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This research is concerned with the theory of Infinite Dimensional
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stable under approximation", in which case there may exist a "property-
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NOMENCLATURE

This table lists the symbols used with their meaning. This

meaning in a specific context may differ, but then it will be expli-

citly stated.
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Linear operators

Adjoint of A, B,...
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Specific subspaces (chapter IV)
Hilbert spaces

Banach spaces (generally)

Dual Banach space of X, Y,...
Elements of a normed vectorspace
Subspaces (generally)

Nulspace, Nulspace of A

Subset in R

Real numbers (usually stands for
variable "time'")

Scalars

Small positive numbers

r, h Scalars, occasionally vectors (chapter IV

My 5 Fgo OF My 5 Y5 Algebraic multiplicity of eigenvalue A

1 M 1
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R(A)
A

M
R(x, A)
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og(A), Pao(A), Ca(A)
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Transpose of vector k
Domaiﬁ of A
Graph of A
Range of A

The restriction of A to subspace M

Resolvent of A
Resolvent set of A

Spectrum of A; point spectrum of A;
continuous spectrum of A

Eigenspace corresponding to eigenvalue Ai

’
i Ai
17?1,’n11,’n%i(A) 5 M; Rootspace corresponding to eigenvalue Ai of
¢1 or °A Matrix whose columns are basisvectors
i forTWl 4)
i
!1, ?A Matrix whose rows (usually are basis-
i vectors for‘IT)A (A%*)
i

¢, T, {¢(t)} S{T(E)} One-parameter semigroup of linear
t>0 t>0
bounded operators

L, Y)

Space of linear bounded operators
from X to Y

Space of (equivalence classes of)
Lebesque square integrable functions
on [O,T] with values in Hx

22([0,11; )

¢ () Space of infinitely differentiable
functions on @

Space of continuous functions on

c([-1,0]; k™), ¢
[-t, 0JC R with values in RD
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X, ) Elements of C([-t, 0]; Rn)
t n*
Yy, ¥ Elements of C([&,t]; R )
qA in A A positive integer indicating "dimension"
A, K Finite symmetric set of eigenvalues
A 5w AN}
+  _+
R; I Positive real line; positive integers
Za A sector in the complex plane
(An» A, def 7)
E, Resolution of identy(App.B .de¢f 5)
N(e, x), Ne e-neighborhood of x
r Positive real number standing for
"gapwidth" (chapters II, III)

Q Set of analytic vectors of semigroup
(chapters II, III)

Q1 See Chapter III, section 8

Q(T) See Chapter IV, section 11

xo(e), xo See Chapter IV, section 3

Ai, Bi, Xi A Coefficients in the Laurent expansion ¢f

R(A, A) in a small neighborhood of A=A Sem

A/Qg Range of [B ' AB; ...!An-lB] if
A : R" > R".

& . = "Is defined to be"
F.D.S. Finite Dimensional (linear) System
I1.D.S Infinite Dimensional (linear) System
D.P.S. (Linear) Distributed Parameter System

~1
£ Inverse Laplace transform

3 Inverse Fourier transform.
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CHAPTER I

INT:ODUCTION.

We are interested in studying qualitative properties of
linear infinite dimensional systems whose dynamics can be
described by an operator differential egaution of thne general

form  dx(%)

dt

where x(t), y(t), u(t) for fixed t are elements of spaces

= Ax(t) + Bu(t), y = Cx,

HX v ny ,Hu. ‘'nese spaces in general are Hilbertspaces unless
specidied othervise; x, y, u, as functions of t belong to
specified spaces X, Y, L. One calls "state " the solution x(t)
to the above eguation when appropriate initial conditions are
s ecified; x is called the "trajectory, ; the "output" or
"oovservation" and u the "input" or "control". The above for-
mulation includes as special cases linear distributed parameter
s’ stems, iinear finite dimensional and infinite dimensional
systens and finally a very general class of systems with hereditary
dependence.

Operator differential equations as presented above are
considered in some detail in Appendices A, B, and C. In these
appendices some concepis from the realm of modern analysis are

presented in order to establish a basis for the understanding

of the main body of the thesis. These results are mostly well

o



known although a major efrort is required to gather the material
relevant to control theory. A conscious effort was made to
refer to refernces for proofs, retaining only those strictly
necessary for the coherence and understanding of the material
rresented. It should be made clear from tie outset that it is
not our intention to cuntribute to the theory of partial differential
equations, rather we are irying to apply existing theory to
physical systems considered relevant to control-oriented
applications. The main references for appendices A, B, and C
are Hille-Phillips [45] , Dunford-schwartz [D2) , Goldstein [G3)
and references[§1, B4, Kl] 3

In Appendix A operator differntial equations of the type
Sfif) = Ax(t) + h(t) are discussed for existence and uni-
gzeness of s.lutions and more specifically for the properties
of the solution x(t). The study of these properties after all
is the major topic of this thesis. The solutions will be
characterized in terms of certain types of semigroups like
analytic semigroups or C¥-unitary groups... These characterizations
play a major role in chapters II and III on controllability
respectively ooservability. Conditions on a dissipative operator
A will be stated for which a C°-coniraction semigroup is being
being generated. Stubilizability, one of the topics in Chapters

III and IV, wil.i be tie systemproperty indicating the possibility



for transfor..ing a non-dissipative into a discipative operztor,
thus cnanging the character of tie solution.

In Appendix B Ssome notions on spectral
decompositions are discussed in a Banach space setting (used in
Chapter IV). The theory is then specialized to Hilbert spaces.

A case of major importance is that of a '"normal spectrum and special

attention will be given to this case.

In Appendix ¢ important types of lst and.2ndorder operator differential
equations, respectively parabolic and 2nd order hyperbolic partial
differential equations, are discussed as illustration of the

semigroup theory and special attention is given to the kind of

semigroup generated.

Chapters II and III focus on controllability, observability and
the new notion of gaps. Some attention is given to specifying methods
for finding the gap. Observers and design procedures are touched
upon in III. Finally Chapter IV is devoted exclusively to delay-
systems. OSpecifically controllability, stabilizability of state

and output by state-feedback are considered.



CHAPTER II

CONTROLLABILITY AND CONTROLLABILITY-GAPS
FOR A CLASS OF INFINITE DIMENSIONAL SYSTEMS

2.1 Introduction

A great deal of theoretical work in the field of control
theory for Distributed Parameter Systems, and in general for
Infinite Dimensional Systems, has been centered on extending
results known for finite dimensional systems. In a major
portion of the work oriented towards solving practical problems
approximation methods are used based on reducing the system-
dimension to a tractable finite level. However, it is not
a priori clear that a property which holds for any finite dimen-
sional approximation to the system carries through in the limit.
Such property will be termed unstable under approximation. The
systems considered will be linear, time-invariant, with certain
restrictions on the system operators in order to insure well-
posedness. For these systems, the most outstanding such "unstable"
property discussed here is related to the notion of complete con-
trollability. It may happen that such systems are completely
controllable in the sense that for every state X4 there exists a
finite time t(xd) > 0 and an admissible control u driving the
system from the origin at time t = 0 to a point in the e-neighborhood
of X4 at time t, for any € > 0. If time t = T were fixed it might

be that some states would not be controllable in the above sense.



Assume the system is completely controllable for t = Tl’ and
let T = inf T1 for which this is true.

If T > 0 we will say that a controllability-gap exists and
is of width T. Thus a controllability-gap occurs if the system
is completely controllable but only so after a finite time has
elapsed. The existence of this phenomenon for infinite dimensional
systems has been recognized by at least one author. Russell
[R2, R3] discussed the occurrence of a gap for oscillator-type
systems (vibrating strings and beams, lossless transmission lines.).
A class of systems for which the gap-case 1s obvious 1is the class
of delay systems x(t) = L(xt,t)+B(t)u(t), x, =0 ; X5 X

t
(o]

¢ € C([-T,O];Rp). These systems are treated in Chapter IV,

t ?
o

Observe that the systems Russell considers have discrete,
simple spectra, lying on the imaginary axis in the complex plane,
and that the delay systems have a discrete spectrum, with finite
multiplicities of the eigenvalues and lying in a left half plane
{A € C|Re X ¢ a, some real a}.

Diffusive systems cannot have a gap as will be demonstrated.
A subclass of these are systems governed by a self-adjoint system
operator with discrete spectrum with finite multiplicities. The
spectrum lies on the real line., Another subclass is the class governed
by perturbed self-adjoint operators (seeAPpCEZ). For the spectral
properties we refer fo Apptxuﬂtx B3

The three '"types'" discussed have one thing in common: a

normal spectrum. The geometrical configuration of the spectrum



over the complex plane is different.

It would be of interest to isolate configurationsor other
conditions related to the spectrum excluding or confirming the
possibility of occurrence of a gap. This theory could be made
to apply to a more general case then that of a normal spectrum
including the case of continuous or residual spectra. Clearly
operator B will play a kev-roie in any configuration.

It would be equally desirable to devise ways to calculate
the width [ of the gap. This could in fact be used‘as a criterion for
complete controllability. The system is completely controllable
if T < ®; it has no gap if ' = 0.

The aim of this chapter is then:

1) To specify conditions on the system operators under which

a controllability gap may or may not occur.

2) If a gap exists, indicate ways to obtain an analytical
expression for the width of the gap.

3) Assuming one could manipulate or choose the operator through
which the control is applied to the system, answer the question as
to whether it is possible to choose the operator to make the gap

disappear.

2.2 Systems Under Consideration

Consider the abstract linear system

x(t) = A(t)x(t) + B(t)u(t)
(1)

x(to) X,
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where x(t) € Hx
u(t) € Hu
A:D(ACH =+H
o x x

B:H -+ H
u X

A and B are linear operators, B is bounded. Hx and Hu are given
Hilbert spaces, respectively the state space and the input space.
The function u will in general be assumed to be piecewise con-
tinuous, taking values in Hu in case one wants strong solutions,
or just measurable maps from R+ -+ Hu in case one wants to consider
solutions in a weaker sense.

A minimal assumption on A which will not be restated is that

the Cauchy problem

x(t) = A(t)x(t)

(2)
x(to) f X
be wellposed. For the ronhomogeneous system (2) we will in addition
assume, for strong solutions, that Bu(t) € C(R+DO(A)) and

+
ABu(t) € C(R ,Hx) or Bu(t) € Ckk+,Hx) in which case there exists
+
a unique solution x(.) € Cl(R ,Hx) of the form
t

x(t) = ¢(t)xo * f $(t-0)Bu(o)do (3)
0

The details qQre given in the gppendicesSystems that can be treated
this way include finite dimensional systems, distributed systens

(e.g. of parabolic type of hyperbolic type), a large class of



continuous fixed time-lag systems (Chapter IV).

2.3 Definition: Controllability, Controllability-Gap

When solving an optimization problem one will have to require
often the system to have certain qualities, the most important
of which is its responsiveness to the available controls and
sensors. For systems whose evolution is governed by the variation
of constants formula ome cen deiine rwmplete controllability
(henceforth written as c.c.) as follows:

Definition 1.

A dynamical control system of type (1) will be called completely
controllable from the origin if one can drive the system from the
origin to an €-neighborhood of any desired state with an admissible
control during the time interval [0,t] for some real t > 0, € > O.

Let the space of admissible controls be denoted by U. Let the

operator Ft e Hx be defined by

A t
Ft = f ¢(t-0)B.do
0

A mere reformulation of definition 1 using (3) gives then that the
system is c.c. iff

U/ R(F ) =H

£30 x

or equivalently

5

U R(F,) = {0}
£30 |
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Even if the set of admissible controls is allowed to be the total

space U it is conceivable that the density of &’R(Ft) in Hx

t20
is completed only after a certain finite time Tl has elapsed 1i.e.
. strictly
U R(F.) = H_ but _/ R(F.) gl B T X T
oceer, &% OsteT,  © .

For linear time invariant systems is it easily demonstrated that

U/ R(F) = R(F, )

0<t€T1 1

Definition 2.

A system of type (1) will be said to have a controllability-
gap if it is c.c. but only after a finite time Tl has elapsed. The
g.1l.b. on the time interval [O,Tl] in which c.c. is achieved deter-
mines the "width" of the gap.

Alternatively the width T would be defined as

for some

I'' = sup inf { t € R+|x(t}O) = X5

xdEHx ucel
x; € Né(xd) and for arbitrary small € > 0}.

The well known controllability test for continuous, linear, time
invariant, lumped systems (in Rn) namely
lB

rank [B;AB; ... A" B] =n

should be recognized as expressing an "instantaneous" property
i.e. 1if R(Ft) = Rn for some t > 0 thken R(FE) = Rp, € > 0. Moreover

the criterion cxpressed above states that this property can be



recognized at t = 0. It is then clear that in finite dimensional
systems controllability-gaps are excluded.

In the next paragraph we will derive the infinite dimensional
version of the above criterion, obtaining at the same time
conditions on the systems excluding the possibility of occurrence
of controllability-gaps. The conditions involve the set of analytic
vectors for the semigrouws 4 Subsequently it will be shown that,
when ¢ is analytic existence of gaps is equally excluded (although
the controllability test may not hold).

2.4 Controllability when ¢ is an Analytic Semigroup

Scholium 1
If A generates an analytic Co—semigroup of type a, 0 < a < m/2

the following set equality holds

R(Ft ) = R(Ft ) for all tl’ t2 >0 .

1 2

Proof :
L
Let x ¢ R(Ft ) . Then B*dp*(s)x=0 , 0 ¢ s € tl .
1

Because ¢* is analytic if ¢ is we conclude that

B*¢*(s)x = 0 0(5‘:2 ; t';_)ﬁ

L L
Therefore R(Ft ) & R(Ft ) . But R(Ft) is a monotone increasing
1 2

set with t for the systems under consideration. Therefore

4L
R(F_ ) CR(F_ ) or R(F_) DO R(F. )
5 s 3 ts
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Altogether then

£ 4 q
R(F, ) = R(F_) or R(F,_) = R(F,_) .
By t, ty Ey

The scholium states in fact that if ¢ is analytic, the set
obtained as the closure of the set of attainable states from the
origin is instantly established. Gaps are therefore excluded.
Examples of cases where ¢ is &=zlytic and therefore no gaps can
occur were given in chapter I.

2.5 A Controllability-Criterion using the Notion of Analytic

Vectors of Semigroup ¢

2.5.1 Analytic vectors of ¢

For t > 0 and x ¢ Do(An) one can write the Taylor formula

for semigroup ¢ :

n-1 k & 1 t n-1 5
d(t)x = } roAX+ oy f (t-s) “¢(s)A xds
k=0 . . O

e

|

-~

It will be important to us to know conditions under which

d(t)x = kzo EE'A X

o

One clearly need that x € D_(A) g 8 Do(Ak) and that the series
k=1

converges.

Scholium 2,

If % € Dw(A) and the series converges it converges to

¢(t)x absolutely in a neighborhood of the origin.
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Proof : If the series converges we have

n
n S5 [[a%]] =0

>

and hence
=l .k t

lowrx - 1 & Al e 2 [ @ Hlo@l ] 14 las
Lo Tl

n
< Mt &T | |a™x] | (4)

since |[¢(s)]|] < Me™® for some M, . (see generation theorems for

C°~semigroups). The right hand side of expression (4) clearly
©

goes to zero for n >, If 0 < s £ t, then Z %T | 1A

k=0
This follows easily since

tn n
o7 Ha[] ~ 0
n
implies ET ]IAanI € C for all n and a real constant C. Then

© sk K oo k
z P IIA xll £ C Z ( %‘) <o, ]
k=0 2 0

Motivated by the theory of ordinary analytic functions we will
call x an analytic vector in case the Taylor series converges
for some t > 0.

Definition 3.

A vector x € H_ is called an analytic vector for {¢(t)}b7c
if

1) x € D_(A) [{.e. x1is a C vector]

2 25k
2) Z o ||Ax|] < = for some t(x) > O.
k=0 °



One important property of analytic vectors is illustrated
by the following scholium.
Scholium 3.

Suppose x 18 an analytic vector for ¢ with radius e(x), and
(Apx, x*> =0 for n=1,2,3,... arbitrary x* ¢ H;
then <¢(t)x,x*> = 0 for all t > 0.
Proof : For 0 £ t < € (g = €(x)>0) we have

n

(=~}
<P(t)x,x*> =} ﬁ? <AMx,x*> = 0

o

So by continuity at t =€, <¢p(t)x,x*> =0 for 0 £ t € ¢
(1)

By the same argument we have

<¢(t)Amx,x*> =0 for0< ¢t e ms 0,126

Hence, 1f 0 € t %¢& we have

<¢(t+€)Amx,x*> =

]
o

n
%:- <¢(E_)An+mx,><*>

o 8

So <¢p(t)A™x,x*> = 0 for all 0 < t € 26, m=0,1,2,...

(1)

Here we made use of the fact that an absolutely convergent power

series has the same radius of convergence. Therefore

© n
T S 1A <= for0<t <ce m=0,1,2,...
n=0 n.
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A repetition of the argument gives
<p(t)A"x,x*> = 0 for 0 < t € 46, m= 0,1,2,...
and by induction for 0 £ t, m= 0,1,2,... For t = t1+s
<Ge)x, x> = <¢(s)§(t, )x,x*>

k
ET-<¢(t1)Anx,x*>

n
nNes- 8

k=1

=0 t>»0 .

0 £s €¢

It would be nice if a semigroup always had '"enough" analytic

vectors, but unfortunately this is not the case. It can happen

that ¢ has no nonzero analytic vectors (see Nelson [N1]).

However,

in a few important cases, one can show the existence of a dense

set of analytic vectors.

Examples

(1) A is bounded (equivalently: the semigroup is uniformly con-

" n tI]AlI
tinuous). Then Z sy ||A x]l Le lell. So that every vector

x 1s an analytic vector for ¢.

(2) (-A) is also an infinite-simal generator so that t - ¢(t)

can be extended to a group on (—=,+»)., In this case, let 0 > 0

and define

£
X 4 2 f+w e 4o $(t)xdt
§ V4ng 4 —eo
*
Then one can show 5 that Xg is an analytic vector for ¢ and

%
( )This method of counstructing analytic vectors was used by Gelfand

(see Nelson [N1] for references).
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x, > x for o » 0.

In particular ¢ has a dense set of analytic vectors. This
method works e.g. if A is skew-symmetric (A* = -A). 1In this case
t > ¢(t) = etA is a group of unitary operators (see APPLHJM Aj.
and one could also construct analytic vectors by means of spectral
analysis.

(3) Construction of Analytic Vectors Using Spectral Theory

Let Hx be a Hilbert space, A = A* and <Ax,x> € c<x,x> for

all x € DO(A) (i.e., A is self adjoint and semibounded from above).

By the spectral theorem for self adjoint operators we have

A= }"_: AE(d)) or = [ AdE,

Let [a,b] € R be an interval and y € Hx' If x = E([a,b])y

we have

2
147 |

2n b 2n
[T e = [0 3™y,

a

(max(|a], [b[) 17" |y ||

ey

n
£ ¢ for some constant c

n
and that I &7 | 1a”«] |

converges absolutely. We have shown earlier that it then converges
to ¢(t)x. So x is an analytic vector for ¢.
Since E([a,b])y + y as a + ==, b + +o the set of analytic

vectors is dense.



2.5.2 Criterion for Complete Controllability

Let Q denote the set of analytic vectors of . Define

A= Y R(F,) -
30

Theorem 1.

Let B : H_~ H_be such that R(B)C Do(An) forn & 1. Then the

following inclusions hold:

o A N L
z RA"B) > R(F) D U r(r) = A
0 £20

The reverse inclusions also hold if B‘l(R(B) NnQ = Hu.

Proof :
4 L
The second inclusion R(Ft) D (4 1is obvious. To prove
the first inclusion observe that

L
X € R(Ft) implies B*¢*(s)x = 0, 0 < s €t .

Then, for any z € Hu' <$p(s)Bz,x> =0 O0< s £ t. Since R(B)C Do(An)
it follows that~<AnBz,x>v= 0 for all z € Hu and n € I+. This expresses

that
ks

©
xe § R(A"B) .
n=1

Under the additional assumption that

L

B_l(R(B) NQ) = H let xe UR(AB)
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Then for z € B-I(R(B) /) Q) one has <AnBzo,x> = 0. Since Bzo £ Q

this implies (Scholium 3) that

0 for 0 € s € €(x), implying

<¢(s)Bzo,x>

<¢(s)Bzo,x> 0 for 0 € s

But if z € Hu is arbitrary, let z € B_l(R(B)rq Q) be such that

z *z. Then <¢(s)Bz,x> = lim<¢(s)an,x> = 0, s 3 0, by boundedness

n
of ¢ and B.
t L
Therefore < f ¢(t-sBu(s)ds,x> =0 t 20 or x € Q
0
" We conclude that under the re-inforced condition

oL 4L 4
gR(A“B) =R(F) = Q R

Theorem 2.

Under the combined conditions of theorem 1 a system of

oo
type (1) is c.c. iff I R(AnB) = Hx' |
0

Remark. The condition R(B) € Q is a stronger condition than the

one used in theorem 1 and 2 and implies both R(B) C 20<A) and

B—l(R(B)fq Q) = Hu. In some cases this stronger condition may be
unduly restrictive (for this reason we preferred the condition

as stated in theorem 1), in other cases it may be automatically
satisfied, like in the case that A is bounded or for finite dimen-
sional systems; in the latter case our theorem 2 reduces to the
usual Kalman test.

Example 1 If Hx = Hu, B is bounded and B : DO(A) -+ DO(A), and
AB = LA then

n.n mAn
~ LA F £4
[z =5 z|| < |8]] [z =53 =]



If z € Q then Bz € §Q in this case, so B—l(R(B)/W Q) D Q.
If Q is dense then Bhl(R(B)/\ Q) dense in Hu is certainly
satisfied. A and B commute for example if B is a convolution
and A 1s a differential operator with constant coefficients
(Goodman, [G7]).
Example 2 Let Hx = Hu = LZ(Q),  a compact interval in R.
Consider the case Bu = g(z)u(t), g(z) € LZ(Q). Let A be a
self adjoint positive elliptic operator and consider the system

x(t)] [0 1 ] x(t)] /‘ 0 Ay A

= + =,41 + Bu(t)

x() | |A 0 J[x(t) Bu(t) [x(t)
Then E s R+Z=DO(ZK)xHx and R(B) is one-dimensional. Let g(z)=
f YA¢A’ where Aeo(A). ¢A is the corresponding eigenfunction. Then g is
analytic if it is a finite linear combination of eigenfunctions ¢A

(in which case the system cannot be controllable, see 2.7) or when
2 2/%t
e <
Aea (A) A

Aes A-lsinhth.B E/T.lsint/TlY ¢ a
eAtp = X o R
coshtvA.B |= illcoshtV’)_\-.YAtbA b

©, To see this observe that (Chapter I, (15))

with norm

2 2/t

£ 2
e - IR al2 + Ibl,_ < e
X X

2
DO(JX) i

2/t

R(B) € Q would then be satisfied if ZYie < @ for arbitrary small t>0.

If A is negative self adjoint, then /q is skew adjoint in the

At

topology indicated there llé(t§[|=§ Yi and E_Yi <« is satisfied since

right topology and e is a Co-unitary group given by I.(17). In the

gELZ(Q). However, for g to be analytic/gEDw(fJ) requires
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§ANY§ < o  for arbitrary big N.

We conclude with reference to a specific example in the
literature where the occurrence of a gap is demonstrated.
Example 3. (Occurrence of a gap; [R2, R3, RA])

Russell considered the system

2
PG 2E - - 6o ) = @)
ot

with g(x) € L2[0,1], f(t) ¢ LZ[O,T].r(x) and p(x) are positive
and twice differentiable on [0,1]. It is assumed that u(x,t)
satisfies the boundary conditions

v

on(O,t) * B = (0,t) =0
A, v(l,t) + B §-‘L(It) =0
1 > 1 9x 2
where Ai’Bi for i = 1,2, are real constants with A§+B§ # 0,
Ai+Bi ¥ 0. The initial conditions are v{(x,0) = \gfx),
g% (x,0) € vo§x) such that the boundary conditions are satisfied
2 2.
at t =0 and-g—gn', Q_%oze L2[0,1]. Let
ax ox”

1
P2 P(x) dx

o' P(x)
then Russell claims that the system cannot be controllable in
[0,T] for T < 2%. ‘If,in general an infinite dimensional

-00

oscillator has eigenvalues {jwk}k=__oo and if S denctes the
asymptotic gap then p = Z% is the controllability gap-width.

The case of boundary control, where g(x)v(t) is of the form
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g(z) ul(t) + S(z-—l)uz(t) and therefore g(x) ¢-L2[0,1]
is considered in [R3,R4].

Example 4. (Occurrence of a gap; linear systems with hereditary
dependence) '

+
Let xt(e) or in short X, 6 € [-1,0], T € R, be defined by

x, (8) & x(t+0)

Let %, ¢ C([—C,O];Rn) and let C([—?,O];Rn) be equipped with the
norm of uniform convergence (to make it a Banach space).
Consider %(t) = L(x,,t) + B(t)u(t), (a)
u(t) € U where U is a closed set in Rm, L is a linear bounded
mapping from C([-T,O];Rn) X R =+ Rn, B is an nxm-matrix with

initial condition X, = ¢ € C([-T;O];Rn). The "state-space-

representation" of (a) is (see Chapter 1IV)

‘ = Ax, 4-X°B(t)u(c)

X

xt = ¢
° (b)
Xo(e) 1 6-0

3 0 otherwise

Since for t < T xt(e) = ¢(6+t), 6 + t € 0, part of the state is
still equal to the part of the initial function and hence uncon-
trollable. It is then clear that the gap width T satisfies
I'st.

Conclusion:

As part of theorem 1 it was shown that R(F_ ) = U R(Ft)

t
t20
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under the appropriate conditions namely R(B) C D_(A) and

B_l(R(B) NQ = Hu or under the more severe condition R(B) C Q.

If the system is c.c. in this case (i.e. v RiFtS = Hx) it
t30

must be so instantly; in other words existence of a gap is
excluded. Our attention has been focused on smoothness of the
vector Bu with respect to ¢. If ¢ itself is an analytic o

semigroup one can make a similar conclusion/as was seen in II.4 .

As demonstrated above R(B) < Q may be satisfied for ¢ being
a Co—group. In general groups are not analytic. Thus the
two criteria for excluding gaps may apply to non-overlapping
cases. In case ¢ is analytic and assuming it is possible to
manipulate the expression for B we may satisfy the condition
R(B) C Q as well, by taking the new operator to be B = ¢$(e)B.
Clearly gu for arbitrary u is an analytic vector for ¢.('0bserve

o0
that R($(e))C N b (An) is satisfied by analycity of ¢.)
n=1

2.6 A Controllability-Criterion Using the Resolvent of A.

In this section a controllability criterion for linear time
invariant systems of type (1) is derived using frequency-domain
techniques. It is well known [H5] that the resolvent R(A,A)

Hx > DO(A) is the Laplace transform of semigroup ¢ generated by A,

8 1y Lo llell 4y,

£+0 8
in a Hilbert space setting, it is known that, if A generates ¢ then

for all A such that Re A > w

A* generates ¢*, with Laplace transform R(X,A%).



Lemma [Fattorini, F3]

L
xe U R(F,) iff g*(k)x =0 for Re A > w
t30 °© °

Therein denotes 9* the Laplace transform of B*¢*(s), s > 0.

Proof: We have shown before that

2l
xe U R(F,) <= B*¢*(s)x = 0 s > 0
t30
Then f}*(k) is well defined for Re A > W, and f3*(k)x =0

Conversely:

if F(M\)x = 0 for Re A».w), then, for arbitrary ﬁ'é};u

<u,B*R(A,A*)x> = 0
Then
[W e-As<ﬁ,B*¢*(s)x>ds = 0
0 .

for arbitrary @, or B*¢*(s) x = 0, s > 0. B

Remark: The condition Re A > W, in the lemma could be replaced
by A € po(A) A {the connected part of p(A) containing the

half plane Re A > wo}.

Theorem 3

i <L
xe UR(F) i1ff xe I _ R(R(\_,A)"B) for some
t20 ne
Ao € po(A). B
Proof: From the lemma it follows that x € (/ R(Ft) = for {:ef/k)
t>0

B*R(XO,A*)X = 0 or for any u of Hu,<x,R(XO,A)BG)> = 0,

Using

n=1
BAR(X, A%) "x = r o hE S—v BYo*(s)xds n=1,2,3...
0 ke |
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and B*p*(s)x = 0, s 2 0 it is clear that

<x,R(X°,A)nBG> =0 n=1,2,3..., using R(A,A*) =R(A,A)* .,

Therefore, x 4 L R[R(AO,A)HB] for all Ao spo(A). Conversely
if this last statement 1s true for some AOE po(A) then B*R(AO,A*Inx=O

n=0,1,2,... implies B*R(A,A*)x = 0 for A € po(A). Indeed

) 1
B*R(X,A*) = B*R(X_,A%) 1-(X_-NRQA_,A%)

1 & n-1 n
* - * *
For IIR(AO,A )Il < TX:T;T the series Z(Xo A) B R(AO,A )
converges and then clearly

©

BRROL,AMx = [ O -0 TTBR(_,A0 % = 0
n=1
) 2
The lemma then states that x £ U R(Ft) : l

t20
Theorem 4
A necessary and sufficient condition for complete controllability

is that

4

nZo R(R(AO,A)nB) = {0} for some Ao € po(A).

Proof: It was shown earlier that complete €-controllability

.
implies and is implied by (/ R(Ft) = {0}. By Theorem 3 an

t30
equivalent expression is
T wl
) o ]
7 RRO L,A™B) = H, or [ R®RM ,A)"B) = {0} .68
o X o
n=0 n=0

Remark: It follows trivially from Theorem 3 that the orthogonal
spaces to the controllability spaces of the two following svstcus

coincide



w: G e

x = Ax + Bu
X = R(XO,A)X + Bu Xo £ po(A) .
i.e., 5 . 1
U R(F,) = ] RRO_,A"B) .
t>0 n=0 9

The latter system however, does not involve unbounded operators.

2.7 On the Calculation of the Gap-Width for the Case o (A) is

a Normal Spectrum.

The method developed in this section will make use of a
special criterion for controllability for systems isomorphic
to a countable direct sum of finite dimensional subsystems.
Also, a slightly different definition of controllability is
needed. However, for normal spectra equivalence with our
former definition will be demonstrated.

2.7.1 Controllability when A has normal spectrum.

For finite dimensional systems the controllable set C
is defined as the set of states for which it is possible to
specify an admissible control to drive from X, at to to x, at

some finite t > to, where x, and x, are arbitrary states in C.

1
; For infinite dimensional systems there are in the literature
two or three definitions for a controllable set. We will now

write out these definitions, give the sets different names and make

some comments as to how these sets compare.
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Definition 4. (Set of attainability from the origin)

The set of controllable states is the set (1 of states
X4 for which an admissible control exists driving the origin at
time to to a point in the e-neighborhood of X4 at time t > to.
For the system under consideration

t
QA ="U R(F where F, éf $(t,0)B.do .

t2t t
o o

Definition 5. (Reducible set)

The set of ntrollo.ble states is the set D of states
X, such that some point in the €-neighborhood of X can be driven,
with an admissible control u, to O in some real time interval
[to,t] t > to. For the systems under consideration
t

D = Closure of {x ¢ Hx/¢(t,to)x + f ¢(t,o)Bu(c)do = 0

t
o

for some admissible u and t 2 to}

Definition 6

The set of controllable states C is the set of states such
that for an arbitrary pair %o Xg € C there exists an admissible
control u to drive from a point xi in the e-neighborhood of X4 to
xé in the €-neighborhood of Xy in the finite time interval [to,t],
c >I t .

o

These three definitions coincide obviously for finite dimensional
systems and since the sets C{, D, C are then automatically closed

(always under the assumption that the set of admissible controls

is the whole space U) one can omit all 'neighborhood" statements.



In general, if ¢ i1s invertible (e.g. when ¢ is a group, of which
the finite dimensional case is a special case) the defined sets
coincide.
It can be shown that CC A /) D and that C has some interesting
invariance properties [V1]. The sets A and D are in general
hard to compare. If the infinite dimensional system has normal
spectrum then the restriction of semigroup ¢ to the rootspace
TA of a finit; ;::hk of eigenvalues of A is a group from which
it then follows that AA’ DA’ CA for the subsystem
X = Ayx + P,Bu
x(0) = PAXO
where PA is the appropriate Riesz integral, coincide. Then
A, D, C coincide for the total system since they are obtainable
as direct sums of components and the equality holds component-~wise.
In the sequel we may then use any of the definitions 4,5,6 (up to
now only definition 4 was used.)
Next an easy lemma is stated on complete controllability.
Lemma: The system under consideration is completely controllable

(def. 4) 1ff each spectral subsystem is completely controllable.

Proof : Consider the subsystems

Xx = A, x + P, Bu
>\:L Ai

x(0) = P, x .
Ai

in space P, H and withQ
Ai Ai

being the set of attainable states
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from 0. The implication Q = 0 =’<1A = Py H_ is clear.

1 1 * i
Conversely, let(]A = P, H_for all {1 and let y e Q
{ .

Then P, v € P, (@*) = (P,Q) . But P, Q =Q, =P, H

ki Ai Ai Xi ki Ai X
Hence PAy=0=by=0. Hence 0.=Hx. B

i
Let P, B be denoted by B,, P, A é A T the rootspace of A
li A 1 Ai i Ai i

and Bk the eigenspace of Xi. Let.3f denote the eigenspace of

i i

Ai € 0(A*) = 0(A). The following easy theorem is an extension of

a result in ref. [S2].
Theorem 5. Let A have a normal spectrum.

Then the system under consideration is completely controllable

1ff /YI(B;) N 3; = {0} for all A, € 0(A).
i

Proof : It suffices, according to the lemma, to concentrate on

the condition for the subsystem in Ty

. i

so.z, 3 .

Let T ‘='Rn. The Kalman test rank [B, /A, B! ... A, B,]
ki i1 i i b

'

' e ) o n-1 _
is equivalent to rank [Bif ()\iI:L Ai)Bi: .o :(AiIi Ai) Bi] = n or
n-1, _
(q(n;)n cer OMEBFCAT-AHTT = {0) (a)

We want to show that the last statement 1is equivalent to

VAR “A%) = 1

/Yl(Bi) N /Y)(Aili A%) {0} (b)
{t_ T*"

If there exists an x(# 0 such that fo = 0 and ().iIi - Ag)x =0

then obviously Bf(kili~Ai)kx =0, k >0, so that (a) =+ (b).

¢ T,‘- (

¢
Conversely assume there exists an xi¢ 0 such that B*(AiTi_Ai)x

0

for 0 € k € n-1., Since dim 47(kin—A§)p = n for some p € n, there
{ ;



2g
— )\j -

is a ko € p such tha; x € 7 (XiIi-Ai ko and x £ (Aili—A;)ko—l.
Let z = (KiIi—Ai)ko— x, then z # 0 and Biz = 0 and (AiIi~A;)z = 0,
Therefore (b) == (a). I

Summarizing the lemma and the theorem, one can again state
that invertibility of (PXiB)* on iaii for each Ai e o(A) is a
necessary and sufficient condition for controllabilitv of the total
system. Also, we tepeat that this Gces not exclude the existence
of a gap.
Remark: The condition /)Z(Bi)* N 3 ;\‘:i = {0} for all i can also

be written /V(B*)/W ,3§ = {0} for all i or B is one-to-one
i

3"Ai

for all {.

2.7.2 _On _the calculation of the width of the controllability-gap.

In this section an attempt is made to develop a method for
explicitly specifyving the control driving an initial condition
(or a point in its e-neighborhood) to 0 in finite time. Such control
we know, does exist under the assumntion of c.c. and the assumption
of a normal spectrum. If a fixed interval [0,T] 1is specified and
the initial condition made arbitrary, the validity of the expression
for u will tell if the gap is or is not 'wider'" than [0,T]. To
check this validity it is necessarv to have some idea of what minimal
condition such u must satisfy.

Let u(t), t € [0,T] be the control such that for any xé given,
x(T,0 ;xo,u) = 0 for X, € N(e,xé). The trajectory x(t) mav be

considered as belonging to LQ(O.T) for t € [N,T], and x(t) = N
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for t ¢ [0,T]. This implies something about the Fourier trans-

form x()) of x(t) namely (Paley-Wiener theorems)

- X()) 1is an entire function
- x()A) is a subsine function of type T
- x(X) has some special asymptotic behaviour and is square-

integrable con certain lines. (Rudin, [R1])

We state a special version of the Paley-Wiener theorems using
Laplace transforms:
Statement 1 (Theorem by P.Et Pfeiffer, [P1])

Let x()) denote the unilateral Laplace transform of a function
x(t). Then x(t) vanishes for t ¢ [0,T] T > 0 iff

1) x()) is entire

2) [%0)] < MelReAT

3) x(A) > 0 for A > ® along anv path in A 3 ko’ for any

As for the control function u(t), we will assume always that such
u exists i.e. that the system is c.c. For a system with normal

spectrum this means that B*p. is invertible for all A, € o(A).
M ax i

Ay

This invertibility condition obviously has nrovided us already with
a necessary condition on the dimension of u. For example, if
n = sgn{vk.}, where vA is the geometric multiplicity of eigenvalue

L
i
Ai then n is a lower bound on the dimension of u.



Consider the Laplace transform of the variation of constants

formula

t
x(t) ¢>(t,L‘-)xo + [ d(t-0)Bu(o)do.

lo

1}

namely x(s) R(s,A)xo + R(s,A)Bu(s) (5)

If x(t) = 0 outside [0,T] we have seen that x(s) must be entire:
the righthand side of expression (5) therefore must be entire

by right choice of u(t). In case of normal spectrum, o(A) contains
no essential singularities and R(s,A) has only poles. In a

small enough neighborhood of an Qrbitrary X € 0(A), the Laurent
series expansion for R(s,A), s € G(A) therefore has only a finite
number of negative terms. (see Chapter I.2.3, expecially formulae

(5), (6), (7), and (8)).
my é
RGs,A) = ] (s-A)"Bl + ] (A"l . (6)
n=1 n=0

This expansion is valid on G, 4 {s: [s—ki' = 8§} where § is chosen
such that Gy ()[U(A)-{Xi}] = ¢. Ai and Bi are bounded operators
and satisfy the recurrence relations (8) of Chapter I.2.3.

We would like to obtain the general form of expansion

Xi i
N DI SV TR )
(s-) )mi ‘o (S_Ai) o (s) (7)
i

where f'(s) is an entire function. In a similar way to (6)

write
my Ei % Ri
R(s,A)Bu(s) = Z —_—t Z —t (8)

n=1 (s-xi)“ =0 (s—xi)‘“



where

-~

m
B; = (s-)) iR(s,A)Bu(s)l

.. | (0)
Bm Bu (Ai)

i s=Ai : 4
=1 d d o sl i X0 i (1)
Bm 1% s (s—Ai) R(s,A)Bu(s)l Bm Bu (Ai)+Bm Bu (Ki
i s=Ai i
. m,—n -
2% S 1 d S Ay
Bn ey mi-n (s—ki, u\s,A)Bu(s)I
i ds snli
. 1 (mi—n-j)
- Bm _jBU (Xi) 9)
§=0 i
e (m,=3-1)
B, = B _.Bu (A,)
1 =0 L i i
Therefore
RO, | i . (D)
X B x + B Bu ’( ’\1)
i i
p m,-n i)
i i i
xn = ano * B _.Bu (xi) (10)
j=0 ™y
: m,-1
i -1-
x}=plx + 7 Bt e j)o )
1 170 m~j i
3=0
Entirety of x(s) requires
Xi = 0 for n=l,2,...,mi and all Ai e o(A). (11)

).



It will be shown that the svstem of eauations (11) can be

(0)(Ai),...,u(m-l)(ki) if the system
is completely controllable. One should realize that TA is

i
finite dimensional. Each of the equations in (11) is a vector

solved for the coefficients u

equation. We state a theorem and a couple of examples.
Theorem 6
Assume Hu = Rp, p < ®, The system of equations (11) is

1

solvable for the coefficients u (Ai) for § = 0,1,...,m,-1

i
and for all i, Ai € 0(A) if the system % = Ax + Bﬁ is completely
controllable.
Proof : The proof makes use of the results expressed in Theorem 5
and the remark following it. It was alreadv observed before that
the assumption of c.c. implies p < sgp vi where vi denotes the
geometric multiplicity of Ai € o(A).

Consider the first equation of system (11). A sufficient
condition for

B;iBu(n)(Ai) + B;ixo= 0

to be solvable for u(o)(ki) would be

R(BL ) < Rl B)
m, my
Clearly R(B; ) > R(Bi B) is always true; so that the condition
i i

in fact is

. S 1 4 A
R(Bmi) = R(BmiB) or rr) [(BmiB)*] ) R(Bmi) = {0}



{ mi-l ' mi
Since R(B™ ) = (A-},) P. H and (A-)A,I) P = 0 one has
my i Xi X i Ai

immediately that R(Bi ) =/n (A—XiI). It may then be checked that
i

i
(B*B~ *) /) /)(A-A,1) = {0} if B* is one-to-one.
m my 7 1 [\/7(/\*—)\11)

The last condition is equivalent to c.c. as expressed in

(1)

Theorem 5. Consider next the equation for u (Xi):

Bi X +Bi Bu(l)(A }+Bi Bu(O)(A =0
m,~1 "o m i’ "m,-1 i
i i i
or
i i _-1.1 i (1)
B- .B(B_B) B_x-B_ _.x =B Bu (1)
my 1 m, m,o my 170 my i
Since by c.c. Bi B is invertible on R(Bi ) = ¢zﬁA—k I) it would
my m, i
suffice to prove that the lefthand side of the last equation is
an element of AY(A—AiI) or (A—Xil)[Bi _1xo—Bi -lB(B; B)ﬂlBi xo] = 0.
i i i !
But (A- XiI)Bi -1 ¥ Bi ,which makes the equality obvious. The same

i i
recursive reasoning goes through for the other coefficients 3<j)(ki)

for the index j.
Since in this reasoning the index i was arbitrary we have shown
that c.c. allows us to solve for all g‘j)(Ki) j=0,...,m;~1 and
all 1, A, e o(a). R
Example 1. Consider a svstem with geometric multiplicities of all

A, £ o(A) equal to 1. Complete controllability implies then that

i

the dimension of u be at least 1. Consider a system with u(}) a

scalar function of X, i.e. I = R. Then B_ x +B bu(o)(A ) =0
u mgo o my i
has a solution iff Bn and Bn b are multipl es of each other. Tt
Ii :i
may be checked out that Bn b is a scalar. Therefore
i



O

(1) e -
WPap =@ ve _xam bR b bx)

i % ¢ i i

etc...

Thus the set u(j)(li), j=0,...,mi—1 is well defined. Since

equations (11) involve onlyr the -rstem in Ty we will write out

i
a little numerical example.
«
Al 1 o0 b1
Let PxiA = Al =L 0 kl 1 | and leb = b2 with b3
0 0 kl b3

1 0 0 1 1 0 1 0 1 1
Then B, = 0 0 O 3 B,= |0 0 1|, and Bl = |0

3 0 0 0

The defining equations are:

03 b,

0 + 10 u(A)) = 0

0 0

X02| |P2 b, o)

+ =

[ Xp3] H[Pg| U +]0 | vt 7)) =0

0 0 0

%01 b, i lbl bs @)

%02 +- b3 U (Al)+!b2 U(Al) + 0 U (Al) = 0
_x03 0 Lb3 0




with solutions

u(d) = - Egé
3 By
X - w— X
W 02" b, 03
ut(Ay) = - b
3
1
(2) x03+b2u(()3)+blu (X))
u (A ) pon
1 by

The case of geometric multiplicity greater than 1 is a little

*
bit more complicated. However the condition that Bra is
A

invertible allows us to solve for the coefficients 1

u(J)(Ai).
Example 2

Consider the example

Al 1 0 b1 b2
A=|0 A, 0 B= |by b, | ,withbgb-bb, 40
0 0 Al b5 b6
- . T _ L 2
Observe that Bl = Pkl = I, anJB2 (%I A). Let Hu R".
1) B2§o + szg(Al) = 0 becomes x20+b3ul+b4u2 =0 (12)
1 0
2) B1§0+B233(0A+3133({%)= 0 becomes
*10 by Dy 1P Pelfm
3 i I 1
X9 + b3 b4 ( l’ 0 0 (1) 0 (13)
u u
X b . 0 -
30 5 6

As we see equation (17)is repeated in (13).



X0 (14)

(l) (1)
3 l +b4u2 +blul+b2u2+xlo 0

Choose for example u(l)(l ) =041if b, # 0 and u(l)(k ) =0
2 1 3 1 1
if b4 ¥ 0. (This is always possible since by virtue of controllability
b3 or b4 is nonzero and solwve equations (14). Observe that
solutions are not necessarily unique. k

T|ReA|

If the interval [0,T] is such that Me <u§0) for some

i
i, then one has clearly that the gap-width is greater than T, since
in this case u(A) cannot be a subsine function of type T. Herein

T
M = J |u(t)|dt. Unfortunately this condition is difficult to
0

check if no such M is imposed a priori on the problem.

Similarly if A, and A, are close then u(o) and u(o) must be
1 j Ay A
close. Indeed
i ! A d
u(d))-u(h) = fj u' (A)dA SRR S
A
i

s tha [uQ)=uO O] € (A=A ]

where N is the maximum of u' along the straight line path joining

ki and Aj. On the other hand from the Cauchy integral formula

Y

A
u'(z) = 2?1 fl€l=R ?Eég%? dg



and putting R = 2[z| let's say gives u'(z) < :M EZT[z’ -

that N can be evaluated. Similar expressions can be written for
higher derivatives.

One has that u(t) = i:l (u(A)), if one can find the explicit
expressions for u()l) satisfying the conditions of Statement 1

in this paragraph and such that

DRACTHNE S
i

W), # g
i

' =1
i)y, f w * for kel,2,...
i

-1
and Upsooostly denote the solutions to system (11). Explicit

reconstruction formulae'for u(A) for normal spectra and especially
when allowing my > 1 are hard to come by and are under investigation.
Such formula would be extremely useful not only for solving the gap-
width problem but in time-optimal, minimum energy problems and
others. The case of time-optimal controls for normal spectrum
restricted to the imaginary line was treated in [G6]. Such recenstruction
formula has been found in case Hx is finite dimensional (which is
of not too much interest in our present case since we know that then
I'=0.) and in a case of an infinite dimensional oscillator. This
case 1s presented next as an illustration of the method and confirms
results obtained earlier by Russell [R2, R3].

Observe that in these references only simple spectra on the

imaginary line of the complex plane are considered and a specific



expression for A, B and the boundary conditions is assumed given.
This makes it substantially less general and complicated, but
allows direct specification of the gap-width I' as a function of
the minimum distance between the eigenvalues.[RiJ

Example (Infinite dimensional oscillator)

2 2
Consider the system described by Q_% = %;%
ot
z € [0,m]
(15)
t € [0,T]
with jnitial conditions x(z,0) = xo(z), x(z,0) = x‘(z)
and boupdary condition x(mW,t) = .y (), x(0,t) = 0.

This is a system with normal spectrum and geometric and algebraic
multiplicities equal to 1. One can obtain the subsystems using eigen-
function expansions. Let {wK} be the set of eigenfunctions of the
adjoint system for the boundary conditions at 0 and T equal to

zero. Then the system with homogeneous boundary conditions is in

fact self adjoint as seen from

: 2 i U 2
jﬂ §~§i%l y(z)dz = %f y - X %1 + fﬂ X g—%- dz
0 oz 0 Z 1o Jo a2

Then {wk(z)} = {sin kz} for k=1,2,... is the set of eigenfunctions
and {Xk} = {—kz} the eigenvalues.
Taking the inner product of both sides of (15) with the
eigenfunctions ¥, (z) and detining xk(t) : x(t,z)¢, (z)dz
k 0 k
one obtains

] ay, (2)

2
& %
xk(t) = JZ-;;E $E(z)dz =-u(t) -

2, _
+fm x(z) d vk(i)dz
z=y ‘0 dz
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=-u(e)y) (M - K (©)
= k% (6) + (-1)'%u(e) (16)

This equation describes the evolution of the kth subgystem,

Let xo(z) and xl(z) be equally decomposed in

x (2) = kZo X1 (2) ¢k(2) = ¥, (2)

-]
x,(z) = ] x. ¢ (z)
1 ioh TIKE
The initial condition for system (16) reads then
xk(o) = xok
X (0) = %, (17)
Taking the Fourier transform of (16) and (17)

-wzxk(w)-ijok-xlk = -kzxkﬂu) + (-1)kku0n)

or

xk(w) = kzimz [jmxok + x1k+(—1)kkan)]

Entirety requires

ijok + XK + (—l)kku(w) - hka 0
or
() = 1Mpgx 4K
" jxok k
k+1 1K
u(-k) = (-1) [-jxok -+ 73 J
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The interpolation formula, and the gap-width is given by an
inverse application of the sampling theorem well known in

system theory, as follows: There is given in the frequency

domain a discrete countable sample set, equally spaced, with
anti-symmetric imaginary and symmetric real parts (This is
necessary for the corresponding time function to be real). One
wants to define the minimum T such that these coefficients specify
u(t), t € [0,T]. The sample theorem applies usually to a band

limited signal and sampling in time. We have here the roles

reversed.
T
V(jw) = 5% f u(t)e-jwtdc
0
o0 I
u(t) = J cnejnwsthh c = %.<u(t)’e-jnmsc> - & U(nw, ) A 7
o jnw t
or u(t) = z 2_1;' U(nws)e s
19 T jnw t
Then UGGw) "%’ ! Unw)) f e 5%y
L+ j(nws—w)T_
=2 ] Uaw). S =L
—o 8 j (aw_-w)

This sample-interpolation formula allows us to find

jwt

u(t) = H(Gw)e!  dw .

b3

From the sample-theorem it follows that the minimum time for

these sample points to define u(t) over [0,T]) is for T = 2.



\n

This is twice the time necessary for the wave to travel with its
propagation speed c¢ (here normalized to |) twice the length of
the system. Thus results confirm the findings of Russell [R2].
Remark : It may be observed that the expression for u(t) obtained
is in fact the control u(t) satisfying the necessary requirements
and in addition has minimum norm, so that the interpolation
formula may solve other problems than specifying the width. These
applications are under investigation.
Conclusion

In this chapter an attempt has been made to introduce a new
notion in connection with control for infinite dimensional systems,
namely the notion of a controllability gap. Two conditions
have been specified under which such gaps cannot occur: if ¢ is
analytic, or if ﬁ-l(R(B){\ Q) is dense in Hu; in this expression Q
denotes the set of analytic vectors of(b. In search for the simplest
infinite dimensional system where such phenomenon may occur we
considered infinite dimensional systems isomorphic to a countable
direct sum of finite dimensional systems. A method is suggested
which would provide an explicit expression for the control involved
in reducing a point in the neighborhood of an arbitrary initial state
to 0 and allowing some conclusions as to the width of the gap. It
is suggested that this method may be of great interest in related
applications. The theorems 1-5 moreover state some potentially useful

necessary and sufficient conditions for complete controilability.



CHAPTER III

OBSERVABILITY AND RELATED NOTIONS

31. Introduction

The general aim pursued here is to reconstruct the state of
a system from observations of the output over a certain time interval.
For distributed parameter systems observations are (usually) made
via a finite number of sensors, having their own dynamics and placed
at "strategic" locations not just to make it possible to deduce the
"state" from the observations but to make this operation least sen-
sitive to errors in the readings. These readings are usually a
weighted average of the state over a limited region of the spatial
domain. The sensor or transducer in general will represent a non-
linear time varying mapping from state to output. We will not incor-
porate these complications in our model but only consider linear,
bounded, memoryless and, where stated, time-invariant mappings. To
Justify this neglect one can state that this approach is valid insofar
as the transducer dynamics are high-frequency effects as compared to
the system dynamics. Nonlinearities, hysteresis, lags, can to a
certain degree be taken care of in the modelling phase by linearization
around some nominal operating curve.

For finite dimensional systems the study of observability is
summarized in the Kalman criterion: a system in Rn, X = Ax + Bu,

x(0) = X, ¥ = Cx where y ¢ R" is observable if rank [C':A'C'...IA'C']= n.
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The main usefulness of the property of observability lies in the fact
that it guarantees full access to the state through output measure-
ments, l.e., the state to output mapping is "in a sense' invertible.
This knowledge of the state via the output can then be used in a
feedback control law to "optimize" the behavior of the system or
“steer it" in a desired way.

If then state-reconstruction is desired only the state-component
in R(C) is "directly" accessible. If the pair (A, C) is observable
one can [L3] identify the remaining part of the state by constructing
an n-mth—order dynamical system. Moreover, this "observer" may be
given completely arbitrary spectrum in the class of symmetric sets
of (n-m) complex numbers. If measurement noises are taken into
account, state-reconstruction is usually identified with Kalman-filtering.

For F.D.S. observability means that a finite set of values can
be determined, e.g., for Hx = " specification of X means specifica-
tion of n numbers. For D.P.S. Xy is a function over a spatial domain.
Specification of x, means that a (countable or uncountable) infinite
set of values have to be obtained. If one restricts a priori the
state space to the span of a finite number of eigen-functions of A
then the D.P.S. is approximated (well or not wellj by a F.D.S. which
may or may not be observable depending on the number and placements
of the sensors. Propagation of information over the space-time

domain may be with finite speed for D.P.S. Lumped systems can be thought
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as having infinite speed of propagation. It is in this context that H
the notion of "observability-gap' can be introduced. This concept
expresses the fact that there may be a "walting period" equal to the
gap-width before the approximate system is observable, a fact that

is not "visible" from the F.D. model used.

32. Mathematical Model - Observability
The mathematical model from Chapter I is used, i.e., the

system is represented by

X = Ax + Bu

x(0) = xoeDo(A) (1)

y = Cx

where A: Do A)c Hx > Hx
B: H »- H
u X
C: H - H
X y

Hx,Hu,Hy are Hilbert spaces. A, B(t), C(t) are linear operators,
B and C are bounded. A is time-independent and assumed to be the
infinitesimal generator of a strongly continuous semigroup {¢} of
bounded operators. If X € Do(A) the solution to x = Ax, x(0) = X

is x(t) = é)(t)xo in the sense that @(t)xo = A ¢ (t)xo = ¢(t)Axo

l[ x(t) - xoll + (0 for t » o+
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1f system (1) is considered over a time inter al [0,T], minimal
assumptions on the nonhomogeneous term are that < x, (Bu)(t) > is a

measurable function in t on [0,T] for all xeH  and ueL2([0,T]; Hu),

t
in which case the solution has the form x(t) = ¢(t)xo +f ¢ (t-0) (Bu) (¢)do
0
satisfying (1) in the sense that
d
qc < ¥,y >Hx = < x(t), A*y> H + < Bu(t), y >Hx (2)

a.e. in [0,T], all y € DO(A*)

and that |[|x(t) - X, || »0 for t» 0.

Definition 1.

System (1) is called observable if C(t)¢(t) x = 0, >0
implies x_ = 0. It is observable on [0, T] 1f c(E)9 (L) x, =0,
te[0, Tl x, = 0. §

The problem of observability is that of finding X given the
output y(t), t > O and the input u(t), t > 0. Then z(t) =
y(t) - C(t) J: $(t-0) Bu(5)ds = C(t)¢(t) xb’;z(t) is the known term.

Thus X, will be given uniquely 1f the system is observable.

: 3 2 .
Define Lt s Hx->L (0, t; 1&) by
A
L, = C(t)e(r). (3)
Then L* : L2(0, t; 0)-—H is given by
t y X
t
L*t.::J ¢*(0) C*(o).do (4)

0



t
and (L*tLt) = [ ¢*(0)C*(0)C(o)¢(o)do (5)
0

Theorem 1.
System (1) is observable on [0, T] if one of the following
equivalent conditions is satisfied:

(x)

1: N(LT) = {0}

2. N(L*TLT) = {0}

3. R(L*T) = R(L*TLT) = Hx

4., The operator L¥* LT is positive. |

T

Corollary

If the system is observable on [0, Tl], it 1is observable on
[o, Tl], T, > Ty.
Proof: This follows trivially from the fact that

N(LTl) c N(LTl), L i

Scholium 1

T
The operator F*T g f ¢*(s)C*(s) * ds 1is compact in
0

L2(0, Ty5 H), T€[C, T,]
Proof: Let s = T-o in the expression of F*T. Then for some
T T
171
My w >0, J f | | % (T-0)C*(T-0)||2 dodT =

0 0

*
*) N( ) in this section stands for Nulspace of the operator in parenthesis.



A E A
max [|c*(o)|]? f I 12e2% (T~ 9 ggar <
o

oé[(), T].J o
) ZwOT
max [|c*(a) ]2 = (e =-1) <o
oe0, T,] (20 )2

Hence F*T 1s a Hilbert-Scnmidt operator and 1is therefore compact.l

Remark: The scholium does not say that the operator
L*T : L2¢0, T; gx) > Hx is compact. This would imply
that (L*T)* = C(t)¢(t). were compact which in general
is not true. It is true if case A has a normal spectrum.

This fact will be elaborated upon in the next paragraph.

3.3 On the Recuperation of the Initial Function; the Existence of
-1 T T
*
(L TLT)‘

Since L*TLT is symmetric,bounded and at least positive semi-

definite, o(L* L) C (o, ]IL*TLTI[]; The recuperability of the
initial function is related to the invertibility of L*TLT as
expressed in the following scholium.

Scholium 2.

If the system is observable on [Q, T] then

-1
= (L%
X (L TLT) L*Ty (6)



Proof: Since L*TLT is bounded, symmetric and at least positive semi-
+
definite, its spectrum is a subset of a compact set of R, i.e.,
r
o(L* L) ¢[{, IIL*TLTIIJ.
If the system is observable on [o, T] , theorem 1 says that
-1
* *
R(L TLT) is dense in Hx. Hense (L TLT) exists (at least as an
unbounded operator), and (c]“dtL!TLTF—J is a bounded operator whose
-3
*x | Adiowwn A~ 7 = * = *
limit for ¢ + ( is (L fLT) . #emee, Lox =y of L Tir¥, = L*py-
Clearly L*Ty € Do((L*TLT)-l) so that (6) holds, even if the inverse
operator is unbounded. E
It is interesting to elaborate on the invertibility. It will
be easily shown that if A has a normal spectrum and with the usual

assumptions of completeness of rootvectors that L¥* is compact

TLT
and an expression for the inverse can be given easily.
Let A have a normal spectrum and a complete set of rootvectors

in the (infinite dimensional) separable Hilbert space Hx. Let the

rootspace of Aieo(A) be Mi(A) with basis ¢, = [¢i,1 cee by "

’mi
where m is the dimension of Mi(A)' Similarly, let Mj(A*) be the
rootspace of A,ec(A*) with basis V¥, = el . Th

p 460 (4%) as J [wj,l wj’mﬁl en
clearly Wj is orthogonal to ¢i for i # j and for i = j,
(Wi, @i) #0 (1). We assume the basis elements normalized so that
(1)
Vg a0 P 97m e Ny g g 2y
X i x
(¥y> 05 = .

<wi,mi’ ¢i,l>Hx Ko <wi,mi’ ¢’1,mi’ux



m
(Wi, ¢i) = 1 , I being the identity on R L spanned by basis ¢i.
<P, 45Y>
Let A g Ap and (¥, y), 4 B d By
Mi(A) X s
<wi’mi!y>Hx

Then the solution x(t) of x = Ax, x(0) = X can be written as

x()) = I e Ty, xle) = I & (¥, e x) 1)
i=¢ i=0
® At
= I 01 e 1 (yi’ xo)'
i=0
A N Ait
Let T(t)xo = L ¢.e (Yi, xo)
N i=g
N
Clearly T, ¢+ H - I M, 1s compact since its rangespace is
N @ i=1 T

finite dimensional. Since TN(t) > eAt uniformly on compact subsets

of (0, =), eAt is compact. C(t) being bounded C(t)eAt - LT ,

te[8, T] , is compact. But then so are also L*_ and L*TL If

T J

* % {
L* L. is compact, 0 e p(L TLT) [Tl, p. 286, exercise 9]. Since

L*TLT is selfadjoint and bounded, its spectrum is a subset of the

real line, in fact o(Lx L)< [o, [Lx L |]].

(1)

We use the symbolic expression eAt for the semigroup ¢ (t) of A.
in order to avoid confusion with the basis vectors ¢i. If Ai is a

restriction of A, then the restriction of $(t) to the same sub-
space is ( ¢(t)), = ¢, (t) where ¢, (t) isAthe semigroup generated
by Ai or)written symbolically/¢>i (t) = e'i".



The whole question of observability revolves around & being an
eigenvalue or not. If 0 is an eigenvalue the corresponding rootspace
represents unobservable states. If ( is not an eigenvalue it is an
accumulation point of the spectrum. It constitutes, in fact, the con-
tinuous spectrum. In that case (L*TLT)-1 exists as in unbounded

operator on a dense domain. In fact, if ¢i = l¢i 12 +e¢ ¢1 m ] is
’ ’
i

a basis for the rootspace of Aie O(L*TLT) then

1 2 1
(L* L ) ~ = T o, (b,, .) (7
oy so Ay - H
where Ao = IIL*TLT|| and Ao > Al > AZ eee = 0.

This expression clearly reflects the unboundedness of the inverse.

But since -EA% o(L* , €>0, (eI + L*TL.I.)"l is bounded and has

1)

(7) as its limit {m»{-»é.

34. Differential Observability and the Observability-Gap

From definition 1 and theorem 1 it followed that observability
is equivalent to
() wa) - ®
t>0 t
The question here is if the intersection over teib,w) can be replaced
by intersection over [0, tlI for some t, > 0. 1If t; cannot be chosen

1

arbitrarily small but (9) holds, we will say that there is an



observability-gap. If tl may be chosen arbitrarily small, ie. (ﬁ: £

/) N(L,) = /ﬁ\ N(L,) = N(Lp) = {2}

t> & e>t>0

we will say that the system is differentially observable. The follow-

ing definition states this in a slightly different way.

Definition 2

The system is said to be differentially observable at t, if
observation of the output over an interval [to, t, + €] for arbitrary
small € > 3 suffices to determine the state at to.

We henceforth consider only linear time-invariant systems.

Scholium 3
Let the semigroup ¢ be analytic. Then, if the system is observable,
it is differentially observable.
Proof:
N N(Ly) = {o} is equivalent to

t>0

Co(t)x =0 allt>0=+x=20 (9)
If ¢ is analytic Co(t)x = 0 for te[G,e] implies (9). Hence,

N(Lg) = N N(L). Then if N N(L) = {0} , N(L) = {o} . K
t>0 t>0

Remark
Since for a F.D.S., Hx = Rn, ¢ is always analytic scholium 3 is

applicable. Moreover, the condition N(Ls) = {0} can be checked at
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t = 0 by looking at the Taylor expansion-coefficients of C$(t)x around

t =0, i.e., if Cé(t)x = 0, te[C,e] then

[(ccb(u))t=0 @) - @O ]x=0 (10)

By the Cayley-Hamilton theorem only the coefficients (C¢(t))(k),

k < n-1 have to be considered. Therefore, N(Le) = {0} implies and

is implied by (10) or

rank{C' WU ...{A'“'lc' ]= n ‘ (11)
For infinite dimension'al systems the Taylor-expansion for Cd)(t:)xo
still works if X, is an analytic vector of cf/, in which case we can
extend the mentioned criterion to infinite dimensions. This will

be done in a series of steps.

Theorem 2

A o0 A 0
Let P2 () N(cA™ and s = [) D (A"
n=

n=0 1
Then
1) PD s/ N(LT) for any T > O. (12)
3. P = {0} is a sufficient condition for differential observability.

Proof: To prove (1) 1let x € S N N(LT). Since x€S the expression
Cd(t)x is infinitely differentiable. Evaluating the derivatives at
t=o0 leads to the implication

Co(t)x = & for all te(0, T) 3 CA"x = 0 for all nEI+

Hence xeP{) S or xE:P/since PE S
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For 2), observe that P = {0} implies S N(LT) = {0} . Since for
the systems under consideration S is dense, and since N(LT) is closed
this implies N(LT).= {0} . R

Let Q denote the set of analytic vectors of the semigroup .
The following theorem expresses then that if Q is dense, P = {0} is

also a necessary condition for differential observability.

Theorem 3

Let Q be dense in Hx‘

Then N(Lp) = {0} = P = {0} .

Let x€QNP then x € N(LT)f7Q by the properties of analytic vectors
(see Chapter II). Using (12) then

P>SnN N(LT)DQnN(LT):JQ.f)P (13)

If Q is dense then N(Lp) = {0} » P = {0} . K

Corollary 1

The condition

©

I R(A*ICk) = }{x (14)
n=1

is sufficient for differential observability.
sl
Proof: Since N(CA™) € R((CAR)*)
*
and R((CA™)*) > R(A™ C*) > R(A*CH)

0o L- w :
clearly[ I OR(ARTCR) D /) NEA™ D () N(L)
n={

i=n t>&



L

(=]
Therefore [- I R(A*"c*) [ = {0} or (14) implies differential ob-
i=n
servability. |
The density of Q in H, used in theorem 3 may be relaxed. In

the following corollary c*x~1 stands for "the inverse image of C*",

Corollary 2

If M g cx~1 (R(C*)NQ) is dense in Hy condition (14) is a

necessary and sufficient condition for differential observability.
Proof: We need only to concentrate on the necessity condition.
<x, A*nC*y>H =0 fory e H;\M implies <x, ¢*(s)C*y>H = 0, s>0.
X X

If now y is arbitrary in Hy, let {yn} be a sequence in M, y +y.

Then 1lim <x,¢*(s)C*yn> = <x,¢*(s)C*y> . Hence <Ch(s)x, Yy o= 0
n-o y

s>0 for all y € Hy or x € () N(L,). Therefore N(Lp) = {0} » (14). K
s>0

3.5. Reducing a System. '"Minimal' Representation.

A"reduced" realization is a realization restricted to its con-
trollable and observable subspaces and ''realizing'" thus the same input-
output relation as the unreduced system. In analogy with F.D.S. such
systems could be called "minimal" (although this term in the case of
I.D.S. does not reflect necessarily a lower dimensionality, since the
reduced system will in general still be a I.D.S.). Let

Hj é [{W N(Lt)] be a nontrivial subspace of Hx. Ho represents the
t26

observable states. Let P be the projection operator PH, = Ho. If

X € Ho then Ax € Ho so that Ho is A-invariant. Therefore A can



be represented on H, = HOGE)HO as

2
n
~~
—
|
B
p—_
>

A A

11 12 11 .
H,
A= x
o AlZ = (I-—P)A!}'I
A22 o
= PA
Ayg Rk
(o]

Denote by X, é Px , X = (1-P)x.
Then! X, = A22x2 + PBu(t)
I s M Pxo

y = CP-lx2 , P"lx2 = {x |Px= xz}

represents the observable part of the system. Similarly let

A t
Hy = L) R(F ) , where F, 5 [ ¢(t-s)B.ds. Then clearly Hl is
t>0 °© 4

il

t 3
¢~invariant because, if x J 1 ¢(ty-s)Bu (s)ds. Then
3

tl t1+t
o(t)x = J ¢(t1+t—s)Bul(s)ds = { ¢(t,+t-$)Bu2(s)ds
o ]

where uz(s) = ul(s)) s € (O;tl)

0 otherwise.

Hence ¢ can be triangulated on Hl ®H = H  as

%11 ¢12
¢=
0 %22
Let Ay be the infinitesimal generator of ¢ll' Since clearly R(B) C Hl

the input term on which ¢>12, d),,z operate is zero and although
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¢12 # 0 and ¢22 # 0 in general, they have no effect. Hence,
Xp = A%t Bu(t), X0 = Pxo
y = CP—lx1
where X, = Px
PH, = Hl is a controllable realization.
If this restriction operation was done starting from an observable

system, the result would be a controllable and observable system. We

called such representation "minimal''.

36. Observability and Spectral Decompositions

The results stated here are more or less dual to controllability-
results stated in Chapter II. Therefore only the results will be
stated and instead of the proofs some applications will be considered
in the form of ekamples.

Assume A has normal spectrum and the rootvectors of A form a
complete set in Hx. Let Mi be the rootspace corresponding to Ai and

A
3A the eigenspace. Let Ai = AP and Pi a projector such that
i

Pin = Mi'

The following assertions are then clear. The proofs are almost
identical to the proofs of the corresponding statements for control-
lability in Chapter 2.

Statement 1

The total system is observable (not necessarily differentially)

if each spectral subsystem



xi = Aixi Y= CF Xy
/ﬂ] N
A
*i0 © Pi%o = Pix

is observable
Statement 2

The ith

spectral subsystem is observable if

N(C) N 3 ™ {0} (15)

Hence the total system is observable if (15) holds for all 1.

Statement 3
If the output is obtained via of finite number of output sensors

in a necessary condition for observability is that m > sup Vi, Y

1 i

the dimensions of 31.

Example 1. (Diffusion equation on [0,1])

Consider ©&x(t,z) _ &2x(t,z) 4 (¢
e = o Wl

X(t,O) = X(t,l) =0

1
y(t) = f 6(z-zl) x (t,z)dz = x(t,zl)
Jo

i.e., the output is obtained via a single transducer and is a point-

1
6
wise reading. The output operator is € = f 6(z—z1).dz and is clearly
Jo
bounded. The spectrum is normal (in fact simple) and the eigenfunctions

{Y2 sin nﬂz}w;= span H, = L2(O,1). Statement 1. and 2. says that,

1

since 3i is the one dimensional space spanned by sin ( imz), that

C(sin imz) = sin iﬂﬁ, # 0 for all i. Since the spectrum is simple,



the condition in statement 3 is satisfied with one sensor.

Example 2
Diffusion-equation on spatial domain [0,1] X [0,1].

§ x (t, z5» zz) 52 52
73 L o 2 & :——29 x + u(t, z;, z,)
z vZ
1 2
x(t, 0, zz) = x(t, 1, zz) = x(t, Z1s 0) = x(t, Zy» 1) =0

1,1 ” * 3 A
y(t) = [o I 6(21-21) 6(22—22) x(t, Zy5 zz)dzldz2 = x(t, z)5 z2)

o

The spectrum is {(pz + qz)nZ}: i 1 and {2 sin wpz
’

»sin nqzz} ”

1 P,q=1

are the eigenfunctions. Clearly if pi + qi = m2 then p; + qg = m2

for Py =95 9, = Py - Hence the multiplicity of each eigenvalue m272
is at least 2. From statement 3 it follows that this system cannot
be observable with one sensor. In fact, we need an unbounded number
of sensors (see Appindix B, section 3.3, example 1).

Example 3

Consider the higher order system

n 61
z P; —7 X +Ax =0 , Py ™ 1
i=0 st
(a)
(1)(0) fi for 1 =0, ... , n-1
s
y = . X (b)
C
m
A is selfadjoint; C i=1, ... m are bounded operators.

i,



— AQ. -

Since we did not consider such higher-order systems in Chapter I, a word
on well-posedness is in order.

A higher order system

x@ () = ax(e) , ter

(c)
x®) (o) = £ ,k=0, ...n~-1

will be said to be wellposed if there exists a dense subspace D of

€ D and,

H_ such that one has a unique solution for f , ..., f
X u n-1

whenever {{f %} is a net of initial data in D
k k—o,...,n—l aCJ

tending to zero then x*(t) + 0 for each teR+. System (c) then is
"wellposed" in the above sense for n > 3 iff A is bounded. (Fattorini,
[F2]). We henceforth assume A is bounded. By standard manipulation

(a) can be brought into the form

x =/¥x

(d)
y = Cx
where
0 1~ 0- 0
A= : =
.—(po + A) - Py +++ “P_1
nxn
(c. o 0
C= 1
¢ 0 0
m

mxn



Let A have a discrete spectrum {Ai} :no : Then;q is isomorphic to a
Y

matrix representation /{ = diag 541} 42, ...] where

A -
—(p°+l)- ) e -pn"l
It is now easy to see that the spectral multiplicity of A determines

the spectral multiplicity of/4 and therefore by statement 3 determines

the minimal number of sensors needed for observability.

37. Partial Controllability and Observability. On Design Procedures
for I.D.S.

For many applications, like stabilizing the system by pole-
relocation through use of a state-feedback or building an observer
to observe a subspace of a state-space, the requirements that the
system be controllable and observable in the sense used hitherto are
not minimal. One can introduce the notion of partial controllability
and observability meaning that only certain subspaces of the state-
spave need to be controllable for certain operations to be possible.
If N poles need to be relocated, it suffices that the corresponding
rootspace S is controllable. e.g., if one wants to stabilize a
system having poles {li}§=l 5 Reki >0 ... this partial control-
lability suffices to relocate these poles to any preassigned symmetric

set of N complex values, g“i}§=l’ for example with Re ju;, < 0. The



resulting system is stabilized. If one 1s only interested in a stable
output this condition can be relaxed to Snw'Lbeing controllable where
WeN(C) and W is the maximum (A,B)-invariant subspace in N(C). This
result is discussed in detail in connection with a type of I.D.S. in
Chapter IV.

A dual problem to that of pole—relocation is that of dynamic
observers (Wonham, [W7]). Suppose one is interested only in the be-
havior of the statecomponent Xy in the rootspace corresponding to

N eigenvalues. If the system reduced to this subspace is a F.D.S.
say of dimension ; one can build a Luenburger observer to ''reconstruct"
the state. Let dim. R(C) = m then the observer has a minimal dimension
g - m. Since XN is an approximation for the state x, the designer
might want to make a trade-off between cost and accuracy, i.e., be-
tween more sensors (ﬁf), and the cost associated with the number of
dynamics of the observer (E - m*) and accuracy (N+) by taking a larger
part of the spectrum into account.

Most design procedures available for D.P.S. e.g., for state-
estimation, reconstruction, optimal control, start off by forming a
finite dimentional plant model. This model may be obtained via spectral
theory in case the root-functions are readily computable. This leads
to the easiest implementation, an important reason for this being the

invariance of the rootspace under the system operator A. Other methods

include the Bubnov-Galerkin method[.Ml, Pz_} On this model all finite



dimensional control techniques can then be applied without any dif-
ficulty, e.g., to solve a quadratic regulator problem, build a
deterministic observer to estimate the model state, then design the
lumped controller. The observer uses output-data from the actual
plant and the controller operates on the inputs of the actual plant.
The design of the interface between the D.P.S. and the F.D.S. that
is designed to operate with the D.P.S. is a worthwhile aspect of the
problem: the actual location of input zones and output transducers
and their number will largely determine the overall quality of the
design. For D.P.S. over a multidimensional spatial domain this may
not be an easy problem and very little is available in the literature.
The location problem may be considered as a sensitivity problem
assuming the basic requirements like partial controllability or
observability on certain rootspaces are fulfilled (and which excludes
already certain locations).

Consider first the case of a reconstructor for X, € H1==the
direct sum of rootspaces of N poles (dimension g). Let Ailg Ar,H 3
1

A
K A )
22 = Ap
4

1]
~

Then x = Xy + Xo» X, € Hl,



The reconstructor for x1 has the form z=A _z+ B,u+ Hy - HC.z.

11 1 1

A A
Let z = x,, the estimate for xl. The error e s X, -

1 17%1 satisfies then
e = (All - ucl) e + HC2x2 and is therefore not limited to a transient
effect 1if HC2 # 0. If u=K Ql the overall feedback compensator is

described by

i E [

x; | [An B,K B, K 0 £ |
e = 0 All—HCl HC2 e
.xz - BZK BZK A22 ]. xz A

Unless HC2 or BZK is zero the spectrum of the overall system is not

2 i )
o(Al1 le)() o(A11 Hcl) ¥ o(AZZ), Therefore the spectrum of the
“neglected" part of the system is affected and the "intended" pole-
locations of the system in Hl and the reconstructor are not realized

exactly. However, the operators H and K are at our choice and although

(1)

their primary function is to specify the spectrum of the part of

the I.D.S. modelled by the F.D. plant and the spectrum of the re-

constructog)they may be used to cancel entries in B2K respectively

HCZ' Most effective to this purpose is to chose the locations of

input-zones and output-transducers since they affect directly the

entries of Bz respectively CZ‘

(1)

If the reconstructor serves to provide the state for a feedback
lav in a quadratic regulator problem K has to satisfy a Riccati-
type equation instead.



In case one wants to use a minimal order observer to achieve the

same purpose d reconstructing Xy let C = [Cl E C3]' cl 2 CPH
C3 4 Ch{ Then i
1
v L
H = N(C)) ®N(C)NH @H, = H SHy, Hy £ Hy
()

Hl is an observable subspace. Assume d(C) = m (all measurements are

independent) and for simplicity let d(Cl) = m (otherwise the measure-

ments would not be independent with respect to the approximate plant
~

model and some transducers where not necessary). Let N > m, other-
wise there would be no need for a dynamic reconstructor. In Hl one

may change the coordinate system to obtain a new Cl derfted
~

c, [1 ; 0].

1 ~N
Since clearly N(Cl) and N(Cl) N Hl are not A-invariant A on

v v
N(Cl)GB N(Cl) N H; is then no longer block~diagonal but

~ N v
~ All A12 N Bl
A= n n . Simi larly B = n,

A A2 By

A
B, = P,B where P, projects Hx »+ H

3 3 3 3°

The observer is then easily derived to be
with

F 2+ Gu + R + R

N.
]

171 373

@ d(C) é dimension of range of C.



- L
f z = X, + le !1 = xl
F = X22 + PXIZ 13 = C3x3, x3 being the
_ v component of x in H,.
G = B, + B 3
R, = Pk, - K,p + %, - PX, ,P.
. By = K

where the gain matrix P is an N-m x m-matrix to be chosen freely to

regulate the error dynamics.

Again, the estimation error satisfies

[ ]
AN R e
! I o
(x2-x2) = e, (A22 lez)e2 + PC3x3

~

X
so that the overall feedback compensator with u =l‘Kl’ Kz]/-.l]
i N 3 . X2
and X, =% 5 given hj
.—
] " N n N
X K +B K X12+%1K2 B K, o [ x,
X X +8.K X, .+8.K -B.K 0 X
%5 3 i | 227022 22 2
e 0 0 A22—PA12 PC3 e
Lx ) Lmggg Wi 0 Ayy AL

Case of Hy
As for thenenminimal observer the same observations on the role of

sensor locations hold.



Reﬁark

If the observer is used in line with a quadratic regulator it
would be an easy matter to calculate the costincrement due to the
error of the estimate. For F.D.S. similar results were obtained by
Bongiorno and Youla [B3].

We conclude this paragraph with a remark on sensitivity. It
is advantageous to give the observer fast dynamics, but not too fast
(spectrum + —»), in which case it starts behaving as differentiators
and will be very sensitive to disturbances. Overall sensitivity of
observers to sensor location has not been studied and rests on con-
cepts as yet not developed. Th; system observed has to be observable.
Sensitivity depends on "how observable" it is. We comment on this in

section 8.

3.8. Quality of Observability

In this paragraph we attempt to give some meaning tothe notion

A
i

]
¢ i] and

of "quality" of observability (and controllability). Let A

Cp beas in section 6. Let Q a fer. 3. e, A'n'_1
Gp i Lo "4 % ™%
i

runKQi - - dim}P?i for all iEI+ corresponding to A, € 0(A). Let C'

i i

be an nixm matrix, where m is the number of output sensors. Define

a vector 3} 2 x for arbitrary x, el.

1Y
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Definition

The ''worst observable" direction in?ﬂi is the direction x*1

mn
L
j=1i

i (ai )2)1/2

minimizing ||a(l| = ( j

i.e., |Lai(x*i)]| =

| i
ot e el

~

Let ai indicate, for a choice of C (or sensor locations 21y sees zm)
this infimum. Clearly, ol > 0 if?ﬂi is an observable subspace.
However, o' small is an indication of "almost" linear dependence of

any set of n, columns of Qi spanning?ﬂi.

i
Since the entries of C (in the "spectral' representation of the

system) are determined by the sensor location, we can by changing the

location manipulate the 'quality' of observability. Depending on

the problem, possible sensor locations 2 may be restricted (e.g.,

for a problem involving measurements on 3-dimensional bodies, it

may be imposed that the sensors are located on the outer surface).

If this admissible area is denoted by 5, one has to chose in 5 m

points to maximize a function a of ai (; 5 Hereie ém) for 1 € I+. 1f

the plant model is based on N poles then i € [0, ... N]. Thena ctd

for example be chosen to be a = min ai , pointwise over

ieli,...N]

~ ~ ] ~
2 m
F2, e zm]e(Q) ‘

1



Example.

Consider again example 1 in section 6. Then ai = sin inz .
N

If N poles are considered for the plant model a(z) = /\ |sin imz]
i=1
and "maximal' observability corresponds to chosing the sensor location

) = max a(z). This coincides here with chosing
ze[O,l]

the sensor location as to maximize collectively the output readings

zy so that a(zl

for all N modes.

Conclusion

In this chapter the general theory of observability of I.D.S.
has been considered. Considerable attention was given to conditions
for differential observability. The notions of "minimal" representa-
tions and '"quality" of observability were presented. The spectral
theory wasmostly restricted to the case the system operator has
normal spectrum. Explicit formulae for the recuperation of the
initial function wre then obtained. Section 7 give some remarks
on design procedures for D.P.S. and the usefullness of partial ob-

servability.



CHAPTER IV

ON QUALITATIVE PROPERTIES OF DELAY-SYSTEMS

In this chapter some general controllability criteria are
developed for a general type of systems with hereditary dependence.
Next these results are specialized for a type of system for which
spectral decomposition methods can be used. On the basis of this
some stabilizability-results are derived. An important contribution
of this chapter is the result on output-stabilizability. At the
end of the chapter a comprehensive review is given of existing

criteria interpreted in the light of our present treatment.

4.1 System Description

Introduction. Systems of the form

e
"
™
>
"

(t-h ) + Bu(t) (1)

< < o
0<h <h, ... <hg

Ai(t) n x n matrices, 1 =

I
,—J
Z

x(t) an n-vectorvalued function

B(t) n x m matrix

are called delay-systems or systems with hereditary dependence. They
represent the simplest form of delay-systems we have in mind:

the instantaneocus rate of change x (t) depends on a discrete set



of past values. Systems of this type were intensively studied as
for existence and uniqueness of solutions and their spectral
properties [ref.32,H2,H3,01 ]. Many physical systems can be
modelled as delay-systems. Such models are used often as
"refinements" or "exacter" models for systems considered before
as ordinary lumped systems. For some ecological and biomedical
applications see ref. [ W1, W2, W5].

More complicated models consider nonlinear systems for
addition, for example a retarded argument for the control function

u(t), or with the delay itself a time function as, for example, in
k (t) = £(t, x(a;(£)), X(ay(t)), - - . x(a (8)).  (2)

where a < ai(t) <t for t > a and ai(t) continuous functions.

Krasovski and later Hale [43] introduced a new technique
for solving such and more general types of delay-systems by
considering them as functional differential equations. They intro-
duce the notion of the "state" as a piece of a trajectory. The
instantaneous rate of change at t (x (t)) is then determined by
the '"state". We develop some notation.

Let [tl,tz] be a finite interval on the real line and T a
positive real number. Let C([tl -T, t2]; R") denote the space
of continuous linear mappings from [t:1 - T, tz] + R", Consider
on this C the norm of uniform convergence to make it a Banach

ax
L

space, 1l.e. Il ¢ ] ¢ gt) | where |+| is any norm R>.
t

te[t. -T, ?



*
Define x (8) € c([-T,0]; R") for t € [t),t,] as

x, (6) 2 x(t+0) -t <8 <0. (3)

mostly denoted by x.. It is called the '"state'" of the system in

the following model.

Mathematical model considered. Consider the system model

x (t) = L(t.xt) + Bu(t) (4)

where L is a bounded mapping from R x C + Rn, continuous in t.
B is an n x m - matrix, continuous in t. Let the initial
condition be given as a function in C.
If L is linear in X, the system is called linear.
If L is linear (and bounded) one may apply Riesz representation

theorem and write (4) as
0

x (t) = j dy (t,0) x (8) + Bu(t) (5)
-T

where y(t,0) is an nxn - matrix of functions of bounded variation

and d denotes the Stieltjes integral with respect to variable 6.

Remark: Discrete time lag systems as (1) are obviously a special
case of the continuous time lag systems (4)(5). To see this,

define

*
Henceforth C stands for C([-T,O];Rn)



N
y(t,8) = I A (r) for 8 > 0
1=0
N
= L A (t) for -h, <6 <0
- i 1 -
. N
= I Al(r) for -h, < 6 < -h
i=k
- AN(t) for ~h < 0 < B
= 0 for 0 < -hN
N 0
Then I Ai(t) x (t'hi) = f dy(t,0)x_(8)
t
i=0 %

N
where y(t,0) is pilecewise constant in 6. The important special

case of (5) is the case of time-invariant systems, i.e.

»e
L}

L(xt) + Bu(t)

(6)

0
f dy (€)x (6) + Bu(t)
=T
This model will allow us to apply spectral theory for unbounded
operators and apply some results obtained for systems with normal

spectra in Chapter II.



4.2 Existence, uniqueness and continuity with respect to initial

data of the solutions.

*
Consider again model (4 )

Definition 1. Solution.

x is said to be a solution of (4) if there are real numbers

C€R, A> 0 such that x€C([o - T, 0 + A]); R™) and x(t)
for t €[o,0 + A) satisfies (4). x is then said to be a solution

of (4) on [0 - T, 0 + A].

Definition 2. Solution with initial function given.

Given the function Y ¢ C([-T, 0]; RF), we say x(o, V) is a
solution of (4) with initial condition Y at 0 if there exists
an A > 0 such that x(o, ¥) is a solution of (4) as [0 - T, 0 + A]
with xo(O, V) = ¥.

We state three existence and uniqueness theorems, respectively
for models (4)(5)(6), each time obtaining more explicit results.
In the next paragraphs we will only be able to use the results for
(5)(6). The results for (4) are only stated for completeness.

For proofs we refer to [H3].

*
The term Bu(t) can be considered part of L(t,xl) in this
model.
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Definition 3. Carotheodory condition.

Let D be an open set in R x C.
L(t,xt) : D+ R" is said to satisfy the Carotheodory

condition on D if

- L(t,xt) is measurable in t for fixed X, and continuous

in X, for fixed t.
- for fixed (t,xt) € D there exists a neighborhood

N(t,xt; €) and an integrable function 2(s) such that

|L(s, ¥)| < 2(s) for all (s, V) € N(t,x ; €).

Theorem 1. (Thm. 5.1, 5.2 and $7 in Hale [43])
(Local existence).

Consider the system

t

x(t) = &(0) + JL(s,xs)ds , t>0
9 (7a)
Xy ™ ¢ ¢ ¢C
If L satisifies the Carotheodory condition on an open set D<R x C
and L(t,$) in Lipschitz in ¢ on each compact set in D there exists
a unique solution of (7) through each point (0,9) & D. ]

If model (4) is specialized to (5) the local solutions on

[6, 0 + €} can be extended to [0,*). This is stated in Theorem 2.



1
(o8}
w
|

Definition 4. Let Lioc ([o,®); Rﬁ) denote the space of functions

g: [0,») > R" which are integrable over arbitrary compact subsets

of [0,»).

Theorem 2. (Version of Theorem 16.1, Hale [H3]).
Consider the homogeneous form of model  (5), denoted by

(5"). If |L(t,d] < 2(t) |¢] for all t € (- =, + =), ¢ €C and

loc
1

Then for any (0,4) € R x C there exists a unique solution x(0,9)

2 €L C (~2; +9)5 R)

defined and continuous on [0 - T, ®) satisfying (5') on [0,]. H

Remark 2. In the context of controllability a special version of

(5') will be considered, namely the case where L(t,xt) has the form

0
N
L(t,xt) kil Ak(t) x (t - wk) + f A(t,0) x (t + 0)d6

T

where 0 j_wkli T and A(t,0) is integrable in 6 for each t, and

0
| J A(t,0)$(8)d8| < a(t)|¢| for all te¢R, ¢ €R
-T
loc

and some a(t) e.Ll ((= @, $7e)3 B)°

Hale states: "This is the most general type of linear system
with finite lag known to be useful."

The next corollary states the variation of constants formula

i.e. gives the expression for the solution of (5), if u(t) is



considered as the control function.

Corollary 1. (Thm. 16.1, 16.3, Hale [H3]).

A s
Let L be as in Theorem 2. Let Bu(t) = h in (5) be an element

of Lioc ([o,=]; R"). Then there exists a unique solution

x(0,$,h) to (5) defined and continuous on [0 - T, ©) satisfying

(5) on [0,«6. Moreover,

x(o,$,h) = x(0,¢,0) + x(0,0,h) where

x(0,$,0)(t) : C + R" and

x(0,0,h) (t) : L7°¢ ([o,e]; R > &"
are continuous linear maps
t
x(0,0,h) = [ K(t,s)h(s)ds t>0o (7b)
o
with
8K (w
Bt (t,s) = L(t,Kt(.,s)) t>s d&.e. in t andls,
K(t,8) = 0 for t < s and K(t,s) = I for t = s, l

The expression for the solution to model (6) will play a very

important role and is stated in the next paragraph.

()
K. (.»8)(0) = K(t + 8,5), -T < 8 < 0.



4.3 Semigroup representation - Infinitesimal generator

Consider
X = L(xt) + Bu(t) (6)

and let
L be linear and continuous in xt
B be a n x m matrix

u(t) € L;“ (€0,=); R™)
Then

Theorem 3. (§19 in Hale [H3]).

The solution x(0,$,h) has the form
>
x(0,6,u) = x(0,9,0) + J T(t - T) Bu(tr)dr (7
o]

and T is a one-parameter semigroup of bounded linear operators
satisfying
T(0) = 1

T(s) = 0s8 <0

ﬂfi-?i = L(T(t)$) for 6 = 0

(9)

d +
=35 (MO E) -t <8 <0

Also T(t) is compact for t > T. f



Infinitesimal generator of T. The infinitesimal generator of T

is defined by

1
Ad = lim, = [T(h)¢-¢] (10)
not B

and DO(A) as the set of functions ¢ for which the limit exists.

Hale (}t3] shows that

DO(A) = {¢ € C} ¢ has continuous derivative on [-1,0]

with & (0) = L(¢).}

and

A$(0), = 9—%—91,— T<8<0
(11)

= L(¢) 6=0

One can write the solution x(0,$,u) as given in Theorem 3 in a

different manner , m,umc‘l.y

: t+6
X(0,¢,U)(t +9) = X(O,¢,0)(t + 8) + I T(t + 6 - S) BU(S)dS

o
(12)

for t + 6 > 0.

x(0,9,u)(t + 8) = ¢(t + 6) c-t<t+8<0, -T<6<L0

/
Actually, x(0,9,0)(t + 8)(= (T(E -0)d)B), t+ 6 >0

=¢(t+8) 0-T7T<t+6H<o0.



3! ;
One can denote T(t + 6 - 8) = T(t - s)Xo(GL The integral-

term of x(0,%,u) can then be written as
t
f T(t - 8) Xo Bu(s)ds
o

and denotes an element in C if xo(e) is defined as

Xo(e){' I for 6 = 0

= 0 for -t <8 <0
Hence (12) can be rewritten as

t
xt(o,¢,u) = T(t - O)¢ + I T(t - s) Xo Bu(s)ds (13)
g

which is a solution of a functional differential equation of the
type
X a® A x, + X, Bu
(14a)
Xpug ™ @
Expression (14) is an equivalent form to (6) and is more suitable

in a control-theoretic context. Indeed X, is the '"state'" so that

(14) is the usual "state-equation'. The problem of existence and

uniqueness of solutions has been solved, the solution being (13).

Remark: The solution (7b) for timevarying systems can be written

in a functional form similar to (13).



t
xt(G) = (T(t,0)¢)(6) + [ T(t + 9,s) Bu(s)ds (14b)
(o}
t
or X, = T(t,0)¢ + I T(t,s) Xo Bu(s)ds (l4c)
c

with the same definition for Xo .

4.4 Simplifying assumptions on L(x ) - Adjoints

It is well known that if a space C is decompdsed in a
direct sum of A-invariant subspaces called spectral subspaces the
spectral components of an element in the space are obtained with
the help of eigenvectors of the adjoint of A in C*.
In case C 4 c([-T,0]; Rp),C* is the Banach space of functions
Y : [-T,0] ~> RP* of bounded variation on [-T,0), A* is the
topological adjoint of A. This setting results in very complicated
analysis. However Hale has shown that by restricting L(xt) further

to be of the form

@ 0
L($) = T A ¢(-1) + f A(E) (&) dE ,tdﬁrc (15)
k=1
T

0 < T < 1 for all k

Ak are n X n matrices

A(E) is a continuous matrix function in R

the adjoint can be defined with respect to a new bilinear

A B
form. The dual of C is then C* = C((0,T); R® ) and the adjoint



A* is defined via
0

Lx(Y) = - Z YOG IA - f Y(-E) A(E)dE
k=1 g

The bilinear form in question is
Tk

(b,9) = p(0)4(0) - Z J V(EYA O(E - T, )dE
k=1
0

0 0
- [ f V(E)A(D)H(E + B)dEdS®
-T -0

for ¢y €cC*, ¢ €C.

One can put (15)(16)(17) in a more standard form,

0
With L(x,) = f dgy + x(t + 6)

-T
0

x (t) = f dg v + x(t + 6)
-T

The adjoint equation is then

0
y () = - f y(t - 0)dgy
T

(16)

an

(18)

(16) '

an'
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with respect to inner product

W,9) = ¥(0)$(0) -

0
f W(E - 6) [dgy16(E)dE
0

A~——0o

In state-space formulation (10) becomes

xt-Axt

If we define

yt € C* as

y5 ) Sy + ) , £ €l
then y C = ax yt

where A* (and Do(A*)) satisfies

("f)sA‘b) » (A*‘P,(b) for ¢ € DO(A)’ v € DO(A*)

using inner product (18)°.

Hale [H3] shows that

Axy(s8) = - g%égl_ 0<s <7

0
= f Y(-s)dy(s) s =0
T

; *
WIH\ DO(A*) = {y € c([0o,T]; R o ) /U has continuous

0
derivative and S5O - f Y(-0)dy(6) . | -
T

(18)'

(16)"

(17)|I



The solution to (16)'', for initial function ¢ € C, on

[0 - Z,~] was shown to be of the form
X = T(t ~ 0)¢ (16) """
To (17)'' for ¢ € C* on (- «,0 + ) | the scluhica s
y© = T*(t - 0) an’

This T*(t) is a semigroup satisfying

ﬂgg—)— Y= —A*T*(1)Y = - T*(1)A*Y (19)

This T* is not the topological adjoint of T, however.

The notions of A%, T* on C* will be the important tools for

the spectral decomposition.

T and T* are closely related in the sense that, if

X, is a solution to (16) onw - 7 <t < =

yt is a solution to (17) on - ® <t <0 + 1

then

(yt,xt) = constant on [w,0].

4.5 Salient properties of the spectrum of A.

We continue with the simplified form for L introduced in 4 .4.
The spectrum follows from the study of R(A,A) = (AI - A)_l.

If (AI - A)-1 exists but R(AT - A) is dense there can be no residual
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spectrum. If on this dense range (AI - A)'—l is continuous, its
domain of definition can be extended to the whole space, there is
no continuous spectrum. The values of A where (AI - A)"l does not

exist constitute then the discrete spectrum.

Properties of o0(A), A as in 4 .4.

1 0(A) is a countable point spectrum of finite algebraic
multiplicity determined from the entire function ¢(A) = 0

where

0
$00) = dét [AT - [ 8 4y 1. (20)
T

-~

2z o(A) ¢ {A | Re A < a for some real a}.

3. o (A) n {2 I 2 < Re A < ¢ for some real %,c} is finite.

. 0
4, 1f ¢(0) £ f)) (AT - Iexe dy(6)) and A € 0(A) then
T
AB
e $(0) is an eigenvector, -T < 6 < 0. (21)
5. The generalized eigenvectors ¢(6) have the general form
K j -1
Ly 'e—l—ieAG =T £ 0:%10, (22)
j=1 33 - 1¢
Where Y < ()? (Ak)
P, P, ..._. P 0
Af gt A 2y 4 20
Ak = 9 ~ \\\Pz , r"i = i-!—-k (A1 - fe dy(8)).
; N di
i '()— o ~ Pl T

v



Many of these properties could be derived from the fact that
T(t), the semigroup of A, is compact for t 3 T.

First, observe [HS5,p467] the following relation between
the spectrum of T(t) for t 2 0 and JZA)

Cr(e)y = W=D () (53
*

" Next, observe

1/n

where g means ''plus eventually the point zero.

that for s > T, T(s) is compact. Let T = lim llTn(s)Il
n>e

denote its spectral radius. Then [T1] 0(T(s)) is a point

spectrum and included in the set C, g OVAPNIRS ;}. Also 0 € o(T(s))

and if 6(T(s)) is infinite, 0 is its only cluster point.

If A # 0, A € 0(T(s)) then X is an eigenvalue ; then there
exist two closed subspaces M(A,s), N(A,s) with M(A,s) finite
dimensional, reducing T(s). The restriction of T(s) to N(A,s)
is again compact and has spectrum §(T(s)) - {A}.

We concentrate now on statements 2 and 3 on the spectral
properties of A. Statement 2 follows from (T (s)) <cy

since this implies G(A) <{rA/Re < &EE ¥

For statement 3
observe that the number of eigenvalues m of T(s) satisfying

S < lﬁd < e°% for some real 2, ¢, ®> ¢ > L > 0, is finite and
for each eigenvalue y satisfying that condition the root space M(u,s)
is finite dimensional. Let now {An}nEQ be distinct points in 6 (A) such
that eA“S = |, U € 0(T(s)) and such that ezs < ]p[ < e, Then Mgk,s) =
Z()Y] where‘h]x (A) is the root space for An € g(A). The
nEQ n

index set Q therefore is finite. Since the number of « satisfying

the above conditions is finite statement 3 is seen to hold.



4.6 Direct decomposition of C and C* ~ Completeness of root-vectors,

TE Ao # 0 is a pole of R(A,A) of order m then the Laurent

expansion for |\ - AOI < e, € sufficiently small, is

m 0
-n n
R(A,A) = 151 (A =2 +§ (A- N (24)
(Taylor #5.8, [Ti]) and P, C = le (A - A,D" (25)

The latter is the root-space of A for AO for which we used

the notation /)?ﬂ (A). Then (Taylor, [Ti])
0
c=M e RO -H™ (26)
0

Similarly

C* =m’)A0(A*) & RO, - A", (27)

since 0(A) = 0(A*) and (Hale [H3], lemma 21.2)

o1 m
m?"o (&) = RO, 1 -4 . (28)

Here orthogonality is with respect to the inner product defined
in &.4.
= ! i *
Let ¥, = rows (ul, v e ey wp) be a basis for 1VA(A )
and QA = columns (wl, : % u wp) be a basis for7NA(A)
and (wA,QA) = [(wj,éi)], then this matrix is nonsingular and

may be taken I, the identity matrix.



It follows that for ¢ &€ C, ¢ = ¢l + ¢, with ¢l & /YY))\(A),

L
¢, € m'h(A*) and ¢, 1s given by
¢1 = ¢A(¢A,¢) = Pl,x¢- (29)
¢2 = ¢ - ¢1'

Scholium 1. Let @A,wl be as before.
-~ ¢ A Y
Define PA QA(*X"' for A € 0(A).

Then PAiPAj = Gijpli 2 Ai’Aj € o(A).

Motivation: This scholium assures that if we use the family of
projecmons{PA}Ae:c(A), the decomposition thgs obtained is unique.

i.e. for x €L ﬂﬂA(A) then x = Z(Plx). We obviously would like
@® @

Z/H}A(A) = C which is the statement for completeness of root
@
Ae o (A)

vectors. This will be treated later. This scholium corresponds

to Hale [H3], lemma 21.6 the proof of which was left as an exercise.

Proof. Clearly PA is a projecticn since it is idempotent and

bounded. The first property follows from
Qx(wx’[éx(wkyx)]) = Qk(wxsl)-

If By,Py, # 0 for A, # A, let /LN 7], be a d-dimensional

subspace. Let ﬂyki = foz(A - AiI)s for minimum index s, «ricl
hs = ¢

I)r, for minimum r. Since A commutes with

3
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(A - A, 1)° and (A - Ajl)r, AM) C 7). Let @ be a basis for m.

Then there exists a d x d matrix B such that
Ap = ¢B
This B moreover satisfies

¢ -ADY= -2 nd=o

3

which is a contradiction.

On completeness of the system of root vectors we can make the

following observations. If ¢ £ C, z PA¢ may or may not converge.
Aco(A)

If it converges, let r, = ¢ = I PA¢' Consider the solution xt(r a)
¢ Rel>-a ¢

at some big a>0
with initial condition r¢ at 0. Then

|| %, (rge0 1] < k™29 |] 6 1]

for some k > 0.

Consider £ P,06 and the corresponding r,. Then eMtllx (r,,0) ||+
Aea (A) A : o the

as t + © for arbitrary M, i.e. the solution, based on the "rest" of ¢
decays faster than any exponential. This means that the significant part
of the solution T(t,0)d lies in the root-spaces of T and these solutions
grow and decay as exponentials. In case ZPA¢ diverges, partial sums still
provide a good estimate to the solution as far as the behavior of
xt(¢,6) is concerned for t -+ «.

The case EPAx convergent always occurs if A is a spectral operator
(Dunford and Schwartz, [p2) Vol. IIT, and [$3]). In particular, if T(t)

has spectral radius %ig !! ™ |!1/n < 1 then T is a spectral opcrator and



its quasi-nilpotent part is zero. This implies g o= 0 (Hahn [Hi]). Let
P, be the projectiwsncorresponding to the eigenvalues of T outside the
unitcko. Consider C2 = (I - Pl)C. Let T2 denote the reduction of T to

C Then O(TZ) =a(r) N {) : IA[ < 1} and T2 has spectral radius less

20

than 1. Since T is a spectral operator, T, is and its quasi-nilpotent

2

part is 0. Hence h) (PA¢) converges to ¢ - P1¢ for any ¢ & C.
A
leO(Tz)

4.7 Reduction of the operators AT

A
For A ¢ 0(A) the pair of closed subspaces ((YQA(A), /»]A(A*) )
reduces A as was demonstrated.Given a basis ¢l in /VOX(A) with basis
elements (¢l, & & wg ¢d) the reduction of A to f”A(A) can be written

as a d x d matrix BA such that

= $.B (30)

A®y = &,By

and o(By) = {A}. (31)
The ¢A—vectors are root vectors and thus have the general form discussed
in 4 .5. However, using (30) and (11) it is easily derived that
BAG
¢A(0) = ¢A(c)e where ¢A(0) satisfies (32)

B, 6
9,(0)By = L(%,(0)e ) . (33)

Formulae (30) and (32) completely give the reduction of A. The same

subspaces also reduce T, the semigroup of A. The following formulae

are then easily derived:
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d
e T(t) ¢A = AT(t) ¢A = T(t) ¢ABA (34)
Byt B, t
or T(t) ¢k = {T(t) QA) e = ¢A e (35)
t=0
Bx(t + 0)
or (T(t) @x)(e) = ¢A (0) e -T1<6<0,t>0 (36)

This leads to the expression of the solution to X

space /YVX'

o™ Axt, X - ¢ in sub-

Let ¢ € C’then its projection on lovk is ¢A (wl?¢)' The solution

in (W}, is then
BA(t + 0)
xt(¢a0)r\ = (bA (0) e (¢)\!¢)-
L)
The solution to the forced system it = Axt + XoBu(t) (see (14)), with i.c.

X0 = % has the form expressed in formula (13).
Then
xt(q)’u)!m}x aal ¢A (wxyxt(¢,u)) (37)
t -
- d’)‘(\p)‘,T(t)d)) + f ¢>\ (Q’A,T(t - U) XO Bu(O))dG
0
Bt ’ BA(t - 0)
=8 . e (hy,0) + f o . e ¥, (0)Bu(0)do
0
A
Let (wk’xt) = y(t) then (38)
th ¢ Bx(t - 0)
y(t) = e " y(0) + f e wA(O)Bu(O)dO i (39)
0
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This is the solution to the finite dimensional system
§(t) = Byy(e) + ¥, (0)Bu(r) (40)

y(0) = (¥y,9)
The dimension equals the dimension of ﬁqk’ i.e. the algebraic multiplicity
of eigenvalue A and has nothing to do with thé dimension n of x(t).
The solution x: in the complementary space KWWA(A*)JL can be seen
to satisfy

2
X, = x, =~ 9 (¥,,x,) (41)

and in view of (38)(39)(13)

t
X2 = T(t - 0) (6 ~ &,(Uy,0)) + f T(t = ) (X, = 6,0, (0)) Bu(o)do (42)
0

4.8 Controllability.

The detailed analysis of the preceding paragraphs will allow a
succinct treatment of controllability.and related notions. This paragraph
is essentially made up by two parts. In the first controllability for
the most general type of linear systems for which we have global existence
of solutions is considered. These systems correspond to the linear time
varying type (5) whose solutions were discussed in Theorem 2. We will
call them type A. One could have presented a theory for local con-
trollability as well, corresponding to (4) and Theorem 2. Controllability
for nonlinear systems however will not be included. In the second half of

this paragraph we restrict attention to systems for which spmectral theory



is available, i.e. linear, time-invariant system of the type (6) with
the additional restriction (15). Systems of this form will be said to be

of type B.

4 .8.1 Definitions.

The "'state-space' is C g c([- 1,0]; . A "trajectory-set" is

defined as a set in R". The space of admissible controls is U = Lioc

([O,w];Rm). The solution to (5) was discussed in corollarys and shown

(in 14b, 1l4c) to have the form
t
(xt(¢,u))(8) = T(t,0) &(6) + f T(t + e,s) Bu(s)
0
on [o0,=]. (43)

If this expression is evaluated at 6 = 0, the "trajectory'" is obtained.

(xt)(e), - T <8 <0 1is the "state".

Definition S.

The system is said to be (functionally) controllable from O € ¢ ,

if for any given X, € C there exists a time t, > 0 and an admissible

control segment U which will drive the system from state 0 to a

(0,¢t,]
state X, arbitrarily close to Xd i.e.
1

(44)

” xd = xtl (O’U[O,tl]) HC < E.

Definition 6.

The system will be said to be R'-controllable from 0 & C if for

any X € R" there exists a t, > 0 and an admissible v such that
1 1 [O,tl]
: 4 u " " X
the trajectory X0, [O,t]) hits p at tg.
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¢ . M .
Define subspace Ut of U as L1oc ([0,t]; R) and Ft : Ut -+ C by

t
(F,(w) (6) a [ T(t + 8,s) Bu(s)ds. (45)
0

4 .8.2 General controllability result for type A-systems.

Scholium 2. A system of type A (a fortiri for type B) is functionally
controllable from O iff

UR(F) = C

t>0
In this expression R(.) stands for "range".l Since clearly R(Ft) is a
mono tonous increasing function of t one has also:
Scholium 3. A sufficient condition for functional controllability from

0 for the system in scholium 2 is that
R(F) = C for some T > 0 &

If we define

x : Ck *
Ft : C* » Ut

<L
where * denotes dual or adjoint, then, since 4@ (Ft) = R(Ft) C. C*;

we can formulate equivalent expressions.
Scholium 4.
A necessary and sufficient condition for functional controllability

from 0 € C is
(D /Y} (F¥) = {0}

t >0
A sufficient condition is ﬂ](F%) = {0} for some T > 0. M

The main difficulty obviously lies in obtaining explicit expressions
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for the adjoints. We rely on expressions developed by Hale [ H3, & 32, 33].

Let Bo denote the Banach space of functions Y : [- T,0] - Rn* of bounded
variation on [~ T,0], left continuous on (- 7,0) and with norm ]wl = var[_T,0]¢.
We identify C* with B .Clearly U¥ = L” (1o,t]; &Y.

The topological adjoint F: of Ft is defined using the pairing

0
<p,x>l = I dp (8) x (6) for p €B, xeC
=T
< > = *
Then p>F (0)u> = <F¥(0)p,u>,

t
<,>2 is the pairing <v,u > = f v(s) u(s) ds, u € Ut’ vV € U:, or
(o]

t
<F¥(0)p,u>, = f (Ft(c)p) (s) u(s)ds.
o

Hale shows that

3 (F:(O)p)(s)'= -B'(s) [T*(s,t)p] (07) for almost

all s¢[o,t] and any p € Bo (46)
In this expression T*(s,t) : Bo W Bo can be written as
TH(s,t) = (I + Q(s)) T(s,t) (I + Q(t)) 47)

where (s) is a quasi-nilpotent operator on BO defined from

0
@(s)0) (0) = f W@ y(s + a0 - Wdx -T<O<O0, € B
Q]

-~

and T(s,t) : Bo -+ Bo is a bounded linear operator such that T(o,t)V¥

represents the solution on [~ @, t -~ 7] to the "adjoint equaticn™
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o
2(s) +f z (a) y(a, 8 - a)da = constant
8

%
z € Rn
z, = Y

The vy in this expression was defined from
0
L(x,,t) & J dy(t,0) X(t + 6).
G
-T

In view of the characterization of F* in (46) scholium 4 can be formulated

to read:

Scholiunm 5.

A necessary and sufficient condition for functional controllability

from 0 for the system considered in scholium 2-4 is that

B'[T*(0,t)](07) = 0 for all t & [0,~]
implies that p = 0 in C*.

Proof. This statement is equivalent to

N 0 (p@) = (0} B

€20

4.8.3 Specfral controllability.

The systems considered in this subparagraph are assumed to be of

type B. Let A € 0(A), Then ()HA(A) is finite dimensional and

z (317 ,(A) = C as was shown in % .6.
Aco(A)

Scholium 6. The system under consideration is functionally controllable from

0 1ff each spectral subsystem is controllable.



- 100 _

Proof: The proof is based on formulae (37) to (40) and scholium 2.

If X € o(A) let Py be the projector such that P,C = WVX' Then

U R(Ft5 = C implies (48)

t30

(1) _
P(U R(Ft)) = UP R(Ft) + U R(F§§ /nQA
t>0 t30 t>0

where

e Y(0)e . do.

X A [t BA(t-U)
= @A
0

d
A
Since nvk (of dimension, let's say dA) is isomorphic to R and

¢A nonsingular, this implies

t BAO Bic
e YO '(0)e " do] = d
0

rank [J (49)

A

for all A € 0(A) and some t > 0.

Conversely (49) implies, together with ZAPA = I expression
(48). ' 8
Scholium 7.

The system under consideration is functionally controllable
from 0 1ff for all X € o(A)

M (OB N M O1-B) = {ot. (50)
Proog: Letn?h have dumension dk' The corresponding spectral subsystem

A
in R is of the form (40) for which in Chapter III and expression

analogous to (50) was derived which is a necessarv and sufficient condition for

1 . . . )
The closure mav be omitted in the last two expressions since R(Ft) is
a finite dimensional subsnace and hence closed. From analycitv then

U R(F2) = R(F)) for any T > 0.
t t >
30




controllability of the subsystem. If the condition is then satisfied for
all A € o(A) the conclusion follows from scholium 6. ¥

Remark. One would have liked to write /) (AT - A*) instead of /q(AI—Bf),

However A?(AI—A*)(: C* and although the system is of dimension d
A
it is only isomorphic to a system in R A. One could write

) in WWA

M) (1034, (0)B]%) () /‘/2 (Ar - a%) = {0}, (51)

Scholium 8. Let B he an n x p matrix. Let Y be the geometric
multiplicity of X € 0(A) and
Y = sup Yy
A ¢o(A)

Then a necessary condition for functional controllability from O is
Y < min (n,p). (52)
Proof. Since wA(O) is an dk X n, Ban n x p matrix

dim R[Y(0)B] < min (n,p)
If for some A € d(A), Y, > min (n,p) the nulspaces as expressed in
(50) do intersect (with nontrivial intersection). Therefore the
d

corresponding subsystem is not controllable in R‘A. The total system

can then not be functionally controllable (from scholium 6). A

4.9 Stabilizability using state-feedback.

Now that functional controllability has heen reduced to controllability
of spectral subsystems, each of which is isomorphic to a finite dimensional

system, the stage is set for extending Wonham's result [ws] on stabilizability



to delay-systems. The only difficulty lies in the identification of the
feedback operator for the infinite dimensional space. The systems

considered in 4.9 are type B-systems of 4.8,

Definition 7.

The system it = Axt + XoBu(t) will be said to be stabilizable if
there exists a bounded operator K such that u(t) = —Kxc makes the system

asymptotically stable or lim x. = 0.
t"°°t

Theorem 4.
Let A & o (A) [} {X : Re) 3_0} = {Ai}isl and let PA be the

corresponding project Let

A
C= PAC + (I - PA)C = CA + CTT (53)

Let ¢A be a basis for CA and wA a basis for CK. Let BA be defined from

Ad, = ¢,B

A A"A

Then the system is stabilizable iff (BA’ wA(O)B) is a controllable pair.

Specification of what is involved. The objective is to show that the

"bad" eigenvalues in 0(A) i.e. the ones in A can be relocated into the
left half plane with a bounded linear feedback and without disturbing

the other eigenvalues in 0(A). Moreover A can be relocated to an arbitrary

-~ ~

configuration A, provided A is a selfadjoint set.

In the notation of the theorem ¢A = [¢A 5 ¢A ""}éA ]

1 2 P

where $, 1is a basis in 5747 (A). Similarly ¥, = rows[y, ,...,¥, ]
A A A )UDARRPAS

] J 1 P

where rows [wA’] is a basis in (%OAJ(A*) and BA diag[BAI], B,\i

li

being



defined from A¢A = ¢A BA . The feedback operator K is required to be a
i i1
bounded linear map from C(f 1,0} R") + R" such that

o(A + X, BK) = AUV O(A‘\CW). (54)
Proof. The projection of it = Axt + XoBu on Cp is (55)
¢A y(t) = QA (BA y(t) + LN (0) Bu (t» (56)

Let CA have dimension dA’ then system (54) is isomorphic to a system in
d
r

y(t) = By y(t) + ¥y (0) Bu (t) (57)

Wonham [ws] has shown that if this system is controllable there exists
a matrix C such that

U(BA + wA (0) BC) = A .

d d
In this expression, ¥,(0) : +rM B :R"+8% c:RrRMN>RD
B,O
Define K. £ Ce A (wA, .). Then K is bounded and linear. Consider now
the decomposition x = X + Xp» xl-é CA’ X, € CTT and
T I S R PR B
) N N with
% Ar Al %
All = PA(A+X° BK)r A12 =PA(A+X0 BK)[\
C C
2 A ~ m
A21 = (l—PA) (A + Xo BK)r A22 - (I—PA) (A + }\0 BK)[\
CA C
™
Then A = (I-P,)A =An , A =20.
s S

~

The spectrum of (A + Xo BK) is then the union of the spectrum of A |

L4
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~
which s A Since

-~

All = ¢A[BA+wA(0)Bc] (58)

and of 7\’,_,_ which is -’?(/—\l\c ).
s

Conversely if the system is stabilizable, the subsystem in
CA must be controllable. For if it were not, let CA = CA]'GB CA2
where CAl is the subspace spanned by

dy-1
OplVp(0)B [ B\, (0)B; ....B, A ¥, (0)B]

d d
Let the corresponding spaces in R 4 be El and E2 i.e. R A= EI_GDE
d d
Let Pl be the projectwa on R Asuch that PlR 4 o El. Then with
d
7y = Ply, gy = (I-Pl)y, y €R A one has, since El is By-invariant

d
(as is R A)

2"

1 T Paha, 41 Py (0)B

92 0 (1-91)BAr Yy (l-Pl)wA(O)B
E
2
| - =
Since R(VA(O)B) C.El, (1 Pl)wA(O)B 0.
Hence the system for y2 in EZ is uncontrollable and because
0((1—Pl)BA) c O(A’CA) and O((l-Pl)BA) is nonempty this system is
unstable, and since it is homogeneous it is not stabilizable.E

Specification of K

The feedback operator K was defined as

B,.6
x4l (wA,') (59)

The justification of this choice is obviouslv the necescity of
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obtaining the right finite dimensional expression (58), 1i.e.
£ (A+Y_BK) rCA = 0,[B, + ¥, (0)BC] rCA (60)
PA(A¥¥;BK)[CA =0 (61)

(61) assures that the feedback will leave the spectrum of A
on (I-PA )C unaltered.

We verify (60) (61) for the choice of K in (59), wusing

PA = QA(wA9') (62)
For xt € CA
BAG
¢A(wA,Axt+xoBCe (wA,xt)) = (63)
BAG
@A(wA,Axt) + ¢A(wA,xoBCe y) (64)
dp

where y = (wA,xt) is an element in R ~. (64) = ¢ABAy+ ¢AQAO)BCy
verifying (60) and (61).

To specify K completely one has still to identify C. This
was done by Heymann [H4]. For the sake of completeness we
describe the construction of C.

Let g é wA(O)B with columns b .,bm. Let S(A,B) denote

l'.
the controllability space of the pair (A,B). Then [14] for

every nonzero vector bi there exists a matrix Ci such that

S(BA,B) = S(BA+BCi,bi)

If A is the desired pole configuration, a vector K can be

defined such that the scalar input systen
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§(e) = () + Eci)y(t) + b (t)
- T (65)
u(t) = k' y(t)

~

has as its spectrum A. Let bi = Br for some r in the domain
of B. Then C = Ci + rkT is the desired expression which

completes (59).
Remark :

The same technique can be applied to the problem of pole-
reassignment of the spectrum of A in the half plane Re A > a,

a > ==, the justification being that GYA)fﬁXIReX>a} is a finite set with
finite multiplicities and the space spanned by the corresponding root

vectors is finite dimensional.

4,10 Stabilizability of the Output State-Feedback.

In 4.9 it was established that the system could be
stabilized using a bounded feedback operator iff the controllable
space covered the subspace spanned by the root vectors of the
eigenvalues in the right half plane. This controllability require-
ment can be relaxed in case output-feedback is used.

Completion of the model

In addition to the state-evolution equation

? k= Ax, + XoBu

X, = ¢ € C([-T,0];R")

with xo(S) =0 -~-T€H8<0 (66)
=1 6 =0

B an n X m matrix

A DO(A) c C~+ C as defined in (11) and (15).



We consider the output z(t) being obtained as a simple
linear transformation on the trajectory x(t).

z(t) = Mx(t), M a pxn matrix (67)

Expression (67) is not suitable for the state-space formulation

(66). However, letthe operator P be defined from

(th)(e) = x(t) for 6 =0

(68)
=0 -1 € 8<0
then 2 : C > R" is a projecticn.
Define M: C- R by
~ (69)
M= MP

Definition 8. System (66,69) is output stabilizable using

state feedback if there exists a bounded operator K such that

lim z(t) = 0 where

o
z(t) = ﬁxt (69)
and xt is the solution of
x, = (AM+X BR)x
t [¢) t (70)
X, =deC
whole o

The purpose is to specify minimal qualitative properties needed

to make output-stabilizability possible.

Remark :

Let ”] denote the nulspace of M and nC its complementarv space

C

in C, 1i.e. C =fq &'q If there exists a bounded operator

m
K : C = R such that
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(A+xom<) (Y{ C /Yl

then (69) and (70) become, with x = x1+x2, X, €f7 » X, € ﬂ?c

T I L TR S P
X, 0 (A+x°BK)22 X,
z = sz

and the output is stable iff 0((A+XOBK)22) is in the left half
plane.

This approach fails to make use of the finite dimensionality
of the space spanned by the unstable modes.

Let C = CA & CTr where CA corresponds to the span

(70b) of the unstable modes. In CA the system is

°A[Y(t) = BAY(t)+wA(0)BU(t) ] (71)
and in CA as in (42). Let x = X, + Xgs Xy € CA’ Xy € CA
and

z = Mlxl + szz ¥ Ml =M . 5 M2 =M c
A T
Since xz(t)*GJko oo so dees szzuL We therefore restrict
attention to
z, = Mlxl = MléAy (72)
In view of (68), (72) becomes
z, = MQA(O)y (73)

The problem of output stakilizability for delay systems is

reduced to the same problem for the finite-diimensional systen



d
A
in R = as expressed by model (71,73).

Since to the author's best knowledge an adequate treatment
of this problem in finite dimensions is not available it will
be presented here. The conclusions for delay systems will be
drawn later.

Output stabilizability for finite dimensional systems

Consider
X = Ax + Bu
(74)
y = Cx
where A,B,C are time-invariant respectively dxd, dxm, dxp
matrices.
Let X=Rd denote the state space.
Let o(A) < {A:Re A > 0}. This specification is no restriction
since otherwise the system can be decomposed into an inherent
stable and unstable system and a feedback in our context has only

to be considered for the latter part.

Let fq denote the nulspace of C. Then

rY = n?am’]"' (75)

Let W be a subspace in 47 such that
AVC W+ @ (76)
where ® 2 Range (B). 77)

Before proceeding, we give an equlvalent condition to (76).
Lemma (Wonham, [Wé])
AWC W+ @® iff there exists an mxd-matrix F such that

(AM+BF)W C W (78)



Proof : The necessity is clear.

For the sufficiency part, let (wl,...,qé) be a basis in
W. Then Awi = Bu, + A for some Ui € Rm, vy ¢ W. Choose F so
that Fwi = —vi, i=1,...,s. This defines F on W. Extend its

[

domain to Rd by defining F outside W arbitrary. The lemma is then
proven. |
Remark :

If 01(C) = {0} or if there exists no nontrivial subspace
W of ﬂl satisfying (78) then the minimum requiremeﬁt for
stabilizability is that the pair (A.B) be controllable.

If wl is a nontrivial subspace of 42 satisfying (78)
then (A+BF) has an upperdiagonal form with respect to the

decomposition

e W eEW, =W

X=W & v ., x=xl+x2, Y ? 1

*1

(A+BF) 11 (A+BF)12 ] xl} -

0 (A+BF)22 X

2
Let Pl be the projection such that PlX = wl. If we decompose
A, B, F accordingly, then, since wl(:/r);output stabilizability

" - ; A (- " )
means that 0((A+BI)22)(; 0(A22+B2P2), Bz = (1 Pl)B, F2 FrWIL
lies in the left half plane for some chosen F,. Such choice

2

is possible for arbitrary qu, B2 if they form a controllable

4
pair. If Awl(L Wl and Aﬂﬁ> 2 controllability space of (A,B)

then clearly (IHPI)A49> = A $ .~ so that the system is output-

(80)



stabilizable if A/ covers W, . This is proven in some

1
detail in the next theorem.
Definition 9

A subspace W satisfying AW C W + & 1is called an (A,B)-
invariant subspace.

If Wl is now chosen to be the maximum (A,B)-invariant
subspace in/n the space wil shrinks and the_requirement

that (A,B) is controllable on W, becomes 1ess:stringent.

1
Given 0?, a maximum (A,B)-invariant subspace exists, which is
easily seen as follows. Let AV, CV, + 9 and AV, CV, + 03
Then A(V1+V2) C,(vl+v2) + & © S
C Let {Va}aei where 1 is an index set, be the family of
(A,B)-invariant subspaces, then this family is a semilattice

with respect to + and inclusion. Then any subfamily closed

under addition has a unique largest element with respect to

inclusion, namely the sum of all members of the subfamily.

Choose as subfamily the (A,B)-invariant subspaces Vi satisfying

Vi (;/VZ then there exists a unique largest element namely the

sum.

Wonham [W& ] has given an aQyw(ﬂnvw for finding the

maximum (AB)-invariant subspace wl in a space31 namely:

v o@D N Ay v Dy g0y (83)

where y = dim {72 . Then ¥, = V(y).

Lctzv(o) = 07
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. L
Let P2 denote the projection so that P2X = Wl 2 WZ,

where Wl is the maximum AB-invariant subspace in 01 .

Define B, ap

PLA ' (85)
2 270,

B (84)

He

A

Theorem 5
Let Wl, PZ’ BZ’ A2 2s just defined. Assume Awlc; Wl.
Then the system is stabilizable with a feedback operator F

such that (A+BF)w1 C Wl iff (AZ,BZ) is a controllable pair.

5 £
Proof : Let (AZ’Bz) be controllable, i.e. A2/032 = Wl ;

Then 3 F : sz + R" such that A2 + B2§ is stable. Let F 2

[o ! ?], F: X+ R". Then clearly (A+BF)rh = Aj\ . Therefore
1 W

1

since AW, C W, (MBR)W, c V.

Conversely if there exists an F, (A+BF)W1 c,wl and

E",Z(A+BI<‘)I\‘W,,2 ( = A22+BZFI\W ) is stable for arbitrary A, B

then (A22,B2) is controllgble on WZ. |
Remark :

The assumption Awl C;Wl was essential to assure that

s & L
the system in Wl )‘47

wl C 07 . If some information on A, B is available like

is decoupled from the system in

e.g. R(Bz)f) R(PZAP ) this requirement may be dropped since
Wi
the system may then be decoupled by the feedback i.e. choose

~

F = [Fl ' F]

2 a5
where F i¢ in the theorem and Fl so that
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making (A+BF)WI<: wl still true.
o 4
Clearly F may be used to give the system in wl arbitrary
pole-configuration if desired.

Application to delay-systems

From the former section we immediately draw the conclusion.
The system (69) (70) is output stabilizable if its
controllability space covers a certain subspace determined by
the output operator. The complications arise from the fact
that this subspace is not A-invariant.- Let C = CAEB Cn as in
(70b) and
/V): 47(;)/1 Cp» M as in (69) (86)
Then in 9] find the maximum (A,X,B)-invariant subspace
W with a construction similar to (83). The minimum qualitative
property on the system in order for it to be output stabilizable
if AW ¢ W is then that CA/W W-Lbelongs to the controllable
space of the pair (A,XOB).

4.11 Review of existing controllability criteria - Our results
in perspective.

Although a large amount of literature on systems with
hereditary dependence has been generated the results are typically
on existence, uniqueness of solutions and well-posedness.

There is a dearth of research focussed on controllability of such
systems. For systems of the type considered in section 4.8.2

and in a Hilbert space setting results similar to ours and
concurrently were obtained by M. Delfour and S. Mitter [D1 ].

Functional expressions as in section %4.8.2 are not very satisfactory.
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One would like to obtain criteria for controllability not
involving the kernels or semigroups but solely based on data
provided by the model. Our treatment in section 4.8.3 may be
considered as a contribution in that direction. The calculation
of the spectrum involves finding the zero's of an entire
function which can be obtained often simply via Laplace trans-
forms. The test for functional controllability is essentially
reduced to a test in a countable number of finite dimensional
spaces. The fact that functional controllability is equivalent
to what was called "spectral' controllability rests on the basic
fact that the systems under consideration have a complete set
of root vectors. To our knowledge no necessary and sufficient
condition of this type is available for such general systems.
One also has to watch the definition of controllability being
used. We review results by F.M. Kirillova and S.V. Churakova
[K2] and L. Weiss [W3] and extend somewhat both results.
Kirillova considers Rn-controllability, for systems of

the type

X = Ax + Bx(t-h) + Cu(t), t >0

x(t) € R" (87)

u(t) € R and u(.) piecewise continuous

If one forms the sequence of matrices P§, j=lr2r-1,r=l...n
: 1 _ r+l  _ v r+l] r i =
with Pl c sz—l APj ’sz BPj and define P as
[ i r=l,..n-1 !}
- 1! i75TFL. ¢ Skl !
£ ["1,‘"':(‘)23'-1 T gl B (88)



- 121 =

and similarly Qk, j=1l...k, k=1l...n with

k|
k=1l...n j >k
k+1 k k k
1= C = AQ + B H =0

L il % Qj“l’)j=l...k % J g=0

(89)

and
Q=10 !9 .o {Q0) then (90)

Theorem [X2]

A necessary condition for Rn-controllability is rank 2 = n.

A sufficient condition for Rn-controllability is rank ¢ = n, and
for n £ 2 rank P = rank O. F
Weiss [W3 ] extends Kirillova's result to the case A, B, C

are timevarying continuous matrices. The admissible controls are

e

condition for Rn—controllability patterned after Kirillova.

F
relaxed to u(.) € lf ©o3R ). Weiss developed a sufficient

Let Q(t) = [Q’l(t) | oi(t)‘: ..lt'q:‘(t-ﬁ-l)h)] where Q? =0

for j =0 ,j > k.
1 KL d ko ; e K

- B(t+(j-1)h)Q§_l(t) el By kely ot

then rank [Q(tl)] = n implies Rn—controllability. If some
additional restrictions are imposed on B(t),C(t) this even implies
functional controllability. Such restrictions are of the type
R(C(t)) D R(B(t)) for t € [tl,T1+h] if the solution x(tl,to;
¢,u[to’t1]) = 0 for any ¢ and some tl(¢).

Weiss' result can be easily extended to a countable number

of finite delays using the same method. The only real difficulty
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is in the derivation of the recurrence formula (91).

Consider the system

L
x(t) = ] A (t)x(t-h.) + C(t)u(t) (92)

jao J J
with 0= ho< h1 R < hL < o (93)

Aj(')’ C(.) continuous matrices.

We introduce the multi-index r = [rl...rL]' (94)
and the delay vector h = [hl'°'hL] (95)
L
4
and define rh = hr = | r,h : (96)
i=1 114

As before define now Qt = 0 for k = 0, k > n or if for

some i, r, > k or for some Qri = 0.
If r, = j for i = 1,...L we will denote r by j. If r, = 0,
i=1,...,3-1,j+1,...L and r, = 1, 1 = j we will write r = ej.

One can now set up a recurrence formula similar to (91) namely:

1(t) = c(t)
91 g

k .k k
Q,(t) = 0 () - 1£0Ai(t+(r—l)h)Qr—ei (97)
for k > T for all i,and k € n.
Before stating the result in a scholium, the notion of

"break-point" is introduced.

Definition of a break point

A point t, € [0,T] is called a breakpoint if t. = {T-rh} for some

1

value of multi-index r, r =(tl,...,rL}where r, eI 1= R,

i

One can order the break points. Let ti correspond to

multi-index ri.
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Scholium 9. A sufficient condition for Rn~controllability of

system (92) 1is rank Q(T) = n for some T > 0 where

Q(T) = [oi(T)j... EO&(T-(r~l)h) - Q:(T—r-l)h) lsa

where 0 represents all values of the multi-index r such that
T-(r-1)h is a break point. [
Proof : Appendix P.

Other controllability criteria for very restricted systems
have been developed. ﬁe only mention work by PopoQ [? 3] and

Choud-hury [Cl ].
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CONCLUSION and Sugsestion for Further Research.

This thesis has been concerned with qualitative properties of linear
Infinite Dimensional Systems. One main contribution lies in the gen-
erality of the approach to system theory. The system considered includes
as special cases D.P.S., F.D.S. and a very general class of delay systems
described by functional differential or differential difference equations.
It became soon obvious that one of the factors of main importance is the
type of spectrum of the system operator, and that certain spectral con-
figurations may or may not exclude certain phenomena. The configuration
indeed largely determines the "type" of semigroup ¢ generated by the
system operator and this ¢ codetermines the properties of the solution
x(t) through the variation of constants formula for operator-differential
equations. One new phenomenon discussed was the "property-gap': a
system has a certain qualitative property, but this property is only
.fully established after a certain finite time has elapsed. Results in
I1I.2.4, II1.2.5 and III.3.4 then state conditions on the system operators
A, B, and C under which no such gap occurs (in case of controllability
respectively observability). If a-gap can occur, it is of interest to
calculate its "width". This was done for the property of controllability
(II.2.7) where the "width" was identified with the "type" of an entire
function. The gap-phenomenon is possible only for I.D.S. We looked
then for I.D.S. which can be considered as the simplest extension of
F.D.S. and for which a gap is not excluded: systems obtainable as an

infinite direct sum of F.D.S. The corresponding spectrum was called



"normal'". Such class of systems includes a class of d ffusive and
oscillatory type D.P.S. and the most general class of linear time
invariant delay-systems known to be useful. The search for a method

to specify the gapwidth lead to a new technique to obtain explicitly
the control driving a state to zero. Applications to time-optimal

and minimum norm control are readily obtainable extensions. The inter-
polation formulae discussed is available for F.D.S. in the form of the
Hermite-formulae. As important side results, we only mention the con-
trollability criteria in II.2.5.2, I1.2.6, and II1.2.7.1.

Worthwhile results on 'partial" observers for I.D.S. are obtained
in III.3.7. 1If it is desired that the observer be a F.D.S., the state-
estimation-error is not just a "transient effect" but is "driven" by
a function of the state-component of the '"neglected modes'. Minimiza-
tion of the error may be tied to the output-sensor-location problem as
indicated.

Chapter IV considers delay-systems. Several good controllability
results are presented in IV.4.8. The results on point-wise controllability
in IV.4.11 are of independent interest (derivation is in the appendix).
Minimal conditions on controllability in order for the system to be
state- or output-stabilizable are stated in IV.4.9, IV.4.10. These
results are new and as yet not available even for F.D.S.

As a suggestion for further research, I can only state that the
book [D2, part III] on spectral operators (which unfortunately appeared
too late to influence this work) provides the background to extend all
this theory for "operators with normal spectra' to "spectral operators".
This wculd allow a more compact and general treatment than the one given

in Chapter 11 aund Chanter IIIL.
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APPUDIX & — MATHEWATICAL NUTIONS

dx(t) -
dt

In APPendnxj\ differential equations of the type
Ax(t) + h(t) are discussed for existence and uniqueness of solutions
and more specifically for the properties of the solution x(t).

The stydy of these properties is after all the major topic of
this thesis. The system.operator A will be considered time-
independent, the only case which is, thus far, easily amenable to
a solution using the results of semigroup operator theory. Conditions
on A will be discussed under which strongly continuous (Co—) and
analytic semigroups and ¢ unitary groups are generated

describing the solution. These characterizations of the

semigroup play a major role in chapters II and III. The

definition and a generation theorem for c% contraction semi-
groups by a dissipative operator A will be stated. Stabilizability
(pole-relocation) in chapters III and IV will be the system
property indicating the possibility f&rtransforming a non-
dissipative into a dissipative operator, thus changing the

character of the solution.

Mathematical Notions

Throughout this work the (mostly unbounded) operator A with

domain DO(A) will be closed or at least closable and the infinitesimal

0 . g
generator of an, at least, C= semigroup which may be in addition

contractive, or analyvtic or in fact be a group, which can then be

unitary. Conditions on A to be the infinitesimal generator of any
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of these special o semigroups are summarized in generation
theorems.

A.1 - Definitions

Let X and Y denote Banach Spaces.

Definition 1. (Closed operator). An operator A on X to Y

is said to be closed if its graph G(A) 2 {CE.A8) )£ & DO(A)}

is a closed subspace in X X 7, or, equivalently, if {fn} & DO(A),
fn > f, Afn + g implies that f ¢ DO(A) and Af = g.

Example [S1]

Let X =Y = C[0,») and A g zag with DO(A) S {x € C'[O,m)[

‘ng-s C[0,®)}. Then A is closed.

Definition 2. (Closure of an operator). An operator A as

in definition 1 is called closable if G(A) is a graph i.e.
(0,y) € G(A) implies y = 0. G(A) is then the graph of an operator

denoted by A which is called the closure of A.

Example

Let X =Y = L2[0,1]. Consider the operator A defined from
Ax = dzx for x € C2[0,1]. Then A is not closed. In order to
obtaiszits closure we close its graph and consider the
operator A corresponding to that graph. Then A = QEE with
DO(K)= {x € L2[O,1]/x and %§ are absolutely continﬁzus a.e.

d2x 4
on [0,1] and —5 €L f0,111.

dz
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Definition 3. (C®-semigroup). A C°-semigroup ¢ on X is a

family of bounded operation ¢ = {¢(t)}t20 on X satisfying

6(t)d(s) = ¢(t+s), ¢(0) = I, ¢(Ixe C(R+,X) for every x € X,

(i.e. ¢(+)x : R+ + X 1is continuous).

Definition 4. (Co—contraction semigroup) A c®-contraction semigroup
¢ on X is a C°-semigroup on X such that [|oCt)]] € 1 for

t € R+.

Definition 5. (Infinitesimal generator of a Co-semigroup). A is

said to be the infinitesimal generator of the C°~semigroup ¢

if Ax = lim Eﬂ&%&:ﬁ " DO(A) being the linear subspace of X for
t>0

which this limit exists.

Definition 6. (Unitary operator). A bounded operator U on

a Hilbert space is called unitary if its adjoint U* equals its
o * -
inverse U . i.e. U =10 1 or iff U is isometric and onto.[(33].

Definition 7. (Analytic semigroups of a certain "type"). In order

to make a succinct statement of the generation-theorem for analytic
Co-semigroups possible we define first the class of generators
GA(G) generating analytic semigroups ¢ of type (6- %‘).iet

Zo 8 1 e@ 2 0,]arg)| < 6}

Definition 7a

A on a complex Banach space X is said to belong to class
GA(B,M), M> 1, w/z2 <8 <cm, 1if A is closed and densly defined and
-1 M
for all A € Ly, X € p(A) and [l (-n) 7] < T -

Definition 7b

A€ G,(8), w/2 <8 &mif for each g, 0 <€ < (6-1/2)

there exists a !* > 1 such that A € G, (5-¢, ME).
. F 39
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Definition 7c¢

Let 0 < o € m/2, M > 1.

¢ = {¢(t) : te ZGU{O}} satisfying

1) ¢(t)d(s) = ¢(t+s) for all t,s € Za
$(0) = I

2) the complex valued funttion <y, ¢(+)x> 1is analytic on
Za for all x e X, y € X*

3) 1lim ¢(t)x = x for all x € X, £ € (0,%).

t>0

tel

4) ¢ (£)X C Do(A) and ||o(t)|] <M, ||tAd(t) ]| € M for all

teza

is said to be an analytic semigroup of type (a,M).

Definition 7d

¢ ={¢(t) : £ eI v {0}}

is an analytic semigroup of type o where 0 < a € m/2 if for
each €, a > € > 0, there exists an Me > 1 such that {¢(t):
t € Za~£ U {0}} is an analytic semigroup of type (a-€, M.).
We next specify conditions under which A generates one of the

types of semigroups mentioned in definitions 3, 4, 6, 7.

A.2 - Generation Theorems

Theorem 1. [Hille-Yosida]
A is the infinitesimal generator of a contractive Co-semigroup

¢ 1ff A is closed densily definedland for each A > 0, XA € p(A) and



[Iaca-a7Y | < 1.

An alternative form not using the resolvent but instead that
A is dissipative is expressed in the following theorem.
Theorem 2. [Lumer-Phillips]

A on Hilbert space H generates a contractive Co-semigroup
if DO(A) is dense, Re<Ax,x> ¢ 0 for all x € DO(A) and (0,®)N
pea) # ¢.

Theorem 3. ([Hille-Phillips; Feller-Mijadera]
A is the infinitesimal generator of a Co-semigroup iff
1) A 1is closed and densily defined

2) there exist constants M > 1 and W, such that A € p(A) for

A >w and
o

n
-] _
3) ]ligl(xi-wo)<xi—A) [l €M, n=1,2,3... X, >0

or 2') there exist constants M, W, such that A € p(A) for A > w,

3 =) -] €M, n=1,2,3.00, A >0

wt ’

In both cases ||d(t)|| ¢ Me °,te rR'.
For the generation of groups this theorem can be adapted to
read :
Theorem 4. [Hille-Phillips]
A is the infinitesimal generator of a Co—group ¢ iff

1) A is closed and densily defined

2) there exist constants M, W, such that A € p(A) whenever

A is real, [A]| > W, and



BB

3) Il(lkl—wo)n()\-A)“nll <M, A >0, n=1,2,...

w |t
In this case ||d(t)]| < Me 05 7y 16 16 R

Remark: We point out that the generation theorems require the
spectrum of A to be restricted to a left half plane for semi-

groups and to a symmetric vertical strip in the complex plane

in the case of generation of groups.

We will, in connection with hyperbolic systems be interested

in Co-unitary groups. We state in this context the well-known
theorem by Stone [S4].
Theorem 5.

A is the generator of a Co-unitary group iff A is skewad-
joint (i.e. if A* = -A or iA 1s selfadjoint). [l

Finally on the generation of analytic Co-semigroups:
Theorem 6.

A generates an analytic semigroup of type (6-m/2) iff
Ae G, (0).1 _
Remark: It may be shown [G3] that if ¢ is analytic

o
d(t) X)C /) Do(An) and that the latter set is dense in X.
n=1

Examples [¥1,p 243]

Let the semigroup ¢ on C[0,») be (&(t)x)(z) = x(t+z). Then

the generator A is defined by Ax(z) = Eg x(z) for x ¢ DO(A)
2
DO(A) = {x £ C[0,») lx and %% € C[0,®)}. Similarly ‘95 on C(-o,+wx)

dz
is the generator of the integral operator associated with the

Gaussian kernel



1
-z 2
(p(t)x) (z) = (2mt) 2 f*m e-(z—v) /th(v)dv ift>0

= x(z) for t = 0 .

As. Operator Differential Equations

Consider the differential equation

x(t) = Ax(t) , T3>0, x(t)¢€ H_,a Hilbert space

)

x(t=0) = X
Let A be the infinitesimal generator of a Co—semigroup $ on X.
If X € DO(A) then ¢(t)x° is clearly a solution. It is unique

+
in the strong sense namely ]|¢(t)xo-x°|| + 0, t >0 . Suppose

one considers next

x(t) = Ax(t) + Bu(t) (A1)
x(t=0) = x |
+ +
If Bu(t)eC(R ,DO(A)), ABu(t)eC(R ,Hx) and xoeDo(A) or equivalently
+
Bu(t) € Cl(R ,Hx) and % £ DO(A) then a solution exists,is

unique and given by the variation of constants formula (see [G3])

x(t) = db(t:)xo + jt ¢(t-0)Bu(o)do (AD)
0
The solution thus obtained is strongly differentiable (is absolutely
continuous). Very often one is satisfied with solutions satisfying
() in a weaker sense. For example a reasonable definition of a
solution to @1) on [0,T] is a weaker sense is that x(t) satisfies

E% <x(t),y> = <x(t),A*y> + <Bu(t),y> a.e. for t € [0,T]
and all y € DO(A*).



- 138=

Clearly the requirements on Bu(t) can then be relaxed. It
was shown in [ PR:] that, in order for () to be a solution to
@l) in the above weak sense and x € L2(O,t;Hx), minimal
assumptions on Bu(t) are that <Bu(t),y> is a measurable

T
function in t for all y € H and f IlBu(t)lIZdt < =,
0



APPENDIX B - SPuCIRAL THeORY

Spectral theory, especially for non-self-adjoint operators
is one of the hardest and most in-accessible branches of
functional analysis. We will expose only the notions used in

later chapters and give some examples. The notion of spectral projections

will be discussed, its relation to the Riesz-integral and the concept

of a reduction of an operator. Some theorems are presented for
operators with normal spectra. It is shown as illustration how

a non-self adjoint operator with normal spectrum may be obtained by
perturbing a self_adjoint operator.

B.l: Projections in Banach Spaces and Hilbert Spaces

Definition {. (Direct Sum)

A Banach space B is a direct sum of two subspaces M and N
(written B = M& N) if
MON= ¢
feB » f=g+h, geM, heN
Such representation is clearly unique. One calls M and N a complementary

pair.



Definition 2. (Projection)

A bounded linear transformation P on Banach space B satisfying
P2 = ? s called a projection.

To a complementary pair (M,N) in B we can associate a projection
PbypPf=g, £f=g+h, ge M, h € N. Clearly P is linear,
closed and since defined over all of B, it is bounded. P is
idempotent, and in M ie idenrity, in N it is 0. Conversely,
a bounded linear idempotent transformation P from space B

into B defines an associated complementary pair by

M= {f : Pf = f}

N= {f: Pf=0}
and the projection associated to (M,N) is P. Indeed, f € M
implies Pg = f for some g € B, hence M = range(P) and M =
range(I-P). Clearly M,N are linear, closed and M1 N = ¢
f = Pf+(I-P)f with Pf € M, (I-P)f € N;hence M ¢ N = B.
Theorem 1.

Let P be a projection in B and let (M,N) be its associated
pair. Let P* denote its adjoint defined on B*, the dual of B.
Then P* is a projection with (M*,N*) as its associated pair and
M*=NJ‘, N*=M‘L.n |

Partial orderings in projections.

A binary relation > introduces a partial ordering in a set

S provided



a>a, ¥ ace$s
a>b , b>c=a>c

a>b , b>a=sa=»>D } a,bc €S

Consider the set S of all projections acting on B. We say Pl > PZ

b 5 M1:> MZ’ N1<: NZ' It is easy to see that Ple 1s a projection

TE D ? =P .
if Pl and Pz commute. Tf ) > ?, then ?l and Pz commute and PlPZ PZ

= 2. = F > 3
Conversely if Ple ?2 1 }2 then Pl P2 These notions are

relevant when discussing spectral resolutions.

Reduction of a bounded linear transformation.

Let S be a subspace in B. Let TS be its image under a
bounded mapping T : B + B. Clearly TS may be anywhere in B.

Definition 3. (Reduction)

Given the complementary pair (M,N) of closed linear manifolds.

Let T € [ (B). Suppose { T(N) ¢ N then (M,N) is said to reduce B.
T(M) C M

Scholium 1.
Let (M,N) be a complementary pair and P the associated projection.

Let T € f(B). Then (M,N) reduces T iff PT = TP. |

Theorem 2. [Lorch, L2]
Let B be reflexive and T € £(B). Let H denote the nulspace
of T, R its the closure of its range. Let T* denote the adjoint

of T and N*, R* its nulspace and closure of the range, then

1 2 5
(a) N =R¥, R = N*
K A =
(b) N* =R, R* =N . £

Reduction for unbounded spectral operators is done in a similar way.
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Suppose T is unbounded, the complementary pair (M,N) reduces T if
T(M(\DO(T))C: M and T(NIWDO(T))C;N. Clearly, if for example M is
finite dimensional and DO(T) is dense the first inclusion would
reduce to T(M)C M. For a complete account on reduction of un-
bounded operators we refer to Dunford and Schwartz, Vol. III [ D2].

Definition 4. (Projection in a Hilbert space)

A projection on a Hilbert space A is a bounded linear trans-
formation P on M such that P2 = P and P* = P,
Scholium 2.

In a Hilbert space a projection P is specified by one closed
linear manifold and the norm of P is 1, §

Definition 5.

A family of projections %Aon M, A € (~2,4») is called a

resolution of identity if

1) A<y EA < Eu in the sense of ordering of projections.

2) An + —o EA + 0 ; An f +o EA - 1.

n n
3). If {An} is an increasing sequence converging to A, then

A
All convergences are to be taken in the strong operator topology.

Condition 3) indicates that, in fact, we have defined a left con-
tinuous resolution. We have E, = EA- by definition. If E., # E

A A+

then the resolution has a jump at ). Ek-e means that the

resolution is constant in the g-neighborhood of A. 1In separable

A

Hilbert space the number of jumns is denumerable. In finite

dimensions, the number of finite and everywhere else the resolution

is constant.



One of the main results of spectral theory in Hilbert spaces
related to self adjoint (T = T*) and normal cperators (TT#* = T%*T)
is expressed in the following theorems:

Theorem 3a |

Let E be a resolution of identity. The operator
fAdEA exists as a Lebesque-Stieltjes integral;convergence being
in the uniform topology iif E is a bounded resolution and in the
strong topology otherwise. The result is a self adjoint operator.
Conversely any self adjoint operator can be broughtinto this form.#
Theorem .3b

Let E be a bound;? resolution of identity and Eo =0,

]

E2W+ = I. Then U = f eiedE9 exists in the uniform topology

and represents a unitgry transformation. Conversely every unitary
transformation can be brought into thisform. i

Next consider normal operators (both self adjoint and unitary
operators are normal).
Theorem 3c

Let EA and Eu be resolutions commuting for each A and y.
Then T = frdEr, r = Aiy, dE_ = dEA-dEu is normal and every normal
operator can be brought into this form. d

These theorems play an important role in the operational

calculus [Dz,T1].
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B.2 Reduction of linear operators

A projectin P reducing a linear operator A was characterized
by the fact that PA = AP. We next present a class of operators
obtained via the Riesz integral on a "spectral set',defined as
a set s in the complex plane described by closed rectifiable curve
in P(A)' Only nontrivial spectral sets will be considered, that

is, spectral sets s for wnach F(A) Nns # ¢.

Theorem 4. (The Riesz integral)

Let C be a curve describing a spectral set s of A. Let
P = E%I fc R(E,A)dE , where R(§,A) is the resolvent of A at £.
Then P is a projection commuting with A and any transformation
commuting with A. The pair of closed linear manifolds associated
with P reduces A.
Proof : We provide a short elegant proof of this important theorem.
Clearly P is linear, bounded and commutes as stated. Hence P
reduces A if it is still shown that P is idempotent. Consider
inside C a curve C' obtained by "allowable" deformation
in P(A) (i.e. rectifiable, enclosing the same part of 0(A)).
Then

P = E%I fc R(n,A)dn = > fc' R(E,A)dE . (R1)

(2mi) 2p? =f rmuayan|  ReELayag
(6] JC'

= f f [R(n,A)-R(E,A)][E-n]-ldndi .
c/c

using Hilbert's identity
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R(X,A)-R(u,A) = (A-p) R(A,A).R(u,A) . ©2)

(2r1)2p? = f R(E,A) J (n-£) Lanag - f R(N,A) f (n-£) "Ld&adn
C 1

¢? C C

The second term on the rhs being zero this equals

2ri f R(E,A)LE = (2n1)29 N |
Cl

Corollary 1.

Let F,F' be two closed rectifiable curves in p(A) of spectral
sets s)s' with their associated projections P and P'. Then,

if F,F' are exterior to each other, P and P' are orthogonal in

the sense that PP' = 0. If F' is interior to F, the PP' = P',

Proof : Clearly P and P' commute as follows directly from scholium 1.

The rest of the proof is a trivial modification of the proof of scholium 1. %
Let M,N be the pair associated with the projection P.

Assume that T(N) C N, T(M) < M. If we write T' =T e " = Tpyp

p' = Py p" = Ppy Where T,  means the restriction of T to the

closed subspace My then clearly P' = 0", P" = I'" where I" is the

identity for M and 0' is the zero operator for N. Define similarly the

resolvents R'(E,T), R"(E,T), then R'(E,T)(1'E-T') = I'. The same

holds for T"(&,T).

Corollary 2.

Let C be the curve defining the projection P.
Let T' and T" be the corresponding reduction of T.

If £ lies outside C, £ e f(T')
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If £ lies inside C, £ € f(T").

In fact 6(T') equals the portion of 0(T) inside c. |

Bounded operators may have pointspectra, continuous spectra,
and residual spectra. This is even more true for unbounded
operators. Insofar as our projections can be identified with
stepfunctions on measurable sets on the complex field (the
measure being a Lebesque-Stieltjes measure) one can separate the
discrete from the continuous measure. We give an application of
this idea. First we state that a self adjoint operator cannot
have a residual spectrum.

Theorem 5.

A self adjoint densily defined operator cannot have a
residual spectrum, i.e. the range R(AI-A) is at least dense.
Proof : If A € 6(A) it will be shown that it must belong to
the pointspectrum P5(A) or the continuous spectrum Co(A) COW.
A e o(a), A ¢ Po(A), A ¢ Co(A) is impossible.

Indeed if there exists a g # b belonging to R(AI—A)i, then

we have, for f in a dense set

<(AI-A) f,g> = 0 = <f,(AI-A)g>
and
<f,(AI-A)g> =0
implies
(AI-A)g = O

which means that ) belongs to the pointspectrum of A; which leads



us to the contradiction. (We have used the fact that Mo (A)
implies that A is real when A is self-adjoint.) §
Theorem 6. [Lorch, L2]

Let A be self adjoint on Hilbert space H with domain D CH.

Then there exist two closed linear manifolds {Ml’MZ}’ Ml = MZ
L
~ A
(and M2 = Ml ) and A, AF(MlﬂD) has pure pointspectrum and

A
A2 = AP(Man) had pure continuous spectrum. Furthermore A1 is

self-adjoint on M;, A, is self-adjoint on M,. B

B.3 Normal spectra

A large portion of this work considers operators with
normal spectra. This notion will be defined shortly.
Consider an operator A on a complex Banach space X.
A nonzero function ¢ €X is called an eigenvector for an
eigenvalue 1A, if Ao € P5(A) and (A—A01)¢ = 0. The eigenspace
3A for Ao is the subspace of X spanned by ¢ = 0 and the eigenvectors
o

for Xo. The dimension of 3A is called the proper or geometric
o

multiplicity of Ao.
A nonzero vector ¢ € H is called rootvector of A for eigenvalue

Ao if (A~A°I)n¢ = 0 for some positive integer n. The set of all
rootvectors for Ao’ together with ¢ = 0 form a lineal, that is

a linear manifold that is not necessarily closed. The dimension
vAO(A) of rootlineal nw;ko is called the algebraic multiplicity

of eigenvalue Ao. If vy (A) < m’:77A is closed, in whidchcase it

o

o
is called rootsubspace.
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Definition 6. (Normal eigenvalue)

An eigenvalue Ao of a linear ovnerator A on a Banach space X is
called normal if it is an isolated point of O(A), its algebraic

multiplicity V) is finite and two complementary subspaces (M,N)
o vV
= Ao
exist, M /YVKO and N = (A AOT) X.

If Ao is normal and Ao € 0(A), there exists a neighborhood
NE(AO) such that NE(AO) No@) = {lo}. One has then that

(Y"x = PA X, where PA is the Riesz integral
o o o

1

P [ R(A,A)d) . (B3)
AO 2mi IX‘AO'<C

Using a residue formula this expression may be simplified in the case

of normal spectrum to

A ~-1 Vv
SR S A WP Yor (.0 B4)
A v, -1! R 0 e (
o A o A=)\
o da o

Remark : This theory obviously is applicable to finite dimensional
systems where it is easier to illustrate the notions that have been

presented. This is done in the following example.

Example.
2 1 1 3 5
Let A=[1 2 1| onX=R". Then 6(A) = {1,3} , v, =2, Vv
1 3
0 0 1
1_1 _1
2 2 2
d 2 - |1 1 _1
Prp =@ WD R(A’A)|A_1 =72 2 772
- 0 0 1

L}

The rootspace of eigenvalue A 1 is



By TRy Ty
= _1y2 &
X, tx, x| = /7(A.I) ’”71
2x3

X

1
and the eigenspace is X = 07(A-I) I 31. It is easily checked
0

that Pl is indeed a projectien <Pi=Pl) and that (A—I)2P1R35Q or
1 1 X; "Xy X
1 -X +x -X =0
0O 0 O 2x
Similarly
| 1 1 1 1
P, » = (A-3)RA,A)|, . =5 (1 1 1
A=3 A=3 2 o 0 0
1 1
5 (xy¥=gtes) 7 (%17%y7%5
X = P. X 4P, _x= l-(x +x +x,) | 4+ = (=x,+x -%X,)
A=3 A=1"[2 "1 7273 2 23
g 0 X4

and PA=1pA=3 = 0. l
In general Ao € o(A) is called an isolated singularity if there
exists a neighborhood NE(AO) such that
oc(A) N N, = {Ao}

Since R(A,A) is analvtic in n(A) there is a Laurent expansion [TLIYJJ
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o @ ) —
R(A,A) = g =X )7A_ + 3 (-2))""B_ (35)
n=0 n=1

An’ Bn are bounded operators defined by

1 on-1
A = — (A=) ) R(A,A)dA (B6)
n 217:’ Jlx_x°‘<6 [0} )
1 f n-1
B w e (A=2 )" "R(A,A)d). 67)
n 2mj ]A—A°l<6 o 2 (

This expression is valid for IA-AOI < § for any § such that
o(A) - {Ao} lies outside the circle {) : [A—Ao! < &8},

An, Bn satisfy the recurrence-relations

(AA DA = A

1 n
(A-A))B_ =B . = (A2 )"B, (28)
(A-A DA, =B - T.

The case of normal spectrum corresponds to the case Bm # 0, Bm , 0,
+

in which case all Bn #0, n<m, and all Bn =0 n>m, m-= vy
o
(the algebraic multiplicity). It is easily seen from the definitions

that B, is a Riesz integral-projectio: with range KO(XOI-A)m i.e.
(AOI—A)mle =0 for all x € X

Of particular interest is the case of compact resolvents. 1If R(A,A)

is compact for ) = Ao it can be shown bv analvtic extension that

-~

R(A,A) 1s comnact for X belonging to the connected part of pn(A) containing

X .

o



If R(A,A) is a compact operator, the spectum of A consists

of isolated singularities which are not essential., In addition

the range of Bl for each singularity is finite dimensional.

The case of normal spectrum allows us to write out immediate
the semigroup in function of the singularities of R(A,A) which
coincide with the eigenvalues of A (Since R(A,A) in this case
has no essential singularities the poles of R(A,A) are the
eigenvalues of A).
| A basic requirement is that 0(A) lies in a left half plane.
Let 0(A) . {} : Re A < “b}’ w, a real number. Then T(t),
the semigroup of A,is related to f(t), the semigroup of ii LY
A—wol)w T(t) = edw°tT(t). ?(t) is then a contraction-semigroup.

Since XzR(A,Z)x—Ax converges to Ax for \ - and x € DO(K)

2 ~
ek R(A;A)X—Ax —_— eAtx o~ T(t)x

A >
This intuitive formula for approximating T(t) is the basis of
the generation theorems for semigroups. Clearly for A +
A€ D(K) and R(X,K) is analytic.l Next we use values of A where
R(A,R) is singulavr. Since the semigroup %(t) is the

inverse Laplace transform of R(A,A) one may write

f(t)x = g=-lim s

f+jb A
xeDo(K) pro 2T L

"ROLAYXAA (1B 9)
ib

Consider the contour integral over curve Cn for kernel R(X,A)



N <
sl s 2 ek
I
| .Ak
‘ I
v x
] .
Cn= ~'bn A o
. ] . 4\
|
|
— — —p— —2-b
Curve C;
ib ib +c jb +c_  -ib
I = B z residues - f o f_ non —f u (B10)
Ca b ¢ A Jeb jb_+c ~ib_+c
n n n n n n n

For each singularity in Cn one can use the expansion

formula for R(A,A) to calculate the residue. Then
m
A

k ,n-1 At
I, = 5%5 f etAkR(X,A)xdk = 3 %:IT gk B oX
N Ar ] <6 a1 LTS

m

An tn—l fef

=R Ve

Since the contribution of the three integrals on the right

hand side of (10) goes to zero for bn > o for example if

[IRO, M| < — for >0
[A]

one has

T(t)x = lin ) I, and T(t)x = lime ° |
b C 'k b  C 'k

under that condition.
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This convergence 1is not necessarily uniform in t 1f the
left half plane {) : Re A<wo} covers part of {A:Re A 3> 0} or w ;v.
This does not contradict our intuition since then the system is
unstable and T(t) grows without bound with t.
Example 1 Operators with normal spectrum.

The best-known examples of operator A having a normal spectrum
are that of a self adjoint differential operator on a compact
spatial domain. The best reference is Dunford and Schwartz, II

[P2] and Courant and Hilbert [C2]. We only state one specific

example.
Let X = L2(K), K being the rectangle 0 € xj 'S ;1 3 J B X920ty
r 2
A = Laplacian A = z —gi-and DO(A) = {x ¢ L2(K) l Ax € LZ(K), x=0
j=1 0x,

in the boundary of KS. Then A is clearly self adjoint and has pure
point spectrum. [Courant, Hilbert chapter 2, section 5.4 in [C2]].

r
The eigenvalues are \ = -X a§n§ for nl,nz,...,nr w J,2.356% o

=1 L 2 2 2

corresponding to eigenfunctions ¢ =1 sin a,n x,. If a;,a ,...,a
§=1 3737 1°%2 r
are linearly independent over the integers (e.g. if r = 1) then the
multiplicity of all eigenvalues is 1. If a§ = a2 for J = 1, w.t
r
then A = -a2 n?, and the number of ways A can be decomposed
j=1

as a sum of r squares is unbounded with A. Hence sup vl = o

A
where vy is the algebraic multiplicity.

Example 2 (Sturm-Liouville operators over a compact interval of R.)
From reading the classical literature of mathematical physics
one gets the impression that all relevant differential operators are

symmetric and have only real pointwise spectrum away from zero. The



reason for this is that a certain class of 2nd order differential
operators known as S{urm-Liouville operators have been apt to
describe a most important series of physical problems. The

class 1is characterized by the fact that separation of variables
applies reducing the p.d.e. to an infinite set of ordinary
differential equations. Although the solution often cannot be
given in closed form, it can be approximated in terms of elementary
functions to arbitrary high degree of accuracy.

In this general class fall also types of 2nd order operators
for which the elementary functions are respectively Bessel functions,
Jacobi, Legendre, Chebyshev, Laguerre and Hermite polynomials and
2nd order operators known as Mathieu's and Gauss' differential
operator. The solutions of the latter are the well-known Gauss-
hypergeometric series.

Lanczos [L1] has pointed out that the eigenvalue problem of

the most general 2nd order differential operator

Dx(z) = A(z)x(z) + B(z)x(z) + C(z)x(z)
with A(z) > 0 on the interior of the domain for z can always be

formulated as for a formally self adjoint operator.

This can be done by weighing the inner product defining
thé adjoint, or do a transformation on the independent variable
z or do a transformation on the dependent variable x. In all these
operations the eigenvalues and eigenfuncticn system remain

unchanged (with different interprctations).



The most general 2nd order formally self adjoint differential

operator can be presented by

4 2(2)) + cx(2) (b)

d
Dx(z) = dz (Al dz

A
= = ' =
If we transform z to z, by z = ¢(z1) then dz d (zl)dzl u(zl)dzl,

and (b) becomes

1 d d
Dx(zl) Gy i (Al e x(zl)) + Cx(zl) . (e)
1 1 1
1 f i dx
If w(z,) = e’ A then (a) is transformed into (c) which
1 A(zl)

is self adjoint (using as weighting function w(zl).).

It should be pointed out that we have as yet only formal
self adjointness and that the boundary conditions have to be
chosen appropriately.

Example 3 (Unbounded perturbance of a self adjoint operator)
Definition : A (in general unbounded) linear operator B is
A-compact, A being linear and closed if for some regular point

Ao of A the operator

-1
B(A-XOI)
is compact.
It can then be shown that B(A-?xI)m1 is compact for every
regular Aof A. (d.e. a point X € p(A) er a normal eigenvalue.)
vt -vl

Then, if L is a self adjoint operatorﬁfT is an L-compact operator

such that
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P[(L-aI)-lT(L*aI)-l] < ©, a being any regular point of L,
then the entire spectrum of A = L + T consists of normal
eigenvalues, all of them, except a finite number lying in
sectors - € < arg A < +e, T-€ < arg A < W+ € (where
€ 1s a function of A) and the system of root vectors of A
is complete.
In the above expression p(.) stands for the order of the
operator within its brackets. If {sn(Q)} is the set of s-numbers

of Q (1f Q is compact its s-numbers are the eigenvalues of

(Q*Q)l/Z) then the order of Q equals the infimum of numbers r
(oo}

such that Z s:(Q) < o , Stronger statements on spectra of
n=1

unbounded non-self adjoint operators and completeness of root

vectors can be found in [Gl.]

Example 4

Another important example of an unbounded operator having
normal spectrum arises in functional differential equations

of delay-type. We refer to chapteriy for details.
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The Variation of Constants formula for a class of D.P.S.

In qunddk A.3 the Cauchy problem in its homogeneous and

non-homogeneous form where treated for an abstract differential
equation X 8 Ax + Bu, x(0) = X,

The solution to this equation was called the variation
of constants formula.

In this section some nontrivial results for parabolic
and hyperbolic partial differential equations are cited as an
application of the semigroup theory of APPenda<A. For more
details we refer to [G3].

C.1 Parabolic initial boundary value problems

The main result here is that if A is an at least weakly
elliptic operator the semigroup generated is analytic. This is
of vital importance for controllability. Control systems that
can be classified as parabolic are for example diffusive-type
systems. The nicest operators involved are self adjoint with constant
coefficients. It can be shown that even if such operator A is perturbed
by B and B (unbounded) satisfies certain regularity conditions with
respect to A, the resultant semigroup is still analytic. The
spectrum may then spread out over the plane however rather than be
restricted to the real line.

We restrict ourselves to the following two statements.
Statement 1 [G3]

Let P(D) be a weakly elliptic homogeneous polynomial of

degree 2m (m=0,1,2,...) with real coefficients, i.e.,

2(E) < 0 for all £er" - {0}

g



_|58_

Then P(D) generates an analytic uniformly bounded semigroup fT(t)}SUCh that

t>o

¥
- for all f ¢ Hx, g € Hx < ¢(.)f,g> 1s analytic on

)

m
Zn/Z-eu {t £ €, t+o0, larg t]| < 7 e}

- for all t ¢ Z"/Z_E 5 ¢(t)Hx C:DO(A)
e[| «x,
| [tad(t) || < M

¢(t)f = £ for all f € K, and

- 1lim
t*+0
teZn/Z_€
¢(t)d(s) = (t+s) for all t,s € Zn/z
$(0) = I
T2
If e.g. P(E) = - Z gj
g1 2
o .
then ¢(t)f(x) = vamt f € 4t f(y)dy . Thus, parabolic p.d.e.
R
of the type
X, = P(D)x + Bu
x(0) = X

are governed by analytic semigroups which gives the corresponding
system all kinds of regular properties. In particular, with
respect to controllability at time t they behave very much like
finite dimensional systems.

Statement 2. ( Perturbed systems ).

n A . c
Let xER ; o (al,...,an) where o,..., @€ (052,26 e0}
=4 a, a y
D $p.45.%,..0 " dnd Dy el A
1 5.2 n J ox.

3
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Let P(D) be a strictly elliptic real homogeneous polynomial
of order 2m (m=1,2,...).

Let Q(x,£) = b (x)& where b_ € L”(R"), then

|a§<2m—l
P(D)+9(.,D) generates a semigroup analytic in the right half plane.

So, we see that the perturbation Q(.,D) with variable coefficients
does not alter the basic properties of P(D).

C.2 _Second order hyperbolic initial boundary value problems.

We intend, while studying 2nd order hyperbolic systems, to keep
in mind as an example the infinite dimensional oscillator, which,
in turn,is a generalization of the lumped parameter two dimensional

oscillator

X = - ax , a>0
x(0) = X0 (<l)

x(0) = x20

ht'ég‘}i
weex—dt.

The usual approach for solving system (11) is to reduce the

equations to
<

with

{x(t=0)‘= %10
x(t=0) %50

and the well-known solution

x(t) = X cosh p,f:a_ t + -'~1~ b sinh/*.a. |
10 s 20

The system considered Lere has a similar formal expression for the



system equations and the solution. Consider
X = -Ax, A : D_(A)C X > X (€2)

x(0) = X0 € X

x(0) = X509 € X

System (12) can be rewritten as

DL -

x=/7% x(0) = x (c4)

or as

with the obvious definitions for'/?, X, X - Assuming that
B A Y-A is an infinite-simal generator of a Co—group in J?(X,X)

and that J:X'-l exists then the Co-group expression for 1 is

et4 = cosh(EVEE) [(I) g]+ FE L giah(e/ShA (€5)

where the operator functions cosht(:zl /-A_l sinh { YA are

defined by, for instance, their power series

T (-—A)ktZk
costy=A = ) Ty
k.
k=0
-1 © k2R
(-A) sinht /A = kZO _L_-2k+1!

Extensive results in this direction were recently presented in

-

ref. [F2]. Ve only state one theorem which indicates the right
choice of topology for wellposedness. It is an adapted version

of a theorem in {(¢] from a Banach to a Hilbert snace sctting.



Theorem 1 [G4]

B2 0

Let A& lo I]with b () = (8% x b_(B), and let B
be the infinites=imal generator of a Co-group in IP(K,X) and

0 € p(B). Then fZ is the infinites imal generator of a Co—group
in df(Z,Z) given by ( 5), where Z = Y x X with norm II.II,
Y11= <yl 121513 and ¥ = b (8) with norn |]].]]],

Hyll] = (|v]? + [By|BHY/2

The Cauchy-problem x = /{_}3 for x(0) = [

wherel.l is the norm in X.

*10

2
€ DO(B ),x2 ep_(B)

10

ith
} with x 0

x
is well-posed and x(.) : R »> DO(BZ) is contin%gus. B
Remark :

-’ft,

In the proof of this theorem an expression for ||e | was

given which we state for later reference:
||e7ﬁt|| < 4(|B'1|+ I)|sinh(tB)| + 4|cosh(tB)]. (C6)

A very important special case is obtained when A in (C2)
equals C2 and C is self adjoint. The solution is then described

by a Co-unitary group ¢(t)

¢(t) = cost C.[(I) g}-&- Cnlsint C{_gz (1)‘) ()]

Here one does not need 0 ¢ G(C). The statement of theorem 1 remains
valid if Z = DO(C) x X is replaced by E = DO(C)/{kernel C)X X,

Before, we related generation of a Co—unitary group to skew-adjointness
of its generator. If iC is skew-adjoint, so that it generates a

(o} ” i
C -unitary group, the norm on Z(or Z) can be chosen sc that
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¢z o
is the right norm [G3].

‘[; Q 1] & /{ is skew adjoint. In fact I]ill = ([iCy|2+lx]2)l/2

Example (Wave-equation)

Consider the system

5 52

=T==2% ; xg 0]

ot 3x

y(x,0) = —g{' (x,0) =0 (c8)
(0t)=—al(1t)=0

y (0, o (Ls

To stress the importance of the right choice of topology it will be
shown that the straight forward attempt to reduce this system to

a first order system by introduction of a two component vector

4 b

dy
dt

, VEX XX, X = LZ(O,l) gives rise to difficulties with

respect to wellposedness. Let the initial condition be

esin (2N-1) -;- X
v (x) = 9
o
0
(i.e. only the Nth mode-component of y is nonzero). The solution

v(x,t) 1is then

€sin w, x . cos w_t
N N A n
v(x,t) =) » Wy = (2N-1) 7
L-ewN51anx.51ant
Since
2
b s o | ‘_,‘2 | v | ___€ - 2 = 2 2
,;voax;:L?ﬁt =g /2 5 !,v(x,t)|\,<}(~ 5 {cos wNL+szin th]
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It is seen that the solution v(x,t) does not depend continuously
on the initial data, since Ilv(x,t)li is arbitrarily large because

of the term w; not present in Ilvo(x)ll.

We next study wellposedness of the Cauchy problem (C7) (¢9)
in the topology of theorem 1 . Clearly vo(x) € DO(BZ) x Do(B)

where B = 1 _3 . Also
9x

2
2 2 2 2 2
Hvo(x)llZ = Iesianxl +€ lBsianxl = %~ (1+wN).

and

llv(x.t)’lz = |esinw x.coszt[2

N

2
+ [eszinw x.coszt|

N
2. 2 2 2 2 .2
=5 [cos th+chos th+wN51n th]
2
€ 2

The conclusion is that future states have a morm not bigger fhe worm
ot the initial state. This result expresses the principle of
energy conservation. What has been demonstrated is that the
problem 1s wellposed for the indicated choice of topology and
auxiliary variables.

As for parabolic systems, we will present two general state-
ments about the Cauchy problem of a 2nd order hyperbolic system,
specifying A and the spaces involved.

First we develop some notation.
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Let Cw(Q) be the set of infinitely complex valued functions
on 2, a bounded set in R".
Let C:(Q) C d”(ﬂ) have compact support in .

% 4

Let 1 €a, €n, & = (0t,,...,0°), |a] = %q and D =

j j 1 J }‘.nlk

9 = o il 2
57 e - ltB =lfecm e L@,

a o
1 J L
la] ¢ k} for some positive integer k. Then (f,g)k = % f p*£p%gdx
aj=k /Q

for f, g € Cw(Q) defines an inner product on Hk' Let g¥k denote the

completion of Hk under the norm induced by ("')k'

and J[: similarly. % K’ 9{12 are

Xo- X, - L@y

o o
For f,g € Co define Hk
Hilbert spaces. (For k = 0

Let

Ax(z) L (-1)P 5 ) Da(aaB(Z)DBX(Z))
¥=0 fd<[s|-z

where aff = (al...ajsl...Bk).

Assume the following regularity-assumptions
1) 3.8 is complex valued and aaB(z) = asa(z), z e R
and sufficiently often differentiable.

2)

2
Re{ 2,5 (DL} > k_JE] p/ kK >0

o

lal=¥3|=p
EER, z€ Q

3) The boundary SQ of § is smooth (at least of class
3p-2

c ).
An example of such operator is the n-dimensional
n .2 2
A v B T B ; 3 %
A= 3 —5 12 € R in the wave equation 5 M Ax.
i=1 Ezj ot
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For this example

] § e, @) ) (z) = -§
A= (-1) — (a_ . (2) == = where a z) = -
Gl G Bzi ij azj 1j 1j

(Kroneckezr §'s)
Statement 1. [G4]

The Cauchy problem

Xe
L

x(t,2) = -Ax(t,z) 7
x(0z)= £,
x (02)= £,

has a strong (i.e. £2) solution

x(.2): R > %zpf) :k: 1f
fl € ;sz/] Q?; and

(8]
fz"%p

The solution is governed by a Co-group. g
Statement 2

One can perturb A by P
(¢ o
Px(t2)= % L (z)D x(t,2)
a
al<p

where £a(z) is an essentially bounded measurable function on
Q ¢ R and obtain the same conclusions. I
For applications of these statements to Maxwell's equations,

elasticity, acoustics, see [W4].



APPENDIX PD.

Point Controllability for Hereditary

Systems with Discrete Delays

In this section Weiss' sufficiency condition for Rn—controllability
for a system with one discrete delay is extended to systems with mul-
tiple discrete delays. Conceptually the method of derivation of the
criterion is much like that for finite dimensional lumped systems.
The kernel however satisfies a delay-equation which makes the case
unusual. The challenge present in extending the result to a multiple-
delay case is that of extending a criterion for a scalar valued to a
vector valued case, the vector here being the delay vector. The dif-
ficulties involved are largely of an organizational nature.
This section is intended to complete and provide some details
for Chapter IV, section 4.11.
Consider the delay-system
N

X(t) = I A.(t) x (t-h,) + B(t)u(t) ¢t > 0 (pl)
j=o 3 3

¢=h <h <...<h, <o

o 1
Aj(‘) for j =0, ... N are n x n matrices
B(.) 1is n x m matrix
All matric es are assumed to be sufficiently differentiable.

In section 4.1 it was shown how to represent this system in the form

section 4.1 (5)



- A(’;?..

o
x(t) = J dy(t,8) x (6) + B(t)u(t) (o1) '
_hN

The solution was discussed in section 4.2, cor. 1 and remark 2, and

was shown to be of the form

t
(x(o =0, y =0, u))(e) = J U(t, s)B(s)u(s)ds (©2)
o]
where

3U(tzs) -

dn(t,8)U(t+e,s) = L(t,U (.,8)) t 20

5

9 t
(D3)
U(t,s) =0 for t <s
u(t,t) =1
In our context
N
L(Es UG 8)) = B A (6) Ulehy, ) (04)

Let the space of admissible controls be Uad = LZ([O,m); Rm) the

space of square integrable functions on [0,») satisfying

J | x(t)|? dt < » , where |.| xrepresents any norm in R",
o

Define the subspace Ua = Lz([O, t]; Rm) - Ua

d,t d

t
Define Ft : Uad,t + R by Ft . = [o U(t,s)B(s).ds

* %
Then the "adjoint" F* il Lz([o,c]; R" ) is B . U(t, s)B(s).
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Scholium 1

System (D1) is R™-controllable if for some €y > 0 R(Ft ) = R,
1

(R(F. F* ) = R") or N(Fx ) = {0}.
&5t ¥
Proof:

R(F, ) = R(F, F* ) = R" implies (. R, )'1 exists.
1 o I | £ =

Let x; = R" be the "target point" for a trajectory corresponding to
-1

initial function (=0 € C , then Ulﬁ,tl] = F*tl(FtlF*tl) Xy
= D = = I
accomplishes that x(o = 0, T 0, U[O,tl])(ti) X)
The condition F* (y) =0=2y=0 (D5)
1
or
y U(t,s)B(s) = 0 for all sf[O,t];:yy =0 (D6)

can be expressed as an algebraic condition not involving the kernel
U(t,s), using equations (D3) and (04). The derivation of that condi-
tion is the main objective of this paragraph.

If (26) holds on [O,t] then

m
s [ yU(t,s)B(sz] =0 on lﬂ,tj ,m=0,1, 2 ... (©7)
ds™

Although we have defined already the '"adjoint' of Ft’ we have not

talked about the "adjoint" equation to (P1l). Define the "adjoint"

equation to (Pl) to be



e ’|'39 it

dy(s) N
s = - E—l y(s +h) A (s +h) ©8)

having a solution on (-, t + hN). This adjoint is defined with
respect to the pairing

N h
@0, 0 =@ b - I [ e m e Ganag ) where
) 1 o

k=
Y € ([o,T); R“*), xPeC([—-T,o]; )

If (x)(8) = x(t + 8), t 2 0, -hy £ 9 $0 represents the
solution to (1) and (yt)(e) =y(t+806), t¢€O0, SE[O,hN] represents
the solution to (B8) then Hale shows that (yt, Xy t) = constant.

This property may be considered as characterizing the "adjoint" solu-
tion. The solution y(t) to (b8) with initial function y = ylo’th 0
EC([O, hN]; Rn*) and driving_term C(s) v(s) is

s :
y(s) = J V(s,t)c(t)v(t)dt ©38)'
o}

The kernel V(s,t) satisfies on (-», t 1 the equation

N
%-s- V(s,t) = - L V(s + hk’ t) A.k(s + hk) °9)

k=0

V(s,t) =0 s > t,
Moreover V(s,t) = U(t,s) ©10)

Condition (D7) can now be elaborated upon using (©9) and (D10).
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Special Case: A system with two delays. (N=2)

Define a set of matrix functions by the following recurrence

relations
Ql(t) = B(t) (011)
11
K+l - _ K
o r, (t) qurz (t) Ao“‘)(?rlrz (t)
- Wi & OVt % (e, 50h) O (t)
1 17bhy 271y ((rl‘l’fz
ﬁk
—Az(t + (rl—l)hl + (r2—1)h2)tgrl’r2_l(t)
(o11) !
and
C?k =0 fork=0,k>n, r, =0, r, >k, i=1, 2. (p12)
I i i
1%2
Lemma 1
&0 n,n
= [ y V(s,t)B(si} = z V(s + (rl—l)hl + (rz-l)hz, t) «
8s rl=1 r2=2
(Pm+1 (s) ©13)
)
Proof
For m = 0 (D13) is satisfied using (D11), (D12).
Form=1 y V(s,t)B(s) + y V(s,t) B(s) =

N

. 1 s
=4y kgo V(sth, ,t) Ay (s+h ) Q, (s) +y V(s,t) Qll(s) (014)



s

o VTl -

From (All)' for k =1
2 | _ 41
erlrz (s) (Prlrz (s) Ao(s)(i,rlr2 (s)
1
- Al(s + (rl-—l)hl + (rz-l)hz)gﬁrl_l’rz(s)

1

rlrz"l (S) :

= Ay (s + (r;~Dhy + (r,=Dh)

or

2 SE | 1
Qll(S) =Qll(S) - AOL?ll(S)

2
. 11(zs)

2
Q1.®

So that (Dl4) equals

- Al(s+hl)c~?h(s)

- Az(s+h2)C?il(S)

=y V(s,t) Qil(s) + yV(s+h1,t)(i)§1 (s)e+ V(S”‘z’t)(?iz(s)

Using (D12) this is seen to be equal to the r.h.s. of (p13).

For m + 1:
Assume (D13) holds for m = p. The inductive proof will be com-
plete if then (P13) holds for m = p+l. It is to be shown that

n,n

d +1
. 3 V(s + (r,=1)h; + (r,-1)h,, t)GP (s) =
ds ¢ =1,r,=1 1+ 2702 Dy
n’n Pl_z
z V(s + (r,-1)h, + (r,-1h,, t) 3 (s) . 115)
1 1 2 2 { ryry

r1=1,r2=1

Let in the following equalities q stand for the expression
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s + (rl—l)hl + (rz—l)hz. The 1.h.s. of (DP15) then equals

n,n . +1 ¢ ~+1
T V(q,t) 5P (s) + V(q,t) P (s) =
r,=1,1,=1 H'rlrz &/rlrz
n,n
2 V(q,t)LPP+ () - V(a,t) A (s) - V(a+h ,t) A, (q+h)
r,=1,r,°1
= V(gthy,t) A, (q+h,) =
et S pl pHl p+l
; v<q,t)[ (a): = ..(s) - A (@) (s) -
r1=1’r2=1 LPrer ° err (17 1, I,
+1
n@GE, l<s>J
n,n
+ O W, c)[A(q)c,Pl () + A @QF? (o)
r)=1,r,=1 ) EyaXo™
n,n +1 +1
- I V(gth,t) A (e+h OB T () + v(gth,,t) A (ath 0P ()
r,=1,r,=1 1 15 12 . 4 2’?r1r2

The last equality was obtained by adding and subtracting terms.
It can now be easily checked that the last two sums cancel out against
each other using (P12). The first sum equals the r.h.s. of (215)

using (011)'; which proves the lemma. ¥
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Scholium 2
8 mHl
=y V(s,t)B(s) | =yQ (t-sh; = sphy)  (N16)
5s™ (t:--slh1 - szhz)’ (sl+1)+(52+1) 1
Proof:

In (D13) all terms for which (rl-l)hl + (rz-—l)h2 > slh1 + 52h2
disappear because V(a,t) =0 for a > t. All terms for which
(rl-l)hl + (rz--l)h2 < slhl + szh2 are zero from the evaluation of
the mth derivative at (t - slhl - szh2)+. The only remaining term is
for indices ry, 1, such that slhl + szhz = (rl--l)hl + (r2—1)h2.

Since V(t,t) = I this term equals

mt+1

y Q(sl+1) + (s5,+1) (e=gyh

1 - sghp). B

i i
Let ti t - (s1 - l)h1 - (s2 —1)h2 € CO,t] be called a break-

point and Qki i (ti)’ k=1..., n be matrices generated by the

57,8 2
recursive formulae (D11)' and (012).
The following theorem then formulates, an algebraic condition
which is sufficient for pointwise controllability.
Theorem 1
Let Q(t) represent the matrix

A : . 1 . n .
Q(t) =[~-2 0%q (ts) o Q¢ 4(L,) 2 'i]
S{S} . sysy 1 t. & B
£~ o]

t]represents the set of breakpoints on lO,t.]. Then if
b

for some t > « rank Q(t) = n, the delay system is R’ -controllable at t.

where B,
[o
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Proof:
*
If not, let y # 0 € R" such that y € N(F*t) (scholium 1)

or y U(t,s)B(s) =0 Vse [G,t] (formulan5,p6). Then using (D7) and
m

(D10) this implies y _éﬁ' V(s,t)B(s) = 0 for all s E[;G,t] and
Ss
m=¢, 1, 2 ..., Scholium 2 then gives yQZili (ti) = 0 for all
s
2

t; €8 [e,t) andm=0,31, 2 ... (m<n using (P12)). Hence, Q(t)
cannot be of full rank. B

General Case - N delays

The extension from N = 2 to the general case is now only a
matter of notation. The proofs carry through in exactly the same
way. We preferred to treat first N = 2 to keep notation simple and proof
proofs more transparent.

A
Let r = [r g, il ] be a multi-index.
1 N N

L xh. .

A 4 i
b = [hl s eechy ] the delay vector and rh = &y

i=1

1f r, = j fori=1... N we will write r = j and if I = 0

for i =1 ... j=-1, j+1, ... N and rj = 1 we write r = ej. In an
analogeous way as in (P11), (011)', (R12) define matrices

k 1 _
Q , k=1, ...n by Q (t) = B(D),

k+1 . Y k
Q (t) =Q. (t) - I A(t+ (xr-Dh) Q- () (D17)
E i=0 rey

k
Q(t) =0 fork>n,k=0,r,=0o0rzr,> h 1i=1, ... N,
T i i

Then
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m n 1
Lemma: —E_. y V(s,t)B(s) = I V(s+(r-1)h,t) Q:+ (s). K (018)
ss™ r=1

Theorem 2:

Let multi-index si correspond to breakpoint ti =t - (si-l)h
6['0,t] and Q:l (ti)’ k=1, ... n be matric_es generated by (D17).
Let

g !
Q) = [ L QqlE ) < Qni(ti) * ]
' = t, €B
17 To,e ]

Then rank Q(t) = n for some t > 0 implies Rp—controllability at t.

Proof: similar to the proof in theorem 1. |



