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Abstract

Rates of convergence of the solution to discrete
approximations of the primal and dual control.problem
are studied. The convergence theory is preceded

by an analysis of the Lagrangian dual control problem
where it is shown that in "convex problems," the

Slater condition implies the existence of a dual
solution in problems with inequality constraints on

the state and the control. Furthermore when an optimal
primal solution exists, a complementary slackness
.condition holds and a minimum principal relating

the dual variables to the state and control minimizing
the dual function is proved. Convergence rates for

the discretization of the dual problem by the finite
element method are derived and it is shown that in
piecewise polyncmial spaces with fixed grid points,

the solution to the discrete problem converges to the3/2
continuocus solution at rate bounded by ch
in constrained problems where h is the maximum grid
interval in the space., However, 1f the grid points

are free parameters in the discrete set, then the

full convergence rate expected for the piecewise
polynomial spaces can be achieved. 1In a numerical
example, it is observed and then proved rigorously

that the error in the Ritz-Trefftz approximate exhibits
a boundary layer phenomenon with the error O(h) near
points where the ccnstraints change from binding

to non-binding and 0(h?) elsewnere. Finally discrete
approximations to the primal unccnstrained control
problem are studied in which the differential equation
is replaced by onestep or multistep integration schemes.
It is shown that the convergence rate for the onestep
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method depends on the behavior of the scheme on the
right end of each grid interval while the convergence

of the multistep method depends on the order of accuracy
of & "built-in' initial condition at the right endpoint
for the discrete costate variable. '

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor of Electrical Engineering
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OVERVIEW

The numerical solution to the following state and

control constrained optimization problem is studied:

1 : .
(P) inf 2])‘ L(x(t),u(t))' dt
s.t. %X(t) = £(x(t),u(t))
x(0) = x
Kc(u(t),t) <0
K (x(t),t) <0

If {(P) is to be solved numerically, then it must be
discretized and a knowledge of the rate of convergence
of the solution to a discrete approximation to (P) to
the éontinuous solution is essential to evaluate the
efficiency of numerical algorithms..

Papers by Budak [1] and Cullum [2] proved conver-
gence (without rate estimates) for the solution to the
appfoximation of (P) corresponding to the Euler integra-
tion scheme. This author has analyzed rates of convergence
both for the solution to discrete'approximations of
unconstrained control problems using standard onestep and
multistep integration procedures and for the solution

of the dual problem associated.withv(P) using the finite
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element method..

The solution of the dual problem first required
a development of Lagrange duality theory. 1In chapter 1,
1t is proved that in "convex problems," a solution to the
dual problem exists if an interior point assumption
is satisfied; and if a solution to the primal problem
exists, then a conplementary slackness condition holds.
Also a minimum principal and an adjoint condition is de-
veloped which characterizes the state and control variables
corresponding to given dual variables. The appendix
also proves the existence of a bounded measureable solution
to a class of centrol and state constrained problems.

Using the foundation built in chapter 1, the Tollowing
chapter then proves convergence estimates in problems
with quadratic cost and iihear dynemics and constraints
for the solution of the dual problem using the finite
element method. Although the dual function is only
semi-definite, a solution to the Ritz-Trefftz problem

is proved to exist. Furthermore, for control constrained

_problems, the dual function is shown t be positive def-

inite in an appropriate subspace. First order convergence
of the Ritz-Trefftz method in piecewise polynomial subspaces
is easily ﬁroved; however, higher order Convergence re-

quires not only that higher order spaces be used, but
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also that the grid points in a neighborhood of changes
in binding constraints bé left as free parameters in the !
maximization procedure. The convergehce proofs are based
on a theorem on the regularity of the solution to the
control problem and results on the approximation of either
non-negative or monotone functions by non—neg;tive or
monotone polynomials. The regulariﬁy theorem, in turn,
is based on a lemma concerning the stability of the
solution to the primal and dual quadratic programing
problem to changes in the data. The chapter concludes
with a bound on the error in the free boundary (or time
when a constraint becomes binding) for the Ritz-Trefftz
problem.

Chapter 3 then studies the convergence properties
of the Ritz-Trefftz method in two numerical examples-
a state and a control constrained.optimal control problem.
In both examples the L2 error of the Ritz-Trefftz solution
7

is bounded by ch 2 for higher order piecewise polynomial
subspaces where h 1s the grid interval associated with \

the space; similarly the sup norm of the Ritz-Trefftz

error is bounded by ch. Away from the region

where the constraint changes from binding to non-binding,
however, tﬁe Ritz-Trefftz solution to the control constrained
problem converged at rate bounded by ch2 while.in the state

5/2

constrained pfoblem tle error was only bounded by ch .
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- The different convergence behavior for the two problems

is accounted for by the differences in the constraints for
the dual problem - the control constraints lead to neces-
sary conditions for the finite dimensional problem that
uncouple while the necessary conditions in the state
constrained problem do not uncouple. '

Although the dual problem has simpler constraints
than the primal problem and does not require an integra-
tion of the system dynamics, the dual problem has the
disadvantage of not.necessarily solving the primal proﬂlem
unless the constrints and cost functional aré éonvex.
Chapter 4 begins an analysis of discrete approximations:
to the unconstrained primal problem by considering the
effect of replacing the differential equation by onestep
integration schemes based on gquadrature, multistep pro-
cedures, and Taylor series approximétions. It is demon-
strated that the convergence rate for onestep schemes
depends on the behavior of the scheme at the end of
each grid interval while the convefgence rate for multistep
methods depends on_the behavior of the approximation near
the right endpoint. The solution to the Tayior series
approximation, on the otle r hand, diverged from the
continuous'soluticn. Finally the optimality of three

Range-XKutta schemes is proved and two numerical examples
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confirming the ‘theory are analyzed.
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CHAPTER 1

Lagrange Duality Theory for Convex

Control Problems
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"I. INTRODUCTION

The Lagrange dual of the following control problem is
studied:

inf f(x,u)‘ .
s.t. %(t) = A(t)x(t) + B(t)u(t)
 x(0) = x

0
K, (u(t),t) < O
(0]

K (x(t),t) <

—

.

where f(-,+), K,(-,t), and K (-,t) are all convex.
Rockafellar [7] has derived dualitylresults for convex state
constrained control problems using conjugate functions. The
theory in this paper goes beyond Rockafellar's results since
the constraints are given explicitly by inequalities above
and, hence, the multipliers associated with the constraints
can be characterized. Also a slightly different form of the
dual problem, the Lagrange dual, is studied herein. The theory
in this paper provides the foundation for an analysis of the
numerical solution of the dual problem by the Ritz method in
[1]. |

In Section 2, the principal result, based on the Hahn-
Banach Theorem, proves that the dual protlem has an optimal

solution 1f there exists an interior point for the constraint
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set; and ;f the primal problem has an optimal solution, then
a complementary slackness condition holds.The optimal multi-
pliers p and v corresponding to the system dynamics and
state constraints are shown to have bounded variation while
the multiplier w corresponding to the control constraints
lies in e

Section 3 then proves that a minimum principal holds and
while (p,v) are only of bounded variation, the combination
q(t) = Ks(x*(t),t)g v(t) - p(t) is absolutely continuous
where x* solves the primal problem} furthermore gq satis-
fies the conventional adjoint equation for state ccnstrained
control problems. This result has important consequences
for the solution of the dual problem using the Ritz method in
[1] since the convergence rate of the discrete approximation
dépends upon the smoothness of the 4ua1 variables; hence if
the dual problem is reformulated in:terms of q rather than
p, then a superior convergence rate is achieved.

The Appendix contains several_technical lemmas concerning
the regularity of the dual variables and the existence of
bounded; measureable solutions to a class of control problems.
Notation

The following notation is used for spaces of real

valued functions on [0,1]:
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a absolutely continuous functions

BV functions of bounded variation

NBV functions of normélized bounded variation
C continuous functions

¢ infinitely differentiable functions

Lp functions with

1
p =]
jo [£(t)]F dat <

B functions bounded and measureable.

If W is any of the spaces above éﬁd X 1is a vector-valued
function, then the notation x € W ‘means that the components
of x 1lie in W. Similarly, the notation x € W(Rn) means
that x is a vector-valued function with n components and

each component lies in W.

If y € R™, then define the El norm by

M3

Iyl = ka'

=1

where Yy or (y)k denotes the k-th component of a vec-

tor. The following function norms are used:
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1 1/p
£ = 1£(t) 1P dt
el p = UL dE@P o)

[1£]] = sw  [£(2)].
1€[0,1]

-

If x,y € Rm, the inner product: (-,+) is defined by

If f,g are vector-valued measureable functions on [0,1];

v € BV, and h € C, then define:
1 .
((£.8)) = Jo (f(t),e(t)) dat
. .
[v,h] = Jo h(t) av(t)

The distance between two sets A and B 1in some norm,

||-||w is defined by:

dist{A,B}w = inf ||a-b||w.
a€A
bEB
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The total variation-of a function f on the interval
[0,t] 1is denoted TV(t,f) and TV(f) = TV(1,f).

The complement, closure, and boundéry of a set are de-
noted AS,A and JA, respectively. Another notation for
closure is c1l{A}. .

The notation A < f < B means.that f 1is a real
valued function with support contained in B, f(a) = 1

for a € A, and ||f]|] < 1.
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II. DUALITY THEORY

The following control problem is considered:

(P) . Anf c(x,u)

.

s.t. e(x,u) = jl h(#(t),u(t),t) dt
0

%(t) = A(t)x(t) + B(t)u(t)

x(0) = Xq

K (u(t),t) < O
K (x(t),t) < 0

x € a(R"), u € B(ij '

_ m
where h, Kc, and KS have range in R, R c, and

InS
R 7,

respectively, and the matrices A and B are of the ap-

propriate dimensions. Note that thére exists a control

u € B that solves (P) if the feasible controls lie in a

compact set in R"™ or h satisfies a growth assumption (see

Appendix and [7]). The dual function L 1is given by

@) L(@wv) = inf c(x,u) + ((P.k-Ax-Bu)) + ((W,K (u)))

+ [v,KS(x)]
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The dual problem corresponding to (P) 1is then

(D) sup L(p,w,V)
s.t. p,v € BV, w € L;
w > 0,v non-decreasing =

In order that all the terms in (P) and (1) above
make sensé, assumptions must be made concerning the functions

_appearing in these problems. Theoremll will require the fol-

lowing:

(A1) h(«,-,t), K (-5t), and K.(+»t) are convex for

1

't € [0,1), A(.) &and B(.) have components in L, and

h(e,*5¢)s Ks(-,-), and Kc(-,-) are all continuous.

(A2) There exists a control u € C and a corresponding
trajectory X such that (I{C(E(’t‘,),t))'j < a< 0 and
(KS(B?(t),t))'j < a<0 for some "a", for all t € [0,1],

and for all ccmponents of Kc and KS.

Proposition 1 below, the "weak duality theorem," is
easily verified. This is followed by the principal theorem,

or "strong duality" result.
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Proposition 1

c(x,u) > L(p,w,v) whenever (x,u) are feasible in (P)

and (p,w,v) are feasible in (D)..

Theorem 1 8

Suppose (Al) and (A2) hold and the optimal value & or
(p) is finite. Then there exists (p,w,v) that are optimal
in (D) with L(p,w,v) = & 1r (x;u) are optimal in (P),

then complementary slackness holds:

w(t)j = 0 whénever Kc(u(t),t)j < 0

Vj is ceonstant on every interval where

Ks(x(t),t)j < 0.
Hence, (x,u) achieve the minimum in (1) for (p,w,v).

Rather than prove Theorem 1 directly, we first consider

a slightly more general and notationally tractable problem:

(P) int £(x.1)
s.t. x(t) = A(t)x(t) + B(t)u(t)
- x(0) € X,
K (x(t),t) < O
‘u(t) € U(t) for all t € [0,1]
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where f 1s a functional defired on & % B. The correspond-

ing dual function is

(2) Lp,v) = nf £(x,u) + ((p,&-Ax-Bu)) + [v,Kg(x)]

s.t. X€ d uwue€EB .
x(0) € X5 u(t) € U(t) for all
t € [0,1]).

The dual problem is then:

sup L(p,V)

(D) Sste Py € BY
v non-decreasing.

Define X = {x€z: K_(x(t),t) < 0 for all t€[0,1]} and

U = {uéB: u(t)€u(t) for all t€[0,1]} and make the fol-

lowing assumption:

(A3) f£(s+)5 Ks(n,t), U(t), and X, are convex for all

and there exists a control u € C, a corresponding
such that u € U,

is

t € [0,1]
trajectory X, and constants

dist{i',ax}c 3 o P O
| [x-X]| < p. Also K, (%2%)

Myp,a > O

X € X, %(0) € X,

and T (x,u) < M whenever
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continuous and " A(-),B(+) have components in I,

Lemma 1

Suppose (A3) holds and 8, the optimal value of (F)

is finite. Then there exists . (p,v) that are optimal in
(D) and T(p,Vv) = 8. 1If (x,u) is optimal in (¥), then v
is constant on every interval where Ks(x(t),t)j < 0; hence

(x,u) achieves the minimum in (2) for (p,V).

Proof: Lemma 1 follows from an application of the Hahn-
Banach Theorem.
Step 1: Construction of convex sets.

Define the sets:

3. 1

; , i A

Y = {(a,b,c): a€R,bEL (R®),c€C(R °),a<&,b=0,c<0}
I S FRR o ' Mg

Z = {(asb,ck a€R7,bEL (R ),c€C(R ) and there

exists x€g,u€B with x(0)€X,,
a>f(x,u), u(t)eu(t)
b(t)=%k(t)-A(t)x(t)-B(t)u(t)

c(t)2K (x(t),t) for all 'tE[O,l]}.
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The sets Y,Z are qontained in the space EleGC
with norm N defined by N(a,b,c) = |a|+]|Db]] 1Hllel]-
By the convexity of X,, K., U, and f, it raTTows that 2
is convex while Y, on the other hand, is trivially conveX.
Step 2: (M+1,0,1) 1is an interior point of Z where "O"
and "1" denote vectors of n zeroes and mg
ones, respectively. |

For d € L}(R"), define x, to be the solution to

d
T(t) = A(t)y(t)+B(t)u(t)+d(t), y(0) = X(0) where (X,1)

was given in (A3). Now xd—i satisfies the equation

¥(t) = A(t)y(t)+d(t), y(0) = O and since A has components

in Ll, the solution to this equatioh can be bounded:

||xd—§]| < Y|]d}|L1 for some constant Y. Choose O < e <

min (.5, p/Ysa/Y). Then it is proved that all points inside

the ball of radius e centered ét (#+1,0,1) 1lie in Z.

Suppose N(a-M-1,b,c-1) < e; then xb,ﬁ' satisfy all the con-

ditions above for (a,b,c) to be contained in 2Z; i.e., '
%, = Axy + Bu + b

| 1xp-%11 < vl[b]lg £ ve < psa
Ko (%, (t)st)5 €0 <1 - e < ey(t) vt € [0,1]

a > Ml -e>M+ %> f(x,T) since |x,-X]] < e.
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Step 3: No point of Y 1lies in z°; the interior of Z.

Suppose (a,b,c) € Y and (a,b,c) € 2°. Thus,

a < Q, b =0, and ¢ < 0 and for e small enough

(a-e,b,c) €,Z. Hence, there exists (x,u) with f(x,u) <

a - e 5_3 - e and (x,u) satisfy all the conditions given
in the definition of Z. These conditions imply that (x,u)
are feasible in (P) and-hence this contradicts the optimality
of é.

Now by the Hahn-Banach Theorem [4], there exists a
hyperplane separating Z aﬁd .Y ; i.e., there-exist r € Rl,
p € L7, and v € NBV satisfying:

() (rs27) + ((22D7)) + [Vacq] 2 (1s2) + ((B50,))
' | ‘ + [v,c,]
for all (al’bl’cl) € cl (2), (az,bg,cz) € cl(Y)

Step 4: Properties of the hyperplane.
By choosing particular points in Y and 2Z, properties
of the separating hyperplane will be exhibited:
(&) r > 0.
Substitute aé % 18~ s a, = £(%1), bl%b2=clzc2 =)
in (3) where (X,U) were given in (A3).
(b) v is monotone non-decreasing.

For notational convenience, v is assumed scalar valued

although for vector-valued functions the proof is identical.
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Since Vv € BV, éhe set of continuous point has full measure.
Suppose t,s are points of continuity of v and let cg4
denote the continuous function that is -1 on [t+d,s-d], O
outside [t,s], and linear on [t,t+d] and [s—?,s]. Now

[vicql = v(‘t+d)—v(s-4d)+zd
where
lzg| < |TV(s,Vv)-TV(s-d, V)| + |TV(t,V)-TV(t+d, V)]

Since t and s are also points of continuity of TV(t,V)

(see [6]), Lim jz4| = 0 and ILim [v,c4] = v(t)-v(s). Sub-
d-0 d-0

stituting into (3), (é,o,o) € c1(zZ) and (é,o,cd) € Y and
letting 4 - 0 yield v(t) < v(s).

Given any point t of .discontinuity in v, since left
and right limits exist, v(t) can be set to its left limit
without changing the value of the functional. Hence v 1is
monotone non-decreasing everywvwhere. |
(e) If (x,u) is optimal in (P), then £ is constant
on every interval where Ks(x(t),t)J < O.

‘Substitute a; = a2y = e, b, =D, = c2'= 0, and cy(t) =
K (x(t),t) in (3). Then [viK (x)] > 0 and (c) follows

from (b).
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(d) r > o.

Suppose r = 0. Substituting bi-= b, = ¢, =0 and
cy(t) = Kg(X(t),t) in (3) yields [v,K (X)] > O. Since
Ks(i(t),t%j< - a < 0, (b) implies that v = O. Substituting
by =-Pp and b, = 0 in (3) yields - ((p,p}) > O. Hence,

p =0 a.e.. This is impossible since r,p,v cannot all

vanish so that r > 0 and (3) can be normalized with r = 1.

\

() T(mv) =8

Substitute a, = c(x,u), b, = X-Ax-Bu, él= KS(X),
a, = 8, b, =c, =0 in (3) and recall that r =1 from
(d). This yields TI(p,Vv) > 8. By weak duality, L(p,v) < A
so that TL(p,v) = 8.

(f) p=q a.e. wvhere q € BV.

This proof is more technical than (a) to (e) and appears
in Lémma 1A of the Appendix so the proof of Lemma 1 is
complete, :

£
Proof of Theorem 1: In the problem (P) with explicit con-
trol.constraints, proceed exactly as in the proof of Lermma 1.
A fourth component d € C 1s added to the sets Y and 2
vhere d < 0 in Y and d(t) > Ké(u(t),t) in Z. (Note
that d € ¢ and not 4 € B--if d were chosen in B, then

the Hahn-Banach Theorem would produce a multiplier in the
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dual of B which is a miserable space. By choosing d € C,
the dual multiplier lies in BV.)

Continuing as in Lemma 1, the Hahn-Banach Theorem yields:
(%) c(x,u) + ((p,%-Ax-Bu)) + [V,K_(x)] + [w,K (w)] > €
for all x € @ with x(0) =x; and u € C where v,w € BV
and are both non-decreasing. Note that to prove p,v,w are
optimal in (D), it must be shown that (4) holds for all
u € B not just u € C and also th;t w € @ so that
[w,K, (u)] = ((W,Kc(u))). Then exactly as in (e) above, weak
duality implies that L(p,W%,v) = &.

First, it is proved that the infimum of the left side of

k be a minimiz-

(4) over x € ¢ and u € C equals 8. Let u
iﬁg sequence for (P) and let xk be the corresponding tra-
Jjectories. 1In Lemma 2A of the Appeﬁdix it is shown that
given e > 0, there exists y € C with K.(y(t),t) <0,
|y(t)~uk(t)| < e except on a set of measure less than e,
and ||y]] < [[T]] + ||u]|. Thus as e -0, c(x%y) -
(x5, u®), ((p,%x*-Ax"-By)) -0, [V,K (x)] < 0, and [w,K (¥)]
< 0. Since c(xk,uk) - 3, then the claim is verified.

In Lemma 3A of the Appendix it is shown that if the

infimum of the left side of (4) over u € C equals é, then
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w € 7 so that [;,Kc(u)] equals ((%,Kc(u))). By Lusin's
Theorem [8,p.53), given u € B and e > 0, there exists

y € C with y = u except for a set of measure less than
e and ||y|| < ||u]|. Hence (4#) holds for u € B and
(p,%,v) are optimal in (D) as noted above. The com-
plementary slackness conditions follow as in the proof

of Lemma 1l.

2
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III. MINIMUM PRINCIPALS

In order to solve the dual problem numerically, the x
and u that achieve the infimum in (1) must be characterized.
This leads to a minimum principal and an , adjoint con-
dition . Theorem 2 below provés that the minimization over

u in (1) can be taken under the integral sign.

Theorem 2

Suppose (Al) and (A2) hold, (p,w,Vv) are feasible in
(D) with L(p,w,V) > - =, and x € ¢ and u € B achieve
the minimum in (1) corresponding to (b,v,w). Then the control

minimum principal holds:

(5) (x"(£),0" (), €)= (p(t),B(t)u" (£))+(w(t), K (0 (t),t))
< n(x"(t),2,t)-(p(t),B(t)2)+(w(t), K (2, ¢))

m

for all 2z € R and a.e. t.

Similarly if T(p,Vv) > - @5 £(ese) = c(s+)
U(t) = {per™: Kc(b,t)sp}, and x € @ and u € B achieve

the minimum in (2) corresponding to (p,Vv), then

6) h(x" (t),u” (t),t)-(p(t),B(t)u’ (t)) <
h(x" (t),2,t)-(p(t),B(t)z)

for all =z € U(t) and a.e. t.
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Proof: Only (5) will be proved since (6) is similar. Let
€ = L(p,w,v) where by definition

5 :
(7) L(p,w,v) = inf j’o { h(x(t),u(t),t) +

(p(t),%(t)-A(t)x(t)-B(t)a(t)) +
(w(t),Kc(u(t),t)) } at + [V,KS(X)]
s.t. x € 4, u € B, x(0) = X%,
ILet E denote the intersection of the Lebesgue points
of each term in the integrand of (7) evaluated at (x*,u*).
Suppose (5) is violated at s € E by z € R". Let G
denote a ball of diameter g centered at s, I{G.,u) the
integral in (7) evaluated at x=x* over the the ball G,
and J(u(+)) the integrand in (7) evaluated at x=x*.
Since s is a Lebesgue point of J(u*(-)), then I(G,u*)=
J(ux(s))g +o(g). Define v to be a control that agrees
with u* outside G and equals z inside G. Then s is
easily seen to be a Lebesgue point of J(v(-)) so that
I(G,v)=J(v(s))gto(g) and I(G,v) < I(G,u*) for g suffi-
ciently small. This violates the optimality of (x*,u*)
in (7) so that the minimum principal holds on E.

Since E has full measure, then the proof is complete.
| %
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Note that Theorem 2 holds for all (p,w,v) that are
feasible in the dual problem while the standard necessary
conditions only hold for some (p,w,v). Also observe that it
is not possible to carry out the minimization over X under
the integral sign in (l) due to the presence of the %X term.
The following lemma will be needed bgfore the adjoint con-

ditions can be derived:

Lemma 2
Suppose (&1) and (A2) hold, (p,w,v) are feasible in
* * .
(D) with L(p,w,v) > - e, (x ,u ) achieve the minimum in (1)
for (p,w,v), K (+,+) dis twice continuously differentiable,
and K (-, ), denotes the gradient of K, with respect to
*
x. Then p(-) - K (x (')")EV(') € ¢ and
p(1’)-xs(x*(1),1f(v(1’) - 0. If X, is affine, then the ex-

* * .
istence of (x ,u ) is not required.
Proof: By the definition of L,
(8) L(p,w,Vv) < c(x,u)+((p,i—Ax-Bu))+((w,Kc(u)))+[v,KS(x)]

for all x € @ with x(0) = %, and u € B. Each term on the

right side of (8) is convex and furthermore the [v,KS(x)]
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term is differentiable in x. Standard necessary

conditions (see [3]) then imply:

(9) c(x*,u*)+((p,;*—Ax*-Bu*))+((w,Kc(u*))).5
c(x,u)+((p,;-Ax_Bu))+[v,xs(x*)x(x_x*)]+((w,xc(u)))

for all x € &4 with x(0) = Xy, @and u € B. Note that

equality holds in (9) for x = x* and u = u*,
By Fubini's theorem,

1 - " 1"
(10) [ (p(t),x(8))at = (2(7)x(1))-(0(0")sx0)-] 4 x(¢)"ap

1 T T rl- T T
‘11) IO+ x(t) Ks(x*(t),t)x dv = e x(t) d(Ks(x*(t),t)xv)

1 T,
s IO+‘v§t) K, (x*(t),t),x(t)at.

Also if v is normalized so that v(1) = O, then

T T
(x(t)-x*(t)) K (x*(t),t), dv =

(12) i

N (x(t)—x*(t))TKS(X*(t),t)z dv

I

o = O H

T T
- (x(2)-x% (1)) K (x*(1),1)_v(17).
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Combining (9), (10), (11), and (12) yields:

(13) e (%, u)- (0, Ax+Bu) )= (v, K (% ),x)) +

1 T %, -
I ox(e)Ta(k (x )v-p) + ((w:XK (w))) + (p(27) -
ot .

K¢ (x(1),1))2 v(17),x(1)) > T > - o

-— . x .
where ¢ > - o 1s a constant depending only on x*,u sDPsWs

and Vv. Again eguality holds in (13) for x = x°  and

u=u. If K. 1is affine, then (13) holds without even as-
suming the existence of (x*,u*) and ¢ only depends on
L(p,WsV).

Now, it is shown that p(17) = Ks(x(l),l)i v(1l7):
Suppose inequality holds and g *is:the function shown in
Figure 1. Inserting into (13) x=§#g(KS(x(1),l)iv(l-)-p(l_))

where X(0) = x. and X € ¢ then yields a contradiction as

(¢}
b,d - 0 due to the presence of the boundary term.

Finally, Lemma 4A in the Appendix can be applied to (13)

to show that Ks(x*(-),-)gv(-)—p(~) € d.
52
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1/b

v e e S g e cw = e -

FIGURE 1:

The Function g Which Depends on

the Parameters b and d
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Theorem 3

Suppose (Al) and (A2) hold, (p,w,Vv) are feasible in
(D) with L(p,w,V) > - =, X €@ and u € B achieve the
minimum in (1) corresponding to (p,w,v), and Ks("') is
twice continuously differentiable. Then the state minimum .

principal holds:

(14)  h(x (t).u (t),t) < (4(t)+AT(t)q(t)

- ((Kg (7 (£), 1) + AT(£)K (X7 (£), )1 )v(t), z-x*(t))

+h(z,u*(t),t) a.e. t and

for all z € R" where q(t) =
K (x (t),t)iv(t)-p(t). If h(-,u,t) is differentiable,
then the adjoint equation holds: '
T * *
(15)  a(t) = - A7(t)a(t) - h(x"(6), 0T (1), ), +

(k, (7 (6), 0)F + A" ()T, (7 (£),8)3)v(E),  ae.

q(1) = o.
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Proof: In Lemma 2 it was observed that q € ¢ so that

[a;x] = ((4,x)). From (13),
1 .

(26) [ n(x(0),u" (£),8)-(p(2),A(£)x (1)) -
(v(£), K (x"(£), %) x(t)) + (4(t),x(t)) dt > c

for all x € ¢ with x(0) = x; where c¢ > - » is a constant
depending only on x*,u*,p,w, and v. As noted after (13),
equality holds in (16) for x = x". - Exactly as in
Theorem 2, x*(t) must yield the pointwise minimum for the
integral. There is one technical point though since in
Theorem 2, u was contained in B while in (16) x 1lies in
d. However, if 2z € R? .yields a better minimum for the in-
tegrand of (16) at t = s, then Urysohn's Lemma can be used to
construct a function in ¢ that agfees with 2z near s and
x* away from s so that thé optimality of x* is again
violated. The adjoint equation is obtained simply by setting
the derivative of the right side of (14) to zero at x = X .
E3
The condition (15) above is the familar adjoint equation
for étate constrained problems given in [5] and [2]. These

standard necessary condition conditions only assert that (15)

¥* *
holds for some (p,w,V,) where (x ,u ) are optimal in (P)



37

while Theorem 3 holds for all (p,w,#) feasible in (D).
The numerical solution of the dual problem using the Ritz

method is analyzed in [1].
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IV. APPENDIX

Lemma 1A

Suppose (A3) is satisfied, the optimal value of (P),
é, is finite, and the functions p €L° and v € BV satisfy
the conditions: Vv is monotone non-decreasing and

L(p,V) =Aé. Then p = q a.e. where g € BV.

Proof: For notational convenience p will be assumed scalar valued
although the proof for vector valued:functions is identical.
et R denote the set of Lebesque points of p and suppose
that p has infinite variation cn this set. Thus, given a

constant b, there exists to < tl sieie € tN such that

17 b3 p(t. -)-p(t.)] > b
Jj odd :

and p(tj+l) < p(tj) > p(tj_l) for j even. Let a,p,M

be as given in (A3), let c = min(p,a), and X, be as pic-
N p
tured in Figure 2. As e - 0, Xe - - (—1)Jd(t—tj)

J=0
where d(.) is the delta function. Since ty are Lebesgue

points of 12 and p(tj+1) < p(tj) > p(tj_l) for j even,
then



39

9/T = odoTs

°x ‘uoTaouUng Ayl 2 TYNDIL

LY

/(’\



4o.

Li P;i = z :b - s = bc
Lo ((2,)) = T »(t)-p(t; )
J odad

From the definition of T,

'
.

L S Ny AT & &
£ (X g Wt ( (ps X #E-AX ~AX-BU) )+[ v, K (K% )] > <.

Nov |[|x,]| < min (a,p) so that (A3) implies

KS(E(t)+xe(t),t)‘$ 0 and fCE+xe,ﬁ) < M. Thus,

(18) - b > Lim ((p,%.)) > g - ﬁ + ((p,éLAf—Axe—Bﬁ)).
e-0 .

As b -5 o this yields a contradiction since the right side
of (18) is finite so the variation of p on R is finite.
Since R has full measure (see [8, p. 158]),then t € R®
implies the existence of a seguence {tj} C R such that

t. »tt. p has finite variation on R so that Lim p(t.)

J Joew J
exists. Define a new function q by

p(t) if t € R

q(t) =
Lim p(t

i

i) if t & R where {ti} C R and

+
ti -t
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Now g(t) = p(t) a.e. and g has the same variation on
[0,1] as p has on R.
Lemma 24
Suppose K: R™ x [0,1] - R® and is continuous on
R™ x [0,1], K(.,t) 1is convex-for £t € [0;1); W E B(Rm)
and K(u(t),t) < 0 for all t € [0,1], and there exists
T € C(R") such that K(3(t),t); < a <O for some "a"
and for all t € [0,1] and' 3 = ly«eesns Then given ‘e > O
there exists v € C(R") with- |u(t)-v(t)| < e except on a
set of measure less than e, K(v(f),t)_ﬁ O for all t € [0,1],

and [|vi] < [1a}} + [{u]]-

Proof: Iet w = bu + (1-b)u where b > 0 1is small enough
that ||u-w||, < e. By the convexity of K(->t), K(w(t),t)js_
ba < 0 and by Lusin's Theorem [8, p. 53] there exists

y € ¢ with y = w except on an open set E® of measure

less than e and ||y|| £ ||w|]. Since K(y(;),-) is
uniformly continuous on [0,1], there exists a constant d >0
such that if |[t-s| < d, then |K(y¥(t),t)-K(¥(s),s)| < ba.
Outer regularity of the Lebesgue measure implies the existence
of an open set D containing E with measure of D-E less

than d. Since K(y(t),t)j = K(w('t:),.t)’j < ba <O on E and
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any point in D‘ is at most d away from a point in E,
then K(y(t),t) < 0 for t € D. FromUrysohn's Lemma, there
exists g € C(R) with E { g {D. Define v = gy + (1-g)u.
For t € D, v 1is a convex combination of two functions that
satisfy K(z,t) < O so the convexity of K .implies that
K(v(t),t) < 0O on D. On the other hand, v =40 on D
so K(v(t),t) < O for t € [0,1]. By construction v(t) =
y(t) = w(t) for t € E so that |u(t)-v(t)| < e except on
a set of measure less than e. Similarly the bound on
[ |v]] in the lemma statement is easily verified.
1
Let g(x,u) denote the first three terms in (4) and let

K(o,c) = KC(-,.).

Lemma 2&

Suppose the optimal value é to the problem

(19) inf g(x,u) + [w,K(u)]
s.t. x€d, uw€C

x(0) = x4

is finite and there exists (x%,uf) feasible in (19) such that

g(xk,uk) - €& and Kc(uk(t),t) < 0 for all t € [0,1].Assume
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(A2) holds and w € BV is non-decreasing; then w € 4.

Proof: To keep the notation simple, K is assumed to have.
range in Rl. The main idea of the proof is the following:
In [8, p. 166] it is proved that w = r + s vyhere r € @&,

s € NBV, 5 = O a.e., and s 1is non-decreasing. If s £ 0,
then TV(s) = s(1) # 0. Choose k sufficiently large that
g(xk,uk) -8« |a]s(1)/2 where a was given in (A2) and
‘define (x,u) = (xk,uk . Since § =0 a.e., a sequence of
closed sets FK with measure converging to zero can be
chosen with almost all of the variation of s occuring on

Fk. Then a function v¥ € ¢ is constructed that agrees with

kK k

u, the interior control, on F and u Jjust outside F.

Thus, [ K(vk(t),t)ds < as(1), | K(vE(t),t) dr - 0
K : ).
F F
since the measure of _Fk converges-to zero while vk is
uniformly bounded, [ K(vk(t),t) dw < O since
k€ -
(F*)
K(vF(t),t) < 0 and w is non-decreasing, and
g(x,vk) - g(x,u) < &+ |a|s(1)/2. Combining these results,
g(x,vk) + [w,K(vk)] < &+ as(l)/2 for X sufficiently large

which contradicts the optimality of & since a < 0. Thus

s =0 and w =1r € 4.
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Begin the construction by choosing a closed set E C
[0,1] with & =0 on E and the measure of E® 1less than
e. Around each g € E construct an open ball B of radius

b > 0 small enough that ,
(20) |s (t)-s(T)] < e|t-T]

for t,T in a ball of radius 2b about gq. Since §
vanishes on E, this construction is possible, and since E

is compact, a finite subcovef of balls Bj of radius bj
can be selected. ILet Dj be an open'ball containing Bj

and of radius bj + d where 4 < bj‘ By Urysohn‘s Lenma,

there exists z € C with D¢ < z < B® where D= U Dj and
J

B By. Define Vv = (i-z)u + zW. By (20), the variation

= U
J

of s on D is bounded by e since s 1is monotone. Hence,

the variation of s on D is at least s(1) - e. Also

the measure of p® and B® 4is less than e and v =u on

B. By choosing a sequence of e's converging tc zero, then a

sequence of v's 1is obtained satisfying all the properties

stated above.

[;-3
Let g(x) denote the first three terms in (13) evaluated

*
at u=1u.



45

Lemma 4A

Suppose q € NBV and

(21) ‘ inf g(x) + [g,x] > -

Bt X € @ %(0) = X

Then q € d.

Proof: Again to keep notation simple, assume. q is scalar
valued. The proof uses the same construction employed in
Iemma 3A. Assume q is continuous_from the left and ex-
press gq=r+ s where r € g, s € NBY, and & = O a.e.
Suppose s(t) > O for some t € [0,1]. Using the construc-
tion of Lemma 3A on the interval [O,t] generates sets D
and .B such that the variation of s on D is at most e.
Again construct z satisfying (DU(t,l])C'< z < ('E'U[t,ll)c
and define X, = (1-z)X - Nz where X is feasible in (21)
and N € R. As e - 0, then [q,xN] - -Ns(t) and g(xN) - g(x).
Now let N —»w and (21) is contradicted. If s(t) < O, then

let N 5 -o and again (21) is contradicted. Thus s=0

and g = € Q.

The following two theorems prove the existence of an
optimal control for problem (P). First the control problem is

stated in a slightly more general-form:
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x §
(22) inf J‘o L(x(t),u(t),t) dt + h(x(0),x(1))

s.t. X(t) = A(t)x(t)+B(t)u(t) for all t € [0,1]

(u(t),x(t)) € K(t) a.e. t € [0,1]

x(t) € g(t) for all t € [0,1]

w € LMER™), x € a®)
where L: R® xR® x[0,1] »R, h: R°® 5 R, and (A(t),B(t))
are matrices of the appropriate sizes. Rockafellar [7]
proves an existence theorem for this'problem when certain
recession functions satisfy a boundedness condition, so
while the results that follow are not new, the methed of
proof is of interest. The proof is direct in that only re-
sults of basic real analysis are utilized and machinery
from convex analysis is not ;equired; the approach is similar
to that in Lee and Markus [9, p. 259-307], however, they
develop fwo distinct theories for problems with compact con-
straints and problems satisfying a growth assumption on the
cost functional with no constraints. The approach below
is more unified and also treats problems with non-compact
constraints., Theorem 1A shows that if a bounded minimizing
sequence eXists, then an optimal solution exists while
Theorem 2A provides a number of conditions guaranteeing the

existence of a bounded minimlzing sequence.
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Theorem 1A

Assume the following:

(A%) L(,+»t) and h(-,+) are convex and both h(-,-)
and L(-,e,+) are continuous. The components of A(-)
lie in L' and the components of B(.) 1lie in L”. G(t)

and K(t) are convex and closed for all t € [O,1].

If there exists a feasible minimizing sequence (xk,uk) such

that (x(O)k,uk) is bounded in E;

x IP for some P > 1,
*
then there exists an optimal control u and corresponding

trajectory x*.

Proof: Iet x[u,y] denote the solution to

(23) %(t) = A(t)x(t) + B(t)u(t), x(0) = y.
Define
(24) 8 = f{u,¥y): uELp,yERn and (x[u,y],u)

satisfy the constraints]}.



N

' 48
Step 1: S 1is closed, convex, and hence weakly closed.

Since the differential equation is linear, x[u,y] is
a linear function of (u,y). By the convexity of K(t) and
G(t), S 1is easily proved convex.

Now consider the closedness property. First, it is
proved that the transition matrix, F(t,s), corresponding to
the system dynamics is uniformly bounded for t,s € [0,1].

If x satisfies the equation x = A(t)x(t), then

. .
(25) |x(t)] = |j0 A(s)x(s) ds + x(0)]

I

IZ (i?j |Aij(s)|)[x(s)| ds + |x(0)]|

In

e?|x(0)| . -

1 . ;

i . A s 1

where a = (= |A;:(s)|) ds. sSince A,.(-) 1lie in L7,
5o d5d T Y - N

Mal' 35 finite and there exists ¢ < » such that |F(t,s)]|<c

for all (t,s) € [0,1].

Suppose uk »u in IP and yk -y in El. Define

x = x[uy")

and x = x[u,y]. Then



(26) |x(t)-x"(t)| =

X v o X
|F(t,0)(y-y") + Io F(t,s)B(s)(u(s)-u (s))ds|
K ' K
<ely-y| + C(ifj |lBijlle)|lu-u ILLl-

Thus, Lim ||x-x%|| = 0. Combining this with the fact that
k-0

xk(t) € G(t) for all t € [0,1] and G(t) dis closed

yields x(t) € G(t) for all t € [0,1]. Similarly

|Ju-u®|| ; » O implies that uE(t) > u(t) a.e. t € [0,1]
L

and since (xK(t),uk(t)) € K(t) a.e. t, the closedness of
K(t) implies that (x(t),u(t)) € K(t) a.e. t € [0,1].

Thus [x,u) satisfy the constraints and hence S 1is closed.

Step 2: Existence

Let [uK,yK] denéte the bounded minimizing sequence in
iR El. A weakly convergent subsequence also subscripted
by k can be extracted converging to [u,y) and since S
is weakly closed, then (u,y) € S. Let % = x[uk,yk]
and x = x[u,y). It remains to be shown that (x,u) yields
optimal cost.

Lee and Markus [9, p. 259] prove that if L(+se-st) 1s

convex and L(+,+,+) 1s continuous, then jl L(x(t),u(t),t)dt
' 0

is weakly lower-semi-continuous in Ll. Since h(-,+) is
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continuou§, the proof will be completed if it can be shown
that x~ - x weakly in 1! ana xk(o) - x%(0),

x(1) - x(1). 1In fact, it is proved that xX(t) - x(t)
for all t € [0,1] and ||x—xk||Ll - 0.

Define G: R x R - R Dby:

1 for s S_t
0O for s >t

Then if F is the transition matrix again,

. ’ 1 '
xK(£)-x(t) = F(t,0) (¥ -y) + jo G(t,s)F(t,s)B(s)

o :
(u (s)-u(s)) ds.

Since [G(t,*) F(;‘;,-)B(.)]Lj € L°, and I is contained in

the dual of tp, the right hand side above approaches zero.

Thus Lim lxk(t)-x(t)[ =0 forall t € [0,1]. Since ¥k
k-0 :

is uniformly bounded in P and yk is uniformly bounded
in El, then the same inequality used in (26) implies that
||xk|| and ||x|| are uniformly bounded say by the constant
c. From Egoroff's Theorem, given e > 0, there is a measure-

able set E < [0,1] such that the measure of ES is less
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than e and xk converge uniformly to x on E. Thus

Il

& ’ ;
pim [ [x5(t)-x(t)]dt = Lim [ |x%(t)-x(t)]|at +
K=o (0] Koo E

[ xE(e)-x(t) |at

_EE

< 2ce

Now let e - 0 and the claim that ||x—xk|| 1 -0
_ L

has been proved.

a

Define U(t) = {u: (x,u)€K(t) for some x€ G(t)} and

X(t) = [x: x€G(t), (x,u)€K(t) for some ul.

Theorem 24

Suppose that there exists a feasible control u and

corresponding trajectory X such that
1 — — —_— —_— ——
[ L(x(t),u(t),t)dt + n(x(0),%x(1)) =T < .
0 :
If (A4) and any of the following is satisfied, then any

minimizing sequence that satisfies the constraint
(x(t),u(t)) € K(t) for all t 1is bounded:
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(AS) There exists bounded sets C, and C_. such that

X 2
u(t) © cl for all t € [0,1] and for some t € [0,1]

X(t) € Cye

- P
(A6) L(x,u,t) > cyfu| + g(x) for some p>1 and
c, > O where g(x) »® as |x|] -« and both g(+) and
h(+,*) are bounded from below.

(A7) There exists a bounded set C such that X(t) € C
for some t € [0,1] and L(x,u,t) > cllulp + ¢, for
all (x,u,t) and for some p > 1 and c; > 0. Alsoc

h(-,+) is bounded from below.

Proof: Let S be defined as in the proof of Theorem 1A and
let (uk,yk) be a minimizing segquence. Suppose (A5) holds;
then ]]uk|| p is bounded immediately. Let zk = x[uk,yk](r)
.where at tiﬁe r the state lies inside of C2 and let c be

a uniform bound on |[F(t,s)| where F(t,s) is the transition

matrix corresponding to the system dynamics; then

@7) Y] = xS y¥10)] = [F(0.r)2E +

jo F(0,s)B(s)u"(s)ds|

r
) < kK
clz| +c( e  |]B.s]])]]u
BTSSRI

I
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Since |zk| and l]ukll 4 are uniformly bounded, ‘then yX
L

is uniformly bounded.
Suppose (A6) holds. Given e > 0, then for X

sufficiently large

(28) e +T> j‘z LG (), uk(t), t)at + h(xF(0),x (1))
X 1 x
(29) > cqlfu |[p +c+ [ g(x(t))at
ﬁp 0] ’

K
3 &y ] HPD + c
L_

where xk = x[uk,yk] and ¢ includes the lower bounds for

g and h. Thus |[uk|| is uniformly bounded. Also from

(29) there exists a time t, such that

: g(x"(t,)) < e+ T - clllukllp 5 B
L

Since g(x) - as [x| -, then ka(tk)l is uniformly

bounded in k. Then exactly as in Equation (27), yk is

uniformly bounded.



LN\

54

Suppose (A7) holds. Then as in (28), ||u | P
uniformly bounded and as in (27), |y | 1is uniformly

bounded.

Notice that Theorem 1A combined with Theorem
2A only proves the existence of an optimal solution
to the control problem in an P space; on the other
hand, the complementary slackness conaiticns in
Theorem 1 requires that the optimal control be bounded
and measureable. If (A5) holds, then the optimal
control is trivially bounded. .Whenl(Aé) or (A%)
hold, then the optimal control can also be proved
bounded by the minimum principal as follows: Note
that Lemma 1 can be proved with the controls in P
without making any changes in the proof and furthermore,
the minimum principal (6) also hold;. Since p € BV,
then a bound on the components of E in (6) implies

that u* is bounded when (A6) or (A7) holds.
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CHAPTER 2

The Ritz-Trefftz Method for State o ERShE

and Control Constrained Optimal

Control Problems
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I. Introduction

The convergence properties of the Ritz-Trefftz
method are examined in state and control constrained
optimal control problems. Recall that the Lagrange
dual to the problem .

inf f(x)

A
o

s.t. g(x) <
h(x) =0

is given by
sup £(p,A)

s.t. X >0

Z(p5 1)

inf £(x)+<\, g(x)>+<p,h(x)>
- 3
where ) and p are linear functionals in the appro-
priate dual spaces. In the Ritz-Trefftz oe thod,
the dual problem is discretized by requiring the dual
variables to lie in a finite dimensional subspace
of the entire space.

_ Bosarge, et.al., [2] analyzed unconstrained control
problems and derived rates of convergence for the solution

of the finite dimensional problem to the solution of the
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continuous problem. Thig paper analyzes the Ritz-Trefftz
method from a fundamentally different. approach which permits
state and control constraints. The theory is illustrated '
using Fhe linear quadratic control problem with linear
inequality control and state constraints.

Section II formulates the dual problem. An important
distinction between the primal and dual problems is that
although the primal cost functional may be strictly convex,
the dual cost functional is in general only convex. Hence,
the question of existence of a solution to the finite di-
mensional dual problem is not obvious as in the primal problem.
Section III proves that if the Slatér condition holds, then
the Ritz~Trefftz problem will have a solution.

In Sections IV and V, the rates:of convergence of the
solution to the finite dimensionél problem to the solution
of the continuous problem are derived. The finite dimensional
dual variables are proved to converge to the continuous dual
solution in a seminorm defined by the guadratic part of the
dual functional. This result then leads to an estimate for
the rate of convergence of the finite dimensional primal
solution to the continuous solution. For non-linear prob-
lems, the dpal variables converge in a intrinsic seminorm de-
fined by the second derivative of the dual fungtion evalu-
ated at the optimal solution.

It is also noted in Section V that for problems without

state constraints, the dual functional is positive definite
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in a subspace of the total space-.

Finally, Section VI estimates the error in the
times when constraints become binding. Appeﬁdix 1 contains

a result on interpolation in polynomial spaces of a function

h_z 0 and the

£f>0 bya function fh satisfying f > f
interpolation of a monotone function with a monotone poly-
nomial from above. This result is required in the con-
vergence estimates. Appendix 2 proves an estimate on the
sensitivity of the solution to the dual and primal quadratic
programing problem to changes in the data. This lemma is

used to prove a theorem on the regularity of the solution

to control constrained problems.

Nomenclature

Define the following norms, inner products, and linear

functionals:

%
(w,v) = = u. v  where u = (ul,...,uz), v = (vl,...,vﬁ)

‘ 1 1/p
el = ] 12 P at)
I 0



| " L
el p = ! éo %11 Lgf

el = O;};gl |£(t)] |

111 p = 1111 g *+ 1P

||f||BV = totallvariation of £ on [O,%]
((£,8)) = i (£(t),e(t))at

i !
V>4 = g £(t)dav(t).

Let Lp, Hp, and BV denote the spaces of real valued

functions on [0,1] for which ||-]]| p’ {111 p and
L

H
||-]|BV are finite. Let & denote the space of absolutely
continuous functions and c®? be the set of functions with

P cbntinuous derivatives on [0,1]. Finally, pcP rep-
resents the space of functions which have p continuous
derivatives everywhere except for a finite number of points
where the p-th derivative has a simple jump discontinuity.

. If v is a vector, then the k-th component of Vv is
denoted v, oOr (V). If T 1is a vector valued function
and W is any of the spaces above; then the notation
f ¢ b means that each component of f 1lies in 1.

A seguence of spaces Sh parameterized by h 1is of

degree p and continuity g if for all Vv ¢ Cp, there



exists vh € Sh‘ such that

h p-r
@) I e < e

for all r satisfying O < r <gq and for all components of
v where c¢ 1is a numeric constant not a function of h.

The parameter h 1s usually the grid interval and vh is

the interpolate of v. Many examples of spaces Sh and

estimates of the form (1) above can be found in [1] and [8].
For some sets Sh in which the grid points are free

parameters, the estimate (1) holds for a larger space, pcP.

h consists of polynomials of de-

For example, suppose S
gree p-1 on grid intervals of width h with derivatives
of order g-1 continuouﬁ acToss tﬁe grid points. For

q-1 < p/2, Sh is of degree p and continuity g. However,
if the grid points in Sh are free parameters, then

given any Vv € rcP?, there exists vh € Sh

such that (1)
holds. Simply place grid points at the points of discon-
“tinuity in the p-th derivative of v and use the standard
interpolate. Furthermore, if Vv € pc? and v e PCp- be-
tween the points of discontinuity in the g-th derivative,

then v@ constructed as above satisfies (1) with ||v]] D
C
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replaced by the ¢® norm of v over the interior of the

grid intervals.

The constant c¢ is used throughout to designate a

generic constant.
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II. FORMULATION OF THE PROBLEMS

The following problem is analyzed in this paper:

min c(x,u) .

| 1 T : T
8st. E{x,0) = g z x(t) @x(t) + 3 u(t) Ru(t) dt

Il

X(t) = Ax(t) + Bu(t)

X
(o}

x(0)

A
o

Kx(t) + b, ¢

A
o

Kcu(t) + bc <

u e L?, X ed

where x: [0,1] - 3R, u: [0,1] -5 R™ and the matrices are of
the appropriate dimensions. The analysis is not signifi-
cantly changed if the matrices are time varying and plece-
wise continuous and c(x,u) 1is any non-linear, twice dif-
ferentiable, strictly convex functional. Terminal constraints
and terminal costs do not alter the analysis and were omitted
to keep the‘notation less cumbersome. The matrices Q and

R are assumed positive definite and the solution set for

the inequality'constraints is non-empty.
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Define the-dual function

(2) £(p,\,v) = inf c(x,u) + ((p,%-Ax-Bu)) +

((focu+bc)) + <V, K XD >4

s.t. u bounded, measureable

x e d x(0) = X

The dual problem corresponding to (P) is:

(D) ' sup £(p,s X, v)

s.t. v(1) = 0, v € BV, y non-decreasing

5
A>0, xe L .

p € BV.

Make the following assumption:

(A1) There exists a control u e ¢©

and a corresponding
trajectory X ¢ ¢l such that (st(t) + bé)j < a< 0 and

(Kcﬁ(t) + bc)j < a <0 for all constraints.
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{

T ;
Now define.g(*) = Kg v(+)-p(-). Then in [4]

it is shown that (Al) implies the existence of (x*,u¥*)

solving (P) and (p*,)\*,v*) solving (D) and the following

hold:

(3)

(#)

(a.) (x*,u*) achieve the infimum in (2) ‘for (p*,\*,v*);
(b.) #£(psX,v) < c(x,u) whenever (x,u) are
feasible in (P) and (p,X,v) are feasible
in (D) and £(p*,\*,v*)=c(x*,u*);
(c.) (x*(t),xcu*(t)+bc) = 0 for all t € [0,1];
(d.) vj(t) is constant on inte?vals where (st*(t)—bs)j<0
(e.) unless q € @ and g(1) = O, then £(p, X, v)=-w;
furthe}more if £(psX>v) > -» and (x,u) achieve
the infimum in (2), then

T S B I
-A g(t) -Qx(t) +A K  v(t)

a(t)
q(1) =0

T x 3 ' T
Ru(t) +B q(t) -B K v(t) +K A (t) = O.

In light of the relations above, it will be more

convenient to express the dual function in terms of

(a,1,v) rather than (p,\,v). Let £(qg,\,v) denote

the new dual function. Hence the dual problem reduces

to:
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(D) sup "’;(q, Xs \J)
s. t. q(1) =0, q €4
v(1) = 0, v € BV, v non-decreasing

A EL a0

After an integration by parts, £ becomes:

. T
(5) #£(awrsv) = ;ni c(x,u) + ((a,%)) + ((q-Kgv, Ax+Bu))

T
+ ((AKLutb,)) + (a(0)-Kgv(0),x ) - (v(0),b)-

Define Ll(-) and L2(-) by
TT 2 .
(6) ‘51(q,)»,\)) =AKv-AQg-4g
2K

T
%,(3,%v) = BK v - B g - K.

From (3) and (4), the x and u achieving the minimum

in (2) satisfy:

(8) x = @74y (40 )

(9) u = R4, (a0, )

Hence,
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(10) -ﬁ(q,k,v)‘= - %((Ll(q.v )\,v),.Q-]'Ll(q, )UV)))
= 3((£(a: 0 9), B e, (3,00 v))) + (1))

+ (a(0)-Kg w(0),x5) = (v(0),Dg)-
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II1I. EXISTENCE OF SOLUTION

In the Ritz-Trefftz method, the constraint
(q,k,v) € Sh is added to the above constraints on the dual
problem, (D).. Note that for the primal problem, the cost
functional is strictly convex and hence the existence of a
solution to fhe finite dimensional problem is trivial.
However, for the dual problem, the quadratic part of the
cost functional is only semi-definite. This ;ection examines
the existence of a solution to the finite dimensional
problem:
) sup £(q, X\, v)
s.t. q(1) =0, g ¢4
v(1) = 0, v ¢ BV, y non-decreasing

A € L1 ,_X>O

h
(q,x,\)) e S .

Throughout this section h 1is assumed fixed so that the

superscript in Sh will be omitted.

A

Suppose that S = s? x s™ x sV s span$ed byTthe

T v
functions {¢k}K=1,...N where [¢K] = [¢f2 D ,gKer ko7 7,

Define the following partitioning of the basis functilons:



\
Finally, define 2(6) = 2(096,6%6,6Y%6) for & ¢ R, F to

be the set of feasible dual variables in (D), and

A
F = [GeRN:

¢6er}.
The existence theorem will require the following
assumption:

2 o)

\ 1
(a2) s9,s*,5Y 11e in pct, PO, and BC® respectively,

S NF is non-empty, and if 6 satisfies ¢v(1)6 = 0, then
v A
(11) [1eVo]lgy + [16™8]] 1 + []e%8]] 5 -
L L
as |6] - .
The relation (11) above just requires that the basis
‘functions are linearly independent.

Theorem 1: If (A1) and (A2) hold, then there exists an

optimal solution to (ﬁ).
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Proof: For notational convenience, x and u will be as-
sumed scalar valued functions although the method of proof
is identical for vector valued functions. Let 6k be a
maximizing sequence for 2 and choose ¢ such that

£(ﬁk) >¢c for k> k. Let Eoa ghe®, oF = ¢V5k,

o = ¢96%, ana p* = K, v*-g¥. since 2(5) is the infimum

of the Iagrangian over (x,u), then for k > X

- A S i - 5
(12) ¢ < ;!;(Gk) £ iefxau) <+ ((xk,Kcu+bc)) + <V‘.(’st*‘bs>c

—— K- k
< e@®u) + al Ay +ally |5y

where (X,u) and a < O were given in (A1). This gives a

bound for ||>\k|| 1 and HVKHBV"
I :

hld

Let x satisfy the equation

. - X, K
(13) %(t)-Ax(t)-Bu(t) = ¢ P (t)/]|p HLE, x(0) = x,
where € < O is small enough that stk(t)-%bs < 0 and
c(xk,ﬁ') < C(-i:,-l_l-).-*- 1. Then
kK k

By e A <K kK — K . =
(14) © < £(8") < c(x5u) + ((x ,Kcu+bc)) + VLK XD >

kK

+ ((5-axE-BT, p"))

¢ e(E|)y + 1 # e”pkllL?_.
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Thus, ||p¥|| » 1s bounded and hence ]]qk”L2 =
L

-
||Ks vk-pkll » 1s bounded. By (A2) it follows that
L

-

Gk

is uniformly bounded and hence there exists a sub-
*
sequence converging to 6 .
A * A
F 1is easily seen to be closed so that 6 € F. By

the continuity requirement in (A2), ||éq,kllc’ I|¢X,kllc,

and ||¢v’k||C are bounded and hence 6% —;¢6* in
H1 X HO % 72, Finally, the continuity of (g, \,v) in

* o
gt xH x.#® implies that (6 ) = 1im 2(6¥). Thus, 6"

—)c0

has optimal cost and is feasible.

If the gria points in Sh are free parameters
aithough constrained from becoming too closec together
(e.g. if h is the grid interval for:a uniform mesh,
then a constraint that the grid points are separated
by at least h/2 is acceptable), and (11) holds uniformly
in the mesh, then a similar proof demonstrates the
exlistence of a solution to the finite dimensional

problem in this larger set.
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IV. CONVERGENCE OF STATE AND CONTROL

* ¥* * *
Define w = (g,%,v) and let w = (g ,A ,v ) denote

*
an optimal dual solution. Expanding d(w) about w

yields:
* * 3
(15) (w) = &(w ) - L(w-w ) - a(w—w*,w-w*)
where -~ 4(-) and -2a(-,+) are the first and second deri-

vatives of the ope: .tor £ evaluated at w*._ Inspection

of £ in (10) reveals that £(-) end a(.,.) are given by

(16) £(w)

Il

(@ ey ()5 £y (W) )+ (B 25007 )15 (W)

= (0 M) (a(0)-Kg v(0), %)= (v(0), D)

(17)a(w,w) = %((ﬁl(w),Q'lzl(w))) + %((22(w),R"1L2(w))),

Note that Egquations 8 and 9 imply that £ can be rewritten

in the form:
(18)  £(w) = (5 2y (W)))+((w 5 2, (1)))=((os1)) +

(a(0)-K, v(0):%,) = (v(0),b).
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Rearranging terms in (18) and integrating the & term by

parts yields:

(19) t(w) = ((KSAX*+KsBu*,v)) - ((Kcu*+bc,x))
- {Kgx + b>v(0)) )
= ((Ksa'c*,v)) - ((Ku*+ b ,\)) - (KX _+b,v(0))
(20) = -<v,KSx*+bS>C - ((Kcu*+bc,k)).

Note that the term involving g, ((x*-Ax*-Bu¥*,q)),van-
ished since (x*,u*) satisfy the differential equation.
Since w* is optimal in the dual problem, the

necessary condition 4{w-w¥*) > O hclds for all
h
S

“i' € iy
.
s

feasible region. Let wh ninimize £ over F N then for

all Vh e Fn S?

(21) 2(uwx) - (") > L(wr) - 2(w)
= a(wh-w*,wh~w*) + L(wh-w*)

(22) > a(wh—w*,wh-w*)
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Let e, and €, > 0 denote upper and lower bounds
for the eigenvalues of both Q—1 and R™Y. Then from

the definition of a(-+,+*) in (17),

h 2

h h 2
(23) a(w -w*,w -w¥) __>__%e,'lll,l(wh--v.v%)”L2 - %eL||L2(w -w*)[]L?
h h .
If X and u are the state and control corresponding
to w? in (8) and (9), then
h -1 h i
(24) [xx] | L@y (P[] € ey ]2y (7w0) ]|
h - h : . h
(25) |Ju-ur]| = ] RThp (0w ] < eyl ]y (0w ]|
Combining these inequalities yields the following
fundamental error estimate for the Ritz-Trefftz method.
2 2
h h B e N
(26) |[x 'X*HL2'+ | [u~u*| lL2 .4 25}}_ [;{;(w*)-:.{(vh)]
e
L

for all vh e F N Sh. An upper bound is determined

for the right side above using approximation; note that

the right side of (26) can also ‘be expanded about w*:

(27)  £L(wx) - d(vh) = L(vh-w*) + a(vh-w*,vh-w*)
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The order to which w* can be interpolated depends on
*
the properties of the set Sh and the smoothness of Ww .
The smoothness properties are examined first by studying

a few illustrative problems. Consider the state constrained

problem:
- 1 ? .
(28) min l’; u“(t) dat
st. &(t) = u(t)
x(0) = 25
x(t) > a(t)
t for 0 <t < .5
a(t) =

1-t for .5 < t < 1.0

The optimal solutions x* and u* afe shown in
Figure 1. Note that i* and u* both have Jjumps and hence
x* € H1 and u* € HO. It will be seen shortly that in
general the smoothness of u*. and x* depends on the

smoothness of the derivative of KS and bs. If
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/\/x(t)

50k 5 s caem s o e

,’/ a(t)
- :
e
-~ :

i//b// i
0 5 1.0

FIGURE 1: - Optimal Solution to (28)
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1.0+ “
/‘(/u(t)
'75 T .:
B x(t)
50 T e - ==
rd _
-7 : ' //.a(t)
//
.25 1
(o) 5 1.0

Figure 2: Optimal Sclution to (28) for
a(t) = 2t(1-t)
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* *

a(t) = 2t(1-t), then u e Hl and X ¢ H2 as shown in
Figure 2. |

This particular problem is a one-dimensional form
of the "obstacle problem" studied by Lewy and. Stampacchia
[5]. In a much more general framework, they show that if

2 * 1 *
a € H, then u ¢ H and X € H?. The most general con-

1 and x* € H2 for a state

ditions guaranteeing u*‘e H
constrained control problem are still not known to the
author; however, if no control constraints are present -and
the system is completely cohtrollable, then certainly

w' ¢ H' and % ¢ H° when condition (A3) below is satis-
fied. ' |

Now consider the control constrained problem:

. T
(29) min é u“(t) dt.
s.t. %(t) = u(t)

x(0) = 0, x(1) = 1

B(t) > u(t) > a(t).

* . *
Since g satisfies g = 0, then q -is a constant. Also

N .
u (t) satisfies:
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FIGURE 3: Typical Solution to (29).
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* * % .
(30) qgu (t)+u (t)2 < q*v+v2 " for all Vv such that

/

a(t) < v < B(t)

Thus, u*(t) is a constant until a constraint forces the
control away from this_constant value. A typical solution
to this problem is as shown in Figure 3. Note that

1 .nd x* ¢ H°. Below, it is

B,a € H1 implies u* € H
proved that this result holds in general.

The proof of these regularity properties is contained
in the necessary conditions. At some time ¢, °

* * * % % .
(x su g s A ,\)) Satley

Ax (% )+Bu(t)

Il

(31) x(t)

8(t) = - A q(b)-@x(t)ra K v(t)

X

21 7 . | = o T
w(t)+R 1B q(t)-R 1B K v(t)4R7 K, A(t) = O

A
A =0
(32) st(tj+bs =0

A
v = constant

where a bar, " " over a vector means that only com-

ponents corresponding to binding constraints are included

while a hat, "A", means that only non-binding components
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are considered. Henceforth all variables are optimal so

that the star, "*", will be omitted. \
The condition (32) on the binding state constraints

implies (Kskltii = 0 or a state constraint would

be violated. Replacing (32) by this condition and

rearranging terms results in:

I 0 -B 0 0 T %
0 I 0 0 -ATKZ g
(33) 0 0o I R'l'KE <R lBTKZ u =
0 0 ~Kc 0 0 X
LKS o} o) 0 o) I
Ax -.
¥ o
_AT q—Qx+ATK§v
/N
T
-R™1B” (g-K V)
= _
Cc
0

After eliminating the Kc and Ks blocks in the first

and third columns, the following system is obtained:
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M - [ -
§ 0] -B o] 0 X
T o
0 I 0 0 -A KS q
P ; W 0 i |
(3&) 0 0 I R Kc -R "B KS u
i, S P R =
0 0 0 KR K, -K R "B K- )
RS, [P —_— =1 T T —_
0 0] 0O -KSBR K K BR "B K Y
c S S
- S
Ax
1 T//?\
-A g-Qx+A Ks Vv
~1.7 f/?\ .
-R™"B (9-K  v) .

e~
o L T s
—KCR B (q—KS v)+bC

K Ax+BER 1B 5
-K_A+BE RTB (g-Kg v)

N —

Note that this system is non-singular provided the
columns of the matrix [KET: —BTKET] are linearly inde-
pendent; i.e., let V= ﬁ; and W= KB and the lower
right 2 x 2 submatrix in (34) reduces to:

L E

VR~V —vR™ T

W

~wr™ 1yt WR'le
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Operating. on this matrix from the left and right by the

vector [y] vields:
z

T T = T T
(v V-z w)R™(y y-w z).

This expression vanishes for y,z # 0 if and only if the
columns of [VT: WT] are linearly independent as stated
above.

Observe that if no state constraints are present, then
this independence is equivaient to réquiring<that the
gradients of the binding control constraints are linearly
indevendent while il no control constraints are present
end B = I, then this reguires that the gradients of the
binding state constraints are linearly independent.
Formally.assume: ;

(A3) If x and u 1lie on the bouﬁdary of the sets
{x: st+bsgo} and {u: Kcu+bcgp}, respectively, and if
K.,K, are the rows of K, and K, corresponding to the

T T_7F
binding constraints, then the columns of [KC ' B Kg ].

are linearly independent.

Now, it is easily seen that (x,v,q,\,v) are analytic
on any interval where the binding constraints are the same.
Since the matrix on the left side of (5&) is non-singular,

then X and § can be solved for in terms of X and q.
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Thus, x and q~ are described by a linear first-order
constant coefficient system whose solution is analytic of
course. Hence (v,\,u) are also analytic. Note that if
the data is time varying, then (i,q,u,x,v) w%ll be only
as smooth as R,Q,kS,BS,KC,bc;A,B.

For future reference, introduce the following as-
sumption:
(Ak) There are only a finite number of times where binding
constraints change.

For practical problems (AM)}always holds. It is
easy, however, to concoct a problem where (Al) 1is violated.
Theorcm 2: Suppose (A3) holds. If (x,q,u,)) are optimal
in the control constrained problem, then q € H3, X € H2,
and (us,2)e Hl. If state constraints are also present, then
(%, &0, 8,9 )€ BV, Furthermore,(x,q,u;x,v) are analytic on
every interval where the biﬁding constraints do not change.
If (A4%) holds, then in the siate constrained problem

(x,q) € PC1 and (u,x,v)e PCO. If no state constraints are

present, then q ¢ PCB, X € PCQ, and (u,\)e€ PCl.

"Proof: TFor the general state and control constrained problemn,

the necessary conditions (31) above imply that at t e [0:1)5
u(t) solves the following problem and A(t) 4is the Kuhn-

Tucker multiplier corresponding to the constraints:
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-

T TT T
« 35) min 7 u Ru + u B (q(t)-Kg v(t))

s.t. Kcu+bc < O.

In Appendix 2, it is proved that (A3) implies that there

exists a constant ¢ such that

(36)  u(ty)-ulty)[+]A(ty)-M{tp)] < cla(ty)-alty)]

+ Cl\)(tl)-\)(tg)l .

Since wv,q € BV, then (36) implies that u,\ e BV. Further-
more, if no state constraints are present, then the v
term does not appear in (326) and since q € &, then

w,\ € d. Both x and q satisfy X = Ax + Bu and

S |
g=-Agq-Qx so it follows that X,§ e ¢. Hence, g
is uniformly bounded on [O0,1] and (36) implies that
and X\ are uniformly bounded on [0,1] or u,\ ¢ Hl.

= and by the equation

Again, by the equation for X, X e H

for &, it follows that q ¢ Ho.
Finally, the analyticity result was proved earlier

and the PC properties follow from the analyticity property

and the results above. 2

Next the approximation problem posed above will be

analyzed. The approximating sets to be studied will consist
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of polynomials of degree p-1 on each grid interval

and derivatives of order.q continuous across each

grid point. As shown in [8], for g< p/2, this space is

of degree p and continuity g+l. Assume that g*,x¥* e H2 and
u;,x*,v*e Hl; as shown above, this is an appropriate
assumption for many problems. .

Sq’h consists of continuous piecewise linear

Ash

Case 1:
functions and S and Sv’h consists of piecewise

constant functions where h is the largest grid interval.

h h 'h h

Let v. = (@ ,X,u ) be the interpolate of (g¥,)\¥*,uv¥).
h {he
Note that v lies in“"feasible region for the dual

problem and by #Spline approximation theory, (qh,xh,vh)

approximates (é*,x*,v*) to order 1. Thus

a(vh-w*,vh-w*) = O(he). Now consider the linear tern

in the expansion (27). From the'complementary slackness
condition, (k*(t),Kcu*(t)+bc) =0 for all t ¢ [0,1].

If the binding constraints do not change on the grid
interval [t,,t,  ,], then either xj(t) = x*j(t) = 0

or (Kcu*(t)+bc)j = 0 on [tk,tk+l].and hence
(xh(t)—x*(t),xcu*(t)+bc) vanishes on the interval.

If the j-th constraint changes from binding to non-
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binding at s € Itk’tk+l]’ then by the fundamental
theorem of calculus,

t .
(x:cu*(t)+bc)J = js (Kcu*(t))jdt

.

Ty

1
2

< ne [, i (e)F at )

kK

-

t
xhj(t) Sax(t) <nF g R Sx (6)2 at 3R
J + J

K
t
(37) K+l g |
) (A7 (1) -n*(t), K u* (t)+b )dt <
t .
X
5 Y1 5 kL. > 5 g
h® { [ |a*(t)|"at | clox(t)]|"at)?
Yy &

where c depends on the norm of K,. ' Summing (37)

over k and using the ineguality 2ab S_ag + b2, yields:

. 2 e
¢
(38) (W aundy)) < Lol fur]] g+ [D*]] o)

Now consider the <vh-u*,st*+bs> term. Again
: C
the complementary slackness condition implies that

t){+1

T Rgx(E)p)a (v -vr) = 0
tk
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on every interval where there is no change in the
binding constraints. Now suppose that at r e [tk’tk+1]’
the j-th constraint changes from binding to non-binding.
Since (st*(r)+bs)j = 0 and x* ¢ 7, the state constraint
would be violated unless (Ksk*(r))J = 0 and another
application of the fundamental theorem of calculus
yields:
h X tk""'l . 2 p %
v g(8) =v*5(0)] < n® L [ (v*(8))7 at 37
J J : £ : J
k :
N 1 3/2 ¢ pUREL o K 2 1
(st’(t)+bs)j <3 { [ (K x (t))J. dat }
k

Exactly as in (38) above,the following estimate holds:
n 2 & e )
<y =u*, K X*+b_ > < h clfx* + ¥
R R I TP TR T

Thus L(vh-w*) = O(hg) and both the linear and the

quadratic term in the expansion of i(w*)-£(vh).is

h

of order 2. Hence by (26) it follows that x  and

uh approximate x* and u* to order 1.



89

Case 2: sq,h consists of continuous piecewise quadratic

Ash h

functions, S and sY’™ consist of continuous piecewise

linear functions, and (A%) holds.

Again if vh is the interpolate of w¥*, then vh is fea-
sible in the dual problem. On intervals between points
where the constraints change from binding to non-binding,
w¥ is analytic by Theorem 2 and by spline approximation
theory, (éh,xh,vh) approximates (§*,\*,v*) to order 2. 'On
mesh intervals containing points where constréints change
from binding to non-binding, (ﬁ*,i*,@*) is possibly discon-
tinuous and hence (qh,xh,vh) only approximates (4%, \%,y¥)
to order 1. Since there are only a finite number of these
éhange points, then a(vh-w*,vh~w*) = O(hB). An analysis of
the linear term, L(vh-w*), as 1n_casé 1 reveals that
(K u* (£)+b, AP (£)-2%(t)) = 0 and (K x*(t)+b ) Ta(v(t)-v*(t)) = 0
on intervals where there is no change in the binding con-
straints. On intervals where the j—th binding constraint
changes to non-binding, khj(t) only approximates k*j(t) to
order 1 since i*J(t) is possibly discontinuoﬁs on the grid
interval while (Kcu*(t)+bc)j is of order 1 since the con-

straint is binding somewhere on the interval. Hence
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‘[fckﬂ (xh(t)-x*(t),Kcu*(t)+bc) dt = o(h3)

Ty :

Since there are only a finite number of.points where
there is a change in binding'constraints, then
((Xh—k*,Kcu*+bc)) = 0(h3). A similar statement

holds for the <vh-v*,st*{bs>C term so that L(vh—w*) =
O(h3). Thus both the linear term and the gquadratic
term in the expansion of i(w*)-d(vh) is of order

h

3 and hence (26) irnlies that x and u? approximate

x* and u* to order 3/2.

. :
Case 3: Sq’“ consists of continuocus piecewise polynomials

Xsh h

of degree r, S and sSY’" consist of piecewise polynomials

of degree r-1, the grid points are free parameters,

and (Al4) holds.

Distribute the grid points on [0,1] so that

there is a mesh point at any time where a change

occurs in the binding constraints and let vh = (qh,kh,vh)

where qh is an interpolate of g* and kh and vh are
the interpolates of \¥ and u* given in Corollary

1A and Corollary %A in the appendix; i.e. A*> kh > 0,
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.* .
" and vh approximates

v >y >0, vh(l) =0, and 2\
A¥ and y* to order r. Thus vh is feasible in the dual
problem and a(vh-w*,vh~w*) = O(hgr). Since there

are no changes in the binding constraints on the interior

+h

of grid intervals and since xh and ¢ 1lie below

A* énd u¥, then xhj vanishes whenever the j-th control
constraint is non-binding and bhj is zero whenever

the j-th state constraint is non-binding. Thus
L(vh~w*) = 0. Hence ﬁ(w*)-g(vh) = a(vh-w*,vh-w*)

is of order 2r and xh and uh approximates x* and

u* to order r. These results are summarized in:

Theorem 3: If x¥,q¥* e H2, u*, A ¥, ¥ ¢ Hl, and Sq’h

consists of piecewise linear functions continuous

Ash

xross the grid points and S and S\)’h consist

of piecewise constant functions, then

(39) 122X 5 < en

Hu*~uhI|L2 < ch

(40) : £(w*)-£(wh) __<_,ch2
g 5 Sq’h consists of continuous piecewise quadratic func-

v, h

Ash : ; §
tions, 872" and 8"’ consist of piecewise linear continuous

functions, and (A4) holds, then



(41) x| ¢ on?/2
x| < en?/?
(42) 2(wx) - 2(w") < on’
If (A4) holds and Sq’h consists of continuous piecewise
polynomials of degree r while S)"h and Sv’h consist

of piecewise polynomials of degree r-1 with no continuity

requirements, then

(43) [1x#-x"|| < en”
|Jux-u"|| < cn®
i(w*)~£(wh).g ch?

%

*

A result in section VI will prove that if A ox

v* has a discontinuity and the Qloéest grid point
to the discontinuity lies at least a distance sh
away for s e (0,1], then the L2 norm of the error
of the best polynomial approximatibn to k* or ¥
is at least ch3/2 vhere c¢ depends on the degree of
the polyncmials in the space. By theorem 3,‘the

Ash and

g, h

space of piecewise linear functions for S

h
s¥’ and piecewise quadratic functions for S

actually achieves this rate. Thus the bound is tight
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and higher order spaces would appear to not be of
advantage if the grid points are fixed unless the
, constant ¢ in the convergence rates is substantially

smaller in the higher order spaces.
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V. CONVERGENCE OF DUAL VARIABLES

The question of convergence of the dual variables
will now be considered. The principal result in
this section is the following: in cbntrol cénstrained
problems, if A 1s constrained to the space spanned
by the columns of KC and q satisfies g(1) = O, then
the dual function £ is positive definite.

The first lemma belcw proves that in cases with
no state or controL‘constraints, 22 is positive definite

in the space with q(1) = O:

Iemma 1: There eXists cl,c2 such that

- .T s
(44) e, llpl]l 4 2 |lp+ AP > cqllp|
2Pl 32 | 02 eallzll g

for all p € H1 with p(1) = O.
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Proof: The upper bound is immediate so now consider the

- T
lower bound. Define w by w=7P + A p. Then since

p(1) = O,

£t T, .
p(t) = I eh (o-t) w(o) do.

T
Since |eA (c—t)l is uniformly bounded for +t,0 € [0,1],

then

2 2 ]
(45) lp(e)] < e [ [w(o)] do < e flw]] o .
Thus, squaring and integrating (45),

(46) 2 2 s 2
_ el o° < e 11wl o

From the definition of w,

]
B(t) = w(t) - A p(t)
B(£)] < [u(e)] + e |p(8)]

(47)
15(£)]% <2 u(t)|® +2c Ip(t)|?

I

" 2 2 2
P 2 W 4+ 2 ¢ P «
21 o Tl o el o
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Combining (46) and (47),

2 3y 11 2
48 o) < (2+2¢”) ||w 5
(48) H ”Ho < ( | HHO
Adding (46) and (48) yields the lemma.

The next lemma proves that £ 1is positive definite
in control constrained problems in the subspace where

g(1) = 0 and A 1lies in the space spanned by the columns

of Kc.

Lemma 2: There exists cl,c2 > 0 such that

2 2 T 2 T T 2
(49) ol lpll 1 +epl M1 o° 2 11B+a RI| o"+11B 2K A o

' ’ 2 o
> cqllp]] + cq | []
1||H1 2 lHo

for all p ¢ HY and ) ¢ HO satisfying the following
condition:
(50) p(1) = 0 and A(t) is merpendicular to the

o
null space of X, for all t € [0,1].

i
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Proof: Once again the upper bound ié immediate so now
consider the lower bound. Let (pk,xk) be a minimizing

sequence for the following problem:
2 5 g K 2
(51) tnf cf[p]] 5% + [1Bp + K. Mo

2 2
S.t. p + X = 1
1Rl 2% + Al o

and condition (50) above

T : o
where c¢ > O satisfies ||p+A pl] 02 > c||p|] 12 as in
H H

Lemma 1. Suppose that the extremand cconverges To Zero as
L)

2

k —» o, Then c||pk 1- = 0 and hence ||pk|| o O and
. H ' H

| lxk| |HO-+ 1. Now,

2

k 2 T x Tk 2 T k
(52) cllp llHl + [[Bp + K, A IIHO > IR llHo

K 2 T x 2 T x T x
+cllp +|[B p -2]|IB p [K . A .
| IIH1 [ llHo N IIHOI " JlHo

Since IIXK]I o =1 and W oak perpendicular to the
H

T T
null space of X, , then HKC kkll o s bounded away from
H

zero. This yields a contradiction in (52), however, since

the left side converges to zero by assumption while all the
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terms on the right involving pk converge to zero except
T.k
[ |

Iemma 2 is now used to prove a dual variable conver-

gence theorem. Let A+ denote the component of X per-
T

pendicular to the null space of K, and let @22 )
denote the solution to the Ritz-Trefftz problem.

Theorem 4: Theorem 3 is valid with ||q*~qh|| ; and
H
*
||X*l~xh*|]Ho replacing ||x*-xh||L2 and |]u -uhllL?L

Proof: From the definition of L1, and £2 and Lgmma 2

there exists ¢ > 0 such that

* % h 2
(53) ||y (w _wh)”HO2 w ]y (w v )HHO >

1

_)\hl-‘ l 2

¥ h S ;- L
(&4 g -g o A .
Colla®aPl] g2 el P

The analogue of the fundamental error estimate

given in (26) is the following:

2

h
+ ||
IIH1 |

2
|'q*_q l_)\h.\.l|

W$ 2 pe(wr)-2(v"))
; 1

for all vh € IFn Sh. The interpolation results of
the previous section yield upper bounds for the right
side above exactly as in Theorem 3.

¥}
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VI. ERROR -IN FREE BOUNDARY

One final numerical question examihed is the following:
If the grid points are free parameters in:the set Sh, then
at what rate do the grid points in the Ritz-Trefftz solution
converge to a point where there is a change in the binding
constraints.

For problems with just one constraint, the boundary
between the region where the constraint is binding and where
the constraint is non-binding is referred to as the free
boundary. For our purpdses, the free boundary will refer
to any point where there is a change ih the binding con-
straints. As noted in the examples of Section IV, a change
in the binding constraint is characterized by a change in a
derivative of x and wu. This section then analyzes the
rate at which the grid-points con&efge to times where the
m-th derivative of u has a jump.

After a somewhat lengthy computation, it is shown that

for polynomial spaces of degree Y+l,r,r in Sq’h,sx’h R
)

P |
respectively, the free boundary is determined to order

3 S\)’

2r/(2m+l). Thus, an increase in the order of the discon-
tinuity results in an increase in the difficulty in deter-

mining the boundary as would be expected.

Recall that in Theorem 3 it was proved that if Sq’h,

Sx’h, and SV’h are spaces of polynomials with free grid

3
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points and the spaces have degree r+1,r,r, respectively,

then (A4) implies:

||x*—xh|| < ch

(54)
||u*—uh|] < chf.

Examining the equations defining xh and uh, it is seen
that xh and uh are polynomials of degree r+l and T,
respectively. Now suppose that u* has a discontinuity in
jts m-th derivative at <. Then'the analysis that follows
proceeds to determine how far the two grid points bordering
the grid interval containing T can Se moved away form T and
still maintain the error bound chr above.

To begin, let s e [0,1) and consider the problem of

h

minimizing thé L2 distance from the space S of poly-

nomials of degree £ on [-hs,h-hs] to the following

function:

0 for =-sh < t<O0

¢m,s(t) -
t™ for 0 < t < h-hs.

That is, consider the minimization problem:
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h-sh _ ) 2
(55) min [ (6, () - kzo o) dt.

o =-sh

et y = t/h and By = akhk. Then the extremand in

(55) reduces to

- 1-s L k.2
(56) ho [ (s, (() - T BYy) dy.
g =0

Carrying out the integration results in a quadratic form

T T 2m-
(57) n[g HE - 2n™b B + — (1-5)2™1
2mt+1l |
where
1 k+3+1 k+3+1
Hy = gy [(1-8) T - (s )Y
k+m+ 1.
b = (2-8)
k K+m+ 1 ‘

" Now it will be assumed that £ > m. This‘assumption
is justified intuitively since to estimate an m-th order
discontinuity, it would seem necessary that the approxi-

mating polynomials be at least of degree m. The
mathematics will also point this out later in the develop-

ment. Thus, if £ > m, b can be expressed as b = H6™ + Hq"

here
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0 for 3 £ m

m —
(™) =
1 for J=m
( m) ~ _ -J+m+1' )
g . Jrm+1 =

Hence the following equalities hold:

(58) b H b = (me™g™) HL(

H6m+qu)

m+1 ~y2m+l ¥
J)-__ -+ 2!'—0) ;g qm

1]

2m+1
_(a-s)T™M - (-
2m

KR

We will only be interested in the value of (57) for small

s. As s - 0, H approaches a constant nonsingular matrix

that is not a function of s. Hence, o™Hq"™ = q™H G

2m-2
)

O(s since the largest term in Hq™ 1is O(s

Equation 58 then reduces to

(1_8)2m+l i (_S)2m+l 82m+2)

The quadratic (57 ) above is minimized for B = hmH"lb

so that the optimal value for the extremand (57) 1is
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._(l_s)2m+1 - bTH"l ]
2m+l ‘

(60) h2m+1[

Substituting (59) for the last term in (60) proves

Lemma 2:
h-hs . . 2.
; +
[ 16, J(6)-s"(t)|at > W™ _s2MT 4 0(s5T))
~-hs = 2m+1
for all ¢h € Sh.
ry

Now let fr,s denote a function on.[-sh,h—sh] with

a discontinuity in the r-th derivative at the origin
and derivatives of order (4+1) away from the corigin
that are bounded by M. If z € Sh, then the distance from

; h i
-7 - ~ 1 <
fm,s to S’ is the same as the distance from f .8

to Sh. Construct z so that its Valﬁe and first 4 deriv-

atives agree with the same derivatives of fm s from
3

the left at t = 0. Define %‘m’s = £, -z and let |
m!y, be the k-th derivative of ?m ., from the right. Then
3
A : (t)
- +
(61) m, st %) _kEr Yk %x,s R(t)

where R(t) is a remainder term. By the Taylor series

1

J
remainder formula, |R(t)]| < ch”™  where ¢ depends on M.
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For any ¢h € Sh:
A h 2 h
(62) ||fm’s-¢ II 2. l‘kz'r Ykak,s - ¢ 'l - llRll
where |]|-]] 1is the 12 norm on [-hs,h-hs], Thus,
(65) int |12, -] 2 10 (12 v o - €1 = TIRI]
h W & “h .h ker K8
¢ €S ¢ €S
ILemma 4:
3
L+
h 7
[|£n,s~¢ |1 2 o(h ) +
2m+1 3
2, 2m+1 2m+2 o
(v, """ [ S + 0(s7T )]
L+ 2 ' |
_ 5 _
Proof: The O(h ) term arises from the ||R]|| in (63).

Proceeding exactly as in Lemma 3, tﬁe optimal value for the

minimization problem

K i
min DI A o) - @

h .h k=r F K8 |
¢ €S

is

] ' I} 2 ¥ .4
(64) ||k§r Yk, 5| | - hb H ~b
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where

g
b = H[ z Y n¥s% + ¢ v K]
K=r K

et 87 = v;ndfed+ad). Then for J,k > r  °
Jrk+1

YJYKh
JHkt+l

);j+k+1_+ (_S)J+k+l 4

(65) ng Jug" = [ (1-s

0(sj+k+2)].

ot
The (J,k)-th term in |[,Z. Yk¢k,s||2 for J,k > r is:

(66)

The lemma then follows immediately by subtracting (65)
from (66). '

B
3 h g, h
Theorem 5: Suppose that the constraint set 5" =S X
SX’h X S\”h where Sq’h, Sx’h, and Sv’h lie in PCl, PCO,
and PCO. and consist of polynomials of degree 2+1,

£, and %, respectively, on the grid intervals. Also as-
sume that (A4) 1s satisfied, the grid points are free
pérameters, and the distance between grid points is con-
strained to lie between h and. 2h. Then the distance

4 s s
between an m-th order discontinuity in wu , the optimal
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control, and thé closest grid point associated with the op-
timal solution, uh, to the Ritz-Trefftz problem is at most
ch? where p = 2(#+1)/(2m+1l) provided m < 2.

Proof: Suppose that there is a discontinuity in u of
order m at t' e [tk’tk+1] and let ||+]|| denote the

L? norm on [tk’tk+1]‘ Translate the system so that

t' = 0 and s 1is as defined above. If vh minimizes

|‘u*—wh|| over all polynomials W of degree L on
[tk’tk+1]’ then by (5%)

(67) ["vP]] < [u"]] < en™

Using the lower bound for ||u*~vh|| from Lemma 4,

[

3
L+ =5 arf >
(68) O(h 2) Y {h2m.1(s2m+1+0(32n-)+2))}2 < ch‘Hl.

—_

Hence

< c¢ch”

2m+2) 24+2-2m-1

Since m < £, then the right side of (69) converges to
zero as h — O and hence the left side of (69) converges
*
to zero. Note that |]|u -vh|| = 0 only is possible when

s = 0 since a function with a discontinuity.can never be
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approximated exactly by a polynomial{ Using this then it

is easy to see that s -0 as h -0 and the 0(82m+2)

32m+1. Since the nearest grid

term is small relative to
point is a distance hs away from the origin, the esti-
mate in the theorem follows directly.

&2
Note,thaf if Sh is some subset of the polynomial

space described in the theorem, then the result also holds
since the inequality (67) is satisfied. For example, Sh
could be a polynoml;l space with higher continuity reguire-

ments.
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VII. SUMMARY AND CONCLUSIONS

In implementing the Ritz-Trefftz méthod numerically,
the following observations were made: '
1. TFor state constrained problems, the variaeble g 1is far.
superior to p since q possesses one degree more smooth-
ness. .
2. TFor control constrained problems, the dual function &£
is positive definite in the subspace where g(1) = O and

A lies in the space spanned by the columns of Kc.

%, For higher order Ritz-Trefftz spaces, in order to attain
the full convergence rate possible in the space, the grid
points in a neighborhood of a discontinuity of the dual
variables should be left as freevpafameters.

Some advantages of this dual method over the primal
method where u is restricted to lie in a subspace are
1. .If the basis functions in the Ritz-Trefftz subspace
are "patch bases" (i.e., zero everywhere except for a few
grid intervals), then the quadratic part of £ will possess
a band structure while the guadratic paft of the primal cost

functional usually does not possess this structure.
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2. The constraints in the dual problem, X > O and
¢ > 0, are in general simpler than the constraints in the
primal problem. This is especially evident in non-linear
problems.,

Part II of this paper will analyze the numerical im-
plementation of the Ritz-Trefftz method in some specific

problems.
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VIII. APPENDICES

APPENDIX 1: Interpolation From Below

Strang [9] proved a result for approximating a function
of two variables, f > 0, by a piecewise linear function

fh

satisfying f Z_fh > 0. The foilowing lemma applies
to more general spaces, however, only functions of one
variable are considered.

Lemma 1lA: Suppose Sh contains any polynomiél of degree

less than p on [O,h], f: [0,h] ;a[o,w), f ¢ CP°. Then
h h h

there exists f € S with f > f > 0 and
h nP
(70)  sup _|£(t)-f7(t)] < swp [£9(s)] BT -
te[0, ] se[0O,h]}

Proof: Define the set

F=1{g: £f>g>0 and g is a polynomial of

degree less than pl.

Define the "number of times g touches f" to be the sum of
all zeroes of f-g (a zero of multiplicity m 1is counted
as m zeroés).

let g ¢ F touch f at £ times. % i i = p, then the
following standard result in apprqximation theory [11] proves

the lemma:
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(71) _ Suppose g 1is a polynoﬁial of degree less
than p and f(J)(tk) = g(J)(tk) for

O.S-Jiqk-l a‘nd kK = 1;2,...,m where

m '
z dy = P Then
k=1

where €g(t) ¢ [O,h].
The proof proceeds by proving the followiﬁg claim:

(72) If £ < p, then there exists a polynomial e
of degree less than p with e > 0,

f > gte, and g+e touches f at least

£+1  times.

Thus by induction there exists g ¢ F that touches f at

p times so that (71) can be applied.

Proof of (72): If & = O, then the claim is obvious. ‘Now

suppose g touches f at tl,...,tm and the multiplicity
. ' J -

of the zero of f-g at tk is Ay 3 l.e.; g( )(tk) =

f(J)(tK) for 0< J< q-1 and 1 < k < m and

m
Y q, = 4. First, it is proved that if O < t, < h;, then
k=1 ¢ K
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9y is even.

Suppose q, were odd. Then, expanding f in a

Taylor series about t

k,
(73) £(t) - e(t) = (£(%)-g(NW))(¢,) (t-t, )%
) ’ qk .
+o(|t-t, | %k ).

Since Qg i1s odd, then the constraint f-g > 0 is violated

in a neighborhood of t, unless f(qk)(tk) = g(qk)(tk)

k

since (t-tk)qk changes sign at t This 1s a contradiction.

k.
Define

(74) h(t) = ¢ T (t-£5)%

C.
=3

where e > 0. If t =h, then replace the factor (t-h)
by (h-t) in (74). Note that h_ e S” since it is a
polynomial of degree 2 less than @ and since qy is
even for O < t, < h, then all the factors in the
product in (74) are non-negative.

By a Taylor series expansion about tK as in (73),
it is seen that the constraint f-g > O implies that
‘[f(qk)(tk)-g(qx)(tk)](t-tk)qx.Z 0 for t ¢ [0,h]. Fur-

thermore, since t, has multiplicity Q) then strict

K
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inequality holds for t # t,. Thus, for € > 0 small

enough,

(9y)

as) 1 e (e -e (650 5 0

for t ¢ [0,1]. BHence, there exists Ej and an open

ball Bj centered at tj such that f(t)-g(t)-he(t) >0

for t e By and e < €,. Now since f and g are con-

J

*
tinuous, there exists t  solving

(76) min [£(t)-g(t)].
t€[o,h] e
t,éBJ,J=1,...,m

Furthermore, since f and. g only'touch at tl,...,tm,
then the minimizing value, @&, i1s positive.

L

Since sup hc(t)l < ¢h , then if we define

te[O,h

- £
e, = d/h", it follows that f(t)-g(t)-hc(t) > O, Fow

t e [O,h], T £ BJ-: J=15¢..,m, and ei_éo-

Now let & = min{Eb,?l,...,Eﬁ}. Then f£(t)-g(t)-h_(t) >
O for e< 6and t ¢ [O,h]. Since h, >0, then
g+he € F for e < 6. As ¢ 1ncreases, there eventually

exists e such that for ¢ > &, g+h £ F. Hence, g+he

must touch f at least £+1 times or the same procedure
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as above could be applied to g+hE. This completes the

proof. )

Now if f 4is defined on [0,1], then an application of
Lemma 1A to each grid interval yields:
Corollary lA: Suppose Sh contains any polymomial of

degree less than p on grid intervals of width h, f: [0,1] -

[0,0), £ e C®, then there exists £ e s® with £ > £2 > 0
and
h hP
(77) [1£-27] ¢ ﬁ.llfllcp 5T ¢
' =
Also note that since the method of proof of Lemma 1A

pushes fh up at all points until it interpolates f in

the sense of (71), then the same procedure solves the gen-
eal restricted range problem:

Corollary 2A: Suppose Sh contains'any polynomial of degree
less than p on grid intervals of width h, f: [0,1] - R,
£ ecP, f£(t)>oa(t) for t e [0,1], and there exists

g ¢ s® with £ > g" > a. Then there exists fP e gP

such that £ > £h > a and (77) holds. o

If f 1is monotone non-decreasing, then ILemma 1A can

be used to interpolate the derivative of f and hence prove:
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Corollary 3A: Suppose Sh contains ény polynomial of

degree less than p on [0,h] where p>l.and f:[0,h]—= R
is monotone non-decreasing and lies in Cp; then

there exists uh,Lh € sh with (uh,éh) monotone non- ,

h
decreasing, e T S_uh, Lh(O) = £(0), u (h) = £(h),

and the following estimate holds for fh = uh or Lh:
sup |£(t)-t2(t)| < sup |£P(e)[n®
te[0,h] te[0,h] (p-1)1

Proof: Let gh be the interpolate of* £ in the space of boly—
nomials of degree p-2 that is given in Lemma 1A. Then

h, | : (p) B
- f h
:%%O,h] g7 (s)-f(s)]| < :g?th] | (S)‘zﬁti)s ’

¢
Tet "(t) = £(0) + [ g"(t)dt. Then integrating
0

gh—f yields:

i

ILh(S)-f(s)l | Ibs-gh&t)—%(t) at |

< sup o)y nP

se[0,h] Tp-1)t

A similar estimate holds for uh.
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Again if f is defined on [0,1], then Corollary 3A
applied to each grid interval yields a global approximation:

Corollary 4A: Suppose Sh contains any polynemial

of degree less than p on grid intervals on width h,

p>1l, and f:[0,1] -» R is monotone non-decreasing and

lies in Cp; then thereexists uh,Lh € Sh with

uh > > Lh, (uh,Lh) monotone non-decreasing, uh and
Lh agreeing with f at the grid points on (0,1] and
[0,1), respectively, and the following estimate holds

for fh = gh or Lh:

hP

h
He=r"1lg £ HE g
(p-1)!
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Appendix 2: Stability of Solution to Primal and Dual
Quadratic Programing Problem

J. W. Daniel [3] bounds the change‘in the solution of a
definite quadratic program in terms of the change in the data
in the problem. In the development of regularity properties
for the solution of the continuous optimization problem in
Section 4, bounds are also needed on the change in the dual
multipliers. This appendix proves that the change in both
the primal solution and the dual multipliers can be bcunded
by the change in the data, and, unlike Daniel's results, the
proof follows directly from the Kuhn-Tucker conditions.

The following gquadratic programing problem is considered:

{(P) min VIRV + riv

s.t. Av + a < O

1
o

Bv + b

The matrices and vectors are all assumed of compatible size

and R 1is assumed positive definite. Let Q = {R,r,A,a,B,b},

the data set, and let u,u*, and 'u' denote the solution to
*

the problem (P) with data Q, @ , and Q', respectively. If

S and T denote the sets {sl,...,sn} and [tl,...,tn},

respectively, then define S ~ T = {sl—tl,...,sn-tn},
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cS = {csl,...,csn}, and |S| = max{]sll,..‘,lsnll. In our
development, the elements of S will be vectors and matrices
and |-| will be the "sup" norm. Also define F =

{vi A'v +a" < 0, B'v % b =0}. .

The theorem is based on the following wmild restriction:
There exists v € F and a submatrix A consisting of the
rows of A* corresponding to the binding constraints for
the inequality A'v + a < O such that
(A) if x > 0 and XTE + yTB*-= 05 théh. X =¥ = 0s
Robinson [6] introduces this assumption in the study of the
effects of perturbations on the solution set for systems of
equations and ineqguality restrictions. He and Meyer [T7]
prove that if (A) holds for some .v € F, then (A) holds for
all v € F and furthermore t6] there exists w € F such
that Aw+ a < O. Thus if (A) holds for the data
(A*,a*,B*), then it also holds for data in a neighborhood
since Aw + a < 0 and the rows of B are linearly inde-

' * * *
pendent for |A-A | |B-B" |, and |a-a | sufficiently small.

Theorem 1A

Suppose (A) holds. Then there exists a constant D such

. *
that whenever |Q~Q*| < D and |Qf~Q | < D, the solution
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(u,u') and Kuhn-Tucker vector (p,p') corresponding to the

data (Q,Q') satisfies the estimate:
(1) lu-u'| < c|e'| and |[p-p'| < c|@R']

* *- *
where D depends on Q =- {r } and c. depends on Q .

As Daniel and others note, it is easy to prove that the
solution to (P) depends continuously on the data for D
sufficiently small so we will assﬁme.continuous dependence
and then prove the Lipschitz estimate.(l). The method of
proof is identical with or without the presence of equality
constraints so to keep the notation less cumbersome, it will
be assumed that the equality constraints are vacuous.

If J 1s a collection of row numbers, then let A(T)
denote the submatrix of A éonsisting of those rows cor-

responding to elements of J. Also define

c(A,a) = {J: J 1is a possible collection of
binding constraints for the re-
gion defined by AV + a < 0O}.

Recalling the comments preceding the statement of the theorem,

it is possible to choose D sufficiently small that
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* . ’
|e~Q | < D implies Q satisfies (A), R 1is positive defi-
nite, and the solution of (P) corresponding to the data Q
is a continuous function of the data in the ball of radius

D about Q*. The Theorem is based on the followlng simple

result:
Lemma 2A

The optimal value, m, of the following optimization

problem is positive:
R A(9)? v
\A(3) 0 z

S |(yT,zT)| =1

(2) | min

z >0

J € C(A,a)
*

e~ | < D.

Proof of Lemma

This property is proved by contradiction. Suppose that

there exists a feasible sequence zk, yk, Rk, Ak, ak, JK,

such that the objective function in (2) converges to zero.

Since JK is a subset of a finite set, then there exists a
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K=J,8.

subsequence (also subscripted by k) such that J
fixed set. Since the sequence lies in a compact set, then
there exists a subsequence ( 21so subscripted by k for
convenience) converging to S = (2,¥,R,A,a) and by the con-

tinuity of the extremand, the objective function vanishes

for S. Thus
(3) Ry + A(3)Tz = 0
(4) A(J)y = O.

Since the constraints in (2) are continuous, then S satlisflies
these conditions and by the construction of D, R 1s positive
definite. Solving {3) for y and inserting the result into
(4) implies that 2z A(J)R™IA(3)Tz =0 and since R > O, then
A(J)Tz = 0. Also by the construction of D, (A,a) are close
enough to (A*,a*) that condition (A) holds and hence
z = 0. Finally by (3), z = O implies y = O thch violates
the constraint that |(y s,z )| = 1.

' &
Proof of Theorem

Consider the quadratic program with data Q(s) = sQ +
* *
(1-s)Q' where |@RQ | <D, |Q'"~Q | < D, and s € [0,1] and
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let u(s), P(S); and J(s) denote the solution, Kuhn-
Tucker vector, and binding constraint set for this problem.

The necessary conditions are then:

- R(e)  AEEE)T] | we) |
A(s)(3(5)) p(s)(3(s))
- r(s)

- a(s)(3(s))

The equatioh (5) is of the form M(s)y(s) = £(s) where
the following conditions hold whénever s,t € [0,1] and
both M(s) and M(t) are of compatible size:

IM(s)y| > m|y|, |M(s)-M(t)| < d]s-t],and |£(s)-£(t)] <
d|s-t| where m is the optimal value for (2) and

d = 2|QQ'|. Defining M, =-M(sk), Vg = y(sk), and

£y = f(s,), then the following bound holds:

(6) |y,-¥21 < cd|s,-s,|

*
when - ¢ depends on Q . This 1s proved as follows:
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=f, - °F

= & g # Ex

Ay,
(Al"AZ)yl + Ay (¥y-¥p) = £y - 1,
m|y,-¥o| < |£1-T5] + [A-A5] |yq]

< dlsl-s2| + |A1-A2|[f1|/m

< d|sy-s,| + (]£(0)[+D)dsq-s,]/m

* *
< d]sq-s, | (1 + (Ja |+]|r |+2D)/m).

The estimate (1) is now at hand. Define s, =

Sy by:

s £ 1

17}
(-f.
%)

o

!

]

in

&y

~~
v

-
Il

I(s,. ")

0 and

Eventually there exists SN with Sy = 1l. By assumption

u(s) is a continuous function of s for s € [0,1]
if p(+) 1is also continuous then (1) follows immedi

from (6) since
(uT,pT(J(O))) -y, @ TEa)) = y(1f: and

N
< cd T |s

[FOrFAN £ B 51795l < j=1

()
™M=

3-17%;l

SO

ately

= cd.



124

The continuity of p(-) again follows from the lemma
above: Suppose that there exists a sequence s, converging
to s from the left with J  Dbeing the binding constraint
set for all k.. Since wu(-) is continuous, then J < J =
J(s) and (A(s)u(s™) + a(s))j =0 for all j € J. Also
by the complementary slackness condition that p(-) satis-
fies, p(sk)j =0 for J & J . Suppose that p(s,) does
not converge to p(s). Since M(s,)y(s,) = f(sy), then
|y (s )| < [£(sy)|/m Dby the lemma and since f(s,) 1s uni-
formly btounded, then there éxists a subsequence of the y(sk)
converging to y # y(s). Note that since the binding con-
straint sets are identical for all X, then M(s,) and
f(s,) converge to limits M and f  and My =f.

Now M~ and M(s) are identical except that M(s) may

have a few extra rows and columns. If y  is augmented with
zeroes corresponding to those exfra co1umns, then the aug-
mented vector, z,'satisfies M(s)z = f(s) since for those
extra rows in M(s) corresponding to J € J-J~, the

equality (A(s)u(s_)+a(s))j = 0 holds. The matrix M(s)

is positive definite by the lemma and so the system

M(s)y = f£(s) has a unigue solution. Thus z = y(s) which

is a contradiction.
3
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CHAPTER 3

Numerical Examples for the Ritz-

Trefftz Method with Fixed Grid Points
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Lo INTRODUCTION

In part I of this paper it was observed that for &
class of optimal control problems with inequality
state and control constraints, the dual multitplilers
q corresponding to state dynamics, A correspdnding
to the inequality control constraints, and v corresponding
to inequality state constraints were contained in the
spaces H2, Hl, and H1 respectively. If the dual
problem was sélved using the Ritz method, the dual
multipliers were : >stricted to a piecewise polynomial
space of degree r+l, r, and r in Q, i, and v respectively,
and the grid points in the space were fixed, then
it was observed that the Ritz-Trefftz approximation
to the optimal dual solution was in general accurate
to order at most 3/2. Tﬁe-error bounds were given
in the Hl norm for the q variable and the HO norm
for the )\ and v variable.

Let the term "static region' refer to the time

intervals away from the region where the constraints

change from binding to non-binding. Analogously the

"dynamic region" denotes the time intervals in a
neighborhood of the points where constraints change
from binding to non-binding. Two simple problems,
a state and a control constrained problem, were

studied to determine the answers to the following questions:
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‘(Ql) Does the solution to the Ritz-Trefftz problem
con&erge at a rate greater than 3/2 in the static

region for higher order spaces?

(Q2) At what rate does the Ritz-Trefftz solution
converge to the continuous solution in the sup

norm both in the static and the dynamic regilon.

Computationally it was found that in the control
constrained problem, the Ritz-Trefftz method converged at
order bounded by 2 in the static region instead of 3/2 « ‘The
error in the finitQ dimensional solution decreased from
0(h) in the dynamic region to 0(h2) ‘'within a few grid
intervals. For state constrained problems, on the other
hand, the L2 error was 0(h3/2) even in the static region.
This difference in the convergence behavior reflects the
difference in the type of dual constraints for the two
problems: X, > 0 for the control éonstrained problem and
-v, > 0 for the state constrained problem. The latter

k+l "k
constraint tends to spread out errors while the former tends

\Y

to localize errors.

In the sup norm, the Ritz-Trefftz solution converged
at order 1 in the dynamic region and in the static region
convérged at order bounded by 3/2 in the state constrained

problem and 2 in the control constrained problem.
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II. PROBLEM DESCRIPTION.

The following two problems were studied:

10
(P1) min % u(t)dt .
s.t. x(t) = u(t)
x(0) =0
x(t) > -1/4 + sin(mt)
: |
(p2) .min 2 g u”(t)dt
s.t. ;(t) = u(t)
x(0) =0

x(1) = 1/6 + N3/7
u(t) > sin(wt)

where u:[0,1] -» R and x:[0,1] - R. The constant
1/6 +f3/v will be denoted by c* for convenience.

The'corresponding dual problems are:

1 o S ;
(D1) max -% IO vT(t)dt + IO (sin(mt) -1/4) du

s.t. v(1) = 0, v non decreasing

v of bounded variation
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23
. 1 2 s
(D2) max - 5(X(t)-q)" + A(t) sin(wt)dt -c*q
0 .
s.t. A >0
2 4
AelL

where g € R, A:[0,1] + R , and v:[0,1] + R . The exact
solutions to these problems are shown in Figures 1 and 2.

The spaces Sk for k=0,1, and 2 consisting of poly-

nomials of degree k on each grid interval that are continuous

at the grid points were utilized in the analysis. The basis
funcfions for S0 , S1 , and S2 are shown.in Figure 3.

Note that S2 consists of two chérécteristic basis functions.

III. CONVERGENCE RESULTS

As noted in part I of this paper, the rate of converg-
ence of the Ritz-Trefftz solution to the continuous solution
depends very strongly on the disténce between the grid points
and the points where binding constraints change to non-
binding constraints in the optimal dual solution. These
latter points will be referred to as the break points. In

the computational experiments, the grid points were always



N

135

-log(error)

6

-log(h)
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as a Function of.Log(h).
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Figure 7: The Log of the Sup Error of AP as

a Function of Log(h).
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SO S1 S2
Pl 1.0 1.5 . 1.5
) 1.0 1.5 1.4
h h
TABLE I: Convergence Raftes for A and Vv in

the L2 Norm
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chosen so that the break points occurred almost exactly
in the middle of a grid interval.

h,qh) denote the optimal Ritz-Trefftz

Let vh and (X
solution corresponding to problems (D1) and (D2)
respectively where h is the grié interval in <the
finite dimensional subspace. Note that the Ritz-Trefftz

approximation uh to the control is given by uh = -vh

and u = xh— qh in problems (Pl) and (P2) respectively.
The rate of convergence of xh to X* and uh to u* where
u* and \* are the continuous solutions to (P2) and
(D2) respectively were observed to be identical.
In the graphs thét follow, the convergence rates were
presented in terms of the variables vh and xh.

In Figures 1 and 2 it is seen that the exact
solutions to (D1) and (Dé)‘have the.property that
the dual constraints are non-binding in the middle
of the interval and binding on the ends of the interval.
The Ritz-Trefftz solution exhibits the same type of
behavior for both problems and the region of binding
dual constraints in the finite dimensional problem
agreed with the region of binding constraints in the
continuous problem to within one grid interval.

The log of the L2 error of the Ritz-Trefftz
solution is plotted as a function of the log of the

grid interval in Figures 4 and 5. Note that nearly

linecar graphs are
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-log(error)
81—
Piecewise Linear (0O)
Plecewise Quadratic (A)
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5 ; } 1 —+
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-log(h)

Figure 8: The Log of the Error in v oat t=0

as a Function of " Log(h).
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~log(h)

Figure 9: The Sup Error in AP a Distance % From

the Break Points.
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obtained which indicates that the error bounds are tight.

The asymptotic convergence rate for the data in these

figures is then listed in Table I. The error bound of

h3/2 is exactly as predicted. The optimal cost for the

finite dimensional problem also converged to the optimal

cost for the continuous problem at rate 2 for the space

S0 and 3 for the spaces S1 and S2 which again was expected.
The errors in the Ritz-Trefftz solution in the sup

norm are given in Figures 6 and 7. For the spaces S1 and

S2 , the error in the sup norm must converge at rate at least

1372

1.0 or the error in the i ‘norm would be violated.

Figures 6 and 7 indicate the 1.0 is indeed the convergence

‘rate obtained.

The error in v@ at t=0 1is plotted in Figure 8.

Since v® and v* are constant on the interval [0,.25],
then the error at t=0 must converge at rate at least

3/2 for the spaces Sl and: S2' or the global convergence
rate of 3/2 in the L2 norm would be violated. Figure 8

shows that this is indeed the convergence rate observed.

The error in Ah in the static region 1s plotted in

‘Figure 9 and the convergence rate, indicated in the figure,

is 2 for both the space Sl and S2 . The reason for the
difference in the behavior in (P1) and (PZS lies in the form
of the necessary'conditions for the two problems. These
conditions are now analyzed in detail.

h

Consider the space S1 and expand A in terms of the
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basis functions 8y where By is as shown in Figure 3b;

i.e,

N
h
A= 1 oAE
k=0 KK

where N 1s the number of grid intervals.

Let denote the Kuhn-Tucker multiplier vector

3k
corresponding to the dual constraint AE > 0 . The necessary

conditions for the Ritz-Trefftz problem are then

(1) a+H?+eq? +b =0
(2) heTkh - qh = ¢c¥% -
s 0 ,a>0atAh =0
where
H,, = - 2 for Jj#0,N.
JJ 3 2
_ o
Hop = Hyy == 3
- - _ 1
Hye1,5 = 3,50 6
_ 2 2
by = [2 sin(st)) - sin(nty ;) - sin(wt)  1)1/nn
for J#0,N
bo = bN = [h-sin(ﬂh)/ﬂ]/h2n
8y ® 1 for J#O,N
ey = ey = 5
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h h

Suppose Xh = [Ak,...,k:] are the components of A
corresponding to the non-binding constraints. Then
8y = oo =a, = 0 and hence
(3) X' + eq” + 5 =0
where H , @ , and b are the appropriate blocks from H,
e, and b . Now the optimal dual solution A¥ g*¥ satisfies

th th

(1) and (2) to seccnd order except for the k“ and the m

.

equation which are only satisfied to first order since A¥

is discontinuous. If we define A* = [A*(tk),...l*(tm)],

then

—

(4) HX* # egt + b = O(hz) + O(H)d where

a=[1,0,...,0,1]

It can be shown that the sup norm of H'—l (maximum row sum)
is bounded by 3.0 (independent of h ). Subtracting (4)

from (3) and using this bound yields:

(5) oo - 7L E (gP-g¥) + 0(H2) + 0(n)HE

Substituting (5) in (2) produces:

(6) -~ &T%% - ne'H -lg(qh—q*) + O(hz) - qh
+ 0(h?)eTH ~ta = c* '

By the continucus necessary conditions:

1
(7) g¥ =| A¥(t)dt - c* .
0
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By approximation theory

1.
(8) AE(t)dt = helX* + 0(h%)
0

Combining (6), (7), and (8):

=3

(9) (hETﬁ -1 4 1)(qh - q¥) =.0(h2) +.O(h2)3Tﬁ d

Now it can be shown that H -1 45 a vector with entries

bounded uniformly in h so that
0n2)eTH 14 = o(n?) .

Also the computational results on the support of xll

mentioned at the very beginning of this section reveal that

m- X% ~ (2/3)N . It can then be shown that hETﬁ -1z is

bounded uniformly in h from -1 and hence ﬁ9) implies
that |a"-q*| = 0(n®)

Since H ~% E(qh—q*) = 0(h2) , the predominant error

-1

term in (5) 1is the hH "~d term. Define f = (1,0,::3:30)¢

If HY = £ is solved by Gaussian elimination, then after

th

eliminating the subdiagonal terms, the k row of the

_system of equations converges to:

. _ e
.621Y, + J167Y) 44 = (.536)"

Thus Y, ~ (.536)k for k large. The contribution to the
=1

error in X from the hH ~d term is then of order h° when

(mta), - (.536)% ~h . For h=1/33 , then k ~ 5 .
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Figure 10: Error in kh as a Function of Time

for h=1/33.
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Figure 10 shows that indeed the error in Xh decreases
to O(h2) in about 5 gridnintervals._,

One immediately asks, “why does hot the Ritz-Trefftz
problem corresponding to S2, the space of plecewise
quadratics, converge at order 3 in the static.region
instead of 292" The first part of the argument above
works equally well for the piecewisé guadratic spacé
since \* satisfies the discrete necessary conditions
to order 3 except for the intervals containing the
break points where an error term of order 1 afises.
Also the latter part of. the argumeﬁt works since tle

-1

"max row sum" norm of H can be bounded independent

of h and the ¥ 1

d term in (5) results in a vector
whose entries decay quickly to zero. Unfortunately,
however, qh only approximates q* to érder 2 and hence
the H-lg(qh—q*) error term in (5) is dominating
away from the break points. |
If we tried to prove that [qh—q*| = O(h3) using

a proof as above, the difficulty would arise at (8)
since if XI is the interpolate of \*¥ in. S2, then

1

Io O (t) - AT(t))at = o(h®)

instead of the O(h3) which would be required for cubic

convergence of ¢
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The eritical factor that permitted the higher

convergence rate away from the break points in the
problem (D2) was that the necessary conditions uncoupled
so that the equations k,...m could be studied indepen-
dently. In the state constrained problem, the constraints

- v, > 0 lead to a system that doesn't uncouple and

Vi1 K
qualitatively the errors appear to be smeared out

rather than localized.
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CHAPTER 4

Rates of Convergehce for Discrete’

Approximations to Unconstrained

Control Problems
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I. INTRODUCTION

Discrete approximations of the follewing unconstrained

control problem (P) are studied:

(1) min (x)o(l)
s.t. %(t) = £(x(t),u(t))
x(0) = xé

where x: R -R% u: R -R" £: R® x R® > R%, and (x)o(-)

is the 0O-th componejt of the vector x(-.).
If the problem (P) has a solution (x*,u*), then there
*
exists a function »p generated by the adjoint equaticn and

the following necessary conditions (N) hold:

(2) () = £(x (t),u"(t))

(3) p¥(t) = - £ (x"(t)u" (£) T (¢)
x(0) = Xq -
P(1) = (1505050565 0)

(4) £ (x*(6).p ()T () = o.

Solving the conditions (N) is eguivalent to solving a two-
’ #
point boundary value problem since (4) specifies u (t) as a
*
function of x (t) and p (t) while the differential equa-

tion has n conditions specified at one end and n at the
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other end.

The solution of two-point boundary value problems has
been studied very thoroughly in the literature (see [5] and
[7])); however, the author believes it to be far superior
numerically to discreéize the original problem (P) directly
rather than discretize the necessary conditions. The prob-
lem (P) has the advantage that gradients of the cost func-
tion are easy to compute and hence algorithms such as steep-
est descent and conjugate gradients are easily applied. The
principal disadvan® ge to the solution of the two pcint
boundary valle problem is that many élgorithms require the
inversion of a tfansition matrix for the linearized system
at t =1 and the condition number of this matrix becomes
exponentially small as a function of time.

This paper derives upﬁer bounds on the convergence
rates for the solution of a discrete approximation of (P)
to the continuous solution. Onestep, multistep, and Taylor
series schemes are analyzed. It was discovered that the
convergence rate of the onestep procedures depended on the
behavior of the scheme at the end of each grid interval while
the convergence rate of the multistep schemes was determined
by its behavior at the right end of the interval [O0,1]. The
Taylor seriés approximate, on the other hand, diverged from

the continuous solution.
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The upper bounds are derived by considering the rela-
tionship between the discrete necessary conditions and the
continuous necessary conditions; and in fact, these upper
bounds are the actual convergence rates observed in the
mmerical examples studied at the end of this.paper. The
convergence theory is then used to prove the optimality of

three Range-Kutta schemes and explain the bad convergence pro-
perty of & fourth Range-Kutta scheme and two Milne schemes.
The optimality results show that i1f the problem (P) is to be
solved by the finite element method over the space of con-
tro¥» that are piecewise quadratic polynomials and the dif-
ferential eguation is to be integrated using a oncstep
scheme based on quadrature, then the integration procedure
must be at least fourth order or the third order convergence
associated with piecewise quadratic polynomial spaces will

not be achieved.
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II. RELATIONSHIP BETWEEN CONTINUOUS AND DISCRETE NECESSARY

CONDITIONS

Assuming that the requirements needed for the continu-
ous [6] and the discrete [1] minimum principal are satisfied,
the relationship between these two sets of necessary condi-

tions will now be examined.

A. One Step Integration Schemes Based on Quadrature

Assume the integration scheme 1s given by:

(5) x(3,x) = x(0,k) + h Jii 8(j,m) £(mX)
\ m=

fOI‘ J. =1,2,..,I‘ and kzo,l,..g,N"l

wheré (j»k) denotes the j-th variable on the k-th grid
interval and f(m,k) = f(x(m,K),u(m;k)), x(r,;k) = x(0,k+1),
and f(r,k) = £(0,k+1). Integration schemes of this form,
which includes the Range-Kutta procedures, are discussed
in [3].

If q(J,k) is the dual multiplier associated with (5),
G(j,k) = fx(x(j,k),u(j,k))T, and .fx denotes the gradient of
f with respect to x, then the discrete minimum principal or

Kuhn Tucker conditions reduce to the following system of
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equations:
(6) § [I+ha(j,0)G(r,k)]a(J,k+1)-g(r,k) = O
(7) ha(d, k) § a(m, J)a(m k) - q(d,k) =0

n=Jj+1

for 1< J<r

(8) fu(J:k)T g a(m,j)Q(m,k) = O
m=j+1 :

for 0< J<r.

Define the variables:

r .a(m,j)

(9) p(d,k) = q(m,x), for 0< j<r

m=j+1 a(rs;J)

p(r.k) p(0, k+1)

a(r;r) = a(r,0).

Note that (8) reduces to

(10) £ (3,%)T p(4x) = O
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Now multiply (7) by a(Jj,m)/a(r,m), sum from J = m+l to
r-1, and add the result to (6) to determine:

- (11) p(m,k) = h ; a(j,m) iﬁfiiz

G(j:k) P(j:k) 3
J=m+1 a(r,m '

°

i

T a(d,k+l).

=1 :
Changing from the g to the p variable in (6) yields:

. ;P
(12) p(r-1 ,k; = h a(r,0) G(r,k) p(r,k) + le g(d,k+l).
Subtracting (12) from (11),produces:
r-1 (rsJ)

a
p(r-1,x) + h T a(jm) —— G(J,x)p(d,k)
J=m+1 a(r,m

Il

(12) p(m, k)

fOI' m=0,1,...,1"-—2.

Summing (7) from J =1 to r-1 results in:

r-1 r-1
(1%) T q(d,kx) =h T a(r,j) 6(dk) p(sx).
j:l ,j’:l

Substitutihg (14) in (12) yields:



N

157
; Tor=l
(15) p(I\'l:k‘l) = p(I‘-l,K) + h J§O a(r,j) G(Jxk) p(vj:k)‘
The terminal condition is

(16) p(r-1,N) = (1,0,0,..:5 ).

Note that the difference relations (13), (15), and (16)
run backward in time and furthermore all the standard one-
step schemes such as those in Table I satisfy the identity:

a(r,J)

(17) a(j,m). —— = a(r-l-m,r-I-j)
. a(r,m)

a(r,j) = a(r,r-1-3)

so that (13) and (15) are the same scheme as (5) except that

it moves backward in time::

(18) p(m k) = p(r-1,k) +
r-1

h ¢ a(r-1-m,r-1-3)G(J,x)p(J,k)
J=m+l

p(-1,k) = p(r-1,k-1).
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Also note that the scheme (18) is structured so that
p(r-1,k-1) not p(0,k) approximates p(tk), the solution

to (3) evaluated at t,, the k-th grid point; and

K’
since G(J k) is a function of x(j,k) where x(J,k)

was generated by the forward Equation 5, then equations
(5) and (18) represent an implicit scheme for the system
of differential equations (2) and (3). i. e. if the
initial condition p(-1,0) 1is given, then (5) and

(18) can both be solved in the forward direction for

X and p although thé procedure 1s ;mplicit. Lemma 1
will now prove that this implicit scheme approximates
the system (2) and (3) to the same order as (5) approx-
imates (2). Recall that a difference approximation

is said to be of order b if the exact solution to the
differential equation satisfies the difference equa-
tion to within chb+1 where h is the'grid interval and

¢ 1is a constant depending on the derivatives of

x¥ and u¥*.

" The equation (18) is of the form
(19) p(r"lgk"l) = F(G(I‘-l,K),...,G(O,K)) p(r-l,k)
where F consists of sums and products of the matrices

that are its arguments. A feature common to Range-

Kutta schemes such as those in Table I is the following
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symmetry property:

e T

T T
(20)  F(ApsAgs...Al) = F(ALLAL 37, 0A)T)
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Lemma 1:

If the onestep scheme (5) is of order b and (20)

“holds, then for given fixed u(-), the schemes (5) and

(18) are b-th order approximations to the system (2) and

(3)- . . | )

Proof: Since (5) is a b-th order scheme for (2), then (5)

combined with the scheme

(1) a(k+1) = 7(G(0,%)%, ..., G(r-1,%)T) q(k)

is an explicit b-th order "forward marching" scheme for the

system

(22)  x(t) = £(x(t),u(t))

£ (x(t),u(t)) p(t).

p(t)

If H(A,t,s) is the transition matrix for the system

¥(t) = A(t) y(t) where A = - fx(x,u)T, then it follows

.that

(23)' F(G(0, k)T v, G(r-1,%)T) = H(- AT, t4n,t,) + o(h®).
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where tk- is the k-th grid point and h is the grid in-
terval. We wish to prove that

(24) F(G(r-1,%),...,G(0,k) = H(A, t, t, +h) +

0 (hb+1) .

Since (20) holds, then (23) implies that

i

]

(25) F(G(r-1,%)...5G(0,%)) = F(G(0,x)T, ..., G(r-1,%)7T)

, T . \T b+l
H(-A,t, +h,t, )" + O(h™ ).

B

d m
1t H(-AT,t,+h,t, )T = H(A, ty, ty+h), then (24) follows im-
mediately. This last identity is proved by showing that
both sides of the equality satisfy the same differential
equation and initial conditions;»leﬁ s = tk and observe

that:

o= H(A,5,5+h) = - H(A,s,5+h)A

T

8 1(-aT, s+h,s)T = [-ATH(-AT,s+h,s)] .

dh
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B. Multistep Stchemes

Assume the multistep scheme is of the form:

(26) § a(j)x(k+j) = h § b(j) f£(k+3)
J=0 J=0 : .
for kK =0,15...,N-r

where f(k) = f(x(k),u(k)). The integration of c¢quations

by (26) is studied in [2]. Multistep schemes require

starting procedures such as the one step schemesdiscussed

earlier to generatu'the initial conditions x(O),...,x(r—l),
hovever, to simplify the analysis, ii will be assumed that
these starting conditions are known exactly.

If g(k) is the multiplier corresponding to (26) and

G(k) = fx(x(k),u(k))T, then the discrete necessary condi-

tions are:

0 0
(27) T a(j)a(k-J) =e(x) +h T Db(J)G(x)a(k-J)
J=r J=r

li
o

. £, (k)b (3)a(x-J)

(28)

.
[l K&

0O for j-> N-r, e(j) =0

1]

fOI' -k = O’l,oocN WhOI"e q(j)
for j # N, and e(N) = (1,0,0,...,0). Define
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(29) p(k) =

s
1 MO

b(j) a(k-3).
r
Then (28) reduces to
(30) £,7 (k) p(k) = O.

Now multiply (27) by b(m), replace k with k-m and sum

from m=0 to r to obtain:

r 0 e
(31) t T a(j)p(m)g(k-m-3) = £ Db(m)e(k-m) +
m=0 Jj=r " m=0
r 0
h ¥ T b(j)o(m)G(k-m)g(k-j-m).
m=0 Jj=r

Interchanging the order of summation on the left side of (31)
and using (29) results in: : .

(32) § a(m)p(k-m) = h b(m)G(kx~-m)p(k-m) +

m=0 m

[ e
(@]

b(m)e(k-m).

The .e(k-m) term vanishes for k < N so that (32) is
the same multistep scheme as (26) applied to the Equation 3

except that it moves in the backward direction.
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Note that since q(J) = 0 for J > N-r, then by (29),

p(J) = 0 for J > N. Hence (32) has a built-in terminal
condition so that once x(J) has been determined, then (32)

can be solyed starting at the right endpoint. As Henricil

[2]) proves, the accuracy.of convergent multistep schemes is

the minimum of the order-of aécuracy of the initial condi-

tions and the order of the scheme. The order of accuracy

of the built-in procedure near the right endpoint is

listed in Table II for several multisteb schemes.

——

C. Taylor Series Schemes

Only the following Taylor series integration scheme is

considered:

(33) x(k+1) = x(k) + h f(k)-+.5h2(fx(k)f(k)-+

£, (k)a(x)).
The corresponding discrete necessary conditions are:

(3%) p(k-1) = ,
p(k)+[hfx(k)+.5h2(fx(k)f(K))X+-5h2(fu(k)ﬁ(k))x]Tp(k)

(35) [(£, (k) (%)), + (fu(k)u(K))u]Tp<k) o
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(36) £, ()T p(x) = o.

These relations will be discussed in more detail in the

next section.
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III. UPPER BOUNDS ON CONVERGENCE RATES

To derive upper bounds on the rate of convergence of
the solution of the discrete system to the solution of the
continuous system, we simply assume that the discrete state
and control approximate the continuous state and control to
some order and then examinhe the discrete necessary conditions
to determine whether there is a contradiction. The proofs in
this section are not completely rigorous, although the validity
of the statements should be clear. The following implicit

function theorem is used [4]:

¥ x>
(I) Suppcse g r” x R" - R, g(a*,b*) = 0, 0 g(ga,bgl

is non-singular and g 1is continuously differentiable

in a neighborhood of (a*,b*). Then a(b), the solu-

tion to g(a,b) = 0 exists for b in some neighbor-
* : ’

hood B of 'b and |a(b1) - a(bg)l.i c|bl - bal

for some ¢ and for all bl,b2 € B.

Theorem 1
5 *  * *
Suppose that (x ,u ) solves (P) and p is generated
® K T , ¢ ;
in (3) by (x ,u ), f(x,u)” p is twice continuously differ-
* * *
entiable, and [f(x (t),u(t)jpp (t)]uu is non-singular for

all t € [0,1]. Also assume that the onestep scheme (5)
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is accurate to order b and the difference
|x(r;k)-x(r-1,k)| is of order s. -Then the solution to the
discrete minimization problem is in general accurate to

order at best m = min(s,b).
Proof: Since the onestep scheme (18) for the discrete
costate is of order b as proved in Lemma 1, then in
*
general |p(r—1,K)—p(tK+l)| is at best O(hb); (recall
x
that p(r-1,k)- not p(O,x+1) approximates p(tk+l))'

Now u(0,k) satisfies

7) £,(x(05%),u(0,%))Tp(0,k) = ©
* * *

while x ,u ,p satisfies:

(38) fu(x*(tk),u*(tk))Tp*(tR) 2 8.

By the property of the integration scheme assumed above
|p(¥-1,k-1)-p(0,k)| 1is 0(h®) and hence

Ip(0,k)-p(t,)| = 0(a™). Since |x(0,k)-x (t,)] is at best
O(hb), then from (I), the solution u(0,k) to (37) agrees

with u*(tk), the solution to (38), to order at best m.
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Now consider x(r-1,k),u(r-1,k), p(r-1,k) which

satisfies:

£, (x(r-1,%),u(r-1,%))Tp(r-1,x) = 0
* b
where |p(r-1,k)-p(t, ;)| is at best O(h”) while
|x(r-1,k)-x*(tk+l)| is at best 0(h™), Hence

is at best O(h").

¥
|u(r-1,%x)-u(ty,, ;)]
Note, however, that if fu is not a function of X,
; * m

then the fact that |x(r-1,k)-x (t, )] = O(h™) does not enter
into the analysis in the last paragraph abcve and hence
u(r-1,k) can be accurate to order b. In a numerical ex-
ample in Section L, this higher convergence rate is indeed
observed in a problem where the state and control wuncouple

so that fu does not depend on .x.‘

Theoren 2

; * % * '
Suppose that (x ,u ) solves (P), p 1is generated in (3)
by (x*,u*), f(x,u)Tp is twice continuously differentiable,
" .
and [f(x*(t),u*(t))Tp (t)]uu is non-singular for all

t € [0,1). Also assume that the multistep scheme (26) is of

order b and the "built-in" initial conditions at the right
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endpoint for thé discrete costate equation (27) are accurate
to order s. Then the solution to the discrete minimization

problem is in general accurate to order at best m = min(b,s).

Proof: As noted in Section 2,.p(k) is in géneral accurate
to order at best m. Since f(x(k),u(k))Tp(k) = 0 and
fu(x*(tk),u*(tk))Tp*(tk) = 0, then (I) again implies that
Ju(k)-u(ty)| is at best O(hm).[3

Now the Taylor series integration scheme (33) is
examined. If x*,u*,p* are optimal in (P), then by dif-

ferentiating (4), the following condition holds:

(38) [(E, (xu)E (U7 ))y + (B (x w0 )y

_fx(x*,u*jfu(x*,u*)]Tp* - 0.
It (u(k),u(k)) is near (u(t),a(t.)); then (x(x),p(x))

+ ¥
will be near (x(%,),P(t,)) since the integration scheme

(33) and (34) are at least first order. There is now a

contradiction since (x(k),u(k),0(k),p(k)) satisfies (35)

¥ * .* x
while (x(tk),u(tk),u(tk),p(tk)) satisfies a different
equaﬁion, (38), above. 1In fact, it is observed numerically
that the discrete solution diverges from the continuous

solution.



170

IV. NUMERICAL EXAMPLES

The convergence of the schemes listed in Table I and
Table II were studied numerically in two simple control

problems with linear dynamics and quadratic'cost:

(P1) min jz 5 u(t)? + x(t)2 at
s.t. %(t) = .5%(t) + u(t)
x(0) = 1
1 2 | 2
(P2) min Io 5x(t)€/8 + u(t)x(t)/2 + u(t)</2 at
s.t. X(t) = 5x(t) + u(t)
x(0) = 1.

The solution of (P1) and (P2) are respectively:

et/ (24ce?t) [ (1-ce) (o3t _0)271/3

(51) Hioe = (l-cejt)(c—l)
where ¢ = -2/e3
(82) u(t) = tanh(1-t)(tanh(1)sinh(t) - cosh(t))
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The solutions are shown in Figures 1 and 2 and plots
of the convergence for the various discretizations are
given in Figures 3, 4, and 5. The éfror that is plotted
is the I? error of the most accurate discrete control
parameters. For example, in multistep schemes, the controls
near the right end are of a lower order than the controls
several grid intervals away from t=1 as should be expected.
The error near t=1 is excluded in the data presented.

The convergence rates agreed roughly with the predicted
upper bounds in section3: 1In problem (P1l), the state
and control terms in the cost function uncoupled so that

the maximum convergence rate equalled the order of the

)

integralion scheme as anticipated at the end of Thcorem

1. On the other hand, in (P2) the cost does not uncouple

so that the convergence rate is‘bouﬁded by the order of

the difference |x(r-1,k)-x(r,k)|, as Theorem 1 predicted.
For the multistep schemes in Table II, the Milne's

Fthree and five point schemes ' were only accurate

to 0(1) at the right endpoint and numerically it was

observed that these schemes did not converge to the correct

solution. The Improved Adams and Modified Euler schemes,

however, converged to the correct solutions at order

4 and 2 respectively as expected.
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Note that for a given order of convergence, the dis-
crete problem corresponding to tﬁé multistep schemes in-
volves fewer variables since intermediate values for the
control between the grid points are not needed. The one
step methods are advantageous, of course, for problems
with discontinuities at known pointé; the error in one
step procedures depends on the derivatives of u* between
the grid points while the error in the multistep scheme'
depends on the global derivatives of u¥* (unless the scheme
is restarted at the point of discontinuity which increases

programing difficu_cy).



180

V. IMPROVED ONE STEP SCHEMES?

Since the convergence rate for one step schemes
depends on the minimum of the order.of the schéme and
the order of tte difference |x(r-1,k)-x(r,k)|, then one
immediately asks if it would be possible. to construct
a third order three point scheme like the Kutta scheme
in Table I but with |x(r-1,k)-x(r,k)| of order 3. Unfor-.
tunately this is impossible since the equations resuiting
from imposing the two order of accuracy conditions are
inconsistant. (Of course Modified Euler's Me@hod has
the same optimal order, but uses one less intermediate
point in the integration procedure.) Likewise with 4
point schemes, if one tries to construct a fourth order
discretization, then the number of equations resulting
from the accuracy requirements exceeds the number of
unknowns, the a(i,j). Hence Modified Euler's Method,
Kutta, and Range-Kutta 1 are optimal 2, 3, and 4

point schemes respectively of the form given by (5).
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VI. COST CONVERGENCE

In the solution of unconstrained control problems
using the finite element method, if the discrete controls
converge at order b, the the cost usually converges at
order 2b; however, if the integration scheme is only
accurate to order s, then the'disctete cost ¢an only con-
verge at order s. This was also observed numerically; for
example, the optimal cost for the discrete probiem cor-
responding to Improved Adam's Method only converged at

order 4 and not 8.
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"God gives wise men their wisdom and scholars
their intelligence. He reveals profound mys-
teries beyond man's understanding. He knows
all hidden things, for he is light, and dark-

ness is no obstacle to him."

Daniel 2:21-22



