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HEREDITARY DIFFERENTIAL SYSTEMS

DEFINED ON A COMPACT TIME INTERVAL

Abstract
by

MICHEL CLAUDE DELFOUR

This research is concerned with the study of
hereditary differential systems with initial data which are
not necessarily continuous. Let N be a positive integer and

N
a, to, tl’ {Qik 520 be real numbers such that

= = > - T = -a.
a> 0, t.-t.2> a, 0 90 %_ 9N a

Let E be a Banach space, and let ¥ be a vector space of Lebesgue
measurable maps defined on [-a,0] with values in E. The heredi-
tary differential systems considered here take their values in

E and are of the form:

(E.)  ax(t)
¥ aF

f(t,x(t+'9N),...,x(t+ 91), x(t))

(E))  dx(t)

f(t,x(t),x.)
2 s t

(E))  dx(t)

3 2 f(t,x(t+9N),...,x(t+ 91),x(t), xt)

D

for almost all (with respect to the Lebesgue measure on [to,tl

ii



t in [to,tl] and with initial data x(s) = h(s—to) (se [to-a,toj,

he ¥ ).

For such systems we study the Cauchy problem.
In order to obtain global existence (and uniqueness) theorems as
well as a result which shows that the solution is continuous with
respect to the initial data we introduce two function spaces:
one (Mp(-a,O;E)) in which the space of initial data will be con-

sidered and another (ACP(t E)) in which solutions will be

O,tl;
sought.

We study further affine hereditary systems. For
such systems the main results are i) a representation theorem
for the map f, ii) a representation of solutions in terms of the
fundamental matrix, and iii) a theory of adjoint systems. The
above research opens the way to various applications, one of
which is the analog of the classical optimal control problem for

an affine differential system with a quadratic cost.
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1. Introduction.

This thesis is concerned with the study of hereditary diffe-
rential systems with initial data which are not necessarily con-
tinuous. Although hereditary differential systems with initial
data in the space of continuous functions have been extensively
treated in the literature, a study on the lines of this

thesis has apparently not been made.

We now indicate the contents of this thesis. The discussion
in this chapter will be somewhat loose since our main objective

is to give a summary description of the results and their

motivation.

Let N be a positive integer and a,to,tl,{ 0 i} N be real
i=0

numbers such that

a>0, t;-t;2a, 0=>90>9l ...79N=-—a.
Let m denote the Lebesgue measure on the compact interval [to,tlj,
let E be a Banach space, and let F be a vector space of Lebesgue
measurable maps defined on [-a,0] with values in E. Consider the
following differential equations which are to be satisfied for

almost all (m) t in [to,tl]:



(E)) dx(t) = £Ot,x(t+8 0,0 x(t+0 ) ,x()), (1.1)
dt

(E,) dx(t) = f(t,x(t),x. ), (1.2)

2 i t

dt

and

(53) cal%(t) = f(t,x(t+9N),...,x(t+ 91),x(t),xt) (1.3)

with initial data
(D) x(s) = h(s-t,), se [t) -a,t;], he ¥

where x(t) € E, xte’f

xt(e) = x(t+0), tc[to,tl],ﬂe [-a,o0].

Here f is a map defined on [t
N+1

O’tl] x‘V’ with values in E, and‘r

,Ex?or E N+1

is equal to E xT for (El).
(E2) and (Es), respectively (the precise topological framework

will be given in Chapter 3).

Ifte [to,tl] is interpreted as time, the right hand sides
of the differential equations (Ei)’ i=1,2,3 depend on t and the
past history of x corresponding to the time interval [t-a,t].

This explains the terminology - hereditary differential systems.

The three cases considered here do not exhaust the family of such
systems. However the techniques and notions developed here are
also applicable to other members of the family of problems. For

ordinary differential equations,where f depends solely on



t and x(t), the space E is simultaneously the space of initial
data, the space in which the differential equation takes its
values at each time t and the space to which the "information"
to be used at time t belongs. This is not true of hereditary
systems where in general three different spaces ?F, E and ¥ are

needed.

Solutions to hereditary differential systems (Ei) will be

sought in the space of absolutely continuous maps defined on

[to,tlJ with values in E. The Cauchy problem for hereditary

systems (Ei) with initial data (D) consists of finding an
absolutely continuous map X defined on [to,tl] with values in
E for which §(to) = h(0) and such that the map x defined on

[to-a,tl], by

h(s-t)) s e [t -a,t [,
x(s) = (1.4)

satisfies equation (Ei) for almost all t in [to,tl].

The Cauchy problem for (El) has been extensively studied
in the literature. An account of this may be found in R.
Bellman and K.L. Cooke [1] and C. Corduneanu [2]. In both
references the space of data ¥ is the space

C(-a,03E) of continuous functions defined on [-a,0] with values



in E. The study of the same problem for (E2) also provided a more
general and elegant technique [3,4] for dealing with problem (El).
Indeed,the map

x e (% @), %, (00)) = (x(E+BY) .. x(£46))  (1.5)

EN+l is continuous

defined on C(-a,03E) with values in
and linear. Therefore when q: is equal to C(-a,0;E) the Cauchy
problem for (El) is a special case of the Cauchy problem for (E2)
and it is clear that only the latter problem need be studied. We
refer the reader to J.K. Hale and C. Imaz [5], and C. Corduneanu
[6] for a study of the case when f is a continuous function of its

arguments. The Cauchy problem for (E3) is a combination of (El)

and (EQ) and as such the preceding remarks also apply to the latter.

Our objective is two-fold. First the space of initial data
’3: will be enlarged from C(-a,0;E) to ¥.P spaces of p-integrable
functions defined on [-a,0] (1 £ p<®) (not to be confused with
LP the space of equivalence classes of such maps). In doing this
the Cauchy problem for (El) is no longer a particular case of the
corresponding Cauchy problem for (E2). Secondly, the hypothesis
which requires that f be continuous in its arguments will be
relaxed in favor of hypotheses of the Carathéodory type, namely,
measurability with respect to t and continuity with respect to

the other arguments.



In order to obtain global existence (and uniqueness) theorems
as well as a result which shows that the solution is continuous
with respect to the initial data (Chapter 3, Theorems 3.3 and 3.4)
we introduce two function spaces: one (MP(-a,0:E)) in which the
space of initial datawill be considered and another (ACp(‘c0 ,tl;E))

in which solutions will be sought.

The Mp-spaces are obtained when one considers a partition on

x,p—spaces which is different from that used to obtain Lp-spaces.

Let us remark that the pointwise character of the initial da-
tum h is only used to obtain h(0) which fixes the value of x at
time ty- The remaining part of h is treated as an element of P
since f need only be defined almost everywhere for integration
with respect to t. This very naturally leads to the following
equivalence relation <~ among the elements of Z,p:

h~a k ¢<=>h(0) = k(0) and h = kx a.e. [-a,0[. (1.8)
It will be shown (Chapter 2) that the quotient spaces of P

(1 € p<o) with respect to the above equivalence relation -~

is a Banach space when endowed with the norm

0
| hil =[\h<o)lg+f lh(e)lgdell/".

-a

This space will be denoted by MP. It turns out that (x(t),xt)

in (E2) and (Ea) can be interpreted as an element of MP since



x(t) = xt(O). In view of this it will be more convenient to have

N

f defined on 1F equal to M and E x MP for (E2) and

(Ea), respectively (see Chapters 2 and 3).
In Chapter 4 we study affine hereditary systems, an affine

system being one where the map f: [to,tl] X WP;_,.H, H is a

Hilbert space, is affine for fixed t. The main results in

this chapter are i) a representation theorem for the map f,

ii) representation of solutions in terms of the fundamental matrix,

and iii) a theory of adjoint systems.

The motivation for this thesis (not included here) is an
application to the following problem of optimal control. Consider

an affine system of the form

g%(t) = Ao(t)x(t) + Al(t)xt + B(t)v(t), a.e. [to,tlJ (1.7)
or N
dx(t) = Ao(t)x(t) + L A, (t)x(t+0,) + B(t)v(t), a.e. [t ,t.]
- . 5 i 051
dat i=1
(1.8)

with initial data
x(s) = h(s-to), se[to—a,to] (1.9)

and control v in I?(t R") the space of square integrable

O,tl;
functions defined on [to,tl] with values in R"(m < n). (The

~

~
precise hypotheses on Ao,Al,B, AO,...,An and h are not given here.



The problem consists of finding a control u in i,z(to,tl;Rm)
which minimizes a given cost function of the form

J(v) = J.tl [(xv(s),Q(s)xv(s)) + (v(s),N(s)v(s))Ilds (1.:10)

%o

(xv(s) is the solution of (1.7) or (1.8) corresponding to h
and v). In addition, it can be shown that the optimal control
u can be synthesized at each time t directly from the "state"
(x(t),xt) of the system as follows:

u(t) = P(x(t),xt) + r(t), te[to,tl]. (1.11)
In the above P is a linear map defined on R" x ¥ into R™ and
r is an element of XP(to,tl;Rm).

A problem of this type was partially studied by N.N. KrasovskiY
[7,8] as early as 1962. Based on KrasovskiY's techniques, attempts
were made to find differential equations of Riccati type for
the feedback map P and the function r. Results (incom-
plete) of this type have been reported by D.W. Ross and I.
Flugge-Lotz [9], D.H. Eller, J.K. Aggarwal and H.T. Banks [10],
and H.J. Kushner and D.I. Barnea [11]. The approach adopted
is different. It is "the direct method", first introduced by
J.L. Lions [12] in the context of parabolic partial differential
equations. The adaptation of the latter method of hereditary
differential systems was made possible by the introduction of
the MP spaces and the spaces ACP of absolutely continuous map

studied in Chapter 2. In summary, the direct method consists in



establishing the existence of the feedback law (1.11), studying
the properties of P and r, and showing that these satisfy
natural differential equations exhibiting a Riccati feature.

In this way it is not necessary to study the Riccati differntial
equation in order to establish the existence of the feedback law,
a task which is extremely difficult for the problem considered

here.

Notations and Terminology.

R will be the set of real numbers.

Given a topological vector space E and an integer n = 1,
E" denotes the product topological vector space of n copies of E.

B\ A will denote the complement {x&B} x4A } of a set A
with respect to a set B.

Let B be a Banach space and let B* denote its topological
dual space. We define the symbol -<x,xf> B by < x,x*>B = x*(x),

%

where the right hand side is the value of the linear form x

% E
at the point x. The map (%X,x )v» <x,x > _ is a bilinear form

B

v,

w
on B x B .
L(X,Y) denotes the space of continuous linear map from a

real Banach space X into another real Banach space Y. For

o E.
se L(X,Y), See LY',x") is the transpose of the linear map S.



Let f : X — Y be a map between two real topological vector
spaces X and Y. The map § is an isomorphism if it is bijective,
linear, and bicontinuous; it is an embedding if the map
X > ;(x) =f (x) : X—= $(X) ( $(X), the image of X under
§ in Y with the relative topology) is an isomorphism.

Let [a,b] be a compact interval (b > a) in R, E a Banach space,
and f : [a,b]— E a map. When t € Ja,b] (resp. t € [a,b[) the

left (resp. right) derivative at t (if it exists) is defined as

follows:

Lim ;(j)"' o) (rup. Lim 5“')';_(__3) ) .
y->t y W j—bt ‘E-j
yelatl yelt,b]

When the left and right derivatives at t are equal we say that

f is differentiable at t and denote as _d_f_(t) the derivative of f
dt

at t.




2. Function Spaces for the Study of Hereditary Differential Systems.

This chapter contains the basic material relevant to the study
of hereditary differential systems. The notations and terminology
here will be consistently used in the following chapters.

2.1 Preliminary Definitions.

2.1.1 Lang's theory of LP(u,E) and £P(u,E) spaces.

We first summarize the development of Integration Theory as
given in Lang [13, Chapter X and XI]. Let X be a non empty set, #{

a g-algebra on X, [13, p.222] and p:Hl>[0, =] a positive measure

on # [13, p.229].(X,W,p) is said to be a measured space [13,p.229].

A map f: X - E is said to be measurable if the inverse image of each
open set in E is measurable in X [13, p.224]. A map f: X -+ E is said
to be a simple map if it takes only a finite number of values, and
if, for each v @ E the inverse image f-l(v) is measurable [13,
p.227]. By a partition of A (= X) we mean a finite sequence { Ai}

(i-= .+, r) of measurable sets which are disjoint and such that

Vs
r

A= U A Amap f: X—E is called a step map with respect to
i=1

such a partition if f is equal to 0 outside A and f(Ai) has one
element for each i. A map f: X+ E is said to be a step map if it is
a step map with respect to some partition of some set of finite
measure.

We denote the set of all step maps by St(u, E) [13, p.231]. We

define a map to be p-measurable if it is a pointwise limit of a

sequence of step maps almost everywhere [13, p.232].

10



o i

If A is a measurable set of finite measure in X, and f is a step
map with respect to a partition {Ai} (i =1,...,r) of A, then we

define its integral to be
»

[, £ an= 2 u(a) £(a)). (2.1)
The Ll-seminorm on St(u, E) is then defined as

TR fx 1$le g (2.2)
[13, p.235-237). Let N(St) be the subspace of all step maps which

are zero except perhaps on a subset of X of measure zero. The Ll-

seminorm now becomes a norm on St(u, E)/H (St). Denote by Ll(u, E)
the completion of the latter space with respect to the Ll-norm.
The integral is then naturally defined on St(u, E)/A((St) and
extended to Ll(u, E) by density as indicated in the diagram below:

)
L vEY . if
2 ~
b 5
g™
Stome) wist) ' & g
We define zl(u, E) to be the set of all mappings f: X _,.E such
that there exists an Ll—Cauchy sequence of step mappings converging
almost everywhere to f. The integral and the Ll-seminorm are readily
extended to X,l(u, E). Let A Il) be the set of all elements of
I_l(u, E) which are zero on X except perhaps on a subset of measure

zero. If i denotes the injection of St(p, E) into xl(u, E) the

diagrams below summarize the situation

x'(}h E) \\fx I"(P"E) ~s_i,
NI i f 7

N
Stoune) %, E Stw,E) MR .
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To each f in i-l(p,E) we can associate a unique element ; in

Ll(p,E) determined by an Ll—Cauchy sequence of step maps converging
a.e. to f. Let f: l,l()a.,E)-» Ll(ys,E) be such a map. It is iso-
metric, surjective [1, Lemmas 1 and 2, p.238-239] and the integrals

coincide f
-~

L Fdp =-.fx T ap . (2.3)

So Ll(r,E) is isometrically isomorphic to &}(;«,E)/JV( I,l) {13,

Cor. 1, p.247] in such a way that the integrals on the respective

spaces coincide. The situation is summarized in the following

commutative diagram:

L', )

sutrcﬁan-}
=¥ |

StWE)/N (D E = X' £)/a)

i f
. \\ ’ .
SMJoct\on \ \‘A \ 4 / Suchc.twv\
S~

Stu, E) <> 2L'(p,E)

wyecCiom
The curved arrows in the above diagram indicate liftings of the map
IX' A similar diagram can be drawn with R in the center and the
seminorm | ‘l in place of f X"
Likewise for 1 < p<o , we define ip(y.,E) to be the vector

space of all p -measurable map f defined on X with values in E for

which

/i

b P

150, = [ Log1tan] ™ < s 2.
I llp is called the LP-seminorm and Lp(y ,E) will denote the

quotient space of I,p(y.,E) by its subspace of all elements which

are zero almost everywhere in X. It can be shown that the step maps
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are dense in LP(y, E) (1<p< o).

When p = @ , we define ‘to(u, E) to be the vector space of
maps f such that there exists a bounded p-measurable g equal to f
almost everywhere. We define the essential sup to be

Wely =dnf gl
where I Il is the sup norm and the inf is taken over all bounded
p-measurable maps g equal to f almost everywhere. This defines a
seminorm on :t.'° (u, E). It is clear that we have Il fllj = 0 if and
only if f is equal to 0 almost everywhere., Denote by L (u, E) the
space of equivalence classes of elements of tn Cuy ).

If we identify Ll(u, E) with the quotient space :,l(u, E)/
A :,l), we shall denote by

T L, E) LP(,;,E)

the canonical surjection for all p, 1$p%eo,

2.1.2 Some Function Spaces on [a, B].

Let a< B be real numbers and E a real Banach space.
Let C(a,B; E) denote the Banach space of continuous functions
defined on [a,B] with values in E endowed with the norm

||f||C =[tg?§]|f(t) s (2.5)

where | | is the norm inE.

In terms of the notation of section 2.1.1 let X = [a, B] and let
u = m be the (complete) Lebesgue measure on X. We now denote the space
LPyu, ) (resp. LP(u, E)) by I,p(a, B; E) (resp. tP(a, B8; E)).

A map f: [a, Bl E is m-measurable if it is a pointwise limit

of a sequence of step maps almost everywhere.
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2.2 M and NP spaces.

We now introduce function spaces MP and NP. The purpose is to
enlarge the space of initial functions for hereditary differential
systems from continuous functions to LP-functions. This is done by
introducing a special seminorm on :.p-spaces which is different from
the partition used to obtain Lp—spaces.

Let a be a positive real number. Consider the linear subspace
sP of &XP(-a,0; E) defined by

sP- { fe l,p(—a, 0; E) z f£(0) = 0, f(®) = 0 a.e. on [-a, 0[}
(2.6)

Let MP(-a, 0; E) denote the quotient space of Ip(-—a, 0; E) by
the subspace sP. Let [f]Mp denote the equivalence class of f &
LP(-a, 0; E) in MP(-a, 0; E).

When [-a, 0] is replaced by [0, al, we define the linear sub-
space TP of 2.P(0, a; E) by

™ =f{fe xP(0, a; E){ £(0) = 0, £B) = 0 a.e. on 10,a1}(2.7)
and denote by NP(O, a; E) the quotient of I,P(o, a; E) by the
subspace pE

We see that there is a symmetry between Mp( -a, 0; E) and
NP0 , a; E); for this reason only the space MP(—a, 03 E) will be
studied.

Wherever there is no ambiguity we shall write simply MP and NP
instead of MP(-a, 0; E) and Np(O, a ; E).

2.2.1 Seminorms and Norms on £P and MP.

We now define an appropriate seminorm on LP and a norm oOn P,
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Let Y
(o™ + )P 1 <p <o
o, (f) = (2.8)
P} Wax{[}lO\lq l}“n }, P:OO

Proposition 2.1

(i) The functional
| g— xplf) ip(—a,O;E)_. R
is a seminorm on I.p(-a, 0; E).
(ii) This seminorm (p defines a norm Ep on
¥P(-a, 0; E):
xp (T41) = e (§),
Proof: (i) By constructhmm,dp clearly satisfies the axioms of a
seminorm . (ii) To prove that Ep is a norm, we first show that ;(p
is a well defined map from Mp(—a, 03 E) into R. Indeed, let
fl, f2 € IP(-a, 0; E) such that [fl] — [f2]. By definition
fl(O) = f2(0) and fl(a) = f2(9) a.e. in [-a, 0]
and hence
%y (1) = €y U4) = &y ($2) = %y ([3),
&b clearly satisfies the axioms of a seminorm since dp does. To
show that a seminorm is actually a norm, pick any f ¢ !P(—a, 0; E)
such thatu%(f) = 0. Then lfllp = 0 and \£f(0)| = 0 and hence £(8)= 0
a.e. on [-a, 0] and £(0) = 0. Therefore fe S® and [£f] = 0. Hence
L ([$1) =0 = [§]1=0

proving that &b is a norm.
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2.2.2 Some Elementary Results for Mp-spaces.

Let Epr(-a, 0; E) be endowed with the norm

(lxl"+ “fll: )VP S lsr<co
TN T P (2.11)
max (1<l 5 Nfle ), p=w
Theorem 2.2
The map
£ K(E) = (£(0),[£] p): M(-a,0;E) » ExLP(-a,03E) (2.12)

is a norm preserving isomorphism.

Proof: K is well defined and linear. To prove that K is injective

suppose K(fl) = K(f2). Consider -fl and f, in lp(-a,O;E) such that

2
[fi]Mp = £, i =1,2. From (2.12) fl(O) = f2(0) and fl(9)

£,(0)

i 1 - P — £ = F =
a.e. [-a.0]. In particular fl f2eS and fl [fl]MP [f2]Mp f
To prove K is surjective, for any (x,g)€ Ex LP(-a,0;E) let g €

9*

Ip(—a,O;E) be such that [g ]Lp = g. Define f: [-a,0]—E as folleows:

£(0)
£(8)

X

g(8) ,8e(-a,0[.

Then f being a modification of g on a set of measure zero belongs to
-tp(—a,O;E) . Now

K([”Mr )= [5“’)7 [§3L’) = (x, [leb ) = (x-.z) .
Finally from the definition of _&p and the choice of norm on
Ex Lp(—a,O;E), K is clearly isometric.

Corollary 2.3

Mp(-a,O;E) is a Banach space isometrically isomorphic to

E x LP(-a,0;E).
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Corollary 2.4

Consider the maps

A x4 (x,0) : E—ExLP(-a,0;E), (2.13)
and
w: Fee (0,F) & LP(-a,0;E) -» Ex Lp(—a,O;E). (2.14)

Then the composition map K™ A (resp. \(-’o){, ) isometrically
embeds E (resp. P(-a,0;E) into Mp(—a,O;E).

2.2.3 A Density Theorem.

It is known that C(-a,0;E) is dense in Lp(-a,O;E) for 1€p<o
(13, p.336, Thm 6]. A similar result for MP spaces is given in
Theorem 2.5

C(-a,0;E) is dense in Mp(-a,O;E) for 12p<cew.

Corollary 2.6

The subspace
{(£(0), [£1,p) § £ e C-a,058) } (2.15)
of Ex Lp(—a,O;E) is dense.

Proof of Theorem 2.5: We claim that given f in MP there exists a

sequence {gn} of maps in C = C(-a,03E) for which
: 1%
[gn]Mp — f in M7,
Let f in %P be such that [£],p = . By the density of C in P [13,
p.336, Thm 6] there exists a sequence ihn} of maps in C for which
- - P
[hn]Lp —’[f]Lp in L
and

hn(O)_.-'f"(O) a.e. in [-a,0].
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Now consider the approximations (n=1),

gn 0) = {!., 9) + [§100 - ha19)] nO:a , -
h, )

For all n, g € C and gn(O) = £(0) = £(0). Also
_ )
% (qu-d) =[1gnior-Jo 1" g, -J 18 17
= Vg gl = Mg b U s th T,
Consider the expression
L[] 0]
lgn-fally = L) Iqnt0 - ho1021a0 ;
° b P r
L[S - b0 an

A

[[:J;.o;_;len”(l@?)iol'/?
+ [Io +A)Pd9]‘/"

[f I;(o) ;m}doj/ [ 116)- (o)lﬁe]v"

IN

since 0 £ w0 +a < 1 when # ¢ [-a/n,0]. But for arbitrary €& > 0,
a

there exists Nl7 0 such that

b, < e/ ¥ w2 N,
and there exists N2 > 0 such that

{f lflo)-5l9)la9}/< &/ » ¥ 2N,

Finally for n 2 N = max {Nl’N:?}
o |
Ay lgn-§) < 2 1h,- §IP+[5 lpw_;m]ae}/’ € .

This proves the theorem.
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2.2.4 Duality and Representation of Functionals on MP,

Because of the particular structure of the MP spaces, the well
known duality and representation results on LP spaces are also true
for MP spaces.

%
If B is a Banach space and B its topological dual, the pairing
& ® % ®
between B and B will be denoted <x,x > B for x € B and x € B.
Theorem 2.7
Let E be a reflexive Banach space.
® % %
(i) Mp(-a,O;E) is isometrically isomorphic to E pr(-a,O;E) ,
and each continuous linear functional J\ on MP has the following
*
representation in terms of a unique element (y,g ) in
*  p %
Ex L"(-a,03E) :
%
Af = <50), v >p FXE g OB Ve, (2.16)
%
(ii) fopr l<p<e , MP(-a,0;E) is isometrically isomorphic to
% - =
Mq(—a,O;E ) (q l+ p)#%), and each continuous linear functional
A on Mp(—a,O;E) has the following representation in teyms of a
%
unique element g in Mq(—a,O;E ):
o
Mt = <50),80> ¢ [ <£5®,0)>.00, ¥£ e ®. (2.17)
-a
Proof: Let w be the map given by (2.12). Corresponding to K there
exists an isometric isomorphism
* " *
K : (ExLP) —m (MP)
defined in the natural way
FLKE > P = <KEg Vrew
< sKg>MP° K;g>Epra € .
We also define the canonical map

]( cEx P et
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k% *  po%
in the usual way: for each (x ,y ) € E x(L%)
<y, FESYNH>E,p = <D 4 <y, yt> e

; p ; 5 g ® o p.®
for all (x,y) in E xL". f is an isometry if the norm on E x (LF)

is defined as

byt = § Dt eagad 14, 2oy 1y e
wox {1xfi L wgti b L p oy

it is surjective by a proposition in Horvath [14, p.267, Prop.2].
The composite map }(*oj. is then the isometric isomorphism which
establishes the first part of the theorem. The second part of the
theorem follows from the fact that the Lebesgue measure is é-finite
and E is a reflexive Banach space [28, p.607 Thm 8.20.5, p.590
Thm 8.18.3].

Corollary 2.8

*® % %
E (resp. (P is isometrically embedded into (MP) .

Remark The corollary says that any continuous linear functional on
E (resp. LP) can be extended to a continuous linear functional

on Mp.

All the results we have presented for Mp-spaces have their
obvious counterparts for Np—spaces.

As is commonly done for R" an element f of MP or NP will be
written

0 .1 0 1
(£7,£) or (£,,f,), £ ., €E, £, £ e LP
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instead of

-1, 0 1 -
KL ED or wTH(E,E),
wherever there is no ambiguity. The notation (fo,fl) has definite
advantages in computations.

2.3 The ACP spaces.

Let o ,/5 be as defined in section 2.1.2, and let 1<p < o0
Further assume that E is a real Banach space. Let ACP( o , /5 ;E) be
the vector space of all maps f : [« ,P] —>E which are differentia-

ble almost everywhere on [« ,P] with derivative df in LP (u » B 3E)

dt
and are such that
t
o) = £) + [ aKe) as, te L4, p. (2.18)
& ds

In other words ACP( ,'5 ;E) is the space of absolutely continuous
maps defined on [ o ,P] with values in E which have a derivative in
LP(d& ,f ;E). Such a space naturally arises in the study of differen-
tial equations since it is precisely the space in which solutions
will be sought.

2.3.1 Norms on ACP( o ,p ;E).

We first choose an appropriate norm on ACP( « ,F sE)

Proposition 2.9

(i) The functional

[l{(d)l’-l- "#‘t :])/f , | £ p=<e
me{l{(cn\, l:l"{“‘*’}’ p=o0

4 ny({) =

: ACp(d,#;E)—r R (2.19)

is a norm on ACP(« ,F,;E).
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(ii) The functionals

f > max {"}“C 5 "j{ l"}

(2.20)
and

f vp max {).;wl - H{"P} (2.21)
also define norms on ACP( o ,p ;E) which are equivalent to n_.

Proof: (i) The axioms of a seminorm are clearly satisfied. So let
n (f) = 0. Then | (&)} =0 and "df" = 0 and hence f(t) =0
P 3t P

in [, p 1.

(ii) The equivalence of the norm defined by (2.21) with np is
obvious. The functional (2.20) also defines a norm on ACP and by
definition

np(f) £ 2 max {H-lc 5 Héé 'P} ;

In the other direction it is sufficient to show the existence of some
constant b>» 0 for which

llfllC < b. np(f)

t

)] = 1w +L a{(s) ds | < lfw) + 6 (4,0, p) “?@Et “I’
= Celyfsp) n',(}),‘\

where c (e, ,p) = I((;_Q()\-?' , 12 p<oo

lﬁ:—-m )

p = oo
and
c2(°( ,F’,p) = max {1, cl(u ,P,p)} ;
From now on we shall assume that AC® is endowed with the norm
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2.3.2 Properties of the AcP spaces, Duality, and Representation
of functionals.

It turns out that the ACP spaces are structurally identical
to the MP spaces in the sense that they are isometrically isomorphic

to the product space Ex LP endowed with the norm (2.11).

Proposition 2.10

The map

£rwP(£)=(£(x) ,df) :ACP(A, b ;E)—> ExLP(a,p:E) (2.:22)
dt

is an isometric ismorphism.

Corollary 2.11

ACp(d,P;E) is a Banach space isometrically isomorphic

to ExLP(«, B 3E).

Remark A particular case of the above proposition can be found in

Dunford and Schwartz [15, p.242, p.338 Thm 3].

Proof of Proposition 2.10: The map V is clearly an isometry by the

definition of the norm np on ACP and the particular norm chosen for
ExLP., It is surjective by definition of AcP, Corresponding to

each (x,g) € EIpr, we can construct an element f of AcP as follows:

f(a)

{ £0t)

Trivially ¥ (f) = (x,g).

X

t
x+[ g(s) ds .t & ]a(,{&].
«
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With the help of this key proposition we have a density result si-
milar to Theorem 2.5. Let AC(I,@;E) be the vector space of all

maps f:[«,P] — E with a derivative df in C(«¢,p;E) and such that

dt
identity (2.18) is satisfied: at the points & and @ df(«) is
dt
defined as the right hand side derivative and gfﬂﬁ) as the left

dt
hand side derivative. The right norm for AC(«,p;E) is

n(f) = max{ | £(0)] "g—f—" ¢ }-

Theorem 2.12

AC( o ,{5 ;E) is dense in ACP(w ,{s;E) (1= p<coo ).

Proof: By Corollary 2.6 the subspace
[c1={ (£),£) § £ e cla,psE)}

of E x IP is dense in E x LP. But y (AC) the image of AC under y

is equal to [C]. Hence the density of AC in ACP by the properties

of ¥ .

The duality and representation results are also corollaries

to Proposition 2.10.

Theorem 2.13

Let E be a Banach space.
; P . ST ; : g * p *
(i) AC (d,P;E) is isometrically isomorphic to E xL (C,P;E)

and each continuous linear functional JA. on ACp(d,#;B) has the
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following representation in terms of a unique element (x,g) of
% p ]
E xL¥(« ,p3E) :
Nf = <£(x), x>, +<df,g> p , ¥ e AcP.
dt
%
(ii) For 1< p<oo ACp(u,p;E) is isometrically isomorphic
q * -1, -1 . »
to AC*(d«,p3E ) (q "+p ~ = 1) and each continuous linear
functional /L on ACP(« ,P;E) has the following representation

%
in terms of a unique element h in Ac%(« of33E ):

A
Af= <£)hE> + [ <afe), a(o)>, at, ¥ £ @ ach.
o dt dt

Proof: The result is clear from Proposition 2.10.



3. The Cauchy Problem for Hereditary Differential Systems.
N
e s . (
Let N be a positive integer, and a, to, tl, Iai} i=1 be real

numbers such that

>a,0:=0_>6>,..>8 = _5 (3.1)

a>0,tl—t0_ 0 1 N

In this chapter we prove a global existence and uniqueness
theorem and a global existence theorem for hereditary differential
systems defined on the compact interval [to,tl]. We also prove

that a solution is continuous with respect to the initial data.

3.1 Problem Formulation and Main Theorems.

Let E be a fixed Banach space with norm | |. Consider the

Banach spaces BE, i=1,2,3, constructed from E,

’ N
» N+
D = E
e
N
p
) [_}Z;'olj*‘} > |$<P<oo
"3'57 =
\ max | ji' » p =00,
4=0,..,N

(3.2)

- ——

26
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D; - EN % MP(-&,D',E) ?(3.2)
< S ATHLE PN Y
?J-.'l 33 jof’ /s p<e,
LHBHBE ) [ l
Mox ) Max kP2 ) n_‘jo"n} > P=ee,
J=b--,N
’
where y = (Y,yr-- 24,0 Yo ) € f};.
The topology of the space Bi is not dependent on p, but we keep

the superscript p since it specifies the particular norm chosen
for Bi. When i = 1 or 3 the norm on B? generates the product

topology induced by the factors of B?.

Because of the introduction of the MP space it is more

convenient to work with a map

~

. P
£ : tto,tl] x By — E
rather than a map
£ [to,tl] X V?-—pE,
where

P
i

E x LP(-a,0;E), and L (3.3)

E?‘Hl X Lp(-a,O;E).

n

W'Yy NUY g
]
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From the isometric isomorphism K : Mp__., E pr it is easy to
construct another isometric isomorphism

Y B? _,.Yr?.

For all t & [to,tl] f can be constructed from £ by

E(t,2) = £(t,v(2)), ¥z e s,
and conversely f can be constructed from ;

F(t,0) = Ht, ¥ (W), Yuetr k.
since Y is a bijection. Hence we have a one to one correspondence
between the maps f and £. Since ¥ is an isometric isomorphism,the
topological properties are not altered when one goes from E to f or
vice-versa.

Consider the product space 3', G » wWhere '3 is any one of the
spaces C(-a,03E), !,p(-a,O;E) or Mp(-a,O;E), and @ is taken to be
either C(to,tl;E) or ACp(tO,tl;E). ?Oe will denote the closed
subspace (with respect to the product topology) of all (h,x) in

31 G for which x(to) = h(0).

Definition 3.1

The map
Ea mglh) 3 Dry,tiJen T,
where
h(t -t,+8), -a< 0 < -(t -to)
x, (h)(8) = (3.4)
x(t +8) , -(t -to)seso
is called the memory map of (h,x) in Fo G ana denoted

by xe4(h).
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The equations (Ei) (i=1,2,3) can now be rewritten in the form

(El) %%ﬂt) = f(t,xt(h)(g N)""'xt(h)( 9:1),x(t)). (3.5)

(E.) dx(t) = f(t,x _(h)), (3.6)
2 It t

(E3) %%ﬁt) = f(t’xt(h)(eN)""’Xt(h)(el)’ xt(h)), (3.7)

for almost all t in [to,tlj. As we mentioned earlier this formulation
is entirely equivalent to the formulation of the Introduction. It
however has definite technical advantages.

We can now give a precise definition of the Cauchy problem for

such equations.

Definition 3.2

The global Cauchy problem on [to,tl] for the hereditary

differential system (Ei) (i =i,2, or 3) with initial datum

h in Mp(-a,O;E) at time t = to consists of finding an element
x in ACl(to,tl;E) for which x(to) = h(0) and the equation (Ei)
(i =1,2, or 3) is satisfied almost everywhere on [to,tll for

the memory map x,(h) of (h,x). Such a map will be termed a

global solution to the Cauchy problem on [to,tl] with initial

data h at time t = to.

The local Cauchy problem for the hereditary differential

system (Ei) (i =1,2,3) with initial datum h in Mp(-a,O;E) at

time t = to consists of finding a real number « (Ocqs_tl—to)

for which the global Cauchy problem on [to,t +w« ] has a global

0

solution. The global solution on [t +eo ] is called a local

0%
solution to the Cauchy problem on [to,tlJ with initial data
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h at time t = to.

Our main results in this chapter are given in the next two

theorems:

Theorem 3.3

(CAR-

(LIP)

(BC)

Let the map f: [to,tl]ng —E (i =1,2, or 3)

have the following properties:

1) the map t i+ f(t,z) :[to,tl] —» E is m-measurable
for all z e BE 3
there exists a non negative function n in I,q('(:0 ,tl;R)
(p-l+ q_l = 1) such that for all z, and zj in B?
lf(t,zl) - f(t,z2)| < n(t) | 2y = z2u Bli) . a.e.[to,tl]
(3.8)
and
the map t - f(t,0) : [to,tl] —» E is an element of
I_l(to ,tl;E).
Then there exists a unique global solution x(h) in ACl(to,tl;
to the Cauchy problem on [to ,tl] with initial datum at time

E)

t = t, for the hereditary differential system (Ei)' Moreover
the map
. MP ; 1 :
h i+ x(h) : (-a,0;E) — AC (to,tl,E) (3.9)

is Lipschitz continuous.
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Theorem 3.4
Let h € MP(-a,0;E) and let the map f : [to,tlleE_..E

(i = 1,2, or 3) satisfy the following properties:

(CAR-1) the map t w» f(t,z) : [to,tl] —» E is m-measurable
for all z € BE s
(CAR-2) the map z e f(t,z) : B?...,E is continuous for almost
all t in [to,tl].
(CAR-3) Let V be a non empty closed convex subset in C (to,tl;E),
and assume there exists a non negative map m (possibly dependent

on h) in I,l(t t_3R) such that

0° 1}

a) the set

V= {x € C (t,,t):E) { x(t,) = h(0),

max | x(s) - h(0)!| = ft m(s) ds, "V‘ telt,,t }}, (3.10)
[te,t ] . 04

is a subset of V,

b) and for all x € V ={x € V§X(t0) = h(O)},

0
| £(t, « . (h,x)(t)] € m(t), a.e. in [t ,t,]. (3.11)
Then there exists at least one global solution in ACl(to,tl;E)
to the Cauchy problem with initial datum h at time t = t,

Remarks 1) The set V can be defined pointwise. Let{ V(t)} t € [t.,t.]
—_— 0’1

{xe

be a family of closed convex subsets of E. The set V

C(to,tl;E) ?‘ x(t) € V(t)} is closed and convex in C(t EY

0 ’tl;

The converse is not true since the image of an arbitrary closed

set V in C(to,tl;E) under the map x s x(t) : C(t E) - E

0°t1}

is convex but not necessarily closed.
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2) This alternative method of defining V was originally
introduced by Carathéodory [16] in the context of ordinary
differential equations. He chose V(t) = { z @ R° % | z X5\ = b}
for some positive non zero constant b and Xy e R

3) The local Cauchy problem arises when the set Vm qt V.

In such circumstances we geek an o , tl-tozo(7o ,for
which

Ty (V) e 7, (V)
where the map

T, ¢ Cltyst 3E) 5 Clt,,ty + & SE)

is the restriction of the elements of C(to,t 3;E) to the interval

1

4) The introduction of the set Vm is due to C. Corduneanu [6].

The hypotheses (CAR-1),(CAR-2) and (CAR-3) are the classical
Carathéodory hypotheses [16]; (LIP) is the Lipschitz hypothesis for
uniqueness; and (BC) is the hypothesis first introduced by A.
Bielecki [17] and C. Corduneanu [6] in the context of global

differential systems for continuous maps f.

The proof of the two theorems (section 3.4) will proceed via

several lemmas and propositions (sections 3.2 and 3.3).
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3.2 Properties of the Memory Maps.

Consider the following product spaces and their respective

norms .

1) ¢(-a,03E) x C(to,tl;E)

I(h’x”CxC = max{ il C,‘xllc } 3 (3.12)

2) MP(-a,0;E) x C(t,,t, 3E)

\ E .
I (h,x) | e max {fnl - (o), Wxby }, (3.13)

where I Ilp denotes the LP norm.

It is not too difficult to see that these norms generate
the product topologies on the corresponding product spaces
’Jx @ . Moreover on the subspace Fo G the above norms reduce to

max {thl s x|l C} and max{lhll o’ lxllc} , respectively.

Proposition 3.5

For l<pcw,

(i) x.(h)eC(to,tl;Mp) for all (h,x)e Mpoc,

(ii) we have the inequalities

max || Xs(h)lpSIh“p + c(p) h x| (3.14)

s e[t _,t] M Clty,t3E)

where c(p) = max{l,al/p}, and



34

max ¢ hhil _, I x|l ey € max | x_(h)f (3.15)
{ p’ C(to,t,E)} [to’t] s WP
(iii) and the map
(hy%) e x,(h): Mo C —» C(t,,t, 3HP) (3.16)

is an isomorphism.

Proof: We use the density of C(-a,03E) in Mp(—a,O;E) (Theorem 2.5).
Part (i) of the proposition is first proved with C(-a,0;E) in place

of Mp(—a,O;E). Corresponding to each (h,x)e Ce C we define the map

s x (8)= j h(s—to) s 1,

Ix(s) 5 t ss<t

-3 € . -
a_s<to} .[to a,tl]—— E.
0 g

Since x(to)=h(0), clearly X € C(to-a,tl;E)-

For all u,v in [to,tl]

I, (=% (W = max | x (h) (8)-x (h) (8)]

fe [-a,0]

max | ®(ut®)-%(v+0) ] .
8¢ [-a,0]
Hence by the uniform continuity of X on [to-a,t], the memory map

xo(h)e C('l:0 ,tl; C(-a,0:E)).

Now pick any (h,x) in Mp(—a,O;E)o C(to,tl;E). There exists
a sequence .{ hn} in C(-a,0;E) for which hn(o) = h(0) and

hn-.p h in Lp(-a,O;E). Such a sequence was constructed in the proof
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of Theorem 2.5. Notice that x.(hn) is in C(t Cc(-a,03E))

O’tl;

for all n. By definition

P Py 1/p
]lxt(h)-xt(hn)ﬂ [lh(o)-hn(o)l +lh-hnup]

MP

lh—hnllp.
The continuity of the map t }» xt(h) is now a consequence of the
following sequence of inequalities: for any t ardt' in [to,tlJ
“xt(h)—xt,(h)u ﬁs" x, (h)=x (h ) || 5 +] xt(hn)—xt’(hn)" 5
M M M
+ x5 (h)=x 4 (b ) |l »

£ 20n-n )
+ DIx(0)-x(e DI P+ix (h)-x o (b ) BIV/P

1
<2 hh-hnup+max{l,a /pglxt(hn)-xt,(hn)ﬂ -

This establishes (i).

The inequalities (3.14) and (3.15) in (ii) follow directly

from the definition of the memory map and the inequalities

= t-t,) (o] b
[ Ihtt-t.w)lbe + Itlf ('t+9)lol9],‘t-t,<a
- (T %

b
= P
Bx ol -[lx<t>t - [0 ? n
Jl=t®de [, t-t,za

shnll_ + Ix()] + al/p max | x(s) |
P [ty e
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< nl| p + max {l,al/p} max | x(s)|

[to,t]
and
Inf = x. ol < Il x
P to P ty P
[x()] = | x (n)(0)] <hx (0] s

Parts (i) and (ii) of the proposition establish that the
map (3.19) is a topological isomorphism. It is clearly linear
and bijective since

X q(h) =y,(k) 3 h = xto(h) = yto(k) = k

and x(t) = x (h)(0) = v (k)(0) = y(t)

for all t € [to ,tl],

and for any z € C(t M), x,(h) =& where

0°t1s
x(t) = (2(t))(0) , teg [to,tl]

h = Z(to).

Corollary 3.6

(1) %, (h) ¢ c(t c(-a,03E)), ¥ (h,x)g CoC,

0°t13

(ii) max || xs(h)' o= max[max | x(s)| “h“c] ) (3.17)
[ty,t] [ty,t]
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and the map

(h,x) +» x,(h) : Co C—p C(t C(-a,0;E) (3.18)

0°t1?

is an isometric isomorphism.

Proposition 3.7

(1)

(ii)

(iii)

Let p (1< p<w) and 0 < [-a,0].
Given (h,x)« MPaC, the map t v Xt(h)( @) :[to ,tlJ - E

is an element of Lp(to,tl;E).

For all t & [to,tl]

t Y Ve )
P %
[{olz,(k)w)l Js] < Uh",,+(t.-t.3,:n[:;=]m>|"*P‘*) (3.19)

and

ess sup | X5 (h)0)) = Dhil  + wmox )wctsd) (p=w) (3,20)
£ X [‘k‘o,t ] L'to-.t]

Denote by x4(h,8®) the map t +s xt(h)(O);

the map

(h,x) o X (h,O):MpoC_>Lp(t0,tl;E) (3.21)

is linear, injective and continuous.
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Proof: By definition of x4(h)
h(t—t0+9) » Toet<t -8

x,(h,0) =
x(t+8) » t-fet<t

and x,(h,8) is clearly m-measurable.

Moreover

[ f |, (h, O)IPJ‘J /= [jtlh(s-t,w)lpds]'/r, t <t,-9,
Y,
[ Jt l:(,s-t,+9)| c\s] ‘/ [ j lx(§+9)‘>4$] r:t> N 9

_[f m&;)) s ] LN et 6)

< b 2
< uk\lr F ) T "Cl.t‘.d:3E)

and similarly for p =®. Hence x,(h,0) is in Lp(to,tl;E).

This establishes the theorem since the linearity and the

injective property of the map (3.21) are obvious.

—_— ©
Counterexample to Proposition 3.4 for M

For the sake of completeness we give an example of a pair
(h,x)e M% C for which the map t v xt(h) : [to ,tl] — M% is

not continuous. Let t0=0, tl=2, a=2, x=0 and

e, =228< -1
h(B )= (3.22)
0, -1¢® <0

where e€ E has norm equal to 1.
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fhen e, 29 < -(1+t)

xt(h)(G)

(3.23)
0, -(1+t)<8 < o,

0 and

Hence xl(h)

Ix (h)-x, (= Ix ()l = (3.24)
M M
It is not too difficult to show that the maximal subspace of
«©
M (-a,03E) for which the map t v» xt(h) is continuous is C(-a,0:E).
It is suspected that in general the map t v» xt(h):[to’tl] —- M

belongs to L“(to,t M*) , but we shall not attempt to verify this

13

conjecture (the crutial part is the m-measurability of the map).

3.3 Auxiliary Results.

In this section we complete the groundwork which will allow
us to prove Theorems 3.3 and 3.4. via the elegant techniques

developed by A. Bielecki [17] and C. Corduneanu [6].

Proposition 3.7

Let p, 1 £ p<® , and i, i= 1,2,3, be given.
(i) The maps

A, : MP(—a,o;E)oc(to,tl;s)__.LP(t BE), (3.25)

02ty
where for (h,x) € MPe C
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s o (h,x) () =(x (h,B) 5000 yx, (0,8))) : [t ,tl]...BIi

ts-.d2(h,x)(t)=xt(h):[to,tl]--Bg (3.26)

& 2 P
t ~—>d3(h ,x)(t)-(xt(h ,DN) S ¥ ,xt(h ,91) ,xt(h)) ¢ [to ,tl] —B3

are linear and continuous when the B?'S are endowed with the

product topology.

(ii) If the product norm on BE is chosen as defined in
the relations (3.2), then for all
t e [to,tl]

t e
[L'uu‘(h,x)(s;l;,: Js] < kip,a,t,1,) m{m,,lxl\w R })(3.27)

(ALY

for some k(p,a,tl—to)> 0.
(iii) Let
g, =K (x(t,),8) (3.28)
(K:MP —a ExLP as in Theorem 2.2) for all (x,g) € C(to,tl;E)x
Lp(—a,O;E). Then for fixed ge Lp(—a,O;E) and almost all
t € [t,,t,]

bot; (g, ) ()= o (g ) () ) o= @@ x-y (3.29)

i
E) c(p) = )P (4 = 1),

C(to,t;E)

for all x and y in C(to,tl;

Q+ )P (i=2), W+ 1+ a)P (=3,
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Proof: (i) The mapy; is an element of Lp(to,tl;BE) by Propositions

'MP) is contained in

3.4 and 3.6 and the fact that C(to,tl,

Lp(to, l,Mp) The linearity of the map di is clear by its very
construction from (h,x). The continuity of the map o; follows
from the continuity of the restrictions of di to each factor of
Bz and a Theorem in Lang [13, p.245, Theorem 3].

(ii) From the definition of the d&(h,x) (t) the inequalities
W)

t P v/
[f\:rs(hg)lcls] < |”)“|, v (t,-te) Ph‘"CH'.:t,:.E)

T
VF [
b LT
[[c s th) llM,,ds] R ["H,,* °<r>"=‘"c(+,,¢;s)l

establish the existence of a constant k(p,a,t t0)> 0 for which

1
the inequality (3.27) is true.

(iii) Again by definition

2 Gun®) -y (90000 | = { © » Loate b9
\xu:)_jm\ , to-8 <t <t

and

Ix (g, )-y (gy) “(x-y) (g, gy)l\p
P
< ||g -g ﬂ + (1+a) max | x(s)-y(s)]

[t ot

(by linearity of xt(h) in (h,x) and the inequality (3.16)); but

“gx-gylp = 0 by construction and hence the inequality (3.29).
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To summarize, note that the three hereditary differential

systems (El)' (E2) and (ES) now have the same structure:

P
1) a map {:[to,tl]xBi_,E (lsp<ew)

2) and a map lxi: Mp(-—a,O;E) ° C(to,tl;E)—’-Lp(tO ’t15B§) with
the properties
t r '/p I
[ftoﬂdi(h,ac)fﬂ “B*-‘ ds] < kp) moxy H'-IIP . Mx ”C(i'.,t ',E)}

for all (h,x) € Mo C and some constant k(p) »0,
and

]lo(;_(73‘,1)('!‘)_0(;(?,,?)({:) )IB,; < "(p) o~y Ue (4ot 5E)
for all geIP(-a,03E), all x,yc(xto,tl;E), almost all t E.[to,tlJ,
and some constant c(p)> 0 independent of g,x,y and t. All the
structural properties of the system are contained in the couple
(Bli), di). The mapdi bears a certain similarity to the lag function
introduced by G.S. Jones [18], but there is a fundamental diffe-
rence. Jones' lag function was defined on the time variable to

generate a hereditary time set:

xR - <2
(£L denotes the set of all closed subsets of R which are bounded
above); for (El) we would have
o (t) ={t+9N,...,t+91,t},
for (E2)
o (t) = [t-a,t],

and for (Ea)

«(t) ={t+0 ,... 40 ,t, [t-a,e1}.
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Our map¢ii(i=l,2,3) acts on the "information xt(h) stored in a
memory at time t" and samples what the system needs at time t

precisely di(h,x)(t).

Lemma 3.8 (Carathéodory)
Let B and E be Banach spaces with their respective §-algebra
of all Borel sets. Assume that the map {:[to,tlj ¥ Bew E
satisfy the first two Carathéodory hypotheses:
(CAR-1) t v f(t,z) is m-measurable
for fixed z;
(CAR-2) and z »» f(t,z) is continuous on B for almost

all t in [to,tl].

|
Then for any ye £ (t B) the map

0°%13
ti-»fy(t) = f(t,y(t)) @ [to,tl]—..}: (3.30)

is m-measurable.

Proof: There exists an L'-Cauchy sequence of step maps{ sn}

converging almost everywhere to y. It is sufficient to show that

1) fs is a sequence of m-measurable map, and
n

2) {fslconverges almost everywhere to fy.

By the hypothesis (CAR-2)

fsn(t)=f(t,sn(t))__,.f(t,y(t)) = fy(t)
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for almost all t since Sn(t)"’ y(t) for almost all t. Let s(t)
be an arbitrary step map defined on [to,tl]. Its most general
form is

*

s(t) = Z a, }Ai(t)

i=1
!
where 21 is a finite integer and the Ai s are Lebesgue measurable

>

disjoint subsets of [to ,tl] the union A= M

A. of which has finite
i=1'1

measure. Then

N
%) = fir,sw) = st V=g, 0] + Z.' i, Q) Ly, (1)

is clearly the sum of N+1 m-measurable maps by the hypothesis

(CAR-1).

/
Remark The proof of the above Lemma is essentially Caratheodory's

original proof [16, p.665].

The proof of Theorem 3.3 will also make use of the Banach
fixed point Theorem [19, p.305] and some techniques borrowed from

A. Bielecki [17] and C. Corduneanu [6].

Lemma 3.9 (A. Bielecki, C. Corduneanu)
|
Let n ‘i'(to ,tl;R) be a non negative function, and

«,0¢< & < 1, be given. The inequality

t
‘f-t.h(ﬂ%(S) ds < o 3“:) -~ te [tostl] (3.31)



has a solution in C(to,tl;R) which is strictly positive and

non-decreasing. In particular

t
?d({-) = cxp{o(-'[t ms)ds} ,t elt,.t,] (3.32)

is such a solution.

Proof: By direct substitution.

Remark The introduction of the function g, in the context of
"global differential equations" is due to A. Bielecki [17].
Thereafter this idea was successfully used by C. Corduneanu

[6,2] in the global case.

Definition 3.10

Let o, 0 « ®x< 1, and g, be given by (3.32).
Cix (to,tl;B) will denote the space of all continuous maps
defined on [to,tl] with values in E, where E is endowed

with the norm

i, = wax l<tsd) /o () } .
. selt.,t.]; v §

Remark C, (to,tl;E) and C(to,tl;E) are equal as sets and
equivalent as topological vector spaces, that is their res-

pective norms generate the same topology.
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Lemma 3.11 (C. Corduneanu)

For all &, 0« ® <1, x& C(to, l,E)
and telt,,t,]

f f
max lctsd1/ g o ) /g >f. (3.33)
[t.t]" 13- o]l i) (e

Proof: See reference [6].

3.4 Proofs of Theorems 3.3 and 3.4.

The spaces C(t ;E) and MP(-a,0;E) will be abbreviated

0° l’
as C and MP.

3.4.1 Proof of Theorem 3.3.

1) For arbitrary (h,x)E'Mpo C consider the map
't — ;th,x)(‘t) = ; l.t..ﬂ-t (\1,'&)[{'» :Et.'l‘tl] — E A (3_31].)

~ {
We claim f(h,x)e€ x.(to tl,E) By the hypothesis (LIP) the map f is

continuous in z for almost all t€ [t ot ]; hence hypotheses (CAR-1)

and (CAR-2) are satisfied. Also ;(h,x)e Lt ,t. 38D,

0’ l’
By Lemma 3.8 f(h,x) is m-measurable. Also

t t,
fl;(t\ x.)“:)ldt‘{lj»(‘n I - ;uo)\an[ \glt,o)ut. (358)
By the hypothesis (BC), the last term on the right hand side of

(3.35) is in :,'(to,tl;}:). By hypothesis (LIP)
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(A

t,
54 .
ft“ )uqb(h,:)mllaz dt

1, L
L.l fh, W0 -Fig 0] dt

1A

niy o th,xdfy

and by Proposition 3.7

IN

IIV\I\li k(r) max{“n“‘,, Woc e }

s '
This shows that f£(h,x)e J(t sE).

O,tl’
2) From the following inequalities it follows that the map

(h,x) E(h x) @ HpOC—-hL'(tO, l,E) is Lipschitz continuous:

ll}(h x)- §(k,~,)“ ftms) [ &; Lhyx)is) - of (ky)is) "Bt ds

L,

t
= Itms) I, (hok,oc-ydo dgp ds (3.36)
(] L

1A

In Ilﬁ k(p) max i Nm-\:“,, 5 “""“‘/“C(t.,t;s.)}’

for all te [to,tl}. Hence the continuity of f.

3) Fix he M and let (;1',?1') =k (h) (w being the isometric
isomorphism between ¥ and E x LP).

Consider the map
~ -1 ~l .
x b= T (x(t),h7) Ot st E) - WP,

By construction (hi ,x)€ MPoC for all xe&C.

We define the map

~ lt ~ ~
fi3es ﬁ;(x)(t)-s h'+ ft Lih,=)w ds [t,t] — E.

From part 1) we conclude that Ufe ACl(t0 tl,E) which is a

subset of C(‘c0 tl,E) So for an arbitrary o« (0 <w<l) to be
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chosen later we have a map

t( : Cqilt

» 3E) — C, (t tl,E) (3.37)

0%y}
since Cy and C are equal as sets and have equivalent norms. We
show that for some & =& such a map is a contraction mapping.

For arbitrary x and y in C, (t ;E) and te[to,tl],

o’tl’

~ ~ t N ~
IU;(::)U:)_ U;(g)l’c)] < {ms) o, (h;_,:r.)ls).. d;”\;-.y)(s) DB): ds

Ims)c(r)[mx lxr)- ‘I“’)l]ds' (3.38)
velt,,s]

(Proposition 3.7). Pick & (0 <« < 1) such that 0 < & et(p) <.
Thus t -
Jl n(s)[\nqx Ixcr)_ytﬂ]J ds

t relt,.s]

[‘( ms)?“(s)ds] se[t t]{ :-“:Et I:j(r')-\/(r)}/%d“)}

€ & g k) Nx-y "C“(t.,t',E)

(by Lemmas 3.9 and 3.11), and

~ -~ 9

||Ll§(x)_U;t~/)ucd < p o Nx-y e, (3.39)
where 0 <c'(p)a < 1 (by choice of ®). By the Banach fixed point
Theorem [19, p.305:],l.[f has a unique fixed point which is neces-

sarily in ACl(t ;E). But a fixed point ofuf is necessarily

O’ 3:°

a solution of the differential equation (Ei) , and conversely an
fd

absolutely continuous solution of (Ei) is a fixed point ofo by

the ‘definition of ACl(to,tl;E).
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4) The Lipschitz continuity of the map

hie x(h) : ¥ & ACl(to,tl;

E)
is also obtained via the Cy -spaces. If x and y are solutions
corresponding to h and k, respectively,

lxw)-yw)| < l[‘t(;{i;,x) ts)-f(i;,y)(s))ds ) + Jh_k°|

and

J-tl';{ra;,x.)ts)-;(i;,y)ls) | ds
1
° t ~ ~ ~ N| th ~' 25 ~‘
s [ 1, e -fEy ) +{1;(1\,,7)(,)_;(;‘7,7)“,)as

< Ltv\l‘a)c',(f’) "[“Qx ]"x_(r)_ycr)lds + In \lc| l(l.(a) ‘h“k“f’

<o (p) g Nyl o oo gy F Il kg Hh-k 1l .
Thus
llx-ylic ¢ o C(p) hx-y “Cd + dplh -k “M" ;
" |
where d‘(P)= max (_L ‘{[l+ unu'hp"]/ﬂ, I<pseo

telt, t,] 3l Lmax {1, Imig k), p=r
Hence

Il 2~y “C,.fdt(Pk __A.‘__(_") “h—k"Mp
. V= &P

for some d2(p)> 0. But x and y are in ACl and
d . < dy @) -
|lx-~/l|AC| < dy lz-yle 2 dy& "“/“C;

(du> 0) by Proposition 2.9. Finally for some d5>0

ﬂx-\/ "AC' < as Vh-k “Mp.
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3.4.2 Proof of Theorem 3.4.

1) Vo is clearly closed and convex by definition.

We show that for all xe€V,., the map

0?
t\....-f(t,c(i(h,x)(t)) : [to,tl]-—yB (3.40)
is in i'(to,tl;E). For each x €V, the map
t e o (h,x) (1) = [ty ;t,1— B
is in IP(tO,tl;B?) by Proposition 3.7 since (h,x)e MPo C. Hence
hypotheses (CAR-1), (CAR-2) and Lemma 3.8 establish the
m-measurability of the map (3.40). The assertion is now true

by part b) of the hypothesis (CAR-3).

2) The map
X\—P-uf(x) : VO—-’- C (tO’tl;E)’
where

t
(U (x))(t)=h(0)+ ft £(s, &, (h,x)(s)as, Freley,t,],
0

now makes sense. Moreover

t
|u () (£)-n(0)] :Uto £(s, €;(h,x)(s)) ds

t
s Itom(s) ds , te€ [to,tl],
and Uf(x) (to) = h(0). Thus Uf(x)ev i vV .

But V=VAV c VAV, =V
m m

0 0 0 So the image of the map Uf is

contained in Vo.
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3) Let

s
M(s) =j;: m(v) d(v) , se [to,tl].
0

M is uniformly continuous and monoténically increasing on

[to,tl]. For arbitrary s and t in [to ,tl] and any x € Vo

t S
|U_;(x)(.l:)-u{(x)($)l < |£.§ (v, &g (hy2) (V) dy - {_.4(\:,:; th,x)v)dv |
< | M@)-Misd].

The family Uf(VO) is equicontinuous. Also

t
lugow | = |hiey + ];, $iv, a;th ) dv |

1A

5
Thioy) + .{_'mtv)év < lhi) + M It

and Uf(VO) is an equicontinuous and uniformly bounded family,

hence a relatively compact subset of C(t E) by Ascoli's lemma

0*%13
[13, p.211].

4) Finally we show Uf is continuous on VO. If xe VO is an
isolated point there is nothing to prove; if not consider an
arbitrary Cauchy sequence {x“}of points in Vo converging to x.

Let g (t) = £(t, &, (h,x )(t)), g(t) = £(t,« (h,x)(1)).

By hypothesis (CAR-2) and the continuity of the map «i
s P .gP
Qli(h,xn)._., o(i(h,x) in £ (to,tl,Bi)
which implies that

O(i(h,xn)(t)_...o{i(h,x)(t) a.e. in [to,tl]

and

gn(t)-» g(t) , a.e. in [to,tl].
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By part b) of the hypothesis (CAR-3), the Lebesgue dominated

convergence theorem can be applied and

g, — 8 in I.‘(to,tl;E).

5) The map
Uf : V0 ._.,Vo
is continuous and Uf(Vo) is relatively compact. The theorem

now is true by Schauder's theorem [19, p.u4l5].



4. Affine Hereditary Systems.

Let the notations and definitions of Chapter 3 hold, and assume

that E = H is a Hilbert space. A hereditary differential

system characterized by the map f:[to,tl] X B?._.-H is said to
be affine if for all t e [to,tlJ the maps
z b= £(t,2) : BY —H (4.1)

are affine.

The Chapter is divided in three sections.
1) The first section studies the representation problem for
the maps f which define an affine system and satisfy the hypotheses
(CAR-1) ,(LIP) and (BC).Further g more precise version of Theorem
3.3 is given for the questions of continuity with respect to the

data.

2) For a certain class of affine differential systems, the
"fundamental matrix solution"  is introduced in a way which
generalizes the well known results for affine ordinary differential

systems.

3) Finally the '"adjoint problem" jis solved for linear
hereditary differential systems belonging to the special class

mentioned in 2).

53
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4,1 Representation of the maps f and Specialization of
Theorem 3.3.

When f characterizes an affine differential system the

hypotheses (CAR-1), (LIP) and (BC) of Theorem 3.3 reduce to

Hypotheses 4.1. (Affine systems)

Consider an affine differential system corresponding
to the map f:[to,tl] X B?-—» H affine on B? for all fixed
te[to,tl] (1=p<e).
® There exists two maps g and £

. : P

g : [to,tl]—->H, L: [to,tl] X Bi—-— H (4.2)
for which

£(t,2) =L(t,2) + glt) , telty,t ], z € BY;
® the map g is in l'(to,tl;H)and the map £ has the

following properties:
(i) the map zw» L(t,z) : BE-—— H is linear for all
t in [t,,t,],

(ii) the map tw» f(t,z) : [to,tl]-—»-H is m-measurable

P
for all z € Bi’

(iii) and there exists n«¢ I.q(t0 ,tl;R)
(q—l+p—l=l) such that

[£(t,z)] = n(t) 0zl a.e. in [to,tl] (4.3)

BY
L

for all z in B?.
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In the remainder of this Chapter, it will be assumed that
an affine hereditary system satisfies Hypotheses U4.1. Technically
the affine version of equation (ES) exhibits a combination of the
features of the affine versions of (El) and (Ez). Thus in order
to keep the computations as simple as possible only cases (El)
and (E2) will be studied. However the results are readily exten-
dable to the case (ES) due to the linearity of.ﬂ(t,z) in its

second argument.

Notation Given two real topological vector spaces X and Y,
L(X;Y) denotes the real vector space of all continuous linear
maps defined on X with values in Y. If X and Y are normed spaces,

L(X;Y) is endowed with the norm

lal = sw b oaxl, ¥ aeloun. (4.1)
Il 2

If in addition Y is complete, then L(X;Y) is a Banach space

(15, p.61, Lemma 8].

4.1.1 Main Results.

Our first result is concerned with the possible representation
of the maps (t,z)+» L(t,z) satisfying the Hypotheses 4.1 in terms

of time dependent elements of ziBg;H). Consider the map
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zv A(t) z =L (t,2) ; B?-a- )

By Hypotheses 4.1 (i) and (iii) A(t)e i(B?.H)
and by Hypotheses 4.1 (ii) and (iii) the map

t»\lA(t)llL t [ty,t;] —=R is in L3t

If instead of Hypothesis 4,1 (ii) we assume that

the map
‘ P
(M) tm ACE) ¢ [t :t(Bi,H)

is m-measurable,

then Ae L3(t_,t

0°1 *

O’tl;

!,(BI;,H)). It is clear that hypothesis (M)

(4.5)

(4.8)

implies Hypothesis 4.1 (ii) (Carathéodory's hypothesis (CAR-2)),

but the converse might in general not be true.

When i = 1 (that is Bi = pN*l)

consider the maps

Z, »—»Ao(t)zo A(t) (zo,o,...,o) : H— H

n

7 > A“(t)zN A(t) (0,...,0,28) : H—H

It is clear that by linearity for each t
N

= i P
A(t)z —jé Aj(‘t)zj ,'V'z = (zN,...,zo) € Bl

and A, € Lq(to,tl;I(H,H)) , = 0,...,N.

When i = 2 (that is Bg = MP(-a,0;H))

consider the maps

(4.7)

(4.8)
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2y = A1)z A(t)x’l(.zo,o) : Hes H

Q Q
(4.9)
~ <1
z) e K (D2, = AR T(0,2)) & LP(-a,03H) — H.
where K : Mp(-a,O;H) — H x Lp(—-a,O;H) is the isometric
isomorphism of Theorem 2.2.
Again by linearity for each t
- x & p
M)z = A (D)2 + B (02, ¥ 2 =« a2z )€ 8D (4.10)
q .
and By € L7(ty,t 35X (H,H)) and

~

A€ Lq(to,tl ; £ (LP(-a,03H), H)).
In the latter case one would like to have an integral
representation for the elements of Lq(to,tl;i(Lp(-a,O sH) , H)).
Given Al in the latter space can we find an Alelﬂ([to,tl] X

[-a,0]; ¥ (H,H)) such that for all f € LP(-a,0;H)

o 0
A (t) £ fa A (t,0) £(8) 48 , a.e. [t,,t ], (4.11)

where Lq([to,‘cl] x [-a,0] 5 LH,H)) = L3m,, R (H;H)) and m,
is the complete Lebesgue measure on [to ,tl] x [-a,0]. When

H = R” the answer is positive, but it does not seem the result

is true for infinite dimensional Hilbert spaces.

All the results are summarized in
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Theorem 4.2

(i) case Bi = HN+1

Any ordered family (Ao,...,AN) of elements of

Lq(to,tl; L(H,H)) defines a unique map £,

N
o < p
£(t,2) -jZ%Aj(t)zj,Vz—(zN,...,zo) e BY,
te [to,tl], (4.12)
which satisfies Hypotheses 4.1 and hypothesis (M).
Conversely for each map £ satisfying Hypotheses 4.1 (i),
4.1 (iii), and hypothesis (M) there exists
q :
A]. € L (to,tl,
(4.12) is true.

L(H,H)) , j = 0,...,N, for which identity

Hypotheses 4.1 (i), 4.1 (iii) and (M) imply Hypothesis

4.1 (ii). When H = R", Hypotheses 4.1 imply hypothesis (M).

(ii) case Bg = Mp(-a,O;H).

; q .
Any pair (Ao,Al), Ay e IJ(tO,tl,l(H,H)) and
Al € Lq([to,tl] x [-a,0]; L (H,H)), defines a unique map,l,

- 0
At,2) = a(t)z, +f ) A (t,8)z (8) a8 ,

¥ 2 =K'l(z0,zl) € 80, ¥t e [tyst,3s (4.13)
which satisfies Hypotheses 4.1 and (M).
When
e either p = 1 and hypothesis (M) is satisfied,
e or H is finite dimensional and the map

t»,t(t,n"l(o,. )) [to,tl]_,t(Lp(-a,o-,H),H)
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is m-measurable,
there exists unique Ay € Lq(to,tl;‘.t.(H,H))
and Al c Lq([to,tl] x [-a,0]; L (H,H)) for which identity

(4.13) is verified.
The proof of Theorem 4.2 will be given in section 4.1.2.

Corollary 4.3

The map
(t,9)rs A(t,8) £(0) : [to,tl] x [-a,0] - H (4.15)

is in Ll([to,tl] x [~a,0]3H) for all A in

LUty ,t,] % [-a,013 L (H,H)) and £ in LP(-a,03H).
The proof of the corollary is obvious.

Theorem 4.2 is not completely satisfactory. For the
case BE, one would like to construct an example of a map £
satisfying Hypotheses 4.1 but violating hypothesis (M).

Similarly in the case Bp, one would like to exhibit a map £

2
which satisfies Hypotheses 4.1 but for which there is no
integral representation of the form (4.13). Such examples

would make Theorem 4.2 completely precise.

The second set of results is a specialization of

Theorem 3.3.
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Theorem 4.4
Let the map £ satisfy Hypotheses 4.1. Denote by x(h,g)
the solution of the differential equation associated with

s P
the map fg § [to,tl] X Bi'-’ H, where
fg(t,z)=l.(t,z)+g(t) ,Vze B‘i’,vt € [t,,t;]. (4.16)

The map
(h,g) +» x(h,g)
:MP(-a,03H) x L'(to,tl;H)._..AC'(t

t. 3H) (4.17)

0°F1’

is linear and continuous.

Corollary 4.5

Let the hypotheses of Theorem 4.4 hold. Assume in addition
that

P( ‘i:o (
ge L& to,tl,H) and ne& (to,tl,R). 4.18)
The solution x(h,g) is in ACp(tO,tl;H)

and the map
(h,g) > x(h,g) (4.19)

:Mp(-a,O;H) X Lp(to,tl;H)-'-ACp(to,tl;H)

is linear and continuous.

Remark In the case Bg = MP, the memory map tr—o-xt(h) is

continuous. This means that the solution x(h,g) is in

ACq(tO,tl;H) for all ge I.q(to,tl sH) and ne I,q(to,tl;R).
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Corollary 4.6

Let the hypotheses of Theorem 4.4 hold. Denote by

x(e3s,h,g) the solution in [s,tl] of the differential

equation associated with the restriction of the map

fg to [s,tl] and initial data h at time t = s for some

s in [to,tl]. The map

(s,t) = x(t3s,h,g) :{(s,t)e [to,tl]x[to ,tl]} s<t}—H (4.20)

is continuous.

The proof of the above Theorem and Corollaries will

be given in subsection 4.1.3.

4.1.2 Representation of the maps f.

We give the proof of Theorem 4.2 announced in section

4,1.1. We use some results proven in Appendices A and B.

Proof of Theorem 4.2

(i) Given an ordered family (AO,...,AN) of elements of
Lq(to,tl;XKH,H)), the corresponding map‘t defined as

N
_ - P
j (t,z)-—J%o Aj(t)zj,'V' 2=(2 5.+ +»2,) € BY

is clearly linear in z for fixed t, m-measurable in [to,tl]

for fixed z, and
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N
1Ltz <« Z AW IZ4)
;:o
< wnl¥) \ZlBr:
where

(N v
q
[,Z__?ohAjtewnq] , 1£q<e

“Lf) =4

(4.21)

wmox Il Aitﬂ‘ 5 9=

Lj:O,...,N
and
N e
iy P

[;Zn“z‘] , VEp<ee
|Zlb‘. = (4.22)

;“3:....,'«‘23‘ ) P==-

Notice that ne€ Lq(to,tl;R), and { satisfies Hypotheses Uu.l.
Moreover by definition the mapﬁ also satisfies hypothesis (M).
The converse is true in the light of the remarks preceding
Theorem 4.2. By using Lemma A.l (ii), Lemma A.3, and Lemma

n

A.l (iii), it is not difficult to see that if H = R

Hypothesis 4.1 (ii) implies hypothesis (M).

s s q . q
(ii) Let Aj €L (to,tl,z(H,H)) and A €L ([to,tl] X
[-a,0]; XL (H,H)). Consider the map,Q: [to,tl] X Bg._.- H

defined as

0
2(t,2) = A1) 2z, +f_a A(t,8) z(8) a0 ,

Zaz=d o]
¥ =K (2,,2,)€ BQ,Vte[to,tlJ.
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By construction L is linear in z for fixed t and m-measurable

in [to,tlj for fixed z.

Moreover
[Lw,®) ] < HA W)z, &+ nA,u")nﬁuz,%
< lt
mit) \Z\B:‘
where q 9 V9
[“A,H:)" + nA.tt,-)llq] 5 1 £q< o0
nit) = (4.23)
wax {00, 1A )N ], g = co
and
f
[lEo|P+ llz.ll,':] 4 . V£ p<o
1=\ (4.24)

B T ) max {121, VE 001 5 p=oo
“K—‘(!.,Z|).Mp gl nz uMb .

Notice that n € L3(t R) and { satisfies Hypotheses U4.1.

O,tl;

Moreover by definition the mapf, also satisfies hypothesis (M).

When hypothesis (M) is satisfied we can define from the map £
the maps (4.9) and (4.10) and show that A, (map (4.9)) and
Kl(map (4.9 )) are respectively in Lq(to,tl;Z(H,H)) and
Lq(to,tl; X (LP(-a,0;H),H)). When p = 1 there is a norm
preserving isomorphism between { (L'(-a,03;H),H) and
L (-a,03; % (H,H)) (Theorem A.6). This induces a norm preserving

isomorphism between i (to,t £ (L'(-a,03H),H)) and

15

o

L (to,tl; g (-a,0; £L(H,H))). Finally there is another norm
) v

preserving isomorphism between L (to,tl; L (-a,03L(H,H)))
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and L® ([ty,t;] x [-a,0]; L (H,H)) (Corollary B.4). This shows
that when p = 1 and hypothesis (M) is satisfied, the map 3 1

has a representation given by identity (4.13).

When H is finite dimensional we can again define the maps
A, (equation (4.9)) and Xl (equation (4.9 )) from the map L .
By using Lemma A.l (ii), Lemma A.3, and Lemma A.1l (iii), Ay
belongs to Lq(to,tl; X (H,H)). Because of the additional hypothesis
vt L (t, Kfl(o,.)) : [to,tl] -—>IKLP(—a,O;H),H) is m-measurable"

Zle Li(t L (LP(-a,03H) ,H)). But X(LP(-a,03H),H)) and

0°%1}
19(-a,0; ¥ (H,H))) are isomorphic by Theorem A.6 since H is

finite dimensional. This induces an isomorphism between

Lq(to,t 2 (LP(-a,03H),H)) and Lq(to,t 1%(-a,0; L (H,H))).

1} i
Finally Corollary B.4 gives us an isomorphism between the latter
space and Lq([to,tl] x [-a,0]; £ (H,H)). This shows that under

such hypotheses the map.l has a representation of the form given

by identity (4.13).

4.1.3 Specialization of Theorem 3.3.

The existence and uniqueness of a solution to the hereditary
differential system defined by fg (equation (4.16)) for each
(h,g) € Mp(to,tl;H) X L‘(to,tl;H) has been proven in Theorem 3.3

since fg satisfies all of the hypotheses.
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Our task is reduced to study the properties of the map
(4.17). The linearity is clear. Consider the following

inequalities:

ﬂ-x(h,?)llm‘-a [} (h,0) +=c(o,3)|)kcl < l|x.(h,o)|}Ac. }-“:c(o,%)“hcn(u.gs)

o thyodlly 1y =l thio)- 2 0,00y = R(pd Ithllp (Theovom 3.3). (4.26)

AC'

As for the term x(0,g) we must revert to the techniques of
Theorem 3.3 and the Cy4 spaces.

t t
I (0,93 (4} = [ { Lis,a; (0, xto,gN(s))ds &+ L. gts)ds |

t
< j ais) |l (o, (0,9)) (3 I pds + “‘3‘1
t, B

t 1
< nis)c'(p) mox | (0,9)(w)]ds + kall
‘[t. ¥ u e [4,,5] L % '

< 2 gyl “"‘““’%’“c;; + Nall,

and

Dxtongdl. < _ ' wax [—‘—]u I =klan .
v Cx 1-%ep) tely g, ]Llgz® Al h

where k>0 since 0<« c¢'(p) <1 and gy (t) > o.

Also

-J—" (07'3)

t
i f | A it o (0, x(0,90) () +qlo) | dt

L=,

t, 5
< ftmtt)c(p Il o, + g1,

< & 1x 0,9 e + Dall, .

But there exists constants kl(o() and k2(v() for which
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i llc < kow |l llc‘ , | BC“ < k, e s

and

“acto,z) acr = K max{llx(o,%) e - ﬂj.% (0,9) "‘}
< R" max {k,u)&, ‘w“n(d)ki—\} )lgll, . (4.27)

Finally the substitution of (4.26) and (4.27) in (4.25) yields

"“h’a’"m < C.max {IHIM,, : laﬂ, } (4.28)

for some constant ¢ > 0.

Proof of Corollary 4.5

It suffices to show dx(h,g) is in LP(t, ,t 3E).

dt

t, '
"i‘f“"%)”,, - [L Lk, & Ch, 15, q) @) +glt) “‘“J /b

0° 1’

t, 1/
< ¥ P p
< [ L m L) “o(i“s,acux,?))u:) uB'Edt] ¥ u,u#
< Indy N o u,xu,a))ul, + gl

< Inig A 'Max{”\lb.,l\:t(,n,%)ﬂc} {-I3|P<oo
(by Proposition 3.7).

Proof of Corollary 4.6

Let t <s_<s =t Denote by X and x the respective

0 1 1°
solutions on [sl,tl] and [s,tl]. On the time interval [s,tl]
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® (g, h,g) 5 x(t;s,’)?s(h),g),t € [s,t ],

l?

where ;s(h) is the memory map of (h,x) at time s,

h(s‘-sl+9), -as 9 < -(s-sl)
% (h)(8) =
x(s+9 ) , —(s-sl)se < o.

By Theorem 4.4

l< ¢ s,{,a)_ x (+3s, %, (h), })"A.c'(s,t,; E)

< A M_z,u\)uMp

and for t € [s,tl] (by changing the norm on ACl, Prop. 2.9)

| x(t3s,h,g)-%X(t3s ,h,g)l< k' | X (h)-%_(h) || _.
1 sl s Mp

- 2 .
Similarly when t <s £s, €t we obtain for all t € [sl,tl]

lx(t;s,h,g)-i(t;sl,h,g)l < k" | xs(h)-xsl(h) Il Mp.

But the memory maps

u ;_.xu(h):[sl,tl]_.. M and u )_.xu(h):[s,tl]_..Mp

are continuous maps. For all t e [to,tl] the map
s+ x(t3s,h,g) : [to’tlj—’H
is continuous from the right and from the left.

Thus we obtain the continuity of the map (4.20) at (s,t).
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4.2 The Fundamental Matrix Solution.

Let Aj € Lq(to,tl; L(HH)), j =0,...,N, in the case

BP = W lror 8P let A e L (t,,t,5 L(H,H)) and A, €

1 2 0 1
Lq([to sty1 % [-a,0]; % (H,H)). They define (Theorem 4.2) the
following hereditary differential systems (l=p<e):
N

dxlt) = AWt + 2 Al) x(t+8;) rg ), ae. [htd,

dt =
(€)) (4.29)

i) = hlt-t), te [f,-a,t],
h e I‘?-a,o;H), g€ L' (tosti; H), A€ I.ql:l'.,t\) L (H,R),

L= 0,-.., N, amd P-Jq-q—‘n 1 ;

Y
ri-f“‘" Ao 1) xit) + ja A 16:9) x 11+8)d0 + glt), a-e. [t,,1,],

LE:) (4.30)
xit) - b l-te) 5 £ e [to-ato],

\

he LPaoiH), g Llbatiz )y Ay e 23 (koty 5 L WHY),
Al € I’( [{,’tl]x [-a,0] 3 L HH)  wheve F-'q-q-'-.z ) &

Notice that the above formulation is the one of the
Introduction. This formulation turns out to be more convenient
whenever computations are necessary. The reader will be careful
not to confuse the map x defined on [to—a,tl] and the solution
x defined on [to ,tl]. This apparently confusing notation has
the advantage of being simple and does not lead to any confusion.
We shall also go from the formulations (E."L) and (E;) to the

formulations of Chapter 3 whenever necessary. Such operations
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have been justified in section 3.1.

We now state our main theorem. Its proof will be broken

into several propositions.

Theorem 4.7
Let the hypotheses of Theorem 4.4 hold for the systems
(Ei) and (E;). The solution x(h,g) has a representation
for all (h,g) € MP(-a,0;H) x L(t,,t 3H). At each time
t € [to,tl]

0 0 71
- o d
xhg)t) = itt)hio 4—!a $ it to, At dy

t
+L @o(t,s) gis) ds, (4.31)
where @o(‘t,s) and é‘(i’,t.,,,’1) € I(H,H)

are defined as follows.

1) ®%t,s) , t 2s.

For all s € [to,tl[ , the map t v» éo(t,s)
:[s,tl]-—a-:(H,H) is the unique solution of the
matrix equation:

]
(i) case (El)

( o ° N
%} )= Aolt) @t + 2 At B°(4481,5), ave. in [41)]

t+h; 25
(4.32)

39 = 1T (identity w L (H,H))
\
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(ii) case (E;)

, 2 0
3,9 = Aglt) B9 4 ) Gt 9 te0, 6040, Esan
at

, J

~-a

° " " U

,t-sza,
a.e. w [s.1)] (4.33)

L @otsss) =] (l‘denm:w/ i L (H,H)) s

Moreover the map (t,s)+» éo(t,s)

:{(t,s) € [to,tl]x[to,tl] %t > s}.. L(H,H) is continuous.

2) é.(tstosvl) ’ tZtO,WQG [-6,0].

(i) case (E;)

(N
LZ:' éo(t,t.hl-QL) A, ({'w‘-&_) 2 -3 %Y <t-t,-a

; -ase;,al
$ Lt,to,\l) ={ 4 (4.34)
Z ! " yt-t-a= <0,

L=
L H—H'to) $GL <7t

(ii) case (B;)

- vL "
f $ (t,t.,«-vz-u)A.(t.,wl-u,at)d«,-a sn<t-t,-a
-a

Pt = | N (4.35)

0 " ’
'-to‘ £ — .
L \l- it-t,) ? ¢ > ’1 °

The proof of Theorem 4.7 will be given via a sequence

of propositions.

!
Remark (i) Notice that @ (to,to,sl) 0, me [-a,0], as is

to be expected since x(h,g) (to) h(0) = éo(to ,‘co)h(O)-
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- . '
(ii) As a function of'lt , P (t,to,q) needs only be
defined almost everywhere on [-a,0]. This explains a

\
certain element of choice in the definition of § (t,to,\l).

Proposition 4.8

Let the hypotheses of Theorem 4.7 hold. The solution

|
x(t;to,h,g) at time t of the differential equation (El) or

1
(Ez) for the data (h,g) € Mp(—a,o;H) x Ll(to,tl;H) has the
representation
x(t3t,,h,g) = $(t.t)) b+ 6lt,t)e (4.36)

for all t € [to ,tl], where
|
$(t,ty) e LP3H) and 6(t,t)e L(L (ty,t)3H),H) are

obtained in the following way:

é(t,to)h = x(t;to,h,o) (4.37)
and
G(t,‘co)g = x(‘c;to,o,g). (4.38)

Proof: By theorem 4.4 and the properties of the evaluation map
1
x> x(t) : AC (to,tl;H)_..H,

that is linearity and continuity.

We now study separately the maps @ (t,to)

and G(t ,to) ;
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Proposition 4.9

Again let the hypotheses of Theorem 4.7 hold,

and let s € [to ,tl]. The solution x(tj3s,h,0) at time

t € [s,tl] of the differential equation (Ei) or (E;)

with initial data h at time t = s has the representation
x(t;s,h,0) = @ (t,s)h, (4.39)

for P (t,s)e L(MP(-a,0;H),H).

Because of the isometric isomorphism K between
M and H x Lp(-a,O;H), we also have the representation
d(t,s)h = %, + $L(t,s)nt , The P, (4.40)
where $%(t,s) € L(H,H), P 1(t,s)e L (LP,H)

and (ho,hl) = K(h) (K as in Theorem 2.2).

Moreover
éo(t,s)h0 = x(t3;s, K'l(ho,o),o) ,V hoe H (4.41)
dlct,smt = x(t;s, wo,nH,0 ,¥ nte 1P, (4.42)

Proof: Direct consequence of Proposition 4.8, Corollary 4.6

and Theorem 2.2.

Proposition 4.10

Let éo(t,s), tlztzs zto be as defined in

Proposition 4.9. For each s € [to,tl[ the map

t »éo(t,s) : [s ,tl]_.I(H,H) is the unique solution
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1
of equation (4.32) (resp. (4.33)) for the system (El)

1
(resp. (E2)). Moreover the map

0
(tys)e> d (t,s): ] (t,s) @ [t ,t Ix[t.,t. It t2s | oL(H,H)
: { o 0 l§ } (4.43)

is continuous.

Proof: We must first check that equations (4.32) and (4.33)
make sense. They do if we look at them as equations with values
in £ H =J(H,H). Corresponding to Aieﬁ(to,tl;zﬂ) we can

: X q ,
define an A, ¢ ‘L(to,tl, :f(IH,xH)) as follows
(B, (£00% = A () (x0, Tx e 0, ¥ xel .

Moreover

A= sup [Ai0e] = sup 1A D)5l < swp sup [(AUDX ) |
1) &1 el £) Isciz) IXUs)

<sup I (AOX] = LA 0]
IXl=1

and

WA = sup HEWX)) = sep sep [ (BX)x)

hxn< Hyiler locl<g)
= sup  sup PA W) (X2e) ]| < Sup [ A 4)oe) = B Ac )
le t21 UXN&) loc] €1
implies that lxi(t)“ = Ai(t)“ for all t € [to ,tl].

Similarly for Al cl,q([to ,tl]x[—a,o]; L H) we can define an
~ q " )

A € LTty t Ix[-a,005 L (L, L)) as follows
(Xl(t,g)X)x = Al(t,g) (xx),#xcﬂ,.v XEIH; we also have

| B, =[la e, for a1 (.)€ [tyst, Ix[-a,0].
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Thus equation (4.32) (resp. (4.33)) is an equation of the type
(E'l) (resp. (E;)) but with values in the Banach space IH
satisfying the hypotheses of Theorem 4.4. As for the initial
data, we only need it at time t = s since in both equations
(4.32) and (4.33) we do not require any information on the
time interval [s-a,s[ (or the initial data can be considered
as zero on that interval). By Theorem 4.4 both systems respec-
tively have a unique solution t »» X(t,s) : [s,tl] "'tH in
[s,tl]; by Corollary 4.6 the map (t,s)r» X(t,s) :{(t,s)e

[to,tl]x[to,tl]; t> s} —_— IH is continuous.

To show X(t,s) is the éo(t,s) of Proposition 4.9, pick
ho H and "multiply" both side of equation (4.32) (resp. (4.33))
by ho on the right. This shows that the map

te %(t) = X(t,9)n° : [s,t, ] H

is a solution of equation (E;) (resp. (E;)) with initial data
x(s) = X(s,s)ho=h0. In other words x is a solution of (Ei)
(resp. (E;)) with initial data K-l(ho ,00€ ¥ and g = 0.
By uniqueness éo(t,s)ho = x(t;s,n-l(ho,o),o) = X(t) =
X(t,s)ho, t € [s ,tl]. Hence X(t,s) obtained as a solution

of equation (4.32) or (4.33) is equal to the corresponding

§o(t,s) of Proposition 4.9.
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Remark If (ui)i is a maximal orthonormal family of

€1

H,éo(t,s) can be constructed from the respective solutions
1 1

of (El) and (E2) on [s,tl] with initial data

ei,9=0 , 1 €1,
h'(9) =
o ,9¢€ [-a,0 .

Proposition 4.11

Let the hypotheses and notations of Propositions 4.8,

4.9 and 4.10 hold. Then
t
x(t3t,,0,9) = Glet,)g = J; $° (1) o) cu (4.u1)

I
for all t @ [to,tl] and gelL (t H).

0°tys

Proof: We only give a proof for the case (E;). By definition

W) = Gt q = .‘Itt ?o(.t,s)%ls)ds ,'vt e[{-,,tl-] ,'V'%e ]_:[+,‘t..,..,],(u.us)
We differentiate with° respect to t, substitute in equation

(4.30) ,and show G(t,to)g is indeed a solution. Because of
uniqueness this is sufficient to establish the proposition.

Let A>0 such that t and t +A € [ty»t, 1.

Consider the relation

t+ A
I [?é('t+A)-5"cl{:)] " __\_J§°L-t+[;.,s)%ts)cls
A A i

+ ItL [§°Lt+A,s) - @‘(f,s);\glsjds .
t; A
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Now éo(t s) is differentiable with respect to t and

21 = )yl +[ ?a?: lts) gis)ds. (4.46)

But ?}é (t,s) can be computed from equation (4.33):
t

j db A, (£,0) 314+8,5)g(s),
Zlt-9)
s) t- S <8y 47y

f ?:é (t,s)gls)d5= A. Hz)j? Lt,s)gzs)ds +st

fd9 " » Lt-sza.
But the integrand of the last term in equatlon (4.47),
o -a < 95— lt-s)
(5,9) 1o ? 2 [t tlxFapl— H
{ A (£,9) §°Li‘+9,$)%lsJ » otherwise } ™ ' ’

\l
is in ¢ ([to,t] x [-a,0];H) for almost all t in Eto ,tl].

When 1< p<od (the case p = 1 is similar)

0 ) 0 5
48 1A, ,0) 3w+0,59m] [[f A (t,e)lqele]{‘ (! i tt+9,s),;9|faq¥'
0= 17 TR I 4
[N TN

-3

IA

IA,Lt, )“ wox{ |’ (us)an'lals)\g

u([S t

t
f@ds < IAL, )ll a PJ wox 13w, | I%Is))ds
to o U€ [S,t]

IA

Yp
IlA.H,-)Hq a/ mox NP w,s) g, < oo
(w,8)e &
where R ={ (u,s)e [to,t]x[to ,t] 2 u?2 s} . Thus Fubini's theorem
can be applied to change the order of integration for almost all

t € [to,tl]-
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When Q st—to<a, we integrate over the shaded region drawn below

\ . _(:s fjo IAG fds

f‘j:ue t, -[t-s) u;.n

. -
-a -(t-t) 0 - +_s) 0

when t- to__a the region of integration is again drawn below

o

fde , t-s<a

t4+0
- t-9)

Ial@ t-sxa Ldetils

The second term on the right hand side of the identity (4.47)

can now be rewritten as
t+0

IAO A, (t>9)jds $°(++0 s)%(.s) t-t,<a
< lt-t,)

t+0 ”
[JQ A lt 9)}45 $ U:+9,s)3!.5), Et.zZa
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~

o
[0 A4,9) 2 1k40) | tot,<a

=< —(f'te)

(4.48)
Jo v
L Jdb y t-to Za

-a

Finally

(o]
[d6 A 1£8)%#+6) , -t, <a
dx lt) = gl + A lb) X (&) 44 = ;e-t.s

&t [dg " ] ; 't—to za
-a

t
In other words‘f ééo(t,u)g(u) du is indeed equal to the solution
t
0

]
x(t;to,o,g) of equation (E2) by uniqueness.

The last result makes it possible to give a more
Wor. : 1 ¢ 1 p )
specific expression for é& (t,s). Given h'e L*(-a,0;H), define
1
(i) case (El)

N
~ ’Z l i
g(t)=:2) A (t) hi(t-t + 0.)
t-t +0. <0
0 1

N
S ARt | tot, < a
t=1

~a =< 0;<-t-t,)

4

i

(4.49)
O ,t-to za
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(ii) case (E;)

-t
J A ,0) K te-t,+0)d0  t-t, <a,
<3

§U‘)= (4.50)
0 . . t-t,za.

Notice that in both cases g ¢ i,l(to,tl;H).

|} 1
By the structure of the differential equations (El) and (E2)

#(t3t,,0,8) = x(tst,, k10,01 ,0) (4.51)
and hence
t
Pe,omt = [ @%¢,95(s) as ,¥nle 1P (4.52)
t
0

We shall show that the opera‘torél(to,t) €
X(Lp(—a,O;H),H) (1< p<w) has an integral representation of

the form

't h' = foé' £,t5,) &'ul)olvl ; ¥4 L‘%-a,o; H),

-a

($'1tte,n) € Lin,mW),

Proposition 4.12

Let the hypotheses and notations of Propositions
4.8 to 4.11 hold. él(t,to) has a representation of the
form
l ? | 1 | b
I
2t b= [ S to ey, ¥ Hell, sy
1 . . . .
where § (t,to,vl ye L(H,H) is given by the identity
! 1
(4.34) (resp. (4.35)) for the case(Bl) (resp. (E2))for

all t ¢ [to,tl] and @ € [-a,0].
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Proof: We again only verify identity (4.35) corresponding to
' ~
the case (EQ). With g as defined in (4.50) the right hand side

of identity (4.52) becomes

-5 -t,)
t + A‘ls,B)Ll (s-1,+8)d0 , s-t, <a
f@"(t,s)i(s)ds = f%"(i,s) -4 (4.54)
t° t' O 2 $-’+o za,

Change the variable @ to 71= s—to+9 and then the variable s

to = s-t,-a. The right hand side of identity (4.54) becomes:

]
t-t,-a fa\l A, H,+a+d, rl- %-a) Jn‘hl) 5 <0
o o
da P lt,t,+a+a) (4.55)
—a o , w20,

But the integrand
o 1
(d,"l) > (t,to+a+o() Al(s+a+0(,\l-(-a) h ('l)
is in I}([—a,O]x[—a,O];H) (Corollary 4.3 and Proposition 4.10).
By Fubini's theorem the order of integration can be changed

over the region drawn below:

e

-a t‘to -a ~

A
fdu ;-3 €< t-t,-a
-a

t-t.-i
dol , t-te-a M £0.
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Finally after a last change of the variable d to 9='[-(—a, we

obtain identity (4.35).

Remark It is important to note the structural implications of

Proposition 4.12. The "dynamics" of a hereditary system

1 1
of the type (El) or (Ez) are completely characterized
provided the behavior of the system is known for initial

data of the form h =H.-l(c,0), c € H.

Remark The "fundamental matrix solution éo(t,to)" is generally
not invertible. Consider the following example. For the
1
system (El) let tl>to+a, H = Rn, N=1,g=0,

< =
0<¢€ tl (to+a)

Aou):{ Agle) 5 t, <t <t,+a
(o} , to+a <t =t,
I , to st 2 to+a
AI(H' "é §lt.+a,s—a.) s to+a <t < t,+va+¢€
o) , totare <t st ,
where XO is arbitrary in Ll(to,t0+a;x(Rn,Rn)) and
P(t,u) (t.+a 2t 2 u 2t.) is the fundamental matrix
0 0
solution of the differential equation

g%(t) = Ko(t)x(t) , t e [to,to+a].
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It is easy to compute the fundamental matrix solution
éo(t,to) of the differential equation

dx(t)=A (t)x(t) + A, (t)x(t-a), te[t,,t ]

dt

’

Dltt) , t, =t <t,+¢a
Plt,t.) = < D (.t.ra,t.ﬁl.?ﬂ_’_a_e_ﬁ;t_] s tota <t <t ora ¢e

(O , totare <t <t

Notice that §(t,to)= 0 on the interval ]t0+a+€ ,tl].

4.3 The Adjoint Problem for Linear Hereditary Systems.

For research related to the adjoint problem we refer the
reader to references [3,20,21,22,23,12]. The adjoint problem
for a linear hereditary system presents some unusual structural
features. The first question is the very definition of the

adjoint. For a linear ordinary differential equation,

i__x(e) - AL*):L‘E) 5 Q.e. ['k.,'t|]
dt

xtt°)= xb b}

the adjoint solution p is defined as an element of

ACl(to,tl;H) (H,Hilbert with inner product (.|.)) for which

(W) x ) = constont | Y te ft..t.1.
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For hereditary differential systems this definition requires
modifications. In the first subsection we give an appropriate
definition of an adjoint solution and give the specific form
of the adjoint hereditary differential system. The second

subsection contains the proof of the main lemma.

4.3.1 The A-product and the Adjoint System.

Before we can introduce the right definition for the
adjoint solution, some preliminary definitions and a key lemma

are necessary.

Consider the product space gx C » Wwhere g denotes any
of the spaces C(0,a3H), Ip(o,a;H) and Np(o,a;H), and B is

H) or ACp(to,tl;H). %ot’,

chosen among the spaces C(to,tl;
will denote the closed subspace (with respect to the product

topology) of all ('};,p) in ’;xc for which p(tl)=h(0).

Definition 4.13

The map
ts—-»pt(h) : [to,tl] I

where
~ plt+a) , 0 =o¢ < t,-t
P‘t {A)L“) = ~

Al-tisu), t,-t <xsa

(4.56)

(4.57)
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~
will be referred to as the adjoint memory map for (h,p)e

Fo® and denoted as pPe(h).

Remark All the results of section 3.2 on memory maps have

obvious equivalents for the adjoint memory map.

Definition 4,14 (The A-product)

Consider (E;) or (E;) with g = 0.
The A-product between Np(O,a;H) and Mp(~a,0;H) is defined
at each time t € [to,tl] as follows:
< : NP x MP—m ;
(V,p) > V,p.?t.N x M R (4.58)
where for ¥y = K (VO,Vl) and ’A:K(,Lo,y.l) (K and K as in
Theorem 2.2) <Y, k>, is equal to
(i) case (Ei)
N (o]
(% 1) + 2 J; (¥, (=6 | A¢ t+a-B O, (%)) de (4.59)
t=)

(8

(ii) case (E;)

o ,0
(Yolpo) + faefda (Y, (4-0)]A, It +x-9,8)p, (=00) . (4.60)
-a @
Remark To the author’'s knowledge,
a group of terms of which the A-product is a genera-

lization was introduced as a convenient entity
by A. Halanay [20] and J.K. Hale [3] for
"time invariant" functional equations with continuous

initial data.
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Lemma 4.15
Let (h,x)e MP(-a,0;H) o ACl(to,tl;H) and
(E,p)e Np(O,a;H) ° ACl(tO,tl;H). The following relations

are true for all t in [to,tl]:

case (E;)

<pt(2.),x{(1.)>,c - <p, (A, (W),
] (] Y

& N
- j (P(s)lc_’!;l(s) = Z A.‘,Ls)xsuﬂ)(et»ds
t, ds

t=o

3 2 N

+j (E‘.k(s)+z Af(s)P,(&)(—-e()l:c(s))c\s 5 —
t° ds Lt=0
where
T
* Ai. (s-6:) » - lt,-s) =8, <0
Nt = (4.62)
(@) .)—3 5.9'(_<- [{‘-—s)-’

case (E;)

<plh), = >y~ <p (), (B,
t

- J- (‘,Ls) ‘ é__ﬂ(s)__ AlS) ac,u}\))ds
+ ds

t ~
+{ (:i{i(s) * A*LS)P'" (“‘r(S)) ds , (4.63)
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where the maps mw>A(s)p : MP _p H and

%
YA (s)y: NP—» H are defined as follows:

0
Aiodn = Ags)p, + IA|l5a9)p.19) 49 (4.64)
-a

and
ATis-6,0) v, (-9)d9 ,—t-5)£0 <0

0
+
A*(s)v = A, (s)}),+] (4.65)

= (o ,—a < B<-lt,-s),
The proof of the lemma will be given in

section 4.3.2.

Remark It is extremely important to note that the identities

(4.61) and (4.63) are only dependent on ?10 and not on

n

El (W% (h) (1"1’0 ,hl)). This shows that the space of final

data is H= Np(O,a;H) 7 Lp(o, a 3;H) and not NP(O,a;H).

'
Notation: In the case (E2) it will be convenient to define

A¥is) = AJtsd (4.66)

A* (5,0) = § M 58,8, — (t-s) <8 <0 (4.67)
o s —a 5.9“' L‘tr"s)

Convention: For future development, it will be very convenient

to adopt the following conventions:
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]
case (El)

At) =0, t>t, ,i=1,.. N

1

1
case (E2)

A0 =0, t >t N8 er-a,0].

With such a convention we now have for all sﬁ[*&:o,‘cl
% T 5
Ai(s) = Ai(s-ei) s 3 & Oyein N
»®
Al(s,g ) = A§<s-o,e> , ¥8e[-a,0].

The identities (4.61) and (4.63) almost give the
right definition for the adjoint system corresponding to a
linear hereditary differential system. This stresses the im-
portance of the A-product a particular case of which is the

inner product in H. It takes into account the way the delayed

N

information is processed through its dependence on {Au"‘)}iﬂ

and Al(s, 9).

Definition 4.16

1 1
Given the linear hereditary system (El) (resp. (EQ))
that is g = 0) with initial data h& Mp(-a,O;H), the

adjoint solution with final data h,&H is a map p in

0

ACl(tO ,tl 3H) for which

< ?t (Q"(ZO,O)), x,‘,_ (‘i)>t = (Lio lxl+l)) 9 + {E [to,t|] b

(4.68)

(4.69)

T
(4.70)

(4.71)

(4.72)



88
! 1
where x is the solution of (El) (resp. (Bz)) on [to,tlJ with
initial data h, and K is the isometric isomorphism between

Np(o,a;H) and H x Lp(O,a;H) (as in Theorem 2.2).

With this definition in hand and Lemma 4.15

the following theorem is obvious.

Theorem 4,17

Given‘ﬁoﬁ H and the linear hereditary system (Ei) or
(E;) (with g = 0) the adjoint solution with final data
3i)e H is the unique solution of the following linear
hereditary system:

1
case (El)

N
dplt)+ 2 AT plt-8) =0, ae. in  [tot)]
dt =0

(an) ‘ ~ (4.73)
f(fl) = ‘ew

case (E;)
- o)
dp L) & AP + [ AX0)p 4-68)d0= 0 , ae. w [to,t,]
-a

@, N (4.74)
Pty = 4, .
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4.3.2 Proof of Lemma 4.17.

1
Again a proof will only be provided for the case (E2)
(which is the more difficult case!). For simplicity of notation

we shall write X instead of xs(h) and i(s) instead of dx(s).
ds

Consider the expression

t
f (p(s) | %(s) - A(s) x) ds
%

.
= (pt)] )= (ple) | x (42) — { ($isy|= () ds ...

.t
i v It.(Pts)l Ais)xg)ds (4.75)

t
= (pt¥) |3 )= (p b loc b)) - {( pls)+ ATls)P(S)]ac(s))ds

t 0
..fds(pm | faaIQ A (s,8) <5 (9)) (4.76)
£, i

where integration by parts was made possible because p and x are

in ACl(tO,tl;

H).
The last term in equation (4.76) can be decomposed

as follows:

 ~(s-t) o

+ de (pts] A\(s,O)L(s-f.+-9))+Jd9 (pts) | A 15,8) 2 (s+0 ),

f J -2 -(s-to)
ds

to

5 s-to<a, (4.77)
f:le (13| Ay (5,8) x (s+8)), s-t, za .
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The above expression can be broken in two: @ + @

= (8-t,)
fdQ(pm\A (5,9 his-t,+0), s-ts < a
@'—‘fds (4.78)

e O )5"1:023.

(o)
[40 (31 A (5,8)4540)), s to<a

® Jd —(s.t,)
s

(4.79)
jdG " " " 5 S=te A,

Consider term @ where we change the order of integration

(Corollary 4.3 and Fubini's theorem)

1®
f:g, s-t,<a Id9 jds 9+- t.<a

. 0 (st '“:‘t') -6
N s ke Id.s =

Q
cead & - (t-t,) [de S t za Idg [d57£~t02

| - "-a tg-g
N,
-2 - (kt)
Change the variable s to u =s +9

t+06
IJG‘ fau (pu-8)| A -6,0)2ccw) , £ -t, <2
- (t-t,

@:. 't+9 (4.80)

:(:lQ '{o[u " " v ” ‘t"'tg zZa.



91

Again the order of integration is changed.

t+0 r +0
Ide ,fclu, t-t, < IdG s X-uda
~t-t) - lt-u)
. = IduJ
o ,t+b g t S.
dg d > -to?- -l >
-a t,u o \_ade) t-uzga ,

We introduce here pu(;) (see Definition 4.13) which will

be abbreviated P, The term @ becomes

~(t-u)
£ o {48 (58| A, 10-8,8) ),
@ - Idu Idg (Fu(-Q)IA.(u—G,G)x(u))- t-u<a, (4.81)
&, -2 O s t-uza,

where Al(u— 8,0) =0,u-8> t. (see convention).

1

Change the variable u to s = u in the first term of @ ]

t,
@:[tds (Af5,0)pst-8) | = (2) — @ (4. 82)
Change the variable u to &= -(t-u) in @
@ - [de ) Iacle(rt(d—e)lAl ({'+d-9,9)xtu)) s — X< 3 (4.83)
- lt-t,
O

y—%xz4d,.
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Integration for (t -t)2a can be disregarded. Also the
convention Al(t,G ) = 0,t> t) makes it possible to rewrite @

in the form

(o] o
@ = [gl« I;AQ (b, (= 0) | Ay (£+a-8,8 ) <, ()

o .,0
= _J;dg f;ld (P.t («-9) l AI it +°f-9, G)Ieh&))

(4.
after the order of integration has once more been changed.
Finally

t v} ¥
@ = fto\s (fd0 Ay ts,8) ps (-8) | x<(s3)
° -a
o o
= 49 [Qu (b, (2-0)| A (+42-8,8) = 0). (4.
-a 9

The last term that we must take care of is @ . Again with the

convention Al(t,g) =0, t >tl,® can be rewritten in the form

tora "(S-to)
@ = I ds fo\e (Ft (s—to)l AI (+o"'s ’t01g)x.t (S—'t,-ﬁe)). (4.
t, ~-a e =
Change the variable s to 'Ul = —(s—to)
° "
® ’_J;hl :fadg ([’t.("[) | A H’o-vl..e)x,c.(O-vl)\ R (4.

Change the order of integration once more

(o) 0
®=_:[Sg',;d1 ( \ 1 ) (4.

84)

85)

86)

87)

88)
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Change the variablerl togd=0- 1
o ,0
0 iffg fgde( (py =02 A, Lo t-9,0) 2, ). (i, 585

Substitute back (4.89) and (4.85) in (4.76) via (4.77), (4.78)

and (4.79) to obtain

T t A
I(pm\a'c(s)_ Asyxg)ds + J; (1;(5,+ A*“)F-" | =< ))ds
t 0

o ,0
= (fH:)]-x.({-)) +j;d9 J;da (h(a-e)l A, (t+-9,0) :ru,z))

o L0
= [ (P H-'o) |x (*o)) +—J;J0fed°l (rt.(a(-g)l A| (.{04-0(-9, 9) xt. Ld))] .
(4.90)

This and Definition 4.14 yield the identity (4.63).



5. Concluding Remarks.

This thesis has obvious extensions. The first one is to
look at hereditary differential equations on [to,tl[, where
typ<ty S+ . To do this it suffices to go to Lp-spaces of
locally p-integrable maps (1 £ p <®) or locally essentially
bounded maps (p =0 )., Such problems bring up the question of
the behaviour of the solutions as the time t goes to + e

Secondly, existing stability theory can be adapted to hereditary

differential systems with initial data in a MP space.

As far as the Optimal Control Theory is concerned, this
thesis contains the basic material for a treatment of the
"hereditary version'" of the '"classical problems'". An example
of such a problem has been mentioned in the Introduction. In
fact the optimization of a quadratic cost for a linear hereditary
differential system has been the central motivation for the
study of hereditary differential systems in this particular

framework.

9y



Appendix A. Integral Representation of continuous linear
operators defined on Lp(y,E) with values in
H, when 1= p<®  E is a reflexive Banach

space and H is a Hilbert space.

Lemma A.1l
Let X be a measuredspace with measure m, and E and
F be Banach spaces.
(i) Let f: X — E and g:X —— F be p-measurable maps.

Then the map t v (£f(t),g(t)):X — EXF is p -measurable.

(ii) Let fi:X—vE, i=1,...,n be a finite family of
K-measurable maps. Then the map

tr—-»(fl(t),..., £ (t )iX — (E)" is p -measurable.
n

(iii) Let f:X —= E be p-measurable and\:E —= F be
linear and continuous. Then the map tw=A (f(t)):X—= F

is p -measurable.

Proof: 1) Since f(resp. g) is p-measurable there exists a
sequence {fnk (resp. {gn‘s ) of step maps such that £ — £
(resp. g, — g) pointwise almost everywhere. Assume fn

(resp. gn) is of the form

My Ny
;n it) = El Q{'fsr (t) (RSP- 4n ) = 32;_: 4; }T':' (k))

95
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n (D ( <N n . i
where {aiktE (resp. lbji cF) and 18 }(resp. {Tj} ) are disjoint
measurable subsets of X with finite measures. For each n, define
the map hn: X —= ExF:

My Nn

ha ) = ({4 (£)5 4n ) = 2 b (af }S‘E ), b’; }T; t3)

=/ 1:;

=2 2 [(a?,o)fl'c) +(o, ‘3)} ) + (" bMyx ) ]
. N\T " et O v cnl?
= SINTS T5\s? ijnSt
where A\B = {xeA} X § B]’ . Thus hn is a step map since the
| g b o SRS o i
measurable sets {Si \Tj } iy {Tj \ Si}ij and {Tj n Si}ijare disjoint.
Hence the map t w» (£f(t),g(t)): X —»ExF is p-measurable since it
is the almost everywhere pointwise limit of step maps [13, p.235,

M12].

2) This is a direct consequence of 1). Pick F = E and
the result is true for n = 2. Pick F = ExE and the results is true

for n = 3, etec...

3) There exists a sequence fn of step maps converging
My

- » n
almost everywhere to f. Say fn(t) -E'Q. 1,5,: (t) for {ai} CE
and {Sril}disjoint measurable subsets of X with finite measure.

Let

My
g ) = 2 Lta™) f o ) ;5

Y

the map t b gn(t) are step maps from X to F.
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By continuity of A for almost all t € X
(1) = £(1) => g (1) =L\ () N C(£()).

Thus the map t s [\ (f(t)) : X —F is M -measurable.

e In the proof of the following lemmas we shall need
some results on Hilbert spaces and filters. For the definitions.
and properties of filters we refer the reader to Horva{th [14];
as for Hilbert spaces the necessary results may be found in

/
Horvath and W. Rudin [25, Chapter u4].

Let I be a set. Denote by @(I) the set of all finite
subsets of I. IfQ(I) is ordered by inclusion "&€", it becomes
a directed set. For each Je P(I) let
s() ={xeP(1)} K23} . The collection & ={s(3)] Je (1)}

is a filter basis on @ (I). The filter generated by & is called

the filter of sections of @(I) [14, p.77, Ex, 5].

e Let (xi)ie . be a family of elements of a topological
vector space E. Associate with each J€ & (I) the element

x, = & x, of E. We say (xi)

J Yed is summable to an element

il
x € E if the filter generated by the image of S under the map

J X; converges to x. If this is the case, we say that x is
the sum (xi)i and we write x = 2 xi['lu,p.l27, Def. 2].

€I i€l
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2 oy
o Let £ “(I) be the set of all families (5 i)ie I of
real numbers such that the family ( ,Fl\ 2)i€I is summable.

1,2(1) is a Hilbert space with the inner product
(B1) = §‘I$""‘ (A.1)
.

(14, p.35, Ex. 7].

® Every Hilbert space contains a maximal orthonormal

family (ui)ie I [14, p.31, Prop. 7]. If (.].) denotes the inner
product in H, for each x € H, the real numbers Xy = (x| ui),

i € I, are called the Fourier coefficients with respect to

(ui)ie [ and Er: (x) ui) u; is called the Fourier expression

ie 1° H—»X.2(I) is

of x [14, p.32, Def. 6]. The map X +» (xi)
an isometric isomorphism (top. and alg.) and
(xly) = ((x) ) (y;)) ,¥xy eH
(14, p.35, Ex. 7]. In particular:
x € HeD ( |xil2)i€ I is summable <=> (xiui)i€ 1 is summable.
Thus for each x, let 3-'x be the filter on H generated by the
image of the filter basis éunder the map
Jvs x| = iZe:inui : @ (1)—» H. (A.2)

By definition of summability ?x converges to X.

Lemma A.2
Let H and F be Hilbert and Banach spaces respectively.

Assume A € £(H;F). Denote by (ui)ie 1 @ maximal orthonormal
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family in H. Define for each J& ®(I) the map A_:H — F as

J
= ¥
AJx iS9% (Aui) s,V x € H, (A.3)
where (Xi)ic  are the Fourier coefficients of x with

respect to (ui)iE ;- Then A€ L(H:F) for all Je P (1)

and the filter generated by the image of @ under the map

J > A $(1)— L(H;F) converges to A.

Proof: By definition AJ is linear and

sup [Ayx| = sup [A(F =w)] 2 sup  [Ax] = IAI.

Ix1£) | E xwu | =) lx <)
ieJ

The family (AJ)JGQ(I) is bounded ing (H;F).

1)

2)

For each x in H the family (xiui) is summable. That is

iel
the filter 'Ix on H generated by the image of the filter

basis é under the map

Jl—-v-x=zx

J " ied : (D> H

converges to x. By continuity of the map A the filter

.U,
11

’;Ax on F generated by the image of the filter basis & under

the map
JhwAx = Ax; : (1) F

converges to Ax.

Let ?A be the filter on 0.= {AJ% Je é(l)} generated by

the image of the filter basis © under the map

I Ar ot P(I)— L(H;F).
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3) But the subset CL of i(H;F) is equicontinuous since
WA, W« lAll for all J& @(I). It now follows from a
version of the Banach-Steinhaus theorem [2g, Chap. 3, p.25,

Cor. to Prop. 5] that the filter r:FA converges to A.

Lemma A.3
Let E be a Banach space, and (ui)ié 1 be a maximal
orthonormal family in a Hilbert space H. For J€ & (I)
let EJ be the space of all mappings b defined on the

finite subset J of I with values in E endowed with the

norm y
212 g
h=LZ uol]® 4o’ (.w)
where | | is the norm in E.

Corresponding to each b € EJ we define the map
/B(b) t: H E’
Plb)ac = Z x40 , X el (A.5)
(€7
where x. = (x |ui) is the Fourier coefficient of x in

H and (.].) is the inner product in H. For all b e Y

sup I(Lu,)x\ s [§3 14w |? ]lh' (A.8)

lx | =)
and the map /5 : EJ._.. L (H:E)

is a continuous linear injection.
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Proof: /5 (b) is linear by definition. For all x € H

|[5ll.)xl= I?:‘Ix;lim]a Z Iz bWl

el

= [%‘e-‘f"‘a] " [LZ.J ol "

Because of the isometry between H and 22(1),

%s:l‘_:r.-.lzlvzf. [?-‘I lx;lzj'/z =l=l,

and
’/Buv)'xl < x| )4 , ¥ we H.

So /5 is indeed a continuous map by our last result. It is

linear and injective by construction:
A®) =B )= b(i) = A(b) u; =p(b Ju, = b (i)

for all i in J.

Proposition A.4

Let E be a reflexive Banach space and let X be a
Banach space. Let T(A) be the transpose of A€ L(X,E)

defined as follows:

<x,-x(A)e*>X = < Ax,e*)E L ¥ eX,'V"e"( E*. .7

The map
L ACRIPIE Fe) (.8)

is a norm preserving isomorphism.
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st kst
Proof: 1) Letc: X —X and d: E_, E be the respective

canonical isometric embeddings on X and E in their second dual

T * ) .
X and E (4 is an isomorphism). For each A @ f (X,E)

* 3 % B3
define ‘I(A) t E —» X as follows: for each e € E let

<Ax,e*>_ =<==,T(A)e*>x > ¥xeX.
Clearly sup ]T(A)e'“‘ < Al 1’6‘(A')€I(E*, X*),

le*) <1

L(x,E)
and ’x is linear. Similarly we define for each
Be I,(E*,X*) 4,(B) : X**_, 5™ ou Follions: For sach e
let

<‘Be.“f,'x.**>x,,,. = <, £, (B>, ¥ e*c E¥

N e desk
Clearly}l: L(E ,X, ) L(X ,E ") is linear and

”fl(B)n o™ g™ S “B“I(E*,x*)’

Finally let

D> (D) = E3pect L E™ o L(x,E).

Since 4 and ¢ are linear, so is }2. Moreover

g 00 %Il =
= [l & HoeE | ¢ = IpCetll
E
ol su an ASBI an
Lx LB ) X
< o
" ” .t(X**,E**) Il x"x
and

llf Ll £ (x.p) € "D"Ux** v
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Letf=f20fl.
We first show f (7 (A)) = A, ¥ e Lexnp).

* *®
Consider the following chain of equalities: ¥ X € x,‘V eckE ,

*
< ('} 2(}1('((A))))x,e >k

<(EQNxE >

< aHE YN exe>

& &0 CFAY) (€ ) S
1Y ot

<L "‘(A)e*, cx > x*

& %y ‘((A)e*> %

< Ax,e’BE.
Clearly g (y(A) = Aand JI4 (AN < UMM < A i .
Similarly we show ‘[(} (B)) = B,'V Be £ (E*,X*).

&% %
Consider the following chain of equalities: V’ Xg X,Ve € E,

<x, (Y (4B > = LB >

E

=<12()cl(a))x,e’§ .

Z d_(lfl(B)(cx) ,e*> B

%
<e ,F,(B)(ex) >
h e®

%
{Be ,cx ) x*

¥
< x,Be >X'
Again T(}(B)) = B and ||x()c(B))u < uy(B)ll < B .
Thus ’a’ is an isomorphism since it has a continuous linear

inverse ;
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Moreover
Ryl < jall
and Wal =4 4 Cyeani < hymiy

makes ’X an isometric isomorphism.

Proposition A.5

(i) Let E and F be Banach spaces, (X,’L) a
measuredspace, and 14 p<e0. The map
™ Lp(}L,I(F,E)) —L(F,LP(p,E)), (A.9)
defined for each Ae€ Lp(}t,i(F,E)) as
(w(A)z)(x) = A(x)z,‘V'zeF,‘V'xe X, (A.10)
is linear, injective, continuous, and

P
I cally < N af - ¥aePop, L (ren. (A.11)

(ii) When F is a Hilbert space the image of
LP( p, £ (F,E)) under T is dense in I(F,Lp(y sE)) 3

if in addition p=e® , T is a norm preserving isomorphism.
(iii) When F is finite dimensional, W is an isomorphism.

Proof: (i) We construct a map w from Lp(y,!,(F,E))
to £(F,LP(k,E)). Let A€LP(p, £ (F,E)). For all zeF the
map B z*(B) = Bz : L (F,E) —» E is linear and continuous.
By Lemma A.1 (iii) the map

x> (T (A)z)(x) = A(x)z : X o E
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is p-measurable as the composition of a continuous linear map
%

z and a p-measurable map A. Also
[(ra)z)(x)) = | Ax)z| <« NAGOE 1z
which implies that
hremzll ) < A llp |z |
and Tr(A)z e Lp(p,E). Thus T (A) defines a linear map
z —»M(A)z : F e Lp(}c,E)

for which

sup lwrayzl_ = lall _.
lz] £ P P

Hence the map W of equation (A.9) is a continuous linear map
for which inequality (A.1l) is true.

Pick A) and A, in LP(j, X (F,E)) for which W (A) = W (A,).
Then

Al(x)z = (W(Al)z)(x) = (?(Az)z)(x) = A2(x)z

for all z € F and all x € X, and clearly Al = A This proves

2

the injective property of T and the first part of the proposition.

(ii) When F is a Hilbert space any element B
in x(F,Lp(p,E)) can be approximated in the sense of Lemma A.2.
If (ui)i é Iis a maximal orthonormal family in F, we define for
each J € @ (I) the element BJei(P,Lp(r,E))
Bjz = izG:J z; (Bui), IVLZ €F.
The filter g:B on the subset ﬂ= { BJ§ Je ?(I)} of

i(F,Lp()a.,E)) which is generated by the image of @ under the map
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. P
I By (1) L(F,L7(p,E))
converges to B.
We now show for all J & @(I) there exists gJi Lp(p, £ (F,E))

for which TI'(BJ) = BJ.
The map

J

x;—»((BJui)(x)) : X E

ied
is p -measurable by Lemma A.l. The image of ((BJui)(x))ieJ
under the map/b of Lemma A.3 will be denoted by EJ(X). Since 3
is linear and continuous the map
X B () = B ((Biu (X)), 1) ¢ X —» L(F,E)
is p -measurable by Lemma A.l. Moreover by Lemma A.3
~ !
185l < [ WByu) |2 ]"
¥ ted d
Therefore B € 1P(p, £ (F,E)) and w(E)) = B, for a1l J € P (I).
This proves the density property of the map W . When in addition

p =9

IRl = sup Ir M)z I,

1Z1<)

= sup [ess sup ](W(A)Z)(z)f) = sup (esssup |Amx)z ,)
2121 ' xe X 1IZ1<) <e X

= ess sup(sup A2 ) = esssup 1A | = IAl,.
xe X VElg < & X L(F,E)

Because of the isometry the image of £ (ps &L (F,E)) under the
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map W is closed in I(F,Lw (psE)). By density the range of T
is all of I(F,L‘o (pE)). This proves the surjectivity of the

map W when p =® ,

(iii) When F is a finite n-dimensional Banach
space it is algebraically and topologically isomorphic to
n

R". The space R" can be regarded as a Hilbert space endowed

with the norm
- Y2 "
"'[;Z._.,‘z"lz-] ’ *z:(z.,...,z“) € R

To prove (iii) it suffices to establish the result for F equal

to the Hilbert space R. By (ii) the result is true when p = ,

When 1 £ p <0 we show there exists a constant d » 0 such that
IAI, < d Ty ¥ Aelbcy, 2RED.

This will show that the range of W is closed and dense (part (ii))

in X.(F,Lp(}t ,E)); this will be sufficient to establish the

surjectivity and a fortiori the fact that W is an isomorphism.

hi)

For any orthonormal basis {ul}'_" : in BY % = %l z,u, , where
=

|
the zl s are the Fourier coefficientsof z € Rr1

IL.Z:!'L(A(*)“‘)I [Zqz‘_ ] [Z,lAhc)u‘ J/z
< Izl[z | A a7 ] %2,

The above calculations are now used in the following sequence

In particular

In

of inequalities:
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HA’“\' ={L[su\p |AL=¢)Z|]J }IP

1Z212)

=] [, Ao (2 2 )y }

17141

i

{LF” @nimmmum4ﬁ

2l =1

Y
Sur (liI[Z L (A)u; )hc)lz]/z »} v

- 1Z1<) £

N
—m,
><"_‘

- 7 )
2 oo l*] ey}

t =

IN
P —
< —

»

< 2 Ihw(A)y ll|B < ™ llTr(A)llx

L=

[N

This completes the proof of Proposition A.S.

One would like to know precisely under what
conditions on E, F, (X,}L) and p the map W is an isomorphism.
We only know the result is true when

e p =®, F a Hilbert space, (X,pu) and E arbitrary
and

¢ F a finite dimensional space, p, (X, ) and E being
arbitrary.
In the other direction we know that when 1<p<e , E = R",

F = Lp(m,R') (m the complete Lebesgue measure on [0,1])
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the result is not true. Pick Ie€ x(Lp(m,R2), Lp(m,R2)) the
identity operator and assume there exists
T € Lp(rn, X(Lp(m,R2), R2)) such that
£(t) = (ID)(t) = T()f , ¥retP(m,R?), ¥tero,1].
By definition

. Vb
I, = [L[?}"L. lfuc)\\’;m] ;

Consider for n 2 1 and 1 £« m € n the maps S m in Lp(m,R2)

snm lf) =

g . 2
where u is an element of norm 1 in R”.

Clearly |is,,. UP = ,'\Ln,VLw\ » but

sup s, (B)] = sup 'n‘/" = + 00,

nzl nzi

l<m<n
This shows that " Tllp = +® ., This contradicts the fact that
Te P(m, i(Lp(m,R2),R2)). In this particular case T is not

an isomorphism.

Even if the result is generally not true, this
does not mean it is not true when F = E. This case is of particu-
lar interest to us, but we cannot say whether under these cir-

cumstances W is an isomorphism or not.
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Theorem A.6
Let E be a Banach space, F a reflexive Banach space,
(m,X) @ measured space, and p,q such that 1 £ p<w

andq-l+p = 1

(i) There is a continuous linear injective map

p i L3, L(E,P)) — LIP(R,E),F) (A.12)
such that for all A € LN, & (E,F))
PO = fo(x)f(x) dp , ¥ee tP(u,p) (A.13)
and
Ipily < Whl,. (A.14)

(ii) When E is reflexive, J is regular and F is Hilbert
the image of Lq()u, L (E,F)) under the map is dense in
L (LP,EB),F).

(iii) When E is reflexive, p is regular, and
e either F is finite dimensional and 1 = p<a ,
e or F is Hilbert and p = 1,

P is an isomorphism (norm preserving when p = 1).

Proof: We construct four maps and study the circumstances under

which each of them is a (norm preserving) isomorphism.
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1) By hypothesis the space F is reflexive. The map

% % % *
T+ T : L(E,F) — L (F ,E ), defined for each z ¢ F as

<Ty,2¥>p = <y, Th*>, , ¥YyeE ,¥a*eF",
is a norm preserving isomorphism by Proposition A.4. This
induces an isometric isomorphism (1 € q £®)
Ta L?(,.,:tte,s:))_., Lq (wy, &£ (F¥ E*)
defined for each A € Lq()(, L (E,F)) as
T(A) () = [A(x)]* 5 f=<eX.
2) We denote by
7 LEP(E) P> X 1P,
the norm preserving isomorphism defined for each z*e P* as
<A)C’z*>r__ = <¥f, Y (A)Z*)LP 5 N f € I:(F,E)
(Proposition A.4, since the conjugate F* of a reflexive Banach

space is reflexive).

3) We denote by

¢ e PGB
the map defined for each g € Lq(,l ,E*) as

<4, C(3)>L' = fx < "“”9lz)>E‘ dp
for all f € Lp(}L,E). It is clearly linear, injective and
I c(g) lﬂ.q- < gl .

A sufficient condition for € to be a norm preserving isomorphism
is that E be reflexive, 1 € p<® and p be regular. The map

induces the linear injective map

Pp-;}(F):r COI—‘
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PRFS D, ) — L (F% T(,EN)
for which

DM =Neelh < UMY, ¥ M e R (FY, L, EY)).

When ¢ is a norm preserving isomorphism, so is A

4) Finally let
T L3, L (FLED) x(r*,Lq(,n E)

be the map of Proposition A.5 for P* and E* instead of F and E:
for each A€ 13(p, L(F,E))

(W(A)z*)(x) = A(x)z*, ¥ z*e F*, ¥xe x
It is linear injective and

brmily < 1A,
when F is Hilbert the range of T is dense in I(F*,Lq(y ,E*)).
When p = ® and F is Hilbert it is a norm preserving isomorphism;

when F is finite dimensional it is an isomorphism.

(i) We define the map() as the composition map
‘!’.’ owe? - From the properties of the maps K—l (isomorphism since
F is reflexive), 3\,11' and T , ? is a linear injective map such that
lpem by« Haly , ¥ aerfpeE,m.

All we need to verify is the identity (A.13).

Let fe LP(wE), 2 € F , aeLi(p, L(E,F)):



113

<};A(z)}m>dr,z*>; - }; < A(x)j(x),‘!*}F. dp
= fx< [z (A)] () f1e), 2% dp = fx<}m, [2(A)] ) 2 > dp

s fx < fm), [or (2 (AN 2¥] > dp = <§,[1(v(t(M))]z*>L.,

iy o [{'M(v('e (A))))]f,z*’>r_. = <[p/M)]g,2% > .

Since the identity

Ly = <[ Ao fapst o,
is true for all z*e F* (locally convex and Hausdorff) and the
topological pairing < , > separates points of F,

< p
[p (W) £ = fx AGOEx) ap, Y £e Pu,E).

(ii) and (iii) When E is reflexive, M is regular
and 1 £ p<o , the map C becomes a norm preserving isomorphism
(27, p.607, Thm. 8.20.5, p.590, Thm. 8.18.3]. This makes A a
norm preserving isomorphism. When F is Hilbert P has the density
property since W does. When either F is finite dimensional, or
P =1 and H is Hilbert, the map T becomes an isomorphism. Under
the above combined conditions?is the composition of four iso-

morphisms. This proves the last part of the theorem.
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Remark (i) This theorem is a generalization of the classical
integral representation theorem for continuous linear forms
defined on Lp()L,E) (27, p.607 Thm. 8.20.5 and p.5%0 Thm.

8.18.3].

(ii) A theory of the linear representation of linear
operators defined on Lp(;-l,E) with values in F, was developed
by N. Dinculeanu and C. Foias [28], I. Singer [29, 30],

N. Dinculeanu and C. Foias [31], A. and C. Ionescu Tulea [32],
C. Ionescu Tulcea [33], and N. Dinculeanu [34%]. When p = 1
the theorem may be considered as a corollary of the above
representation theory. But when 1 < p<® , p is regular,

and F = R* (finite dimensional) it shows that this class of
continuous linear operators has an integral representation.
This was not obvious since it was to be shown that for all

re X(LP(r,E),KM)
N
AN = swp Z 1AULg )] u s,

where the sup is taken over all step maps of the form
N

= Z i P_
s = bifBi with L*-norm equal to 1.

To our knowledge, the density property (part (ii)) is also

new.
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(iii) Our proof of the theorem is different from
that of the above mentioned authors and is constructive.
It uses in a critical manner the integral representation
results for the dual of Lp(p,E). This gives the suffi-
cient conditions on w,p and E. The sufficient condi-
tions on p and F arise from the map W of Proposition A.5.
If any of the above two sets of conditions could be

relaxed, the hypotheses of Theorem A.6 will also be relaxed.



Appendix B. Let B be a Banach space. Assume (X,#{, }4.) and
(Y,{{,y) are measured spaces [13, p.229] : X(resp. Y) denotes
the space, #{ (resp.f{ ) ad-algebra of subsets of X(resp. Y)
and : M —R (resp. ¥ :H —R) a positive measure on

’fﬂ (resp. M . 'f«@ﬂ and p®y will denote the product

4 -algebra in the product space X x Y and the product measure
defined on ﬂ(@« respectively.

When (X,’f«,») is a measured space, let T«
consist of all subsets Y of X which differ from an element of
’ff( by a set contained in a set of measure 0. In other words,
there exists a set A in m such that (¥\A) U (A\Y) is contained
in a set of measure zero. If we define J (Y) = w (A) for Y,

A as above, (X,‘?f[— R F. ) is a measured space. (X,a . F) is

the complete measure space determined by (X,4H , W ) and }T

the completion of o . [13, p.280]. If (X,M,pu ) and (Y, ,¥)
are twomred spaces

Mot - Mo o R@®Y = K@ (B.1)
(13, p.280].

Lemma B.1 Let (x,#, = ) be a measured space and 1 £ p<®.
There is a norm preserving isomorphism
W : LP(p,B) — IP(F ,B), (B.2)

such that for each fe lp(ﬁ ,B) there exists an element

116
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?e I,p(p.,B) for which
F(x) = £(x) , a.e. () in X (B.3)

and

E(-‘(fn =y, (B.4)

where 'x and Y are the respective canonical surjections

(section 2.1.1) for Lp(}c,B) and LP(F,B).

Proof: 1) jfe 1P(F,B), 3 Fe x.p(;L,B) such that
f=fa.e. (w) in X.

We first prove the result for characteristic
functions. Let S be a'ﬁ—measurable subset of X for which ﬁ (s)
is finite. By definition of the completion of (X, M, F.) there
exists a A -measurable subset S of X for which the symmetric
difference of S and '.S',

SAS = (S\S)U (S\ 9),

is a subset of an element Z in #{ with p -measure 0. In particular

}_A (s) = K (S) and the characteristic functions f g and f z of
S and E are equal except at most on a set of M -measure 0. The
integrals
i =) =wi® =] pud
fx fg 4B = R 5 =1 FE =P
and the LP-seminorms
gl g0 = Ifgly oo
also coincide. It is clear that the result is true for step
~

maps and hence for F -measurable maps. Finally f is a

J -measurable map and
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lllf."r (p) = M-ll‘, (R) <o
This shows that £ e I,p(,.t,B).

2) The map ¥ and its properties.

s s P =
Pick g, and g, in £%(pn,B) such that g = &
a.e. (p) in X. Clearly g, = g, a.e. (p) in X,
’I(gl) = "(gQ) = “(gl) = T(g2), and
Hglll B (}A-) % lglﬂ . (;i ). This defines a norm preserving
linear injective map
& : LP(u,B) » LP(f,B)
as follows:
- - .‘L b
“(ylgn =Y , T g e L (p,B).
As for the surjectivity it follows from part 1):

Ve $P(j,B), 3 Fe LP(p,B) for which % (Y() =T (9.

Theorem B.2 Let (X, H ,,4.) and (Y,fl,p ) be two finite measured
spaces and 1 £ p<® . There is a norm preserving isomorphism
p o 1P(u@y,B) — LP(p,IP(¥,B)) (B.5)
such that for each £ € ¥P( K®Y ,B) there exists an
Fe 2P(p, IP(,B)) and F(x) « LP(¥,B) a.e. (W) in X for
which
Ay FD) = Fx) , ace. (p) in X, (B.6)
F(x)(y) = f(x,y) , a.e. (p@®¥) in X x Y, (B.7)

and

B = T, (B.8)
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where
T« : 2P, 1P (¥ ,B)) o 1P(y,1P(v,B)), (B.9)
T : 2Py ,B) — LP(y ,B) and (B.10)
(B.11)

¥ 8@y B LP(p@¥,B)

are the respective canonical surjections (section 2.1.1).

By symmetry similar results are true with

Lp(v,Lp(r.,B)) in place of IP(»,Lp(y,B)).

Proof: 1) Construction of the map F_

Let fe€ tp(pov sB). We define for each x in X

the map F(x) : Y—» B as follows
F(x)(y) = f(x,y) , ye Y.
We shall show that
o F(x) € LP(»,B),
o the map x e Yy (F(x)) & X o LP(y,B) is p -measurable,
o ¥5r'e XP(uoY,B) such that Y(H) = (£,
"X (TY(F)) =rx(rY(F')) for F and F constructed from f and f'.
This defines the map
Ers b (D) =y ({y(F)) : LP(p@y,B) > LP(i,L°(¥,B))

where F is constructed from f and ‘{(f) = -f—
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e ,Ip(y@y,B)c Il(,ng,B) since X x Y has finite
K@Y -measure. By Fubini's theorem [13, p.269 Thm. 9] F(x) €
;(l(y,B) a.e. (}.,) in X. Hence F(x) is ¥ -measurable. Now
when 1 £ p<ed the map
(x, 7)) J£f(x,y) | P.xxY—=>R
is in I,l()LOV,B); therefore always by Fubini's theorem the map
vy [P P = | 8x,y) | P i ¥ R
is in ;Cl(v ,R). Hence F(x)€ XP(¥ ,B) a.e. (p) in X.

When p = @ clearly

HF(«.)“ = ess sup [{ix,4)] = esssup 1 faxw) = 1L
oo "\/P:f' * (x,n)ex,yf ) 509

and F(x) e I“(y,B) a6 (,L) in ¥

® Since X x Y has finite MY -measure, the step maps defined
on MeH are dense in Lp(pav ,B) even in the case p = o0
[13, p.289 Thm. 4 (iii)].
The set of all step maps defined on the algebra

fl :{SxT ; se M ,Té?t’ y(5)<oo, )’(T)4oo}

is dense in Lp(my ,B) (by extension of a result in Lang
[13, p.257, Thm. 61). Let fe€ LP(p®Y,B) and {£} ve an
Lp—Cauchy sequence of step maps on Q. converging a.e. ()*oy) to £.
Each fn is of the form

N" NV'
n - %
hissfi = 2 0 gp, e Sl e,
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1
where (x,y) € X x Y. The corresponding F s are of the form

Nn
Ftx) = 25 (L?*}B,_,)j(m.(x), a.e. (p) w X,

(=

that is they are step maps defined on X with values in
:tp(y,B) . Moreover when p = ed

fFa- Faoyll = cs;:t;},o l o (%,9) - ‘f.(x,g)\

(A

ess sup | £, (1.y) - )
ke fottay) - foy]

2 lJ‘“'.S'“l > 8@ (p)w X,
and when 1 < p < o0
P
[)(dP{Ldv \%m(x,vj)_4.(1,3)l i_,.o an M —yp 0O

implies that for almost all ()L) % 10 X,

=

“ F:.(%)._.F(‘!) "P —— yd'r’ )f-“ (1,5)__ ;(1,5) lF-y- QO an M —00.
We conclude that in all situations Fn(x)__, F(x) a.e. (u) in X.
So F is a m -measurable map.
Finally by the very definition of F,
and we can conclude that the map

v Yy (FGO) X — LP(y ,B)

is an element of X_p(y.,Lp(v,B)), and ’rx( IY(F)) is in

LP(u,LP(¥,B)).
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e We now check that given f and f' in I,p(,p.ov,B)
T =7 () 3 T U EN =L yF D)
where F and F' are constructed from f and f' by the previous
techniques. Clearly
() = T(f')=.> £=f a.e. (p@®@») in X x Y
=> for almost all (m) x in X
F(x)(y) = F (x)(y), for a.a. (¥) y in ¥

= Y FG) =Y (F (x)), ace. (k) in X

= Y () =Y (.

2) The map—{; just constructed is clearly linear and
norm preserving (hence injective). Only the surjectivity must
be proved. Pick G e Lp(}L,Lp(v,B)). We can choose g € XP(),A.,
Lp(y ,B)) for which 'Xx(g) = G. There exists an Lp-Cauchy
sequence of step maps { gn} converging a.e. (p) to g.

]
If the g, s are of the form

Ny
%ﬂ(‘x.) = ?L:_\-.l %?/fA“ () :r.eX,

we can pick E:e ¥ P(¥,B) such that ’J‘X(E?) = g? (i veesN

and define

~

Ny
~n
(in particular X Y(gn(x)) = gn(x)). We now naturally define

Nw
9, (1oy) = %“"‘)(5) = E, 5"{‘(})}“ () 5 (xy) € XxY.

n
[
-
B
=4
Nt
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By construction the maps y»’é;(y) are 3y -measurable, and

then the map (X,y) \—» E?(y)} n(x) and a fortiori the maps -gn
A
i

are p@) -measurable. If we define the map

(x,y) > g(x,y) = lim En (7)) & X % Yo B,

N ey o0
it is also u@y-measurable [13, p.235, M 12].
Notice that by construction E:e ip(V,B) and consequently
= = p
Ve, Il <o and g € L (uey ,B).
Moreover, always by construction,

- ~ ~ ~ -~ - —
ls"'%” uP - lTY %""3"‘”# = "3!\"%"“ “p - “ﬂn-‘}m “p>
for any n and m. Since { gn} converges, g En} is necessarily
Cauchy in ¥ P pO»,B) and converges to an element of ip(you ,B)

which is almost everywhere equal to g. In particular

ge LP(poY,B) and  Y(®) = lim Y().

Nl - on
Notice that (always by construction)

BPOY (@) =T, (e)
By continuity of (E 5
lin B (Y (E) = (y @)
N—s o

and by continuity of ‘K X
lim Yy (g) = Tx(g) = G.
N_» 00

In summary

ALy = fiw« »{—i (7(3~) = Run Tx (gn) = Tx9=G.

M —ap 0O

This completes the proof of the theorem.
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Corollary B.3

Let the notations and definitions of Theorem B.2 hold.
Assume the measured spaces (X,#f ’}‘) and (Y, 1 ,¥»)
are also complete. There is a norm preserving isomorphism
/'i : LP(p@v,B) _» LP(k,L°(¥,B)) (B.12)
such that for each f& XP(W,B) there exists an

F e 2P(u,LP(¥,8)) and F(x) € LP(¥,B) a.e. (W) in X for

which
T ((F(x)) = F(x) , a.e. (W) in X, (B.13)
F(x)(y) = f(x,y), a.e. (w@¥) in X x Y (B.1Y)
and
POy () =Y, (D), (B.15)

where f:ip( ’on,B)__, Lp(yoy ,B) is the canonical
surjection (section 2.1.1).
By symmetry similar results are true with Lp(v,Lp(rt,B))

in place of Lp(}L,LP(V ,B)).

Proof: Let o : LP(pn@y,B) — L?( p®¥,B) be the map of Lemma B.l.

- -—— ~
The composition map/&oo( 1 is precisely the map('a with the

required properties.

Corollary B.4

Let the notations, definitions and hypotheses of

Corollary B.3 hold. Assume (X, 7, p)= ([to,tl],m,m),
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(Y, %, %) = ([-2,03,% ,m') and ([t ,t,Ix[-a,0],M,,m,)

(tl>to, a > 0) are complete Lebesgue measured spaces.

——1 Sl
Then ﬂz = 'ﬂ(@'ff( > My = m®m and the conclusions of

Corollary B.3 are true with Lp(m2 ,B) in place of

Lp(mwm ,B).

Proof: From Corollary B.3 and a proposition in W. Rudin

[26, p.144, Thm. 7.11] : ([t ,t;] x [-a,01, # ,om,) is the

completion of ([‘c0 ,tl] X [—a,O],'ﬂ(om', rmo'n')-

Remarks (i) Similar partial results can be found in

Dunford and Schwartz [15, p.196 Lemma 16 and p.198 Lemma 17].

(ii) It seems that our results are readily extendable

to 8 -finite measured spaces.
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