
Yo
/2 2n+r1+m1+v
Zo K,(n,ry,Ty,my,m,) t~
n=
t” t” : . 2
/ A | [E_(sin®_ ,...sin® Y19ds?...ds
s;=0 *  s’=0 X S1 S12(n) 1 E2(n0
I2(n)
(B.1)
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where the R—( ) factor multiplying Il(.,.,.,.) arises naturally
from the R"1 omitted from each of the intergrals in Eq. (5.86)

(see Egs. (5.71)) and

I2(n) = r, - 2n (B.2)
: 2 (i,-2n)!
= I(*= 2
Kl(n,rl,rz,ml,mz) = [<2n> (2n—1)...5.3.1] 22n+r1+m1+v
(B.3)
Ky (Ty,my) = [(;g) (2v—1)...5.3.1] (B.4)

v = (my-1,)/2

Pz, si, t” are the noise to signal ratio and normalized times

1’
as in Egs. (6.6), (6.7) and GS, is the normalized times as in
Egs. (6.8).
Proof: Substituting gg = V2A sin es in the integral

in Eq. (5.88), normalizing time and using the identity sin2a=

(1-cos 2a)/2, we get

r.+m.+m +r
(28) (2a71) L 1 2/272/2 /t t t ot t gt
e 8 JE i [ e s . o |
S5i=0 §=0 94=0 0o’=0 s} = 0 S =
11(n) J1(n) 12(n)
E {(l—cos 26, .)(1-cos 20x , )...(1-cos20~.  )sinéd ....sin® }
x t S » . PR ”
1 ®Iitn) %1 S12(n)
E {(l—cos 26~ ,)...(1l-cos 26- )sin 8 . sin 8 }
x o e -~
1 %31(n) %1 S12(n)
e ) . -
dsl'"dsll(n) dol'"chl(n) dsl“'dSIZ(n) (B.5)

269



Ty

where as before I1(n) = r1 + n, Ji(v) = m1 + v + n. When the
products in the integrand of (B.5) are multiplied, we can
eliminate by arguments analogous to those in Lemma 43E, F all

terms that are not of zero frequency so that

Tytgths ntRs e

Eq.(B.5) = (2A)(2A1) v LN LA L ‘!t

grvel tEghmLty 8. 550 8j_, 9570 s;=0 s7,=0

11 1
2 -
[Ex(sin esi'"Sin esiZ(n))] d§i dSIZ(n)
= (24) (2Ar)r1+m1+m2/2+r2/2 (¢yIE(m+J1(n) (L t”
2 =

[Ex(sin E)Si e Sin eSiZ(n))] ds .. dsi2(n) (B.6)

Eq. (B.1) can now be obtained by substituting Eq.(B.6) in Eq.

(5.88) using the definition of P2 and regrouping constants. 3

Step 2. The net effect of Lemma Bl and Step 1 has
been to reduce the entire computation of Exy{Ex(gzw)Ex(w)} to

the evaluation of

I, (i) 8t gt E_(sin 0
1 2 _ _ X IS
sl—O s.=0 2
iz=2,4,6n.
(B.7)
where to avoid further clutter in the notation the facts that
1 1s
also a function of t” are not explicit. The reason that I

we are dealing with normalized times (e.g.,sé) and the 1
1
does not vanish from Eq. (B.1) is that as we shall see it

possesses a zero frequency component.
270
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Exact evaluation of I1 is straightforward though
tedious. Rather than produce general formulas (which is per-
fectly possible) we shall illustrate the evaluation process in
Steps 2 and 3 by considering the case 12 =4 in Eq.(B.7).

The particular objective of Step 2 is to reduce Eq.
(B.7) to "simple integrals" -- that is, to integrals that can
be found in the table of integrals of just about any engineer-
ing or scientific handbook (e.g. (73), (74), (75)).

Consider then il(i2=4). As most of the development

of this chapter, the following relies heavily on the material

included in the statement and proof of Lémma 43. From Eq.(B.7),

s gt t ot . 2
11(4) = f f ] ft [Ex(s1n8S = sines , sin@ sin® )]
0L 1 5 Sq

Sl=0 s2=0 ss=0 S4= 2
ds1 ds2 ds3 ds4
(B.8)
Now making use of trigonometric identities such as
sub a sin B = 2 (cos(a-B) - cos (a+B)) (B.9)

and of Lemma 43 we can show that

E (sind sinb sin6 sing ) =
5 S s S S4
1 2 3
= % Ex {cos(eS -es -es + 6 ) + cos(6_ -6_+6_ -0 _ )
1. g By 8y 84 Bg 8y 8§y
+ cos(6_ +6_ -6 -6_ )} +(B.10)
& 83 83 Sy

271



Substituting (B.10) in (B.8) we see that, up to O (=),

31(4) = g% I 1] ] [Ex cos(8y -0, -0

(=2}
['=3

. 2
+ E_cos(6_ +8_ -6 -0 )] ds, ds, ds, ds
S; Sy S3 S4 1 2

3 4-

+ | E_cos( + -
% Sy S, S 5,
= 'é§4‘ It ft i / [Ex cos(6, +0_ -6_ -8 )]2d51 ds, ds,ds,
5770 '5,=0 §,=0 s,= 81 ®3 83 53
2
3 !t It It ft [ ]
= E cos(x_ +x_ -x_ -x_ ) ds, ds, ds., ds
128 51=° sz=0 S3= &, =0 81 "Sy S3 "8y 1 2 3 4

(B.11)

parenthetically we mention that we can show that Eq. (B.11)

generalizes to

= 1 . Cj t t
I,(i,) = ——— i, i T | [E cos(x_ +..+ X -x
172 2i, "2 7212 J_g7g] oL X Sq s

2 1 i,

ds, ...ds; (B.12)

We can write an expression for the integrand of Eq.

(B.11) provided there is a definite order between the S. .S

1’72

S S,. Thus the integral in (B.11) can be broken up into

3’ 74
4! = 24 integrals since R4 can

Lebesgue measure zero, into 4!
exists between the variables.

ing integrals will turn out to

be partitioned, up to a set of
regions where a definite order
Fortunately most of the result-

be identical so that we need
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only evaluate 2 integrals rather than 4! For iz=6, 6! = 720
regions result but we need only evaluate 4 different integrals.
For iz=8, 8! = 40320 regions result but we need only évaluate
8 different integrals.

Naturally it is necessary to determine beforehand the
different types of integrals (rather than to compute 12! inte-
grals and then see which are the same). This can be accom-
plished by the following two methods.

The first method is based on observing that

ic4) - ) It- ISJ4 ISJ3 ISJ2 [E cos(x, *x_ -x_ -x_ )]

5 .3 3 s, = s. =0 s. =0 s, =0
J1:3g:33:34 € Ty Jg Jo Ji

{1,2,3,4} ds, ds. ds. ds.
N

(B.13)

where the sum is over all possible reorderings of 1,2,3,4. Two

types of identical terms arise, terms of the form

+ (x Xy ) (xS “He, ) & (B.14)

5 A
Ji1 Jg Jo Jg
and terms of the form
+o(x_ +x_ ) F (x. +x_ ) (B.15)
where it is assumed that SJ <...<s. . Terms of the form

(B.14) can be relected in

4 -2 -2 .1-=16
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ways that yield integrals which are identical up to a change of

variables. Similarly terms of the form (B.15) can be chosen in

ways. Thus Eq. (B.13) becomes

2
t s s s
I,(4) = 16 fﬂ ]-4 f_3 ]—g [E cos(xg =Xy =X +X_ )] ds; ds, ds; ds,
s4—0 53—0 52—0 sl—O 4

2
t s s s
+ 8 4 3 2 [E cos (x_ +X_ -X_ -X )1 ds, ds, ds, ds
s£=0 s£=0 s£= Si= s1 Sy S S47 1 2 3 4
(B.16)
=4
Naturally 16+8=4!. Now for sl<s2<sg<s4,

-1
E cos (xs —Xg X +x ) exp ;—E (—sl+sz—ss+s4)$

1 Rz B3 Sy
E cos (x_ +x_ -Xx_ -X_ ) = exp §:l (-s,-3s,+3s_+s )l
Sy Sq 2 i, T8 =gheg Ly
Substituting these results into Eq. (B.16) we have
31(4) =16 [t jf4 o /52 exp(s;-sy+sy-s,) ds, ds, ‘ds, ds

3
s4 0 S, 0 52 0 S 0

t S s s
+ 8 [ 74 [P3  [32 exp(s,+3s,-3s.-3s,) ds. ds. ds. ds
s4=0 53=0 S5= s1=0 1 2 3 4 1 2 3

(B.17)

Clearly the integrals in Eq. (B.17) can indeed be evaluated
with the aid of an ordinary table of integrals.

A second and perhaps more convenient and reliable of
arriving at Eq. (B.17) is to have a digital computer go through

the 12! possible order of s ;S

is checking which yield

17
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identical integrands. Such a progdram yields as output the co-

efficient of each intergral (i.e., the number of repetitions of

each particular term) as well as the parenthesis of the exponen-
tial in each integrand. 1In the present evaluation both of these
methods were implemented.

Step 3. Once an expression of the form of ﬁq. (B.17)
is obtained what remains to be done is the evaluation of the
resulting integrals. We note that as evident from Lemma 43B
the integrals are always of the form

ig

[t [Sig ... [®2 exp{_z

s.=0 s.=0 s,=0 i=1
12 12—1 1

aisi} dsl"'dsiz
where a; are integers. While the necessary integrations could
be performed by anybody with a knowledge of elementary integral
calculus, more efficient and reliable ways can be used. Observe
that numerical integration is not an attractive alternative*
since (1) the integration is in iz—dimensional Euclidean space
and (2) the integrands are so simple that they can be evaluated
by hand. The approach that seems to be ideally suitéd to this
problem is the use of a symbolic (non-numerical) integration
program. The particular program used in the present evaluation

was MACSYMA developed by Prof. J. Moses et al at M.I.T's Pro-

ject MAC. For i2=4 Eq. (B.17) evaluates to

*
Attention has been given in the literature to the evaluation of
multiple integrals. See for example (76).
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i,(4) = 16(-t eV o3 et 5 20 5% ¥ )

+ 8(te Y3 + 5 ¢ Y9 + e /144 + t74 - 9/16)

As is evident, all the i,(iz) turn out to be, as is reasonable

-nt

< . . m "
to expect, linear combinations of t = ¢ for m, n non-negative

integers.
Summarizing, what has been accomplished in this section
is to reduce the computation of thetypical term in the Cauchy

product expression for E {Ex(gi wt) Ev(wf)} as given in Eq.

Xy
(5.88) of Theorem 15 to the computaiton of elementary integrals.
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APPENDIX C

CONTINUATION OF SUBSECTION 6.3.3

As was the case with the development of subsection
6.3.1 and Appendix B the following derivation can be.divided
into three steps.

Step 1. The first step is contained in the following
lemma.

Lemma Cl. Consider Iz(il,iz,jl,jz,kl,kz), defined in
Equation (5.96), and given by Eq. (5.97) of Theorem 16 where
without loss of generality we take il’ jl, k1 as arbitrary non-

negative integers, i2 odd, odd, k2 even. Then for the PLLP

. J 2
12(.,.,.,.,.,.) reduces to

= (1,43 ,+k )= (i +3,%k,)
» BES Rt Tl o A8 e~ =

=)

<
Hl‘l 0 M,
[
.
1

k —2v k 2v

%{2 3 3
K (V{iVysVaiNsniNgqifiga).
—o “23“° 15V Y g 1o Nagillag

N“h454

(V1'V2'“3'"12'"13'"23)°P

12¢j2+k2
2

1,434k, + (114354 J¥(V +v,4v.) 1

(t7) - n(il*Jl*x YH(vy*vytvg)

P % e Y 0% P

s;=0 s’=0 0ol=0 0’=0 =u =0 n’
1 N2 1 T3 1 23

Ex(sin Bt. sin esi v Sin Gs’ sin e°i « Sin 00. )

12 13
Ex(sin et, sin esi w. Sin ss, sin e"i .. sin e“ﬁ )

N2 23
Ex( sin 00, .. Sin 60. sin 6_. .. sin e:, )

1 3 1 n
23
ds; .. ds’ do? .. do’ dr? .. dn’ (C.1
3 N2 1 Ny 2 23 )



where the R_( ) factor multiplying I(.,.,.,.,.,.) arises natu-

rally from the R_1 omitted from each of the integrals in Eq.

K‘(.,.,.,.,.,.) = K(-:-;"°":') R

~Ugtigtky)
2

K Cogogaseseye)e 88 In Bg. (5.100), Theoren 16

P: as in Theorem 16

N2

Ny3*

- -~ ”~ ”
PY, t°7, si, oi, T

are the noise

: as in Eq.(5.98), Theorem 16

as in Eq.(5.99), Theorem 16

to signal ratio and normalized

times as in Egs. (6.6), (6.7) and es, is the normalized version

of es in Eq. (6.8).
Proof: Substituting g
in Eq. (5.97), normalizing time,

(1 - cos 20)/2, we get

(1,+35%k,)
—(1,4].+k.)- _Lé_
(2 I § § I xg 17071 (
(1,+35%k,)
[ty r———

1
2311‘41‘k15 + (vytvatvg)

¢ - t- - - % 3
Y A LS I Ao 1'0"
= - = o me= w 3

1 trap, 2 Jytvg 1 By vy 3
Ex sin 9; (1-cos ZBE,)...(I-cos 29§_ ) sin es,
1 1, +v 1
B |
Ex {sin 8; (1-cos 26‘5 ‘)...(l-cos 205,” ) sin es.
1 2 1
Ex{ (1-cos 25,-,1_)...(1-cos 20,.'); . )
1*Va
ds’.. ds5; dd, ... do,. dn;..
1 ll*vl 1 J10v2 1
ds ds’ T..do” nl.dn”
1 N2 177 0y, 17 nyg

= ¥2A sin es in the integral

and using the identity sin2c1=

1,434k
143 %k, + 222
24)
e s 58 A ~
s L, v B ;‘ou. ‘°o
«0 oZa 0°=0 1720 1°m
n 1 N3 1 Nog
sin 6_. sin © . ..sin 6 . }
Sn 01 (¢} .
12 13
sin osn sin e"i «w. Sin eﬂ.
12 23
sin (\oi...sin e";’ sin eni"‘s“’ B,,‘
13 23
LdE S
ki*V
R



where we have used the fact that (see definition of P in Theorem

16) that
(1y+3g*ky) /2 = vy HVo+vatn, p4n) o¥n, ..

When the products in the integrand of (C.2) are multiplied, we
can eliminate by arguments analogous to those in Lemmas 43E,F

all terms that are not of zero frequency so that, recalling

=N
o/2
”~ 1
Eq.(C.2) = (24) § J I ¥ { K* ——
: gk o1 e Y Wiy
(1p*3g*ky) 2
19434+ 2 S RS RS RAS AN
2AT (t7)
N, /2
42 t : t° &
R A U L G
= s’ = o.= (o Bk T .= =
1 N2 1 13 1 N23
Ex(sin Ot, sin E)Si . Sin e; sin e°i .. Sin eo, )
. 145 M3
Ex(sin et‘ sin esi «. sin es‘ sin Bu. «. Sin eﬂ. )
Nyp & %23
E
x( sin eci w. sin 0, sin e“i .. 8in 8.+ )
"13 N23
dsJ... ds’ do; .. do’ dny ... dn’ } . C.3
1 N12 1 N3 1 Ngg _ ( )

Eq. (C.1) can now be obtained from (C.3) by simply using the

definition of P2. M@

Step 2. The net effect of Lemma Cl has been to reduce
: ; -2
the entire computation of Exy{(Exgtwt)(Ex,,twt)(Exwt )} to the

evaluation of
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o he

—

P

-~ t t ’
12(n12:n121n23) - ] L3 I It a8 [t 1{

s,=0 S. g,=0 g =0 =0
1 g 1 N13 M2
Ex(sin et sin esl «. Sin es sin e°1 sin 0‘7 )
Ni2 N13
Ex(sin et sin esl .. Sin es sin eTr ... sin Gn )
N12 1 23
E_( )
s sin 001 . Sin eo sin 6"1... sin en )
N3 23
ds ds do do dm, .. dmw (C- 4)
1 Nz 1 T 23

where, as before, to avoid further clutter in the notation the
facts that we are dealing with normalized times (e.g., si) and
that iz is also a function of t” are not explicit. iz contains
the zero frequency components in Iz(.,.,.,.,.,.) and consequent-
ly does not vanish for arbitrarily large carrier frequency w.

Exact evaluation of iz is straightforward but tedious.
As in the previous subsection we stop at this point the general
treatment and illustrate the evaluation process by means of an
example. Also as in the previous subsection the specific ob-
jective of Step 2 is to reduce Eq.(C.4) to "simple inteérals”
-- that is integrals that can be found in the tables of any
engineering or scientific handbook.

The first question that arises is what set of argu-
ments (nlz, nlS, n23) of iz in Eq. (C.4) are needed. We recall
from Lemma 41 of Chapter 5 that we are computing

By {(EE0(Egn) BB - zo By {85 (C.5)
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where as we have shown Exy {Bj} can be expressed in terms of
i(nlz,nls,nzs) as defined in Eq. (C.4). The first question is
then what specific fz(nlz, N3 n23) as defined in Eq. (C.4).
The first question is then what specifig iz(nlz, N3 n23) need
to be computed for a given partial sum.z of Eq. (C.5). A pro-
gram that implements the computation o%_ghe Exy{Bj} including

the sum in Eq. (5.97) of Theorem 16 naturally provides a list

of necessary (“12, n13, n23). Thus :
For J=2, need Mg = 1, Nyg = a Nog = 0
For J=6, need Nyg = 1 n13 =0 , n23 =0
0 2/ 1
2 | 2 0
3 0 0
For J=11,need Nyg = 1 N3 =0 n23 =0
0 1 n
1 2 0
3 0 0
0 3 1
1 4 0
2 1. 1
3 2 0
1 2 2
5 0 0
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As an example* consider the evaluation of iz(nlz = 2

)

=1, = 1) which from Eq. (C.4) is:

Ni3 Ng3

(21,1 = [ [ gt
1

Ex(31n 0, sin es sin SS sin 60 )

t 1 2 1

E_(sin Bt sin 6 sin 6. sin eﬂ )
X Sl S2 1

Ex( sin © sin §_ )
| Ty

do, dmw

ds 1 1

ds

1 2

where as before es = ws + Xg + ¢. Making use of the trigono-
metric identity sin a sin B = % (cos(a-B) - cos(a+B)) and of

Lemma 43 it is easy to show that

1

1,(2,1,1) = 3

ft ft ft ft Ex{cos(xS R )} -
s4=0 s.,=0 s.,=0 s.=0 3 4

[\

)}

E_{cos(x,-x_ -x_ +x_ )}-E_{cos(x,-x_ -x +x
X t s1 Sq Sy X t s1 Sq s3

ds1 ds2 ds3 ds4

s4=0 SS=O s2=0 SI=0 3 4
Ex{cos(xt-x 1+ xsz-x 4)} Ex{cos(xt—xsl+xsz-x83)}
ds1 ds2 ds3 ds4 (C.6)
*Among the I,(.,.,.) needed for J=11, 52(2,1,1) is third in

terms of coimplexity.
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We can write an expression for the integrand in both
terms of Eq. (C.6) provided there is a definite order between

the s S S Thus each of the integrals in Eq. (C.6)

1> S22 B3 54
can be broken up into 4! = 24 integrals since R4 can be parti-

tioned; up toa set of Lebesgue measure zero, into 4! regions
where a definite order exists between the variables. Fortunately
most of the resulting 48 integrals are identical and this fact
can be conveniently determined beforehand by having a computer
go through all 4! orders of the S5 - In this case the first

term and second terms of Eq. (C.6) produce respectively 3

(rather than 24) and 6 (rather than 24) different integrals:

-s,-2s,=t)

{4 exp(sl+3s 3 4

2

+ 8 exp(sl+2ss—2s4-t)

-t} ds, ds

1 5 ds

ds

+ 12 exp(s 3 4

17S3%S4
S

s
3 [72 {4 exp(s,-s,+s,-t)
o o2 i-Bpveg

S 1 0

+ 4 exp (s1+2s2—2s3-t)

+ 4 exp (s,+2s.,+s.-3s

11285 t8,-85,-t)

+ 4 exp (sl—t)

+ 2 exp (sl+3s —354-t)

3

+ 6 exp (s1—53+s4—t)} ds, ds, ds3 ds, (C.7)
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Clearly the integrals in Eq. (C.7) can be evaluated with the
aid of an ordinary table of integrals.

Step 3. Once an expression of the form of Eq.(C.7)
has been obtained all that remains is the integration of the
resulting integrals. Further we note that as evident from
Lemma 43B, evaluation of the iz(nlz, Ny3> n23) will always

result in integrals of the form

I
t 24 89
[~ f_ f_ exp {_g a;s;} ds; .. ds;_, ds;
SI—O s =0 s,=0 i=1
I-1 -
where the a; are integers. As was the case with I(.,.,.,.)

considered in the previous subsection, these integrals can be
evaluated either '"by hand'" or more conveniently using symbolic
integration, the specific method used in this study being the
MACZYMA System developed at MIT's Project MAC by Prof. J. Moses
et,al. As was the case with the integrals of subsection 6.3.1
and Appendix B, the present ones turn out to be linear com-

. . m _-nt . .
binations of t € for m, n non-negative integers.
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