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ABSTRACT

Systems governed by retarded functional differential
equations are studied in the context of the Delfour-Mitter

MZ space setting. An exact, explicit closed form solution

to a differential-delay equation with one delay is exhibited.
The optimal control problem with quadratic cost on a finite
or infinite time interval is considered and solved completely.
The optimal control and the optimal cost are expressed in
terms of an M operator I (t) which is the unique solution
of a Riccati (differential) operator equation. In the
tracking problem, we have in addition a M2-valued function
T(t) for which a differential equation is established.

From these two differential equations, it is possible to
deduce the first order differential equations satisfied

by the matrix valued functions IIOO(t),Iloi(t,a),

Hll(t,e,a) and the vector valued functions _go(t),
gl(t,e) appearing in the expressions for the optimal

control and the optimal cost. This coupled system of
differential equations is not solved explicitly. 1Instead,
in the autonomous case, we demonstrate an approximation
technique based upon the eigenfunctions of and which
reduces to the quadratic criterion problem for systems
governed by ordinary differential equations. An application
of the various results is made to Kalechi's differential-
delay equation governing the rate of investment in a
capitalistic economy.

Thesis Supervisor: Sanjoy K. Mitter
Title: Associate Professor of Electrical Engineering
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5.
Notation

Set of real numbers denoted by R, set of complex numbers
by C.
Let X,Y Dbe topological vector spaces.
We denote by ¢z(X,Y) the set of all continuous linear
maps X into Y.
In the case X =Y, we write oﬁ(X) instead of o‘e(X,Y).
Let H,K be real Hilbert spaces.
The inner product of two elements x,y € H is denoted by
(%,5)y
and the norm of an element x € H 1s denoted by
e 1y = Gy

n

In the case H = R, we denote the inner product of two

elements x = (Xl"'xn)? y = (yl...yn) by

(x,¥) =
1

M3

XY
1 171
For anmny A eJE(H,K), the adjoint in 6f(H,K) is denoted

by A¥., 1In the case H = K, A 1is sald to be self-adjoint

if A = A¥,
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Chapter 1

" Introduction

Physical processes involving discrete snbsystems are
usually described by ordinary differential eguations.
The underlying assumption - implicit or explicit -~ 1s that
the interactlions between the subsystems will be instantaneous,
In practice and in theory however, this will not be the case,
The dynamics of mechanical, electrical, hydraulic and
pneumatic devices involve non-zero time delays. The special
theory of relativity sets an upper limit to the speed with
which subsystems can communicate - this upper 1limit being
the speed of 1light (or radio waves), Thus for subsystems
stationed on the earth that interact through radio waves,
the delay will be so small that for all practical purposes
it can be ignored. Thils 1s not the case for space travel,
Radio waves take'l% seconds to travel from a control center
on the earth to a space vehicle orbitting the moon and
another 1% seconds to come back. If and when a space
vehicle is sent to Jupiter, the delay could be up to
40 minutes, It would not be prudent to ignore such a
large delay.

It should be pointed out that 1t might be possible
that a delay in a dynamical system is harmless in the

sense that the asymptotic properties of the "delayed"
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dynamical system are similar to that of the "undelayed"
dynamical system., Driver [24] has an interesting discussion

on this point,

1.1 Hereditary Systems in the Physical World

A heredltary system is a system whose dynamics
depends in some predetermined manner upon the past history
of the system, Hereditary systems can be adeguateély
described by functional differential equations., A functional
differential equation of retarded type (R.F.D.E.) is one
in which the derivative %(t) of the state at time t 1is
specified as a functional of the past values of the state x
over some time interval [t-a, t]. A functional differential
equation of neutral type (N.F.D.E,) 1s one in which ;(t)
is specified as a functional of the past values of x
and ; over some time interval [t-a, t].

Heredlitary systems occur naturally in the physical

world. The following are some examples:

a) Biological populations

A simple model of a biological population can be
found in Cooke [11].

Let x(t) ©be the number of individuals in a population

at time t, 1t the gestatlion period and ¢ the life span.
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Then the functional differential equation governing the
growth of the population may be taken to be

x(t) = af{x(t=1) - x(t=T-0)} (1-1)

where o 1s some constant.
A slightly more sophisticated mathematical description
of a fluctuating population of organisms (for instance

bacteria) is given in Cunningham [13]
x(t) = ax(t) - Bx(t-1)x(t) (1-2)

where o and B8 are positive constants,
Equation (1-2) is also applicable to potentially

explosive chemical reactions.

b) Learning Theory

In studylng problems assoclated with pattern
discrimination, learning, memory and recall in learning
theory, Grossberg [33] has used a system of nonlinear
functional differential equations describing cross
correlated flows 1In a signed directed graph to model

neural mechanisms. His equations are
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. n +
xi(t) = -aixi(t) + mzl[xm(t-tmi)—rmi] Bmizmi(t)+ci(t) (1-3)

.

2 = = Yy (8) + 8k ey - Typd 2y (8) (1-4)

where Ci(t) 1s the 1" input stimulus

xi(t) is the ith

stimulus trace or short term
memory trace

zjk(t) is the (.j,k)th memory trace or the long term
memory trace recording the pairing of the
Jth h

is the (J,k)th signal threshold

and klc events

ij

TJk is the time lag or reaction time between

signal sent at J and received at k.

oy, de, BJk are structural parameters and

(A1t = max (0,4),

¢) Number theory

Wright [80] came across the functional differential

equation

X(t) = = ax(t=1)[1 + x(t)] (1-5)
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in studying the distribution of primes.

Let w(z) denote the number of primes less than 1z,

Putting w(z) - gz) log 2 -1, log z = 2t, a = log 2,

we can heuristically show that w(t) satisfies
equation (1-5), 1In [79], Wright proved that for
0<a i % s, W(t) + 0 as t + «, and from this, the

prime number theorem
w(z) S z/log z as z + =

follows.

d) ' Two body problem

Denote the position vector at time ¢ of two
particles 1,J by ri(t) and rJ(t). Assuming that
there is no radiation reaction term, that electromagnet
effects propagate at speed ¢ and that the force between
the two particles 1s entirely of an electromagnetic

nature, Driver [23] derived the equation

c%‘t [t)- ] = (- vt o), - 'Yﬂwft)))ﬂ'qm—wgﬁ)r@ ~€q&)«g&-r{t)j;(t~(t§)_)'}6)

where t(t) = |r,(t) - rd(t)l/c.
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e) Nuclear reactors

The dynamics of a nuclear reactor has been investigated
by Ergen [28] who proposed the functional differential
equation

. 0

x(t) = - 2 I (a%0) exp {x(t+) - 1}do (1-7)
where x(t) 1s the logarithm of the reactor power,

a 1s the transit time and ¢ is a constant., This
functional differential equation arises out of the fact
that neutrons are given off some time after the fission
that caused them and hence the reactor dynamics depends
on its history over some time interval. Further mathema-
tical analysis of equation (1-7) has been carried out in

Nohel [63] and Levin and Nohel [55].

f) Rocket engines

The phenomenon of rough burning in a liquid
propellant rocket motor can be attributed to the time
delay between the instant when the liquid is injected
into the combustion chamber and the lnstant when it is
burned into hot gas. A detalled discussion is given in
Tsien [76] chapter 8, where by linearizing about the

steady state condition, he obtains the functional
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differential equation

g% + (1-n)p(t) + np(t-a) = 0 (1-8)

where p 1is the dimensionless deviation from steady pressure
t 1is the dimenslonless time variable
a 1s the dimensionless constant time lag of combustion

and n 1is a constant

g) Ship stabilization

In studying problems arising out of stabllizing a
ship by means of displacing ballast between two tanks
connected by a tube equipped with a propeller pump,

Minorsky obtalned the functional differential equation

mx(t) + rx(t) + gx(t=t) + kx(t) = 0 (1-9)

where x 1s the angular displacement of the ship and

m, r, 4, k are constants,

h) Transmission line

It is well known, Cooke [12], that a particular
initial boundary value problem for a hyperbolic partial

differential equation can be replaced by an associlated
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neutral functional differentlal equation. This observation
originally arose out of the study of the transmission line
problem, Brayton [7]. The basic idea is that the solution
to the wave equation can be expressed as a linear
combination of two waves, one travelllng to the right,
¢(x=-ct) and the other travelling to the left y(x+ct).
Since they ftravel with speed ¢, they will take a finite
time to travel from one end of the line to the other.
Hencehwhat is happening at one end of the line will

depend upon what happened at the other end some finite

time back in the past. More specifically, let us

consider the flow of electricity in a lossless transmission
line with ends at x = 0 and x = 1, The governing

partial differential equations will be

vix,t) . 91(x,t)

-—TX—’-— - L '—BE’——— + e(x,t) (1-10)

al(x,t) _ Av(x,t)

i (1-11)

where 1i(x,t) 1s the current flowing in the line at
point 'x and time t, v(x,t) the voltage across the
line at x and t, L the inductance per unit length

and ¢ the capacitance per unit length.



where vo(x) and 10(x) are differentiable functions

17.

The inlitial conditions are

v(x,0) = vy (x)

1(x,0) = 1,(x)

of x.

For

The boundary condlitions are

- v(0,t) = r 1(0,t) + 2, 93%%:31 - uy(t)

v(1,8) = r1(1,0) + ¢, BB 4y (6)

1
£t > % where 1 = l/(LC)g define

it

t

wl(t) = fl {e(1(a=t)+1l,a)/vL}da

- v

1
t.-
T
Yo(t) = { {e(t(t=a),a)/vE}da

Also define y,(t) = /T v(0,t) + YL 1(0,t)

¥p(8) = = /T v(1,t) + /L 1(1,t)

(1-12)

(1-13)

(1-14)

(1-15)

(1-16)

(1-17)

(1-18)
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yl(t)
, y(t) =| satisfies the functional
y,(t)

differential equation
‘/), ,"L
(4 lL A Y : lL Yo
/y’w t PR (2C"+ _9,/23/2;'({)_,, Lo (;Efa.’ 2 >’gz&t )+Aé>.@’°)
iy "o
© L» : L g
- [({z: - 2% %H\Vz&[} - o) =o

For ¢ >

Al

(1-19)

4 ATH ?L[‘: I N
340+ 3 (20 o )l + 5 (Bm 2064 e
l/)_

+ V:’Z"E/l gjc,'"> jljll\ﬁ(f) LV&)] alt) = o

(1-20)

with initial conditions on [O,%] given by

‘/:_ V:). L.”L Yo ,
J0- 5 (e )t = -3 (- 22 W%
{’(@ A HL doth) t S&Q@&“")"’O/ﬁ:w

(1-21)
d
/93-({_) v:éI: (l"/; )? & - {2‘* L:I - \ \)+ di}

t
{ JE Pt H LTt + S&a (-t teTat, ) /fﬂ}doz}

(1=22)

y1(0) = JTxyglo) + /L 14(0) : y,(0) = =/T vo(0) + /L 1,(0) (1-23)
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The last example (h) illustrates the point that
physical problems described by partial differential
equations can also be described (by making further
approximations or by making an equivalence transformation)
by functlional differential equations, sometimes with a
gain in simplicity. So for instance, a valve in a
Diesel engine lifts in response to a pressure wave
generated by the piston. It is easier to describe the
motion of the valve by introducing a time delay rather
than attempting to treat the entire problem of the
motion of the valve and the gas flow in the cylinder,

An extensive bibliography listing further examples
can be found in Choksy [9]. In chapter 6 we will discuss
in detall Kalechi's functional differential equation
model for the rate of investment in an economy. But now,
we will discuss the strange and mysterlious role that
time delays play in four everyday occurrences: two of a
physiological nature, speech and sight, and two of a
mechanical nature, the electric bell and the thermostat.

Speech is the most complicated act (Fry [32]) that
a human being is capable of performing. It involves an
intricate coordination of the pharynx and the muscles
of the chest, larynx and face and with very precise timing,

Hence 1t demands a very complex control mechanism, Part
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of this control mechanism will be a feedforward open loop
control, but there is also a control through a feedback
loop. This auditory feedback takes place along the bones
of a person's skull and reaches the ear along this path-
way. Incidentally because the skull bones have a
different freguehcy characteristic than alr, a person
never hears hls voice the same way others do. This
auditory feedback is vitally important for successful
speech, Thus adults who become deaf 1in later life
continue to speak normally, but after a while their
speech becomes incoherent. Young bables - deaf or normal -
all pass through a babbling stage. Normal babies hear
théir babble and go on to refine it iInto speech., Deaf
babies never do, and have to get special training in
order to learn how to speak.

There is a certain time delay associated with this
auditory feedback, and it is possible to set up an experi-
ment in which this delay is varied, Lee [52]. By getting
a person to speak into a microphone connected to ear phones
placed on the person's head and turning up the volume
sufficiently to mask the bone conducted sound, the auditory
feedback 1s transferred to the ear phones. The feedback

signal can be delayed by recording it and playing it back
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after a lapse of time. For a certain time delay (usually
1/10 second) the person is unable to speak, starts
stammering and stuttering and finally gives up in utter
frustration, It should be noted in passing that stammers
are usually able to speak fluently when subjected to

this experiment.

The second phenomenon is known as the Pulfrich
pendulum effect, Arden and Weale [2], in honour of 1its
discoverer. It can be demonstrated with a bare minimum
of equipment: a darkened glass and a string attached to
a weight to formha pendulum. The pendulum is set swinging
in a straight arc normal to the direction of sight and
one eye, say the left, is covered with the darkened glass.
The bob will appear to describe an elllpse - not a
straight arc. An explanation of the strange phenomenon
goes as follows., By reducing the light, the left eye
has become dark adapted and messages relayed to the brain
are delayed relative to the right eye. This delay
causes the left eye to perceive the bob slightly in the
past and in a different spatial position than the right
eye. Now the brain calculates distance from the disparity
in the images of the two eyes (This is true for distances
up to twenty feet. Beyond that another mechanism comes

into play). Under these conditions, the brain will
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interpret the usual input to be that of a bob describing
an ellipse,

The third phenomenon has to do with the electric
bell which would not work but for a delay in its
mechanism. The magnetic force exerted‘by the electro-
magnet does not appear and disappear instantly on the
operation of the interrupter contact, If thls were
not the case, 1.,e. 1f the self induction in the
electromagnet appeared and disappeared instantaneously
when the current 1s on and off, the hammer would strike
the gong in a very feeble manner if 1t did so at all.
The derivation of a functional differential equation
describing (approximately) the motion of the hammer can

be found in Norkin [64] and is given by
mx(t) + rx(t) + kx(t) + ex(t-a) = 0 (1-24)

where x(t) 1is the displacement of the hammer at time t,
m, r, k, ¢ are constants and cx(t-a) 1is an approximation
to the fbrce acting on the hammer.

In any heating system equipped with a thermostat,
there will be an unavoldable delay in response to a

change in temperature. It 1s well known that this time
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delay can cause the system to oscillate indefinitely
rather than settling down,

The functional differential equations of examples (d)
and (h) were of neutral type. All the other functional

differential equations were of retarded type .

1.2 History of functional differential equations

The preceding examples should have provided enough
motivation to study the qualitative features of functional
differential equations. Euler was the first mathematiclan
to study functional differential equations, [29] and he
did so in connection with the problem of the general form
of curves similar to thelr own evolutes., Later in [30],
he looked for solutions of functional differential
equations of the form ekt. This is baslically the same
method that we will exploit in chapter 5, though in
keepling with the modern style in mathematics the approach
we use will be roundabout and convoluted so as to obscure
its basic simplicity. A number of other mathematicians,
J. Bernoulll, Polsson, Cauchy, Laplace, Condorcet tackled
functional differential equations in the latter half of
the eighteenth and the first half of the nineteenth centuries,
The problem was neglected in the latter half of the nine-

teenth century and did not attract the attention of
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mathematlcians until 1911, with the publication of

a paper by Schmidt [72] who treated a fairly general

class of differential-difference equations. Thereafter,

a number of mathematicians, Hilb, Bochner, Pitt, Bruwier,
Volterra treated various aspects of functional differential
equations, In particular, Volterra [78] considered the
functional differential equation

e 0

x(t) + cx(t) =/ F(8)x(t+6)de (1-25)

-3,
and obtalned conditions guaranteeing the stability of
the solution,

But it was not until the nineteen forties that the
problem was properly formulated and theorems on the
existence, uniqueness and continuity of the solution of
a functional differential equation were exhibited
(see Myskis [60]). 1In the nineteen fifties, the standard
approach to functional differential equations was to use
the Laplace transform to obtain a series solution or a
solution by definite integrals., Closely tled to that
approach was the study~6f the distribution of the
characteristic roots in the complex plane. A good account

of the state of the art then can be found 1in books by
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Bellman and Cooke [5] and Pinney [66],

Then roundabout 1960, arising out of some difficulties
he had in studying the stability of functional differential
equations using Lipaunov functions, Keazsouskii [48]
pointed out that the natural concept of a state for a
functional differential equation is not the value of x
at time t, but the restriction of x to the interval
[t=a,t]. In other words, the state space should be a
function space and not Rn. In this setting it is
possible to bring the tools and techniques of functional
analysis (spectral, analytic, topological and semigroup
methods) to bear on a study of the problem and liberate
it from the Laplace transform and complex analysis. A
popular cholice for the function state space has been
the space of continuous functions and within thls context
a full treatment of functional differential equations of
retarded type has been given in Hale's book [36]. The
state of the art 1s less developed for functional
differential equations of neutral type. Recently, Delfour
and Mitter [18], [19] have proposed the setting of the
problem in the function space M2(—a,0;Rn) which will be

described in more detail in chapter 2,
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1.3 Development of Control Theory for R.F.D.E,.

From the control theorist's point of view, 1t is
not enough to know the qualitative features of a dynamical
system, How the system will respond to different
controlling inputs and which control results in the
best behavior given some pre-ordained criterion is of
immense interest, But first of all, the control theorist
must have an adequate knowledge of the qualitative
features. It 1s for that reason why we shall not discuss
the control theory of systems governed by N.,F.D.E. in this
thesls, and why we restrict discussion to systems governed
by R.F.D.E. Also we shall take the action of the control
on the system to be instantaneous; we shall not consider
systems in which there is a delay in the control.

The time optimal control problem for systems
governed by R.F.D.E. has been dealt with in Oguztoreli [65]
and Chyung and Lee [10]. Oguztoreli treated the case
where the control restralnt set was a hypercube and
Chyung and Lee considered the more general case
where the control restraint set is compact. 1In brief,
the solution proceeds as follows, Working in Rn, the set
of attainability at time t 1s shown to be convex,

compact and varies continuously with t. This enables
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one to prove the existence and a maximal principle for
the tlime optimal control. If normality conditions are
satisfied, this time optimal control will be unique.
The maximal principle is in terms of the solution to
the hereditary adjoint equation. As in the case of
ordinary differential equations without delay, the
time optimal control will be bang=bang.

The main concern of this thesis is the solution
of the quadratic criterion optimal control problem for
systems governed by R.F,D.E., The first definitive
paper on the topic was written by Krasovskii [46]
in 1961 and is entitled "On the analytic construction
of an optimal control in a system with time lag".

Krasovskil considered the R.F.D.E.

g% = Aoox(t) + Alx(t~a) + Bv(t)

x(8) = h(8) 0 € [-a,0]

where v € R

and the quadratic cost functional

oo

Clvih) = £ {(x(£),x(t)) + vo(t)}dt
0

(1-26)

(1-27)
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Working in C(-a,0;R") the space of continuous functions,
considering a Liapunov functional that would ensure the
stability of the system (and hence that the problem was
weil-posed) and using dynamic programming techniques
Krasovskii obtained an optimal feedback tontpool

of the form

0
u(t) = = B {rygx(t) + { 14p(a)x(t+a)da) (1-28)
-8,

Krasovskil's work was extended by Ross and
Flugge~Lotz who considered the slightly more general
case of R™ controls. In terms of the initial function h,
they were able to express the minimal cost as

ind €l )= U Tl ko)« 2 Jauh T de) + { e fda k)T 9 )
s > NN

1-29)

and they were able to characterize Ivoo,lrol(a),ltll(e,a)

by a coupled set of first order differential equations
p Ry + oy (0) (0) 0
Aogtoo * Tgohoo = MooRtgo * Ty Q) *+ By (0) + @ =0 (1-30)

(1-31)
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(3% + 3%)ﬁ11(6,a) = -H;l(e)ﬂﬁol(a) aaieio; ‘35959 (1-32)

* *

where R = BN"IB'.

The existence and uniqueness of an optimal control
inn the approach used by Ross and Flugge~Lotz depends upon
the exlistence and uniqueness of a solution to eguations
(1-30), (1-31) and (1-32). This approach was extended
by Eller, Aggarwal and Banks, [27] Kushner and Barnea, [50]
Alekal, Brunovsky, Chyuang and Lee, [1] and Mueller, [62]
to deal with the finite time quadratic criterion
optimal control problem for system govenned by
non-autonomous R.F.D.E.

The dynamic programming in the space of continuous
functions approach to the guadratic criterion is unsatis-
factory for the following reasons:

(1) The class of admissible controls is
{u ; u(t) = u(;(t))} i.e, the control at time t 1is
linear map of the system state ;(t) € C(—a,O;Rn) into
R™. This is an unnecessary restriction, though as luck

would have it the optimal control does indeed turn out

to be a linear functional of the state,
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(1i) The exlistence and uniqueness of an optimal
control depends upon the existence and unigueness of the
solution to a complicated coupled set of first order
partial differential equations with Riccatl type features
which in the infinite time case reduces to equatilons
(1-30), (1-31) and (1-32),

(111) 1In general, dynamic programming does not
lend itself to a rigorous mathematical approach (see for
example a discussion in Krasovskii [49) though it yields
the right answer to optimal control problems.

(iv) There is a complete, satisfactory and standard
solution to the quadratic criterion optimal control
problem for systems governed by linear ordinary differential
equations which gives the optimal control in feedback form
with the gain matrix satisfying a matrix Riccati differential
equation. None of its features passes over into the
solution of the optimal control problem for systems
governed by R.F.D.E. using the dynamic programming

approach,
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1.4 Brief outline

Our approach will be different. Instead of taking
initial data in C(-a,O;Rn) the space of continuous
functions, following Delfour and Mitter [21], we will take
initial data in the space M2(—a,0;Rn). In Chapter 2, we
will quote éxistence, uniqueness and continuity theorems
for the solutions of R.F.D.E. from Delfour and Mitter [18]
and in general prove results that will be used in later
chapters.

In chapter 3, we use the Lions' direct method [83]
to obtain a necessary and sufficient condition for the
existence of an optimal control to the finite time
guadratic criterion problem. The optimal control is
characterized by means of a coupled duo of equations, the
R.F.D.E. and its hereditary adjoint equation., We can
decouple these two equations to obtain the optimal control
in feedback form, and we can express the minimum cost as
a quadratic functional of the initial data, Thils leads
to the study of an operator I{(t) : M2 -+ M2 for which we
derive an operator Riccati differential equation., From
this equation we can deduce the coupled set of first order

partial differential eguations satisfied by Hoo(t),

HOl(t,a), nll(t,e,a). Whatever advantages working in the
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function space M2(-a,O;Rn) might have over the function
space C(-a,O;Rn), it does not lead to less taxing and
tedious computations., Indeed it seems that no matter
what you do, the derivation of the coupled set of first
order partial differential equations satisfied by

Hoo(t), HOl(t,a), Hll(t,e,a) involves hideous calculations.

These calculations have been tucked into the appendices,
Finally in chapter 3, we consider the tracking problem
(i.e, we have a forcing term in the R.F.D.E.) whose
solution is a modification of the solution for the regulator
problem (i.e, have no forcing term in the R.F.D.E.)

In chapter 4, we consider the infinite time autonomous
regulator quadratic criterion problem, We introduce the
concept of stabilizability in order to ensure that the
problem is well posed. Again we obtain the existence of
an optimal control in feedback form and the minimum cost
as a quadratic functional of the initial data. We derive
an operator Riccati equation for an operator 1 : M2 > M2
and from this we deduce the coupled set of differential
equations satisfied by I,q, HOl(a), nll(e,a). It should
be noted in passing that our approach to the finite and
infinite time quadratic criteria optimal control problems

is similar to the usual approach used for systems governed

by linear ordinary differential equations.
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If we could decouple the coupled set of first order
partial differential equations satisfied by
Hoo(t), HOl(t,a), Hll(t,e,a), we would be in a better
position of solving those equations to give an explicit
and complete solution to the optimal control problem.
But alas this does not seem to be possible, and a
solution to the equations even in the simplest possible
case - the one dimensional infinite time problem -
seems well nigh impossible., So approximate we must,
and we do so in chapter 5 by considering the solution
of the R.F.D.E. in the M2(-a,O;Rn) function space on
an eigenspace of M2(—a,O;Rn). Fortunately, when this
is done, the approximate control problem reduces to a
quadratic criterion optimal control problem in RJ
where J 1s the number of eigenfunctions spanning the
eigenspace., This way, we reduce the problem to one whose
solution is well known. We can show that the optimal
control obtained this way is close to the exact optimal
control in the sense that as J + «, the approximate
optimal control approaches the exact optimal control.

Finally in chapter 6, we apply the results of the
previous chapters to a model of the rate of investment
in a capitalistic economy proposed by Kalechi [40] in
1935.
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Chapter 2

Mathematical Preliminaries

In this chapter, we shall establish some results

which will be used in succeeding chapters,.

2.1 Existence, Uniqueness and Continuity of solutions

of R.F.D.E.

We consider the linear R.F.D.E. defined on [tO,T]

IE = Ago(t)x(e) + izlai(t)x(wei) + i Agp (t,8)x(t+0)de+f(t)

(2-1)
x(t,+6) = h(e) 6 € [-a,0], h(+) initial data

where N > 1 1s an integer, 0 < a <
—a=eN<e < oo e <6 <6 =O i=1’... I\]
2
f el (tO,T;Rn), AOO(°), Ai(*) are elements of
2

L(t o, T3 L(R™)
2
Agy(rse) € L (tO,T;-a,o;sf(R”))
Equivalently (2-1) can be written in the integral form

(and this is the form in which the existence and uniqueness

theorems are proved)
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t N t
x(t) = h(Q0) + f Aoo(s)x(s)ds + I Ai(s)x(s+ei)ds
to i=1 to
t 0 t
+ [ ds [ 46 AOl(s,e)x(s+6) + [ f(s)ds (2-2)
to -a to
x(ty+6) = h(e) 6 € [-a,0]
Remarks

1. The term Ai(t)x(t+ei) in (2-1) gives rise to
a concentrated delay (also known as a transportation lag)
taking effect at time t and arising at time t+ei. The
0

term [ AOl(t,e)x(t+6)de gives rise to a distributed

delay taking effect at time t and arising out of the

history of the system om the interval [t-a,t].

2. Later on, for technical reasons
Aoo(t), Ai(t), AOl(t,') to be piecewise continuous

and continuocus from the right.

First of all, we have to say something about the
exlstence, uniqueness and continuity of the solution of
(2-1) with respect to the initial data h taken to lie

in some function space. The usual choice for this function
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space 1is C(-a,O;Rn) the set of continuous functilons
mapping [-a,0] into R™ with the supremum norm.
Looking for solutions in the space C(tO,T;Rn) Hale [36]
pp. 13-23 proves existence, uniqueness and continuity

of the solution with respect to the initial data.

The prominent feature of R.F.D.E. is that the
solution will be smoother than the initial data. Also
we can have a solution to (2-1) with the initial data h
discontinuous. Indeed all we have to specify of the
initial data h is the value h(0) and h as a measurable
and integrable map [-a,0] =+ r",

This is the motivation for the introduction of the

space M2(-a,O;Rn) (Delfour and Mitter [18], [19],

Delfour [17]) which is arrived at in the following manner:

Take Ofg(—a,O;Rn) the vector space of all Lebesgue
measurable and square integrable maps h : [-a,0] -+ R

with h(0) well defined and impose the semi-norm

1

0
]l = {|n(0) |2 + 5 |n(e) |Pa6}? (2-3)

-a

Define the linear subspace & of Jfg(-a,O;Rn) by

&= {h;||n|| = 0} (2-4)
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Mz(—a,O;Rn) is defined to be the quotient space of

ng(—a,O;Rn) by & .

M2(-a,0;Rn) with the norm

1
0
lInl] 5 = {1n(0) 1% + 5 |n(o) |2ae}? (2=5)
M -3
and inner preoduct
0
(h,k)M2 = (h(0),k(0)) + /s (h(6),k(8))ds (2-6)
-a

is a Hilbert space and is isometrically isomorphic to

n

R® x 1,°(-a,0;R™).

When there is no possibility of confusion arising,

we shall denote M2(-a,O;Rn) by M2.

If we take M2(-a,O;Rn) to be the space of initial
data, our solution will be absolutely continuous and with
derivative in L2(tO,T;Rn). Hence we look for a solution
in the function space AC2(tO,T;Rn)ﬁ the vector space

of all absolutely continuous maps [tO,T] + R"  with

derivative in L2(tO,T;Rn) and norm

1

dx(t) 2

x| = {|x(t.)]° + le |dt)
ac? 0 £y dat

(2=7)



38.

AC2(tO,T;Rn) is a Hilbert space.

With M2(-a,O;Rn) as the space of initial data and
AC2(tO,T;Rn) as the space in which a solution is sought,
Delfour and Mitter [18] establish the following result

which is stated as a theorem,

" Theorem 2A Delfour and Mitter [18]

With initial data h e M°(-a,0;R"™), the R.F.D.E. has a
unlique solution Xx ¢ AC2(t0,T;Rn). Denoting this

solution by ¢(t;t0,h,f) and defining
P(t,,T) = {(t,8); t,s e [t,,T], t > s}

we have

(i) for fixed tO the map

"(haf) g ¢( ';tosh,f)
(2-8)

M%(-a,0;R™) x L2(t0,T;Rn) > Ac2(t0,T;Rn)
is bilinear and continuous.

(1i) for fixed h,f the map
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(tys) » ¢(t;s,h,f)

P(ty,T) > R"

is continuous.

In chapter U4, we shall consider the autonomous

R.F.D.E. defined on [0,x)

N 0

x(t) + 15 Aix(t+61) + faA01(6)X(t+6)d6+f(t)

o)

X

— = A
dat 00 1

x(8) = h(e8), 6 ¢ [-a,0]

$,..n
where AOO’ Ai e < (R) i=1,... N
An, () eI2(-a 0; &£ (™M) fs:I2 (0,=:R™)
01 - » ’ H9.0c¢ [ el

Corollary 1

The autonomous R.F.D.E. (2-10) has a unique solution

¢(-3h,£) in AC_(0,=;R™) and the map

(hyf) » ¢(e3h,v)

2
foc

2

Mm% (-a,05R™) x L2 (0,=;R™) » ACS__(0,=3R™)

is bilinear and continuous.

(2-9)

(2-10)

(2-11)
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2.2 Representation of solutions of R.F.D,E,

Banks [3] gives a representation of solutions to
R.F.D.E. (2-1) when the initial data lies in C(-a,0;R"™).
For the initial data lying in M2(-a,0;R®) we have the

result

" Theopem 2B Delfour and Mitter [19]

The solution 6 the R.F.D.E. (2-1) can be written in the

form ,
o, t-tot o)

N . |
ptt b ) = Bt ko + L | dx Pitor<-el Rilt, e o-00) i)
L= o;

v Sda Yap DUt v Aerd-pp) A

* mag(-a,x-trta) (2-12)
t [+
+ St, Pt s) g ds
or more compactly
0 01 t o
o(t3tysh,f) = &°(£,8,)h(0) + S &7 (t,t,,a)h(a) + J & (t,s)f(s)ds(2-13)
-3 t

0
where @O(t,s) € df(Rn) tys € [tO,T],; t > s and

satlisfies the matrix R.F.D.E.
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e N N o Q
B%C%S) - 0,0 @O&’E,S) + Z, AL P tes) + S AL e)@d;af 6,5)de
(2-14)
¢O(s,s) = T, @0(s+6,s) =0 0 ¢ [-a,0)

The mapping (t,s) » Qo(t,s)
W (2-15)

P(6y,7) » LR

i1s continuous and the mapping
% 1 [6,,T1 x [t5T] » L(R™ (2-16)

(where QO(t,s) = 0 for t < s) 1is an element of

2 . . n
L (tO,T,tO,T,ci(R ))

¢l(t,t0,a) e L(R™) and

0
N |2 (b, tpta=0,)A, (fpta6y)  att -t<e,<a

¢1(t,to,a) = 3

1=1 0 otherwise

(2-17)
o

+ roas o%¢,t +a=B)A o, (t +a=8,8)
max (-a,a=t+t,)
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Proof. Consider the R.F.D.E. on [s,T] where s e [t,,T]

N 0
dx _
JE ° Aoo(t)x(t) + iElAi(t)x(t-rei) + fa AOl(t,e)x(t+e)de

(2-18)
x(s) = h(0) x(s+6) = 0 6 € [-a,0)
From theorem 2A, (2-18) has a unique solution x(t;s)
and for fixed t, t > s, the map
h(0) - x(t3s) (2-19)

is linear and continuous and we can write
x(t3s) = t,s)h(0)

clearly ¢O(t,s) satisfies (2-14) since

x(t3s) = QO(t,s)h(O) satisfies (2-18),

Also the continuity of the map

(t,5) » ¢°(t,s)

P(t,,T) > L(R™)

follows from (ii) of Theorem 2A.
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Now let us consider the R.F.D.E.

0
Ai(t)X(t+91) + {aAOl(t,e)x(t+e)de + (%)

Il =

3T ° Aoo(t)x(t) +

i=1

(2-20)

x(t +6) = 0, 6 € [-a,0]

or equivalently the integral equation

t
() = JF A H(r)x(r)dr +
p' I Ro0 X r

0

t
/A, (r)x(r+6,)dr
1 to i i

o=

i

(2=21)

t 0 t
+ [ dr [ de AOl(r,e)x(r+e) + [/ f(r)dr
t

ty -a 0

x(t0+e) =0 6 € [-a,0]

@O(t,s) will satisfy the matrix integral equation

¢ (t,s) = I+ Ajg(r)e(r,s)dr + T [
s

Ai(r)QO(r+ei,s)dr
s i=1

...ei

0 t 0
+ / de [ dr AOl(r,e)¢ (r+8,s)
-a s=-0

@O(s+6,s) =0 0 ¢ [-a,0)

(2=22)
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We want to show that
t

roe%t,s)r(s) £ >t

o

y(t) =

satisfies the integral equation (2-21).
Clearly it satisfies the initial conditions,
Substituting (2-23) into the left hand side of (2-21)

we obtain

t r

fdr [ ds A (r)e0(r,s)F(s)
x £ 00
0 0
N t r+8;ﬁ 0
+ I [fdr f ds A,(r)o (r+8,,s)f(s)
= i i
i=1 ¢ t
0 0
t 0 r+6 0 t
+ fdr f ds [ ds AOl(r,e)® (r+6,s)f(s) + [ f(s)ds
to -a to to
t t 0
=/ dr [ ds Ag,(r)e (r,s)f(s)
t t
0 0
N t t 0
+ L S dr S ds A, (r)o (r+6,,s)f(s)
i=l ¢t t 1 1
0 0
t 0 t t

+/dr /a6 [ ds Ag (r,0)8°(r+0,5)r(s) + £ £(s)ds
to -a to to

(2-23)
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since @O(r,s) =0 for r <s

t 1

= [ ds [ dr Aoo(r)@O(r,s)f(s)
t t
0 0
N ot t 0
+ I f ds fdr A,(r)e (r+6,,s)f(s)
- i i
i=1l t t
0 0
t 0 t 0 t
+ [ ds [ A8 f dr AOl(r,e)¢ (r+6,s)f(s) + f f(s)ds
to -8, tO tO

interchanging order of integration by Fubini's theorem

t t

= [fds [ dr Aoo(r)éo(r,s)f(s)
to s
N t t 0
+ I [ ds / dr A,(r)o (r+6,,s)f(s)
. i i
i=]l ¢t 5=-0
0 i
t 0 t 0 t
+ [ ds [ do [ AOl(r,e)¢ (r+6,8)f(s) + f f(s)ds
to -a. s=0 to

using fact that @O(r,s) =0 r <s
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S{:u b fo =

Hence y(t) does indeed satisfies integral equation (2-21)

and from uniqueness, it must be the solution of (2s21).

Now deflne
N A, (t)h(t=-t +6,) t—a<t+6 <t
R(t) = 2 1 0*%1 1="0
1=1
0 otherwise
(2=24)
to-t
I Ay (t,0)h(t-t,+0)d6 -a<t ~t<0
+ -a
0 otherwise
Clearly T e Lz(tO,T;Rn).
Now consider the R.F.D.E.
- R, (0 xt) -+ Z%xﬁm + Pl oo + A
(2-25)

X+8)=0 ©el-a,d]

whose solution is denoted by xl(t)
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and the R.F.D.E.

| N 0
gjﬁt_ = Ay e)x(t) + izlAi(t)x(t-i-ei) + faAOl(t,e)x(ﬁe)de

(2-26)
x(to) = 0, x(to+e) = h(6) 6 € [-a,0)

whose solution is denoted by xz(t).
Let z(t) = xl(t) - xz(t). Then 2z satlisfiles the R.F.D.E.

d N o _ 5
@ = A, D)+ Z‘, Al xt+e) + S R (t,0 xt+e)de +AH)
= ~a
(2-27)
x(t,% 0 rdo+e) = - sz(e) oel-a O)
z(t) = 0 for ¢t ¢ [tO,T] satisfies equation (2-27)
and from uniqueness it must be the solution,
Hence x,(t) = x5(t) for t e [ty,T].
Hence the solution to (2-26) is
t 0 ‘
x,(t) =/ ¢ (t,s)h(s)ds (2-28)
o
N ot . Ai(s)h(s-tofel) s-a<s+0,<t,
= I [ ds & (t,s)
i=1 %y 0 otherwise
to"s .
& | [ 46 Ayy(s,8)h(s~t, +6) t <s<tyta
+

s ds 09(t,s){"2 g
to 0 otherwise
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& Ai(s)h(s-t0+ei) s-ais+eiito
Now

i

ds @O(t,s)

0 0 otherwise

fl =

r
l1¢

t)
ds @O(t,s)Ai(s)h(s-tO+ei)

m (t0+e

1,

1]

N min
r
=] ¢t

1 0

1

Ny min (O,t-t0+ei)

0
E / do ¢ (t,t0+a-81)Ai(t0+a-9i)h(a)
i=1 ei

putting o = s - t, + 0,

For case t, < t < to + a

0
to—s
t J 46 A,,(s,6)h(s=t.+6) t . <s<t.+a

tO 0 otherwlse

£ Yo7
= [ ds [ d6 ¢ (t,s)A,,(s,8)h(s~t,+6)

t -3,
0

changing to ao = s-t0+e, R = 6 coordinates and interchanging

order of integration by Fubini

0 a

=/ da ! a8 ¢%(t,t +a-8)A,, (t +a-B,8)h(a)
-a max (-a,a-t+t,) >0 01* "0 g
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In the case ¢t > to +a, =-a>a-1t*+ to for all
@ € [-a,0) and we get the same result as before. Hence

the solution to (2-26) is

x,(t) = % J
2 1=1 9

0+ei)

da co(t,t0+a-ei)Ai(t0+a-ei)h(a)

1
0 o 0
&  nax (~a,a=t+t,)
0 1
= [ do @ (t,ty,a)h(a) (2-29)
-a

Now

0 t
X0 Fityho + e heke § Teofod
x(teoit)s Ao eea)

(2-30)

satisfies R.F.D.E, (2-1) and from uniqueness, it
must be the solution.

Q.E.D.
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Corollary 1

The solution to the autonomous R.F.D.E, (2-10) can be
written in the form
min (o,t+ei)

! da ¢°(t-a+6,)A,h(a)
8
i

0% (t)n(0) +

¢(t3h,f)

W~ =

i=1

0 a 0
t [/ do [ dg ¢ (t-at+B)A,,(B)h(&)

-a max (-a,a=t) (2-31)

o
S o (t=s8)f(s)
0

-+

or more compactly

>

0 t
o(t3n,f) = 02()n(0) + S oY (t,a)h(a)da + f e0(t—s)F(s)ds (2-32)
-a 0

where Qo(t) € éﬁ(Rn) and satisfies the matrix R.F.D.E.

0

0
de (t) 0 0
haRSEL LN A1<I> (t+ei) + -{aAOl(e)Q (t+06)de

0 N
3T 0 (8) + I

i

= A
0 1

(2-33)
600y =1, o%t) =0 t <o
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ol (t,a) € L(&"  ana

N 8
tt‘ - L\ﬁ\ -1« 8 <
5@21@,0\) _ Z {@ oL+ o o

= o A theuniss (2-34)

+ S )C}c(t - ot +ff) ch(?)dﬁ

Traxt o,u-t,

Proof

The autonomous R.F.D.E., on [s,»), s > O

N 0

ax Ay (6)x(E+8,) + faAOI(G)x(t+6)de

= A x(t) + I
It ~ Poo N

(2-35)
x(s) = h(0) x(s+6) = 0 6 € [-a,0)

has unique solution x(t3s) = ¢O(t,s)h(0).

But x(t;s) = x(t-s;0), since R.F.D.E. autonomous.
Hence @O(t,s) = Qo(t—s,o).

Now define @O(t-s) = @O(t,s).

From this point, proof of corollary proceeds as in
proof of theorem,

We are now in a position to exhibit an exact and
explicit closed form solution to a particular class of
R.F.D.E, = in fact a differential-difference equation
with one delay. To the best of the author's knowledge,

this is the first time this has been done,
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Corollary 2

The solution of the R.,F.D.E.

‘ g% = Aoox(t) + Alx(t-a) + £ (t)

(2-36)
x(8) = h(e) 0 € [-a,0]

where Agg, A € L(R™) and commute, is given by

va(o‘t @)

Plt: /?\1( =4t J\@HS Pt - =), Apodat S@& -3 6(5)(15 (2-37)

v(l.Aoo 3 - 3
where @0&) - &Hont Z ( 39) \ )0») _(: UDOL(P+3 ]
pe 2’

Proof
From corollary l, it 1s sufficient to observe that @O(t)

satisfies the matrix R.F.D.E.

0,.
ae(tv) . 0 0
3t AOOQ (t) + Al‘b (t-a)

(2-38)
0%00) =1, %) =0 £t <o
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2.3 Continuity and differentlability in - M°; State

Definition

(1) Given a map x : [ty -a,T] - R? such that for
t e [tO,T], x(t) € R 1is well defined and the map
Xg [-a,0] -+ R? defined by xt(e) = x(t+0) 1is an
element of L2(-a,O;Rn), define the map

H

x : [t,,T] ~ M (-a,0;R™)

(2-38)
by (x(t))(8) = x(t+80)
(ii1) The map x 1is said to be continuous at the
point t e [t_,T] if given e > O, 96 such that
lt-s| < 6, s € [tg,T]
=> [[x(¢) - x(s)[| , < e di.e. lim |[x(t) - x(s)|| = 0 (2-39)
M s + t

The map is sald to be continuous on [tO,T] if it is
continuous at every ¢t{ e [tO,T].

(ii1) The map ; is said to be differentiable at
the point ¢t e [tO,T] if there exists an element denoted

by



54,

Qgéﬁl € M2(-a,0;Rn) such that

lim
s > t

(2-40)

x(t) = x(s) _ d?c(t)H .
T - 8 dt 5
M

(iv) The M2 state of the solution of the hereditary

system (2-1) is the map

& - i(t;to,h,f)
(2-41)
[ty,T] + M°(-a,0;R™)

defined by

x(t+03t,,0,f) t+6 > ¢

0° - 0

x(t;to,h,f)(e) =
h(t-to+6) t+6 < ¢

Remark

The concept of a state -~ that objJect which embodies all

the necessary information to determine the future evolution
of a system - is a very useful concept in systems theory.
We have already seen that for hereditary systems governed
by R.F.D.E. the state is not an element of Rn, but

an element of some function space., The usual cholce
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for this function space is C(-a,O;Rn), but for reasons
that will be elaborated upon in section 2.7, we will
choose to work in M2(-a,0;Rn). We shall be able to
treat a R.F,D.E. as a differential equation in the
Hilbert space Mz(-a,O;Rn). As we shall see,‘this

approach has many technical and theoretical advantages.

" Theorem 2C

(1) The map t » ;(t;to,h,f) ¢ [ty,T1 - M2(~a,O;Rn)
is continuous

(1i) For h ¢ ACZ(*a,O;Rn), the subspace of "
M2(-a,0;Rn) of absolutely continuous maps [-a,0] + rE

with derivative in L2(-a,0;Rn), the map

t » x(t3ty,h,f) @ [t,,T] ~ M2(—a,0;Rn)

is differentiable with derivative '9§§El € M2(-a,0;Rn)
defined by
X J o . ;
%) (€)= | AEXD+ 2 Ri)xitra) + § Rt 9 xtt+8) do ofh =0
dx(t+a)
d e[-a o)
where x(s) = ¢(s;to,h,f) s > t,
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Proof

(1) = Case a £ >t
|!x(t;to,h,f)—x(s;to,h,f)||;2 = Ix(t;to,h,f)-x(s;to,h,f)l2

0
+ J |x(t+63¢t

h,f)~x(s+6;t0,h,f)lzde
-a

O’

Now the solution x(;t,,h,f) will be absolutely
continuous on compact interval [tO,T] and hence will
be uniformly continuous on [tO,T].

Hence given € > 0 there exists &6 > 0 such that for any

t',s' € [tg,T], |t'=s'| < &, [x(t'5t5,h,f)=x(s"5t h,f) |

03

< -——E—T . Hence |Ix(t;to,h,f)-x(s;to,h,f)|!;2

(1+a)?

€2 a£2 2

< + —— .
- T#3 1+a €

Case (b) t =t, + a 5 >t

0

As before, if |s-t| < &8, we have

llx(t;to,h,f)-x(s;to,h,f)|];2 <€
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- Case (c¢) t =t

||x(t,t0,h,f)-x(s,t

0’
0 2
+ |x(t+e;t0,h,f)-x(s+e;t0,h,f)l de
t.-8
0
t.-s
9 2
+ /  [x(t+83t,,h,f)-h(s-t,+6) |“de
-a

From the uniform continuity of x(.;t,,h,f) we have

lim |x(t3t5,h,f)-x(s384,h,8) % = 0
s + t

0
and 1lim [ |x(t+6,t

s ¢+ t to-s

tO—S
Now [ |x(t+o3t
-a

2
0,h,f)~h(s-t0+e)| de

0
I |x(t+8+a; t
-8

h,f) - h(a)|%da

0’

0
2
{a x(t+8+a; to,h,f)-h(a)| x[_s,o](a)da

h,f)!liz = [x(t;tO,h,f)-x(s;tO,h,f)|2
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(where x 1is the characteristic function)

+ 0 as 6§ - 0 by the Lebesgue dominated convergence

theorem,

<t < t., + a

Case (4d) to 0

Take s < t (The proof for s > t 1s similar) t0<s<t0+a

- - 2
iIX(t;to,h,f)—x(s;to,h,f)||M2

= |x(t36y,h,8)=x(s3t,,h,£) |

0
+ J x(t+6;to,h,f)-x(s+e;to,h,f)'2de
to-s
t . -5
0 2
+ J |x(t+6;t,,h,f)=~h(s-t,+6)|"de
to-t
v, |h(t-t0+6)—h(s-t0+e)| de

As before exploiting the uniform continuity of

xO;tO,h,f) on [tO,T], we have that

1im:Mx(t;to,h,f)—x(s;to,n,f)]2
s+ t

0
+ |x(t+6;t
to-s

O,h,f)-x(s+6;to,h,f)|2d§}= 0.
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to—s
Now [ |x(t+6;t0,h,f)—h(s-to+6)|2d6
t -t
0
0 2
= f6|x(t0+s+a;to,h,f)-h(a)\ do s +6 =t
0 2
= {alx(t0+6+a;to,h,f)—h(a)‘ X[—G,Oj(a)da

+ 0 as 6 » 0 by the Lebesgue dominated convergence

theorem
t -t
0 2
Now S h(t-t,+6)=h(s-t,+6) |“ae
-a
- 2
= f |h(a+8)-h(a) |“das6
s—to—a

Now the set of continuous functions on [-a,0] is
dense in L2(—a,O;Rn) and so given any € > O, 1 hy
continuous on [-a,0] and hence uniformly continuous
and 60 > 0 such that

||h-h0|| > < € and Iho(a+6)-héa)[ <eg for &< §

L

0

and o € [-a,0], Hence
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to-t
I, In(t-t +e)-n(s-t, +6) |°de
-3 >
= f |h(a+8)=h(e)|“da
s-to—a
-0 5
<37 |n(a+8)=h,(a+s) | “da
s-to-a
8 2 =4 2
+ 3/ Ihy(a+8)=hy(a) |“da + 3 f hy(a)=h(a)|“da
s-to-a s-to—a
< (6+3a)e?

Hence 1im | |x(t3ty,h,f)-x(s3ty,h,7)||%, = 0
s + ¢ M

" Case (e)

||x(t0;to,h,f)-—x(s;to,h,f)|I;2 = |h(0)—x(s;t0,h,f)|2

0
+ [ |h(8)-x(s+83t
t

2
gsh,T)|as

to-s

+ f |n(e)-h(s=t +0) |°a0
-3
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and using same techniques as before, we show that

lim | [x(ty360,h,8)-x(s580,h,8) %, = 0
s ¥ tO M

Hence the map t ~+ x(t;to,h,f) is continuous on [tO,T]

(11)

Hiﬁhg;n,%,é@-;(t;m{,@ ] di&’l'z

Him®

_ { < (845 £, /&S%L) - x(t: 1, A U[) - A~ }?: AOXt o) ..S:P.m(t,e}xhe)db - (f(f/’

+ ‘1&*8\«98%1@91 L °’>I20Le

-a
Now the first term on the left hand side tends to O

as 6 + 0 since x(t;to,h,f) satisfies R.F.D.E. (2-1)
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0 2
Now TI. = f X(t+8+6)-x(t+6) _ dx(t+6) a6
8 0 ad
-a
0 t+4 .
= [ ds\g f ds (dx(s+e) dxég+e))| x(+) 1is absolutely
-3
continuous
0] t+6
-3
t+6 0
= %_ fods f de'dx(S'i'e) dX(t+9)‘
¢ -a

(interchanging order of integration by Fubini)

dx(t+6)

Now let g(6) = 35 ] g € L2(—a,61;Rn) some

61 >0 51 < a., From the density of the continuous

functions in L2 we can find 8o such that

| lg-gq 1| < e and g, 1is absolutely
0 L2(-a,61;Rn) 0

continuous on [-a,éll. Also there exists &, < &,

such that lgo(6+6)-go(6)| <e for & <&,, 8¢ [-a,0].

t+4

T f ds (6+ba)e® = (6+4a)el.
t

O

Hence for ¢ < 60, s 2

Hence I, =+ 0 as & - O,

8
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Hence we have the differentiability of the map
t e x(¥3t4,h,f)
2 n
for h e AC“(-a,0;R "),

" Definitlon

(1) Define the differential operator A(t) : me > M2

with domain ACz(-O,a;Rn) dense in M° by

[\Aﬁ) ,&} @ = |RHAe) + NE NG he) + S:P\m(’f, G)Ab)d.e o= 0

&=
dhe
T Xef-a,0)
5 n (2-42)
where h e AC“(-a,03R").
(11) For f(t) € L2('c0,T;Rn) £(t) well defined
for t e [t,,T], define the element g(t) € M2(-a,0;Rn)
by
f(t) a =0
£f(t)(a) = (2-43)

0 a € [~-a,0)

We can now state a corollary to theorem 2C,
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Corollary
For h ¢ AC2(~a,O;Rn), xG;tO,h,f) satisfies the

differential equation in M2(—a,0;Rn)

Sﬁéﬁl = A)x(t) + £(&)

- (2=44)
x(to) = h

Remark

(1) Using a lifting process (see Delfour and
Mitter [21]) we can for equation (2-U44) extend the
space of initial data from ACQ(-a,O;Rn) to M2(-a,O;Rn)
since ACQ(—a,O;Rn) is a dense subspace of M2(-a,0;Rn).

(2) Equation (2-44) is called the M° state

evolution . equation and can be written in integral form,

Delfour and Mitter [21], as

t

x(£) = 0(t,t)h + f o(t,5)f(s)ds C (2-15)
t

0
where the integral is &aken in the sense of Bochner,

Lemma 2.1
Suppose that x,y are absolutely continuous maps

[to-a,T] + R with square integrable derivative. Then
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for any ¢t € [tO,T]

0 0
(1) %E S x(t+0)de = f Qié%iﬁlde (2-46)
-a -a

a ooy dx () day (£)
(11) a‘g(X(t),Y(t))M‘? = ( It ,y(t))M2 + (X(t)’_cﬂ:—_)
(2=-47)
" Proof
0 0 : 2
- x(t+8+0)=x(t+0) dx(t+8)
IG = \{ade < - {ade__ag___|
0 t+6
_ 1 dx(s+6) dx(t+6)
= Ifade x i ds{—=35 - 7 }l
<1 1 %46 ft+gsidx(s+e) _ dx(t+9)l
-— —a ae
. t+6 0
- g f ds faldX(s+6) dx(t+9)‘

Now for some &, > 0, &, < a, g(8) = Eﬁé%iﬂl’ g € L2(—a,61;Rn).

As before given € > 0, there exists 8o such that

lle-goll 5 <€

L (-a,6,3R")
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and &, < 6; such that |g0(9+6)‘-g0(6)|‘ < e for all

0

§ <8y, 6 € [~a,0], Hence

t+6 5 >
S (6+b4a)e” = (6+4a)e“., Hence
t

-
(o]
01H

Ig* 0 as &+ 0 and we have (1).

(11)

(x(%) y@f = { @L(f S (el ?@”‘”d"ﬂf
%, ut) +<u<ar0%~ )+ IR atten)+ (e e

(M&); ’}&)M-’— + (16 %)M

2.4 Semigroup of operators

" Definition

Let t, < s <t <r <T and let x(t;s,h) be the

0

M° solution of the R.F.D.E. (2-1) with f = 0 and
initial instant 8. Define the transition operator

o(t,s) : M2 + M2 by

¢(t,s)h = x(t3s,h)

Theorem 2D

¢(t,s) is a two parameter semigroup of operators on
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M2 satisfying the following properties:

(1) for flxed . t,s t > s, &(t,s) 1is strongly

contlinuous linear M2 operator
(11) o(t,t) = I, the identity operator in 6£(M2)
(111) ¢(r,s) = ¢(r,t)o(t,s)
(1v) the map t » #(t,s)h : [s,T] » M° (2-48)

is continuous for all h ¢ M2

(v) for fixed ¢t, the differential operator of
{¢(r,t) 3 r € [t,T]} defined by

Ayt)n = 1i.mt' ele(r,t)-0(t,t)In (2-49)
r

(when the limit exists) is also the differential generator

of {¢(r,t); r € [t,T]}; it has dense domain ACz(-a,O;Rn)

and for h € ACz(-a,O;Rn)

N | 1)
WOA)@ = [RBho+ 2 ke « ) Ao hods 4o
d A | |
7&%’ oLe[-a, 0)
(vi) 1im {""“’*’532‘)"‘“’('t"s)] h =-/Qfo(t)<b(t,s)h (2-51)

§ + O
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(vii) slimo[%(r’t+g)‘@(r¥t)} h = - ¢(r,t)f%(t)h (2-52)
v

Proof (i) @&(t,s) is clearly linear.

Let hy, hy € M2 (-a,0;RM).
@(t,s)hl - @(t,s)h2 = ¢(t,s)(h1—h2) = x(t;s,hl-hz)

Now let denote the restriction of a solution of (2-1)

t,s
with f = 0 and initial instant s. The restriction of
the solution will be a continuous function on [s,t]

and Delfour and Mitter [18] have showed that

I '"t,s(}‘;s’hl"h2) ' 'C < 2dl(t—S) l |hl-h2l 'Mg

where d,(t-s) 1is a constant for fixed t,s
|le(t,s)h, = @(t,s)h 112, = Il;(t's h,=h,) | |°
’ 1 4 2 M2 A R M2

2
= Ix(t;s,hl-h2)|

2
0 lx(t+e;s,hl-h2)l t+6 > s a6

i)
-a Ihl(t-s+6)-h2(t—-s+e)\2 t+8 < s

A

y 2 2
(1+a) ‘ I'"t’s<x(‘°:sshl"h2) I |C + ‘ ‘hl"hg‘ |M2

= [4(1+a)ad(t-s)+1]]|ny-h, |12,
M
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Hence result

(11) @(t,t)h = x(t3t,h) = h for all h e M°

Hence result

fl

(111) o(r,t)e(t,s)h = 8(r,t)x(t35,h) = x(r;t,x(t;s,h))

x(r;s,h) from uniqueness

= ¢(r,s)h for all h e M2

Hence result
(iv) Follows directly from (i) of theorem 2C

(v) For fixed t, o(r,t) is a C, (strongly
continuous) semigroup of operators from (iv), i.e.

lim ¢(r,t)h = h, &(t,t) = I, identity operator in
r+t

JE(Mz) (for definition, see Hille and Phillips [38] pp. 321)

and thus we can define the infinitesimal operator

\fl (t)h = lim -i—[é(r,t)-Q(t,kjh
0 r-t
r + ¢t
The infinitesimal generator will be the smallest closed
extension of ugo(t). But since ¢(r,t) is a C, semi-

group, the infinitesimal operator is closed and thus the
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infinitesimal generator is given by (2-49). (See
Hille and Phillips [38] chapters 10,11). We now want

to compute the infinitesimal operator,

For a € [~a,0), h e A02(~a,0;Rn)

{'[Q(r;tgzg(tgt)J Ak(a) = ;%E[h(r-t+a)-h(a)]

for r such that r-t+a < 0

1 o(r,t)-0(t,t) _ an
rlimt 1[ r-t 2 )h} (a) = {LQ’O(t)]h}(a) = o

(Taru £ ~
/ [@(r,tg:%’(t;t)] h} (0) = r_i‘t‘{X(r;t’h)—h(O)}

1 r N
= F:%.{£[}\00(u)x(u;t,h) + iilAi(u)h(u-twii}du

r 0 x(u+63t,h) u+b > t
+/ du f a6 Ay (u,8)

t -a h(u-t+6) u+d < t
N 0
O t +

> Ayo(t)n(0) + 151 Ai( )h(6,) {ade Ay (ts8)h(e)

assuming that Aoo(t), Ai(t), AOl(t,°) are piecewise

continuous and continuous from the right,
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Hence

(A th)e) = B8R0+ i AW A+ § Aol hede Lo
d‘%‘) oLef-a,0)

(v1) Y@(‘H& s) @tsw

8 do

3‘&0

Qi \ B30 ERL @w}

= &T{éﬂ'-fgﬂ @@,f):\‘ @(t C)/P\

= A0 b9

012 g [B049-360] MFMJ) By t8 @J%
340 So

i Gl o) RS wp

3o

= - DA
Remarks
1. Note that \Ao(t) = 8(t) where A(t) defined
in (2-42) since A (t) -At))n = 0 for a1l

n ed (A 6)) =D ) = ac’(-a,0;r™M.



72.

2. (vii) states that for fixed r, the right hand
derivative of ¢(r,t)h with respect to t 1is
-¢(r,t1§0(t)h. Since ¢(r,t=8)h 1is not defined for
§ > 0, the left hand derivative will be meaningless,

We will make more use of (vil) in chapter 3 section 5,

Let x(t3;h) Dbe the M° solution of the autonomous
R.F.D.E. (2-10) with f = 0., Defining the transition

operator &(t) : M2 > M2 by

¢(t)h = x(t3h)
we have as a corollary to theorem 2D

Corollary

d(t) 1is a semigroup of operators on M2 satisfying the

following properties

(1) for fixed t, @(t) 1is a strongly continuous
linear M2 operator

(i1) (0) = I, the identity operator in oL (M%)
(1i1) o(t +t,) = @(tl)¢(t2)

(iv) The map t = &(t)h : [O,») =+ M° 1is continuous

for all h € M2 i.e. o(t) 1is a Co (strongly continuous)

semigroup of operators on M2
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(v) The differential generator of {&(t), t > 0}
is defined by

Wh = 1im ¢ {e(t)-2(0)}n (2-53)
£+ 0

when the limit exists, It has dense domain AC2(—a,O;Rn)
in M° and for h ed (A

- N 0
{Aooh(O) + iilAih(ei) + faA01(e)h(e)d9 a =0
nl(a) =
%g a € [~-a,0)
(2-54)
(vi) 1lim [Q(t+5§‘¢(t)1h =Ah (2-55)
§ ~ 0

2.5 Hereditary adjoint equation; Hereditary product

In the theory of linear ordinary differential equations

T = AEX() e [6,T]
(2-56)
x(0) = x

0

where A € Ll(to,T;JkRn) the adjoint differential equation
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%—% = - A*(‘C)p(t) t e [tO’T] :
(2=-57)
p(T) = pg

plays a very useful role and even more so in the theory
of optimal control of systems governed by ordinary
differential equations, where, by means of the maximal
principle, the optimal control depends upon the solution
of the adjoint differential equation. Another of its
properties is that the inner product of x(t) and p(t)

is a constant
i1.e. (p(t), x(t)) = constant t e [tO,T] (2-58)

In the study of the optimal control of systems
governed by R.F.D.E. the analogues of the adjoint differential

equation and the R™ inner product play a very significant role.

Definition

Corresponding to R,F.D.E., (2-1), we define the hereditary adjoint

equation for ¢t e [tO,T]

N
)

0
s A:l(t-e,e)p(t-e)de+g(t)
a

dp *
at * Ao

=0

p(8)P(E) + I A (5-0,)p(t-0,)+

i=1

(2-59)
p(T) = pp, p(T+8) =0 B e (0,a]
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where g € Lz(tO,T;Rn)

Remarks

% %
1. Observe that A,(t-6,) and A,,(t-6,8) are
i i 01
not defined for t - 61 >T and t - 6 > T respectively,.
However, for these values p(t-ei) and p(t-6) are zero
% %
and hence Ai(t-qu(t-ei) and AOl(t-e,e)p(t-e) will

be well defined (equal zero) for arbitrary values of

¥ ¥
Ai(t-ei) and AOl(t-e,e) respectivelyv.

2. Note the restricted nature of the final data which

is essentially a R point data. (see Delfour and Mitter [19])
In principle, we could use more general data
p(T+8) = k(B), kx # 0 on (0,al, k final data

¥ #
but then Ai(t-ei) and AOl(t-e,e) would have to be
defined by t - ei > T and t - 8 > T respectively.

However for our purposes, that will not be necessary.

3. For the autonomous R.F.D.E. the problem

discussed in the previous two remarks does not arise.

In keeping with the development in section 2.1,

we can analogously to M2(-a,0;Rn) construct the space

ﬁ2(0,a;Rn) as follows: Take J?g(o,a;Rn), the vector
space of all Lebesgue measurable and sqguare integrable

maps
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k : [0,a] » r"

with k(0) well defined.

We impose the seminorm

1

2

a.
k|| = {|x(0)|° + / lk(8) |2as} (2-60)

and define the linear subspace 45 of Jig(o,a;Rn) by

-

£ = skl = 0)

ﬁz(o,a;Rn) is defined to be the quotient space of
Leco,a8™ by 4 .

e n

M“(0,a3R") with the norm

1
. a
el o = {k(0)|? + ! k() 208} (2-61)

n

is a Hilbert isometrically isomorphic to R™ x L2(0,a;R™).

Now by reversing time and starting out at T (the
initial instant), we can regard the hereditary adjoint
equation (2-59) as a R.F.D.E. We can then evoke
theorem 2A to establish the uniqueness and continuity

with respect to the final data p of a solution to (2-59),

T
Denote this solution by pG;T,pT,g), As in section 3,

we can define the Ma state of the solution of the
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hereditary adjoint equation (2-63) to be the map

t > p(3T,pgee) @ [t,,T] ﬁz(O,a;Rn)

where p(t;T,pT,Q(B) = | p(t+8;T,pp,8) t+g < T
(2=62)
0 t+8 > T

Definition

The hereditary product corresponding to R.F.D.E. (2-1)

and its hereditary adjoint equation (2-59) is a mapping

H oot (65,11 x F2(0,a;8™) x M°(-2,0;R™) » R

t-0,
~ ~ N i
M T(t,p(t),x(t)) = (p(t),x(t)) + = { ds(p(s),Ai(s)x(s+ei))
i=1
0 t-0
+ / de f ds(p(s),Ay;(s,08)x(s+8)) (2-63)
-a t

Remarks

1. The hereditary product introduced by De Bruijn [16]
and subsequently exploited by Bellman and Cooke, [5],
Halanay [34], Hale [26], Delfour and Mitter [19], [21].

2, As in the definition of the hereditary adjoint

equation Ai(s) and AOl(s,B) will not be defined for
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s > T. However p(s) 1s zero for s > T and as before
the hereditary product will be well defined.

3. The hereditary product will be used in chapter 3
section 2 to characterize the optimal control and in
chapter 5 section 1 to project from M2 ontd an

elgenspace of M2.

Theorem 2E Delfour and Mitter [19]

Let x(+),p(+) be the M° state of R.F.D.E. (2-1)
and the Wz state of the heredlitary adjoint equation
(2-59) respectively. Then

t

M o(6,5(6),x(6)) =4ho(s,p(s),x(s)) = J ar(p(r),x(r))

S

t N t
- Jar(p(r),A  (r)x(r)) = I [/ dr(p(r),A;(r)x(r+e,))
r i=1 s
t 0 t
- Jar f de(p(r),Ay, (r,8)x(r+8)) + Jfdr(p(r),x(r))
S -a S
t . N t 4
+ far (A (r)p(r),x(r)) + = fdr(Ai(r~ei)p(r-61),x(r)
s i=1l s )
t 0
+ fdr f de(AOl(r-e,e)p(r-e),x(r)) (2-64)

S -a



79.

Proof

t . t
I = fdr(p(r),x(r)) - fdr(p(r),AOO(r)x(r))
S r

t t O
fdr(p(r),Ai(r)x(r+6i)) - fdr f dB(p(r),AOl(r,e)x(r+q)
s s -a

1
It ~m=

i=1

t t
far (p(r),x(r)) + far(ay (r),p(r),x(r))
S S

+

T sar(a¥ (reb, )p(rep,),x(r))
I Jfdr(A,(r-6,)p(r-6.),x(r
1=1 s i i i

+

t 0 .
+ / dr f de(Ay,(r-6,0)p(r-6),x(r))
s  -a

t . t t
Now Jfdr(p(r),x(s)) (p(r),x(r))| =~ f dr(p(r),x(r))
S S S

I

(p(L),x(£)) - (p(8),x(s))

t
S ar(p(r),x(r))
s

(by integrating by parts which is permissible since
p(+) and x(+) are absolutely continuous maps

[t5,T1 > R
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I~ =

N t t
I sar(a)(s-8,)p(s5-0,),x(r)) = & fdr(p(r),a, (r)x(r+e))

i=1 i=1

N -8y

= I dr(p(r),A;(r)x(r+e,))
i=1 s-ei

t
I dr(p(r),Ai(r)x(r+ei))
S

|
™M=

(changing variables in the first expression)

£ dr(p(r),Ai(r)x(r+ei))

N 570
- £ J ar(p(r),A;(r)x(r+6,))

t 0 %
far s de(AOl(r-e,e)p(s-e),x(r))
S -a

t 0
Jdr [ de(p(r),A01(r,e)x(r+e))
r -a

0 t-9
fde { s ar (p(r),AOl(r,e)X(r+e)
-a s—-0

t

far (p(r),Aq, (r,0)x(r+6))}
S
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(changing variables 1in first expression and interchanging

the order of integration by Fubini)

0 t=-6
= [ de6 [ dr(p(r),AOl(r,e)x(r+6))
-a t
0 s-0
- [ de Jf dr(p(r),Ay; (r,0)x(r+6))
-a s
N -84
Hence I = (p(t),x(t)) + I [ dr(p(r),A,(r)x(r+6,))
1=1 % 1 1
0 t-6
+ f 48 f dr(p(r),AOI(r,e)x(r+e))
-a t
N 5794
- p(s),x(s)) = = [ dar(p(r),A;(r)x(r+6,))
i=1 s
0 s-6
+ [ d6 f dr(p(r),AOl(r,e)x(r+9))
-a s

= K (t,0(6),x(6)) - $pls,p(s),x(s))

Hence result.

Corollarz
If £ =0 in (2-1) and g =0 in (2-59) then
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ﬁfT(t,;(t),;(t)) = constant t € [tO,T]. (2-65)

Proof From previous theorem and (2-64), for any

t,s € [tO,T] we have
H p(e,p(6),x(6)) = Fhp(s,p(s),x(s)) = 0

Hence result.

Remark
Equation (2-65) is the analogue of equation (2-58)

for R.F.D.E,

2.6 Linear bounded operators and unbounded differential

operators in M2

Definition

Let A : M2 > M2 be a linear operator on M2

(i) A is said to be bounded if

An| | < cl||nl| for all h € M° and some ¢ > 0 (2-66)
M2 —_ M2

[1An|] ,
(i1) For A bounded we define ||A|| = sup M
Hnll 5

M
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(iii) A 1is said to be svmmetric if

2

(h,Ak) , = (k,An) , for all h,k € M (2-67)
M M

(iv) A 4is said to be positive 1if

(h,Ah) , > 0 for all h e M° (2-68)

M

Let A be a bounded linear operator on M2.

Exploiting the isometric isomorphism between M2(—a,O;Rn)

and R" x L2(—a,O;Rn)

i.e. Mz(-a,ouﬂﬁ ~ R" x L2(-a,O;Rn) (2-69)

we can decompose A into a matrix of bounded transformations

00 Aoz

A= (2-70)

Mo My,

(1) AOO € éf(Rn) can can be represented as an

n xn matrix

2 n
(i1) Moy € &f(L (-2,0;R"),R™) and from the Riez
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representation theorem, we can represent AOl as
0
Agr ¥ = fa AOl(a)x(a)da (2-71)

where x € L2(—a,O;Rn) and AOl(°) € L2(-a,0;df(Rn))

(111) Ao € 6f(Rn,L2(—a,O;Rn)) and can be

represented in the form
(Ayox)(8) = Aj (8)x (2-72)

where x € R" and A10(°) € L2(—a,0;§€(Rn))
(1v) Ay e (LP(-a,03;R™)

It would be pleasant to be able to give an integral

representation for A € éC(Le-a,O;Rn) in terms of a

11
2 (ﬁ n
kernel A;,(8,0) € L°(-a,03-a,0;d.(R")). However

this is not possible unless A11 is a Hilbert-Schmidt

operator (See Dunford [25] and Schatten [71] for more

detalled discussion). However we can use the Schwartz

kernel theorem (Schwartz [73]) to represent All in
the form
0
(Allx)(e) = /7 Ay (8,0)x(a)da (2=73)

-a
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where All(e,a) is a distribution on [-a,0] x [-a,0]

defined uniquely by A

11°
For any bounded linear operator A : M2 > M2, we
can define A0 : M2 + r" by
0 0
A"h = (Ah)(0) = Ajgh(0) + S Ay, (a)h(a)da (2-74)
-a

From (2-71), (2-72) for any h,k € Mz(—a,O;Rn) we can

write

0
(h,Ak)M2 = (h(0),A5ok(0) + S (h(0),An, (a)k(a))da
-a

0
+ 1 (1(8),4)(8)k(0))d0 + (hl,Allkl)M2

where exploiting the isometric isomorphism between

M2(—a,O;Rn) and R" x L2(-a,O;Rn) we can write

h = (h(0),h’) (2-75)

1

where h(0) e R® and h* ¢ L2(-a,0;R™).

Corresponding to the autonomous R.F.D,E.
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0

dx
Aix(t+ei) + IaAOl(e)x(me el

at = Poox(t) + .

™=

1

(2=76)

x(8) = h(8), 6 ¢ [-a,0], h e M°

we have the closed differential operator

A : W - M2

with dense domain & (H) = AC2(-a,O;Rn) defined by
for h e® (@)
N 0
Aooh(O) + I Aih(ei) + faAOI(e)h(e)de a=0

i=1 -

Anl(a) =

%g o € [-a,0)

(2-77)
and J&' will be the differential generator of the semi-

group of operators {@(t), t > 0} corresponding to (2-76).

Associated with R.F.D.E. (2-76), we have the hereditary

adjoint equation

=

* O*
dp 4 A% o(t) + Aip(t=6,) + £ A- (8)p(t-6)de = O
gt 7 “ooP s TAPRETR T Bo1tPIPREs

i=1

(2-78)
p(T+8) = k(B), B € [0,al, k e M-
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and the closed differential operator
/) ; 2
o « :£7Qﬁ*) > M

with dense domain;g’(éﬁ) = ACz(O,a;Rn) and defined by

for k ei}Q!*)

# N 4 0
A k(0) + I Ak(-6,) + S A ,(8)k(~-0)d6 0=0
00 FePh et A
[kl (a) =
dk
) - = a e (0,al
k (2-79)
Equation (2-76) can be written as a differential equation
in M2

‘%% =fx(t)

(2-80)
x(0) = h
and equation (2-78) can be written as a differential
equation in 2
dp ~
gt TP (t) = 0
(2-81)

;(T) = k
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Let us now consider the complex extensions of

M2(-a,0;Rn) and ﬁz(o,a;Rn), namely ME and Mi
respectively
- Definition

(1) The resolvent of d%‘ is the set in the complex

plane

oQﬁ) = {2 ed:; range (A I-f) is dense M2 and (AI-@)

has a bounded inverse defined on its range}

(ii) The spectrum of o) 1is the complement
Of Q(Q&) in { .

(11i) The continuous spectrum of JQ

ocﬁﬁ) = {)x e o(d); (Al-ﬁ) is (1,1), has dense range

and (Al-ﬁ)-l exists on the range, but is

not bounded}

(iv) The residual spectrum of

oR(ﬁ) = {x e o(f); (AI-§) is (1-1) but range (AI-éb
is not dense in Mi}

(v) The point spectrum of

cp(ﬁ) = {1 eo@); A-H is not (1,1)}
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(vi) The points X ¢ OPQA) are called the eigen-

values of uq and any h # 0, h e e such that
(AI-fdh = 0
is called the eigenfunction corresponding to the

eigenvalue 2,

(vii) The generalized eigenspace @AQA) is
the smallest subspace of M2 containing all the
elements that belong to the null svace of (AI-jbk

kg 1’2’..'

(viii) The resolvent pﬁﬁ*), spectrum o(ﬁ*)‘etc.

of U& are defined similarly.

It is clear that the sets ORQA), OCQ&), OP(&b

are palrwise disjoint and that

o) = o (U o) U o (M)

Theorem 2F Hale [36]

o(d) = OPGA) = {x eC, det A(x) = 0}

N X 0 \6
where A(XA) = AT = A, = % Ae ~ - f A (8)e""de
00 7,2 T,

(2-82)

(2-83)

(2-84)
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The roots of
det A(N) = O (2=-85)

have real parts bounded above, and for X € opﬁﬁ),
~§1Qﬁ) is finite dimensional,

There is an integer ®m such that
g ) = null (" (2-86)

and M° = null G-AD)™ 8 range (f-r1)™. (2-87)

Proof To show that o(f) = OPQA), we show that p@&)
consists of all A e C except those that satisfy (2-85).

Now X € p(ﬁ) iff the equation
@G=2I)h = k | (2-88)

has a unique solution h ed@#) for every k 1in a dense
subset of M? and the solution depends continuously
on k.,

From (2-88) we have

Qﬁé%l - xh(a) = k(a) a e [~-a,0) (2-89)
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N 0
and A..h(Q) + I
00 1=1 -a

Solving (2-89) we have

o

h(o) = e ®h(0) + s er(a-8)
0

k(g)ag

Substituting (2-91) into (2-90) we have

A6 0

Aih(ei) + f AOl(e)h(e) - Ah(0) = k(0)

(2-90)

(2-91)

N )
-Ah(0) + Aeh(0) + I Aje Th(0) + £ Ay (8)e*%n(0)ae
i=1 -a
N 8 A(84-E) 0 5 N (6-E)
= k(0) - £ S e Aik(g)dg - fd6 f dE "7 AOl(e)k(E)
1=1 O -3 0
Define Z(A) : M° » RP by
Z(A\k = =k(0) + I [ e A k(E)AE
1=1 0
0 0
+ £ de f df e*®‘€)AOl(e)k(£) (2-92)
-3 0
Hence A(A)Yh(0) = Z(N)k (2-93)

The map Z()\) covers R™ and hence (2-88) will have a



92.

solution for every k in M° 4iff det A(A) # 0. For

det A()X) # 0, the solution h will depend continuously
on k,

Hence p(&) = {x; det A(A) # 0}

If det A(X) = 0, then (2-91) and (2-92) imply that

there exists a nonzero solution of (2-88)

{h(a) = ekah(o) where h(0) € null A(A)} for
which k = 0, and hence X e o,(&).
Hence o) = GP“i)'

det A()A) 1is an entire function of X

and hence has roots of finlte order. Hence the
resolvent operator Q&-AI)-I has a pole of order m

at A 1f Xy 1is a zero of det A(X) of order m.

0
Since %i is a closed operator, it follows from

theorem 5,8-A Taylor [74] pp. 306 that

9 @) 1is finite dimensional and
0

M° = null @-21) & range (f-r1)m

det A()A) 1is a polynomial in A of degree n with

leading coefficient one and the lower order terms
A6
have coefficients which depend on A through e 1

eAQ

and integrations of terms of the form . Hence it



93.

follows that there 1s a ¥y > 0 such that no roots of

det A(X) have real parts greater than v

0.E.D.
Corollary

ofte) = op(de) = oph (2-914)
For A e op(ch), f;x(ﬂ*) is finite dimensional. (2-95)

Proof Same as for the proof of the theorem except that

now we have to solve the equation

@4 - Ak = h (2-96)

2 and that the solution k

for h 1in a dense subset of ™
depends continuously on h.

From (2-96) we have

- 2k8) | jk(a) = nlo) o€ [0,a] (2-97)
#* N % 0 * ‘ _
ApQR(0) + T Agk(=8y) + 1 Ag ()k(=0)d0 = AK(0) = K(0)  (2-98)

Solving (2-97)
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o
K(a) = e 2% (0) - f e~*@=B)p(rya
0

Substituting (2-99) into (2-98) we have

% N oy 28y 0
Agok(0) + I Aje “k(0) + S
i=1 -2
-0
N 1 & Ao +E)
= h(0) - ¢ f Aye h(g)ag
i=1 0
0 -0
-1 ae £ ag )AL (o)n(e)
-3, 0

Define 7()) : M > D by

1

N "0 a(e +E) 4
Z(Mh = = h(0) + T [ e Aih(g)
1=1 0
0 -0
+ f de S dE ex(e+£)A:1(6)h(€)
§ -a 0
Hence A*(A)k(o) = Z(A)h.

As before D(Q*) = {)\; det A*(X) # 0}

i *
But det A (1) = det A()),

A:l(e)ekek(o)de - Ak(0)

(2-99)

(2-100)

Hence proceeding as in the theorem, we obtain the result,
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Lemma 2,2

Thg elgenfunction hx correspondingrto an eigenvalue )
of U% with multiplicity m 1s of the form
m-l @ Aa
hﬁa) = E Via,3 JT © o € [-a,0] (2-101)
j=0
Proof We first prove the lemma in the case m = 1,

satisfies W h = Ah

hy
1.e. Qﬁé%l = Ah(a) a € [-a,0) (2-102)
Solving h(o) = h(0)e®

where h(0) satisfies A(A)h(0) =0

Since det A()A) = 0, there 1s a n vector vy such that

A(x)vx =0

Ao
Hencelkw) vye
In the general case,

A-21)"h = 0

(%E - M)™(a) = 0 o € [-a;O) (2-103)
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(2;103) has solution

me1 J
5 v o Ao,
3=0 A,J J!

0]

hA(a) = a € [-a,0] (2-104)

where the n vectors VA 3 are chosen so that
3

h, € null (A-AT)™

A

Corollary
The elgenfunction kx -corresponding to an eigenvalue A
of W&, with multiplicity m 1is of the form

Mme1

k§a) = I v

J.J
3=0 Asd (--13)!0t oM a e [0,a] (2-105)

Proof Same as for the lemma.

For the semigroup of operators {@(t); t > 0}
corresponding to (2-76) and UA its differential generator,
we want to list the relationships between o(®(t)) and
o(R). We make use of the fact that 6(t) 1s a Cy
(strongly continuous) semigroup of operators. ((iv) of

corollary to theorem 2D) and that for t > a o(t) 1is

a compact operator (Delfour and Mitter [21]),

Definition

The spectral radius ra of an operator A 1s the smallest
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disc centered at the origin of the complex plane which

contains o(A),

The relationships between o(o(t)) and o(d) are

(1) GP(Q(t)) = exp (toP(ﬁ)) plus possibly {0} (2-106)

(Hille and Phillips [38] pp. 467

(11) For t > a and for any u e o(6(t)), u # 0O,
U € GP(¢(t)) and the only possible accumulation point

is {0},

(111) The 1limit wy = lim [[o(t) ][]/t exists and

t » o«

wy 1is finite or -«., For any § > 0, there is a
constant KG such that

(w0+5 )t
[Te(e) || < KG e for all t > 0 (2-107)

Also o(R) = cPQ&) lies to the left of the line Re z = w,

in the complex plane (Dunford and Schwartz [26] pp. 619,622)

(iv) Since UPQQ) has real part bounded above,

the spectral radius r =r ) is filnite and if R is

d(a
defined by
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Ba = log r@(a) (2-108)
for any vy > 0, there is a constant KY such that

5 for all ¢ >0 (2-109)

le(e)n|| , < x, ePHE |y
me = Y M

(Hale [36] pp, 112),

(v) PFrom (111) and (iv) we have that there exists
a >0 and K> 1 such that ||e(t)]] < K ™" <= o (A)

lies in the left half of the complex plane.

2.7 Advantages of  M° over G

This 1s perhaps a good point to enumerate the
several advantages working in the function space
M2(—a,O;Rn) has over working in the function space

C(-a,03;R™). They are as follows:

1) M2 contains a larger class of functions than C
and when working In the space C, we are forced to exclude
discontinuous initilal data., There is no good reason why
discontinuous initial data should be discriminated
against in such a manner and there are times when this
discrimination can prove embarassing, So for instance

Zverkin [82] takes as initial data
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h(t) =0 t < a, h(a) = 1 (2-110)

and observes that his initial data is discontinuous although
he 1s working in the space C, He disposes of the

difficulty in the peculiar (and amusing) manner of "by
carryirg the initial point to the right, we can consider

it as a solution with continuous initial data™.
Incidentally, there will be many times in this thesis

when a proof depends critically upon the use of a

h e M° as in (2-110).

2) VWorking in M2, the representation of solutions
to R, F.D.E. (2-1) (equation 2-12) is tidier and more
transparent than that obtained when working in the space C
(see for example Banks [3]).

3) M2 is a Hilbert space with an inner product

whereas C is a Banach space without an inner product.
As such a wider range of techniques can be used in
working in M2 than in C., In particular, we can use
the Lions$' direct method [83] which has been successfully
applied to systems governed by parabolic partial
differential equations whereas in C we would be

limited to using dvnamlc programming arguments, Ross

and Flligge-Lotz [69] had speculated on the possibility

of deriving the first order partial differential
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equations satisfied by Hoo(t), HOl(t,a) and Hll(t,e,a)
from an operator Riccati differential equation, but
reallzed that this could not be done rigorously

working in a space without an inner product,

) E(t) as defined in (2-43) is an element of
Mz(—a,O;Rn), but it is not an element of C(-a,0;R").
Thus when working in M2, we can write the R.F.D.E. (2-1)
as a M2 differential equation, It is not possible to
do this when working in C, though it 1s possible to
write the R.F,D.E, (2-1) as an integral eaquation in

C(-a,0;R™) (see Hale [36] pp. 86),

5) Finally, experience of working in partial
differential equations shows that for many problems,
the choice of the function space must be exactly right
to guarantee success. Our own particular problem,
that of minimizing a acuadratic functional, calls for a

function space with an inner product.
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Chapter 3

" Finite Time Quadratic Criterlon Optimal Control Problem

In this chapter, we shall tackle the finite time
regulator and tracking quadratic criterion problems.
We shall follow closely the treatment of Lions [83] for
systems governed by partial differential equations and

of Delfour and Mitter [21] for hereditary systems.

(3.1) Formulation of the control problem

Consider the contnélled hereditary system defined
on [tO,T]

b2 - . xt) + 2L A0t + § R x e b + B oft) + £1)

Xt+0)= A@), eefaq], —heM (3-1)

where B € L2(tO,T;éf(Rm,Rn)), vV E L2(tO,T;Rm), f e L2(tO,T;Rn)
with quadratic cost criterion

c(vi;h) = C(v) = (x(T),Fx(T))

T
+ {, {tx(t),Q(t)x(t)) + (w(t),N(t)v(t))1}dt (3=2)
0
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where Q e L7(ty,T3LR™), N e L”(tO,T;JiRm)), F e o(R™)

* * *®
a(t) = 9 (£) > 0, N(t) = N (8) > 0 for t e [t,,T], F=F >0

and there exists § > 0 such that
(v,N(£)v) > §|v|°  for all t e [t,,T] (3-3)
- R

Our class of admissible controls is

T
Ure w1 = s [ v [Pat < =} = 12(5,,T3R™) (3-4)
0° t
0
Note that Q{Et ,T] is a Hilbert space and that from (3-3)
0
2
c(vih) > sllvlll( (3-5)
tysT]

Unless there is any danger of confusion, we shall denote
utto,m by U

Our objective is to find

inf C(v;h) (3=6)
v el

which will be called the optimal cost and a u el{ such that
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C(uzh) = inf C(v3;h) < C(v;h) for all v ¢ Uu (3=7)
vV €

Such a u ¢ l( will be called the optimal control.
From the representation of solutions formula (2-12) we

can write the solution to (3-1) as

xit; ) = Pt t) Ao+ § Bty Awda
‘+§£@ngmwv®+{ﬁb&

(3-8)
t
<t w) = xlt) + 5, Bl 9 Be) veds
where
0 0 4 to
xo(t) = @7°(£,£5)h(0) + J &7 (t,t,,0)h(a)da + 1{ ¢ (t,s)f(s)ds (3-9)
-3
0
Now
C(v) = (x(T3v)=xy(T), FIx(T;v)-x,(T)])
T
+ 5 Lx(E3v)-xg(8), QeI Ix(t3v)-xg(£) 1) Hv (£),N(£)v (L)) at
o
T
+ 2(x4(T), PIx(t3v)=x5(T)I) + 2/ (x,(t),0(8)[x(t5v)=-x4(E)1)dt
o
T
+ (x(T), Fxo(T)) + J (x4(t), Qlt)x,(t)dt (3-10)
t

0
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Now define bilinear form w and linear form L on'74
by

T @, ) = (AT o) -x T, FET ) - 1 (T)])
+ 5, ) ), QU ) - x)dt
+ 5 G, ) NO w5 0) at (3-11)

L(v) = =(xy(T),FIx(T3v)=x,(T)])

T
- [ (xy(8), ale)[x(t5v)-x4(t)])at (3-12)
t

0

Note the following properties of 7 and L

(1) m 1is symmetric, i.e. ﬁ(vl,ve) = w(v2,vl)

for all ViV, e U

(i1) m is coercive, i.e. 7 (v,v) > 6|‘V|‘2A for
some & > 0 and all v e]{ . This follows from (3-3)

and (3-5)

(i11) The map (v, ,v,) > T(vy,v,) : UxU » R 1is

continuous

(iv) The map v + L(v) : UL » R is continuous,

Now C(V) = TT(V,V)—2L(V)+(x0(T),Fxo(T))

m

1
+ 1 (xo(8),a(8)x,(t))dt (3-13)

ty
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Hence to minimize C(v) over I{ , it is sufficient to

minimize

Colv) = m(v,v)=-2L(v) (3=14)

over u .

(3.2) Existence and characterization of the optimal control

Several methods for obtaining the existence and
characterization of optimal controls in hereditary control
problems exist in the literature - maximal principles
of Banks [3] and Kharatishvili [447, [45], Datko's [15]
Frechet derivative method, and Lee and Marcus [53] set
of attainability approach. However, for our purposes the
most powerful method is due to Lions [83] which we will

not state as a theorem.

Theorem 3A Lions [83]

Let 7 be a continuous symmetric bilinear form on
satisfying m(v,v) > dl[vll§L and I a continuous linear
form, Then there exists a unique element u e U{

minimizing CO(V) = n(v,v) - 2L(v) and characterized by

m(u,v) = L(v) for all v eU (3-15)
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Proof

(1) Existence

Let {vn} e UL be a minimizing sequence such

that

C~ (v ) » inf C.(v) (3-16)
0" 'n vel 0

Since L 1is a continuous form, there exists §; > 0 such

that

L(v) <5 8;1lvil,

and hence that
2
co(v) > 6||v||10- 51||v¢1¢L (3=-17)

Hence “Vn“ui some constant for all n. Since W (as a
Hilbert space) is weakly compact, we may extract a subsequence

{vm} such that

v, > u weakly in U (3-18)

Now v » n(v,v) 1is lower-semi-continuous in the weak
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topology of ‘U and
v - L(v) 1s continuous in the weak topology.
Thus the map v -+ CO(V) is weakly lower semi-continuous

and hence

Cr(u) < 1im C, (v ) = inf C (v)
0 T m > o 0" 'm v EQL,O

Hence C~(u) = inf C,(v)
0 0
veluw

and thus we have proved existence.

(1i) Uniqueness

The map v + g(v,v) 1s strictly convex and
hence the map v -+ CO(V) is also strictly convex.

Let ul and u2 be two distinct elementssuch that

C (uy) = Cr(u,) = inf C.(v)
0 71 0*72 v e U 0

co(%(ul +uy)) < % Colug) + % Colu,) < inf  Cy(v)
v e U

This 1s a contradiction and hence Uy = U, = U,

(1ii1) Characterization

ILet u be the minimizing element, Then

for any vell and t e (0,1) we have
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Co(u) < Co«l—t)u + tv) (3-19)

Hence £[C,(u + t(v-u)) = Cy(uw)] > O,

Letting t - 0 we have
Colu)* (v=u) = 2[m(u,v=u) - L{v-u)] > 0 (3-20)

where Cé(u) 1s the Frechet derivative of Co(u).

Putting w = v - u, we have
T(u,w) > L(w) for all we U
But T (u,=-w) = -%(u,w) > L(-w) = =L(w)

Hence 7 (u,w) < L(w) for all w e U
Hence w(u,w) = L(w) for all well (3-15)

Conversely, suppose that
m(u,w) = L(w) for all welU

Since v » C,(v) 1is convex, we have
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Co((1-tlu + tv) < (1-t)Cylu) + tCy(v)
Co(v) = Cou) > e ((1=tu + tv) = Cy(u)]
Taking 1imit ¢ »- 0 we obtain

Cohw - COUU > Céhﬂ'(v-u)

i

2[r (u,v=u)=L(v-u)] = 0

Hence Co(u) < CO(V) for all v eU .

We immediately obtain the corollary

Corollary

The control problem (3-1), (3=2), (3-4) has a uniaue

optimal control u e U .

We now want to characterize this u.

From (3-15), we have = (u,w) = L(w) for all well.
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i.e.

0 = (x(T;u)=x,(T), FLx(T3w)-x,(T)])

T
+ [ {Gx(tu)=xy(t), Q(t)[x(tsw)=xy(£)]) + (u(t),N(t)w(t))ldt

o
T
+'(xo(T),F[x(T;w)-xo(T)]) + i (x(t),Q(E)[x(t3w)-xy(t)])dt
0
T
= (x(T3u),Flx(T;w)=x4(T)]) + i (x(t3u),Q(t)[x(t;w)-xy(t)])dt
0
T
+ / (u(t),N(t)w(t))at
t
0
8 = (x(T;u),Fxy(Tjw)
T
+ é {(x(t3u),Q(t)xy (t3w))+(ult),N(t)w(t)) }at (3=-21)
0

where xl(t;w) = x(t;w)-xo(t)

and satisfles the R, F.D,E,

% = A1) 1) + %M’c}ﬁh@) —1—5 R, & 0) xit+e)de + B wit)

x(t,+e) = o ® €[-q 0] (3-22)
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Corresponding to (3-1), we have the hereditary adjoint

equation for p(t;u)

& < 1) bt) + i Nit-ed pt- o) +5 ALt-o, o) pt-o)de
+ QO ft; ) =0
kjk ): FXC\—}"Q "W*'@B:O @e (o, (L] (3-23)

From theorem 2E equation (2-64) we have

B p(tsp(bg3u),xy (53w)= Fo(T,p(T3u),x, (T5w))

) . (3-24)
=/ ((63w),B(EIW(E))at =/ (Q(EIx(E3u),x, (t5w))dt
t t
0 0
But H p(to,p(tgsu),xq (55w)) = 0 | (3-25)
and b o (T,p(T3u),x; (6510)) = (x(T3u),Fxy (T3w)) (3-26)

Hence from (3-24), (3-25), (3-26), we have

.
£ (N(E)ult) + B (8)p(t3u),w(t))dt = 0 for all w el (3-27)
£

0

Hence u(t) = - N'l(t)B*(t)p(t;u)
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We have thus proved the theorem

Theorem 3B
The unilique optimal control of the control problem (3-1),

(3-2) and (3-4) is characterized by
-1 *
u(t) = = N"7(£)B (t)p(%) (3-28)

where (p(:),x(:)) 1is the unique pair of maps in
ACz(tO,T;Rn) which satisfy the following system of

equations on [tO,T]

da L °
= R Ox B+ 2 Ri)iteo)+§ L0 xtrade - Re) plt)+ 48
¢, +0)= A , 8 €lao] hoe M* (3-29)

%t + A 9 12 Hﬁccfeg bit-e)) -r_S_O&R:@c-e, o) pit-e)de + Q) xft) =o

P = Fx(T)  pTep)=o  Be(oq]

(3-30)

and where R(t) = B(’G)N-l(t)B*(t) (3-31)

(3.3) Decoupling optimality pair of equations

We now set out to decouple the optimality pair
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of equations (3-29) and (3-30). To do so, we consider
the control problem on the interval [s,T] where

s € [tO,T]

¢(tys,v) satisfies for t e [s,T]

- 0P DA pre AL S) Gro)ds 4B + f0
bs+e) - K@, ©cl-ad, heM (3-32)

and we have cost functional
Cs(v;h) = CS(v) = (¢(T3s,v),Fo(T3s,v))
T
+ é {(¢(t38,v),Q(t)o(t;syv))+(v(t),N(t)v(t))dt (3-33)

0

and with class of admissible controls
T 2 2 . |
[LLES ] = {vy; [ |v(t)]|“dt < »} = L°(s,T;R™) (3-34)
’ s

Unless there is any danger of confusion, we shall denote

Ql[s,T] by U g

The hereditary adjoint solution y(t;s,v) satisfies



114. :
& RO+ 2 Rt Ve ey + STALE-g 0 VE-aide
+ Qb pt) =0
v = F oM, YT+fl=o pe O

. (3-35)

From theorem 3B, the unique optimal control u e’Z(s is

characterized by
-1 *
u(t) = = N 7(t)B (t)y(t;s) (3-36)

where (¢(+3;s8), Yv(*38)) 1is the solution of the coupled

system of equations

= A, 0 <p(t)+2\% phre)+ ) AL 9 pitrelde
- RO YH ’f@ (3-37)
¢Ls+e)= J’x(e)} eel-qa, ol /Ke M*

G R +Za¢ew SP(O‘Ltee)“/tf o)de

+ Q({)gb%) = 0 (3-38)
W= F o) YT+g)=0 e (0]
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Lemma 3 ol

The map (h,f) + (¢(+38), Y(*3s))
(3=39)
M?(-a,0;R™) x L%(s,T;R™) » ACZ(s,T3R™) x ACZ(s,T;R™)

isbilinear and continuous.

Proof The map 1s clearly bilinear.

To show that it is continuous, we take a sequence {hn}
converging to h in M2 and {fn} converging to f
in L2(s,T;Rn).

For some V € l{s, let (¢, C58,v), v (58,v))

and (¢(+3s,v), v(+38,v)) be the solutions of (3-37)
and (3-38) with initial data h, h and forcing terms
fn, f respectively.

From theorem 2A, hn - h in M2

and f + f in L (S,I;R )
> ¢ ("S V) > ¢("S V) in AC (S T‘R)
n PR ) ER ) st

Denote the cost functional for 1initial data h,sh and
forcing terms f ,f by Cg(v) and Cs(v) respectively,
and denote the optimal control for Cg(v), Cs(v) by

u, and u respectively.
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n n n
Cl(u.) = inf C(v) < C (u)
s’ nt e'u% s - s

and Cg(u) > Cs(u) as n + o

Hence Iim cM(u.) < Tim c¢%(u) = c_(uw) (3-40)
n+cosn‘—n+oos 5
2 1
Since, from (3-3) ||unHu¢3 <3z C:(un), {un} belongs to

a bounded subset of i s» and since 1 < 1s weakly com-
pact, there exists a subsequence {u_} and an element

W ers such that

u, > w weakly in ZLS

Thus ¢m(°;s,um) + ¢(°3s,w) weakly 1in ACz(s,T;Rn).

Since v - Cs(v) is convex

Mu_) (3-41)

Cs(W) < lim Cc(u

m >

Combining (3-40) and (3-41), we have

Cs(w) < 1lim Cz(um) < IIm Cg(um) < Cs(u)

m > o m > «



117.

Hence w = u,

Thus we have

u, *u weakly

m
Cs(um) -+ Cs(u)

¢mG;s,um) + ¢(3s,u) weakly in AC2(s,T;Rn)

WmG;s,um) + y(3;s,u) weakly in ACz(s,T;Rn)

This proves the continuity of the map (3-39) where
continuity is with respect to the strong topology of
M2 and L2(s,T;Rn) and the weak topology of

ac?(s,T;R™).

Corollary

For s € [tO,T], t € [s,T], the map
(h,f) » y(t;s)
2

M° x 1.°(s,T;RP) + RV

is bilinear and continuous and has representation

(3-42)
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w(tys) = P(t,s)h + F(t,s)f
where P(t,s) € & (M°,R™), F(t,s) e L(1.%(s,T;R™),RD)
Proof  The map (3-42) is a composition of the maps
(h,f) > (¢(+35), v(e;s))
and (¢(3s),y(+3s8)) » yY(t,s)

both of whlch are continuous,

Lemma 3.2
Let (p(-),x(+)) be the solution of the coupled system
of equations (3-29), (3-30). Then for all pairs

s i t in [tO,T]
p(t) = P(t,s)x(s) + d(t,s) (3-43)
where P(t,s) € ti(Mz,Rn) and d(t,s) e rR" are

obtained in the following manner: we solve the system

in [s,T]
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4 - 8000+ T A pes) + T 1.0 Plerelda—REPY)
} (s+e) = /g\(e)) ©¢f-a of e M 5oty

L ROV + D) we-o) +.57 A0 0Vt~ o) + OB P)= 0
W) = Fe), YTep=0 pe@d (3-45)

and then y(t) = P(t,s)h | (3=-46)

and we solve on [s,T]

%C? = A, ® 4 )+ Tz ) v)(ﬁez)*j_:%.@, o) m(tre)ds - RE)FH) + { t

f7§+e)= o bel-a o] (3-47)

Q'Lf ¥ N * O ¥

at + ﬂo,,(’()\f(f) +Z\ fite) Tit-o) +5_a‘(\o‘(‘c—e, 9 f(t—e)db +Q&)7H) =0

M =F 7(7_) fﬂ_‘rﬁ) =0 ée (0, a] 93-48)
and then d(t,s) = E(t) - (3-49)

Proof P(t,s) and d(t,s) are clearly defined from
(3-46) and (3-49).
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We want to prove the identity (3-43).

Let p(-), x(-) be the solution to (3-29) and (3-30)

and consider the system of equations (3-37) and (3-38)
with initial data ;(s), and with solutions o¢(-), v(-).
Let ¢S('), ws(') be the restriction of x(-¢) and p(-)
respectively on [s,T],

¢, and ¢ satisfy (3-37) and (3-38) with some initial

data as ¢(-), ¥(-).

Hence from uniqueness ¢S = ¢, ws = Y,

Hence y_(t) = p(t) = y(t) = p(t,s)x(s) + d(t,s)

0.E.D.

Corollary 1
The map t » P(t,s)h + d(t,s) (3-50)
is in ACz(s,T;Rn) for fixed s ¢ [tO,T].
Corollary 2

p(t) = P(t,£)x(t) + d(t,t) = P(t)x(t) + d(t) (3-51)
where P(t) = P(t,t) e gL(M2,R™) (3-52)

da(t) = d(t,t) ¢ R" : (3=53)

The map t = d(t) 1is absolutely continuous in [t,,T].

The proof of corollaries 1, 2 follow immediately from

lemma 3,2,
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From the Riez representation formula, since

P(t,s) € &ﬁ(M2,Rn), we can write

0
P(t,s)h = Po(t,s)h(O) + J Py(t,s,a)h(a)da (3-54)
-a
where P((t,s) e L&), P (t,s,+) € L7(-a,0;fR™N)  (3-55)

Defining Po(t) = Po(t,t), Pl(t,a) = Pl(t,t,a) we have
from (3-51)
0 .
p(t) = Po(t)x(t) + f Pl(t,a)x(t+a)da + d(t) (3-56)
-a
Hence we can express the optimal control to (3-1), (3-2),
(3-4) in the feedback form
-1, # 0
u(t) = =N""(£)B (£){P_(£)x(t) + f Py (t,a)x(t+a)da + d(t)}

-a
(3-57)

(3.4) The operator TN(t) and the optimal cost and optimal

-~ control
In this section and section 3.5, we shall study the

regulator problem for which

f(t) =0 t € [tO,T]
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We shall introduce and study a family {N(t); t e [tO,T]}
of M2 aperators,

Let us denote by ¢,(+38,h) and $,(*3s,h) the
solution of (3-37) and (3-38) with initlal data h and
forcing term f = 0, '

" Lemma 3 o3
(D) d(s, Yo, s, k), 0 = (BT, s, A), F (T, s, &)
- v .
+ Mt ), R Wity s, &) + (s s ), QO ;s &) bt

(3-58)
(11) the map (h,k) »ﬂT(s,:l;o(s;s,k),h)
(3-59)
M2 x M2 + R
is a continuous, positive, symmetric, bilinear form.
(iii). 4;3 operator 1I(s) : M2 -+ M2 defined by
(h,M(s)k) , =5¢m(s,io(s;s,k),h) (3-60)
M - ;
(iv) (h,N(s)h) , = inf  C_(v;h) (3-61)

MT voelg
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(v) ¢ > 0 such that

I\n(s)hl‘mz <clinll , for s € [t ,T], h e Mme

v

(3-62)

Proof

(1) From theorem 2E equation (2-64), we have
B (T, 00 ( 55,00 4 60 (T58, 1)~ (5,00(535,K) 0, (555,0))

T
= -f{(wo(t;s,k),R(t)wo(t;s,h))+(Q(t)¢0(t;s,k),¢O(t;s,h))}
S

Now &T(S,JJO(S;S,k),;(S;S,h)) =\#T(Ss@0(s;5:k)’h)

and ﬁ#T(T,wO(T,s,k),¢O(T;s,h)) = (F¢O(T;s,h),¢0(T;s,k))
Hence result

(1i) Now the map h -+ (pgbss,h),v4Css,h))  is
linear and continuous from lemma 3,1 and hence the map
(3-59) 1is bilinear and continuous. The symmetry and
positivity of the mab follow from the syvmmetry and

positivity of R(t), Q(t) and F,

(1i1) Since the map (h,k) »j%T(s,wO(s;s,k),h)

is continuous, it follows from Horvath [39] pp. 44 that



124,

there exists a continuous operator

M(s) : M° » M°

such that (h,N(s)k) , =§%T(s,1;0(s;s,k),h)
M

(1) (R Tigh)ye = F(s Pusys A, A)
= (AT s ), FoTsh)
v (4 pts ), Q) 4,5 ATdt
v S0t ), RO s )T dt

= )Ax{— (:s(gf;/&J

Ae U

since the optimal control 1s given by
u(t) = = N""(t)B (t)wo(t;s,h)

2
(V) (h,(s)n) 5 < Cg(05h) < Gy (O3h) < clthM2

Hence result, Q.E.D.
From the results of chapter 2 section 6, we can

decompose the operator m(t) into a matrix of bounded

transformations
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t) M., ()

OO( 01(

n(e) = |

LI g(t) By (%)

where
(1) TMya(e) e (R™®) and can be represented at a
matrix.
(11) Ty, (8) Etf(L2(-a,0;Rn),Rn) and has representation

0
My, (8)x = {a Moy (Esa)x(a)da (3=63)

where x € L2(-a,0;Rn) and HOl(t,o) € L2(-a,0;dkRn))
(111) T () e C(R?,1%(-a,0;R™)) and has
representation

(Mo (£)x)(8) = Ty (,0)x

where x ¢ R" and Hlo(t,-) € L2(-a,0;£(Rn)) (3=-64)
(1v) 1y, (6) e £(1P(-a,0;8™M)

Also we have
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0
(h,I(E)k) 5 = (h(0),My,(£)k(0)) + f (n(0),My, (t,0)k(a)da
M -a
+ 7/ (h(8),N,,(t,0)k(0)ds + (hl,Allkl) 5
-3 M
Lemma 3.4
(11) TNy (t,a) = P;(t,0) a.e. o€ [-a,0) (3-67)
(111)  (h,m(t)k) , =(h(0),HOO(t)k(O))
M
0
+ (h(O),HOl(t,a)k(u))da
-a
0 (3-68)
+ / (n(8),m, 4(t,0)k(0))
-3
0 0
+ f de f da(h(e),ﬂll(t,e,a)k(a))
-a -2
Ai(t+e-ei)Pl(t+e-ei,t,a) 6,<6<0
N
where I.,(t,6,a) = I (3-69)
i=1
. 0 otherwise

0 *
+ é ds AOl(t-&,e+6)Pl(t-6,t,a)
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and T, (t,*,*) € L%(-a,0;-a,0;L(R™)

(1v) Too(6) = Too(8); Mo (6,a) = Ta(6,a) a.e. a e [-a,0]

M, (t,0,a) = mi,(t,a,8) a.e. (8,a) e [-a,03x[-a,0]

(3-70)
Proof We explolt the relationship
(B, (6)K) 5 =K (b, 0, (838,k),h)
M

0
(1001, (£)K(0)) + 7 (h(0),Tg, (5,00k(w))da

0 1 1

# L (n(8),1(8,00%(0)a0 + (pT,Ap,K0)

= (0y(t35,%,n(0))

N t-0y
+ I f ds(wo(s;t,k),Ai(s)h(s-t+ei))
i=1l ¢t
0 t-6
+ [ de fds(wo(s;t,k),AOl(s,e)h(s-t+en
-a t

0
= (h(0),Py(£)k(0)) + f (h(O),Pl(t,a)k(a))da +
-a
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N t-9
+ I f ds(Ai(s)h(s-t+ei),Po(s,t)k(o))
i=1 ¢t
N '8 o
+ T/ ds [ da(Ay(s)Hs-t+6,),P;(s,t,0)k(a))
i=1l ¢t -a
0 t-8
+ f a6 J ds(Ay;(s,0)h(s-t+0),P,(s,t)k(0))
-a t
0 t-6 0
+ [ 46 é ds f da(Ag;(s,0)h(s-t+6),P;(s,t,a)k(a))
-3 -a
0
= (h(0),Py(t)k(0)) + J/ (h(0),Py(t,a)k(a))da
-a
N 0
+ iz S a6(A, (t+6-64)h(8),Py(t+8-6,)k(0))
=1 0
i
N O 0
+ I/ de [ do A (t+6-8,)h(8),P,(t+6-0,,t,a)k(a)
i=1 8, -a +
1
0 0
+ /a6 J ds(Ay,(t-6,8+46)h(8),Py(t=8,£)k(0))
-a 6
0 0 0
+ [ de [ do S d&(AOl(t-s,e+6)h(e),Pl(t-a,t,a)k(a)) (3-71)
-a -a )

(changing variables and interchanging order of integration

in the Gth expression on left hand side)
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(1) Now putting h> = kT = 0, h(0), k(0) # 0

in (3-71) we have
(h(O),HOO(t)k(O)) = (h(0),P,(t)k(0)) (3=72)

for all h(0), k(0) in R". Hence result

1

(11) Putting k(0) = 0, k¥ # 0, h' = 0, h(0) ¥ 0

~in (3.71) we have

0 0 ,
T (h(0),My; (t,0)k(a) Mo =/ (h(0),P,(t,a)k(a))da (3-73)
-3 -2

for all h(0) e R®, k* e L.°(-a,0;R™).

Hence result,

1

(111) Putting h(0) = k(0) = 0, h™, k> # 0 1in (3=7T1),

we have

A KDL = 2 5o § da (hig, Mtco-o) Pitro-s,t.0 he)

N 5}0@2@ fas e R -8, 0¢8) Pft-5 1,4 ko

= $do S o (ho, T 0, o) Ae0)

where Hll(t,e,a) is given in (3-69)
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(iv) From symmetry, we have

(h,T(£)k) , = (k,N(t)h)
I

M 12

1

Hence
0
-2
0 0 0
+ J (h(8),N,,(t,8)k(0))d6 + f d6 [ da(h(8),N,(t,8,a)k(a))
-3, -a -3,
0
= (k(0),Ny,(t)h(0)) + S (k(0),N,; (t,a)h(a))da (3-74)
-3,
0 0 0
+ f (k(e):Hlo(t,G)h(O))du+J de f da(k(e),ﬂll(t,e,a)h(u))
-a -a -8

1

Considering in turn Hh= k' = 0, h(0), k(0) # 0;

K(0) = 0, K* # 0, h(0) # 0, h* = 0; h(0) = k(0) = 0, K",k A0,
the result follows.
QoEoDo

Corollary

p(t) = 10(t)x(t) (3=75)

Proof Follows from (3-56) (f = 0 => d4(t) = 0),
(1) and (ii) of lemma 3.4 and definition (2-74) of n°(t).

0.E.D.
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With f = 0, we can express the optimal control of (3-1),

(3=2) and (3-=4) in the feedback form

0 .
u(t) = = NTHEB () (8)x(6) + £ Ty (b,0)x(t+addal  (3-76)

and the optimal cost to go at time ¢t ¢ [tO,T]

inf C.(v3h) = (h(0),N,~(t)k(0))
v€’utt\‘ 00

0
2 1 (n(0),Ty; (t,0)h(a))da
-a

+

(3=77)
0 0

S dae f de(h(e),ﬂll(t,e,a)h( ))

-a  -a
Either or both of the expressions (3-76), (3~77) have
been obtained by Krasovskii [46], Ross and Flugge-Lotz [69],
Eller, Aggarwal and Banks [27], Kushner and Barnea [50],
Alekal, Brunovsky, Chyung and Lee [1], Mueller [62]

and Delfour and Mitter [21],

3.5 Operator Riccati differential equation for T(t)

Definition

Define M° operators Q(t), Ret), F vy
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Q(t)n(0) a =0
[R(t)h](a) = (3=78)
0 o € [-a,0)
R(t)h(0) a =0
[R(t)n](a) = (3=79)
0 a € [-a,0)
Fh(0) o =0
Fnl(a) = (3-80)
0 a € [-a,0)

Note that Q(t), @Xt),'? are symmetric positive operators,
Now let x(3t,h) be the solution of (3-1) with f = 0,
with initial data h at initial instant toe [tO,T]
and corresponding to the optimal control u.

Then for s e (t,T), x(s3;t,h) satisfies

ax N 0

35 = Dyols)x(s) + I Ai(s)x(s+ei) + DOl(s,B)x(s+e)d8
i=1 -3
; (3-81)
x(t+8) = h(8) 6 ¢ [-a,0] he M
where DOO(S) = Aoo(s) - R(S)Hoo(s) (3-82)

Dy1(5,8) = Apy(5,8) = R(s)Tj,(s,06) (3-83)
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From theorem 2B and (2-12), the solution can be written

in the form

x(s3t,h) = 6%(s,t)n(0)
y min (0,s-t+6,)
+ % f da @0(s,t+a—9i)Ai(t+a-ei)h(a)
1=1 6,
0 o

+ 4 de £ a8 0%(s,t+a-B)Dy, (t+a=8,8)h(a) (3-84)
-a max (-a,o-s+t)

or more compactly

0
x(s3t,h) = 6%(s,t)h(0) + S o+ (s,t,a)h(a)da (3-85)
-a

0
3¢ (s,t)

where TS

=

= Do(8)0%(5,6) + T a; ()6 (540, ,t)

i=1

0 0

+ J Dy;(s,0)0 (s+e,t)de (3-86)
-3

09%(t,t) = 1, 0°(t+6,8) =0 6 ¢ [-a,0)

-0
(@ (s,t+a=0,)A, (t+0-0,)  a+t-5<8,<a

1 1 0 otherwise (3-87)

¢ (s,t,a) =
i

o~ =

o
v f a8 0°(s,t+a-8)Dy, (t+a-8,8)
max (-a,a-s+t)
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We denote the M° solution of (3-81) by x(s3t,h) and we
define the two parameter eemigroup of operators corresponding

to (3-81) by
#(s,t)h = ;((S;t,h) (3-88)

The differential generator of the semigroup of operators

{e(s,t) 3 s > t} (see chapter 2, section 4) 1is
HAe) = R erym(e) (3-89)

and recalling (vii) of theorem 2D, we have

[@('s,tga) - 0(s,t)qy -

lim - 6(s,t)[At) - R(EIM(L)Ih  (3-90)

§ + O

where h e (&(t) - Re)n(s)) =B t)) = Ac®(-a,0;R™)
i.e, for fixed s > t, the right hand derivative in M2
of @(s,t)h is =~ ¢(s,t)[¢kt) -Rt)n(t)In. Recall
that the left hand derivative is meaningless since
#(s,t+8)h 1is not defined for 6 < O |

2

x(s3t,h) will satisfy the M° differential equation on [t,T]

| %_é_z_l = [As) =R(s)n(s)Ix(s)

- (3-91)
x{t) = nh
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From (1) (3-58) and (ii1) (3-60) of lemma 3,3, we have

(ATt R). = (M A) Fx (Tt k)
T 5:(16;’0,%), Qe x(s; T, &) )ds
ST (Mexs; 10, Ry Tl 16, € R)do

B, TR = (BTOA FOT ),
+ SY@is, bk, R0 Bs 1) k), {ToBe ok, Bl Bis k) ko

(3-92)
Note that (3-92) is an integral operator equation for T(t).

By writing it out in full, we obtain the theorem:

" Theorem 3C
(1) My(T) = F | (3-93)
The map t = Hy,(t) : [ﬁo,T] > Q&Rn) (3-9U)

is absolutely continuous

(11) Ty (T,a) =0 ae. . a e [-a,0] (3-95)
For fixed ¢t € [tO,T],.the map

a» Mgy (t,0) ¢ [-a,0] »(R™) (3-96)

is plecewlee absolutely continuous with Jumps at
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a = 6, i=1,.,. N-1 of magnitude Hoo(t)Ai(t). For

fixed o € [=-a,0], o # 6, for any i = 1...N
the map t » Ny (t,0) & [£y,T] » L(R™) (3-97)
is absolutely continuous

(111) T ,(T,8,0) = 0 a.e. (6,0) € [-a,0]x[-a,0]
(3-98)
For fixed ¢t ¢ [tO,T], the map

(0,a) » T ;(¢,6,0) : [-a,0] x [-a,0] » X (r™) (3-99)

is plecewise absolutely continuous with Jjumps at

*
a = 8, J = 1,... N=1 of magnitude HOl(t,e)Aj(t) and

%
at 8 = 0, i=1.,,. N=-1 of magnitude Ai(t)HOI(t,a).
For fixed (6,a) € [-a,0] x [-a,0], 0 # 0,5 o # ej for
any 1, =1 ... N
the map t » Hll(t,e,a) : [tO,T] +<I(Rn) (3-100)

is absolutely continuous.

Proof See appendix 1

Remarks
1) In case F # 0, we assume, without any loss in

generality that A.(T) = 0, Ai(-) absolutely continuous, i=1...N

2) Note that for a = -a, (or o = ei for any i=1...N-1).
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the map t » Ty, (t,-a) = Ty (£)A (L)

will not necessarily be continucus, since AN(t) does

not have to be continuous,

A similar remark holds for the map (3-100).

Theorem 3D

N(t) satisfies the operator Riccati differential

equation

g-gm,n(t)k)Mz AR, 5+ (LTOMD0

(3-101)
~(n, T(EIR(EIM(EIK) 5 + (h,QLIk) , = 0
M M

m(r) =%

for all h, k eB(#) and where the derivative %F is
taken to be the right hand derivative. Alsoc equation (3-101)

has a unique solution.

Proof Taking, the right hand derivative with respect to ¢

of both sides of (3-92) and using lemma 2,1 we obtain
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U TOR. = - (@T0R0-ROTEIA, FOIHA),.
- @T 0k F OTONG - RUTETA),e
- (h, QUK. - Tk, ROTIOA) e
- (@ HAD-RUTIEL A, Qo Bis,b-4),.4
- S (®s 4, Qs B DIAG- ROTIED ), o
- 57T &is HAD) -ROTIELb, Ro T dis B B\
- BI(T\’@ O DA, R ds b WA®) - ROTIR) k)Mgé

g-t-(h,n(c)mmz = -,QEN0 5 = MORBNDK)

= (0,7 (8) [A(£)-REM(£) TK)
M
= ([AE)-REIN(H) I K (£)k)
M

= - (h,Q,(t)k)M2 - (H(t)h,(R(t)H(t)k)Mz

- (h,n(t)vﬁl(t)k)Mg + (h,n(t)Q(t)HGt)k)Mz

- (ﬂ(t)h,n(t)k)M2 + (R()M(LIn, (LK) ,
M
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Hence we have (3-101), and T(T) = ¥ follows immediately
from (3-92).

To show that (3-101) has a unique solution, suppose

that Hl(t) and T,(t) are solutions of (3-101),

Hl(t), Hz(t) bounded svmmetric operators for all

t e [ty,T].
Let no(t) = Hl(t) - H2(t) (3-102)
Then HO(T) =0 (3-103)

and Ho(t) will satisfy the operator differential equation

de(h, I (£)K)k) , + (MEIN,TR(0K) 5 + (mTo(MACE)E)

M

- (M OBREM 1) 5 + TR0 (3-104)

Now let Ql(s,t) and ¢2(s,t) be the semigroups generated
by #(t) - R (¢) and A(t) - Rie)my(¢) respectively.

Now let us consider

L(e,(s,t)n, Ho(s)¢2(s,t)k)M2
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joR

where the derivative | is taken from the right and

ds

where s e [t,T]

%g(¢l(s,t)h,no<s)¢2(s,t)k)M2

= ([ACs) -&(s)n1<s)1,q>l<s,t>h,n0(s>¢2(s,t5k>M2
+ (0, (s,t)n,I (S)Eﬁ(s)-GUs)nz(s)]®2(S,t)k)M2
- Q&(s)¢l(s,t)h,no(s)¢2(s,t)k)M2
- (¢1<s,t)h,no(sxﬁ(s)¢2(s,t)k)M2
+ (nl(s)¢l(s,t)h,Rxs)nl(s)¢2(s,t)k)M2
- (nz(s)¢l(S,t>h,&1s)n2<t)@2(s,t)k)M2

= . (@is)Hl(s)Ql(s,t)h,Hi(s)®2(s,t)k)M2
+ (Rxs)nl(s)¢l(s,t)h,n (s)®2(s,t)k)M2
- (8,(5,5)n, T, ()R ()M, ()0, (5,0)k)

M

+ (@1(s,t)h,nz(s)&(s)n2(s)¢2(s,t)k)M2

+ (nl(s)@l(s,t)h,@ﬂs)nl(s)¢2(s,t)k)M2

- (nz(s)@1(s,t)h,ﬁ.(s)nz(t)éz(s,t)k)M2
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Hence (®l(s,t)h,ﬂo(s)®2(s,t)k)M2 is constant for s e [t,T]

Hence (@l(t,t)h,ﬂo(t)@2(t,t)k)M2 = (h,HO(t)k)M2

(¢1(T,t)h,nO(T)¢2(T,t)k)M2

]

0 , since HO(T) =0

Hence (h,no(t)k)M2 = 0 for all h,k € AC2(-a,O;Rn)
a dense subset of MQ(-a,O;Rn).

Hence Ho(t) = 0

But t € [tO,T] is arbitrary

Hence M,(t) = 0 for all t e [to,T] and hence we

have uniqueness of a solution to (3-101),

Q.E.D.

Writing out (3-101) in full, we can establish

Theorem 3E

(1) Hoo(t) satisfies the differential eaquation

Al (8) %

¥
+ Mo (£,0) + Mo, (£,0) + Q(E) =0 (3-105)

a.e. in [tO,T]

HOO(T) = F
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(1i1) HOl(t,a) satisfies the differential eauation

(2 - 2Imgy (b,0) + Ago(£)To; (B,0) = T (6)R(EIT ) (6,0
+ noo(t)A01(t,a) + Wll(t,o,a) =0
N-1
a.e. in [t4,T] x U (8y,,,8;) (3-106)
1=0
HOl(T,a) = O a.e, o € [""a,O], Hoo(t,"a) = UOO(t)AN(t)

and HOl(t,a) has Jumps at a = 6, 1i=1 ... N-1 of

magnitude Hoo(t)Ai(t)

(1i1) Hll(t,e,a) satisfies the differential eauation

d 3 3 *

+ App (8,00 (B,0) = TG, (£,0)R(E)T, (t,a) = 0

N-1 N-1
at.e. in [tO’TJ x 1k=Jo (ei+1’61) X j_yO (614-1’61) (3-107)
Hll(T,e,a) =0 a.e, (6,a) € [-2,0] x [~-a,0]
¥ ®
Hll(t,-a,a) = AN(t)HOl(t,(‘L), Hll(t,e,-a) = HOl(t,G)AN(t-)

Hll(t,e,a) has Jumps at a = ej, J l ... N-1 of magnitude

%
n01(t’e)Aj(t) and at 9 = ei i=1.,. N=-1 of magnitude

*
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Remarks

1.
coupled

for the
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See appendix 2

Fauations (3-105), (3=106), (3-107) give a
set of Riccati type first order partial differential equation

entities T, (t), Ny (t,a), T.,(t,8,0) which

appeared in the feedback form of the optimal control (3-76)

and in an expression for the optimal cost to go.

2.

In the dynamic programming approach, the

exlstence and uniaqueness of an optimal control is made

to depend on the existence and uniqueness of the

equations (3-105), (3-106), (3-107). Our approach is

different, We first prove the existence and unigueness

of an optimal control, We then exhibit an M2 operator

N(t) (thereby disposing of the problem of existence)

and the related matrix functions Tg,(t), My, (t,a),

nll(t,e,

a). We show that T(t) satisfies an operator

Riccatl differential eouation (3-101) and that it is the

unique solution. From (3-101), we deduce the coupled

set of Riccati type partial differential eauations (3-105),

(3-106),

(3-107) satisfied by T, (t), Ty (t,a), Tyq(t,0,a)

and since (3-101) has the unique solution T(t), eauations

(3-105),

noo(t),

(3-106), (3-107) must have the uniaue solution

HOl(t,a), nll(t,e,a).
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3, The optimal control problem (3-1), (3—2), (3=-4)
will be completely solved once we have the solutions to
equations (3-105), (3-106) and (3-107). However solving
those equations is no easy business and we postpone
further discussion until next chapter when we obtain a
slightly simpler version of (3-105), (3-106), (3-107)
which however is still very difficult - if not impossible -

to solve,

3.6 TFinite time tracking problem

Denote by ¢(3;s,h) and y(3;s,h) the solution
of (3-37) and (3-38) with forcing term f # 0. From

corollary 2 to lemma 3.2 and corollary to lerma 3.4
v(tss,k) = 10(£)o(tss,k) + alt) (3-108)

Hence ¢(;s,h) satisfies the R.F.D.E,

0
Ay (B)o(t+e, ) + {ade Dy (t,0)0(t+8)

Q
-

28 = pyo(E)aCe) +

M=

i=1

- R(t)d(t) + £(t) (3-109)

6(s+6) = h(8) 8 € [-a,0], h e M

where D, ,(t), DOl(t,e) are as defined in (3-82), (3-83)

00
respectively.
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Hence (3-109) will have solution

t
$(t3s,h) = ¢,(t;5,h) + ! 00 (t,t,)F (t,)dt, (3-110)

where fo(tl) = F(tl) - R(tl)d(tl) (3-111)

@Qt,tl) 1s as defined in (3-86)

and ¢O(t;s,h) is the solution of (3=37) with f = 0,

Now define d(t), fo(t) e M by

- :/d(t) o = 0
Lda(e)1(a) = {
L0 a € [-a,0) (3-112)
5 f‘o(t) a =0
[fo(t)]«» =
0 a € [-a,0) (3-113)
It is clear that fo(t) = E(t) -ék(t)a(t) (3-114)

We can write (3-110) in the M2 form

~ ~ t -
6(t3s,h) = o4(t3s,h) + /1 o(t,t )fo(tl)dtl (3-115)

S
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where ¢(t,t;) is as defined in (3-88)

(3-108) can be rewritten

~ t -
p(ts;s,k) = Ho(t){¢o(t;sgt) + é o(t,t,)0(t,)de )} + a(t) (3-116)

(1) ﬁ'—r@f \T/LS;S, k), ) = (T s, ), Fo;s, A))
+ Wt 5 ), RO Wi s, Jo)dt
+ 5,@tt;5.4), QO pt; s, A)dt

= St h), f)dt (3-116)

(11) ﬁ*T(s,i(s;s,h),h) = inf Cs(v;h)
v e'us

T
- J (y(t3s,h),f(t)dt (3-117)
S

" Proof

(i) From theorem 2E, equation (2-6U4) we have

H (T, 0(T35,8),6(T38,0))=F(s,4(s,5,k),h)

T
= «f {(y(t3s,h),R(t)p(tss,k))+(o(t;s,h),0(t)d(tys,k))}dt
S .

T
+ f (v(tys,k),f(t))dt
S
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from which the proof follows.

(i1i) follows from observing that

inf Cs(v;h) = (¢(T3s,h),Fo(T3s,h))
v e’u%

T
+ S {(W(t;3s,h),R(EL)v(t;5,h))+(d(t;s,h),0(t)d(t;ss,h))}dt
S

0.E.D.

Hence

;%T(s,:b(s;S,k),h)

(6(T35,0),36(T35,0)) ,
M

T

£, 0) ROV E55,K)) ,+(8(t55,h),A06)6(t55,K))
s M

+

}dt
M2
T
- f (v(t;s,k),f(t)dt
S

= (44(T35,h), 5‘@0('1‘;5,1{)) 2
M

T ~ ~
I (W (tss,h), Rty ess,k) ,dt
s M

+

T - .
+ é (qso(t;s,h),Q(t)cbo(t;s,k){)ﬁt
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T ~ ~
I (og(mssm), Fo(2,60)04(0) oaty
S

+

T . | .
I (by(t3s,n), Rit)a(e)) ,at
S] M

+

T T

+ 0 At £ At (p(tss,n), RGN (£)e(6,67)7,(61)) 4
S S M

T t ~ ~
+ 7 dt Jdb (9,(tss,h), Q(E)e(E,E)F(E)) ,
s S M

plus four expressions as above with h replaced by k

T T ~ ~
+ 7 dty S oAb, (e(T,b)f (%), Fo(r,t E,(85)) 5
S s - M

T t ~ ~
+ 2 f dt [ dtl(d(t), GQCEXI(t)@(t,tl)fO (tl)) 5
s S M

T ot t .~ N
+ Jat fdty fdtz(n(t)@(t,tlfo(tl)j{(t)n(t)@(t,t ) (65)) 5
S s s M

Tt ot . )
# 14U JaB; JAb,(8(5,51)T0(5), Q(t)@(t,tg)fo(t2))M2

T
I ((tss,k),f(t))dt
S

Definition

Define an element g(s) ¢ M2 by
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T -
I (e(T5s,n), Folr,e )r (t ) ,at
S

(g(s),h) . =
M° M

Ul

T

£ 1 (pyltss,m), R(E)A(6)) Lat
S

M2

T t ~
[ v s dtl(%(t;s,h),&(t)n(t)@(t,t1>fo<tl>>mz

+

T t - -
é dt g dt, (65(t3s,h),Q(t)e(t,t )fo(tl))M

+

2

T .
soo(e(T,s)h, Fo(T,t )F (£ ) ,dt
s M

T -
[ooAm(t)e(t,s)h, R(t)d(t)) dt
s M

+

T t -
+ J dt f dt (M(s)e(t,s)n, R(t)ﬂ(t)@(t,tl)fa(tl))

s s M2

T t .
S odt f at (e(t,s)h,8(t)e(t,t)F(E)) ,  (3-118)
s s M

+

g(s) 1s well defined from the Riez representation theorem,

since the left hand side(s) of (3-118) is a continuous

linear functional on M2.
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Using the isometric isomorphic between M2 and R x L2

we can write
;%(s) = (gyls), g;l(S,-)) (3-119)

where g,(s) € R™ and By(s,%) € L2(-a,O;Rn).

Similarly, we can define (a(s),k) ,
M

Define the scalar function
T T

[dty f dt,(e(T,t,)7(£,), Fo(T,t 00200 o

c(s)

T T . -
+2 0 dt S odty(ale), REIM(e)e(t,t)F(51)) 5
s s M

T £ t . N
+ 1At fodty [ oat,(T(8)e(t,t)f(t) ,REIM(E)Ie(t,£,)F(£,)) 5
s s s M
T £ t

+ At £ dty S oAb, (e(t,t)f (3Rt )e (s, i
fab Ldty Lodty(e(e,t)T (5 R )0 620006

(3-120)
2

Lemma 3.6

(1) min [ = o -
ST O V3R = (TIN5 + 2(R(6),0) 5 4 o(6) (3-121)

(11)  gy(t) = a(e) (3-122)

for t ¢ [to,T]
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Proof

(i) This follows immediately from (ii) of lemma 3.5

equation (3-117) and the definitions of g(t) and c(t)

(1i) We exploit the relationship

Ho(6,0858,00,0) = (0,1()K) , + (R(8),h) , + (m(8),k) ,
M M M

T (3-123)
+ c(t) - F (v(s3t,k),f(s))ds
t

which follows from the definitions.

Hence

0 0
(h(O),HOO(t)k(O) + f (h(O),HOl(t,a)k(a))'+ S (h(e),Hlo(t,e)k(O))de

0 0
+ /a8 S da(h(8),N,;(t,8,a)k(a)) + (g,(t),h(0))
-a -a

0 0
(g,(t,0),n06)de + (gy(t),k(0)) + f (gl(t,a),k(a))da + c(t)

+

/
-a

T
S (W(s;t3k),f(s))ds = (Py(t)k(0),h(0) + (d(t),h(0))
t

0
S (Pl(s,u)k(a),h(O))da +
-a

+
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t-6

N i
+ I I dS(PO(S,t)k(O),AOl(S,G)h(S-t+6))
i=1 ¢
0 t-8
+ 1 a8 S ds(d(s,t),Ay;(s,0)h(s-t+6))
-a t
0 t-0 0
+/ 46 [ ds f da(Pl(s,t,a)k(a),AOl(s,e)h(s—t+6))
-a t -a

Put k(0) = 0, h =k%*=0, f=0. £ =0=>d(t) =0

d(s,t) = 0 and c(t) =0

Hence (d(t),h(0) = (g,(t),h(0)) for all h(0) e R,
Hence result.

Hence we have proved

Theorem 3F

The optimal control to control problem (3-1), (3-2), (3-4)
can be expressed in feedback form
0

u(e) = NTHE)B ()M (8)x(8) + £ My (6,0)x(t+a)da + go(t))
-a

(3-124)

and the optimal cost to go is expressed in the form
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inf  Cylvih) = (h(0),N,,(£)n(0))

v e’ut
0 .
+ 2 f (h(O),HOl(t,a)h(a))da
-a
(3-125)
0 0
+ [ de S da(h(e),N 4(t,8,a)k(a)) + 2(gy(t),h)
-a -a
0
+ 2/ (gy(t,a),h(a))da + c(t)
-a

We have already given a full description for 1I(t). We

now want to do the same for g(t).
From the definition (3-119) of g(t) and (ii) of lemma (3.6)
equation (3-122) we have that

Retract) = Rt)glt) (3-126)

and hence we have an integral equation for g(t)

~ T ~ ~
(g(t),h) 5, = f ds(e(T,t)h, Fo(T,s)[f(s) -R(s)e(s)]) ,
M t M

T N
+ S dS(H(S)Q(S,t)h,Gl(S)g(S))MZ +
S
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T

S ~ ~
+ [ ds f ds,((s)o(s,t)hR(s)N(s)d(s,s. )[F(s.)R(s.)g(s,)])
d L 1 1 1 *g'sl AR 2

T s ~ ~
+ [ ds S ds,(2(s,t)h,Q(s)d(s,s,)[F(s,)=K(s)eg(s,)])
" g 1 s 1 &f%‘g 51 2

(3-127)

Writing out equation (3-127) in full, we have
Theorem 3G

(1) The map t » go(t) @ [ty,T] + R” (3-128)
is absolutely continuous
and g(T) = 0 (3-129)

(ii) For fixed ¢t ¢ [tO,T],
the map o = gl(t,e) : [-a,0] » R" (3-130)

is piecewise absolutely continuous,

%
with jumps at 6 = 8 i=1 ... N-1 of magnitude Ai(t)go(t)

i
For fixed 6 ¢ [-a,0], B # 8y i=1 . N
the map t - gl(t,e) : [tO,T] + R" (3-131)

is absolutely continuous.
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Proof See appendix 3

Theorem'gH,

g(t) satisfles the differential equation

g_t'(é(t)’h)ﬁ + (éuz),Lﬁ«w-wt)n(tnn)MQ + <n<t>5<t>,h>M2 =0

(3-132)
for all h €8 (A) and where the derivative

2o
ct

taken to be the right hand derivative.

Proof Taking the right hand derivative with respect to ¢t
of both sides of eguation (3-127) we obtain

FGl M = - (BTOK FETITE- ROF0)
- $do (B THLAG- &&n@t)u I - o@,@m ;

- (b, ReD 9&),“1

- 5 4o (T B, DIAG) - ROTTOIA, R o))

- Sd»o (The 86,04, R The) B Hftt) - KOG D)o
- ig*o ftdn, (T &60 (R6-RETEA ROTO Bss - foge),,

- Ja (B60A Qodsdft- RO G,
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- 50 fon (Bi5,0.40)- RUTHIR, Q0 Fssoife - Ao o)
t

= - (A, Ty RO D). - (TTRMA, RO,
- (50,14 - ROTIEI) -

= - (T A e - (5 O,LAG-RETTOL) e

Hence result.
Writing out (3-132) in full, we establish

Theorem 3T

(1) go(t) satisfies the differential equation

dg, (%) %
g5 * Ago(B)gg(t) - My (E)R(t)gy(t) + My () (L) + gl(t,O)

=0

MQ..

- (3-133)

a.e. in [tO,T]

g(T) = 0
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(11) gl(t,ﬁ) satisfies the differential equation
3 3 * %
[55 - Fg]gl(t,e) + AOI(t,e)go(t) - HOl(t,B)R(t)gl(t,B)

¥
+ My, (e,0)8(E) =0 (3-134)

N
a.e. in [tO,T] x ;;g (61+1,ei)

g,(T,0) = 0 a.e. © e [-a,0]; g,(t,-a) = A:] (t)ey(t)

and gl(t,e) has jumps at 0 = 845 i=1...N-1of

#
magnitude A, (t)g,(t)

Proof See appendix U
Remarks

1. Equations (3-133), (3-134) along with equations
(3-105), (3-106), (3-107) gives a complete characterization

of the entities Hoo(t), HOl(t,a), Hll(t,e,a), go(t),

gl(t,e) appearing in the optimal control feedback form

(3-124) and the optimal cost to go (3-125).

2., Notice the resemblance between the solution of

the optimal control problem for R.F.D.E. and that for
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ordinary linear differential equations. Equations (3-101)
and (3~132) would be exactly the same as in the ordinary
differential équation solution where instead of the

M2 operator function 1II(t) and the M2 function é(t),

we would have a R" matrix function and a R" function.

This resemblance will become stronger in chapter 5.
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Chapter 4

Infinite Time Regulator Problem for Autonomous R.F.D.E.

The solution of the Infinite time regulator problem
for linear autonomous ordinary differential equations is
well known. (See, for example, Kalman [41] and
Lee and Markus [53]). One of the conditions that
ensures that the problem 1s well posed is that the
control system is stabilizable, 1.e. there is a constant
feedback matrix such that the resulting closed loop
system has all its elgenvalues strictly in the left half
of the complex plane. The stabilizabllity of the system
guarantees that an optimal control exists. This can be
expressed 1in feedback form as a constant matrix operating
on the state of the system, and it can be shown that this

matrix satisfiles a matrix Riccati equation.

The infinite time regulator problem for certain
classes of infinite dimensional systems‘has been studied
in recent times: Lions [83] has examined the problem for
partial differential equations of parabolic type and Lukes
and Russell [85] have tackled the problem for linear
differential equations in Hilbert space. The first

attempts at the quadratic criterion optimal control
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problem for hereditary systems, Krasovskii [46],

Ross and Flﬁgge-Lotz [69], dealt with the infinite time
regulator problem. Recent attempts include Delfour,
McCalla and Mitter [22] whose approach is closely
analogous to that for linear autonomous ordinary
differential equations outlined above and whose treatment
is as complete. We shall stick closely to the treatment
of Delfour, McCalla and Mitter [22] and in so doing, we
shall interweave results, concepts and techniques from
the work of Llons [83], Delfour and Mitter [18], [21]

and Datko [14].

(4.1) Formulation of the control problem

Consider the controlled hereditary system on [0,x)

0
AiX(t+91) + {aAOI(e)x(t+eyi&+Bv(t)

Hm=

at = RooX(t) +

i=1

(4-1)

x(8) = h(6), 6 ¢ [-a,0], he M

where A A, {1=1 ...N)€£(Rn),BE£(Rm,Rn),

00°

AOl(-) € L2(—a,0;£(Rn)) with quadratic cost functional

C(vi;h) = C(v) = f {(x(t),ax(t)) + (v(t),Nv(t))}dt (4-2)
0



*
where Q =Q > 0,

with admissible class of controls

U = {v; ! |v(t)]%dt < =, C(v) < «} (4-3)

Our objective is to find

inf

C(v;h)

v e W

which will be called the optimal cost and a u e WL such

that

C(uzh) = inf C(v;h) < C(vs;h) for all v e W

v £ U

Such a u wlll be

For the problem to
We shall show that

is stabilizable in

called the optimal control.

be well posed, U has to be nonempty.
if the controlled hereditary system

a sense to be defined later, then U

is nonempty, and an optimal control u ¢ U exists.

b2 L2—stability;

Stabilizability

The uncontrolled hereditary system
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N 0
dx _
gt = Agox(t) + 151 A1X(t+ei) + {a Agp(@)x(t+0)dp
(4-4)
x(8) = h(8), 6 ¢ [-a,0], he M
will have R" solution denoted by x(;h)
M2 solution denoted by x(3;h)
and will rise to a CO semigroup of M2 operators
{e(t), t > 0} where
¢(t)h = x(t;h) (4-5)
with differential generator ¢)4' defined by
N 0
AOOh(O) + E Aih(ei) + f AOl(e)h(G)de o =0
i=1 -a
#nl(a) =
dh
3o a e [-a,0)
\
where h e (A = AC®(-a,0;R™)
Lemma 4.1 Datko [14]
£ le(t)n] |20t < @ => 1in ||e()n]] , = 0 (4-7)
0 M t > M
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oo

Proof [ |I¢(t)h|[22dt < o =>1im inf [[e(t)n|| , =0
0 M M

t > o

We want to show that 1im sup |[e(t)h|| , =0
M

t » =

So assume that 1im sup |[e(t)n|| , > O
£t > o M

Since ¢(t) is a CO semligroup, there exists constants

K>1 and w > 0 such that

[1eCt) ]| < Ke®® for all t > 0 (4=7)

(see Dunford and Schwartz [26] pp. 619)

Since ||e(t)h|| , 1is continuous, and
M
lim inf ||e(t)h|| , = 0 we can find a constant c > 0
t > M

and a sequence of disjoint closed intervals [ai,bi] i=1,2¢--

such that for each 1

(1) ||e(a,)h]]| = Ke||h]|
etay M M2

,
(11) Kcl|nh < |]e(t)h < 2K%¢| |n]|
1) Kellnl| 5 < [leCean]] 5 < 2Ke]nl]

for t ¢ (ai’bi)
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(111) []e(b)n|] . = 2K%c||n|]
i M2 M2

Hence for each 1,

2
2K°¢c||nl| » = ||®(b,)n|] - = ||®(b,-a,)®(a,)h]|]|
M2 i M2 i1 i M2
wlby~a,)
<Ke T 1 Ke||n|| ,
- M
Hence 0 < %-log 2 <f(bi - ai) for each 1
Hence o« = K2c21|h||22 Liog 2 1im 1
Mm i > o
2 2 5
< K°¢“||nl|| % (b,-a,)
- w2 1=1 11
® 2
< o |le(e)n] [ ,dt < @
-0 M
Contradiction
Hence

1im sup ||e(t)nl]| , 1lim inf ||¢(t)h||M2

1im |{e(e)nl] , =0
M

t >+

Q.EQDO
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Lemma 4.2

oo

i llx(t;h)llzzdt = f ll@(t)hllzzdt < ® for all he M> (4-8)
0 M 0 M
® 2 2
<=> f |x(t;h)|“dt < = for all h e M (4-9)
0
- 5 0 5
Proof  |[|x(t;h)[] 5 = [x(t50)[° + / |x(t+6;h)|"de
- M -a
Hence (U-8) => (4-9), since
oo 2 (o] ~
I olx(t3n)[“at < S [ [x(t3n)]] ,dt < =
0 0 M
T . 5 T . T 0 5
Now [/ |[|x(t3;n)||%,at = f [x(t3h)|%dt + / dt S d8[x(t+6;h)]|
a M a a -a
T 5 0 T+6 5
= [ |x(t;h)|dt + f d6 S/ ds|x(s;h)]
a -a a+o

interchanging order of integration

by Fubini

N

T 2
(1+a) J |x(t;h)]|“at
0

I A

(1+a) f lx(t;h)|2dt <
0
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Hence (U4-9) => (4-8),

Definition

(1) The uncontrolled hereditary system (4-4) 1is

said to be L°-stable if (4-8) holds.

(11) 1If the uncontrolled hereditary system (4-4)
1s 1.2-stable, then & 1is sald to be a stable differential

operator.

(11i) A sequence of M2 operators {An} is said to

be monotonic increasing if

(h,A_h) 5, < (h,A_h) (4-10)
nM2— mM2

for all h € M2 and n < m.

Lemma 4.3

Let {An} be a bounded monotonic increasing sequence of symmetric
M2 operators. Then An converges in the strong operator

topology to a symmetric bounded operator.

Proof  Since {An} is bounded, we have

sup llAnll = A <o (4-11)
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For fixed h, and m > n,

(h,Anh)ji2 < (h,A h)

) 2

M

(h,Anh) 5 i1s a monotonic increasing numerical sequence
M

which is bounded above and hence

lim (h,A h) , exists and is finite. (4-12)
M

n > o
Using the generalized Schwartz inequality

2
(h,Ak) < (h,Ah) ,(k,Ak) (4-13)
l 2 2 2

Defining Amn = Am - An, we have

I A

2
(Amnh’ﬁmnh) 2(h’Amnh)

b
1A hi|
mn M2 M

M2

A

3 2
(2a)° | |n]| (h,A_h) 5
M
+ 0 as myn *> @

since (h,Amnh) + 0 from (4-12)
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Hence 1im Anh exists.

n > «©

Define A by

Ah = 1im A h (b-14)

n =+ <

A 1is obviously symmetric and bounded.

Hence proof. Q.E.D.

Theorem 4A Datko [14]

Let T be a bounded, symmetric positive M2 operator.

(o]

Then / (8(t)h,l0(t)k) ,dt < » for all h,k e U° (4-15)
0

M

<=> there exlsts a bounded positive symmetric operator A

which is a éolution of the equation
An,ak) 5 + (n,afk) L + (h,Tk) , =0 (L-16)
M2 M2 M2

for all h, k e (A .

Proof (4-15) => (L4-16)

Define a positive symmetric operator A(t) by

t
(h,A(E)k) 5 = £ (8(s)h,Te(s)k) ,ds (4-17)
M 0 M
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Note that (h,A(tl)h) 5 < (h’A(tz)hkﬁ for h e M

M

t, <t

1 2°

Hence the family of operators {A(t),t > 0}

increasing.

Now (h,A(t)h) 5 < for all t e [0,)

M

2

and h ¢ M2

and hence by the uniform boundedness principle,

Horvath [39] pp. 62, there is a constant

[JA(E)]| < A for all t e [0,=)

Hence from lemma 4.3 it follows that
A(t) - A

in the strong operator topology where

0

(h,Ak) 5 =1 (&(s)h,Te(s)k) ,ds
M 0 M

For h, k ¢& (4), we have

(h,Ak) , + (h,Adk) 5
M M

]
O S

A

{(Q(S)ﬁh,ré(s)k)dZ + (o(s)n,re(s)fk)
I

and

is monotonic

A such that

is given by

M

(4-18)

(4-19)

2}ds
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S %g(@(S)h,F@(S)k%g: 1im <¢(S)h’r¢(5)kﬁzls

g =+ o

0

- (h,Tk)
12

(4-16) => (4-15)

Suppose now that A 1is a bounded positive symmetric

solution of

An,Ak) 5 + (h, Adk) 5 + (h,Tk) = 0
M M

for all h, k e&g(ﬂ).

Define a symmetric positive operator V(t) by

(h,V(£)k) , = (2(t)h,re(t)k) ,
M M

"

a
ag(h,V(t)k)Mz «A@(tﬂ%A@(t)k)Mg + (@(t)h,A@(t)ﬁk)Mz

- (&(t)h,To(t)k) 5
M

taking h, k ei}(ﬁ).

Integrating

(4-20)



(h,V(t)k) 5 = (h,Ak) 5 = =7 (o(s)h,Td(s)k) ds
M M 0 M

t

Hence [/ as(¢(s)h,Te(s)k) , (h,Ak) - (h,V(t)k)
0 M

(h,Ak) < o

| A

0

Hence [f (¢(s)h,Te(s)k) ods < @
0 M

for all h, k O ).

But £}($b is dense in M2 and hence the result follows

for all h, k € M2.

Corollary 1

-]

S ||®(t)hl[22dt < w for all h e M° <=> there is Ko > 1
0 M

and uw> O such that [|e(t)n|| , < K,e™¥|[n]| ,
M M

for t >0 (4-21)

Proof It is clear that if |[e(t)h|]| , < Koe““t|lh|| 5
— Me M

oo
for t >0 that S ||e(t)n][°,dt < =
- 0 M
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(=]

So suppose that [ ||¢(t)h||22dt < ® for all h e M
0 M

From lemma 4.1 im ||e(t)n|] , =0
M

t » o«

Hence |[e(t)h|| , 1s bounded for every h e M,
M

From the uniform boundedness principle, we have that

[|e(t)]| < K, for some Ky > 1

1

-]

Also since [ ||¢(t)h||22dt < o for all h e M2, from
0 M

the previous theorem, there is a bounded symmetric
M2 operator A which satisfies
#h,Ak) , + (h,AK) 5 + (h,k) , =0
M M M

for all h, k €& @)

oo

and (h,Ak) , =/ (2(t)h,e(t)k) ,dt
M 0 M

Since A 1is bounded, there is a K such that

2

[}

2 2
5o leedn||odt < K, | |n||
0 M e M2
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Taking K = max (Kl’K2) we have
||¢>(t)h||M2 < K[|n[| , for all t > 0 (L-23)
M

o

/|lee)n||%yat < K| |n]|Z, (4-24)
0 M M

Let 0 < e < K% and let t(h,e) be such that
1
lleterml] 5 > (Ke)2||h||M2 on [0,1(h,e)] (4-25)

1
t(h,e) = sup {|]|e(s)h[] , > (Ks)2||h|{ o ons e [0,6]} (4-26)
t M M

T(h,e) exists and is finite, since

[le(t)n[] , + 0 as t =+
M

Using semigroup property and (4-23) we have

31
[le(t)n]] 5 < Kzsgllhll 5, for t > t(h,e) (4-27)
M© T M
2 t(h,e) 2 ® 2
Hence X e ||h||t(h,e) < [ [le(t)n||“5at < 1 |]e(t)n] | dt
M? 0 M 0 M
< K[|nl|?

M:L
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Hence Tt(t,e) < % for all h # O
and hence 1t(h,e) = 1(e) 1independent of h.
31
Hence 1f t > L, |[o(t)n|| , < K2e2||n]]
Z € 2 — 2
M M
31
and hence [e(e) ]| < k2e2

Let € = e 2k .

1 if t > K3e2.

Then [le(e) || < e
In particular |l@(K3e2)|| < e,

It 1s well known (Dunford and Schwartz [26] pp. 619)

the 1limit

w

= 1im log ‘li(t)Ll exists and is finite or - =,

t +» o

0

2
Now . = 1im los l]e()[| _ 1, log |[e(nk3e®)||
0 t » o t 3
n -+ nK-e

32 n
< 11m Loz [[00%e?)]]
n > o nk-e

Hence taking u = %K3e2, we can find a KO such that
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[e(e)]] < x,e™*

since from Dunford and Schwartz [26] pp. 619, given any

§ > 0, we can find a KG such that

(w0+6)t

[le(t) || < K.e for all t > 0

$

Corollary 2

The uncontrolled hereditary system is L2 stable

<=> o) = cp(&b lies entirely in the left half of

the complex plane.

Proof Follows 1immediately from corollary 1, since from
the discussion at the end of section 6 chapter 2 we

know that

[lece) || < Ke™ <=> o ) 1lie entirely in left half

plane

Definition

m

(1) Define a mapping & : R =~ Mz(—a,O;Rn) by

Bvl(a) = z (4-28)
0
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(i1) The controlled hereditary system (4-1) is
said to be stabilizable if there exists a G e¢I(M2,Rm)
such that & +Bac defines a L2-stable hereditary
system 1.e. (A +®c) is a stable differential
operator and G(A +@)G) lies entirely in the left half

plane.

Remarks

1. The importance of the concept of stabilizability
is that 1t provides us with a least one v evlL and

hence ‘WL 1s nonempty.

2. 1In sectlon 4 of chapter 5, we will be able to
give a necessary and sufficlent condition for the
stabilizability of the controlled hereditary system (4-1)

in terms of the spectrum oqu .

4.3 Asymptotic behavior of HT(t)

Consider the controlled hereditary system restricted

to the interval [0,T]

0
Aix(t+6i) + {a AOl(e)x(t+e)de + Bw(t)

N
dx

= A__x(t) + I
dt 00 121

x(8) = h(8), o ¢ [-a,0], h e M (4-29)
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with quadratic cost functional

T

cT(v) = CT(v;h) = é {(x(t),Qx(t)) + (v(t),Nv(t)ldt (4-30)

and with admissible class of controls

. T 2
Up = {vy 1 |v(t) |"dt < =} (4-31)
0

From the results of the previous chapter we know
that the control problem (4-29), (4-30) and (4-31) has

a unique optimal control up e'uT given by

up(T) = = NIB IO (6)x(t5u,,h) (4-32)
and optimal cost
CT(uT;h) = inf  Cn(v;h) = (h,HT(O)h) (4-33)
v e lln

and that the M2 optimal solution satisfies the differential

equation

-~

94X o (A =Ry (£)x(8)
(4-34)
x(0) = h
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Theorem 4B

Assume that the controlled hereditary system (4-1) is

stabilizable. Then
(1) U 1is nonempty

(11) for fixed t € [0,»), t < T

lim I

T + oo

p(t) =1

the limit being taken in the strong operator topology and

I is a bounded, positive symmetric operator

(111) (h,Th) é (x(t3h),[@+ IRNIx(t;h)) >dt (4-35)
M

]

C(u;h)

1

where u = - N~ B*HO;(t;h) (4-36)

and x(t;h) satisfies the M2 differential equation

Y

ax _ -
5 - (A& - RI)x(t)

(4-37)

x(0) = h

Proof

(1) Since (4-1) is stabilizable, there exists a
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¢ e L(M%,R™) such that

A +Bg

1s a stable differential operator.

Let x(t;h) be the solution of the M2 differential

equation

dx(t) - &+ Ba)x(t)

dt
(4-38)
x(0) = h
with the control v(t) = Gx(t;h), 1t 1s clear that
x(t;h) 1is the M2 solution of (4-1).
Now f ||x(t3h)]]°,dt < = (4-39)
0 M

since W +®c 1s a stable differential operator

[vit)] < Klllx@;ﬂ||M2 some constant KX,

since G etf(Mz,Rm) and is a bounded transformation.

Hence (v(t),Nv(t)) < K2|ix@;hﬂl22 for some constant K,
- M
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0

S {(x(t,h),Qx(t5h)) + (v(t),N  v(t))}dt
0

Hence C(v)

(<]

K, [ le(t;h)llzzdt for some constant K
30 M

I A

3

o =]

Also [ |v(t)|%dt < K2 £ ||x(t;n)][%.dt < =
0 - 19 M2

Hence v ¢ W which is nonempty.

(11) Fix t e (0,)

Then for T > t,

(h,n,(t)h) = min o (vi;h)
: Mt v eUre, 1] Lo,

Now let T, > T, > ¢t

2

C[t,Tl](v;h) < C[t,T2](v;h) for all v EZIEt,T2]

Let Uq,4, respectively be the optimal controls
corresponding to the intervals [t,le, [t,Tz]

respectively.

C (u,3h) = inf c (v;h) > C (uysh) >
[t,T,1"72 v ez([t,sz [t,T,] = “le, 1072 z
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> inf C (v;h) = C (u,3h)
v e?i[t’Tl] [t,T;] [e,T11°71
Hence (h,I,, (t)h) , > (h,n,, (t)h) (4-40)
T Vi Ty M2

for T2 > Tl and all h € M2.

Hence the family {HT(t);T > t} 1is a monotonic increasing
sequence of positive symmetric operators. Also, from

the stabilizability hypothesis,
HTp(e) ] < A : (4-41)

A some constant and for all T > t.
Hence applying lemma 4.3, we have that there exists a

positive symmetric operator 1(t) such that
HT(t) + I(t)

in the strong operator topology.

Now choose s, > S

5 > 0 such that

1

(h,HTl(sl)h) 5 = (h’HT2(52)h)M2 for all h e M
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and hence HT (sl) = HT (s2)
1 2
I(s,) = 1lim N, (s,) = 1im I (s.)
1l T. + o T1 1 T. + o T1+52'sl 2
1 1
Hence H(sl) = H(s2)-= it

(111i) Let xT(') be the solution of
dx o (& -RI.(E)x(t)
t T

x(0) = h

i.e. x.,(¢) satisfies

T
dx N
F = (Ago = Rllgop(0))x(t) + I Ayx(t+o,)
0
+ {a [AOl(e) - RHOlT(t,e)]x(t+6)d6
2

x(6) = h(8), 6 ¢ [-a,0], heM

and x(*) Dbe the solution of

= H(s2)

(4-41)

(L4-42)



183.

dX - (& -RM)x(t)

at
(4-43)
x(0) = h
i.e. x(+) satisfies
Moo A ce. . X
%:(GQC-KWGO\) Xﬁt) t % H'L 1%“‘»6&) T ) CE:QO'(Q)« (‘)\Tl-o.(e)] cht.re)o‘,e
(h-bil)
x(8) = h(8) 6 e [-a,0] he M
Let  yg(t) = xg(8) = x(£); yo(t) = xp(8) - x(¢) (4=45)
’Then ;'T(') satisfies
W= (@ -RMy ) - Rye) - Dxg(t) (4-146)
yp(0) = 0
i.e. yT(') satisfies
4 N
a% = (Agg- Ngp)y(t) + 1§1A1Y(t+ei)

0
+ f [AOl(e)-RH01(G)]y(t+9)d6 - R(HOOT(t)-HOO)xT(t) -
-a
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0
- / R[I

. (t,e)-HOI(e)]xT(t+e)de

01T

y(8) =0 8 ¢ [-a,0] (4-4T7)

Equation (4-47) has solution

t
yT(t) = é QO(t—s)R(HOOT(s)-HOO)xT(s)ds

t 0 0

- é ds {ade ) (t-s)R(HOlT(s,e)—HOI(e))xT(s+9)
T o
t 0 0

- é ds {ade ) (t-s)R(n01T(s,e)-n01<o))yT(s+e)
t 9

- é ¢ (t—S)R(HOOT(s)—Hoo)x(s)ds
t 0 0

- é ds {ade ¢ (t-s)R(H01T(s,e)-H01(e))x(s+e)

Given any t € [0,»), we can find ¢t T, T > t, >t

1° - 71

and constants c1 and cy such that

10%t=5)] < ey, [Impl] < [IM°]] <e; 0 <s <t
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Hence, there exist a positive continuous function af(s)

and a constant c3 > 0 such that

t ~
ly(t)] < f a(s)|y,(s)]ds + ¢, max IIHO(s)-HO |
T o gt 3o, T .

Now for O < a < 1, the continuous function

S
[ a(t)dt)
0

ga(S) = exp (a'l

satisfies the inequality

t
[ a(s)g (s)ds < ag(t)
0 o -
~ 0 L
Hygp(s)] 5 = Uyg(s)]® + 1 |yp(s+e) |%ae}®
M -a
L
< (l+a)2 max lyT(y)[2
vy ¢ [0,s]

Hence IyT(t)l < chga(t) 'yTIC (0,t:RN)
AR

+ c, max llﬂg(S)-noll
s € [0,t1]

(4-48)

(4-49)

(4-50)
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i.e. (l-acy)|vml. . <c max IIHO(S)-HO|| (4-51)
RN Ca(O,t,Rn) -3 4. [0,t,] T
where |v.|. . =  max {lym(s)/g_ (s) |} (4-52)
Tca(o,t,Rn) s e [O,t] T o

Choose 0 < o < min (1, %cu)

Thus 1 - ac), >0 and as T » o
n9¢s)-n°| | » 0

Hence vn(s) » 0 uniformly on (O,tl)

Hence vn(s) > 0 uniformly on (0,t;)

((;W(S)’[Q+HT(S)QHT(S)];W(S))T2 s € [0,T]
i - il
Now define fT(s) = ﬁ

k 0 otherwise

and £(s) = (x(s),[@+RNIx(s)) ,
M

We know that

(h,th) 1im (h,N,,(0)h)
UM i e 0T M2

0

lim [ fT(s)ds
m > o 0
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T for all s

il

Now since 1lim HT(S)
T > o

-~

x(s) s € [0,x)

and 1lim XT(S)
T + o

we conclude that fn(s) » f(s) as T+ « for all s e [0,=),

Hence by the Lebesgue dominated convergence theorem, we

can show that for fixed t, (0,)
3
lim  f (%, (s)[Q+T (SR (s) Ix,(8))
T > w 0 T T T T M2

t
1l ~ ~
= é (x(s),[Q}H&H]x(s))Mzds

llence result 0. F.D.

Theorem UC

Assume that the controlled hereditary system (4-1) is
stabilizable. Then there exists a unique optimal control

u €W and

C(uzh) = inf C(v;h) = (h,Th) , (4-53)
v euw M

1

u(t) = -« N7 B*no;(t;h) (4-54)
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where x(t;h) satisfies the differential eocuation

axtt) - @-Rmx(t)
(4-55)
x(0) = h

Proof From (iii) of theorem 4B, we have that u e U.
Consider any other v e‘u.

For all T > O

(h,T,(0)h) 5, = min  Cp(wsh)

M w e’uT
T
< 5 {{x(s3v),0x(s5v)) + (v(s),Nv(s))l}ds
0

Taking the 1limit as T + «, we have

(o]

(h,Th) 5 </ {(x(s3v),0x(s;v)) + (v(s),Nv(s))lds
M 0

and the result follows from theorem 4R,

0.E.D.



189.

(4,4) Operator Riccati eauation for T

Theorem UD

I is the unigue solution of the operator eauation

Hh,Tk) 5 + (h,T&k) , - (h,TRTk) , + (h,@k) , = 0 (4-56)
M M M M

for all h, k ef (&)

Proof Let @(t) be the C, semigroup with W - R as

differential generator,

We have

(h,Tk) 5, = f (e(t)h,[Q+MRT]6(t)k) ,dt
M 0 M

For h, k e8(d#), we have

((ﬁr-@n)h,nk)mz + (h,TA-RMk) ,
M

- ! (q:(t)(ﬁ-@n)h,EQ’f“W]d’(t)k)Medt

o

+ [ (a(t)n,[Q+mR1Te (¢) (R -RMIK) dt =
0 M
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- o0

=
0 d

ol

(6(t)n,[Q+MRII®(E) k) dt
M

t
1im  (o(t)h,[Q+TRI IS (£) k),
t > 0 M0

]

- (n,[Q+MRI]IK)
M

Hence (4-56),

Now suppose that thev are two solutions Hl and H?

to (4-56), My, T, bounded 1m° operators,
Let HO = Hl - H2.

Then we have

(@n,Mgk) 5 + (h,noﬁk)mg ORI - (L TRTK) 5 = 0

for all h, k €8 (P

or (EQ-@\Uz]h,Hok)MZ + (h,nom-@\nljk)Mg =0 (4-57)

Let ®](t), @2(t) be the C, semigroups generated by

&-@\Hl and \Q-—@T2 resnectively.
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Then Sp (0,(£)h,Mye; (£)K) , = (DQ-@H2]¢2(t)h,HO®l(t)k)b2

M

+

1

(81 (BN, To (=R )0 (£0)

= 0 (4-58)
for all h, k & (&),
Hence (@2(t)h,no<1>l(t)k) = constant = (h,T k).
But (¢2(t)h,n0¢1(t))M2 >0 as t + e
Hence (h,Mgk) = 0 for all h, k €8 (A) and since
£ @) 1s dense in M2, 1t follows that ng = O.
Hence (4-56) has a unique solution, 0.E.D.
Theorem UE
T can be decomposed into a matrix of transformations
Too  To1
n =
Tio0 M1
where
n %
(1) Mg e K(R™), Ty = Mg, (4-60)
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(11) Ty sci(L2(-a,O;Rn),Rn)
0 2
MyyX =/ HOl(u)x(a)da x el (na,O;Rn) (4-61)
-a
where the map a > Iy, (a) : [-a,0] + L (R™) (L-62)

1s plecewise absolutely continuous with jumps at

a = 91 i=1 ... N-1 of magnitude HOOAi

(111) T . e L(R™,1.2(=a,0;R™))

(Mypx)(a) = T, ,(a)x x & R
. ,
Tigla) = Tg,(a) (4-63)
where the map a - Hlo(a): [-a,0] +f{kRn) (L4-6L)

is piecewise absolutely continuous wilth Jumns at

#
o = 0 1i=1,... N=1 of magnitude AiHOO

(1v) T4 E(f(LZ(—a,O;Rn))

(ny,x)(8) = [0 1M (,0)x(a)da x e L(-a,03R") (4-65)

-a

%
My1(850) = T, (a,6)
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where the map (8,a) ~ Hll(e,u): [-a,0] x [-a,0] *cf(Rn)

(4-66)
1s piecewise absolutely continuous in each varilable
with jumps at 6 = 81, 1=1.,.. N1 of magnitude
*
A, .(a) and at o =6,, J =1,,..N=1 of magnitude
i701 J ’
*
Moreover, Iy,, Hgyi(a), T;,(8,a) satisfy a set of
coupled differential equations of Riccati type
( %
V) Toghog * Apoloo = TooRlgo * Moy (0)
: = 4-66
+T5,(0) + Q=0 (4-66)
dHOl(a) %
(vi) —g5— = Agllgy (@) = TygRMIG, () + T oAq, (a)
N-1
a.e. in &Z (84,1584)
i=0
— = = ] = N L
HOl( a) Toohy @and jumps at  a 6y i 1 ... N=1 of

¥
magnitude AiHOO
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N-1

U

i=0

in

' %
Tyq(-a,a) = Aplg, (o), Tyq(0

and jumps at 6 = ei 1 =
énd at o = ej J =
BEEQE See appendix 5.
Remarks

1. Eaquation (4-68)
Hll(°,°) in terms of T,

®
= gy ()T (o)
(4-68)

+ HOl(G)A01(a)

%
- HOl(G)RHOl(a)

N-1
(6 8,) x
1+1°71 \ (6 6.)
1=g 11773
¥

1 ... N=1 of magnitude AiFOl(a)

%
1 ... N=1 of magnitude HOl(e)A1

can be intepgrated to express

and HOl(-).

Further simplification of (L-66), (4-67), (4-68) along

those lines does not seem possible,

2. We can define
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0 4 0
[ Tgy(8)ds + [ Ty (B)AR
6 o]

0 0
+/ds £ dB Ty, (68,8) (4-69)
9 a
and v(0,0) = Ty, (4-70)
WV (0,a) _
oV(0,0) _
-~ = T,,(6,0) (b=72)

and thus (4-66), (4-67) and (4-68) becomes differential
equations for a single aquantity V. lowever, we have
achieved no essential simplification of (4-66), (L4-67),

(4-68) by this procedure,

3. FEquations (4-66), (4-67), (4-68) is a simplified
version of equations (3-105), (3-106), (3-107) and they

both have the same structure,

We summarize with the theorem

Theorem UF

Assuming that the controlled hereditary svstem (U4-1) is

stabilizable, the control problem (4-1), (4=2), (4-3)
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will have a unique optimal control u which can be

expressed in feedback form as

0

u(t) = - NTIB g x(6) + £ Mg, (a)x(t+a)dal (4-73)
-a
and with optimal cost
0
inf C(vs;h) = (h(0),n,,h(0)) + 2 S (h(O),HOl(a)h(a))du
v e U -a
0 0
+ /46 [ da (h(8),N,;(8,a)h(@)) (L=7h)
-a -3

where T,,, My,(a), M,,(6,a) satisfy the coupled set of

Riccati type differential equations (4-66), (4-67), (4-68).

(4,5) Example

Consider the scalar controlled hereditaryv system

x(t=1) + v(t) (4=75)

s

h(8), 6 ¢ [-1,0], h e M(-1,03R)

x(8)

v(t) € R
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with gquadratic cost functional

Clvih) = £ {|x(t)|% + [v(t)|%}at (4-76)
0

e ol <=> A +e =0 (4=77)

and all the roots of (4=77) lie in the leftvhalf of the
complex plane,

Hence (4-75) is stabilizable (take v(t) = 0, i.,e. G = 0)
and hence an optimal control exists and we have the

existence of an operator I

Eaquations (4-66), (4-67), (4-68) reduce to

2 -
-5 ¥ 2n01(0) + 1 =0 (4=78)
.dHOl(a)
a.___.__ = HOOHO]_(CX,) + Hll(O,a)
(4=79)
n01(~1) =-T 4,
(3 + 2 Jn..(6,0) = = M. (8).- ()
30 Ba- 117 01 01
(4-80)
My(=1,a) = = Ty (a), My,(6,=1) = - Tp,(6)
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(4-78), (4-79), (4-80) can be transformed to

~lola+l) o =Ty,(a=g)
HOl(a) + e HOO + fl e n01(—g-1)dg
o £E=1 —Hoo(a~€)
+ il dg 6 du e HOl(-1+u)H01(-E—l+u)
= 0 (4-81)

which is still very difficult to solve. The moral of
this example 1is that even in the simplest possible case,
the Riccati type equations for Myos HOl(u), Hll(e,a)

is very hairy.
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Chapter 5

Approximate Optimal Control for Autonomous R.F.D.E.

There seems very little hope of obtaining exact
solutions to equations (3-105), (3-106), (3-107),
(3-133), (3-134) of chapter 3 and equations (U-66),
(4-67), (4-68) of chapter 4. It is possible to obtain
a numerical solution to those equations and one such
attempt can be found in Eller, Aggarwal and Banks [27].
Rather than trying to find an approximation to the
optimal control, we shall find the optimal control to
a finite dimensional approximation of the control problem.
This approach has the flavour of the Ritz-Galerkin
method and bears many resemblances to the theory of
modal control of svstems governed by partial differentlal
equations.

Stated briefly, the apprroach goes as follows:
Following Lions(83] pp. 142, we take a basis
¢1“'¢j"‘ of M2 and Yj the finite dimensional

h

subspace spanned by {¢l"‘¢j}' The jt order approxi-

mation of the M2 state will be the projection of the

h

state into Yj' We can solve the jt order ontimal
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control problem to obtain the jth order approximate
optimal control uj and we can show that uj - u the

optimal control as J > o,

So far, we have said nothing about the choice of
the basis. Here we can exploit Hale's observation [36]
pr. 94 that on an eigenspace of\Q' , the M2 solution
can be viewed as the solution of an ordinary differential
equation. Thus by taking the eigenfunctions of A as
a basis of M2, the jth order approximate control problem
reduces to a control problem for a system governed bv an
ordinary differential equation. The solution to the
later problem is well known. This approach thus focuses
attention on the eigenfunctions of Jﬂ and thus does
for hereditary syvstems what is already standard engineering
techniques for systems governed by partial differential
equations.

Crucial for the applicablility of this approach is
that the elgenfunctions of G form a basis in M2.
This is proved for a scalar R.F.D.E. in section 5. Our
method of proof does not extend (in an obvious manner)
to the general autonomous R.F.D.E. So at the end of

section 5, we make a conjecture as to the conditions
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under which the eigenfunctions of JQ' will form a basis

in M°.

5.1 Decomposing M2 into eigenspace and complementary

subspace

Let Al...kj... be the eigenvalues ofg@ (and Ji*)

ordered in some manner, say Re Ai > Re A1+1‘ We take
into account the multiplicity of the eigenvalues in the
ordering 1.e., if A has multiplicity m, it is included
m times. It is well known, Pinney [66], Bellman and
Cooke [5] that Re Ai + -2 g8 1 + o and that to the
right of any line Re z = o that there ls at most a

finite number of eigenvalues,

~

This sets up an ordering {¢1...¢1...} ‘and

{wl...wj...} of the eigenfunctions of A and Ay

respectively. Expressions for the eigenfunctions ofﬁ}
and \A* are given in equations (2-101) and (2-105)

respectively,

Let Y.

3 ?ﬁ respectively be the closed finite

dimensional subspaces of M° and W° spanned by

{¢1...¢j} and {wl...wj}. Since M2 and G are
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Hilbert spaces, there are complementary subspaces

Zj’ 25 such that

il = V, t — )

D Vi ® 7y (5-1

e =V, 87 (5-2)
J J

i.e. any ¢ € M2 can be written

~ ~ ~ ~

¢ = yj + Zj Vy € Yj’ Zj > Zj (5-=3)

and any ¢y € M can be written
u;=yj +Zj’ V. €Vj,-'Z€-Z_. (5-1)

Definition

The hereditary product for the autonomous R,.F.D.E. (2-10)

is the map

o 72 M2 >

X
oy

v —0y

(k(0),h(0)) + T S doalk(a),An(ath,))
i=1 0 :

O _9 (5"5)

S de r da(k(a),AOl(G)h(a+9))
-a 0

4 (k,n)

+
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Lemma 5.1

H (x,Ah) =H(B.k,h) (5-6)

for all h absolutely continuousl[-a,oj > Rr%, h e (&)
n N
k absolutely continuous [0,a] -~ R, k eﬁj(ﬁy)

Proof h,k are absolutelv continuous and we can

integrate by parts

A (x,8n)

™~ =

(k(O),AOOh(O)) + (k(o)’Aih(ei))

1=1

0 ) rnce)) v "% s dh(a+ei))

+ [ de(k(0),A,,(0)N(0)) + % S dal(k(a),——s——
-a 01 1=1 0 do

0 -9
+£a6 1 dalk(a),hy, (9)3Rtetd),

-a 0

N
= (Azok(o),h(O) + Xl(k(O),Aih(ei))
1= -
-0,

1
(k(a),Ah(o+8,) |
1 - a=0

0
+ f de(k(0),Ay,(8)h(8)) + _
-a 1

N ~=

-0
i

dk

,(’)' da(a‘&',

1
nm=

Aih(a+ei))

i=1

(@)

-8
+ [ aes(k(a),hq, (8)n(a+6)) | -
-3 a=0
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0 =8 4k
- {ade é da(aa, AOl(e)h(a+6))

# N
= <A00k(0),h(0)> + I (k(O),Aih(ei)>

i=1
0 N
+ f de(k(O),A01(e)h(e)) + T (k(-84),A,n(0))
-3 i=1
N P
- i§l<k(0),Aih(ei)) - izl é da(zg, Agh(a+6,))
0 0
+ J d8(k(-8),Ay,(8)N(0)) - f a8 (k(0),Ay,(8)n(8))
—-a -a
0 -8
dk
- fade é do (35,857 (8)h(a+8))
="H‘ (‘\.‘Q’éﬁk,h) Q.E-Do

Remark

From the previous lemma, it follows that @, 1s adjoint
to & relative to the hereditary product. This is the

justification for calling 4, the hereditary adjoint

of d) .
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Corollary

Ho(wy505) =0 for Ay # A (5-7)
Proof

ﬂ(wi,ﬁ%) =,ﬂ(wi:>‘j¢j) = Ajﬁ(wi’d)j)
Also H(uiafoy) =8 (Awvy,00) = vy ,05)
Hence (Ai-ka%(wi,¢j) = 0
Rut Ai - lj # 0 and result follows 0.E.D.

Definition

For 6 € [-a,0], o € [0,a] define the ™nxj matrix

Qj(e) column {¢1(6)...¢j(6)} (5-8)

and for a € [0,a] define the J x n matrix

WE(a) row {wl(a)...wj(a)} (5-9)
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the j column vector [Wj,h] =(:ﬂ(wl,h)\

} (5-11)
{
\& (b,0);

the j row vector [k,ﬂj] = (&(k’¢l)"d%(k’¢i)) (5-12)
Lemma 5.2
(WJ,QJ) is nonsingular

Proof

Suppose that there is a J=-vector b such that
Y.,0 =0

Then [Wj,gjb] =0

Hence ij is in the range of (A - Ax1™ and in null

(A - 21)™ for some A e (xl...xj) which has

multiplicitv m.
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But from theorem 2F,
; m m
range (& - AI) (\ null (A=~ 2I) =0

Hence b = 0 0. F.D.

Since (‘PJ,Q].) is nonsingular, we can change the hasis
elements for instance premultinly \yj bv (\Pi,QJ)"l)

so as to obtain

(*Pj,szj) = T,

3 the j x j identity matrix (5-13)

Now since the columns of QJ. are eigenfunctions of Jgr,

Aray = 2,

where 563. is a J xJ matrix with eigenvalues

CH I B

Similarly B ¥, = ‘;C*,j ¥,

where &?*J is a J x j matrix with eigenvalues

1
{Allocx'jJ
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Lemma 5.3

(1) &, =%

J %3
L e
(11) 05(8) = 0,(0)e J 6 ¢ [-a,0]

-J;a
(111) v¥,(a) = e Wj(O) a € [0,a]
Proof

— 4 == == P
(1) (Ydeg) = (Y000 = (4,000 =

Also  (¥,he0) = (A ¥,0,) = uf*jqb,nj) = s

Hence result

(ii) and (iii) follow immediately from the

solution of

Hoy = de% and fly¥; = £y,

Now any ¢ € Yj can be written in the form

¢ = b1¢l + ... + bj¢j bl"'bj scalars

b a j-vector

1
Q
o

-

(5-14)

(5-15)

(5=16)
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[¥5,0] = [Wj,ajb] = (Wj,ej)b = b
Hence Yj = {¢; ¢ € M2, ¢ = ij for some j vector b}
From the corollary to lemma 5.1, we have
Zy = {65 ¢ ¢ W, # (0 ,8) = 0 for 1=1...5}
Now if ¢ = y'j + z'j = ij + ;j
[¥,0] = [¥,0,6+ 2,1 = b

Hence | ¢ = Qj[WJ,¢] + ;j

Hence we can define the Y projection operator

3
3 Byo = a50¥4,0]

Similarly we can define the Y5 projection operator

. - 7 Ty o= Y
E, : M Y. ij [w,QJJ 3

Now let x(-) be the R" solution of

(5-17)

(5-18)

(5-19)

(5-20)

(5-21)
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N 0
ax _
3t - Aoox(t) + iElAix(t+ei) + {aAOI(G)X(t+8)dB + f(t)
(5-22)
x(8) = h(8) 6 ¢ [-a,0] h e M°
on the interval [0,T]
or equivalently x(:) the M2 solution of
dX = Ax(t) + £(t)
dat 4
(5-23)
x(0) = h
and the corresponding hereditary adjoint p(-) the R
solution of
It Aoop(t) + iil Aip(t—ei) + {aAOl(e)p(t—e)dG = 0
(5-24)
p(T+8) = k(B) 6 e [0,a], Kk e
or equivalently p(¢) the ﬁe solution of
g{i + Ayp(t) =0
(5-25)

p(T) = k
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Theorem 5A

2

The M~ solution of (5-23) is

x(t) = §J(t) + ;j(t)

(5-26)
x(t) = ijj(t) + zj(t)
where yj(t) satisfies the differential equation
¥5(0) = oy (8) +¥,(0)1(t)
(5-27)

yj(O) = [‘Pj,h]

Proof For any t > t, ¢ [0,T], from theorem 2E (2-64)

we have

.~ ~ ~ ~ t

Koo, x(6)) ~Hp(tg), x(tg)) = [ (p(s), £s))ds (5-28)
0
L.t
Now each row of e 9 %
£ ¢ - (t+0)

where [e J 43](9) =e I 93(0)

is a solution of (5-24), (5-25) with appropriate final
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data.

Hence from (5-28)

-J%t - -uito - t -&Ls
[e ?vix(t)] - Te  Pvyx(s)1 = fe v (o)r(s)as (5-29)
t
0
. d%(t-to) -
i.e. [LPJ,X(t)] - € ["PJ.,X(tO)]
(5-30)
t j}(t—s)
= [ e WJ(O)f(s)ds
! |
0
d%(t-to) t d%(t-s)
i.e. y.(t) = e y.(ts) + e v.(0)f(s)ds
J g 7o £ J

0

Hence yj(t) satisfies for t € [0,T] the ordinary

differential equation
yy(t) = &%yj(t) + ¥ (0)F (%)

Hence result Q.E.D.

Remark

1. The previous theorem is a precise version of the

more loosely worded phrase that the projection onto Y

J
of the solution of (5-22), (5-23) behaves like a solution
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to an ordinary differential equation in RY .

2. Note the important role that the hereditary

product plays in giving us an explicit representation of

the Yj projection operator EJ in (5-20) and in

establishing the differential equation satisfied by

yj(t) in the proof of theorem 5A.

Proposition 5.4

(1) @(t)Yj el Yj A YJ.C_ YJ

i o(t)z, Z, Z.C Z
(11) e(t)z g #Z C 7,
Z,
(1iii) Denote by & J(t) the restriction of
d(t) to Zj' Then for all Jj, there is a X > &

that

Z
e J(e)]] < kelI¥Re Agle ¢ 5 g

Proof (1) and (ii) are obvious.

such

(5-31)

(5-32)

(5-33)

(1ii) follows from the fact that the spectrum of

restricted to Zj

will have eigenvalues lying to the
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left of the 1line Re z = Re Aj and from the relation-
ships between o(&(t)) and o(f) stated at the end of

section 6 chapter 2.

5.2 Finite time regulator problem

Consider the control problem on [0,T]

N 0
S—%‘— = Aypx(t) + iilAix(mei) + {aA01(e)x(t+e)de + B(t)v(t)
(5-34)
x(8) = h(e) 8 ¢ [-a,0], h e M°
c(v) = C(v;h) = (x(T),Fx(T))
(5-35)

T .
é {(x(£),q(t)x(t)) + (v(t),N(t)v(t))}d

+

where Q e LY(0,T;(T™)), N e L7(0,T;XR™), F e L(rRD)

F=F >0, Q(t) =Q(t) » 0, N(t) = N (t) >0

and there is a &8 > 0 such that

(v,N(t)v) > 6|v|2 for all t e [0,T]
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and with class of admissible controls

, T 2 2 m
U= 1vy 7 (v(t)]|“at < =} - L°(0, T; R™) (5-36)
0

th

The corresponding J order approximate control

problem is

minimize C,(v,h) = (§3(T>,}§§j<m)>mg

T - ~
+ 7 U (8), )y (£)) 5 + Ww(t),N(E)v(t))}de
0 ¢ M

. (v ) = *
i.e. minimize (Cj(v,h) (yj(T), Qj(o)ng(o)yj(T))

T
+ é {(yj(t),9;(0)9,(‘6)93(O)yj(t))+(V(t),N(t)V(t))}dt

(5-37)
with admissible class of controls U
and where
yy(8) =c§yj(t) + ¥, (0)B(£)v(t)
(5-38)

yj(O) = [Wj,h]
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The optimal control to (5-37), (5-38) is
- # ¥
uy(t) = N7H(t)B (£)¥(0)p, () (5-39)
and the optimal equations are

. _ 7 Y. - _
73(6) =gy y(6) = ¥ (0IR(E¥;(0)py (8)3y5(0) = [¥,n]  (5-40)

*

. ¥
Py () +of {ps(8) + 2;(0)0(£)2,(0)y (t) = 05 p,(T)

= QJ(O)FQJ(O)YJ(T)
(5-40) and (5-41) can be decoupled to obtain
Pj(t) = Pj(t)yj(t) (5-42)

where

Pj(t) is a J x J matrix satisfying the matrix Riccati

differential equation
. * *
- b4
By (t) +o'ijj(f)+ Pj(t)otj P (£)¥  (0)R(E)¥ (0)P, (&)

+ Q;(O)Q(t)ﬂj(O) =0 (5-43)
*
Pj(T) = QJ(O)FQJ(O)
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Hence the Jth order approximate optimal control is

given by
_ -1 * *
uj(t) = - N “(t)B (t)Yj(O)Pj(t)yJ(t) (5-44)

where yj(t) satisfies

*

§y0) = { - VORI (ely,(8) 5 y,(0) = [¥,,n] (5-45)

We also have an expression for the optimal cost to go at
the instant t e [0,T]

(L¥,h], P, (6)[Y,h]) = min CH(vsh) | (5-46)

J’ Ve Uy

We defilne a positive symmetric M2 operator Hj(t) by

(hsnj(t)k) 2 = ([“{sth], Pj(t)[\yjsk])

M

Theorem 5B

As J > o

(1) Cj(uj) + c(u) (5-48)
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(1i) us > u strongly in U = L2(O,T;Rm) (5-49)
(111) Hj(t) + NI(t) 1in weak M2 operator topology
for fixed t ¢ [0,T] (5-50)
Proof Define hj = Ejh = QJ[WJ,h] for h ¢ M2.

Let x(;h,v) be the solution of (5-34) with initial
data h and admissible control v and let the corresponding

solution of (5-38) be yj(t;v).
|x(t;h,v) - QJ(O)yj(t;v)I2 < 2]x(t3h,v) - x(t;hJ.,v)[2
+ 2|x(t;hj,v) - Q.J.(O)yj(t;v)'2

As J + o, hj - h in M2 (assuming the completeness of
the elgenfunctions in M2) and from the continuity of
the solution with respect to the initial data, it

follows that

[x(t;h,v) - x(t;hj,v)l2 + 0 uniformly for t e [0,T] (5-51)
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Now Ix(t;h,v) - QJ(O)yJ(tsv)l2

I A

~ . ~ N 2
[1x(t3hy,v) - yj(t,hJ,V)IIMg
- - . 2
= ||zj(t,hJ,v)||M2
t ZJ )
= |1 @ Y(t-s)8(s)v(s)as| |,
0o M

}(t-s)

t 2{14Re AJ
ds

2.2
al |v]|KS s e
U o

I A

for some constant o and from (5-33)

-2|1+Re Ajlt

2.2 ey
allvl%fK [1 -¢e 172]1 + Resljl (5-52)

vow | Tt A, QxR dt = (250 s, QU240 it mhet|
= ] SOT([XK'C; 2w +D-5(°) 46 o QO A ) - S LRCR S N)D it |

%o A
< g Tt b 9e ot o] {1 o) - 2506 0l

for some q > 0, since Q(t) € Lm(O,T;Rm)
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Now S |x(t3x,v) - QJ(O)yJ(t;V)IZdt
0

T 2
< 2 J |x(t;h,v) - x(t;hj,v)l dt
0

T

+2 1 [x(tshy,v) - @ (O)yj(t;v)|2dt
0

J

T
Now 2 f |x(t;h,v) - x(t;hj,v)lzdt + 0 as J > o
0

from (5-51).

From (5-52)

T
. - - 2
6 Ix(t,xj,v) Qj(o)yj(t,v)l dt

< o(“/\yﬂ; K{T«r E— &-MH%M\T]/QIH &X}] /:).\H- KL)\J}

+ 0 as J + o since |1 + Re Aj] + o,

T
Hence [ |x(t;h,v) - QJ(O)yj(t,v)lzdt +0 as J » =
0

L
Ilx(tsx,v) + Qj(O)yJ(t,v)lzdt <M
0

for some bound M.
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"Hence

(x4, i, QD 5t =S (0,00 6 ), QO L0 46 ]

-}

-

|

©

+ 0 as J > o,
Hence for fixed v e, Cj(v) + C(v) (5-53)
Now Cy(uy) < Cy(u)

Hence 1lim sup CJ(uJ) < C(u).

J-boo

Now C ) > 8] ]u

o
344y sty

and since 1{ is weakly compact, we can e##tract a sSub-

sequence {uk} such that

*
U *u weakly in g’ .

*
Hence xG;h,uk) + x(3;h,u ) weakly in ACz(O,T;Rn)

%
and 1lim inf Ck(uk) > C(u ).
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Hence C(u) > 1lim sup Cj(uj) > lim sup Ck(uk)

C(u*)

|v

lim inf Ck(uk)

v

%
Hence necessarily, u = u and Cj(uj) + C(u)
Now uj + u weakly

and since Cj(uj) + C(u), we necessarily have

T T
é (uy(B), N(t)uy

since otherwlise we have a contradiction

T

Now GIIuJ-ullif_é ((ug(£)=u(t)), N(E)(uy(t)-u(t)))dt

T

(t))dt - 6 (u(t), N(t)u(t))dt

J

(5-54)

(5-55)

(5-56)

i) {(uj(t), Nﬂﬁuj(t» - (u(t), N(t)u,(t))
0 t.

- (uj(t), N(t)u(t)) + (u(t), N(t)u(t))ldt

+ 0 as J >

Hence uj + u strongly in «
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We have (h,I,(t)h) 5 = inf C?(v;h)
M vsl% J

> inf c%(v;h)

ve%&

= (h,M(t)h) , as J » =
M

Hence

L]

1 1
(B, (0)K) 5 = (), Ty (6) () 5 = 3{(hak), Ty (8) (n-K))

M M

> %—((hﬂc),H(t)(h+k>)M2 - %—((h-k),rr(t:)(h—k))M2

= (h,I(t)k) 5 as J > o
M

Hence Hj(t) + NI(t) weakly.

5.3 Finite time tracking problem

Now consider the control probiem (5-34), (5-35)
(5-36) with non-zero forcing term f(t) 1n the hereditary
system (5-34).

The corresponding jth order approximate control

problem 1is
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. v g
minimize Cj(v,h) (yj(T)"’yj(T))M2

+

T - ~
Iy (), QUEDY (E)) 5 + (v(t),N(t)v(E))}dt
0 M

¥
(YJ(T), QJ(O)FQJ(O)YJ(T))

T
/ {(yj(t),a*(0)a<t>95ﬁg§t»+ (v(£),N(t)v(t))}dt

+

(5=-57)
with admissible class of controls MW and where
vy () =s£Jyj(t) + ¥, (0)B(E)v(E) + ¥,(0)f(t)
(5-58)
yj(O) = [Wj,h]
The optimal control to (5-57), (5-58) is
u(t) = - NTH(8)B” (£) ¥ (0)p, (£) (5-59)
and the optimality equations are
7.(8) = €y (t) = ¥.(0)R(E)Y:(0)p, (£) + ¥, (0)F(E);
J J7J J J J J ?
(5-60)

yj(O) = [%.,h]
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/PJ(J()-F ;Pi'&) +ﬂj-;(o) QM 'Q'J(Q) 'ad ﬁ—) - 5
pM = e Fye 4T

(5-61)

These equations can be decoupled to obtain
t) = P, (¢t t) + d4d,.(t -6
pj( ) J( )yj( ) J( ) (5-62)

where PJ(t) is a j x J matrix satisfying the matrix

Riccati differential équation (5-43) and d,(t) 1is a

J
J vector satisfying the differential equation

. * * .
dJ(t) + WJ-PJ(t)wJ(O)R(t)%(O)]dj(t)+PJ(t)\yj(0)f(t) = 0
(5-63)

dJ(T) =0

Hence the Jth order approximate optimal control is given

by
-1 * * _
uj(t) = - N “(t)B (t)WJ(O)[Pj(t)yj(t)+d3(t)] (5-64)

where yj(t) satisfies
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40=( - Go RO Yo {i)gd + Yo [0 RO Lo )]

(5-65)

yy(0) = [ﬁh,h]

We also have an expression for the optimal cost to go

at the instant ¢t ¢ [0,T]

inf c%(vsh) = ([w,,h],P,(t)[ ¥, ,h])
e 320 1:Py
(5-66)

+ 2(dj(t),[~w ,h]) + cj(t)

where the scalar cj(t) satisfies the differential equation

& = 43 Bk Yo 4p) - {10 Go FPH Yo (1)

(5-67)

cJ(T) = 0

Define gJ(t) € M27 by
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(g5(6),0) 5 = (a;(6),[¥;.n]) (5-68)

Theorem 5C

As Jj =+ o

(1) Cy(uy) » C(u)

(11) uj + u strongly in ({ = L2(O,T;Rm)
(111) éj(t) > g(t) weakly in M° for t e [0,T7] (5-69)
(1v) cj(t) + ¢(t) for t e [0,T] (5-70)

Proof (i) and (i1i) are proved exactly as in theorem 5B.

To prove (iii) and (iv) we make use of the fact that

inf c%(v;n) » int cP(vin).
v eutJ v e Uy

By considering the case h = 0, we get c,(t) > c(t).
J

Since (h,N,(t)h) 5 + (h,0(t)h) , and cj(t) + c(t),
M M

we must have

(: (t),nh) - (é(t),h)
%3 M2 M°
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And since this holds for all h € M2,

éj(t) > é(t) weakly.

5.4 Infinite time problem

Consider the controlled hereditary system on [0,«)

%% = Aoox(t) + iIglAix(t-!-ei) + {:AOI(G)x(t+e)de + Bv(t)
(5-71)
x(8) = h(e)
with cost functional
C(v;h) = C(v) = éw{(x(t)ﬁQX(!t)) + (v(t),Nv(t))}dt (5-72)
and admissible class of controls
U = {v; émlv(t)lzdt < o, C(v) <=} (5-73)
Let jO be the longest J such that
Re Ay > 0, Re Ay q <O (5-74)
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Such a jo exists from the ordering of the eigenvalues
and since only a finite number of the eigenvalues will

lie in the right half of the complex plane.

We can now state and prove a theorem due to Vandevenne [T77].

Theorem 5D

The controlled hereditary system (5-71) or (4-1) is

stabilizable iff the finite dimensional system

yjom = xﬁoyio(t) + wjova (5-75)

is completely controllable.

Proof Suppose that (5-75) 1is completely controllable.

J
Hence there exists a matrix C R 0 + R™ such that

all the eigenvalues of the matrix

(ofj + ¥, (0)BC) (5-76)
0 0

lie strictly in the left half plane.

Define a mapping

¢ : M°(-a,0;R?) » R™
(5-77)

Gh = C[-\y- 3h]
Jo
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G 1s a bounded linear map and

J
Gh 0

0 for h e Z

We want to show that o(&4+®G) 1lies strietly in the

left half plane.

Denote by  + Ba| the restriction of W+ ®a to
7 5o
Jo
Similarly for WA+ ®a]
YJO

Now s((h+8e)] ) =oWll )

Z Z

3o Jo

which lies strictly in the left half plane.
Also (WA +®a)| is represented by the matrix
Y.
Jo
+ v, (0)BC
ofjo JO( )

Hence o((HK+B®a)] ) = 0(&)3 + Yy (0)BC)
Yj 0 0
0
which lies strictly in the left half plane. Result

now follows, since
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o(d +Bc) = a(d+Bc] YU oA +@Ra)| )
Y. A
Jo Jo
Now suppose that (5-75) is not completely controllable.
J
From Lee and Marcus [53] pp. 99, we can decompose R

into a controllable and an uncontrollable part such

that

v. () =ofj Uy, 1e) + 1292 (8) + (v, (0)BYlv(t)
0 0 J J

Jo 0 Jo 0
(5-78)
.2 _y22 2
yjo(t) joyjo(t)
which for the initial condition
[ o)
y. (0) = | ’ (5-79)
Jo |
v ©
RE:

will have a solution yj (t,v) bounded away from zero
0

on a set of infinite measure for every control v since

£ ﬁ?%
Jo

or zero. Hence (5-75) will not be stabilizable.

the elgenvalues o all have real parts greater

Q.E.D.
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Remarks

1. The complete controllability of (5-75) implies

the stabilizability of
¥t =oijj<t) + v, (0)Bv(t) (5-80)

for any J > jo, since only the eigenvalues

(A\; «¢e. A, ) of 6f can cause (5-80) not to be
1 Ig 3

stabilizable.

2. From the results of section 2 of this chapter
and section 3 of chapter 4, we can obtain an approximation
to the optimal control and the optimal cost of the control
problem (5-71), (5-72) (5-73) by taking Jj and T
sufficiently large in the jth order approximate control

problem (5-37), (5-38) with F = 0.

5.5 Completeness gquestion

There are a number of papers in the literature on
whether or not any solution of an autonomous R.F.D.E.
can be expressed as an infinite series of eigenfunction
solutions. See for example Zverkin [82] and Bellman and

Cooke [5]. However, with the exception of Pitt [67], there
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has been very llttle concern as whether or not the
elgenfunctions will be complete and form a basis in
some appropriate function space. In this section, we
shall establish the completeness of the eigenfunctions

in the space ME(—a,O;R) for the scalar R.F.D.E.

e

It = Apx(t-a), Aj #0 | (5-81)

and its corresponding differential operator

"
o

fAlh(—a) o

dh
1~ e a € [-a,0)

where h 8 (A).

Ahl(a) = (5-82)

We first must determine the location of 1its eigenvalues

which will be the roots of the characteristic equation

Ap(2) = 2 - Ale‘az =0 (5-83)

We have two possibilities; case (1) Ay > 0, case (ii) Ay < 0
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Case (1) A. > 0

1
For 2z = x + iy, (5-83) reduces to
X = Ale—axcos ay
vy = - Ale"axsin ay
Real roots y =0 x = A e 2%

(5-86) has one real root o, > 0 given by

O, = G(Al)

0
where G(x) is the inverse function of

g(x) = xe?*

which 1is monotonic increasing for x > 0.

Complex roots y # 0. The purely imaginary roots will

be included in thils case.

It is clear that the complex roots of (5-83) will occur

(5-84)

(5-85)

(5-86)

(5-87)

in conjugate pairs and we restrict our attention only to
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those roots that have positive imaginary part.

From (5-84) and (5-85), we have
X
cot ay = - =, y#0
y
and hence
- ax = ay cot ay
Hence from (5-85), we have

y = - Aleay cot aYsin ay

sin ay 2y cot ay

Let f =
e (y) 7

Hence we want to find the (real) roots of

fly) = - 1/Al

({2e-L)n, 2wy, r(y)

For p > 1, 1in any interval 3

increases monotonically from -« to O,

Hence f(y) = - l/Al has precisely one root

(5-88)

(5-89)

(5-90)
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(2p-1)7w 2pmw
T, in ( 3 — )

Cp-Vn . . 2p

¢ S&£n

i.e. L
a p a

and corresponding to Tp we have a solution to the

characteristic equation (5-83) 1i.e. an eigenvalue

= -1 D
where % 5 log.{Al[sin anf}

We now want to find the asymptotic location of Ap.

From (5-91), it follows that 1_ ~ 2pn/a

Q
]
b=

Taking the log of (5-95), we obtain

-~ ao, = log rp/Al = o(1)

(5-91)

(5-92)

(5-93)

(5-94)

(5-95)

(5-96)
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Now T = 2pn/a + o(1l) (5-97)
moe P = o L 10 2T 4 o(log py2 (5-98)

cOS an‘ = Op 17 - 2p5ﬂ' og _S.Ti. )

- y
Hence o = (2p-%) Z;Ha log E%% + O(«EE—R) (5-99)
=-1; (20-3)r + 0(X08 By2 (5-100)
9% = ~ 7 t°8 aky )

= } : -101
Define R, hp{ (5 )

G S S ;;;a—mg(tg T (g D)
i @(t; + WM )]

K O (%ﬂ) (5-102)

Hence Rp =,§§£(1 + a(p)) (5-103)

where a(p) = - %5 + d(%) | (5-104)
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Case (ii) A, < 0

1
Real roots y = 0 x = Ale'ax = - lAl|e'ax (5-105)
For [Ay] > (ae)'l, no real roots
|A1| = me) Wouble root 0y = - % (5-106)
|A1| < (ae)”' two real roots oé, ay"

Complex roots y # 0 Again the purely imaginary case

will be included and the roots willl occur in conjugate
pairs. Again we restrict attention only to those roots

with positive imaginary part.

We want to find the (real) roots of

f(y) = 1/]|A | (5-107)

Now f(0)

ae and f(y) decreases monotonically from ae

to 0 in interval (O, g).
Hence for |A1| > (ae)_l, f(y) has one real root T,

on (0, §)°
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LI}
(@]

(ae)'l f(y) has (double) root =

IAl[ < (ae)t f(y) has no roots on (0, I)

I
a
For p > 1, f(y) decreases monotonically from « to 0

ol
on the interval (“g“, (2p;1)“) and hence

f(y) = 1/|A;| nas precisely one root T, in

(2pn (2p+l)ﬁ)
a’ a

2pm (2p+1)m
e, 5= < T, < (5-108)

and corresponding to Tp, we have an eigenvalue

T
} (5-109)

where o_ = - % log {

1
[A sin arp

1!

We want to find the asymptotic location of Ap.

From (5-108), it follows that L 2pm/a

i.e, Tp = 2pT/a + o(l) (5-110)



- _ 1o, 20T
o 5 log éT’%fV o(1) (5-111)
ao
cos at, = - o P/iay|
- i_ 2D log p,2 _
cos at 7 log ETKIT + 0(——5——) (5-112)
1 2pm log p
Hence 71_ = (2p - 5) 2pﬂa log —T—MT + 0¢( ) (5~113)
(2p+ Y
_ 1 2 log p
op = - & log _?ﬂ—A—T— + 0(—=—= ) (5-114)
2 2p1r 1 2p T
R = (=2)"[1 + + - — log
p h‘“ 1602 | 252,72 27T
1 2p.T 1 2p T (2
- log + (log )
Up3 alfyl " 16p 40 alh,]
1 .
(2p-5)
1 2 2 (log p)
+ —-2—-2-(1059; Y] + 0( )
hp©n aly p
R = ZPT(1 + alp)) (5-115)

where oa(p) = %5 + 0(%) (5-116)
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Expressions (5-99), (5-100) and (5-110), (5-111) are well

known and can be found in Pinney [66] and Wright [79].

Definition

Let n,(t) Dbe the number of {Xp}, with modulus less

than ¢
R nk(t)
Define NA(R) = f £ dt (5-117)
0
Lemma 5.4
1im sup (N, (R) - 22 4+ L 10g R} = o (5-118)
A ﬂ T
R + o
Proof Case (1) Al >0
For Rp > 04, nl(t) = 2p + 1 Rp <t < Rp+1 (5-119)
" n, (t) p=1 fm+l omdt " at
Ny (R)) = S F—dt = & J et/
p 0 m=0 R G
m 0
p-1
= mEO 2m[ log Ro41 - log Rm] + log Rp - log o,

(5-120)

p
2p log R - 2 E log Rm + log Rp - log %9

p m=1
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From hence onwards, we shall denote any (finite) constant

by A.
aRk
‘ __p 1
NA(Rp) —- +  log Rp
P aRD 5
= 2p log Rp -2 mzl log Rm - == + Y log Rp + A
P % 5 5
=2 I log T - 2p - 2pa(p) + T log p + T log (1 + o(p)) + A
m=1 m
1
+
e—ppp 2 D p
= 2 log —=5— + 2 log (1 + a(p))” =2 I 1log (1 + a(m))
b: m=1
+ % log (1 + a(p)) - 2pa(p) + A (5-121)
Now 1im &P - 1
p > o p: Vo
From (5-104), 1lim pa(p) = - %, lim a((p) = 0O
p > « p > @
e
D _ T
and hence 1im (1 + a(p))® = e

p > o

Also 1lim log (1 + a(m)) _

1
1
m > o -
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p
and hence the series - I 1log 1 + a(m) and

m=1

converge or diverge together.

But 11 y 1
u m = o
=lm

p > m
Y
and hence 1lim -2 I 1log (1 + a(m))
p + m=1
aR 1
Hence lim {NA(R ) - —P 4 T lo
R = o p m

Case (ii) Al <0

For p >0 n,(t) =2(p + 1) R' < Rp+1
R R
p n,(t) p-1 “m+l
N(R) =/ Ae—at= 3 7 2(mtl)dt
: 0 m=0 R
m
p-1
= mEO 2(m + 1)[log R_,, - log R,]

[[Mac o]

2(p + 1)log R_ - 2

b

n=0

log Rm

I~
§1H

(5-122)
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(Rp)

2(p +

n
i ™M

2 log

2 log

24n,

aR 1
- -TT£.+ -Elog R
p aRp 1
m=0
R 1 1
log ﬁg - 2p - 2pa(p) + 7 log p + 7 log (1 + a(p))
m
Pty
e P 1 1
51 + log p - 2pa(p) + j log p + T log (1 + a(p))
p p
(1 + a(p))” -2 I 1log (1 + a(m))
m=1
From (5-117), 1lim pa(p) = %, lim a(p) = 0
p > P >
1
T

1im (1 + a(p))P = e

pe

Also

1lim

log (1 + a(m)) _
1

> o
m Im

Hence given 0 < € < 1, there exists mq such that

(l-e)%ﬁ < log (l+a(m)) < (1+e)%§ for all m > m,
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p P
Hence -2 I log (l4a(m)) > - (1l+e) I
m:mo - m=m

and

p
{%(l+e)log p - 2 I log (1+a(m))}
m=m
0
p
> %(1+€){10g p - I X
m=m
0
b
But log p - X o 1s bounded as p + «
m=m

p
Hence {%(1+e)log p - 2 2 log (1+a(m))}
m=m,

is bounded from below as p + «,

aRp 1
Hence plimco {NA(Rp) - ==+ f log Rp}
3 1 -
> 1im {(K - §e)log p + A} = =,
—p->-oo
Theorem bHE

The eigenfunctions of j@ defined in (5-82) form a basis

of Mz(-a,O;R).



246.

A (*)
Proof We must first show that {e ° } 1is complete

For suppose not.

Then there is a f ¢ M2(-a,O;Rn), f # 0 such that

A_ () 0 A0
(f,e P ) 5 = £(0) + J £(8)e P46 = 0 for all p
M -a
0 z0
Define F(z) = £(0) + f f(0)e“’de (5-123)
-a

F(z) 4is an entire function of 2z and F(Ap) = 0 for all p

0
IF(z)] < [£(0)] + |f £(8)e?Pa0|

a
0 =a+te 0
rr0)eZlae = 5 o+ r(o)e?Pas
-8 -a. -a+e
0 -3+€ 0
|7 £(e)e®Pa0l < v 4+ s |r(e)]e*ae
-a -a -a+te
-a+€ 2x8 5 -a+te > %
< (5 e“7ae) (s |fr(e)|“ae)
- -a -3
1 1
0 = 0
(1 e2X8a0)2( 1 |r(e)|%a0)?

-a+te -ate
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Case (a) x < O x = - |x{
-a+¢ -a
2x6 1 - -2|x]e 1 2]lx]a
S e"7vde = Tle < e
-a 2% : ]-a+e = 2[x]
0 -a+te
2x0 ., _ 1 - -2|x]|e 1 _2|x]|(a=€)
_£+€ e de Em[e ].0. < 51—;(—[- e
-a+te

Let 6&(e) =( [ [f(e)|2d8}/%6(e) -0 as €+ 0
-a

1
1 .2 |x|la,_-€]|x
Hence |F(z)]| < Kl(inT) e| ( (e |x] §(e))
m
1 ,.,2, .7 10
and 5 {f + 7/ log |F(Re™")|de}
b3 . . .
: -7 m
2
m m
1 .1 1 1
< - & % 5 log R dé = & 4 5 log [cos 6]ds
2 2
K
! s aR|cos 6]de + X 1log (e~€Rleos 8] \ cy40 4 4
= Tr
T e
2 2
i
= - % log R+ 2B 4+ L 10g (e~€Rlcos o] | sy40 4
m m T
2

(5-124)
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Case (b) x>0 x = |x]|
-a+e -ate
2x8 1 . 2|x|e 1
; e“"Vde = (e ] <
-a 21x] —a - 2Tx]
0 0
2x8 1 2|x|e 1
S e“"Vde = 5TAT e ] < ETRT
-a+te 2lx ~a+e — 1%
%2
Hence |[F(z)| < £(0) + T K, some constant
21x|?
2 2
2[£(0)] |sec 8] < X, [f(0)|°R
|F(rRe1®)| < 1 1
2K3R Elseclg |sec o] > Kulf(0)|2R

where K3 and KM are constants.

VE!

- 5

Hence %F-f log IF(Reie)lde < Kz, for sufficiently
7

large R and constant K5

(5-125)
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Now Jensen's theorem states that

R nF(t) 1 2m 10
Ng(R) = S r— dt = 5=/ log |F(Re™’)|d6 - log [F(0)]
0 0

(5-126)

where nF(t) is the number of zeros of F with modulus

less than ¢t.

Without any loss 1n generality, we can assume that
F(0) # 0, since if F(0) = 0 with multiplicity r.

We can write
F(z) = szl(z)

where Fl(z) is an entire function of 1z, Fl(O) # 0
and apply Jensen's theorem to Fl

Since F(Ap) = 0 for all p, we have

Hence from (5-124), (5-125) and (5-126) we have

aR , 1 1 "

2 (5-128)

-eR|cos o 5)de + A
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If € > 0 1is small enough, and R > 0 1is large enough,
we can make
il
1
= [ log (e
™o
2

-eR|cos 6| | 5)de

less than any arbitrary large negative number.

Hence lim sup (NA(R) - %§-+ % log R) = - = (5-129)

R &+ o
But this contradicts (5-118) lemma 5.4.
Hence either f = 0, 1in which case we have proved
completeness or F = O.
So suppose F = 0
0

Hence £(0) + f f(e)ezede = 0 (5-130)
-a

We differentiate to get

0 z0
S 6f(6)e”“'de = 0

iye

Putting =z = iy ; ef(8)e?7ds = 0 (5-131)
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Hence by the Fourier transform theorem,
pf(e) = 0 a.e. on [-a,0].

Hence f(8) =0 a.e. on [-a,0]

From (5-130), it follows that
£(0) =0

Hence f = 0 as an element of M2(—a,O;R) and we have

proved completeness.

To complete the proof, we have to show that

A ()
{e P } 1is strongly linear independent, i.e. that no

member can be approximated by a linear combination of the

others. Put another way, if

n A6
h () = £ aMeP o € [-a,0]
n p=1 P

and hn + 0 in M2, then we have to show that

a(n) + 0 for fixed q.
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From corollary to lemma 5.1

-Aq(')

.ﬁ@(e sh) =f{(e

-xq(-) Aq(-)

)

,a(n)e
q

0 ~=x_(E+a) 2 _E
én){l + A f e @ e 94}
-a

a

-\ _a
aén){l + ahje a3 = aén){l + aAq}.

-Aq(-)

(n) _
Hence 24 —J%(e ,hn)/{l + alq}

0 -Aq(£+a)
= {hn(O) + Ay {ae hn(E)}/{l + axq}
+ 0 as h_ - 0 in M2

Hence proof.

Remark .

1. The proof of the completeness of the eigen-
functions follows the work of Levinson [56], Boas [6]
and Levin [54]. The concise proof that F = 0 => f = 0

is due to Levinson [57].
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2. From the completeness of the eigenfunctions
of (5-81) in M2(-a,O;R) and the continuity of solutions
to a R.F.D.E. wilth respect to the initlal data, it
follows that any solution of (5-81) can be arbitrarily
approximated by the eigenfunction solutions. Thus we
have arrived at the series expansion of a solution
to (5-81) as, for example, has been discussed in Bellman

and Cooke [5] pp. 102-110.

Corollary 1

The eigenfunctions corresponding to the scalar R.F.D.E,

dx _
3t = Appx(t) + Ajx(t-a), A; #0 (5-132)

form a basis of M2(—a,O;R)

Proof The characteristic equation yielding the

eigenvalues is

A(zZ)

it
N
|
=
1
>

e =0 (5-133)

L}
—~
N
i
=3
o
o
~r
!
~~
D
1
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and comparing with (5-83)

-ah

—_ = 00, -az
Ao(z) = 7 - (Ale e

=0 (5-134)
where 2z = z - A

i.e. the eigenvalues are

where Ap are the roots of (5-83) with Al replaced

-aAOO

by A,e: .

1
Hence the proof is as in the proof of the theorem and its

preceding development.

Corollary 2

The eigenfunctions corresponding to the R.F.D.E.

%3} = A,x(t-a) | (5-135)

”

where Al € KXR“) and has real distinect non-zero
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eigenvalues, forms a basis of M2(-a,O;Rn)

Proof Follows from decomposing (5-135) into n scalar

R.F.D.E.'s and apply the previous theoremn.

Counterexample 5.5

The eigenfunctions corresponding to a R.F.D.E, will not

always be complete in M2. Con

dx _
I = Alx(t—l)
-1 0
where Al =
\ O 0

The characteristic equation is

A(z) = det {zI - A.e" %} =

1

The eigenvalues are X = 0 and

where Ap satisfies X + e'A =

The eigenfunctions are

sider for example

z(z + e %) = 0

A

0

(5-136)



1!J 8 ¢ [-1,0]
2 2
which are clearly not complete in M (-a,0;R7).

Conjecture 5.6

Consider the autonomous R.F.D.E.

0

ax
Aix(t + 61) + {aA01(6)x(t + 6)de

E‘E = AOOX(t) +

o™=

i=1

(5-137)
5
Aggs By (0 = 1. e LR, Ay (+) e L7 (-a,0;&(R™))
and suppose that either
(i) det AN #0

or (11) det AOl(e) # 0 a.e. on some set [-a,-a+e]

for some ¢ > 0
Then the eigenfunctions corresponding bo (5-137) will

be complete and form a basis in M2(-a,O;Rn).

(5.6) Example

We will now work out an example to illustrate our
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method of generating approximate optimal controls.

We consider the one dimensional controlled

hereditary system

d—tx— = A1X(t—l) + Bv(t)
(5-138)
x(8) = h(8), 8 ¢ [-1,0]
with quadratic cost
T 2 2
C(v) = é {Q]x(t)|° + N|v(t)]|“}dt (5-139)
and class of admissible controls
T 2
U = {v; s |v(t)|at < =} (5-140)
0

We take Al > 0. From the results of the last section,

the eigenfunctions of the differentlial operator

Bhl(a) = % (5-141)
L
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will be

We take

A= {ogs Ay A_gs wee A,

= +
. Ain On - n

and where the ordering is as in

cj and TJ satisfy for J > 1
_.O'J_
cJ = Ale cos Tj; Tj = -
...O'O
9 satisfies Og = Ale

Q = column {645 b1s d_qs

a basis for M2(-1,0;Rn)

a finite set of the eigenvalues of

A_n} (5-142)
the previous section.
-GJ
Aje “sin Ty (5-143)
(5-144)
cee b5 00 (5-145)
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where for -1 < 6 < 0,

0.6
_ 0
¢O(e) = e
016
¢1(9) = e~ sin 7,0
ole
¢_1(9) = e cos T,6
o_b6

¢n(6) = e sin Tne

_ .'n
¢_,(68) = e " cos T 6

' ' ! '
\Pn = I'Ow {IJJO, 1!’1, 11’__1 D) lpns w_n}

!

!

(5-146)

(5-147)
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0 <a<1l

-G A0
wé(a) =e 0
. -0, 0
wl(a) = e sin T,0
. -0, 0
w_l(u) = e cos T, (5-148)
, -0 o
b (a) = e sin T 0
~-g_o
w:n(a) =e " ecos T a
, 0
H(W,0) = P(0)$(0) + Ay S $(E+1)¢(E)dE (5-149)
-1
. 1 0 -0,(&+1) g.&
For J > 1,%(0,,6,) = A, [ e J sin t,(£+1)e Y sin (t.£)dr
- J?rJ 14 J J

_ 1
= g(l + GJ) (5-150)



261.

, 0 -0, (£+1) o,E
5*(wj,¢j) = Al il e sin TJ(£+1)8 cos (rjg)dg
= -3 (5-151)
- 0 -0, (£+1) 0 ¢
_4#(w_J,¢j) = Ay fle cos rj(£+l)e sin (TJE)dE
= 5 1, (5-152)
; ' 0 -0,(g+1) o.&
f#(w_3,¢j> =1+ A {1 e cos T,(&+1)e I cos (r48)dg
=11+ o0, (5-153)
2 J

From corollary to lemma 5.1 it follows that
)
$(ys0,) =0 for |J| # |k

Also é#(w0,¢o) =1+ 09, (5-154)



Hence
‘{J'
Define yu
J
Ho

]

]

4/{(1+cj)2 + 18}
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J

l/(1+oo)

0

for any j >1

0 0 0
1 1
%Tl %(1+01)

|V

1 1
'2‘(1+Un) —'?-Tn

1
?‘Tn *2‘( 1+Cn)

(5-156)
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Define %h
For O <a
Wn(a) =

263.

A
— i
Mo o o
N 4 3\ 4o
G 2 M (1+6) 2 MT
d A
v TAMT, 20
[8) o
A 1
O aume) T
L v !
O - A/u‘nTn ';L/U‘nu+d;x
(5-157)
' -1
= (\Pn,Qn) ¥ (5-158)
< 1
-0 .0 ]
0
er
1 "9;¢
L [(1+ol)sin Ta + T,COS Tla]
1 "9¢ :
S e [-Tlsin Ty0 + (1+cl)cos Tla]
1 ~On®
wU_e [(1+gn)sin T 0 + T COS TnG]
1 “Op® .
U e [—tn51n T0 + (l+on)cos Tna] (5-159)
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For -1 <8 ilO

® GCo )

Te i
_fzmﬂﬂ z'[JL , £ e T 8,k CAOT O, |

Hence ¢ (0) = [1, 0, 1, ... 0, 1]

Since JQQn = Qni;, we obtain

6".'n e

.. R ,Q,:w\,rn 9, <

(5-160)

nh®
8T, ©

(5=-162)
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-
EOO 0 0 %
0 0, =T 3
0 T o4
L. =]0o o (5-163)

0 0 ;
0 On -Tn

T
0 n 0n

-

The (2n+l)th order approximate control problem is

ninimize

T

Calvsh) = £ (lyy (81, 0,(0)90, (03w, (8)) + Hlv() [Pdar  (5-160)

where yn(t) is a (2n+1) vector satisfving

Ya(t) =Ly (6) + ¥ (0)mv(t)

(5-165)

yp(0) = [¥ ,n]
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where for instance, the first component of yp(t) is

(g+1)
h(g)ag

H# Gige™ ) = wn(0) 4wl fe
) er ’ Uoh( + UO 1 fle

0

The other components can be calculated in a similar

fashion,

If for instance h(0) # 0 hl = 0
uoh(0)
S 7,h(0)

) %ul(l+ol)h(0)
y,(0) =

o (0

%un(1+cn)h(0)
L .

The (2n+1)th approximate optimal control is

1

un(t) = - N~ Bwn(o)Pn(t)yn(t>

(5-166)
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where the (2n+1) x (2n+l1) matrix Pn(t) satisfies the

matrix Riccati differential equation

0.0 + o Plt+ PAIL, - P 0B N T P )
*-SA@)QJL@ = 0

(5-167)
P (T)

and the (2n+l) vector yn(t) satisfies the differential

equation
v, (0) = (€ - ¥ (BN (0)P (£)}v (%)
(5-168)
y,(0) = [y,,h]

There are standard numerical methods of solving (5-167)
to obtain (approximately) Pn(t) with knowledge of
Pn(t), the (2n+1)th order approximate control problem

is completely solved.

Remark

Note the resemblance between the (2n+l)th order approximate
control for the scalar R,F.D.E. and that for a system
governed by a scalar P.D.E. of hyperbolic or parabolic

type.
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Chapter 6

Appllications, Suggestions for

Further Research, Conclusions

(6.1) The business cycle, or a control theorist looks at

economics.,

Mayr ([58] pp. 128) has an interesting discussion
on the possible influence of control mechanisms on
economic thought. So for instance the Baroque pre-
occupation with an inflexible predetermined feedforward
control, as evidenced by the countless inventions of
automatons, led to the Mercantiiistic economics of a
rigidly planned centrally directed economy. The increase
in the use of feedback devices at the start of the
Industrial Revolution led to Adam Smith's free enterprise
economic philosophy that the economy would automatically
swing into equilibrium at optimal conditions without
governmental interference,

However, by the nineteen thirties, Adam Smith's
laissez faire economics was no longer viable and the
business cycle, with 1ts alternate successions of

severe depressions and runaway inflations, was a
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terrible scourge on the capitalistic economies. Marxist
economists claimed that the business cycle was an
inherent trait of a capitalistic economy. Nonetheless,
a cure wés forthcoming. KXeynes [U43] was largely
responsible for the recommendation that the government
should intervene and regulate the economy by means of
taxation and public spending. It is interesting to

note that since the second world war there has not been
a severe depression nor indeed does anybody seriously

anticipate its reoccurence,

What, though is the optimal government policy? We
shall try to answer this question by considering a
R.F.D.E. model of the business cycle due to Kalechi [40]
along with a quadratic objeétive functional. Kalechi's
model takes into account the fact that there will be a
time lag between the decision to invest in a capital good
and the completion of the finished product., From this
we can obtain an R.F.D.E. for the rate of investment,

There are three stages of an investment: the order
for the capital good, the production and the delivery.

We denote by
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I(t) the rate of investment orders at time t

J(t) the rate of production of capital goods at time t

L(t) the rate of delivery of capital goods at time t

Let a be the time lag between investment decision and
completion of capital good 1i.e. the gestation period.

The relation between L and I 4is simple

L(t) = I(t-a)

Let W(t) be the total volume of unfilled investment

orders at time t. We have

t
w(t) = f I(t)dr
t-a

sinee no order during the period

finished while all the orders before that period have

been completed.,
The rate of production must be
1 t

J(t) = = W(t) = z J/ I(t)dr
t-a

Let K(t) Dbe the stock of capital goods at time t.

[t-a, t]

(6-1)

(6-2)

(6-3)
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The derivative will be given by

K(t) = L(t) = D + v(t) (6-4)

where D 1is the depreciatbn of the capital stock

and v(t) 1s the rate of governmental investment,
positive for public spending and negative for taxation,
v(t) is therefore the controlling input of the government

independent of considerations of profitability.

Let B(t) be the gross profit and C(t) the
consumption at time t. C(t) 1s assumed to consist of
a constant part Cl and a part proportional to

B(t) i.e. AB(t)

i.e. c(t)

c, + AB(t) (6=5)

Also B(t)

c(t) + J(t) (6-6)
From (6-5) and (6-6), B(t) = (C; + J(£))/(1 - 1) (6=7)

Kalechi assumes that the relative investment rate

is a linear function of the relative profit rate and
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obtains

I(t) = m(Cy + J(t)) - nkK(t) (6-8)

where m and n are constants.
Let IO be the desired rate of investment and
x(t) = I(t) - IO the deviation from the desired

rate of investment.

Differentiating (6-8), (6-3) and combining with (6-4) we

obtain Kalechi's equation

o}
»

I = AOOx(t) + Alx(t - a) + Bv(t) + (6=9)
where Agq = g, Ay = - (2 +n), B=-mn, f=-n(I,-D (6-10)

We consider (6-9) over some time interval [0,T] and with

initial condition

x(8) = n(e), 6 ¢ [-a,0], h e M° (6-11)

Not surprisingly, we complete the control problem by



273.

considering the objective function
T 2 2

minimize C(v; h) = f {q|x(£)|° +|v(t) ]| }at (6-12)
0

with admissible class of controls

T 2 2
= {v; f (v(t)|“dt < =} = L“(0, T; R) (6-13)
0

where q > 0 1is a weight indicative of the trade off

between deviation and the magnitude of the control.

Remarks

1. Central to Kalechi's model is the role played
by K(t). Investment activity is directly related to

profitability and prices do not enter into the picture.
2. Very few economic variables appear 1n the model.

3. A mathematical analysis of Kalechi's equation (6-9),
a study of its spectrum and eigensolutions and of its

stability can be found in Frisch and Holme [31].

4, With no governmental intervention v = 0 and

with f = 0, Kalechi's model yields the following dilemma
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of the capitalistic system: growth and instability
or stability and stagnation. For further details see

Lange [51] chapter 5.

5. From an examination of U.S.A. economic data
for the years 1909-1918, Kalechi obtains m = 0,95 and
n = 0,121, He takes a = 0,6 years from a consideration
of the lag between orders and deliveries in the

industrial trades.

Now from the results of chapter 2, namely corollary
to theorem 2B, we can write an exact closed form solution

to Kalechi's equation (6-9) with initial condition (6-11).

It is
0 min (0,t-a)
x(t) = ¢°(t)h(0) + i) ¢ (t-a-a)h(a)do
-a
(6-14)
t oy
+ [ & (t-s){Bv(s) + flds
0
. -al .
; 00 J . J
[ Ayt P (e A )Y (t=-ja)
0 le 0 % — telpo,@+ie]
where ¢ (t) = j j=0 : ’Ptz+
“\
!
é 0 t <0

(6-15)



275.

From the results of chapter 3, we have a unique
optimal control to (6-10), (6-~11) (6-12) (6-13)

given in feedback form by

0
u(t) = =Bl ,(t)x(t) + S HOl(t,a)x(t+a)da + gy(t)} (6-16)
-a
where
dll ), (€) 2 2
(6-17)
HOO(T) = 0
S 2T + R - BITLOT 0 + TG o =0
(6-18)
HOl(T’a) =0 a.e, o€ [-a,0]; HOl(t,-a) = Hoo(t)A1
[%E - %F - %E]Hll(t,e,a) = B2H01(t,9)H01(t,a)
nll(T,e,a) =0 a.e, (6,a) € [-a,0] x [-a,0] (6-19)

Hll(t,—a,a) = AlHOI(t,a); Hll(t,e,-a) = A1H01(t,6)
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dgq(t) 5
—g5— * Ago8p(t) - BT (tlegg(t) + My (E)f + g,(t,0) =0
(6=20)
g(T) =0
[a - 3—] (t,0) - B2T (t,08)g.(t,0) # N..(t,8)f = 0
3T T 39-81'\ 0 01 V2978 0y 01\ ">
(6=-21)

g,(T,8) = 0 a.e. 0 ¢ [-2,0], g(t,-a) = A gy(t)

Of economic significance is that the optimal policy will
be in feedback form, There is no known solution of
equations (6-16) through (6-21) and so to obtain ah‘
answer in concrete form we have to apply the approximation
method of chapter 5. From corollary 1 to theorem 5E

the eigenfunctions corresponding to Kalechi's equation
(6=9) will form a basis in M2(-a,O;R) and so we can
apply the results of section 3 to obtain a concrete

approximate answer,

The eigenfunctions of Kalechi's equation (6-9)
have already been used to study the stability of the
solutions of the equation, Frisch and Holme [31]. Here
we have extended their use to another purpose - that
of finding an approximate optimal control to the control

problem (6-9), (6-11), (6-12), (6-13).
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6.2 Suggestions for further research; Conclusions

Mention has already been made of the several
advantages of setting the R.F.D.E. problem in the
functional space MZ. The main conclusion of this
thesis is that M2 is The appropriate functional space
in tackling the quadratic criterion problem for hereditary
systems. The solutiqn to the problem follows naturally
from the structure of tThe M2 framework, use of the Lions'
direct method provides us with a vastly superior approach
in terms of eleganée, aesthetics and generality, and
concrete results are obtained rigorously without having
to make ad-hoc assumptions.

Success 1in one area does not necessarily guarantee
success in another, but it provides a strong incentive
to try. In this light, the following topics seem worthy
of further attention:

1) The formulation and the solutiqn of the control
problem for systems governed by neutral functional
differential equation with quadratic cost and within some

suitable analogue of the M2 function space.

2) The formulation and solution of the stochastic

control problem for hereditary systems with quadratic
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cost functional within the M2 framework (or its analogue

for the neutral functional differential).

3) It would be interesting and hopefully fruitful
to pose problems of interest in the control theory of
hereditary systems within the Mglframework. In particular,
one such study could be the realization theory for

hereditary systems.

Finally, There was one question raised within the
M2 framework and which was not answered in full
generality. That is the conjecture 5.6 on the complete~
ness of the eigensolutions of v@ . That problem is of
mathematical interest in its own right and it ought to

be possible to supply an answer and. a proof.
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