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ABSTRACT

The problem of decoupling a linear, time invariant, multivariable
system by a state feedback control law is considered. The original
results of Falb and Wolovich for decoupling an m-input, m—-output
system into m scalar input, scalar output subsystems is presented

and extended to the case where the number of inputs exceeds the number
of outputs.

The geometric problem formulation of Wonham and Morse is presented and
a partial decomposition for general (A,B) invariant subspaces is given.
Results on the generic solvability of a class of decoupling problems
are examined and it is shown that almost all systems of the type con-
sidered by Falb and Wolovich are decoupleable.

Connections between the Wonham-Morse and Falb-Wolovich approaches to
the decoupling problem are explored and the direct equivalence is de-
monstrated for a special case. A result of the former is then shown
to imply a strong necessary condition for decoupling linear systems
into single input, multiple output subsystems.

Finally, the controllability subspaces of a matrix pair (A,B), instru-
mental in the geometric formulation of the decoupling problem are

shown to have a natural analog in terms of the kernel of the singular
pencil of matrices (AI-A;-B). The possible dimensions of control-
lability subspaces are proved to be completely determined by a set of
invariants of this pencil of matrices. The minimal dimension of
controllability subspaces which contain arbitrary subspaces of the image
of the input gain B is ascertained, and a construction for such sub-
spaces given.
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CHAPTER 1

INTRODUCTION

l.1l Problem Statement

Real life systems tend to be complicated objects. Inputs inter-
act with and counteract each other rendering it difficult to determine
how.they effect outputs. Mathematical system models built to help
understand the system they represent, frequently fall victim to this
malaise. Often composed of scores of coupled differential equations,
such system models are only slightly more tractable than the system
they attempt to define. The abundance of misunderstood econometric
models with lundreds, even thousands of state variables gives ample
evidence of this plight.

In many such systems, the culprit which tends to complicate
our understanding is not so much size, but rather a lack of modularity.
It is the interaction which causes every input to affect every output
and destroys any attempt to analyze the system on an organized piece
" by piece basis. Intuitively, it would be so much more pleasing if
systems could be partitioned into isolated subsystems of reasonakle
size and complexity. These subsystems could be analyzed independently
and then the overall system dynamics determined from the subsystems.

For approximately the past decade, considerable literature has
been generated about partitioning or decoupling finite dimensional,
linear, time-invariant systems into smaller order subsystems through
- the use of state feedback control laws. For the general, linear, time-

invariant, multivariable system the decoupling problem can be stated
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as follows: having partitioned the outputs into a number of subsets,
is there a feedback control law which transforms the given system into
one where each subset of outputs is completely controlled by a cor-
responding subset of the inputs which affects no other output subsets?
In its most general form, this problem remains unanswered.

Most previous research in this area has been centered on two
different approaches. At first considerable emphasis was given toward
systems with an equal number of inputs and outputs. Decoupling meant
a decomposition into single input, single output subsystems, and be-
came equivalent to the nonsingular diagonalizétion of the system
transfer function matrix by a state feedback control law. In 1967
Falb and Wolovich [F2] completely solved this problem, giving a con-
structive solution and showing the possibility of simultaneous pole
allocation while decoupling. Their method, which in this paper we
shall designate the input-output method due to its exclusive use of
input to output mappings, made extensive use of matrix operations to
secure necessary and sufficient conditions for solvability.

Beginning in early 1970, Wonham and Morse [W7] introduced a
theory of decoupling applicable to a more general class of linear
systems. Having as its central theme a decomposition of the system
state space into specialized subspaces, this geometric approach, as
it was called, led to significant advances in our knowledge about the
decoupling of linear systems. Complete solutions for several important
special cases were determined, and the problem of decoupling via more

general feedback compensators was formulated and solved [M7].



The research reported on herein is concerned with the following

issues:

1) to elucidate the input-output and geometric theories of
decoupling, and where appropriate to rederive or interpret
elements of these theories;

ii) to explore the connections between these apparently dis-
parate apprcaches to a common problem, and to extend the
results of the input-output method to the more general
problem formulations solvable via the geometric method;

iii) to develop a characterization of the key elements of the

geometric theory and relate them to basic system
invariants.

Through i) and ii) we hope to expand ocur general knowledge
about the decoupling of linear systems. Few attempts have been made
thus far toc unify these differing approaches to decoupling and to
evolve a common, more easily implemented theory. By iii) we hope to
add scme concrete structure to the specialized subspaces which play
a vital role in the geometric formulation of the decoupling problem,

structure which has so far been lacking.

1.2 Brief Historical Backaround

Prior to 1964, the status of decoupling theory left much to be
desired. Results were few and generally limited to involved fre-
quency domain manipulations. Morgan [M3] in 1964 formulated the prob~
lem of decoupling an m-input, m-output linear time invariant system
into single input, single output subsystems, in terms of state space
techniques. Wwith this approach he was able to find a sufficient condi-

tion for decoupling.
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In 1967, Falb and Wolovich [F3] completely solved this problem,
showing that the existence of a decocupling control law was equivalent
to the nonsingularity of an m x m matrix easily constructed from the
system parameters. Falb and Wolovich further gave a synthesis pro-
cedure for determining decoupling control laws and showed that one
could decouple énd achieve at least partial pole assignment at the
same time.

Approximately a year later, Gilbert [G2] refined and put into
perspective the work of Falb and Wolovich. Gilbert pointed out certain
feedback inavriants used in the construction of decoupling control laws
ard gave a canonical form for decoupled systems. In addition, he
showed the detailed structure of the decoupled subsystems indicating
the possibility of pole zero cancellations and hence the loss of
observability of the decoupled system.

Numerous other papers ([Cl],[F5],[L1l],[M2],[M9],[M10],([N1],(P2],
[Ss1],[s2] ,[S3]1,[s4],(sS5]1,[T1],[w3]) have been published presenting
extensions and/or variations of the original results of Falb and Wolo-
vich. Questions about the decoupling of time varying linear systems,
synthesis of inverse systems, and decoupling of special classes of
nonlinear systems have been considered in the papers listed, all bas-
ically following from [F2].

Beginning early 1970, Wonham and Morse published the first of
their papers [W7] proposing a different approach to the decoupling of
linear systems. Using a geometric method, they were able to formulate
the problem of decoupling a general linear systems into arbitrary size

subsystems, achieving complete solutions for a number of important



-11-

special cases. - At about the same time, Basile and Marro [B1], [B2]
independently derived some of the results on invariant subspaces which
play such a key role in the geometric approach to decoupling.

In a subsequent paper [M7], Morse and Wonham extended their
results to the decoupling of linear systems by dynamic compensation
and completely determined when a solution exists. »2dditionally, they
have shown [W8] that the subspaces generated in their decoupling theory
may be used to rederive a canonical form for the input-state dynamics
of linear time invariant systems ([B7],[x2],[P1],[R1l],[W4]). The
survey paper [M8] presents an extensive overview of their geometric
method.

More recently Fabian and Wonham [Fl] explored the question of
generic solvability of decoupling problems. They were able to show
that with minor constraints on the dimensions of the system and the
decoupled subsystems, almost all linear systems are decoupleable by

the use of dynamic compensation.

1.3 Thesis Outline

The remainder of this introduction will include an outline of
the body of the thesis followed by a section introducing the notational
conventions we shall employ throughout the text.

In Chapter 2 we shall present the input-output approach to the
decoupling problem. We will begin with the development of the results
of Falb and Volovich and then give the canonical form for deccupled

systems of Gilbert. As an extension we will consider the problem of
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decoupling systems with more inputs than outputs, and show that its
solution may be related to the original Falb and Wolovich conditions.

The methodology énd results of Wonham and Morse are presented
in Chapter 3. We will review the development of (A,B) invariant sub-
spaces and controllability subspaces, and show how the decoupling
Problem may be formulated in terms of a set of controllability sub-
spaces. Soluticns for important special cases will be given.

Continuing, we shall extend an important lemma from [M8] to
show how general (A,B) invariant subspaces may be decomposed into
simpler invariant subspaces. We then briefly present the work of
Morse and Wonham on decoupling linear systems by dynamic compensation.
The results on the generic solvability of this problem by Fabian and
Wonham are given and used to show that the problem considered by
Falb and Wolovich is generically solvable.

In Chapter 4 we try to illuminate the connections between the
input-output and geometric approaches to decoupling. We begin by de-
monstrating the direct equivalence of the Falb and Wolovich result
and a geometric condition of Wonham and Morse. Then we return to the
canonical form of Gilbert and re-examine it in light of previous results
on invariant subspaces. Finally we make use of a necessary and suf-
ficient geometric condition for decoupling a system into single input,
multiple output subsystems to derive a strong necessary condition in
the form of the original Falb and Wolovich result.

We switch directions somewhat in Chapter 5 and develop structures

for (A,B) invariant and controllability subspaces. We show first that
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the invariant subspaces of matrix pairs related by common transfor-
mations, are themselves simply related. This allows us to restrict our
consideration to matrix pairs (A,B) in a canonical form.

Then we derive a characterization for controllability subspaces
in terms of the kernel of a particular polynomial matrix. This char-
acterization leads directly to a well-known canonical form of Brunovsky
[B7] . The possible dimensions of controllability subspaces are then
shown to be completely determined by a set of system invariants.
Finally a method to construct minimal dimension controllability sub-
spaces which contain certain other subspaces is given.

In Chapter 7, some conclusions about this research are drawn

and some avenues of future research discussed.

1.4 Notation Conventions

Due to the large and varied amount of symbols used in the
following text, it will be to our advantage to arrive at some specific
notational conventions at the start. Whenever and wherever possible
we will try to adhere to the guidelines set herein. Deviations, if
any, will be minor and will be clear from context and/or explanation.
To be consistent with established literature, we will basically follow
the notation of [G2] and [M8].

For concreteness, we shall assume that the vector spaces en-
countered are real, Euclidean spaces, although most everything we
develop will hold for vector spaces over an arbitrary infinite field.

n ; i
We let R designate the real, Euclidean n-space. Upper case block
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letters, A,B,C, etc. will indicate linear transformations between
vector spaces or their associated matrices. Transposes will be
demonstrated by a superscript T, e.g., AT. The lower case block
letters a thru h and u thru z will usually refer to vectors, while
the letters i thru t will generally denote positive integers.

Script letters will be used to indicate vector spaces or sub-
spaces, with lower case script letters denoting one dimensional sub-
spaces. In particular, if B is a specified linear map, B will repre-
sent its image, similarly BT will designate the image of BT. If x
is a vector, we shall indicate the subspace spanned by x either by

X or Span{x}. 1In the same vein, the subspace spanned by a set of

vectors {xl,...,xk} will be denoted Span{xl,...,xk}. The orthogonal

complement of a subspace M, that is the subspace of all vectors
orthogonal to M, is given by M'L. Further the kernel or nullspace
of a map C is indicated Ker C. We note that C'L = ker CT. If A is
a linear map and R a subspace of the range of A, the inverse image
of R under A, that is, the subspace {xIAx € R}, is denoted by A-lR.
For any positive integer k, the set of integers {12505k}

will be denoted k. For any set of integers {kl,...,km] we define

k*= T Ky iem
iFi
jem

and for any ordered set {kl,...,km}

ki+ = Z k., iem.
i< ?

jem
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if {Rl,...,Rk} is a set of subspaces we define

R.*= ) R iek

P
jek
and
R* = n Ri*
iek

We call the subspace R* the radical of the set {Rl,...,Rk}.

The dimension of a subspace R is given by dim R. Two subspaces

Rl and R2 are said to ke independent if their intersection is the

zero subspace, which we indicate either 0 or {0}. A set of subspaces

{Rl""'Rk} is independent if Ri n Ri* = 0, for all i € k. It follows

that the radical of a set of independent subspaces is zero. When we
wish to emphasize the independence of two subspaces, we will write

their sum as a direct sum Rl @ Rz. Further, if Rl CRZ, then we
indicate the vector space of cosets of Rz modulo Rl by R2/R1.

If A is a linear map frcm R" to Rn, A: Rp > Rp, and R is an
A invariant subspace, i.e. AR CR, then we write A|R to represent the

restriction of A to the sub-dcmain R. If A : Rn > Rn, and B C:Rp, then
{a]|B} =B + aB + ... + a""13,

and (A,B) is called a controllable pair if {a|B} = Re,
Finally, the degree of a polynomial Y()A) is indicated deg (),

while the space of polynomials with coefficients in Rn is given by
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Rn[A]. we denote the jth standard unit vector of Rp (1 in the jth
component, zeros elsewhere) by ej, and let lower case Greek letters
refer to field scalars. The phrases invariant subspace and control-
lability subspace will often be abbreviated i.s. and c.s. respectively.
The terminus of a proof will be indicated by [:].

We will be interested solely in linear, time-invariant, multi-

variable systems described by the differential equation

x(t) = ax(t) + Bu(t), y(t) = x(t) (1.4-1)
or the difference equation

x(3+1) = ax(3) + Bu(j), y(J) = cx(J). (1.4-2)

The algebraic structure which we will use applies equally well to
either system formulation. we shall often refer to (1.4-1) or (1.4-2)
simply by the matrix triple (A,B,C). It is assumed that x,u, and y
(the state,input, and output) are real n,m, and g vectors respectively,
with the matrices A,KE,C appropriately dimensioned. When we consider

a system to be decoupled, an implied partition of the outputs into k
suboutputs, Yy = Cix' with y, a q; vector for i € k is always assumed.
Further, unless otherwise noted the pair (A,B) is always presumed con-
trollable, with B having full column rank, and the output submatrices

Ci' i € k are always assumed nontrivial.



CHAPTER 2

THE INPUT-OUTPUT APPRCACH TO DECOUPLING

.1 TNI0mtion

Prior to the work by Wonham and Morse, the significant results

in decoupling theory were achieved by Falb and Wolovich [F2] who con-
sidered the problem of decoupling m-input, m-output linear systems into
m scalar input, scalar output subsystems. Such a system is decoupled
if its transfer function matrix is diagonal with nonzero diagonal
elements. Falb and Wolovich determined a condition for the existence
of a feedback control law which accomplishes this in terms of certain
feedback invariants of this transfer function matrix. To differentiate
it from the procedures of Wonham and Morse, we designate this latter
method the input-output approach to decoupling.

In this chapter we will review the input-output method, pri-
marily following Gilbert [G2], who has extended and put in perspective
the results of Falb and Wolovich. These authors ccnsider m-input,
m-output linear systems governed by equations of the form (1.4-1).

It is further assumed that the k output subvectors are all scalars,
that is k = g = m, and Gy 1, i € m. This latter presumption holds
throughout this chapter. 1In this development, the discrete time system
formulation (1.4-2) will be used. As has been previously indicated,
the algebraic structure we will employ applies both to continuous or
discrete time linear systems.

The paper by Gilbert to which we refer is an easily readable

reformulation and clarification of the original work by Falb and

-17~
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Wolovich. In addition, Gilbert has defined both transfer function and

state space representations for what he calls canonically decoupled
systems. With these formulations, the structure of decoupled systems
become easily visible.

We shall present the significant results of the input-output
method without proof, referring the reader to the appropriate literature
as needed. Where adviseable, however, we will give various interpre-
tations to elements of this approach, particularly when the link to
discrete time systems differs from that to continuous time systems.

Finally we will show how the basic inﬁut—output approach is
easily extended to the case where the number of inputs may exceed the
number of outputs, but where decoupling into single output subsystems
is still desired. We are able to determine necessary and sufficient
conditions for decoupling of this more general problem which are

very similar to those given by Falb and Wolovich.

2.2 Basic Results

Let us consider an m~input, m-output, n-th order system
described by (1.4~2) where A,B, and C are real n x n, n x m, and
m X n matrices respectively, with m < n. Associated with (1.4-2) is
the transfer function

H(A) = C(I A - &) 1B (2.2-1)

which may be viewed as a mapping from the space of finite length input
sequences (i.e. u*(A) = Aju(-j) + «.. + A u(-1) + u(0)) to the space
of infinite length output sequences (i.e. y*(A) = K-ly(l) + A~2y(2)+...).

(See [K3],Ch. 10 for a more detailed description of this module based
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linear system theory.) The feedback control law denoted by the matrix

pair (F,G),
u(j) = Fx(j) + Gv(3j) (2.2-2)

where v is a new set of m inputs, transforms the external description
of the system (2.2-1) to

H(\;F,G) = C(IN-A-BF) 'BG (2.2-3)

where we have explicitly shown the dependence of H(A) on the control
law (F,G). We shall say that the system (1.4f2) is decoupleable if
there exists a feedback control law (2.2-2) such that (2.2-3) is diagonal
and nonsingular. (A matrix of rational functions is nonsingular if
its determinant is not identically zero.)

Letting Ci denote the ith row of C, i € m we define a set of
integers {di, i € m} and a set of linear forms (row vectors)

{Di' i € m}.

(2.2.1) Definition: (Falb and Wolovich [F2]). Given a system (A,B,C)

for each i € m let

a; = min{leiAJB ¥ 0, 9§ = 0,1eee/n~1}
or (2.2-4)
4, =n -1 if CA’B =0 forall j >0
and
_ i
D, = c;a%'B . (2.2-5)

For a controllable system described by (1.4-2) di+1 represents the

minimum time delay for the effect of any input to be visible at output



=20~

i, and Di represents the first non-trivial pointwise mapping from inputs
to output i. That is given an input u(0) # O, the outputs yi(l) through
d.
A i -
yi(di) will be identically zero with yi(di + 1) = CiA Bu(0) possibly

nonzero for each i € m.

(2.2.2) Remark: We may alternatively define the quantities di and Di'
i € m directly from the transfer function H(A). Letting Hi(k) denote
the i*™ row of H()\) it is readily established (see[G2]) that if

Hi(l) # 0, then

; i o
d, = j such that D7 = lim A’ 2 H, (A) is nonzero and finite
: i i
A0
and
di
D. = D,
i i

while if Hi(l) =0, di = n-1 and Di 0. In the continuous time state
variable formulation (1.4-1), these quantities represent high frequency
system properties.

Consider a discrete system (A,B,C) of the form (1.4-2), with
feedback law (F,G). We may calculate the quantities di and Di' iem
for the closed loop system (A + BF, BG, C) via Def. 2.2.1. To indi-
cate the explicit dependence of these quantities on the control law
(F,G) we will write them as di(F,g) and Di(F,G) respectively. That

is di = di(O,Im), Di = Di(O,Im), i€ m.

Consider now the effect of the control law (F,G) on the integers
di(F,G) i € m« Since feedback in the discrete system (1.4-2) acts as
an input delayed one unit of time, it is clear that feedback cannot

affect the minimum time delay from inputs to any particular output.
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Hence di(F,G) is independent of F, i € m, and is thus a feedback invar-
iant. Further if G is nonsingular, it is easily seen that di(F,G) = di
while Di(F,G) = DiG' i € m for any input gain matrix G. These equalities
may be easily checked by expanding Ci(A + BF)jBG and using Def. 2.2.1.

Now we form the m x m matrix D from the row vectors Di' ie m,

This matrix contains all the information necessary to solve our
problem.
(2.2.3) Theorem: (Falb and Wolovich [F2]) The system (A,B,C) may
be decoupled if and only if D is nonsingular. If the feedback law
(F» G) decouples (A,B,C) then G = D—lP for some nonsingular diagonal
matrix TI'.
Gilbert [G2] demonstrates this result in an easily understood exposition.
Falb and Wolovich show that the feedback law
F=-D'a*, G=p1 (2.2-7)

d,+1
. . .th . . i .
where A* is an m X n matrix whose i row is given by CiA (1 €EmMm,

will always decouple a system (A,B,C) provided, of course, that

D 3 exists. With this feedback law it is easily demonstrated that

d.+1
C; (A + BF) *

=0 for all i € m. 1Indeed the feedback law (2.2-7)
yields a closed loop system with a most simple input-output structure.

The diagonal elements of the transfer function matrix are given by

-d,-1
h, (A;F,G) = A iem, (2.2-8)

and thus the ith decoupled subsystem is just a di + 1 order delay. 1In
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the continuous time analog, the transfer function elements (2.2-8)
would denote di + 1 crder integrators, prompting Gilbert to call such
a system "integrator decoupled" (i.d.).

Falb and Wolovich further show that it is possible to specify

at least m + z di of the closed loop system poles while still
iem

achieving decoupling. Indeed let 4 = max{dili £ Q}, and consider

the m x m matrices.

M. = diagonal cpeee .] 3 =0,1,...4
5 g []—’131 lUmJ J L

where the uij's are scalars with uij = 0 for j > di, i € m. Then

given (A,B,C) decoupleable and the feedback law

o, d . 1
F=-D () MJ.CAJ -a%¥), G=D (2.2-9)

3=0

it follows that the input-output dynamics of the closed loop system
(A + BF, BG, C) are given by

+1+j) = i) + j+1l)+. ..+ ] P G i v
y, (@,+1+3) =y, v, (3) M, Y, (3+1) uidiyi(di+3) +u, (3) iem

(2.2-10)
By varying the uij' j = O,...,di, i € m, and hence changing the feedback
of (2.2-9), the dynamics of (2.2-10) may be arbitrarily altered without
sacrificing the decoupled structure of the systemn.
Gilbert has defined a particularly simple form for integrator

decoupled systems, and has shown that every i.d. system may be re-

presented in such a form by an appropriate coordinate transformation.

We present this form here as it graphically illustrates the structure
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of a decoupled m-input, m-output system, and will re-examine it at

greater length in Chapter 4 after some of the invariant subspace
machinery of the geometric approach is developed.
(2.2.4) Definition: (Gilbert [G2]) An m-input, m-output linear

system (A,B,C) is canonically decoupled (c.d.) if

1) The matrices A,B, and C have the partitioned form:

F -
u
Al 0 0 e 0 (o} Al
u .
6] A2 0 — 0 0 A2 Ai is pi b4 pi,
A = . . - : a.Cis x (2.2-11)
. . . . : . . i P P :
0 0 0 &ele A 0 A
" m aYis X
K C 2 Cy¢ w € u i Pj X Ppyor
1 2 3 s m m+l  ml
-0 0 0 sie:e 0 Am+2J
bl 0 5 a5e 0
o b L ) o
2 -
. . . bi is pi x 1,
B = . . . (2.2-12)
c .
0 0 ese bm bi is P ¥ 1,
c c c
b cee
1 b2 bm
I_0 0 e 0
-
r--c 0 sio1e 0 0 c.u
1 i
1o By was O O &P % 48 L Xipgs
_ 2
i i . 2 ‘u c.%is 1 x P
0 0 et i L
i cm 0 cm § i o2

where P, —>-di +1, ie€em;



2) the submatrices Ai,bi, and ci, i € m have the form:

0 Id.
1 0
0 o Ti is r; x (di + 1),
A, = ’
* $, is r, x r.,
i i i
T. 0.
i il
0 g
0 il (2.2-14)
- |- _ | 8.
bl - R Si B .12 :
ir,
B, i
. - sl
c; = [1 0 % % 01,
= -1=-4,;
where ri pi 1 5
Pi-l
3) the p; vectors, bi' Abi,..., A bi are linearly
independent;
4) if Rm+l is nonzero and the row vector n = [nl,...,nn] is

such that np+l,...,n are not all zero, where p = z P then

+
P pm+l iEm

the row vector N(IA - A)-lB has at least two nonzero elements.

, We note immediately from the form of the matrices in 1) that

the transfer function matrix of a c.d. system, H(A), is diagonal with

_ -4,-1
diagonal elements hi(A) =2 * + i€ m. Further for P >0

the pair (AlB) is not completely controllable, nor in general is the
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pair (A,C) completely observable. Indeed from 2) we see that the sub-
pairs (Ai,ci) need not be completely observable, however the subpairs
(Ai,bi) are controllable from 3). Property 4) tells us that there is
a segment of the state space which is always driven by at least two
inputs. Since this subspace cannot be controlled via any one input,
it must be unobservable as is seen from 1).

Finally Gilbert demonstrates that those feedback laws (F,G)
which do not destroy the decoupled structure of a canonically decoupled

system have a relatively simple form.

(2.2.5) Proposition: (Gilbert [G2]) Given a c.d. system (A,B,C) the
control law (F,G) will render the closed loop system (A + BF, BG, C)

decoupled if and only if

o -
u
&, 0 0 ... 0 o 6
© 8, 0 ... 0 0 62“
F= |. . g w8 ; (2.2-15)

. u .
where Bi is 1 x Py and Gi is 1 x Prin’ and

G = diag(ﬁl,...,ém) 6. # 0 i e E . (2.2-16)

2.3 Decoupling with an Excess of Inputs

We now consider an extension of the results presented in the
previous section to the case where the linear system may have more
inputs than outputs. That is, we are still concerned with systems

described by (1.4-2), but ncw u(j) and y(j) are m and g vectors
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respectively, with m > g, g = k and q; = 1l for i € k. It is clear that
we may relate this problem to that solved by Falb and Wolovich if we
ignore m - q inputs and consider the system resulting from the remaining
g inputs and the g outputs. In what follows we shall make the cor-
respondence in this manner, and then derive necessary and sufficient
conditions for decoupling of this more general problem closely parallel-
ing those of Falb and Wolovich.

First we shall expand our view of a decoupled system.

(2.3.1) Definition: A system (A,B,C) with A nxn, B n x m, and

C g x n real matricies m > q is effectively decoupled (e.d.) if the
associated transfer function matrix H(A) contains a nonsingular g x g
diagonal submatrix.

We say that such a system is effectively decoupled for the reason that
although the transfer function may exhibit interaction, a wise choice
of those inputs which are to be inactivated will yield a strictly
decoupled input-output structure. Note that this definition permits

a broad view of a decoupled system and specifically allows redundancy
in the system. That is, it is perfectly permissible for several inputs
to control a given output, an often desirable design criterion. Systems

with transfer function matrices such as

hl()\) hz(A) 0 0
H(A) = 0 h3()\) h4(A) 0 (2.3-1a)
0 0 0 hs()\)

or



| 0oL oAl 0| B
L 0 0 0 h4(l) 4

where the hi(A) are nonzero rational functions are e.d. by Def. 2.3.1.

The transfer function matrix of any e.d. system may be trans-

formed into
H(A) = [H(\) . 0] (2.3-2)

where ﬁi is g x g, diagonal and nonsingular, by the application of an

appropriate control law (0,G). If the nonsingular diagonal submatrix

of H(A) for an e.d. system consists of the columns il < iee < iq, then
.th

m x q and the j column of G

for G of the form [G 0] with G

15 1 1

given by Ei (the ijth standard unit vector in R© it follows that
3
H(A)G is of the form (2.3-2).
Now define the quantities di and Di i €mas per (2.2-4) and

(2.2-5). It is clear that these are again feedback invariants,

Di(F,G) = DiG' and for G nonsingular di(F.G) = di' i € g. However

this last requirement is somewhat restrictive and not necessary. Indeed
choose if we can a subset of q columns of B (without loss of generality

assume Bl,...,Bq and then write B = [Ei s Eé] with El n x q) such that
4.

CiA % Ei #0, 1¢ q. Then for G of the form

(2.3-3)
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with Gl g x g and nonsingular, G2, and 63 conformably dimensioned,

we have

and it follows that di(F,G) = di; i € g. Define the g x m matrix

Borrowing some terminology from Gilbert via Section 2.2, we
shall say a system is integrator decoupled (i.d.) if its transfer

function matrix has the form of (2.3-2) with the diagonal elements of

-d.-1
- . i .
H(A) given by hi(k) = Yil r 1€ q.

(2.3.2) Lemma: The system (A,B,C) is integrator decoupled if

d.+1
D= [T . 0) where I' is g x g diagonal and nonsingular and CiA * =0,
ieg.
di+l
Proof: From the definition of Di and since CiA =0, i€ gqit

follows that the ith row of the transfer function matrix of an i.d.

system, Hi(k), is given by (see[G2, Sect. 4])

a5 n-1-a, n-2-d, -
H, () =9 (0 - ¥ - e - wn-l-—di) [v;8,” : o1,

i %
where Y()A) is the characteristic equation of A, Y(A) = det(AI - A)

n n-1 ~A .th < .
= A - wlk - e wn' and e, is the i unit vector of RZ. Using

-the Cayley-Hamilton theorem together with CiAJB = 0 for j # di' it

-d.-1
. _ 1 i~ T e
follows easily that Hi()\) = Yi)\ (ei . 0). a
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Now we shall show that given a system (2,B,C), if D contains

a g x g nonsingular submatrix R, then there exists a control law (F,G)

such that (A + BF, BG, C) is integrator decoupled. To avoid undue

notational difficulties we assume that R consists of the first g
columns of D. (This condition does not involve a loss of generality
as it presumes only a renumbering of the inputs.) Partition B cor-

respondingly into an n x g and an n x m—gq block (Ei v Eé).

(2.3.3) Lemma: Consider the system (A,B,C) with D= (R . Q), R

: : .th
g x g and nonsingular. Let A* denote the q x n matrix whose 1i row

d.+1
is given by CiA ¥ s ie m. Then for the control law (F,G) where
R lax R o
0 0 0

the system (A + BF, BG, C) is integrator decoupled.

Proof. From the form of G, it follows from the preceding discussion

that di(F,G) = di' i € m. Further Di(F,G) DiG which equals

a, a, R i
c.alB :calti) = (&.7:70)
i .. i 2 3. G
0 0
9 s th
since CiA Bl is the i row of R. Thus we have D(F,G) = (Iq . 0).
Continuing,
di+1 di+l di
Ci(A+BF) = CiA + CiA BF + terms of the form

C.AJBF(+) for 0 < j < &, if 4, > 0.
1 S 1 1

If present, these last terms are clearly zero, whence



‘a,+1 d;+1 a _ _ [-rR7a
C,(A+BF) = = C.A + C,A (13l : B])
' 0
d.+1 d:. - -1
=CA- -CA " BR A
i 1
a.+1
=cal -8 =o.
i i
Then by the preceding lemma the result follows.

(2.3.4) Remark: If we don't assume that the nonsingular submatrix R

s

consists of the first g columns of D, but rather columns il

then the appropriate control law (F,G) has the following form. Let

sj be the jth row of —RflA* and fj be the jth row of F; then fi = sj
3

j € g, zero otherwise. Let r, be the jth row of R and gj be the

0) j € g, zero otherwise.

«ae e

jth row of G; then 9, = (rj
-

(2.3.%) Theorem: The system represented by the matrix triple (A,B,C)
may be effectively decoupled if and only if D contains a nonsingular

g x g submatrix.

Proof: (Necessity): Since the transfer function matrix of any e.d.
system will be of the form (2.3-2) for some appropriate control law
(0,G), we may assume without loss of generality that the ith row of

H(A;F, G) is given by

- ; T ;
H; (FG) = h, (LFGE," & 0) iegq.

It then follows from Remark 2.2.2 that D, (F,G) = D,G = V6. 3 O)s
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Now Y, # 0 for all i € g, otherwise we have Dj (F,G) = 0 for some j € g
implying that Hj()\;F,G) = 0 and contradicting the nonsingularity of

H(A;F,G). Then D(F,G) = DG = (T &

0) where I' is g x q, diagonal and

nonsingular, implying that rank D = q, and therefore that D contains

a g X q nonsingular submatrix.

(sufficiency): Follows from Lemma 2.3.3 and Remark 2.3.4.



CHAPTER 3

THE GEOMETRIC APPROACH TO DECOUPLING

3.1 Introduction

The method of attack of Wonham and Morse presents a striking
departure from that of Falb and Wolovich, and Gilbert. There is no
mention of diagoralizing transfer function matrices, nor do we find
conditions based upon the ranks of certain matrices. Instead, in their
works ([M6], [M7), [M8], [W7}, [wW8)), Wonham and Morse have acdopted
a geometric setting for their decoupling theory, and have changed the
question of whether there exists a control law (F;G) that decouples
(A,B,C) to whether there exists a suitable set of subspaces dependent
upon (A,B,C).

Using this coordinate free approach to decoupling, Wonham and
Morse consider a more general problem than that solved by Falb and
Wolovich. In the geometric formulation one may consider decomposing
a linear system into multi-input, multi-output subsystems rather than
just simply into scalar input, scalar output subsystems. That is,
we specifically allow qi > 1 for all i € k. The decoupling problem
considered in Section 2.2 then becomes a solvable special case of this
broader formulation.

The geometric method has led quite naturally to a vector sub-
space interpretation of the problem of decoupling using dynamic
compensation. Gilbert [G2] first discussed the possibility of em-
ploying additional integrators to decouple systems which could not

be decoupled by memoryless state feedback alone. In [M7], Morse and

~32=
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Wonham consider this issue as an extension of the static feedback de-
coupling problem and offer a nonconstructive proof.

Fabian and Wonham [F1l] have explored the question of generic
solvability of the decoupling problem. Given certain conditions on
the number of inputs and the number of outputs in each output block,
they have established that almost every system (A,B,C) may be decoupled
by dynamic compensation. Building upon their work, we will show that
the scalar input, scalar output decoupling problem solved by Falb
and Wolovich is also generically solvable.

In this chapter we will briefly present the geometric theory of
Wonham and Morse, including the results for the solvability of special
cases. Making use of a closed form expression for certain (A,B)
invariant subspaces, we are then able to show how general (A,B) i.s.
may be determined with respect to simpler subspaces. As (A,B) i.s.
play a key role in the Wonham-Morse geometric formulation, this
result provides us with some additional structure for these elements,
and is useful in tying together the geometric and input-output
approaches. For completeness, the results on decoupling via dynamic
compensation and generic solvability of decoupling are presented.
Finally we show an extension of the latter conditions and prove that

the problem considered by Falb and Wolovich is generically solvable.

3.2 Decoupling with Memoryless State Feedback

In this section we will eaxhibit the geometric formulation of
the decoupling problem following primarily [M8] and [W7]. We start

by introducing the notions of (A,B) invariant and controllability
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subspaces (c.s.) and then show how the solution to a decoupling problem
may be stated in terms of a set of c.s. Lastly, solutions for several
cases are given.

Throughout this description of the methodology of Wonham and
Morse we should keep in mind their primary thrust — noninteraction.
The constructions which will be shown are all intended to generate
maximal (with respect to inclusion) subspaces which create this
noninteracting structure.

Let us consider a discrete time system represented by the
difference equation (1.4-2). (As in the input-output approach we
could equivalently consider the continuous time system represented by
(1.4-1).) We no longer restrict our attention to cases where k = g = m.
Given a control law of the form (2.2-2) the resultant system is described

by

x(j+1) = (A+BF)x(j) + BGv(j), y(3j) = Cx(3). (3.2-1)

In light of our quest for a noninteracting control law it is quite
natural to examine the invariant subspaces of A + BF. Given the
matrices A,B and F, this is an easy exercise consisting of finding

the set of eigenvectors of the matrix A + BF. However given only A
and B, it becomes a distinctly different problem to determine if there

exists a feedback map F such that a given subspace is (A + BF) invariant.

(3.2.1) Definition: A subspace V is (A,B) invariant if there exists

some F such that (A + BF)V C V.

We will designate the space of (A,B) invariant subspaces (i.s.) by



..35_

I It is easily shown [W7, Lemma 3.2],[M8, Lemma 2] that V is (Aa,B)

A,B’
invariant if and only if

T

A set of (A,B) i.s. {Vi, ie 5} is said to be compatible if there
exists a single F such that (A + BF)UiC: Vi, i € k. Given a compatible
set {Vi, i € k}, it is easily seen that V*, the space spanned by ele-
ments of Vil1 Vi*, for i € k, is (A,B) invariant, where Vi* = 2 Vj.
j#i
jek

For it follows that

(A+BF)(Vin vj) = (A+BF) Vi N (a+BF) vjc viﬂ uj

for any i,j € k and hence (A+BF)V*C V*. However it is not generally

true that given V* € I_ _, the set {Vi, i € k} is compatible. At

A,B
most one can say that there exists an F such that (A+BF)(Vi+V*)C: Ui+~V*
for all i € k. We note that if the Vi's are mutually independent, then
the set {Vi, ieg 5} is trivially compatible.

Given any subspace N, we turn our attention to the set of (A,B)
invariant subspaces contained in N. This set is nonempty (it always
contains the zero subspace) and since IA,B is clearly closed under
addition it follows that this set contains a maximal element.

(3.2.2) Proposition: (Morse and Wonham [M8]) Given a subspace N of

dimension s, define

Y

Vg=N, V, =NNaW,_ +B), ies. (3.2-2)

Then Vs is the maximal (A,B) i.s. contained in N.
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If in the proposition above, dim N = n-1, the algorithm (3.2-2)
takes on a very simple form. There exists a nonzero vector z € Rn
such that N = Ker(zT), where ZT is a linear form on Rn. Define d as the
least nonnegative integer such that ZTAdB # 0 (recall (2.2-4)). As

(A,B) is assumed controllable, d is well defined. Letting Z denote

the subspace spanned by Z we have the following result.

(3.2.3) Corollary: (Morse and VWonham [M8]) If N = Ker(ZT), then the

maximal (A,B) i.s. contained in N is given by

V= (z+ ATz + .. + (AT)dz) . (3.2-3)

In a subsequent section we will return to this corollary and show how
it is instrumental in developing further structure of invariant sub-
spaces and a connection between the input-output and geometric
approaches.

Now given a subspace R, suppose we wish to find a feedback
control law (F,G) such that R and no larger space is completely

reachable. That is we want

R = {a+BF|BG} e BG + (A+BF)BG + ... + (a+BF)" 186G . (3.2-4)

We note immediately that if (3.2-4) holds then R is (A,B) invariant.
Furthermore it may be shown [W7, Lemma 4.1] that the explicit de-
pendence of R on G may be eliminated; if there exists a pair (F,G)

such that R = {A+BF[BG}, then
R = {a+sF|B N R} (3.2-5)

and conversely.
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(3.3.4) Definition: A subspace R satisfying (3.2-5) is called a
controllability subspace (c.s.).

We may further avoid the explicit dependence of R on the feed-
back map F indicated in (3.2-5) and develop a recursive construction
for a c.s. First we take note of the following fact. If R is (a,B)

invariant and W C R, then
(a+BF)W + BAR = (a0 + B) I R

for any F such that (A+BF)R CR [W7, Lemma 4.2]. This seemingly
obscure identity allows us to transform the summative construction

of (3.2-5) into a recursion independent of F. Indeed defining

BAR+ ... + (a+BR) 1B N R = (a+Bm)REL + B MR, ien

Ri

and

=0, S, =@s*1+BNR ien (3.2-6)

1

it follows that S = Rl, ien and
S™ = {a+sF|B N R} (3.2-7)

for any F such that (A+BF)R CR. Clearly then R is a c.s. if and only

if R=S". IfR is not a c.s., then since R ¢ IA it follows from

B

(3.2-7) that S” is the largest c.s. contained in R. This leads us to

a characterization of maximal c.s. from [W7].

(3.2.5) Proposition: (Wonham and Morse) Let N be a given subspace

and V the maximal (A,B) i.s. contained in N. Then the maximal c.s.

contained in N is given by
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R=1{a+58r|BNT} (3.2-8)

for any F such that (A+BF)7C V.
As noted in [M8], Prop. 3.2.5 provides a dual method of deter-
mining the maximal c.s. contained in a given subspace N. We may compute

V/ from Prop. 3.2.2 and then use the algorithm (3.2-6). Alternatively,
having V, we may determine an F such that (A+BF)7CV , and then
use (3.2-8).

For linear systems represented by the matrix triple (A,B,C)
it is well known [B6] that controllability of (A,B) implies arbitrary
pole assignment via feedback. As a c.s. is a reachable subspace, we

might expect some sort of pole assignment to hold on each c.s. Indeed

this is the case.

(3.2.6) Proposition: (Wonham and Morse [W7, Theorem 4.2]) Let R be
a c.s. and a(A) a monic polynomial such that deg a(A) = dim R. There
.exists an F such that (A+BF)RC R and the characteristic polynomial
of A + BFIR is a(A). Further, if 0 # b € BN R is arbitrary, F may
be chosen so that b generates R, that is R = {a+BF|b}.
An additional interpretation of c.s. in terms of open loop system pro-
perties is given in [M8]. In Chapter 5 a characterization in terms of
polynomial matrices will be developed.

’ Now let us see how these constructions of (A,B) i.s. and c.s.

relate to the decoupling problem. Assume that the ouput y(j) of the

system (1.4-2) consists of k subvectors

y;(3) =c;x(3), iek
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where Yy is a q vector and the g X n matrix C is partitioned

c = (C T;...;C T)T, with all the Ci's nonzero. A feedback control law

1 k
of the form
u(j) = Fx(3) + J G.v,(3) (3.2-9)
: ii
iek
(which is equivalent to (2.2-2) by letting G = (Gi;...;Gk)) where the

vi s are a set of external input subvectors, results in the closed

loop linear system
x(j+1) = (A+BF)x(j) + B ) G,v.(3), y,(3) =c;x(3), iek.
ek (3.2-10)

The control law (3.2-9) decouples the system (3.2-10) if the
input vy controls output yi and affects no other outputs for all
i € k. More formally let Ri be the c.s. consisting of the states
reachable from Vi

R, = {A+BF|BGi} , iek. (3.2-11)

Since ¥ is to be controlled via vis we must have

C.R,. =¢C, , iek (3.2-12)
ii | -

and for noninteraction

; chi =0, i#3j, and i,j €k . (3.2-13)

‘Denoting Ker Ci by Ni we may state the decoupling problem in terms of
a set of controllability subspaces [W7]: Given A,B, and Ni’ iek,

find conditions for the existence of a feedback map F and a set of
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C.S. {Ri, i € k} such that

R, = {a+rF|BAR] , i€k ; (3.2-14)
R. + N, = ®", i€k ; (3.2-15)
1 5 s
R, CK 4 n N . iek (3.2-16)
5 & 1 8 g —

jFL

jek

We note that conditions (3.2-14)-(3.2-16) are equivalent to
(3.2-11)-(3.2-13) respectively, and that a set of c.s. satisfying the
former constitutes a solution to the decoupliﬁg problem. Condition
(3.2-14) guarantees that set {Ri, ie 5} is compatible, while (3.2-15)
insures that each Ri is large enough to completely control output yi,
and (3.2-16) assures that Ri is small enough so that it has no effect
on other ouputs.

Given A,B and Ni' i € k, we may compute ﬁ;, the maximal c.s.
contained in Ki' i € kX by Prop. 3.2.5, guaranteeing noninteraction by

construction. It then follows that (3.2-15) is true only if
R. + N, = RV, i€ek. (3.2-17)
Furthermore it may be shown (see [M8] that the set of maximal c.s.,
{?;, i € k}, is compatible if and only if
A R*CB + Rx (3.2-18)

Thus (3.2-17) and (3.2-18) if true, are sufficient to yield a solution
to the decoupling problem, {ﬁ;, ic¢g 5}. However, (3.2-18) is not

necessary. That is, while the set of maximal c.s. may not be
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compatible, there may exist a set of smaller c.s., sufficiently large
to satisfy (3.2-15), but compatible.

Unfortunately there is no systematic procedure to generate
non-maximal solutions to the decoupling problem. Thus the geometric
method of Wonham and Morse yields a complete answer to the decoupling
problem only for those cases in which the set of maximal set of CeSisy
{?;, ieg 5}, provides a solution. At this point a simple example from

[M8] may help to clarify this point. Consider the system defined by

0 1 0 0 0 0 0 0] 0 \T 0 O
0 0 0 0 1 0 L 0 1 0 0
A= 0 0 1 0 1 , B = 1 0 0 ,Cl = 0 ,C2 =1 O
0 0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0

" . .th : :
Letting e i1 € 5 represents the i standard unit vector, direct

calculation yields ﬁi = Span{el,e ,es} and ﬁé = Span{e3,e ,es}. Thus

2 4

R* = Span{es} and (3.2-18) fails. However it is easily verified that

the set of c.s. R. = R., R_ = Span{e3, e

1 17 Ro + ae5} for_some scalar

4
o # -1 constitutes a non-maximal solution to this problem.

Let us now turn our attention to several special cases for
which the question of existence of a decoupling feedback law is

resolved.

(3.2.7) Proposition: (Wonham and Morse [W7, Theorem 6.1]) If rank
C = n, a solution to the decoupling problem exists if and only if

(3.2-17) holds.
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The proof of Prop. 3.2.7 is established by noting that rank C = n is

equivalent to r} N. = 0, whence R* = 0 and the set of maximal c.s.
iek

is compatible.

Another special case which lends itself to complete solution
is when rank B = k, that is when the number of inputs equals the
number of output subvectors. In this case it is clear that maximal

c.s. must be singley generated, i.e. dim(B N Ri) =1 for all i € k.

(3.2.8) Proposition: (Morse and Wonham [M8, Theorem 8]) If rank

B = k, a solution to the decoupling problem exists if and only if

B= ) BAR, . (3.2-19)
iek .

Furthermore, if (3.2-19) holds then {ﬁi, 3 &} is the only solution.
Proof: (Sufficiency): Although a proof is exhibited in [M8] it is
somewhat brief. For this reason we offer here an expanded version

. of that construction. To prove compatibility of the set {ﬁi, i: € 5}
we need only establish (3.2-18). Dropping the superbar briefly

to simplify notation, we have

A R* =A(ﬂ Ri*) cﬂ A R.* Cn (B + R,*) .
iek iek b iek =

Now consider (B N Rl*) Nnan Rz*). Since
Bn(R1*+Rz*+B)=BﬂRl*+Bn(R2*+B)

it follows by Lemmas A.l and A.2 (see Appendix) that
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" (B + R, *) N @ + R,*) = B + Rl* N (8 + R,*) (3.2-20)

(let B = X, R

n

* = Y and B + Rz* Z). Again from Lemma A.2, since

1

Bﬂ(R1*+R2*) BﬂRl*+BﬂR2*=B

by assumption, we have

Rl* N @B + Rz*) Rl*lT B + Rl* n Rz* .

Combining with (3.2-20) yields

(B + Rl*) N3 + Rz*) =B + Rl.* N Rz* . (3.2-21)

Having demonstrated (3.2-21) let us proceed by induction.

Assume for some j € ks J > 2

rw (B + Ri*) =B + r] Ri*

i<j i<j
and consider

H(B+R.*)=(B+||R_*)O(B+R.*)
XN, i R | 3j
i<j i<j

Since

Bn(ﬂ Ri*+B+Rj*)=B

i<j
it again follows from Lemmas A.l and A.2 that

(B + ﬂ R.*) N (B + R.*) =B+ (B + ﬂ R.*) N R.* (3.2-22)
i<j b 2 g | i<3 ¥ 73

(let B=X, R.* =Y, and B + r} R.*=12). as R, C (1 R.* and
J v o 1 e 1
i<j i<3

BC ] BNRCBN(Y RYCBN®++ [ %
i€k * iexk * i<y *
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by assumption, another application of Lemma A.2 yields

@+ [) Ri*)ﬂRj*=BﬂRj*+ﬂ R* .

i<j i<j
Combining this with (3.2-22) gives
-— *
Nern =8+ 7
i<j i<j
and establishes the induction. Thus we have shown that (3.2-19) implies

n (B+R,*)=B+n R.* = B + R*
iek * iek T

and thus A R* C B + R*, establishing the compatibility of the set
{R,, i e k}.
l —
To finish the proof of sufficiency we must establish (3.2-17).
From the assumed controllability of the pair (a,B)

IR = J{a+58FBAR}={an+5rF| [ BNR,} = {a + BF|B} = &
iek ¥ iek = iek *

for any F such that (A + BF)Ri C Ri' i € k. Thus

R'= ) R, =R +R*CR, +N.Cr"
1 1 1 1 1

proving the desired result.

(Necessity): It may be shown that given a solution set {ﬁi’ ie _}3}

dim B N .T-Q-i = 1 for all i ¢ k. From this fact necessity and uniqueness

follows. See [W7] for more detailed proofs. D
Morse and Wonham present existence results for one additional

case. If we constrain rank G = m, then
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B=8G=8 ] G C | BNR, CB. (3.2-23)
iek iek
(3.2.9) Proposition: (Morse and Wonham [M8, Theorem 7)) If rank
G = m, then a solution to the decoupling problem exists if and only
if (3.2-19) holds.
Sufficiency is proved exactly as for Prop. 3.2.8 and necessity follows
from (3.2-23) and the maximality of the set {Rg, i¢g 5}.

In general we will be able to arbitrarily assign some poles
without destroying the decoupled structure of a system. Roughly
speaking, the spectrum of A + BF may vary everywhere except where c.s.
intersect. More formally, given a set of c.s. {Ri, ieg &}, construct

the radical R*. Then for each i € k, let Ri be any subspace such that

R, =R, ® (R, N R,

1

Define Pi to be projection on Ri along R* + Z R., i€ k and PO to be
jek
J#i

the projection on R* along z Ri'
iek

For some fixed F such that (A + BF)Ri(: Ri' i€k, let Ai
denote the spectrum of P, (A + BF)IRi, i € k and AO the spectrum of

P, (A + BF) |[R*. Define nj = dim R*, n, = dim R;» i € k. Then we have

(3.2.10) Proposition: (Wonham and Morse [W7, Theorem 7.2]) The set

‘AO and the integers n and ni, i € k are fixed for all.F such that

ol
(A + BF)RiC: Ri, i € k. The sets Ai’ i € k may be freely assigned

subject only to the requirement of conjugate symmetry.
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3.3 Maximal (A,B) Invariant Subspaces

In the previous section a closed form expression for maximal
(A,B) i.s. contained in the kernel of a linear form was shown
(Corollary 3.2.3). 1In addition this result provides a first link
between the geometric approach and the work of Falb and Wolovich. We
shall now go one step further and demonstrate that arbitrary (A,B)
i.s. may, under certain circumstances, be decomposable into i.s. of
the form (3.2-3).

In general we could not expect the intersection of (A,B) i.s.

to be (A,B) invariant. For example, given

0o 1 1 o0
A= ol , B= 0
0 1 1

it is easily demonstrated that Vl = span{(1 0 -1)T,(O 1 O)T} and

V2 = span{ (0 1 l)T,(l 1 0)7} are both (A,B) i.s. However

Vl n V2 = Span{(-l 0 l)T} which is clearly not (A,B) invariant. The

difficulty, of course, is one of compatibility. If a set {Vi, ieg E}

of (A,B) i.s. is compatible, then r] Vi will be (A,B) invariant. We
iet

shall show in this section that given an (A,B) i.s. V, it is often
possible to find a set of (A,B) i.s., {Vi, iceg E} each of the form

of (2.2-3) such that V = rw Vi.
iet

First we put Corollary 3.2.3 in an alternative form for our

purposes. If N is a subspace of dimension n-1, i.e. N = Ker H for some



linear form H, then from (3.2-3) the maximal (A,B) i.s. contained in

N is given by

- TdT'L

7= (H +a"H + ...+ &)%) (3.3-1)
where HT is the image of HT, and 4 is the least nonnegative integer

such that H A% # 0. Since (HT)'L= N, ((AT)jHT)J' = A'jN, and

(X + VTL = XJT\ VJ7 it follows immediately that the max(A,B) i.s.

contained in N is alternatively written

V= AN, (3.3-2)

.
L Da

Now we move on to the general case. Let N be an arbitrary

T

subspace of Rn, and let Hl ,...,Ht

be any basis for the orthogonal

complement of N. If H is the t x n matrix whose ith row is given

!

by Hi’ i€ t, then N Ker H. Interpreting Hi as a linear form on

n ; ; 3 :
R, we may define Ni = Ker Hi, 1 € t. We note immediately that

dim Ni =n-1,i€e¢t, dimN =n-t, and that

NN w, .
ict
Resorting to basic definitions, x is an element of the

maximal (A,B) i.s. contained in N if and only if for some feedback

map F

(r + BF)? x e N, iet, j=0,1,... (3.3-3)

.
|

or equivalently

Hy (A + BF)Ix = 0 iet, j=0,1,... (3.3-4)
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Defining the feedback invariant di for each row vector Hi'

ieg t, as per (2.2-4), it follows that (3.3-4) is equivalent to

HA'x =0, for j < d, iet (3.3-5a)

H, (A + BF)7x = 0, for j > dv LER . (3.3-5b)

We find it useful to write (3.3-5a) in the complemented form

a,
1 .
xe Nl N a7 - (3.3-6)

iet \j=0

By the definition of Ni and di, i € t it is clear that

d,-1
B h (A'jNi) A (3.3-7)
iet\ J=0
Furthermore from (3.3-6)
d,-1
e Nl N @) (3.3-8)
iet \ 3=0 *

a -1
r -3 A n

where [] (a N,) =R if 4, = o.
j:

d.
Now for each i € t, since Hi is of rank 1, HiA lB # 0 if and
only if
-di n
A N, +B=RrR, ic€t.
d

Assume that the row vectors HiA lB, i € t are mutually independent and

‘consider the subspace

M = span{(a’) H) s

d.
1 T d]( HtT}



a,
If x € M, then x = ) ai(AT) o HiT. If x is additionally an element
iet
T o094 o .
of Ker B", then X aiB (A7) Hi = 0 contradicting the independence
iet
T oa

i . .
of the row vectors HiA B, i € t unless the scalars ai, i€t are

identically zerxo. Thus it follows thnat

MNker 8 = 0,

or equivalently by complementation

N @ *N)+B=xr". (3.3-9)
iet

By (3.3-9) we may write A x = b + w with b € B and

-d,
we [ 2 7 N;. From (3.3-7) and (3.3-8) it follows that
iet

d.
1 .
ve (N @N) =7,
iet 3=0

and hence V is the maximal (A,B) i.s. contained in N. For choosing

a basis x xl,...xS for V} with A xi = bi + wi, i€ s by (3.3-9),

we may construct a map F such that F X, =-u where bi = Bui for

some unique u, i € s. Hence (3.3-5b) follows for all x E'V, and

we have proven the following result.

(3.3.1) Proposition: Given a subspace N of dimension, n - t, let

T = 5 2
H;”, i £ t be a basis for N, and define Ni = Ker Hy with Vi the

maximal (A,B) i.s. contained in Ni' i € t. For each H; i€ t, let
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di be the feedback invariant defined by (2.2-4). If the row vectors

d.
HiA lB are mutually independent the maximal (A,B) i.s. contained in

N is given by V = r] Vi.
iet

Proposition 3.3.2 allows the reduction of the problem of
finding maximal (A,B) i.s. contained in general subspaces to the
special case of Corollary 3.2.3 when certain conditions are satisfied.

We note however that these conditions are not necessary for the

desired result to hold. Indeed let t = 2, and assume Hl # H2, but

d
i T . .
H.A ™~ =HA “ # 0. Then Span{(AT) . HiT)r]Ker B =0,1c¢€ 2 implies

a
Span{(AT) 1 HlT, (AT)

the remainder of the argquments leading to the proposition follow.

d
€ HzT} N xer BT = 0, whence (3.3-9) holds and

It is clear that the sum of (A,B) i.s. is again (A,B) in-

variant, hence 1 forms a join semi-lattice. Prop. 3.3.1 indicates

A,B
that under certain conditions the intersection of (A,B) i.s. will be
(A,B) invariant. Although the proposition is stated for maximal (A,B)
i.s., since any subspace is maximal relative to itself, its applica-
bility is general. For example let V and W be (A,B) i.s. with

{Hl,...Hs} and {H ,...Ht} bases for V and W respectively. For

d.
A ; i . .
di = di(Hi) i e t, if the row vectors HiA B, i € t are independent,

s+1

then ¥ M W is also (A,B) invariant.
We must however be careful about hastily applying Prop. 3.3.1
as the result is dependent upon fixed maps A and B, and the relatively

arbitrary linear forms H, i € t. That is given A,B, and N, we may
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choose a basis {HiT, iege E} of N'L and construct the set of row vectors
{HiA B, 1€ 5J. Yet the independence of this latter set is not an

invariant property of A,B and N. Given two different bases of

4

N ,{HiT, ie€ E} and {JiT, ieg E}pit is entirely possible that the

d(H,)
set {HiA + B, i€ E} is independent, while the set

a(a,)
{a.2 B, i € t} is not.

For example consider (A,B) given by

0O 0 0 1 0
A= o 1], B=|0 o0
0o 0 o 0 1

with N = span{(0 O 1373, Choosing the basis

#T = (100" 5T = (010)"
1 ! 2 )

L
for N, we have d(Hl) = 0y d(Hz) = 1, with H)B and H AB independent.

Now the maximal (A,B) i.s. contained in Ker Hl' Ker H, is given by

2

V(Hl) = Span{ (0 1 07T, 0 l)T}, V(Hz) = span{(1 0 0T} respectively.

Therefore by the proposition, the maximal (A,B) i.s. in N is

V(Hl) n V(Hz) = 0.

If we were to choose the basis

7 T
g, = (@100 J, =(110)

L .
for N7, then we would find that d(Jl) = d(Jz) = 0 and JlB = J,B.

In this case the maximal (A,B) i.s. contained in N is not given by
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V) NV, = spanf(o 1 0T, 00 1T}N span{(z -1 0)F, (00 1)7}

= Span {(0 O l)T}. In fact V(J1)|1 V(Jz) is not even (A,B) invariant.

3.4 Decoupling with Dynamic Compensation

The use of dynamic compensation to decouple where memoryless
feedback alone would not work was proposed by Gilbert [G2] in an
example. However Gilbert developed no substantive theory for dealing
with this more general problem. By considering dynamic compensation
as an extension of the state space, Morse and Wonham [M7] were able
to formulate this problem in a manner similar to that of decoupling
by state feedback alone. With the freedom of this state space ex-
tension, complete necessary and sufficient conditions for the
existence of decoupling control laws were derived.

Although our primary interest is decoupling by state feedback
alone, we will give a brief overview of the results of Morse and
Wonham for the sake of completeness, following [M8, Section 5].

In addition, this problem has motivated the work by Fabian and Wonham
[F1] on the generic solvability of decoupling problems, which we
present and extend in the following section.

Consider the discrete time system represented by (1.4-2) and

adjoin to it the set of n simple delays
x(3+1) = u(j)

where X and u are real n vectors, n to be determined. Letting ;'and E

denote the extended state and input respectively,
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X u
X = ' u = ’ we have the new system
% %
x(j+1) = A x(3) + B u(i), y(3) = C x(3) (3.4-1)

where A is (n+n)x(n+n), B is (n+n)x(m#n), C is (g+n)x(n+h)

_ A1O _ B IO _
T (-4--), 5 = (,) i o)
olo 1 I

a5 X
We define the projection P to be on - along Rn, i.e. P x = .
0
As in the formulation of the memoryless feedback decoupling
problem (Section 3.2) we allow contrcl laws of the form
u@ = Fx(3) + ] 6v.(3)
iek

; . n+n r+n
where now F is a mapping from R to R, and the vi's are a set

of external input subvectors with associated gains Gi' i € k. Using
this control law, (3.4-1) becomes

x(3+1) = (A + B B)X(3) + ) B G.v.(3), v(3) = C x(3).
Jex =

For a given decomposition of the outputs yi(j) = Cix(j), iek
of the original system, the suboutputs of the extended system are

given by yi(j) = E;Q(j), i € k, where clearly E; = (Ci . 0) and

- . n . ;
Ker Ci = Ker Ci (:) R'. Letting N, denote Ker Ci' i € k, the extended

decoupling problem may be posed as follows: Given A,B, and Ni' ie k,
find conditions for the existence of an integer n, a feedback map F and

a set of c.s., {Si, I 5}, of (A,B) such that
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s, = ®+FrENS), ek
Si+Ni+Rn=Rn+n, iek;
s,crt+ N, i€ k.
37
iek

We note immediately that this formulation differs from that of the
memoryless feedback case (3.2-14 through 3.2-16) only in the inclusion

of the free variable n.

(3.4.1) Theorem: (Morse and Wonham [M7, Theorem 1.1]) The linear
system (A,B,C) may be decoupled by dynamic compensation if and only

if (3.2-17) holds, i.e.

R+ N, =r" for i € k.
i i =

The proof of Theorem 3.4.1 hinges on the key fact that if Si

is a c.s. of (X}E) then PSi is a c.s. of (A,B), and conversely if PSi

is a c.s. of (A,B), then Si is a c.s. of (a,B). Using this fact,
Morse and Wonham show that given any set of c.s. of (A,B),{Ri, ie 5},

it is always possible to find an extension R and an independent

set of extended c.s., {Si' i € k}, with PSi = Ri for i € k. With the

problem of compatibility easily dispensed, it remains only to assure
output controllability. Roughly speaking, the solution method is

based on finding an n sufficiently large (n need never exceed z dim ﬁ;)
iek

such that each c.s. Ri' i € k may be separately injected into the
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extended state -space Rm:;1 eliminating in this extended space any nonzero
intersections which occur in R.

However as Morse and Wonham [M7] have shown, it is not generally
necessary to have an extension large enough to insure independence of
the c.s. of (A,B). Solution of the decoupling problem requires only
compatibility of the c.s., hence it may be possible to reduce the order
of the feedback compensator and still decouple, a most desirable design
objective. With n large enough, independence of the c.s. of (X}E} and
hence complete pole placement is assured. However for a minimal
state extension S* may be nonzero, hence all éoles may not be arbitrarily

assigned, and a situation described in Prop. 3.2.10 holds.

3.5 Genexic Solvability

The problems of decoupling by memoryless feedback or dynamic
compensation as formulated in Sections 3.2 and 3.4 respectively, have
been reduced to a set of mathematical conditions which must be
satisfied to assure the existence of a solution. However these con-
ditions themselves imply nothing about the abundance or dearth of
decoupleable systems. The utility of the theory of decoupling is
intimately tied to its applicability. Just as the ideas of con-
trollability and observability are powerful results at least partly
due to the fact that controllable and observable systems are dense
in the Euclidean topology, we might hope that decoupleable systems
are typical rather than exceptions or singularities.

In Section 3.2 an example of a decoupleable syétem, albeit

one where the constructions of maximal c.s. were of little avail, was
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shown. There is no apriori reason however to believe that system is

any more typical than one represented by

It may be readily checked that for this latter example
Ker C; = Span {(0 o l)T} ¢ IA,B’ thus ﬁé = 0 and the system may not
be decoupled.

Fabian and Wonham [F1l] have shown that decoupling by the use

of dynamic compensation is possible for almost all systems of the

form

x(3+1) = Aax(3) + Bu(d), y;(3) =C;x(3), iek

(or their continuous time analogs) with A n x n, B n x m and Ci

qi xn, i € k, real matrices, if and only if the integers n,m,d; .,

i € k satisfy some simple inequality constraints. Building upon this
work we then show that the problem of Falb and Wolovich, decoupling
an m—input, m—output system into scalar input, scalar output sub-
systems by state feedback, is almost always solvable.

In order to present the results of Fabian and Wonham we must
formalize the notion of generic solvability, borrowing some elementary
facts and terminology from algebraic geometry via [Fl]. Consider
the ring R[Al,...,AN] of polynomials in N indeterminates with real
'coefficients. An algebraic variety V C:RN is the set of common zeros

of a finite number of such polynomials. A variety is called proper if

. . N 5 5 3 5
it is not equal to R, and nontrivial if it is not empty.
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A property Il is a function on RN to a two element set,
{true, false} for example. If V is a proper variety of RN, we say Il
is generic relative to V if Il is true everywhere on R” except for a
subset of V. Il is deemed generic if such a V exists. Since a proper
variety is closed in the Euclidean topology, it follows that if II
is generic relative to V, for every x € v (the complement of V)
Il is true on some neighborhood of x. As a proper variety V cannot
contain any open set in RN, (if this were S0, the defining polynomials
would all be identically zero) it follows that if Il is false for
some x € V, then there exist points arbitrarily close to x such that
II is true at these points.

If we let N = n(n + m + a; + e oF qk), then RN is the real
Euclidean space consisting of system parameter sets (A,B,Ci, iek).
Each point of Rn represents a linear system with partitioned output
vector. In this formulation solvability of the decoupling problem by
dynamic compensation is a property Il on RN, and if I is generic, this

problem is solvable for almost all parameter sets (A,B,Ci, i€ K)s

(3.5.1) Theorem: (Fabian and Wonham [Fl]) Il is generic if and only

if
! g <n (3.5.1)
iek ;
m>1+ ) q, - min{q, [i ek} . (3.5-2)
i Z 1 1 o=
iek

Basically the theorem states that decoupling by dynamic compensation
is almost always possible if there are fewer outputs than states

(3.5-1) and enough inputs (3.5-2). Clearly we may never have fewer
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inputs than output subvectors and still decouple. From (3.5-2) it is
easily seen that if m = k, decoupling by dynamic compensation is
generic only if q; = 1, i€k,
A key element in the proof of Theorem 3.5.1 consists of showing
that given a parameter set (A,B,Ci, i € k), the subspace's Ki = rw. Nj,
j#i
jek
i € k are generically controllability subspaces. Since the condition
for solvability of decoupling by dynamic compensation (Theorem 3.4.1)
coincides with that for the special case rank C = n of the state
feedback decoupling problem (Prop. 3.2.7), it follows that Theorem
3.5.1 presents conditions for the generic solvakility of the latter

case.

(3.5.2) Corollary: For rank C = n, the decoupling problem is solvable
if and only if Ki = r] N, is a c.s. for i ¢ k. Furthermore, this

j#i

jek

is almost always true.

Proof: (Sufficiency): Since the rows of C are independent

3
jex

which is equivalent by complementation to

K. + N, = 8",
X 1

(Necessity): Rank C = n implies r] N. = 0, hence ﬁ;‘? Ni =0, i€k,
jek -

and thus Ri and Ni are direct summands. Since Ki and Ni are direct sum-

mands, and i%—C: Ki' we must have ﬁ; = Ki' ie k. *
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Theorem 3.5.1 and the discussion immediately thereafter indicate
that m-input, m-output systems considered by Falb and Wolovich, and
Gilbert are almost always decoupleable by the use of dynamic compen-—
sation. Indeed the theorem implies that systems for which m = k,
that is the number of inputs equals the number of output subvectors,
will be generically decoupleable if and only if the k output subvectors
are all scalars. We will now show that for such systems the de-
coupling problem is generically solvable by the use of state feedback

control laws alone.

(3.5.3) Theorem: The m-input, m-output state feedback decoupling
problem is generically solvable if k = m.

For the proof of Theorem 3.5.3 we first note that by Prop.
3.2.8, an minput m-output linear system with k = m may be
decoupled by a feedback control law (2.2-2) if and only if (3.2-19)

holds, that is

Then we proceed with a key lemma.

(3.5.4) Lemma: Given a linear system of the form (1.4-2), if
n>m> ) aq, (3.5-3)
= i
iek

then (3.2-19) is generically true.
Proof: We shall make use of the results on the generic dimension of
subspaces from [F1l] without specific reference. The interested reader

should consult [F1] for more complete background details. For
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convenience of notation we will drop the bar superscript to denote
maximal c.s., thus for this proof Ri = i;. Further, ;dentities which
hold everywhere except possibly on a subset of a proper algebraic
variety will be indicated by a postscripted (g).

We note that any r x s matrix Q generically has rank
t = min(x,s). For otherwise all t x t minors of Q must vanish
identically, in which case the elements of Q constitute a zero for

a set of polynomials defined on R->°. Thus dim CI =4q; (g) and

dim (Ker Ci) =n-aq (9), i € k. Then from (3.5-3)

dim ( § C.") = min(n,q,*) =a,* (9, iek

3#1
iek
where qi* = z q., and by complementation
j#i
iek

s = & G B _ * 2

dlmKi n mn(n,qi) n - a (@99, iek.
Fabian and Wonham have shown [Fl] that the Ki are generically c.s.
whence we have

dim Ri =n - qi* (99, iek. (3.5-4)

Since z BN RiC: B, we need only prove that (3.5-3) implies
igk

aim () BN R) =dimB=m (g . (3.5-5)
iek

Using the geometric identity

dgim (S N J) = aim(S) + dim(J) - aim(S + J)
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to expand the left side of (3.5-5) results in

dim(ZBﬂRi) = Aim(BAR) +ain( ] BﬂRi)-dim((Ban)n(Z BAR,)).

ick ick=-1 iek-1
But

aim(BAR)YN (] BAR) =aimR N (] BNR))
K iek-1 * gt iek-1 *

=dimR +aim( ) BNR) -aim(R + §J BNR,,
g iek-1 < % igk-1 &

which yields

aim( § BAR) = ain(B M R) - daimR + aim(R+ ] BAR

iek igk-1
(3.5-6)
Now
aim(B N R) = dim B + dim R_ - @im(B + R)
=m + (n'qk*) - min(n,m + n - qk*) (9)
=n-q* (9 (3.5-7)

as m > qk* by (3.5-3). Since

dim(B + Rk) min(n,dim B + dim Rk) (g)

min(n,m + n - qk*) =n (q9),
it follows from (3.5-7) that

dim(R+ J BN Ry) = min(n,n-q * + } (m=g, %) (@), (3.5-8)
Agkel iek-1

But

Q*+ ] aq*= (k1) J q,
K ek 1 iek T
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whence (3.5-8) becomes

aimR_+ §J BNAR) =mintnmn+ k-Dm - ) q)) (9
iek-1 iek

Combining (3.5-4),(3.5-7) and (3.5-9) together with (3.5-6)

gives

dim(ing n Ry) =m - q* - (- *) +n=mn (g

proving the lemma. E’

Proof of Theorem 3.5.3: For the m—input, m-output state feedback de-

coupling problem we have n > m = z qi by definition. Hence the
iek

result follows immediately from Lemma 3.5.4.



CHAPTER 4

CONNECTIONS BETWEEN THE INPUT-OUTPUT AND
GEOMETRIC APPROACHES TO DECOUPLING

4,1 Introduction

In the preceding chapters, two very different approaches to
the problem of decoupling a linear time invariant system by a state
feedback control law have been highlighted. The input-output method
of Falb and Wolovich [F2] and Gilhert [G2] made use of feedback invar-
iants and matrix manipulations, while Wonham and Morse [M8],([W7] chose
a geometric setting for their theory of decoup;ing. As each approach
led to a disimilar, yet complete solution of the m~input, m-output de-
coupling problem, we know that the two methods must be connected. It
is the primary aim of this chapter to develop that connection and then
use it to extend our knowledge about decoupling prcblems.

Morse and Wonham [M8] have directly shown the equivalence
of their necessary and sufficient condition for decoupling an m-input,
m-output linear system into scalar input, scalar output subsystems
(Prop. 3.2.8) with the result of Falb and Wolovich (Theorem 2.2.3) for
a simple case k =m = 2, Of course these two results are implicitly
equivalent as they represent necessary and sufficient conditions for
solving the same problem. However by explicitly demonstrating this
equivalence we begin to explore the connections between the matrix
D and the c.s. {ﬁi, i € k}. For this reason, using the characteriza-
tion of maximal (A,B) i.s. given by Prop. 3.3.1, we will give an ex-
panded version of the Morse and Wonham proof, generalizing to the case
of arbitrary k.

-63-
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Following these connections we return to the canonically de-
coupled form of Gilbert (Chapter 2, Section 2) and reinterpret it in
light of our familiarity with c.s. It will be shown that the constructions
used by Gilbert to develop this form are naturally related to the methods
of Wonham and Morse.

We have already seen that Prop. 3.2.8 gives conditions for the
solvability of a larger class of decoupling problems than originally
considered by Falb and Wolovich. Building upon the equivalence between
Prop. 3.2.8 and Theorem 2.2.3 for the case k =m =g, we will derive
a strong necessary condition, in the form of the original Falb and
Wolovich result, for decoupling of linear systems into single input,
multiple output subsystems, and then show that it applies to more
general decoupling problems. The result developed, in terms of an
augmented D matrix, is deemed strong as we shall show in an example
that there is no further information pertaining to decoupling to be
extracted from such a formulation. 1Indeed, in this example, we shall
demonstrate systems with identical augmented D matrices, some of which
are decoupleable, others not.

Our attempt in Section 4.3 is not to duplicate, albeit in a
different form previously established results. Wonham and Morse [W7],
Sato and LoPresti [S4], Silverman and Payne [S6] have solved this

problem. However the gecmetric condition B = Z BN ?; is not easily
iek

verified given a system (A,B,C). The conditions of Sato and lLoPresti,

Silverman and Payne involve a complicated algorithm and are also not
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easily applied. On the other hand, the original result of Falb and
Wolovich is easily implemented. Our aim in this section is to exploit
the geometric result (3.2.19) to obtain a strong, yet readily applied,

necessary condition for this problem.

4.2 The m-Input, m-Output Decoupling Problem

Falb and Wolovich have shown that the decoupling problem for

k =m = g is solvable if and only if the matrix

a a
p=[(ah) L clT;...: (A » C!'nT]TB

is nonsingular (Theorem 2.2.3). Wonham and Morse have shown this

problem solvable if and only if B = z B N ﬁ; (Prop. 3.2.8). 1In this
iek

section, following a result from [M8], we will establish the direct
equivalence of these two conditions, illustrating the connections
between these two highly varying methods.

In Section 3 of Chapter 3 it was shown (Prop. 3.3.1) that under
certain circumstances the intersecticn of maximal (A,B) i.s. would
again be a maximal (A,B) i.s. Preparatory to the proof of equivalence
to follow, we demonstrate a rather obvious, but nevertheless useful

fact.

(4.2.1) Lemma: Let Vi be the maximal (A,B) i.s. contained in Ni» i et

and U the maximal (A,B) i.s. contained in N= IN.. Then V C N Vi.
iet iet

Proof: Let x € /. Then (A+BF)jx e N for j > 0 and scme F. But clearly

3

then (A+BF)°x € N;, j > 0,1 € t, so by the definition of Vo xelV,icet. i !
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Now let us proceed to the main result of this section.
(4.2.2) Proposition: The necessary and sufficient conditions for

solvability of the decoupling problem for k =m = q,

rank D = m

are equivalent.
Proof: To demonstrate this equivalence we will rely on the character-
ization of maximal (A,B) i.s. contained in a subspace of dimension

n-1 (Corollary 3.2.3). The geometric result, B = z BN ﬁ;, may be
iem

written in terms of maximal (A,B) i.s., which by Prop. 3.3.1 may be
deccrnposed into intersections of (A,B) i.s. of the form given by the
corollary. Taking orthogonal complements, we arrive at a condition
based on one dimensional sukspaces which are related to the rows of D.

Let Vi be the maximal (A,B) i.s. contained in Ni = Ker C,, iem.

From Corollary 3.2.3 we may write Ui = Si + Zi' iem
d.-1
- T gl AR ¢ i
Si SPan{ci + oo + (A7) 4 1 iem
d.
z, = span{(AT) . CiT}, iem,
é = Q.

where S, = 0 if 4.

i i
We denote Ker BT by N, and it follows from the definition of di'
iem that

z; NN =o, iem. (4.2-2)
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Define'V; to be the maximal (A,B) i.s. contained in Ki = rw N
IFL
jem

j’

2 .th . .
i € m and assume rank D = m. Then since the i " row of D is given by

d,
CiA lB, it follows from Prop. 3.3.1 that

v.=Nuv, iem . (4.2-3)
3 9
jem

Since ﬁ; is the maximal c.s. contained in Ki' i e m, by Prop.

3.2.5 we have BN ﬁ; =B V;, ieg m, and hence the condition

B= ) BN ﬁi is equivalent to
iem

B = .z B n Vi . (4-2-’4)
ieEm

Taking compliments of (4.2-4) yields

N= N (N+Vi‘l‘) = NN+ ) V?L) = N+ 72,9 (4.2-5)

iem iem j#i iem
jem

with Z,# = } Za Le m and where we have implicitly used the relations
J#i
jem
(4.2~1) through (4.2-3). It then follows (4.2-4) and (4.2-5) are
equivalent conditions when rank D = m, and we need only demonstrate

(4.2-5).

d d

o
Now rank D = rank D° = rank(BT[(aT) * ClT:...:(A y can,

hence the subspaces N, Zi' iege m are mutually independent. Then if
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X € .r] (N + Z;%) we may write
iem

where w, € N, and zij € z,, i e m. Letting i = 1,2 we have

jl

w, + z + cs0 + 2Z =w, + 2 + z + cos + 2Z

1 12 Im 2 21 23 2m
or
Tax T Yo T Mg T Bgg W Uy " B Wk B iEy F Eg )
However the independence of N, Zi' ice g_implies'that z,, = Z,, = o,

wl = Wy and zlj = 22j' for j = 3,...;,m. Continuing in a similar

manner we may show that zij = Ofor all j # 4, 4,j ¢ m, whence it

follows that x € N. Thus we have shown

N v+ ;%) CN,

ieg
and since the other inclusion is obvious, (4.2-5) follows.

Now let us assume that B = § B ﬁ;, or equivalently,
iem

that (4.2-4) holds. By Lemma 4.2.1 we have

7; c r\ s iem

j#i 3 B
jem
whence we have
Bc Y BN (N AR (4.2-6)
iem jF#i

jem
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But since the reverse inclusion is obvious we may assume equality in

(4.2-6) . Taking complements and noting that U;L = Si + Zi' iem we
again obtain (4.2-5), that is

N= N+2Z.m .

ieg

From (4.2-2) we have

z, NN =20 (n(N+Zj*)=0, iem .
jem

This latter expression may be expanded

z, N N+ z
j#i

Jem

3*)) N (N + Z,*) = o. (4.2-7)

But clearly zg C:Zj* for j # 1 and i,j € m by definition, and so

(4.2-7) implies.
zy N (N + 2, =0, iem. (4.2-8)
Therefore

dim(zl+...+zm + N) = dm(zl) + dlm(22+...+zm+N) -dim(Zlﬂ (22+...+zm+N))

where the last term is zero by (4.2-8). Continuing in a like manner,

it is readily established that

d:.m(zl+...+zm + N) = d:.m(zl)+...+ dim(zm) + dim N .

As dim N = n-m, and the subspaces Zi' i € m are nonzero by construction,

dlm(z1 + .. + zm + N) = n, hence

n
Zl+-.-+Zm + N = R . (4-2-9)
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since N = ker BT we have
T T
= +..l+z L]
B B (zl m)

4
Thus dim BT = rank(sT[(aT) T ClT:...:(AT)

H CmT]) = rank DT =nm,

In Section 3 of Chapter 2 we explored the problem of decoupling

proving the desired equivalence.

a system with more inputs than outputs into multiple input, scalar
output subsystems. Having defined an augmented D matrix, it was shown
this problem is solvable if and only if D contains a g x g nonsingualr
sulmatrix. In terms of the geometric formulation this result, Theorem
2.3.5, implies that the decoupling problem with m > q = k is solvable
only if there exists a set of singly generated c.s., i.e. dim(B N Ri)==l
for all i € k, satisfying (3.2-14) thru (3.2-16). This we now briefly
demonstrate.

Assume there exists a compatible set of c.S., {Ri, ieg g}
which constitutes a solution to this decoupling problem. Consider any

C.S. Rj for which dim(B N Rj) > 1 and choose a basis'b. peeesb for

jl jxr
B N Rj. Then
Ry = {a+8F|B N Ry} = ie)::r {A+BF|bji}7
and since Rj + Nj = Rn, it follows that for some s €
45
Cj(A+BF) bjs # 0,

and furthermore

Rj = {A+BF|bjs} on Rj.
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We may then choose Gj such that BGj = bjs

Continuing in a similar manner for all other Ri with

dim(B N Ri) > 1, we may find a new set of c.s., {ﬁi' ice g}, where
ﬁi = R, if dim(B n Ri) = 1, which are singly generated and satisfy

D(F,G) = DG is of the form [R : 0] where R is ¢ x g and nonsingular.
Since rank G = g by construction, it follows that D must have rank of

at least ¢, and thus contain a ¢ x g nonsingular submatrix.

4.3 The Canonical Form of Gilbert

In the second section of Chapter 2 we briefly presented the
definition of canonically decoupled m-input, m-output linear systems
by Gilbert [G2], and stated the result that every integrator de-
coupled (i.d.) system is similar to a canonically decoupled (c.d.)

. system. (Remember, a system (A,B,C) is i.d. if D is diagonal and

4.+l
nonsingular, and Ci(A+BF) o= 0, 1 € ms) Having gained familiarity

with the geometric method of decoupling in Chapter 3, we return to
Gilbert's canonical form for decoupled systems and re-examine it in
.
terms of invariant subspaces.
In proving the result that every i.d. system is similar to a
c.d. Eystem, Gilkert resorted to certain subspace constructions. We

‘will show that these subspaces tie in quite naturally to the geometric

problem formulation. As it is more convenient to deal with subspaces
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of the state space rather than its dual, we shall redefine Gilbert's

decomposition to effect that desire.

3 1B
For a linear system (A,B,C) let Bi' i € m denote the i

column of B, Ci'

Q_i = {x]xTAst =0, s#1i, s ¢ m, j = 0,...,n-1}, i € m.

If Ri is the subspace reachable from the ith input (or the ith

controllability subspace),

R, = {AIBi}, iem
B
then it follows that QiCZ Rj j #4i, 1,3 € m, and hence

j#i 2
jem

iem the ith row of C. Then define the subspaces

(4.3-1)

Having defined the subspaces Qi’ i € my we show some of their

properties via a lemma.

(4.3.1) Lemma: (Gilbert [G2, Lemma 1l]) Assume the system (A,B,C) is

i.d. and controllable. Then for i ¢ m:
; 5 4 .
(1) Qi is an A" invariant subspace;

(ii) QinQ—j=° for 3 #4i i,jem -

d,
2 403 T T T 1 3 .
(iii) ci /A Ci ,...,(AT) CiT are linearly independent

3 elements of Qi, i€ m.

.A formal proof of Lemma 4.3.1 may be found in [G2]. We do note however

that the proof of condition (i) requires neither the assumptions that

(a,B,C) is i.d. nor controllable; the proof of (ii) requires solely the
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centrollability of (A,B); to prove (iii) we need only that (A,B,C)
is i.qd.
It should be pointed out that the subspaces Qi’ i € m are not

. i : T
in general invariant under feedback. For example, x ABj = 0 does not

imply xT(A+BF)Bj = 0. However we do have the following invariant

property of the Qi's.

(4.3.2) Lemma: Qi is the maximal AT invariant subspace contained in

L
nB. ,iE_nl.
371 2
jem
3 i b YA 5
Proof: By Lemma 4.3.1 Qi' i em is A" invariant. For x € Qi'
T C N .3
x B, =0 for j#1i, 1i,3 € m by definition whence x ¢ B
3 = s 3
j#i
jem
1
which proves Q. C r1 B, , ic¢€ m.
3 g = =
j#i
jem

Now assume to the contrary that there exists a subspace
T = ko
Qiny_i, such that QiCQi, a Qicqi and Qic: nBj

71
Jem

, for some

i € m. Choose x € Q;I x ¢ Qi' Then xTéj = 0 and xTAsBj for

s=0,.0yn-1, § #1i, j € m. But then x € Q_i by definition, a con-
tradigtion.

Gilbert uses the subspaces Qi, i € m to produce a similarity
transformation which takes a controllable i.d. system (A,B,C) into a

c.d. form [G2, Prop. 5]. 1Indeed, define p, = dim Qi’ i em, and let
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n
Q ,, be any subspace such that Q, ® .. ®2, =xr.
Let pm+l denote Qm+1' Using Lemma 4.3.1 (iii), Gilbert demonstrates

a basis in which the controllable i.d. system is c.d.

We have seen from Lemma 4.3.1, that if (A,B,C) is i.d. then

da,

3 ; y
CiT,...,(AT) CiT are independent elements of Qi for i € m. Let si

be the largest nonnegative integer such that

S

T T i T
wi Span{Ci,...,(A) ci}

has dimension si+1, ieg m. We shall call wi the observability subspace

of C i €m or simply the ith observability subspace. For (A,B,C)

i'
i.d. it is clear that s, < di' i € m, and any initial condition
x0 £ wi may be uniquely determined by observing solely output i

under the free action of the system.

For a system (A,B,C) i.d. and controllable, we have
n
, ® ... ®2 ® 2, =r,
. n o .. .
whence we may form a basis {qll""'qlpi'qZI""} of R witn qij € Qi

for j e P; v iem+tl. Let x € Rl. Then by (4.3-1) quij = 0 for

j e Ei » 1#1, iem, and hence x € Ql ® Qm+1' It follows

immediately that Ry c:Ql ® Q .+ and hence generally

R, € ® %u' iem. (4.3-2)
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We note that we may always choose

L L
= = = * *
Q1 = (I Q) N =Nrx=r
iem iem iem
where the third equality follows from (4.3-1). For (A,B,C) c.d. and
controllable, the particular form of A,B and C from (2.2-11) thru

(2.2-14) irmediately yields

R, =0 ® R MNRs iem (4.3-3)

Since every i.d. system is similar to a c.d. system [G2, Theorem 2],
it follows that (4.3-3) holds for controllable i.d. systems.

As (A,B,C) is assumed ccntrollable, Z Ri = Rn. For any
iem

n - ; : n 3 7
X € R, let x denote its coset in R /R*, and define the induced map

A : R'/R* > R°/R* in the usual manner, A x = Ax. Then by [M7, Theorem

1.2] we have

nw>

Qi:ﬁ.

i (Ri + R*) /R*, iem (4.3-4)

Q, + N, =)', iemy (4.3-5)

2, CQ ® R, i€ m. (4.3-6)

Furthermore, as was shown in Prop. 3.2.10, the spectrum of K]ﬁ;, iem
may be freely assigned subject only to the requirement of conjugate
symmetry.

Equation (4.3-4) shows that the subspace Qi' i € m are canon-

ically isomorphic to the independent position of the c.s. Ri, iemn,
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As R, + N, = R for i€ m and R* C r] Ni' (4.3-5) follows directly
i i B sem
from (4.3-3). Finally (4.3-6) follows from (4.3-3) and the invariant

properties of the Ri' i e m. Further, the subspaces wiC Qi' iem

are canonically isomorphic to the controllable and observable portion

of the state space of the ith subsystem, (Ai'bi’c This fact is

i)
easily seen for a c.d. system by the special form of A,B and C in
(2.2-11) thru (2.2-14).

we have already mentioned that a system (A,B,C) in c¢.d. form
is generally neither controllable nor observable. Since every c.d.

system is i.d., the subsystems (Ai'bi'ci) are easily seen to have

-d,-1
transfer functions hi(k) = Yik 4 + i € m. As Gilbert shows [G2,

Theorem 4], for (A,B,C) c.d., a control law of the form (2.2-15) and
(2.2-16) preserves decoupling, and results in subsystem transfer
'functions

oy (A)y,0,

1 iemn (4.3-7)

hi(MFoG) = m“ m

where wi(A;Gi) = det(kIpi—Ai-biei) and ai(k) = det(AIri - @i) with

.

ai(X) é 1 if r, = pi—(di+1) = 0, for i e m. Since it is clear that
(Ai'bi) is a controllable pair (see(2.2-14)), the coefficients of
.wi(lxei) may be arbitrarily altered by the feedback ei. Fox 61 = 0,

Gi =1, 1 e m, it follows that
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ai()\)Yi
d.+1

hi(Kzo) =
y e a; (N)

= hi(k), iem

i.e., there is a total cancellation of numerator dynamics.

If the c¢.d. system (A,B,C) is both controllable and observable,
then it follows from Chandrasekharan [Cl] that ai(k) =1, i e m and
the c.d. form is completely determined by the feedback invariants di’

i em. It is clearly true in this case that every feedbkack law which

decouples (A,B,C) preserves observability. If

m + d; < ] py=n
iem iem

then it follows that pole-zero cancellations may occur, and hence
obserxrvability of the decoupled system depends upon the particular

feedback law used. For 2 pi < n, no feedhack law will leave the
iem

decoupled system observable, for it is easily seen in this case that
R* will be nonzero.
At this point an example would be of value. Consider the

controllable c.d. system (A,B,C) where

0 o:o:o 1 0 .
P 1 0 0 o0
a=f t_1t19.°9), =Y O}, c=
o o lot o o 1 0O 0 1 o©
_____ b o
1 1 1)1 |

£ 31k £ ¥ = g = = - =
It follows of course that dl G, 0, pl 2, p2 1 and p3 1.

h = =
Further we have Rl Span{el,e ,e4} and R2 Span{e3,e4} where e; is

2
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th

the i standard unit vector in R4. From (4.3-1) we see that

= = = * =
Ql Span{el,ez} and Q2 Span{e3}, and we may choose Q3 R RIIT R2
= Span{e4}. It is observed that the Qi's are canonically isomorphic to
the independent portion of the Ri's, ie 2.

The transfer function matrix H(A) for (A,B,C) may be determined

rE @

H()) = _
0 > i

and it is immediate that the subsystem (Al,bl,cl) is unobservable,
while (Az,bz,cz) is controllable and observable. The observability
subspaces wl and w2 are given by Span{el} and Span{e3} respectively.

From (2.2-15) and (2.2-1€), it follows that the control law (F,G)

decourles (A,B,C) if and only if

With (F,G) so defined, it is easily verified that we have

(X—l)Gl
h (A,FlG) ol o PR
1 (A 81)(k 1: 92)+92(l+61)
1
hz(X;F,G) A-93 "

For almost all values of 61 and 92, it follows that the subsystem

(A, + bl(elez), b151' cl) will be observable.

1
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4.4 Decoupling into Single-Input, Multiple Output Subsystems

In the first section of this chapter we proved the equivalence

of the gecmetric condition (B = Z BN ﬁ;), and the input-output con-
iem

dition (D nonsingular) for the problem of decoupling an m-input,
m-output linear system into single input, single output subsystems.
However, we are well aware that this gecmetric result is a necessary
and sufficient condition for the existence of a solution to the problem
of decoupling a linear system into single input, multiple output
subsystems, i.e. m = k, qQy > 1 for all i ¢ 5,‘(see Prop. 3.2.8). Hence,
it seems perfectly reasonable that we might extend the original Falb
and Wolovich condition to cover this more general decoupling problem
formulation., In this section we will develop a strong necessary condi-
tion of this form, in terms of submatrices of an augmented D matrix, for
such a problem, and then show it applies to an even more general for-
mulation.

We shall derive the desired condition in four steps. First,
as in the proof of Prop. 4.2.2, we will transform the geometric con-
dition (3.2-19) into one involving (A,B) i.s. and then by Prop. 3.3.1
show that this implies a condition involving i.s. of the form of
Corollary 3.2.3. By a simple manipulation we arrive at an equality
explicitly involving the rows of the matrix C.

.Before demonstrating this first step, let us establish some
notation. Assume we are given a linear system (1.4-2) with desired
decomposition of the outputs into m subvectors yi(j) = Cix(j), where

Ci is q; x n,
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O oo

iqi

Define Nis = Ker Cis for s ¢ qi » and i € m, with Ni = Ker Ci' for i € m.

Then Ni = r] Nis' As before we let Ki fW Nj' and denote the max-
seq, J#L

imal (A,B) i.s. contained in Ki by V;, ie m. Finally, let Uis be the

maximal (A,B) i.s. contained in Nis for s ¢ qy and i € m. Then by

Corollary 3.2.2 we have

L
Uis = Sis + g for s € Eil and i € my
d, -1
_ T T, is iy
T dis T
2, = span{ (A") Cis}
da

where dis is the least non negative integer such that C SA *2 5 # 0

i

for s € q;s and i € m, and Sis g {o} if d;, = 0. Letting N = Ker BT

’

we note that SiSC: N and i NN =0 for s ¢ qy and i € m.

Let us now prove the first step.

(4.4+1) Lemma: The geometric condition B = z BN E; implies
iegl
N=( W+ (7 Zyg)) e (4.4-1)
iem' j#i se

q
jem -
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Proof: By Prop. 3.2.5 the condition B = Z BN ﬁ; is equivalent to

iem

B= ) BNV, . (4.4-2)
iem

From Lemma 4.2.1, together with the definitions of Ki and Ni' iem

V. f] ( r] V. ), iem,
i ; js =
JFi seq
jem  —
whence (4.4-2) becomes

8= J @&n 1l N von, (4.4-3)

ieg_ j#L seqi
jem  —

where equality holds as one inclusion is obviocus. Taking complements

of (4.4-3) yields

o
N= ) N+ § () Vig 1> (4.4-4)
iem j#i seq,
Jem —
But since Vjs = Sjs + zjs for s ¢ Si.and J eEm, (4.4-1) follows
immediately from (4.4-4). E:3

At this point we wish to emphasize that the converse of Lemma
4.4.1 is not generally true. That is, (4.4-3) need not imply (4.4-2).
Of course, if Vi = r]( r] V.s) for all i ¢ m, then the converse would
j#i seq,
i
jem —

hold, as was the case in the proof of Prop. 4.2.2.
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To simplify notation in (4.4-4) let us define

Zj=Z Z; ’ jem

Js -
SEQ.,
s |
7x= z Zj' iem
j#i
jem
whence (4.4-1) becomes
N=1[) N+ 2%, (4.4-5)
ieg

Then the next step in our development is a technical, but relatively
straightforward lemma which reduces (4.4-5) to a series of simpler
subspace inclusions.

(4.4.2) Lerma: Condition (4.4-5) is true if and only if

Zi N KN+ Zi*) CN, iem. (4.4-6)

Proof: (Necessity): Assume to the contrary that there exists an

x € I, such that x ¢ N + Zi*, ard x ¢ N. But then since Z, © Zj* for

j#4i, with i,j ¢ m
x € (N + Zi*) n ¢ r] N+ Z.x =N
i ?

by (4.4-5), a contradiction.

(sufficiency): Assuming (4.4-6) is true, choose x such that

X € n (N + Z.%,
iqg -

Therefore



Xx=w + ) zZ,., iemn
A § -
jei I

jem

where w, € N and zij € Zj' i,j € m. In particular

X = wl + 212 Foeot ern = W2 + 221 + 223 +oas sz-

Thus it follows that z_ . € (N + 22*) n Z,, implying that z

12 o € N by

1

(4.4-6) ., Similarly, we may show z € N for s # 1, s € m, which

1ls
implies x € N, proving the result.
The next step in our development consists of showing that

(4.4-6) may be reduced to a series of statements about the one

dimensional subspaces st for s € qj, and j € m. Indeed we will show
that (4.4-6) is equivalent to

st N + Zj*) = 0 for s € qj, and j € m. (4.4-7)

We note that (4.4-7) does not follow immediately from (4.4-6) for

arbitrary subspaces; it will be necessary to exploit the particular

structure of the zjs to arrive at the desired conclusion.

(4.4.3) Lemma: Condition (4.4-6) is true if and only if (4.4-7) holds,
! * = 3
zjsn(!wrzj) 0, forse?l, jEm .

Proof: (Necessity): By the definition of st'

z, NN=0 for s¢ i € m.
L -

Assuming (4.4-6) holds we have by the previous lemma
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N= (] (N+ 2%
1
iem

whence

z. MN=z, A (N W+2Z5 NN+2Z% =0, for se q,, ien.
3s LR 3 e
iem

But since stc Zi* for j # i, 4i,J € m, it follows that

sﬂ(N+Zj*)=O, for s € q,, 3 €m,

z

3 e
(sufficiency): Consider the subspaces N + Zi*, i € m. since rank B = m
we have dim N = n-m. Furthermore, it follows from (4.4-7) that Zi*,

for each i € m, contains at least m-1 independent vectors which are

| v

n-1, i € m.

also independent of N, and hence dim(N+Zi*)

]

To demonstrate this fact let us fix i 1, and choose the set

of m-1 vectors in Zl*,

4,
= (A") C.er, for 3 #1, 3 € m.

We note that zjl = span{zjl}, j € m. Choose a basis wl,...,wn_m of N.

since z,, 1 N = 0, it follows that the vectors {z reeer W} are

5 Rl |

independent. Then by (4.4-7), Zj, NN+ Z3*) = 0, implying

3 N (N + 22) = 0 whence the vectors {z Sy ...,wn__m} are inde-

Y 217831/ Yy

pendent. Continuing (4.4-7) implies 241 NN + 22 + Z) = 0 and

3

hence the vectors {z YW ,...,wn_m}. By repeated application

21'%31"%41"™1

of (4.4-7) we achieve an independent set of n-1 vectors in N + Zl*,
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{z

ounod foee 'wn-m}' Using a similar construction we may show an

21 2’1

identical result for any i € m, i.e, dim(N + Zi*) > n=-1. Appealing
once more to (4.4-7), we see that we must have strict equality in the

result above, hence
dj-rﬂ(N + Zi*) = n'l, i € gc (4 .4"‘8)
Now

dim(Z, N (N + Z,%)) = dim Z, + din(N + Z,%) - dim(N + jzm 29, iem

From (4.4-7) and (4.4-8) it follows that

dim(N+ZZ =n

)
jem
whence

dim(Z; N (N + Z;%) = dim Z; - 1, iem. (4.4-9)

Consider now the subspaces N + Zi, i € m. since z4y € Z:L’

and zil NN =0, it follows that

dim(N + Zi) >n -m+ 1, i€em. (4.4-10)

— —

For concreteness, choose i = 1., Then by (4.4-7) there exists 221 € 22

such that Z,1 N N + Zl) = 0 and thus
: _ i
dim(N + Zl + 22) dim(N + Zl) > 1.

Continuing it follows that

dim(N + Zl+22+23) —dim(N+Zl+Zz) >1
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whence

dim(N + Zl + Z:2 + 23) - dim(N + Zl) > 2.

Applying (4.4-7) repeatedly, we may readily establish

dim(N + } Z,) -dim(N + Z)) >m - 1. (4.4-11)
jem J i

Comparing (4.4-10) for i = 1, and (4.4-11) it is immediately clear

that strict eguality must hold in each. Since the construction yield-

ing (4.4-11) is valid for i # S O m, it follows that

—

dim(N + Zi) =n-m+ 1, iem. (4.4-12)

Therefore, from (4.4-12) we have

dim(Ziﬂ Ny = dim Zi+dimN-dim(Zi+N) = dim Zi-l, 1 € m.

(4.4-13)
Comparing (4.4-9) with (4.4-13) and noting
Z,AONCZ, NN +'zi*>, iem
it is immediate that
ZiNN+2,% =2 NNCN
which was to be proved. E:}

Now we are ready to demonstrate the final step in our develop-
ment. First we will define an augmented D matrix for this system and
then show that (4.4~7) is equivalent to statements about the ranks of

sulmatrices of this matrix D. Define the g X m matrix D as



js
We shall designate the row C., A 3 Bof Dby D. , for s. € q,, j € m.
I8y 385 i3 =

For each i € m the qi X m submatrix Di of D is given by

-— — —_— -~

d
11
CllA B Dl
i"l'q._
C. A Lo D,
i-1,9. i-1
D-* == 1-1 = .
5 i
d.
i+l1,1
Ci+1,1A B Di+l
qum ‘
C A B D
mqm m
s = = i)
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Finally for each set of m integers (sl,...,sm) with sj € d.,

j € m;, we define the m x m sulmatrix D of D
— (slIOl'rs)
m
dlsl
C A B D
1s
lsl 1
D = : = : .
(51:---15m) .
d
ms
C A B D
ms ms
m m
That is, the submatrix D consists of one row from each

(Sl,-oc,sm)
sukmatrix Di' iegem.

(4.4.4) Proposition: The condition (4.4-7),

N (N + Zj*) = 0, for s ¢ qj, and j em

zjs
is true if and only if
i) for every set (sl,...,sm) with sj € qj, j € m, the sulmatrix

D(s a3 has rank m;
l'lll’ m

ii) for every i € m, the submatrix Di* has rank m - 1.

Proof: (Necessity): For any set (sl,...,sm) with sj € El' jem,
a.
. 9%y o
choose the set of m vectors {z reserZ__ }, z. = (A7) C. s
1s ms is, js,
1 m 3 J
From (4.4-7) we have zjs N (N + Zj*) = 0 for sj € qj, j € m, where of
j et
course zjs = Span{zjs }. Hence by a construction similar to that used

3

to show dim(N + Zi*) = n-1, (4.4-8), we may show



dim(zls toeet - + N)y =n . (4.4-14)
1 m
Indeed
d:im(zls +...+zms + N) = dim le + clim(z25 +...+zms + N)
1 m 1 2 m

= diﬂ\(zl n (228 + eee + st + N))'

Sl 2 m

but the last term is zero by (4.4-7). Continuing in a like manner

(4.4-14) is established.

Now from (4.4-14) and the fact N = Ker BT,

P, SN . =
dim B dim(B (zlsl+...+zmsm)) m,

which of course is equivalent to

1
rank (B [zl "",zms 1) m. (4.4-15)

2 “m

But B [z, jeeejz ] = DT , and thus (4.4-15) implies i).
lS ms (S ’nco's)
1 m 1 m

From (4.4-8) we have dim(N + Zi*) =n-1, i € m, whence

dim BT(N + Zi*) = dim BTZi* = rank(Di*)T <m-1l, i € m.

But from (4.4-15)

T
rank(B [zls FeeelZ

HEEER R ])=m-l’ iEm.
1 B N

i-1,s zi+1,s. s
(4.4-16)

H
i-1 i+l m

Since the matrix in (4.4-16) is a submatrix of (Di*)T, the desired re-

sult, rank (Di*)T = rank Di* =m-1, i € m follows.
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(sufficiency): - If is of full rank for all sets (sl,...,sm)

D
(sl,...,sm)

with sj € Eif j € m, then (4.4-14) holds, i.e.

dim(z + 00 + 2 + N) = n.
1ls ms
J: m
T
For D?s s ) = BT[zls ""’st 1, hence the vectors BTzls yees B zms
17" 1 m 1 m
must be independent. But this implies Z1s reeerz o oare independent
1 m

of N = Ker BT, and thus (4.4-14) holds. Also

rank Di* = rank(Di*)T = dim(BTZi*) =m-1, 1i¢ m.

Now from (4.4-14) we have
aim(N + 2.%) > n-1, i e m.

But since

aim(BT (N + 2, = dim(BTZi*) < din BT,  iem,

it follows that N + Zi* # Rn, and thus

dim(N+Zi*)=n-1 iem.
AS
z + ) z._  +NCz,_ +27.%4+N\, iem
isi i jsj 1si i -
jem
(4.4-14) implies
dim(zis. + Zi* + N) =n, ie é,

1
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Then we have

cum(ziSi N (N + Zi*)) = dim zisi + dim(N + Zi*) - di.m(zisi + N+ Zi*)

=1l1+n-1-n=0, forsieqi, :Lerlm_,B
which establishes (4.4-7) and the proposition.
Combining the preceeding three results we have a strong neces-
sary condition for decoupling.
(4.4.5) Theorem: A linear system may be decoupled into m single input,
(possibly) multiple output subsystems only if conditions i) and ii)
of Prop. 4.4.4 hold.

The proof of Theorem 4.4.5 follows directly from Prop. 3.2.8 and the

preceeding four results of this section.

Proposition 4.4.4 provides us with a readily implementable
vet strong test which must be satisfied before a linear system may be
decoupled into single input, multiple output subsystems. Condition
i) says that every m-input, m-output subsystem of the original system,
consistent with the desired partition of the outputs must be deccuple-
able into m single input, single output subsystems itself. Indeed
the transfer function for a system decoupled into single input, mul-

tiple output subsystems would necessarily be of the form

H(A;F,G) = block diagonal [hl(k;F,G),...,hm(l;F,G)]

_ with hi(A)F,G) q4; % 1, 1 € m. Control of the outputs requires that

for each i € m, every component of hi(A,F,G) is non-zero. Thus for
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every m element subset of the q outputs, (ylS ,...,yms ) » where
p m

S; € dy» i € m, the corresponding rows of H(A;F,G) form an m x m

diagonal nonsingular matrix.
From Chapter 2, Section 2, we recall that the feedback invar-

iant dis + 1, si £ qy i € m denotes the minimum time delay for the

effect of any input to be visible at output yis ; while the row vector
i

Dis represents the first nontrivial pointwise mapping from inputs to
i

output yis + Clearly these qguantities are unaltered by feedback. Now

1

if Di* has rank m for any i ¢ m, it follows that the initial non-zero

responses of all m inputs affect the m-1 output subvectors (yl,...,yi_l,

Yin

,...,ym). Since this situation cannot be remedied by a feedback
control law (F,G), it follows that the system may not be decoupled.
From the results on generic solvability of decoupling problens,
Theorem 3.5.1, we recognize that linear systems are ﬁot generically
decoupleable into single input, multiple output subsystems. (we
showed decoupling is almost always possible only if qi =1, i¢ k
when k = m.,) This we would expect as the requirements of Prop. 4.4.4

are less likely to hold as the number of outputs, g, and hence the

number of components per suboutput vector, qr i € m, increases.

Unlike Prop. 4.2.2 where the equivalence of the geometric and
input-cutput conditions was shown, Theorem 4.4.5 states only a necessary

condition. Indeed there is not sufficient information inherent in an
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augmented D matrix to develop a complete sblution based only on the
matrix D, for this more general decoupling problem. In Chapter 2,
Section 2, we showed that for the problem considered by Falb and
Wolovich, D nonsingular was sufficient to guarantee the existence of

a feedback law (F,G) such that

{a+pF|B *6G} C xer C,, iem (4.4-16)

That is the effect of 2all inputs other than i could be localized to
Ker Ci’ i € m. This could be accomplished, even though the effect
of feedback on A was limited by the image of B, as the subspaces Ker Ci'
were all cf dimensicn n-1.

However for the problem considered in this section, conditions
i) and ii) of Prop. 4.4.4 are nct sufficient to yield a feedback law
such that (4.4-16) holds. The augmented D matrix contains information
about the initial non-zexo pointwise input-output maps, and if i) and
ii) hold, then the initial non-zero responses at the outputs may be
"decoupled". But since dimension Ker Ci may be less than n-1, the
nunber of inputs may not be sufficient to afford enough feedback
freedom to guarantee that subsecuent outputs will be "decoupled". That

is, the initial non-zero response of output Yig 1Y (a

isi is.+lh will

p &
be due sclely to the effect of input i, but subsequent outputs,

¥y (dis +3j)r J > 1, may be affected by inputs other than i.
i i

In the second example to follow, we demonstrate systems with
indentical augmented D matrices satisfying i) and ii) of Prop. 4.4.4.

However we shall see that by changing parameters which do not affect D,
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we may have some of these systems decoupleable, others not. This
example shows the matrix D itself contains insufficient information
to yield a complete solution to this problem.

At this point, let us examine several examples to help clarify

the results presented here, Consider the system given in Chapter 3,

Section 5:
1 0 0 1 0 O\T ON\T
A= i 1 ’ B = 0 ’ C1= 1 ’ C2= 0 .
0] 0 1 0 1 0 b §
We may readily construct the augmented D matrix as dll = dzl = 0 and
d =1,
12 1 o
D= {1 1 .
0 X
1 0
However as the submatrix D2* = has rank 2, this system cannot
0 1

be decoupled. 1Indeed, as was shown in Chapter 3, Section 5, for this

example R2 = Q.

Let us now consider the system represented by

0 0]
all a12 a13 a14 I\ T (0] O\T
a A a a ' 1 0 1 0 0
A= 21 22 23 24 | 5= c, = c, =
a31 a32 833 a34 0 0 0 1 0
a a a a 0 1 0 1 2 &

41 42 43 44

where the aij's are temporarily unspecified. We may readily construct

the augmented D matrix as it is independent of A, (all the dij's are zero)
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b 0]
D= 0 ’
0 1

and note that both requirements of Prop. 4.4.4 are satisfied. As we
might expect, the existence of a decoupling feedback law will hinge
on the values given to the elements of A,

From the D matrix we may note that the initial non-zero response
of output yll' is due solely to input 1, while those of outputs y21
and y22 are due solely to output 2. Hence to decouple this system we

need only find a matrix F such that {a+BF|B} Cker c,, and

20

{A+BF|BZ} CKer C as any decoupling input gain G will necessarily

ll

be diagonal. Assume a most general feedback map

Then it is immediately established that no F exists such that

{A+BF|Bl} C Ker C, for all possible A as

2

C2(A+BF)B1 = '

and hence in particular this system cannot be decoupled if a

32 # Ol

Now fix = = = = = =
a12 al4 a21 a24 a34 a44 1, and set all
the other elements of A to zero. It follows that (A,B) is controllable.
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A + BF =

o
o O hh ¥
Hh O © O
[

and we have

{A+BF[Bl} = Span<

{a+pF|B,} = span < CKer C,.

’ 4
+
1 1 f8

0
0 -1 —f8
0
2
1 1+£ £7+(1+f8)

Clearly then the system (A+BF,RB,C) is decoupled.
As a final example consider the fifth order, three input, four

output linear system represented by the matrix triple (A,B,C),

o 1 0 -2 o0 1 0 o0 1\ T
o 0o 3 o0 1 o o 1 o
as4 1 2 o o0 -1 |B={0 -1 o c=1],
o 1 o0 -2 1 o 0 o0 0
3 0 1 0 2 - 0
o\ T 0 o\T
2 o 1
c,= -1 ], cg=[o0 o].
0 i 2
0 o 1

It may be verified that this system is controllable, and that the
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augmented D matrix is

1 -1 0
—-Tn-t

P=11" 0 2
1 1 4

with d& =d =4 = 0, a

= 3 3 *
11 21 32 l. We note that the sukmatrices Di ’

31
i € 3 are all of rank 2, hence condition ii) of Prop. 4.4.4 is satisfied.
However,

is singular as is D and thus this system may

P(1,1,1) (2242}
not be decoupled.

Theorem 4.4.5 extends in a natural way to the problem of de-
coupling a linear system into k multiple input, multiple output sub-
systems. In this extension of the problem originally considered in
this section, we again assume k output subvectors, Yy % Cix, iek,
but now we allow the numker of inputs, m, to exceed k, n > k. For
these more general problem formulations to be solvable, conditions
similar to i) and ii) of Prop. 4.4.4 must hold.

Indeed for such a system we may readily construct an augmented

g x m D matrix, with submatrices D.*, i e m and D ’
1 -— (slpuunpsk)

si € qi, i € k. since the rows of D are feedback invariants, it follows

that if the system in question is deccupleable, then the initial re-

sponses of any set of k outputs (y_ ,.+.,Y_) with s, € q., i€ k
s, Sp N -

must be determined by k independent inputs. In other words the sub-

matrix D(o e of D must contain a k x k nonsingular sulmatrix.
hll’ll.'k
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In light of our results on decoupling systems with an excess
of inputs in Chapter 2, Section 2, this is quite reasonable. For
condition i) cf Prop. 4.4.4 says that every problem of the type
considered by Falb and Wolovich consistently imbedded in the original
proklem must ke solvakle. For the case m > k, this becomes every m-
input, k-output subproblem consistently imbedded must be solvable. By
Theorem 2.3.5 it follows that every submatrix D must have

(S,7400:8,)
1 k
rank k.

By reasoning identiczl to that of the discussion following

Theorem 4.4.5, if for any i € k the submatrix D,;* has rank m, then the

initial non-zero responses of all m inputs affect the k-1 output

subvectcrs (yl'""yi-l'yi+1""'yk)' Of ccurse, if this happens, the
system ay ot be decoupled.

(4.4.6) Coxollary: A linear system with m 2k, 49, 21, i € k may be
decoupled into k multiple input, multiple outPut subsystems only if

i) for every set (sl,...,sk) with s, € Ei, i€ k, the

submatrix D has rank k.
(Sl,n..,sk)

ii) for ecvery i e k, the submatrix Di* has rank not exceeding
m"l-

The proof of Corollary 4.4.6 follows directly from the preceeding

discussion.



CHAPTER 5

TOWARDS STRUCTURES OF (A,B) INVARIANT AND CONTROLIABILITY SUBSPACES

5.1 Intreduction

Although the geometric theory of Wonham and Morse has proved
to yield significant insight into the fundamental aspects of decouvpling,
the basic elements of this theory, (2,B) invariant and controllability
subspaces, are not well characterized. TIndeed there has been little
developed in the way of structural properties of the sets of these sub-
spaces, except for the calculationof specified elements of those sets.

If we wish to address questions about the sensitivity of decoupling
solutions to variations in the parameters of the linear maps A,B,C, then
we must pursue these questions of structure. If we wish to understand
why systems may not be develored, then we must ascertain the constraints,
if any, on the construction of controllability subspaces.

In this chapter we shall begin to build a structure for (a,E)
invariant and centrollability subspaces. We will examine the space of
éli i.s. of a given pair of matrices (A,B,), and show how this is
associated with that of pairs (ng) related to (A,B) by similarity,
feedback or input transformations. Further, we will shtow that con-
trollability subspaces have a natural representation in terms of elements

of the kerrel of the polynorial matrix [AI-A . -R]. Using this analogy
we are zble to determine the possible dimensions of the c¢.s. of a given

system in terms of the Kronecker invariants of the matrix pair (A,B).

These constraints tie in naturally to the problem of generic solvability

-Q90—
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of the decoupling problem as explored by Fabian and Wonham [F1]. Finally,
we indicate a method for generating minimal dimension c.s. which cover

or contain subspaces of B.

5.2 The Structure of IA

-

’

The space of (A,B) invariant subspaces (i.s.), which we de-

signate IA B affords us little of the wealth of structure associated
’

with the invariant subspaces of a single linear transformation ([B5],

[D4]). Clearly, the sum of (A,B) i.s. is again an element of IA B! but
!

as we have alreacy seen (Prop. 3.3.1) only under certain conditions
will the intersection of (A,B) i.s. again be (A,B) invariant.

So far our interest in the structure of invariant subspaces
kas been primarily algebraic in nature. However at this point we

shall introduce a metric on IA B It is not that we wish to exploit
r

topological structure of IA B’ indeed as we show, very little exists.
’

Rather we find this metric useful in relating the invariant subspaces
of different matrix pairs (A,B) themselves related by certain trans-
formations. It then becomes straightforward to show that we need only
consider systems with A and B ir a particular canonical form to deter-
mine the decoupleakility of all linear systems.

A standard metric on the subspaces of a Hilbert space is
called the gap ([B3], [D4], [K4]) and defined as follows. Let M, N be

subspaces of a finite dimensional Euclidean space H with PM and PN
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the orthogonal projections on M and N respectively. Then O(M,N), the
gap between M and N, is given by ||PM—PN||, where ||+|| is the usual
linear operator ncrm,

[1a]] = sup ||ax]]

Hx[] <1

We note immediately that 0 < O(M,N) < 1 and that O(M,N) < 1 implies
dim M = dim N.

With the gap as the metric, the space of i.s. of a given linear
transformation forms a complete metric space. (See [D4] for further

details.) In contrast, it is easily established that (IA B,O) need not

r
be closed, and hence not complete. Consider the matrices
0 1 0
2 1 1

and the sequence of subspaces

A’(j j = 1,2,...

For every J, M.

j € IA,B' but 1lim Mj ¢ IA,B' Since the sequence {Mj}

oo
is easily shown to be Cauchy, the space is not ccmplete.

Further IA B need not be open in the space of subspaces of Rn.
!

Indeed if we let
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» but U, = {@o1’} o for any a # 0.

A,B

; T
then Vl ={(001)} e IA,B

Note that this implies that the linear system defined by A and B above,

with

_ (1 0 o
Cl‘(o 1 o)' c, (0 0 1)

may be decoupled, whereas if

_ (1 0 -a
C1‘(01 o)' e (0 0o 1), o # 0

then the resulting system cannot be decoupled.

We can however derive a relationship between I and T

when the matrix pairs (Al,Bl) and (Az,Bz) are related by a similarity

transformation, that is, there exists a nonsingular S such that

(5.2.1) Proposition: Let the matrix pairs (Al,Bl) and (A2,B2) be

related by a similarity transformation S. Then IA - is homeomorphic
1471

to I .
A2'B2

To prove the proposition we make use of a technical lemma from [D4].
(5.2.2) Lemma: (Douglas and Pearcy): For i = 1,2, let Mi be a sub-
space of a Hilbert space H, and let Ti be linear operators on H

satisfying I|Tix|] 2 € [x] | (e; > 0) for all x € Mi. L Ni = TiMi'

then Ni is closed, and

ew e 1< (3, # @ Jlimy = mll (3 1m0+ 2 1y 1) ey -2, 1.
Nl N2 € &, 1 2 e, 2 e, 1 Ml M2
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Proof of Prop. 5.2.1: Consider the map S: T » 1 defined
Al,Bl A2,B2

S(M) = s M. This map is well defined and into and from Lemma 5.2.2

with T, = T, = S, we have

1 2
=1
ey 2oy |1 < 2l1sl (18771 12y =2y 1
le sM2 M1 M2 !
2y =2y 11 < 2lIs]] [1s7H] [legy —pey |
M1 Mz SMl SM2 4
which implies that S is an homeomorphism.

Now let us broaden our investigation slightly, and consider
triples of matrices (A,B,C) and (X,E,E) related by a similarity trans-

formation S. If Ci is a 9; X n submatrix of C, then the corresponding
submatrix Ei of C is given by CiS—l. Further if Ni is the kernel of
C., then sN, is the kernel of C.,. Nothing that S(N., N N.) = sN, N sN.,
i i i i 3 i i

since S is 1:1, it is clear that MC M N. implies sMC N sN,..
jex jek

Combining this fact with Prop. 5.2.1 we have the following result.

(5.2.3) Corollary: Let the triples (A,B,C) and (X,E,'E) be related

by a similarity transformation S. If {Rl,...,Kk;F} is a set of c.s.

and a compatible feedback map which solves the decoupling problem for

A,B, and a given partition of C, c, i € k, then {SRl,...,SRk;FS_l}

solves the decoupling problem for K,g, and a partiticn Ei = cis l,i € k
of C.
Proof: Follows directly from preceding arguments and the fact that

i . . T . Teelim ;
R, = {a + BF|[BNR.} if and only if SRy = {a +Brs "[BNsR.},iek. [
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Turning our attention to input change of basis transformations,

we see immediately that for B = BG with det G # 0, I =1 —. Thus
A,B A,B

it follows that if {Rl,...,Rk;F} is a solution to the decoupling problem
for (A,B,C), then {Rl'°"'Rk;G—lF} is a solution for (A,B,C).

Finally, let us consider the effect of state feedback on a
system representation. We say two matrix triples (A,B,C) and (X}E}E}

are feedback equivalent if A=A+ BT, B = B, C = C for any map

m g ; :
T:R" + R . Then again it follows that IA and IX-E are identical and

'

/B

3£ {Rl,...,Rk;F} is a solution to the decoupling problem for (A,B,C),

then {Rl,...,R ;F-T} is a solution for {a,B,C}.

k
If we expand slightly the approach of Kalman [K2], Brunovsky
[B7], and Popov [Pl], we may consider similarity, input, and feedback

transformations as acting on matrix triples (A,B,C):

(A,B,C) + (SAS Y,sB,cs”Y)  det S £ 0 (similarity)
(A,B,C) » (A,BG,C) det G # 0 (input)
(A,B,C) + (A+BF,B,C). . (feedback)

The combined action of these transformations constitute a group T
acting on matrix triples (A,B,C) ard defines equivalence classes of
elements called orbits of I'. 1In this context, the preceding arguments
imply

(5.2.4) Corollary: If (A,B,C) and (X}EﬂE}are elements of the same

orbit of I then the (A,B,C) is decoupeable if and only if (A,B,C) is.
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Brunovsky, Kalman and Popov have shown that if the group T
is restricted to controllable pairs (A,B) with B of full column rank,
then the resulting orbits are completely characterized by a set of

integers {v ,...,vm} known as Kronecker invariants. This leads directly

1

to a canonical form for such pairs (A,B) in which

A

]

block diagonal [Al,...,Am]

B = block diagonal [Bl,...,Bm].

The blocks Ai are of dimension vi X \)i i € m, and consist of ones on

the super diagonal and zeros elsewhere. The blocks Bi are of dimension

vi x 1l i€ m and are given by Bi =[0.. .0 1]T.

The structure of the Brunovsky form immediately yields a
decomposition of the state space R into singly generated, independent
controllability subspaces. This fact has previously been observed by
Wonham and Morse [W8]. 1In the succeeding sections of this chapter we
will further exploit these connections.

At this point we note again the canonical form for integratator
decoupled systems suggested by Gilbert [G2] (see Chapter 2, Section 2).
It is clear that if a system is integrator decoupled, controllable and
observable, then the A and B matrices of Gilbert's canonical form coincide
with Brunovsky's canonical form, and the set of feedback invariants

k)

{di +1, ie g} is identical to the set of Kronecker invariants
{vi, i € m}, save perhaps order. As we have already seen that any

decoupleable m~input, m-output linear system may be integrator decoupled,
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it follows that for such controllable and observable systems, if de-
coupling does not destroy observability, the Kronecker invariants are
a complete set of invariants of the triple (A,B,C) modulo action of the

group I'.

5.3 A Characterization of Controllability Subspaces

(The majority of the results in the remaining sections of this chapter
have been derived jointly with A.E. Eckberg. See [Wl].)

In this section we will develop an algebraic characterization
of the controllability subspaces of a matrix pair (A,B), where for
concreteness we assuwe that B has full column rank and (A,B) is con-
trollable. We shall show that the concept of a c.s. has a natural analog
in terms of the kernel of a particular polynomial matrix. Furthermore,
certain invariants of this polynomial matrix are shown to lead quite
naturally to the cancnical form for controllable pairs developed by
Brunovsky [B7], Kalman [K2], Rosenbrock [R1l], and Wolovich and Falb
[w4].

(5.3.1) Lemma: If R is a c.s., then for every nonzero b € BM R

there exists a matrix F such that

]
~

{a + BF|b} (5.3-1)
and

(2 + BF) b

It
o

where r = dim R.
Proof: This is a special case of Theorem 4.2 in [W7]. We are choosing

F so that R is cyclic with respect to A + BF, with generator b, and
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so that (A + BF)[R is nilpotent. The latter condition is possible by

the pole assignment properties of c.s.

Lemma 5.3.1 leads to an interesting characterization of
controllability subspaces.
(5.3.2) Proposition: A subspace R C R” of dimension r is a c.s. if

and only if there exist x(A) € R°[A] and u(\) € R™[A] such that

(i) deg u(A) = k and deg x(\) = k - 1, for some k >r

(ii) (AT = A)x(A) = Bu(l)

(iii) If x(A) = ) A , then R = span {x, ., iek}.
$ox i-1 i-1 -

Proof: (Necessity): Suppose R is a c.s. of dimension r. Let b € BMR

and F be chosen to satisfy (5.3-1) and (5.3-2). Define

r . r-1 .
ud) = § X u, € R'[A) and x(A) = ) 2 x; so that
i=0 i=0
Bu_ =b
X
u, = F(a + BF) b, 0 <4 < r1

A+, 0<i<rm1

»
I

Then (i) is trivially satisfied; (ii) follows by comparing coefficients

of powers of A, and from (5.3-2); (iii) follows from (5.3-1).

(Sufficiency): Let u(\) € R'[A] and x(\) € R"[A] satisfy (i) - (iii).

We shall demonstrate that

ARC R + B (5.3-3)

and that



=108~

R=W (5.3-4)

where Wo = 0, and (Ui = (Awi_ + B)YMNR for i k. The result will then

1
follow from Theorem 4.1 in [W7], which shows that this iterative pro-
cedure will converge to a c.s. (See also (3.2.6).)

From (ii) it is easily seen that Axi =X, 4" Bu:.L for

1 <i <k-1, and that Axo = - Buo; thus (5.3-3) follows from (iii).

To demonstrate (5.3-4), define subspaces Si as

Si = Span {)&(~l,xk_2,...,x

k—i}' for i € k. Since xk-l = Buk it follows

that Sl = Span {xk-l} C BNR = (Ul. Moreover, from (ii) it is easily
seen that S, C (A‘a‘i_l + B) M R for 2 < i < k, whence it follows in-

ductively that SiC (Ui for all i € k. But clearly, Sk = R, and (5.3-4)

follows. m

5.3.3 Remark: If a pair (x(A), u())) can be found which satisfies
conditions (i) - (iii) of Prop. 5.3.2, and additionally the coefficients
of x(A) are independent, then one can find a feedback matrix F such

that Fx. = u, for 21l i € k. It then follows that X, € BMR
i-1 i-1 - -1

is a cyclic generator for R with respect to the matrix A + BF.
: n m
If we define the set S C R [A] x R [A] as
s = {x(\),ul}) l (AT - 2)x(A) = Bu(A) and the coefficients of x(\) are
independent}, then each element of S defines a unique c.s. Conversely,
every c.s. determines at least one member of S, the nonuniqueness arising

from the choice of the generating element b € BM R,
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We have thus established a characterization of controllability

subspaces in terms of elements of Ker(AI - A; -B), where the matrix
(AI - A; - B) is to be interpreted as representing an R[A]-module

; m+n n 2
morphism: R [A] = R [A]. Elements in Ker(AI - A; -B) generate a
submodule of Rm+n[l] which may in turn be characterized by the minimal
column indices {vi, ie gﬂ and a fundamental series {zi(X), ie m}
associated with the singular pencil of matrices (AI - A; -B). These

two sets are detcrmined as follows (see [Gl, Vol. II, Ch. 12]):

(1) Let vl be the least degree of all nonzero elements of
Ker(AI - A; - B), and choose zl(l) € Ker(AI - A; -B)

so that deg zl(k) =V,

(ii) For each i, 1 < i < m~1, after having chosen

{zj(k), j € i} we define Vi, to be the least degree

1
of all elements z(A) € Ker(AI - A; -B) such that z(}A)

is not an element of the submodule generated by the

set {zj(k), je ;}. Then choose zi+l(k) € Ker(AI - A; -B)

so that deg zi+l(k) =V and so that zi+l(k) is not an

i+l
element of the submodule generated by {zj(X), j e i}.

We shall call the set {vi, i € m}, so obtained, the Kronecker
invariants of the pair (A,B). Note that by the construction of this

set, the vi's are ordered as 0 f_vl g_vz L eee K vm. The sets

{vi, i € m} and {zi(l), i € m} enjoy other properties, which we now

state below.
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nx nxm
(5.3.4) Proposition: Let (A,B) € R x R

be a controllable pair
such that ¥ank B = m. Then the Kronecker invariants and the fundamental
series, as determined above, satisfy:

(1)  The set {v;, i € m} is well-defined and unique;

(ii) vi >0, all i € m;

(iii) .z vi = n;
iem

(iv) {z; V), i € m} is a set of free generators for
Ker(AI - A; -B), and any z(A) € Ker(AI - A; -RB)

can be uniquely written as

z(\) = ) z; (Mo, (A)
i:vii deg z(A)

for appropriate ai(k) € R[A] such that

~

deg ai(X) < deg z(}) - vy

(v) The fundamental series {zi(X), ie gﬁ is not uniquely
determined; however, for each i such that vi < vi+1'
the submodule Mi 8 (submodule generated by {zj(k), jeil)

is invariant with respect to the choice of fundamental

series;

(vi) If each zi(A) is partitioned as zi(k) = (siT(A);tiT(A))T,

where t, () € RY[A] and s, () € R®[A], then

deg si(l) vi-l and the collections of coefficients

- i | ;0<j<v, -1, i
{tl'vi, ie 5} and {sij 0<73 8Ny Y. 1 ig EQ are

bases for Rm and Rn.
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Proof: (i) This is clear from the statement of the algorithm.

(ii) If vl = 0, then there exists a zl(K) of degree 0, hence

T T n m
zl(A) = (sl ity )" with s, € R, t € R, such that [AI-A; B]z1 = 0.
But this requires that s = 0 and Btl = 0, a contradiction since B

is of full column rank. By the inherent ordering of the vi's (ii) is true.
(iii) This follcws from the assumption that (A,B) is a controllable

pair, and is most easily seen via an alternative derivation of the
Kronecker invariants (See ([B7], [K2], or [P1l].)

(iv) See Eckberg [El] or Forney [F4] for a proof.

(v) We note that if j > 1 then z. (\) = z zi(k) is an element of
iej

Ker [AI - A; -B], independent of Mj—l’ and of degree Vj. Thus we may
replace zj(A) by Es(k) and retain an acceptable fundamental series.

If Y, = , then we may interchange zi(l) and zi+l(k) without

Viwy
affecting the validity of the fundamental series, but obviously

changing the submodule Mi' (See [Gl] for further details.)

(vi) The first part follows trivially from (AI - A)si(k) = Bti(k).

The formation of bases for - and o has been shown indirectly by
Wolovich and Falb [W4] and directly by Eckberg [El]. E:!

Now consider the pair (si(l), ti(k)), as determined by zi(A).
This pair of polynomial vectors satisfies (AI - A)si(k) = Bti(k).

Thus, from statement (vi) of Prop. 5.3.4 and from Remark 5.3.3, it

< j < - i 2
follows that Span {sij’ 0<3 —-vi 1} is a c.s. generated by si:Vi-l
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We call this c.s. Ri:
A : : )
Ri = Span{sij, 0<3j=< \)i-l}, for i € m. (5.3-5)

Since {sij; (o s I \)i-l, iege _xg} is a basis for R" by Prop. 5.3.4 (vi)
n
= s . 5.3~
R =R ®... ®OR_ (5.3-6)

However, because the fundamental series {zi(k) 7 L E g} is not unique,
the decomposition of RnA via (5.3-6) is not unique. In spite of this
fact, there are certain properties of the decomposition (5.3-6) which
are invariant with respect to the choice of fundamental series

Az; 0, 1 e ml.
(5.3.5) Proposition: The subspaces Vi = Rl@ @Ri for which

\)i < vi+l are invariant with respect to the choice of fundamental

series {zi(}\) , 1€ _nl}.

Proof: From Prop. 5.3.4 (iv)=-(vi), it is easily seen that when

<. i 2w e Ry e @ v . o
vy 141’ Span {Skj 0<3=< Vk 1, k¢ _:;} 1s invariant with respect

to the choice of fundamental series {zi()\) g X e _13}. This proves the
proposition. [:3
We note that the subspace Vi = Rl@ @Ri for which

\)i < \)i_*_1 has another interpretation as the maximal c.s. contained in

3 -V, \)..'1
the subspace A ~(B + ... + A * B). This latter subspace consists

of all x € Rn which may be driven to zero in at most vi steps. Clearly

Vi is a c.s. and every element of Vi may be driven to zero in \)i or less
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steps. In contrast, by (5.3-6) any c.s. not contained in Vi contains

an element which may not be driven to zero in vi steps.
. : T T U iy
Finally, from the fundamental series {zi(k) = (si ()\);ti nN) o,

ice ﬂ} we may determine a feedback matrix F such that the fundamental
series associated with the controllable pair (A + BF, B) is of a

particularly simple form; this will then lead to the Brunovsky canon-
ical form for (A,B). We define F as follows. Since {sij} is a basis

n X .
for R, there exists a matrix F such that
Fs, . =¢t, .i 0< fv-l,ienm

It now follows easily that
(AI - A - BF)si(A) =B AT t, » for each i € m.

This last relation completely specifies the maps

n o
A+BF : R >R and B : R" » R” with respect to the bases {s,

.}
]
(in R") and {ti N } (in R™. That is,
r .
L

Bt, = s, ie
i,v. i,v,-1’ a
1 1

while

@ Z X Z N - .
i,9-17 if1<3j =Ny l,iem
(A + BF)s, . =

1.3

N ’

0; if =0, i€ m.

Thus, with nonsingular matrices S ard G defined as

S = (s H R ; PO
(51,0751 1 i sl,vl—l'sz,o’ sm,vm-l)
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and

it follows that

S-l(A + BF)S = Block diagonal (Hv7"';Hv )
m

where Hk is k x k with ones on the superdiagonal and zeros elsewhere.

F +
(Recall that for an ordered set {vi, i€ m}, V., = z vi.)
i<j

We note immediately that the pair (S-l(A + BF)S, S-lBG) is
the Brunovsky canonical form for the pair (A,B). In the remaining

sections of this chapter it will be convenient to work with this

canonical form. We note that the fundamental series associated with

(s a + BF)s, slBG) is {z2; 0 = (5,"0e,T0N7, i € m} witn

I
>
'.l
o
P
m
E]

ti(l)

(5.3=7)

|
>
(=
(0]
+
+
(0]
(™)
™
=}

si(k)

where éi is the ith standard unit vector in Rm. For this choice of

fundamental series the subspaces Ri c rR? are given as

teeey € }' iEIE. (5.3-8)

R. = 8
Pan {e\) V.+ =V, +1
1 &1 B

3. .+

1
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5.4 Dimensions of Controllability Subspace

We now consider a controllable pair (A,B) in the Brunovsky
canonical form. Define the projection on Ri along (® R, by Py
j#i
i € m, and the set {5 ¢ mJPjR # 0} by M(R) for any subspace R.
Then we have the following bound on the dimension of a c.s.

(5.4.1) Lemma: Let R be a c.s. of the pair (A,B). Then

dim R > max{vj 5 € M(R) }.

Proof: If j € M(R), then PjR # 0. However by (5.3-6), (5.3-8) and
the assumed canonical form for (&,B), this implies PjR = Rj. Since
the projection Pj cannot raise dimension, Vj = @dim Rj < dim R, .
proving the lemma.
We note that this lemma is the state space analog of Prop.
5.3.4 (iv). As the zi(l) i € m are a set of free generators of
Xer[AI - A; -B], the c.s. Ri' i € m constitute a set of independent
"building blocks" for ccnstructing c.s. of (A,B). To carry the analogy
one step further, we may ccmpare addition of elements of the funda-
mental series with addition of the c.s. they spawn. Also, we may
liken the product of A and zi(A) to the c.s. Ri advanced one unit of
time.
The dimension of a c.s. may be similarly bounded from above.
(5.4.2) Lemma: Let R be a c.s. of the pair (A,B). Then

dim R < z V... &
FEM(R)

Proof: Clearly P.R =0 for i ¢ M(R). Then Y P, R=0 or
i ; i
igM(R)
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equivalently R C Ker ( z P ) = z R.. sSince the R,'s are
igM(R) JEM(R) )
independent, this latter subspace has dimension z V. and contains
FEM(R)

The preceding two lemmas allow us now to state and prove

R, proving the lemma.

the main result of this section.

5.4.3 Theorem: Let V = {vl,...,vm} be the set of Kronecker invariants
of the controllable pair (A,B). Then there exists a c.s. R of dimension
p if and only if

max {v,|v, ev} <p< ] v, (5.4-1)
ViEU

for some subset U of V.

Proof: (Necessity): Let U = {Vi|i € M(R)}. Then the result is imme-
diate from the preceeding two lemmas.

(Sufficiency): Given a subset UC V and a p satisfying (5.4-1) we
shall construct a c.s. R of dimension p by summing the c.s. Ri' iem
possibly with some "overlap." First order the elements of U in de-

creasing size (vi ,...,vi ) and define s as the smallest integer such
1 k

that ns = 2 Vi is greater than or equal to p. If p = ns then we
iss 73

may construct a c.s. of dimension p by forming the direct sum of c.s.
Ri ()....C)Ri .+ If n_ exceeds p, then for s > 2, we shall construct
1 s

a c.s. of the form Ri ()....C)Ri ®Q, where Q is a c.s. of dimension
1 s—2
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p - n,_, obtained by "overlapping" the c.s. R, and R, . Finally
s-1 S

if ns > p and s = 2, then we shall construct a c.s. of the form Q

above. Hence it suffices to consider only the cases p = ns for some

s, or n, <p<n,

To prove the first case we need only show how to form the

direct sum of two c.s., say Ri ® Rj' Consider the feedback which
changes the (vj+, vi+ -vi + 1) element of A from zero to one. With

V.
A i . .
this feedback, (A + BF) evi+ = evj+, that is the c.s. Ri (:) Rj is

, the generator of Ri'

generated by e\)'+

1

To prove the second case let p < vi + vj. By choosing
feedback such that the (vj+, Vit = (p - vj - 1)) element of A is

changed from zero to one, it is easily seen that the resulting c.s.

is spanned by set of p independent vectors

generated by e\)_+

1

{e r € gres € + e reee €
V. Visk =k V.+ =p+V, V. + R e VI o
i i i j 3 Vit Vs 1

+ e ’ e 1%+ ,€ }
V.+ =V, -V _ +pt+l V.+ =V,-V. .+ V.+ -V.+1
J i3 s J i ) s J J

and hence is of dimension p. E:’
As an example consider the matrix pair (A,B) with Kronecker

invariants 2 and 3,
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;' . 0 o

0o o, 1 0

a=1| 10 1 o B=|0 0
0 Lo 0 0

' o 0 1

Let the feedback map F be given by
0 0 0 1 O
F = .
0 0 0 0 O
Then for b = (0 0 0 0 l)T, {a + BF]b} is a c.s. of dimension four.

The constructions used to prove sufficiency of Theorem 5.4.3

also have an analog in the context of Prop. 5.3.2. Let
[siT(A); tiT(K)]T be the ith free generator of Ker[AI - A; -B], that
is, Ri is the span of the coefficients of si(A). Then for any

k 2 0 it is easily seen that
Oz - 2 W%, ) +s.00) = 205 () + £, 0))

V.
When k = vj, the span of the coefficients of A 2 si(A) + sj(l) vield

the c.s. Ri ® Rj' For 0 < k < Vj the span of the coefficients of

Aksi(k) + sj(l) is a c.s. of dimension vy * k of the form Q in the
proof of the theorem. It should be clear that these constructions
are not unique. We may replace Xk by ¢(A), any polynomial of degree
k, and achieve controllability subspaces, albeit possibly different
ones, of the appropriate dimensions.

Theorem 5.4.3 indicates that the possible dimensions of
controllability subspaces of a pair (A,B) in Brunovsky form are

directly determined by the Kronecker invariants of (A,B). However,
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the construction of a canonical representation for any controllable
pair (A,B) with B of full rank is accomplished solely by similarity,
input and feedback transformations. From the results of Section 5.2
we know that the dimensions of (A,B) i.s. are unchanged by such
transformations, hence the dimensions of c.s. remain invariant, and
the theorem is equally applicable to the more general pairs (A,B).

A more basic visual analogy of Theorem 5.4.3 might be use-
ful at this point. If one considers the Kronecker invariants to be

represented by line segments of length vi, iem

then the theorem states that the corresponding dimensions of possible
c.s. are given by the lengths of line segments obtained by joining to-

gether some of the above line secgments, with the possibility of integral

overlap, e.g. v2
V v
1 2
I \)1 \)3
g .I or l I I
etc.
(5.4.4) Corollary: If for some j € m-1, vj+1 > vj+ + 1, then there

exists no c.s. of dimension p, where p is any integer satisfying

+ < p < .
Vj P vj+1
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Proof: This follows directly from Theorem 5.4.3 as any subset of the

set U = {vili < j} clearly fails the upper bound in (5.4-1), while if

U includes any elements vk for k > j, it likewise fails the lower

bound in (5.4-1). For example, if the Kronecker invariants of (A,B)

are (1,2,5) then c.s. of dimensions 1,2,3,5,6,7,8 exist, whereas

no c.s. of dimension 4 exists.
The results of the theorem together with Prop. 5.3.5 point

to the unicueness of c.s. of particular dimensions.

(5.4.5) Ceorollary: Let R be a c.s. of dimension p. Then R is the

unigue c.s. of dimension p iff p = \)j+ < vj+1 for some j € m-1. 1In

particular, if v, # V., then Rl is the unique c.s. of dimension V..

p 5 1

By Lemma 5.4.1

Il

Proof: (Sufficiency): Assume dim R = p = \)j+ < v,

j+1°

PiR =0 for i > j, so RcC M Ker P, ® P.k. Since dim (¥ Rk = \)j+

i>j k<j k<j
we must have R = @ Rk. However, regardless of the non-unigueness of
k<j
the set of c.s. Rk' the subspace @ %{ is unigue by Prop. 5.3.5 since
k<j
> .
Vi1 7 V3

(Necessity): We will show that if there exists any c.s. of dimension

1 for any j € m, then

p such that either p # \)j+ or p = \)j+ # \)j+
there are, in general, many different c.s. of identical dimension.

Consider first the case p # \)j+ for any j € m. BAssume

there exists a c.s. of dimension p. Define k to be the largest

integer such that v, + < p, and let g = p - vV, +. Then by the remarks

k k



=121~

following Theorem 5.4.3 it is clear that given the element ua(k) of
R [A)

v+ +q

V. +_ +g
k k
ua(k) = A tk(A) + A

-2

q
1) Ak AT £ () +at (A

% k+1

for any non-zero 0 € R, the span of the coefficients of the corresponding

xa(k) is a c.s. of dimension p. Further, since g < V 17 it is clear

k+
that for o # B, both non-zero, the spans of the coefficients of

xa(k) and xB(X) differ.
Now assume p = Vj+ for scme j € m, but vj+ 2.Vj+1' Clearly

the polynomial vector

uo(k) = A tj(A) + A tj_l(X) + o004 tl(k)

has an associated xo(l), the span of whose coefficients is given by
'Rl ® .... C) Rj' a c.s. of dimension p. However the polynomial

vector

V.+

=1 Vjt2
u () =2 tj(l) + A tj_l(k) e+ £ ) +at, ()

j+1
where 0 € R, has an associated xa(l) whose coefficients span a different

c.s. of dimension p. Further, if o # B, then the c.s. associated with

na(}\) differs from that associated with us()\) :

Note that we have shown that for systems defined over the

reals (oxr any other uncountably infinite field), if there exists more
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than one c.s. of a given dimension, then there exists an uncountable
number. In the example with Kronecker invariants 1,2, and 5, the
c.s. of dimension 1,3, and 8 are unique , while there are nondenumerably

many c¢.s. of dimension 2,5,6, and 7.

5.5 Dimensiocnal Constraints and Generic Decoupling

The results of the previous section indicate the constraints
placed upon the construction of controllability subspaces of arbitrary
dimension. The conditions necessary for decoupling such as non-
interaction and output control put additional constraints of dimen-
sion on sets of c.s. which might form a solution. It is clear that
whenever the former constraints are in conflict with the latter set,
no decoupling solution exists.

The work of Fabian and Wonham [F1l] on the generic solvability
of decoupling by dynamic compensation (see Chapter 3, Section 4) has
shown that given the conditions

n> Ja (5.5-1)
i€k

m> 1 + z q. —- min g, (5.5-2)
- ; 3z : i
iek igk

where q, is the rank of C,» i € k, it is possible to find a set of

c.s. {Ri ie 5} such that

c NN 2k, , iex (5.5-3)
jek
J#1

>
[y
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R. +N. = R iek (5.5-4)

where Ni = Ker Ci’ for almost all parameter sets (A,B,C) of suitable
dimension. Now for a given set {qi, ie E} there may exist a set of
Kronecker invariants {vi, ieg ﬂ} such that (5.5-3) or (5.5-4) cannot

hold for some i € k. Thus it follows that whenever the Kronecker in-
variants determine dimensions of c.s. in conflict with the reguirement

imposed by the set {qi, ieg &}, the systems in question are not gener-

ically decoupleable in the sense of Fabian and Wonham, i.e. either
(5.5-1) or (5.5-2) fails.
From Corollaries 5.4.4 and 5.4.5 we know there is no c.s.

of the pair (2,B) of dimension p if for some j € m-1

+ < < -
Vj © Vj+l (5.5-5)

and there is a unique c.s. of dimension p if for some j € m-1

V.+ = p <V

Let qi* denote E g.. Then since it is assumed that C has full row
jek
3#i

rank,

- = - . ” = - * i
dim Ki n - dim ki no-oq . (5.5-7)

2

As dim Ni = n - g, the dimensional constraints implied by (5.5-3)

and (5.5-4) are given by

Z G i€ k. (5.5-8)
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It then follows from (5.5-5) that there exists no c.s. satisfying

(5.5-8) for some i € k if for some j € m-1

> - *> qg. > Vv.+ 5.5-9
vj+l n-q*2>aq vj ( )

and there exists a unique c.s. if for some j € m—1

I
<
+

V., . >n - qi* = q, (5.5-10)

J+l i 3
(5.5.1) Proposition: If (5.5-9) or (5.5-10) hold, then (5.5-2) cannot
be satisfied. Conversely if (5.5-2) holds, thgn (5.5-9) and (5.5-10)
both fail.
Proof: (Note that we have dispensed with condition (5.5-1) as it is
trivially implied by the assumption that C has full row rank.) If

(5.5-2) or (5.5-10) hold for some i € k and some j € m-1, then we have

vj+1 >n - qi*. (5.5-11)

Defining v.* as z vi' (5.5-11) becomes

iem
i#j

qi* >n - vj+1 = \)jil' (5.5-12)

Since vj 21 for all j € m, clearly vj* 2m1l, j € m whence (5.5-12)
becomes

qi* > m-1 (5.5-13)
in direct contradiction to (5.5-2).
Assume (5.5-2) holds now. Then

m > q{* ie€k, (5.5-14)
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whence

vy¥ 2 el 2 gt iek Jem - (5:5-15)

But since vj* =n - Vj, (5.5~15) implies

n o= ig:* v

5 ; iek, jem (5.5-16)

and thus (5.5-9) and (5.5-10) cannot hold.
The condition (5.5-11), when true, means that there is a
basic c.s. (one whose dimension may not be diminished by feedback)
which is too large for the desired output decomposition, hence non-
interaction may not be achieved. Generically, all the Kronecker in-

variants will be either [gﬁ or {%} + 1, where [a] denotes the

"]

greatest integer less than or equal to a, and there will be considerable
freedom in the construction of controllability subspaces. As long as
the number of inputs is sufficiently large vis—a-vis the number of
‘independent outputs, i.e. (5.5-2) is satisfied, this freedom will be
sufficient to guarantee c.s. that allow output control (5.5-4) while
achieving noninteraction (5.5-3).

It should be pointed out that we have not shown that generic
solvability of the decoupling problem in the sense of Fabian and

Wonham follows whenever the sets {vj, j € m} and {qi, i € k} yield no

conflicting dimensional constraints. Indeed this need not be the

it
<
L]
<
i

case as a simple example with m = k q =9, = 2 will

readily verify.
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5.6 Minimal Dimension Controllability Subspaces

In Section 5.3 a characterization of controllability subspaces
in terms of the free generators of the kernel of the singular pencil
of matrices [AI - A; -B] was developed. Using this representation,
requirements on the possible dimensions of c.s. were derived in Section
5.4. In this final section we wish to explore c.s. constrained to
contain or cover a given subspace. In particular we will construct
minimal dimension c.s. covering subspaces of B.

Our motivation for examining this problem is twofold. First
Wonham and Morse [W8] have considered the construction of minimum
dimension (A,B) i.s. which contain a given subspace and then have
shown as an application, how one may determine an observer of minimal
dimension for a single linear functional of the state. The main result
of this section is actually encompassed by Theorem 2.1 of [W8], but
the approach here is sufficiently distinct to merit exposition.

Secondly, one might wish to consider a variation on the
decoupling problem where output controllebility (Ri + Ni = Rn, i€ k)
was required, but strict noninteraction was not essential. That is,
we might search for a compatible set of c.s. {Ri, ie 5} which
allow complete control of the outputs and then determine if the inter-
action associated with this set is acceptable. Although we cannot

characterize all c.s. Ri satisfying Ri + Ni = Rn, it is clear that if
Ri contains Ni output control ic assured. To minimize interaction

we seek to find minimal dimension c.s. covering given subspaces.
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Consider an element b € B. If R is an c.s. containing b,

then by Lemma 5.3.1 there exists a feedback map F such that

R = span {b, (A + BF)b,...(a + BF)" 'b},

and (A + BF)nb = 0. Combining this fact with the characterization
of c.s. in terms of the pencil of matrices, we may view any c.S. R
containing b as the span of a trajectory generated by driving b to
zero. Clearly then, the minimal dimension c.s. containing b are in
1:1 correspondence with the spans of the trajectories arising from
driving b to zero in a minimal number of steps; i.e. the spans of
trajectories {b,(A + BF)b,...} that contain a minimal number of
non-zero vectors.

It should be noted that driving a vector x to zexro in r

steps implies the construction of an input string {ur_l,...,uo} such

that if
= = i <
xr_1 x and xr-i—l Axr_i + Bur—i lL.Li¢%®
then x_1 = 0. If x € B, this is of course equivalent to finding
r ; r-1 .,
i i
u(l) = 2 AT u. and x(\) = z AT x. such that Bu = x and
i=0 e i=0 % £

(AT - A)x(X) = Bu()A). It surely suffices to find a feedback map F

such that if

b'd = x . = + BF : < i <
~1 and xr-l—l (A B )xr~1 1L.2i<x
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If we wish to drive an element b € B to zero in a minimal
number of steps, it seems natural that the span of the trajectory
excluding b, should be independent of B. This is indeed the case.
(5.6.1) Lemma: Let b € B. If there exists a feedback map F and a
trajectory {b,(A + BF)b,...., (A + BF)n_lb] such that

x .
'21 ai(A + BF)lb, o # 0, is an element of 8 for 1 < r < n-1, then b
i=

may ke driven to zero in r or fewer steps.

x :
) o, (A + BF)'b and assume without loss of

i=1

~

Proof: We write b

H

1. Since B has full rank there exist unique

generality that ar

B_lb. Consider the input

~ ~
elements u and u such that u = B b, u

string Ui, - 1 >1i >0 defined by

u_, = Fb + 0.1 U
W = F(A + BF)b +a . Fb+a ,u
u, : F(+ BN b + o F(A + BE) T %b + ... + auFb - .
Now let Xy = b, and consider the sequence generated by the recursion
X 4.1 " Axr-i + Bur»i ‘ 1<ic<r.

Then it fellows that

x =@+ b +a_(a+BN b+ ...+ oA+ BAb-b =0,

=X

and hence b may be driven to zero in r steps. &i
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Lemma 5.6.1 implies that for b € B, if R is a c.s. of minimum
dimension containing b, then RN B = b, and thus R is uniquely generated
by the element b. It is now natural to ask: What is the minimum
dimension of a c.s. covering an element x € Rp? For x € B, we can
easily answer this query.

Recall that M(R) was defined as the set {j € EJPjR # 0} for
any subspace R.

(5.6.2) Lemma: Let b € B. Then the minimum dimension of a c.s.
containing b is given by P = max {vjlj € M(b)}.
Proof: If R is a c.s. containing b, then by Lemma 5.4.1 dim R > M.

Now consider the trajectory (b,Ab,...An—lb), where A,B are assumed in

V.,
the Brunovsky canonical form. Since b = .z Yje\):P and A 2 e\).+ =0,
jeM(b) 3 5

it follecws that Aub = 0, yielding a covering c.s. of dimension |.

We now can turn our attention to the case where we desire to
‘cover an arbitrary subspace of B. As we shall need a minor construction,
we first prove a lemma to motivate that construction.

(5.6.3) Lerma: Let bl and b2 be elements of B such that M(bl){ﬁ M(b2)=¢,

and denote max{lej € M(bi)} by M,, i € 2. Then if R is a c.s. covering

bl and b2, dim R > My o+ My

Proof: If R contains bl and b?, then R contains c.s. which may be
generated by bl and b2 respectively (by Lemma 5.3.1). Then it follows

that for some Fl, F2
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n-1 n-1
Span{bl,(A + BF )b ,evv (A + BF )" b 1Dyrenss (A + BF,) b2} C R.

1

Recalling that {si , i € m} is a basis for B, we may write

,\)i-l

b =

1 and b = z

Y. .s. Y. .s. .
- 27, 25%35,v,-1
semeb, ) I IV semb) 27 IV

Since the lemma obviously follows for ul = U, = 1, we may assume that

2

for some i € 2 ui > 1. Now for ui > 1 we have

(a + BF )b, = # 0 (5.6-1)

Y. S, o L Y} oo .s.
jsM(bi) i3 ],\)j 2 kem ikl k,\)k 1

for some Oyp1” k € m. Note that the second term on the right is an

k1l
element of B and represents the arbitrary nature of the feedback map

Fi. Continuirng, we have for M, > x

(A + BF)" b, = ] Y #0

= +) JYa,.s
jeM(bi) ij j,\’j r-1 ikp k,\)k (x+1-p)

pEX KEm
(5.6-2)

for some ., , k € m, p € xr, where s, . é 0 for j < 0. Comparing the
ikp - - 1,]

forms of elements from (5.6-1) and (5.6-2), it follows from the

hypothesis M(bl) M M(b2) = ¢ and the fact that {si j; 0<3=< \)i-l, iel_n_}

!

7 ; n
is a basis for R, that the vectors

L}

ul-l uz-l
) (B + BF)) bisboseee, (A + BF ) b}

{bl,(A + BFl)b 5

[RAKE

are independent, and hence dim R > ]Jl + u2, proving the lemma. m
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Let b, and b, be elements of B such that M(bl)(\ M(bz) = ¢.

If Vl and V2 are minimal dimension covering c.s. for bl and b, re-

spectively, then by Lemmas (5.6.2) and (5.6.3) it follows that

Vlfj V2 = 0, and Vl ® U2 is a minimal dimension c.s. covering
Span{bl,bz}.

(5.6.4) Theorem: Let DC B and {bl,...,bk} be a basis for D such that
M(bi) N M(bj) =¢ for i # j, i, j € k. Then if R is a c.s. covering

D, d@im R > z My . Furthermore, if Vi is a minimal dimension c.s.
i€k

covering bi’ ie€ k, then {Vi' ie 5} is an independent set of subspaces,
and Vl C) oo C) Vk is a minimal dimension c.s. containing D.

Proof: First we note that any D C B has such a basis. Let {dl,...,dk}

be any basis for D and let D be a matrix whose columns are given by

the d;, i € k, with respect to the basis for B, {si i € m}.

v,-1'
s

Then by applying elementary column operations, it is possible to trans-
form D to a matrix D0 whose columns are a basis for D and have the
desired property (only one non-zero entry per row).

By expanding the argument of Lemma 5.6.3 to the case where

for appropriate Fl,...,Fk

1

2 0 trd n-
Span{bl,...,(A *BF))T Tbyeea by seee, (A4 BF, ) lbk} < R,

it is straightforward to show that R contains a subspace of dimension
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Z M- Furthermore, it is clear that 2 V. is a c.s. covering

iek i€k

D, hence dim () V) > § n, = § dim Vi' which implies that the
iek i€k i€k

Vi, i € k are independent subspaces.

The general case of finding a minimal dimension c.s. con-
taining an arbitrary subspace of R" seems a more formidable task,
even if we are restricted to arbitrary one dimensional subspaces.
The key to the solution of the problem when we consider subspaces
of B, is Lemma 5.6.1 which allows us to focus attention to c.s. which
are generated by a unique element. There seems to be no direct analog

of this lemma when arbitrary one dimensional subspaces are permitted.



CHAPTER 6

CONCLUSIONS

In this dissertation we have considered the problem of de-
coupling lirear, time invariant, multivariable systems by state
feedbhack control laws. The basic fruitful approaches of Falb and
Wolovich, and Wonham and Morse have been presented, and extended in
some cases. The major contributions of this research are:

1) The development of a strong, yvet easily implemented neces-
sary condition in the form of the original Falb and Wolovich result,
for the decoupling of linear systems into single input, rultiple
output subsystems;

2) A characterization of controllability sukspaces in terms
of the elements of the kernel of the singular pencil of matrices
(M - A; - B), and the determination of the possikle dimensions of
controllability subspaces of a matrix pair (A,B) in terms of the
Kronecker invariants of (A,B).

Other lesser results include:

3) An extension of the results of Falb and Wolovich to the
case of decoupling a system with more inputs than outputs;

4) A method for decomposing arbitrary (A,B) invariant sub-
spaces into simpler invariant subspaces contained in the kernel of
a linear form; ‘

5) & proof that it is possible to deccuple almost all m-
input, m-output linear systems into scalar input, scalar output

subsystems by a state feedkack control law;

=133~
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6) A method for constructing minimal dimension controllability
subspaces which contain arbitrary subspaces of the image of the input
gain map B.

The necessary conditions for decoupling into single input, mul-
tiple ocutput subsystems (Prop. 4.4.4) are not surprising. It would be
nice however, to extend that result and achieve a complete, easily
implemented analog of the gecmetric condition (Prop. 3.2.8). Indeed
the general problem of decoupling by state feedback remains unsolved
and constitutes an important arca for future research.

Another area where more work would be of value involves deter-
mining the sensitivity of decoupling solutions to parameter pertur-
bations as well as the sensitivity cf the algoritims used to compute
maximal invariant and controllability subspaces.

For systems which cannot be deccupled it might prove fruitful
to quantize the interaction ketween unassociated subsets of inputs and
outputs, and then consider finding feedback control laws which mini-
mize this interaction. Efforts in this direction have been without
significant success.,

The results of Chapter 5 begin to explore the structure of,
and provide a convenient characterization for controllability subspaces.
In addition they provide a basic 1link between the notion of control-
lability subspaces and bhasic structural properties of linear systems.
Indeed it is not surprising that the Kronecker invariants completely
determine the possible dimensions of c.s. For as was shown in Chapter
5, Section 2, the dimension of c.s. was invariant under the action of

similarity, feedback, and input change of basis transformations.
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The ease by which the canonical form of Brunovsky arose from
the characterization of c.s., hints that such an approach might be
useful in determining the invariants of, and hence a canonical form
for triples (A,B,C). Indeed it is intriguing that for controllable
and observable systems, Gilbert's c.d. form presents a partial ex-
tension of that of Brunovsky, where the feedback invariants {di' i g m}
completely specify the triple (A,B,C). These connections merit
further study.

Finally, the result on the dimensions of c.s. (Theorem 5.4.3)
is clearly related to a theorem of Rosenbrock [R1l] concerning the
limits of linear feedback in modifying the dynamics of time invariant

linear systems. This tco is worthy of further consideration.



[B1]

[B2]

[B3]

[B4]

[(B5]

[B6]

[87]

[B8]

[C1]

[D1]

(D2]

[D3]

[D4]

[E1]

BIBLIOGRAFPHY

Basile, G., and Marro, G.,"Controlled and Conditicned Invariant
Subspaces in Linear System Theory," J. of Optimization Theory
and Application, Vol. 3, No. 5, 1269.

Basile, G. and Marro, G., "On the Observability of Linear-Time-
Invariant Systems with Unknown Inputs,” J. of Optimization Theory
and Applicaticn, Vol. 3, No. 6, 1969.

Berkson, E., "Some Metrics on the Subspaces of a Banach Space,"
Pacific J. Math., Vol. 13, pp. 7-22, 1963.

Bhattacharyya, S.P., Pearson, J.B., and Wonham, W.M., “On Zeroing
the Output of a Linear System," Information and Control, Vol. 20,
pp. 135-142, 1972.

Brickman, L., and Fillmore, P.A., "The Invariant Subspace TLattice
of a Linear Transformation," Canadian J. of Math., Vol. 19,
1%67.

Brockett, R.W., Finite Dimensional Linear Svstems, John Wiley
and Sons, New York, 1970.

Brunovsky, B., "A Classification of Linear Controllable Systems,"
Kybernetica, Vol. 3, pp. 173-187, June 1970.

Bucy, R.S., "Canonical Forms for Multivariable Systems," IEEE
Trans. Auto. Contrcl, Vol. AC-13, pp. 567-569, Oct. 1968.

Chandrasekharan, P.C., "Observability ané Decoupling," IEEE
Trans. Auto. Contrxol, Vol. AC-16, pp. 482-484, Oct. 1971.

Denham, M.J., "Stabilization of Linear Multivariable Systems by
Output Feedback," IEEE Trans. Auto. Control, Vol. AC-18,
pp. 62-63, Feb. 1973.

Denham, M.J., "A Necessary and Sufficient Condition for Decoupling
by Output Feedback," IEEE Trans. Auto. Control, Vol. AC-18,
pPp. 535-536, Oct. 1973.

Dieudonne, J.A., and Carrell, J.B., Invariant Theory, 01ld and
New, Academic Press, New York, 1970.

Douglas, R.G., and Pearcy, C., "On a Topolcgy for Invariant
Subspaces," J. Funct. Analysis, Vol. 2, pp. 323-341, 1968.

Eckberg, A.E., "Algebraic System Theory with Applications to
Decentralized Control," M.I.T. Ph.D. Thesis, June, 1973.

=136~



(F1]

[F2]

(F3]

[F4]

[(F5]

[F6]
[G1]

[G2]

[G3]

(G4]

[H1]

[112]

[H3]

[H4]

[(J1]

[32]

=137~

Fabian, E., and Wonham, W.M., “Generic Solvability of the De-
Coupling Problem," Univ. of Toronto Control System Report No.
7301, Jan. 1973.

Falb, P.L., and Wolovich, W.A., "Decoupling in the Design and
Synthesis of Multivariable Control Systems," IEEE Trans. Auto
Control, Vol. AC-12, pp. 651-659, Dec. 1967.

Fogarty, J., Invariant Theory, W.A. Benjamin, New York , 1969.

Forney, G.D., "Minimal Bases of Rational Vector Spaces with
Ppplications to Multivarisble Linear Systems," submitted to
SIAM J. Contrxol, 1973.

Freund, E.E., "Design of Time-Variable Multivariable Systems by
Decoupling and by the Inverse," IEEE Trans. Auto. Control, Vol.
AC-16, pp. 183-185, April 1971.

Fulton, W., Algebraic Curves, W.A. Benjamin, New York, 1969.

Gantmacher, F.R., Matrix Theory, Chelsea, New York, 1959.

Gilbert, E., "The Decoupling of Multivariable Systems by State
Feedback," SIAM J. Control, Vol. 7, pp. 50-63, Feb. 1969.

Give'on, Y., and Zalcstein, Y., "Algebraic Structures in Linear
Systems Theory," J. of Computer and Systems Sciences, Vol. 4,
pPp. 532-566, 1970.

Gleason, A., "Measures on the Closed Subspaces of a Hilbert
Space," J. Math. and Mechanics, Vol. 6, pp. 885-893, 1957.

Hernstein, I.N., Topics in Algebra, Blaisdell, Waltham, Mass.,
1964.

Howze, J.W., "Necessary and Sufficient Conditions for Decoupling
Using Output Feedback," IEEE Trans. Auto. Control, Vol. AC-18,
pp. 44-46, Feb. 1973.

Howze, J.W., and Pearson, J.B., "Decoupling and Arbitrary Pole
Placement in Linear Systems Using Output Feedback," IEEE Trans.
Auto. Control, Vol. AC-15, pp. 660-663, Dec. 1970.

Hu, S., Introduction to Homological Algebra, Holden-Day, San
Francisco, 1968.

Jacobson, N., Lectures in Abstract Algebra, Vol. 2, Van Nostrand,
New York, 1953.

Jans, J.P., Rings and Homology, Holt, Rinehart and Winston,
New York, 1964.




-138-

[J3] Jenner, W.E., Rudiments of Algebraic Geometry, Oxford Univ. Press,
New York, 1963.

[K1] Kalman, R.E., "Algebraic Theory of Linear Systems," Archiwum
Automatyki i Telemechaniki, Vol. 11, No. 2, pp. 119-129, 1966.

[K2] Kalman, R.E., "Kronecker Invariants and Feedback," Proc. Conf.
Ordinary Differential Eans., NRL Math. Res. Center, June 1971.

[K3] Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical
System Theorv, McGraw-Hill, New York , 1969.

[K4}] Kato, T., Perturbation Theory for Linear Operations, Springer-vVerlag,
New York, 1866.

[K5] Kelley, J.L., General Topology, Van Nostrand, New York, 1955,

[L1] Liu, C.K. and Bergman, N., "On Necessary Conditions for Decoupling
Multivariable Control Systems," IEEE Trans. Auto. Control,
Vol. AC-15, pp. 131-132, Feb. 1970.

[L2] Luenberger, D.G., "Canonical Forms For Linear Multivariable
Systems," IEEE Trans. Auto. Control, Vol. AC-12, pp. 290-293,
June 1967.
[(M1] MacLane, S., and Birchoff, G., Algebra, MacMillan, New York, 1967.
[M2] McLane, P.J., and Davison, E.J., "Disturbance Localization and

Decoupling in Statlionary ILinear Multivariable Systems ," IEEE
Trans. Auto. Control, Vol. AC-15, pp. 133-134, Feb. 1970.

[M3] Morgan, B.S., "The Synthesis of Linear Multivariable Systems by
State-Variable Feedback", IEEE Trans. Auto. Control, Vol. AC-9,
pp. 405-411, Oct. 1964,

[M4] Morse, A.S., "Output Controllability and System Synthesis," SIAM
J. Control, Vol. 9, pp. 143-148, May 1971.

[M5] Morse, A.S., "Structural Invariants of Linear Multivariable
Systems," SIAM J. Control, Vol. 11, pp. 446-465, Aug. 1973.

(6] Morse, A.S., and Wonham, W.M., "Triangular Decoupling of Linear
Multivariable Systems," IFEE Trans. Auto. Control, Vol. AC-15,
pp. 447-449, Aug. 1970,

M7] Morse, A.S., and Wonham, W.M., "Decoupling and Pole Assignment by
Dynamic Compensation," SIAM J. Control, Vol. 8, pp. 317-337, Aug.
1970.




[(M8]

(M9]

[M10]

(N1]

[P1]

[p2]

(R1]

[R2]

[R3]

[s1]

[s2]

[s3]

[s4]

[s5]

[sé]

=139~

Morse, A.S., and Wenham, W.M., "Status of Noninteracting Control,"
IEEE Trans. Auto. Control, Vol. AC-16, pp. 568-581, Dec. 1971.

Mufti, H., "On the Observability of Decoupled Systems," IEEE
Trans. Auto. Control, Vol. AC-14, pp. 75-77, Feb. 1969.

Mufti, I.H., "A Note on the Decoupling of Multivariable Systems,"
IEEE Trans. Auto. Control, Vol. AC-14, pp. 415-416, Bug. 1969.

Nazar, S., and Rekasius, Z.V., "Decoupling of a Class of Non-
linear Systems," IEEE Trans Auto. Control, Vol. AC-16, pp.257-
260, June 1971.

Popov, V.M., "Invariant Description of Linear Time Invariant
Controllable Systems," SIAM J. Control, Vol. 10, pp. 252-264,
May 1972.

Porter, W.A., "Decoupling of and Inverses for Time-Varying Linear
Systems," IEEE Trans. Auto. Control, Vol. AC-14, pp. 378-380,
Aug. 1969.

Rosenbrock, H.H., State Space and Multivariable Theory, Nelson-
Wiley, London, 1970.

Rudin, W., Principles of Mathematical Analvsis, McGraw-Hill,
York, 1964.

Rudin, W., Real and Complex Analysis, McGraw-Hill, New York, 1966.

Sankaran, V., "Invariance in Decoupling of Linear Multivariable
Systems ," Proc. IEEE, Vol. 61, pp. 241-242, Feb. 1973.

Sankaran, V. and Srinath, M.D., "Decoupling of Systems With
Plant and Measurement Noise," IEEE Trans. Auto. Control, Vol.
AC-16, pp. 202-203, April 1971.

Sato, S.M., and Lopresti, P.V., "On the Generalization of State
Feedoack Decoupling Theory," IEEE Trans. Auto. Control, Vol.
AC-16, pp. 133-139, April 1971.

Sato, S.M., and Lopresti, P.V., "New Results in Multivariable
Decoupling Theory," Automatica, Vol. 7, pp. 499-508, 1971.

Silverman, L.M., "Decoupling with State Feedback and Precompen-
sation," IEEE Trans. RAuto. Control, Vol. AC-15, pp. 487-489,
Aug. 1970.

Silverman, L.M., and Payne, H.J., "Input-Output Structure of
Linear Systems with Application to the Decoupling Problem,"
SIAM J. Control, Vol. 9, pp. 199-233, May 1971.




[T1]

(wi]

(w2]

W3]

[wa]

[W5]

(we]

(w7]

(w8]

=140-

Tripathi,A., and Newton, R.H.C., "Note on the Necessary and
Sufficient Condition for Decoupling of Multivariable Systems ,"
IEEE Trans. Auto. Control, Vol. AC-16, pp. 201-202, April 1971.

Warren, M.E., and Eckberg, A.E., "On the Dimensions of Controlla-
bility Subspaces: A Characterization via Polynomial Matrices

and Kronecker Invariants," M.I.T. Report ESL-R—512 Aug. 1973.

(to appear in SIAM J. Control)

Wolovich, W.A., "The Use of State Feedback For Exact Model
Matching," SIAM J. Control, Vol. 10, pp. 512-523, Aug. 1972.

Wolovich, W.A., “"Static Decoupling," IEEE Trans. Auto Control,
Vol. AC-18, pp. 536-537, Oct. 1973.

Wolovich, W.A., and Falb, P.L.,"On the Structure of Multivariable
Systems," SIAM J. Control, Vol. 7, pp. 437-451, Aug. 1969.

Wonham, W.M., "Dynamic Observers-Geometric Theory," IEEE Trans.
Auto. Control, Vol. AC-15, pp. 258-259, April 1970.

Wonham, W.M., "Tracking and Regulation in Linear Multivariable
Systems," Univ. of Toronto Control Systems Report No. 7202,
March 1972.

Wonham, W.M., and Morse, A.S., "Decoupling and Pole Assignment
in Linear Multivariable Systems: A Geometric Approach," SIAM J.
Control, Vol. 8, pp. 1-18, Feb. 1970.

Wonham, W.M., and Morse, A.S., "Feedback Invariants of Linear
Multivariable Systems," Automatica, Vol. 8, pp. 93-100, 1972.



APPENDIX

SEVERAL MODULAR IDENTITIES

(A.1) Lemma: IfYCX, then XNY +2) =XNY+XN1Z

Proof: Clearly XNV + XNZcCcXN(Y + Z). To show the other inclusion
let ace X NY +2). Thena=x=y + z for some x € X, y € ¥, and
ze l, Since YCX, ye X, and z = x -y € X yielding a =y + z, with

vyeXNY, and z ¢ XN Z.

(A.2) Lemma: If X NY +2) =XNY + XNZ, then

YNX+2) =YNX+ynNiz

Proof: Aagain Y MX + Y MZ is always contained in ¥ N (X + Z) so we need
only show the reverse inclusion. Let ae€ ¥ M(X + Z). Thena=y = x+2

for some y € Y, x€ X, and z € Z. Since x =y - z, it follows that

xeXNY+2)y =XNY+XNZ, andsox=xl+x2withxlsxmy,

M o = = = =
X, € XMNZ. Thena=y=x+z X b x, vz =x + Z) where

eV +XNy=Y,

X, +z =12z € Z. However Zy =Y < X thus z

1 1

yielding z, € Y MZ. Thus we have shown a = y = x, +z € YO X+YNZ,
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