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ABSTRACT

The infinite-dimensional nature of the formal solution to the
continuous optimal nonlinear filtering problem requires that appropri-
ate approximations be introduced to the solution before a useful
finite-dimensioné] filter can be arrived at. A method is presented
for computing a nonlinear filter's upper performance-bound, which
can be used to establish an absolute measure of suboptimal filter
effectivene§s. The method is based on a numerical evaluation of
Bucy's representation theorem and is utilized in the studies of five
relatively simple nonlinear filtering problems., For each of these
problems the relinearized Kalman filter proves to be the most
effective filter of those studied,

Improper modelling assumptions and inaccurate parameter
estimates also contribute to the less than optimal performance of
a nonlinear filter., The question of filter performance sensitivity
to modelling errors is considered and two sensitivity computing
techniques are presented and illustrated by examples.

A nonlinear filter is developed to estimate, on-line, the

time-delay of a dynamic process.
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CHAPTER I
PRELIMINARIES

1.1 Basic Concepts

Today the state identification, state estimation, parameter
estimation, and parameter tracking problems are each a familiar
subject of study in the field of modern control theory. Many novel
and apparently unrelated solutions to the above problems have been
proposed since the concept of state-space was first introduced to
control theory. Under certain restrictions when the solutions to
these problems are to be carried out in a real-time/on-1ine
environment, a unifying theory applicable to the solutions of all
the above mentioned problems exists in the very sophisticated
theory of optimal nonlinear filtering,

Applications of optimal nonlinear filtering theory are
restricted to those in which the dynamic systems involved possess a
known structure (i.e., a differential or difference equation
description) and are acted upon by external influences (i.e.,
initial conditions and forcing functions) whose statistical
descriptions are known or can be appropriately approximated.
Clearly, an extensive modelling effort and random signals analysis
are necessary prerequisites to any actual application of optimal
nonlinear filtering, especially if optimality is indeed a necessity.
In fact, probably the most significant benefit derived from the
application of optimal filtering theory to an actual system is that

it forces the system designer to truly understand the system and in



addition to make use of every shred of information about that
system available to him. Sophisticated estimaticn and control
techniques wnhich purport to yield optimal performance without
requiring knowledge about the system's structure and/or disturbance
statistics must be considered suspect with regards to not only the
technique's optimality but also its practicality.

In an abstract sense, the general optimal filter may be
defined as that which

P1 given a state-space representation of a dynamic
system, all pertinent statistical information
regarding the stochastic nature of that system,
and a set of uncertain observations (Z)
functionally related to the system's state
vector (x) over some interval of time ending
at the present, produces an (in some sense)
optimal estimate of the system’s state vector

at the present.
Without any further restrictions than those imposed in P1 one may
conclude from probability theory that the general optimal filter
must in some way continuously compute the conditional probability
density of the state wector given the observations (p(x/Z)) . No
matter what particular criterion for optimality is chosen, the
optimal estimate will be a direct function of the conditional
probability density p(x/Z) . As examples, the maximum 1ikelihood
optimal estimator is given as Xeygs mix p(x/Z), and the least-

squares, or minimum variance, optimal estimator is given as the

conditional mean



'y

>

S x p(x/Z) dx
X

where X is the domain of definition of the state space,

In theoretically oriented disciplines, the transitions from_
abstraction to reality are rarely smooth ones. Many assumptions and
simplifications must be employed before a workable solution to a
real problem can be arrived at. In surveying the literature dealing
with the optimal filtering problem, the pragmatical person would
soon recognize that a sizeable gulf exists between the conceptually
pleasing solutions to this problem proposed by theoreticians and
those solutions deemed acceptable by the practicing engineer. But
engineering is the true science of compromise and we introduce at
this point the first of many such compromises, with the hope being
that the f%na] result of these compromises will still be applicable
to a large class of physical problems.

For the sake of solubility the general optimal filtering
problem as formulated in this thesis will be restricted to that of

P2 determining the "best" estimate of the state
vector x at time t given the observations

~N
n>

: }
g = {z(s) : t < s <t

where
z(t) = h(x(t),t) + v(t) (1.1)

and x(t) is an n-vector stochastic process satisfying

X = f(x(t),t) + glx(t),thu(t) (1.2)
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with the a'priori probability density p(x(to)) kncwn, In P2 ,
z(t) is an m-vector of observation variables, h(x,t) is an
m-vector of observation functions, v{(t) 1is an m-vector of
independent Gaussian white-noises with variance matrix R , and
zero mean, f(x,t) 1is a n-vector of state functions, and w(t) is
a gq-vector of zero-mean Gaussian white-noises independent of v(t)
and possessing an identity variance matrix.

A choice of Gaussian white-noises for the v(t) and w(t)
random process in P2 may seem objectionable and quite restricting
to someone not familiar with the intricacies of random signal
theory. But such a choice not only makes possible the thecretical
solution of the optimal nonlinear filtering problem but also
provides a realistic approximation to a large class of stochastic
processes found in nature. Physicists, in fact, have for years

“been modelling physical stochastic processes as idealized white-
noises.

The assumption of additive observation noise in the observa-
tion equation (1.1) could also be suspected of being not general
enough for wide application of the theory. Again, however, no
general solution is presentiy available to the more general

filtering problem in which the observation equation satisfies
z(t) = h(x(t),v(t),t) . (1.3)

Still, one could effectively argue that the majority of physical
observation process noises would possess at least a partially

additive component. Any remaining observation noise components



in such processes could be suitably treated as additional state
variables.

The optimal nonlinear filter problem specified by P2
defines in effect two separate but related problems. First is that
of determining an effective model, or representation, of the system
of concern (i.e., f(x,t), h(x,t), and g(x,t)) and all its appropriate
statistics (i.e., p(x(to)),R) . Second is that of determining a-
practical solution to the filter problem itself. While the
theoretician can in all conscience divorce these two problems from
each other, an applications engineer interested primarily in
applying filter theory to real problems must consider each problem
equally and recognize the importance of both.

While basic concepts and abstract discussion are fine,
examples last Tonger. Two such examples of potential applications
of optimal nonlinear filters are mentioned here; the first dealing
with the familiar missile tracking problem and the second having to
do with the less familiar and perhaps more difficult basic oxygen
steel (BOF) process dynamic control probliem.

In attempting to intercept and destroy an incoming ballistic
warhead, the intercept radar control system must be able to
distinguish between the trajectories of harmless jamming bodies and
those of actual warheads., For this reason not only must the
position and velocity of a body be estimated but also the value
of the ballistic coefficient (g) for that body, where B8 is

defined as the ratio of the body's aerodynamic coefficient to its



-

mass. Under the proper assumptions this problem can be formulated
as a nonlinear filtering problem in the form of P2 .

Assume that a ballistic body is being tracked by a single
radar device which provides noisy estimates of the target's range
(r), azimuth («), and elevation (¢) and that the air density of the

atmosphere can be modelled by the relation
p = p, exp(- kz)

where z 1is the target's altitude in a right-handed cartesian
coordinate system and 0 and k are known constant parameters of
the atmosphere. Then if the state vector is defined by the relation

T - - - L]
X = (X],XZ,X3,X4,X5,X6,X7) = (Xsy,ZsX,Y,Z,B )T

the state space model may be given as

R =%

di = %

3%3 = % (1.4)
5+ spypteig 08 ¢ + 0 10

g%s = —x7p0exp(-kx3)(xz + xg + xg)]/zx5 + v, (t)

3%6 ) “Xyooexp(—kx3)(X§ % Xg * Xé)l/zxs +wg(t) - g

&7 = wlt)

where the process disturbance noises Wy Vo s Was and W, are included

to compensate for any imperfections in the model structure and g

- —— v ————ad



represents the acceleration of gravity., The observation equations

for this problem would.be assumed to satisfy the following:

1/2
z](t) = (x% - xg + xg) + V](t)
I 2 2,172
zz(t) = tan (x3/(x] + x2) ) + vz(t) (1:5)
23(t) = tan'](xz/x]) + v3(t)

where 215255 and Zq represent the radar's estimates of respectively,
the range, azimuth, and elevation of the target.

Note that the target tracking problem as represented by
Equations (1.4) and (1.5) is in the general form of P2 . Of
course, the a'priori probability density for the state vector would
have to be estimated before the optimal nonlinear filter theory
could be applied to this problem's solution. Alternatively. a
suitable number of statistics of the state vector at the moment of
target detection could be substituted for the initial joint
probability density of the state vector. This difficulty is inherent
to all nonlinear filtering problems and is a nontrival one.

While aerospace applications of optimal filtering theory are
well known, industrial applications of the theory have for the most
part been lacking, especially in the area of process control. To
stimulate interest in this area consider, briefly, how the theory
of nonlinear filtering might be applied to the solution of the BOF
process dynamic control problem,

The reiatively short blow-time (approximately twenty-five

minutes) of the BOF process makes it desirable to place the critical



phases of the process under automatic control. An especially
critical phase of the process occurs during the final five minutes
of the blow when the steel temperature and carbon content are to be
carefully regulated. Unfortunately, the instrumentation available
makes it impossible to measure these variables directly. Instead,
the carbon content and temperature of the steel during the final
minutes of the melt must be inferred from available measurements of
flue-gas chemical composition and temperature and from a single
bomb-calorimeter temperature measurement of the steel batch five
minutes before coﬁp]etion of the oxygen blow. A lack of quality
instrumentation, the need for indirect measurement of certain
process variables, and the requirement for precise control of these
variables makes the BOF process dynamic control problem appear ripe
for the appfication of optimal nonlinear filtering.

A nonlinear filter implemented as part of a BOF process
dynamic control system would in effect integrate in real-time the
separate measurements from the flue-gas instruments and the bomb-
calorimeter and yield a statistically optimal estimate of the
steel's carbon content and temperature during at least the final
five minutes of the blow. The requirements for a successful
application of the optimal nonlinear filter to the BOF process are
many. For example, an accurate state-space representation of the
dynamics of the BOF chemical and thermal reaction processes must be
available. Also, the statistics of the state vector at the instant
the filter is initialized must be determined. These two require-

ments alone make it necessary to carry out an extensive BOF process



modelling effort before even considering an application of a non-
linear filter to the process. Tribus and Kornblum [45] have consid-

ered this problem in developing an endpoint control system for the

BOF process.



10

1.2 Historical Pe@gpective]

There exist in the literature two fundamental approaches to
the solution of nonlinear filtering problems. These two approaches
will be referred to here as the statistical (also variational or
least-squares) and probabilistic viewpoints of filtering theory.
Each approach possesses advantages and disadvantages over that of
the other but it is with the probabilistic approach that this thésis
is primarily concerned.

Those adhering to the statistical viewpoint of nonlinear
filtering thoery-ho1d that it is a disadvantage and often even an
impossibility to require probabilistic information regarding the
observation and disturbance processes for the solution to any
particular fi]tering problem. For this reason the statistical
approach, as outlined by Lee [33], assumes the process to be

specified by the equations

dx
dt

fx,t) + g(x,t)u(t) (1.6)

and

z(t) = h(x,t) + (measurement error) (1.7)

where u(t) represents any unknown function, as compared with the
Gaussian white-noise process w(t) assumed in Equation (1.2) of
P2 . Similarly, no particular knowledge about the observation error

process in Equation (1.7) is presumed other than that it exists.

1 Bracketed numbers refer to references listed at the end of this
thesis.
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The statistical methed of solution proceeds by finding that

function u(t) which minimizes the integral]

t 2 dx 2
S [lz(e) = h(x,t) ]+ [lgg - F(xt)]] Jdt (1.8)
0 Q W

subject to the constraint Equation (1.6), where Q and Y are
positive semidefinite matrices representing weighting functions for
the measurement errors and disturbance inputs. Thus the filtering
problem is reduced to one in the calculus of variations and one
wnich may be conveniently handled by the many existing techniques
of optimal control theory. For example, Bellman, et al. [33] have
applied the theory of invariant imbedding to the sequential solution
of the two-point boundary value problem which results from the
Euler-Lagrange equations for this variational problem without the
disturbance process u(t) present. Detchmendy and Stridhar [14]
followed a similar procedure in treating the more geéera1 disturbed
case.

The probabilistic (sometimes referred to as Bayesian)
approach to nonlinear filtering, while requiring more a'priori
process information than that of the statistical approach, is able
to provide an (in some statistical sense) optimal solution to a
large class of problems for which the statistical approach can not.
Assuming the process to be specified by the relations expressed in
P2 , the probabilistic approach utilizes all available a'priori

information about the process prior to an output observation and the

2 ; . .
1 ||x||, denotes the quadratic form associated with the symmetric
matrix A .
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observation itself to determine in a sequential fashion an estimate
of the a'posteriori joint probability density for the state vector;
i.e., p(x/2) . Differential (or in the discrete case, difference)
equations satisfied by certain parameters of this probability
density function are then derived and constitute an easily
implemented filtering algorithm.

Over the past decade a very elegant theory of optimal non-
linear filtering has been develaped from the probabilistic viewpoint
of the filtering problem. In 1958 Stratonovich presented his
views on the theory of optimal nonlinear filtering at a seminar on
probability theory at Moscow University. Approximately one year
later the first major work [40] applicable to the solution of the
optimal filter problem appeared and in it Stratonovich introduced
the concept of conditional Markov processes; conditional with
respect to the output observation data for the system. A dynamical
equation for the conditional density function when the disturbance
and measurement noises are both jointly Gaussian and white was
derived by Stratonovich [41] in this work and while his results
were considered in error by many [18,27] Stratonovich has denied
this [42] , stating that the misunderstanding arises from his
treatment of the problem utilizing physical (i.e., band-limited)
white-noise rather than mathematical, or pure, white-noise.] A

recent work of Stratonovich [43] contains all his original papers

1  Stratonovich's explanation is now generally accepted and no
controversy presently exists.
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and provides a comprehensive study of conditional Markov processes
and their application to optimal control theory.
Stratonovich's pioneering efforts in the area of optimal non-

linear filtering theory were followed by those of Kushner [27-31] ,
who derived for the Gaussian disturbance and measurement noise case
a partial-differential-integral equation which is satisfied by the
conditional density function of the state vector and which reduces
to the Fokker-Planck equation as the variance of the observation
noise becomes infinite. This equation was used by Kushner [27,28]
to determine differential equations for fhe conditional expectation
of functions of the state vector and these and other results of the
theory were later given a more rigorous and formal justification by
Kushner [29] . It was also pointed out by Kushner how the
general opfima1 nonlinear filter, if such a device could be
constructed, would consist of an infinite set of coupled differential
equations each governing the evolution of a moment, or parameter, of
the conditional density function and each containing an observation
function driving term.

| Bucy's [4,5] approach to the optimal nonlinear filtering
problem differed from that of Kushner by being more mathematical
and less intuitive, but the results of his efforts for the
Gaussian disturbance and measurement noise case were identical to
those of Kushner. An important intermediate result of Bucy‘s work
was that of a representation theorem which demonstrates how the

conditional, or a'posteriori, density function at some instant of
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time can be represented as a direct function of the a'priori density,
p(x(to)), and the conditional expectation of an exponential
functional of the observation data over the time interval of t0

to t . As demonstrated in a following sectidn of this thesis, a
physical interpretation of this theorem’s result suggests a
convenient method for obtaining a numerical estimate of the
conditional probability density p(x(t)/Z). The relatively straight-
forward proof of Bucy's representation theorem can be found in Bucy
and Joseph's [6] recent text as well as in the thesis of

Schwartz [36] .

Wonham's [47] work provides an excellent introduction to
the theory of optimal filtering and includes a numerical comparison
of the performance of an optimal nonlinear filter with that of a
Wiener filter. Wonham utilized a representation theorem from
" Doob [15] to determine a differential equation for the conditional
probability of a scalar Poisson process with linear stéte measure-
ments obscured by additive Gaussian white=noise,

A unified approach to the optimal nonlinear filtering
problem which subsumes the results of Stratonovich, Kushner, Bucy,
and Wonham was presented by Fisher [16] , However, this
particular work is a quite formidable one and would be of question-
able value to the individual primarily concerned with applications
of the theory.

No historical synopsis of the theory of optimal nonlinear

filtering would be complete without properly crediting Ito [22] ,
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who was primarily responsible for the development of the stochastic
calculus, the mathematical basis upon which the theory of optimal
filtering was developed, In the same light, Doob's fundamental
work [15] must be considered invaluable to the development of
the theory.

Since it was first shown that the formal solution to the
optimal nonlinear filtering problem as specified in P2 consists
of a partial-differential-integral equation satisfied by the
conditional probability density p(x/Z) and an easily derived,
associated infinite set of differential equations governing the
evo]utién of the parameters (e.g., moments) of that density
function, most research efforts in the field have been concerned
with determining effective finite-dimensional approximations to this
inherent]y’infinite-dimensional solution. Many diverse methods of
solution to this approximation problem have appeared in the
literature [2,9,31,37] and the most prominent of them are presented
in some detail in Chapter III of this thesis. A criticism common
to most of these efforts is that the effectiveness of each technique
when evaluated, if at all, was determined relative to some other
approximately optimal filtering technique. The question which
naturally arises is how approximate are the approximations? This
question is both a formidable and relevant one and its answer is a

major concern of this thesis.
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1.3 Thesis Content

In Chapter II the basic elements of the fundamental theory of
optimal nonlinear filtering are introduced. The level of rigor in
this introduction is purposefully not high with the intent being to
present in as clear a fashion as possible the highlights of the
theory and their relation to each other. Beginning with the
concept of white-noise and brownian motion, the presentation
concludes with the development of the infinite set of differential
equations satisfied by the statistical moment parameters of the
a'posteriori probgbi11ty density function, p(x/Z) . Consideration
is given the nonlinear filtering problem for the continuous
process, discrete observation case.

The major concern of Chapter III is with that of the many
available finite-dimensional methods of approximation to the optimal
filtering solution. Only the most prominent and/or potentially
useful techniques are discussed including such familiar methods as
the relinearized and second-order Kalman filters and such not so
familiar methods as the assumed-form density function filter.

In the literature the principal method of determining the
performance of an approximately optimal nonlinear filtering
technique has been to compare for a specific example(s) the perform-
ance of the filter with that of some other approximate filters.

In Chaptef IV, an absolute, rather than relative, method of
performance comparison is presented and is based upon Bucy’s

representation theorem, which is given an intuitively pleasing
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interpretation. The chapter concludes with the results of five
computational experiments in nonlinear filtering which demonstrate
the usefulness of the absolute performance comparison method,

The performance degradation of approximately optimal nonlinear
filters caused by the finite-dimensional approximation to the
optimal filtering solution is just one of many contributors to the
suboptimal performance of nonlinear filters, and not necessarily the
major one. Uncertainties in process model structure, a'priori
statistics, and observation noise processes all produce a fall-off
in pertormance from that predicted by theory. In Chapter V a
technique is investigated for determining the performance sensitivity
of nonlinear filters to these various error sources. A Monte
Carlo simulation method is also used to study the error sensitivi-
ties of a Aon]inear filter utilized as a linear parameter estimator.

A particular application of optimal nonlinear filtering
theory is considered in Chapter VI; that of estimating the time-
delay of a first-order linear process from noisy measurements of
the step response of the process. A summary and extensions of the
work presented in this thesis are given in the final chapter.

We claim that the idea in Chapter IV of computing upper
performance-bounds for nonlinear filters utilizing the Bucy
representation is unique and relevant and that the results of the
computational experiments discussed in this chapter shed much new
Tight on the practical aspects of optimal nonlinear filtering. 1In

particular, it is indicated by examples that the relinearized Kaiman
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filter yields essentially optimal performance for a large class of
common nonlinear filtering prob]ems.] Counter examples are pre-
sented to the hypothesis that the relinearized Kalman filter provides
the best general solution to the nonlinear filter problem and

emphasis is given for the first time to the influence of the higher
than second-order conditional moment parameters on filter performance.
The method of approximate filtering based on assumed-form density
functions, as introduced in Chapter III and applied in Chapter VI ,

is felt to be especially relevant to the solution of the filtering

problem, and the use of uniform-density functions is unique.

1 These conclusions apply only to the continuous measurement
nonlinear filtering problems.
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1.4 Notational Conventions

In this thesis we have made no attempt to distinguish between
vectors and matrices by the use of special notation. Only in those
cases where the intent is not clear is it stated whether a variable
is a vector or a matrix. Any subscripted variables denote scalar

elements of a vector or matrix; e.g.,

1Eﬂ. element of a vector X

>
n

i - j-'Ei element of a matrix x

In addition, a matrix consisting of a certain set of elements may be

denoted by square brackets in the following fashion:

[

] = the matrix with elements ><].j .

X3 5
Two standard symbolic notations are used interchangeably
throughout this thesis to signify the expectation of a-random
variable. For example, if &(x) 1is a function of the random
variable x having a probability density p(x), then E{&(x)} and
Eﬂ:ﬁ‘ are both used to denote the expected value of the random

function ¢(x) , which is given formally as

A @ =)

Fo{x)plx)dx = f e L S ¢(x)p(x)dx]dx2 ) S
Conditional expectations and probability densities are
indicated in the usual manner by a slash between the random

variable and the conditioning information; e.qg.,
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E{o(x)/2} expected value of &(x) given the

information Z related to x

Jo(x)p(x/Z)dx .

The following list of symbols and their definitions are used

throughout this thesis:

AT Transpose of a Matrix A
A"l Inverse of a Matrix A
]/2 " Fa T . . . .
A Square-Root" of a Positive Definite
Matrix A
w(t), v(t) Gaussian White-Noise Process Vectors
Vf(xf Matrix of First Partial-Derivatives
of f(x) w.r.t. the vector x
sz(x) Matrix of Second Partial-Derivatives
of f(x) w.r.t. x
1, =0
§(t) Dirac Delta Function =
0, T#0
exp( « ) Exponential Function

N(m,A) The Multivariate Gaussian (Normal)
\ Distribution of Mean m and Covariance A

I The Identity Matrix



CHAPTER 11

OPTIMAL MONLIMEAR FILTERING: BASIC THEORY

2.1 Introduction

The assumption of ideal white-noise sources in the basic
optimal nonlinear filtering problem makes it possible to determine
a mathematical solution to this problem but introduces certain
mathematical difficulties to the theory not amenable to the rules of
the ordinary calculus. Indiscriminate use of the dirac delta -
function, so common in engineering mathematics, is unacceptable to
the theoretical solution of the optimal nonlinear filtering
problem. Ile introduce in this chapter the basic results of the
theoretical solution to this problem and precede this introduction
with that of the stochastic calculus, a calculus developed initially
by Ito [22] and the basis of the theory of nonlinear stochastic
processes. In the interests of clarity, the level of éresentation
here is partly intuitive, but the reader should not let this
detract from the relevance and fundamental validity of the results
of this theory. Where possible, those individuals originally

responsible for what follows are duly credited,

2.2 The Stochastic Calculus

Ito's [22] development of the stochastic calculus proceeded
in a totally rigorous fashion and is highly recommended to those
whose interests are primarily theoretical. For those whose interests

are more applied than theoretical we present briefly the fundamental

21
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notions of the stochastic calculus and give, where possible, their

relations to the theory of optimal nonlinear filtering.

2.2.1 Yhite-Noise and Brownian Motion

Recall from P2 in Chapter I that the nonlinear filtering

problem is concerned with processes modelled by the differential

equations
%%—= f(x,t) + g(x,t)w(t) (1.2)
and
z(t) = h(x,t) + v(t) (1)

where w(t) and v(t) are ideal Gaussian white-noise process
vectors of zero means and identity correlation matrices; i.e., in
the w(t) case,

E{w(t)}

n
[

(2.1)

" and

E{w(t)w(s)} = I §(t-s) . (2,2)

The concept of ideal white-noise, while not a physically
realistic one, has proven to be a mathematically useful one to the
physicist and engineer. In the stochastic calculus, however,
mathematicians have with good reason chosen to deal formally with
the stochastic process defined as the integral of the ideal
Gaussian white-noise process.

Th: brownian motion process is given as

t
b(t) = fow(y)dy (2.3)
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where the initial value b(0) 1s arbitrarily chosen to be zero,
and w(t) 1is ideal Gaussian white-noise. Consider the following:

From Eq's. (2.2) and (2.3),

t £
EC(b(t) - b(s))%} = Ef w(g)dz « £ wiy)dy}
S S
tt
=/ / Elw(z)w(g)} dydz
S S
tt t
=/ J &(g - y)dedy = f dy
S S S
= |t-s| . (2.4)

In the Timit, as times t and s are allowed to become arbitrarily
close, Eq. (2.4) yields the intuitively troublesome relation

2

E{(db(t))"} = dt . (2.5)

One might conclude from Eq. (2.5) that it makes no sense to speak of

an ideal white-noise process, w(t), since
1./2

) db ~ (dt) 1

w(t 4
dt dt (dt)

1/2

implies the non-existence of such a process in the continuous case.
For this reason, the stochastic calculus was developed strictly in

terms of the brownian motion process, b(t).

2.2.2 Stochastic Integrals

Surveying the literature dealing with the theory of optimal
nonlinear filtering, one would generally find the process Eq. (1.2)

written in its alternate form
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dx(t) = f(x,t)dt + g(x,t)db(t) . (2.6)

Since b(t) is an ideal brownian motion process, Eq. (2.6) is a
stochastic differential equation which must be considered as only a

symbolic representation of the stochastic integral equation

5

t
x(t) - x(s) = s f(x(y),y)dy + J g(x(y),y)db(y) (2.7)
S S

where the stochastic integral as defined by Ito [22] s given as]

N -1
e 1 8 ’

max Ay > 0 Z_ g(X(Yk)’Yk)[b(Yk+]) - b(’Yk)] (208)
k=1

and has been shown [23] to have the following properties:

t
(i) ngog(y)db<y)} =0

t t t :
(i) E{fog](v)db(y) ’ fogz(a)db(a)} = fOE(Q](Y)QZ(Y)}dY
t

(115)  EU (ndb(n)/b(e) , & <5 < - fsogwb(y)

Stratonovich [42] defines a symmetric version of the

stochastic integral as

1 If Xn is a sequence of random variables, then to say that x
is the 1imit-in-the-mean (1.i.m.) of the sequence Xn implies
that Tim

n > «©

el - x[?} =0 .
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N -1
8. I Yy TY
E gl k) [bly,,;) - bly,)] (2.9)
max Ay »~ O 2
k =1

which does not possess the useful properties (i), (ii), and (iii)
but wnich does yield a stochastic calculus the rules of which are
essentially identical to those of the ordinary calculus. In this
thesis the stochastic integral will be defined in the Ito sense and

as a result certain rules of the ordinary calculus will not app1y,1

2.2.3 Ito's Differential Rule

One difficulty in applying the stochastic calculus is that
the differential rule of the ordinary calculus does not hold true
in its usua} form. An intuitive derivation of Ito's differential
rule can be easily achieved by a simple Taylor series expansion and
an application of the brownian motion's second-order incremental
property (i.e., E{(db)z} = dt) . In particular, let x(t) satisfy
the stochastic differential equation (2.6) and let o(x,t) be
some regular scalar function of x and t . Then a truncated
Taylor series expansion of &(x,t) about x and t yields the
relation

T 1

do(x,t) = g—i’ dt + dx've(x) + % dx 726 (x )dx (2.10)

where Vo(x) and V2¢(x) are respectively the vector of first

partials and matrix of second partials of ¢(x,t) w.r.t. x .

] The Ito calculus is used in most of the non-Russian literature
dealing with nonlinear filtering.
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Then from Eq's. (2.6) and (2.10) we get by substitution
T TT

do(x,t) = 32 dt + [ (x,t)dt + db'g (x,£)96(x) +
LT v (0f (x,t) (dt)?
dbTgT (x,t)7%6 (x)F(x)dt +
TabTgT (x,t)7%6(x)g(x,t)db . (2.11)

From the forementioned properties of brownian motion,

E{dbdt} = 0

and
dt ., 1= .3
E{db.db.} s
v 0, i#]

Eq. (2.11) yields Ito's differential rule,
do(x,t) = 32 dt + [f1(x)dt + db'g' (x)1ve(x,t)+
1 t T 2
7 trlg (x)v7¢(x)g(x)]dt s (2.12)
The differential rule is commonly stated in its more
familiar form
_ (9% TT
do(x,t) = {z% + K[o(x,t)]}dt + db g (x)Ve(x) (2,13)

where the differential operator XZ[:] satisfies the defining

relation

A
201" ZEII 0t 5 v E:I [9'9]; o 5%

The 2[+] operator and its formal adjoint
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. S[F. (x,t) »] 2°([g'g]. . -)
Zlrd == zZ: ;x ¥ % QE:: axiax]’J (2.15)

. i o
1 1,]

are of fundamental importance to the study of stochastic processes

satisfying stochastic differential equations (2.6) . Integrating

by parts one may easily show that
*
s&Le(x)] p(x)dx = so(x) & [p(x)Idx (2.16)

where p(x) 1is a well behaved probability density function defined

over the state space.

2.2.4 The Fokker-Planck Eouation]

The Fokker-Planck equation has been a familiar one to the
field of physics for a good many years and describes, in effect, the
dynamic behavior of the joint probability density of the process
x(t) satisfying the stochastic differential equation (2.6) .
Kailath and Frost [23] have shown recently how a simple applica-
tion of Ito's differential rule can be utilized to derive the
Fokker-Planck equation. The procedure follows.

Consider again the stochastic process x(t) satisfying the
equation

dx(t)

f(x,t)dt + g(x,t)db(t) (2.6)

and 1et2

A(t) = exp i€ (x(t) - x{s})

1]

1 In mathematics the F-P equation is usually referred to as
Kolmogorov's equation.

2 The letter i denotes the imaginary unit; /=1 .



By Ito's differential rule

dr(t) = 22[n(t)]dt + db' (t)g" (x,t)iEn(t)

or, equivalently,

A(t) = 1.0 + IZD )1dy + f db' (y )g (x,v)ien(y) .
3 (2,17)

i

Taking the expectations of both sides of Eq. (2.17) conditioned on

the variable x(s) yields the relation’

t
E{A(t)/x(s)} = 1.0 + sy E{[r(y)]/x(s)}dy
s

which upon differentiation gives

BEOE)/X()) - Ezra(t)I/x(s))

J 2 (t)Ip(x(t)/x(s))dx(t) . (2.18)

From the X[+] operators' adjoint property expressed in

Eq. (2.16), we get

RO/~ pa(e) @lp(x(t)/x(s))Tax(t) . (2.19)

But the expression on the right side of Eq. (2.19) is simply the
*

Fourier transform of Zpx(t)/x(s))] w.r.t. x(t), and the

expectation E{)(t)/x(s)} is the Fourier transform (¥{+}) of

p(x(t)/x(s)), again w.r.t. x(t). Hence,

2 Fpx(6)/x(s)} = FC Rlp(x(8)/x(s))

or, equivalently,

1 Note that E{db} = 0 , accounting for the disappearance of the
second integral term of Eq. (2.17) when the conditional
expectations are taken.
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ar{ap(x(gz/x(s))} - G0 2Iplx(t)/x(s)]} . (2.20)

Inverse transformation of Eq. (2.20) yields the Fokker-Planck

equation,

ap(x(gg/x(s)) = Q;[p(x(t)/x(s))] . (2.21)

While solutions to the Fokker-Planck equation are almost nonexistent
except for the simplest cases, useful differential equations for the
expected values of functions of x(t) can be easily derived, In

particular, if o(x) 1is some regular function of x(t), then

E{¢(x)} F9(x) p(x,t)dx

and

d E{E(X)} = Jo(x) 392(;%(!12) dx

ro(x) 20p(x,t)] dx

which from the adjoint property of Eq. (2.16) becomes'

d E{i(X)} = [ 2[6(x)] p(xst) dx

"

ECXLo(x)1} . (2.22)

Eq. (2.22) can be used to determine ordinary differential equations

that are satisfied by the statistical moment functions of p(x,t) .

2.2.5 Modelling Considerations

Up to this point in this chapter, it has been tacitly
assumed that the physical stochastic processes of concern can be
satisfactorily modelled by a set of first-order nonlinear differen-

tial equations driven by ideal Gaussian white-noise. There are,
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however, inherent theoretical difficulties associated with the
practice of representing a physical white-noise driven process as an
ideal, or mathematical, white-noise driven process. One such
difficulty has been identified by Wong and Zakai [46] and
others [20,36] .

Consider the physical process described by the vector

differential equations

n
dx.
B =00 B g0 uy() (2.23)

where the uj(t) are independent physical white-noise processes.
It has been shown] that such a process should be modelled as a
mathematical process satisfying the stochastic differential

equations

n
dx, = fi(x,t)dt + Z Ga 6% db (t) +

=N
n
3g; .+ (x,t)
X —l%-x—k——gkj(x,t)dt (2.24)
sk

where wj(t) = dbj/dt are independent, mathematical white-noises
and the differentials in Eq. (2.24) are taken in the Ito sense? :
In addition it may be shown that the variance of the ideal white-

noises wj(t) should be chosen such that the areas under the

1 See, for example, Reference 45 .

2 Note that if the gij(x,t) are not functions of x; then the
physical and mathematical model equations are identical.
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autocorrelation curves of w.{t) and uj(t) are equal. In this

J
thesis the terms in Eq. (2.24)
1

Z 391J(X,t)

|

n
Jok
will be referred to as the Ito correction terms.

In nonlinear filtering the inverse modelling problem also
exists in that if a stochastic differential equation description of
a nonlinear filter has been derived, then a set of equivalent
ordinary differential equations must be determined before the
filter can be correctly implemented. The Ito correction terms in
the filter's stochastic differential representation must be
accounted for by subtracting them from the filter's corresponding

ordinary differential equation representation.

2.3 Theoretical Solution to the Optimal Nonlinear

Filtering Problem

The stochastic calculus discussed briefly in the previous
section can be applied to the solution of the optimal filtering
problem as stated in P2 of Chapter I . It will be shown that this
solution takes the form of a stochastic partial-differential-
integral equation which is satisfied by the probability density of
the system's state vector conditioned upon the observation data for
the system (i.e., p(x/Zt))h A representation theorem from
Bucy [4-6] provides a formal means for deriving this equation and

also suggests a numerical method for computing the conditional
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density p(x/Zt) . The moment parameters of this dénsity function
are easily shown to satisfy an infinite set of coupled, nonlinear
stochastic differential equations driven by the observation

functions, z(t) .

2.3.1 Bucy's Representation Theorem

Suppose that the stochastic process x(t) satisfies the

stochastic differential equation
dx(t) = f(x,t)dt + g(x,t)db(t) (2.6)
and that the observations c(t)] are available with
_ 1/2
dz(t) = h(x,t)dt + R/ “(t)da(t) (2.25)

where the a'priori probability density function p(x(to)) is
known and w(t) = db/dt and v(t) = da/dt are independent unity-
variance ideal Gaussian white-noise processes. Then if the

observation information is represented as
Z =ltls)rt cs2th.

Bucy [6] has proved the following representation

Theorem (Bucy):

1 Note that z(t) = dz/dt , so that z(t) is formally the integral
of the z(t) process.
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where
LN =} I & 4
¢ = J h (x(s),s)R7 (s)dz(s) -~ 5 J h'(x(s),s)R™" (s)h(x,s)ds
ts L
(2.27)
dx(s) = f(x(s),s)ds + g(x(s),s)db(s) ; x(t) =X
and
_ 1im
E{expg/X} = o Jo . S exp{¢}p(x(s]), cee s

x(sm_]),x(t))dx(s]) - dx(sm_])
t = 51 < Spov e 0 <S5 t

with the observations ;{t held fixed in Eq. (2.27).
E.O.T.

While Mortenson [35] has proven Bucy's representation
theorem using function space concepts, Bucy's proof presented in
Bucy [6] and in Schwartz [36] 1is more straightforward then
Mortenson's and requires only Baye's rule and Ito's definition of
the stochastic integral. The probability density function p(x(t))
in Eq. (2.26) represents the a'priori, or unconditional, density
of the state vector and, as demonstrated in section 2.2.4, satisfies
the Fokker-Planck equation. MNote also that the denominator of the
right side of Eq. (2.26) is given as the integral of the numerator

over the state space; i.e.,
E{exps} = SE{expd/X} p(X) dX .

The Bucy representation is given a physical interpretation in

Chapter IV of this thesis where it is demonstrated how the
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representation theorem may be utilized to obtain numerical

estimates of p(x/Zt) ;

2.3.2 Conditional Version of the Fokker-Planck Equation

For pragmatical reasons, a nonlinear filter must be a
sequential device and for this reason Bucy's representation for
p(x/Zt) can not be directly implemented as an optimal nonlinear
filter. Instead, a differential expression for this conditional
density function is required,

By multiple applications of Ito's differential rule to the
Bucy representation (£q.(2.26)) Bucy has shown that the conditional
probability density of the state vector, p(x/Zt), satisfies the

stochastic partial-differential-integral equation

dp(x/2) = Zlp(x/2)1dt + p(x/Z) (de(t) ~Tix.)dt)T .

RV (h(x,t) - (x, ) . (2.28)
where
Flx, 0= /h(x,t)p(x/Z)dx .

Comparing Eq's. (2.21) and (2.28) one may note the
similarity between the Fokker-Planck equation and its conditional
counterpart, Eq. (2.28). In fact, Eq. (2.28) reduces to the Fokker-
Planck equation as the observation noise variance becomes infinite,
Like the Fokker-Planck equation, its conditional version is difficult,
if not impossible, to solve directly but can be utilized to obtain
stochastic differential equations for parameters of the conditional

nrobability density p(x/Z) .



2.3.3 Conditional Moment Equations

If o(x) is some regular function of x where

dx

f(x,t)dt + g(x,t)db(t) (2.6)

and

1/2

dz = h(x,t)dt + R'/“da(t) , (2.25)

then Kushner [27-29] has shown how the differential equation for the
conditional expectation of ¢(x) may be easily obtained from

Eq. (2.28) and the defining relation

A
@ = Elo(x)/ Z,} = f¢(x)p(></2’t)dx . (2.29)

Taking the-differential of B(x)

yields
dERT ) = se(x) (dp(x/Z,))dx
which from Eq. (2.28) becomes

dBERY) = fo(x) [ Ipldt + p(h -/MR™(dz A dt)ldx .

Applying the adjoint property of the X[-] operators to e
Eq. (2.30) we get
dEXT) = dtr2e(x)Ip(x)dx + fp(x)(o(x)n(x) -
6(x) AR (dz -A (x)dt)dx (2.31)
or, equivalently,
QB0 = RieTat + GR-eN R (er -Rat) . (2.32)

Letting o¢(x) = X; wWe can obtain from Eq. (2.32) the

stochastic differential equation for the 135 component of the state



vector's conditional mean; i.e.,

=i # (;:E?‘dt + ("%, H‘~7'— m. h \\7T (dg - dt) (2.33)

wnere

o IN . -
me = X fxip(x/ct)dx ;

While Eq. (2.32) could be utilized to find the stochastic
differential equations satisfied by the higher-order moment
parameters of p(x/Z ), the central moment parameters of this density
(e.g., the variance = E{(x-m)(x- ) #L }) are of primary concern to
the nonlinear filter problem, and Eq. (2.32) can not be used to
obtain the differential relations for the central moments, which are
by definition functions of both the state vector and its conditional
mean.

The s%ochastic differentia1'equations for the conditional
"central moment parameters may best be determined by taking the Ito
differential of the defining moment relations. For example, if
Eq. (2.6) and (2.25) hold true then the differential equation for
the second central moment '

A

mij = E{(xi - m].)(xj - mj)/Zt}

may be obtained by computing the Ito differential

o
=3
]

i d(f(xi - mi)(xj - mj)p(x/Zt)dx)

where
A

m.

; E{Xi/zt}

satisfies its own differential equation; i.e., Eq. (2.33).



In Appendix I (see also Kushner [31]) it is shown that

_ e, W o SR O P o ) i
dm'IJ - ':"'( x.i B hm]) R (}T’(\J = th) + _(X]' = m'l)(XJ mJ)] dt +

/’/\
(de -mdt) 'R T R xg - m)(xg - Y (2.34)

In a similar manner it can be demonstrated that if

A
- 2 s
m.”J = J (X1 ™ m'l) (XJ = mj)p(x//.':__)-lx
then
- 2~ S //’Z\T
dmﬁj = [-2 fimij - fjmii . ;Z[(xi - mi) (Xj - mj) -
2(ﬁ§5 —‘ﬁ;t)TR'1 h -0 (x. - m)(x, - m,) -
i i i i &7 3
(2.35)
(11/x\j AR TR - (g - m)?ddt + (d ~fat) R .

(J“*; ]

where the & operator in Eg's. (2.34) and (2.35) operate w.r.t. the
x(t) process and not the m(t) process.

In theory, at least, Egs. (2.33)-(2.35) and their higher-
order central moment counterparts constitute an optimal nonlinear
filter. The conditional mean vector, m, provides a minimum
variance, or least-squares, present best estimate of the state

vector while the variance matrix, P = [mij] , provides a measure of
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confidence for this estimate. filote, however, from Eq's. (2.33) -
(2.35) that the Tower-order moment equations contain terms which are
functions of higher-order moment parameters (assume for simplicity
that the observation functions, h(x,t), are Tinear in x). The chain
is endless and the optimal filter equations are inherently of
infinite dimension, with one exception being that of the linear
Gaussian case.

If both the process and observation equations are linear and
if the initial state vector proBabi]ity density is Gaussian, then it
may be shown that the conditional density function p(x(t)/Zt) is
always Gaussian, and hence is parameterized by a finite number of
parameters--the mean m and variance parameters P ., Since the
odd-order central moments of a Gaussian density function are zero,
Eq's. (2.33) "and (2.34) contain in the linear, Gaussian case terms
- which are functions of only the mean and variance parameters. The
mean and variance equations (2.,33) and (2.34) constitute in effect
a finite-dimensional, optimal filter; the Kalman filter [24-26].
Unfortunately the general case is not so simple since 1ittle can be
said about the general form the conditional density takes and as a

result approximations must be made to the optimal filter equations.

2.4 The Continuous Process, Discrete Observation Problem

We digress slightly from the main theme of this thesis and
consider the solution to the optimal nonlinear filtering problem for
the case when observations are made only at discrete instants of

time. While the continuous observation problem is the primary
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interest of this thesis, the discrete observaticn problem is a
highly relevant one and its solution can be neatly formalized by a
simple extension of the theory presented in the preceding sections

of this chapter.

Z
A -

|
B I |
rA'/; A?‘h A‘f,'.z P it
) | ) me
16 'fl‘ %-I 1;') 7'1' 7;7+/‘ '

FIGURE 2.1 Schematic of Continuous Process
With Discrete Measurements

Consider the problem of determining

n
p(x¢t)/2) = p(x(t)/z52¢5 oov ) 2)s 2%: st <t
where
dx(t) = f(x,t)dt + g(x,t)db(t) (2.6)
and
z = h(x(tn),n) + Rn]/zvn : (2.37)
n
p(vo,v],...,vn) = W(0,1) «

O v

i=
By intuitive reasoning, we can expect that between the n-1§£
and nEﬁ observation sampling instants the conditional probability

density p(x(t)/zn_]) = P(x,t) satisfies the Fokker-Planck equation,

aP(gét) = 22[P(x,t)] (2.21)

B



from which, in the usual manner (Sec. 2.2.4), differential equations
can be derived for the moment parameters of p(x/Zn) between samples.
At the nth sampling instant these moments and p(x(t)/Z) must be
updated using the following procedure:

From Bayes Rule,

p(z /x(t")) p(x(t"))
R

1

+ +
_ plzy/x(ty)) D(X(ti)) ' (.58
I(numerator)dx(tn)

From Eq. (2.37)

p(z = h(x,n) + R 2 ) = plv =R "V2(z - n(x,n))

p(Zn=Z/X=X) n nn

H(h(X,n),R ) . (2.39)

Then the exact solution for p(x(t:)/zn) is given by Eq. (2.38) with
p(zn/x(t:)) satisfying relation (2.39) and the a'priori density
p(x(t:)) being the solution of Eq. (2.21) at t = t; (i.e.,

P(X(t;))). The calculation of the updated moments at t = t_ requires

n
z + .

that functions p(x(tn)/zn) be integrated over the state space. Such

integrations are impractical to perform for on-line solutions and

some sort of approximations must be made in order to derive a useful,

totally recursive filter algorithm.

If we make the following assumptions:
Al: That P(x(t;)), satisfying Eq. (2.21) at t = t; , and

p(x(t:)/zn) are Gaussian; i.e.,
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P(x(t;)) = H(m_,n_) , p(x(t])/z,) = H(n,,4,) .

A2: That h(x) = h(m) + vh(m)(x-m) where

r~ -

ah, 3h
ax] 8X2 ax

vh: - N
ah ah ah
37§ 3§§ 3:§

then Eq. (2.39) yields

p(zn/X) s C]exp{(x - m_)thT(m ,n)R'](zn-h(m_,n)) -

Z0m ) TvnT(m_,m)R_~Ton(m_,n) (X-n_)

where C] is a constant independent of the value of X. Eq. (2.38)

becomes i
Ty =1
Rn (zn-h(m_,n)) -

)th

p(x(t;) = X/z,) = Cyexp{(X-m_

4]

A (X-m )} .

1 T, T, =1 1
7(X-m_) 7h Rn vh(X-m_) - g(X-mm
(2.40)
By completing squares in Eq. (2.40), we can obtain the updated

statistics at t , m_ and A, in terms of m_,r_, and 2z ; we

+ n
find that
17 = a2+ o (n_,n)R Ton(n_,n) (2.41)
and
m, =m + A th(m n)R-](z - h{m ,n)) (2.42)
+ - + =>7"n Yon -2 ’ :
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The Tollowing useful relation for A, can be obtained from
Eq. (2.41) by using the Matrix Inversion Lemma (see Ho [21]):

A, = A_ - A_th(th_th + R

A vhA_ . (2.43)

Note that Eq. (2.43) does not require the inversion of A that
Eq. (2.41) does.

The algebraic Eq's. (2.42) and (2.43) together with the
mean and variance differential equations, derived from the Fokker-
Planck equation (2.6), constitute a discrete-measurement, continuous-
process approximately minimum-variance nonlinear filter. A similar
procedure can be carried out utilizing a second-order Taylor series

approximation to h(x) in A2 .

2.5 Summary

It was shown how the independent increment property of ideal

white-noise leads to the troublesome relation E{(db)2

}.= dt for

the associated brownian motion process b(t) . We saw how this
relation led to the development by Ito of the stochastic calculus,
the rules of which differ from those of the ordinary calculus and the
foundation upon which the theory of optimal nonlinear filtering is
based. A simple application of Ito's stochastic differential rule
resulted in a rederivation of the Fokker-Planck equation, an

ordinary partial differential equation satisfied by the probability

density of the state vector conditioned upon any a'priori information

regarding the state.
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Consideration was given to Bucy's rederivation of a stochastic
partial differential-integral equation similar to the Fokker-Planck
equation and satisfied by the state vector probability density
conditioned upon a'priori information and the a'posteriori informa-
tion provided by the observations, z(t). From the conditional
version of the Fokker-Planck equation, stochastic differential
equations for the moment parameters of the conditional density
function, p(x/Z), were derived and these, in effect, constitute a
general infinite-dimensional, optimal filter. The finite dimensional
optimal filter wh%ch results in the linear Gaussian case was shown
to be the exception to this generally infinite-dimensional problem.

The theoretical solution to the continuous process, discrete
observation.nonlinear filtering problem was formalized by way of
applications of the Fokker-Planck equation and Baves rule. An approxi-
mate method of minimum variance filtering was proposed for the discrete

measurement case.



CHAPTER III

APPROXIMATE METHODS OF OPTIMAL NONLINEAR FILTERING

3.1 Introduction

It was shown in the previous chapter that with the exception
of the linear, Gaussian case, the general solution to the optimal non-
linear filtering problem consists of an infinite set of stochastic
differential equations with observation function driving terms and
being satisfied by certain parameters of the conditional probability
density p(x(t)/Zt) . In particular, a portion of the minimum
variance filter equations were presented and consisted of the
differential equations for the conditional mean and the conditional
central moment parameters. Because of their fundamental importance,
the mean and covariance differential equations for the minimum
variance filter are rewritten here in their more commonly cccurring

form, with
1

-1y Y

z(t) = = h(x,t) + v(t) (1.1)

O.ID.
ct

They are

05 - F 00D + (TG - my TGN R (2(8) - FGD (3.1)

and

_—""’”"\
H3 = FL0x - mdlxg = mT = 6% BRI - 0B

N COREON S R TCRRE B [P (3.2)

1 In the remainder of this thesis stochastic differential equations
will be written for convenience as ordinary differential equations.
The treatment of stochastic differential equations as ordinary
differential equations is absolutely correct only if the Ito
correction terms are accounted for (see Section 2.2.5).

44




45

where if ¢(x) is any function of x, then

)

o(x) = ro(x)p(x/Z,)dx .

The presently available methods for replacing the infinite
dimensional optimal filter solution, as represented by Eq's. (3.1)
and (3.2) and their higher-order conditional moment counterparts, by
an approximating infinite dimensional solution are the primary
concern of this chapter. Some of the more common and potentially
useful of these methods are présented and briefly discussed. Upcn
reading this chapter, one should not become discouraged by the large
number and variety of these filtering techniques; most being very
similar and easily mastered if a tnorough understanding of the
conditional moment equations is achieved. The fundamental importance
of the conditional moment equations (e.g., Eq's. (3.1) and (3.2)) to

the optimal filter approximation problem can not be over emphasized.

3.2 HNominal Trajectory Kalman Filtering

The most common and easiest to implement method of nonlinear
filtering is that of Kalman filtering about a nominal trajectory.
The procedure is that of linearizing all nonlinear functions about
some a'priori determined nominal state trajectory (x"(t)) and
utilizing a Kalman filter to estimate the perturbations of the
actual trajectory from the nominal trajectory. It may be easily
demonstrated that the linearized Kalman filter equations are given

as

~

= vf(x",t)m + Pehl (x",t)R" (2 - 2"-9h(x",t)m) (3.3)

o
3

|

[aX
ct



and
dp n AN n T,.n
ol vF(x',t)P + P vf (x ,t) + g(x ,t)g (x ,t) -
T,.n -1_..,.n
Pvh (x ,t)R™ vh(x ,t)P (3.4)
vihere
m= E{(x - x")/2.)
_ o T n T B
P=E{({x-x-m(x~-x -m) 2.} = [mij]
n
4= f6) 5 2" = i) (3.5)
x1(0) = E{x(0)} ; m(0) = O
P(0) = EL(x(0) - x"(0))(x(0) - x"(0))"}
g—‘; %2—1 —gﬂ 2-21 Lo
g] n 1 n
vf = . . | vhs= . .
of af af oh ah
—Nn N ...7N w=fl] eee —N
oX] 3X2 3Xn ] I GX] axn |

One primary advantage of the linearized Kalman filter is that
since the covariance matrix (P) 1is independent of the observations
and the conditional mean it can be precomputed off-line and stored
in memory to be recalled during the actual filtering operation. A
less obvious but equally important feature of this filter concerns
its stability requirements for in general, the "optimality" of a
filter does not in itself guarantee its "stability". Kalman [26] has

shown that if a system of the form
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~

_g'.i_ = 9F(t)x + g(t)w(t)

. (3.6)
z(t)= vh(t)x

is both observab]e] and contro]]ab]e2 then the Kalman filter for that
system is stable. At this time, the specific requirements for the
stability of nonlinear filters are not known and the influence of
nonlinear observability and controllability on filter stability has
not been clearly demonstrated,

The primary disadvantage cf the Tinearized Kalman filter is
its lack of efficiency for significant disturbance levels and initial
state vector variances. This disadvantage can be lessened by
replacing in Eq. (3.3) the linearized error function
2w 2 . vh(xn)5 by the intuitively more logical error function

z - h(m) . "A second obvious disadvantage is that the partial

derivatives in vh and vf must all exist.

3.3 Relinearized Kalman Filtering

If the nominal trajectory of the linearized Kalman filter is
allowed to vary with time and chosen to be that trajectory which
passes through the present best state-estimate, then the relinearized
(also modified or extended) Kalman nonlinear filter results. From

Eq's. (3.3) - (3.6) we have

1 The system (3.6) is.called observable if it is possible to
determine the value of x(t ) from the values of z(t) over a

finite interval of time [to, tf]°

2 The.system (3.6) is called controllable if at any time t the
state x(t) can be transformed to any other desired state in a finite
interval of time by a suitable choice of the disturbance function

w(t) over that time interval,
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X )R'](z RE e vh(x”)%)
ov; letting m = &>,

%%‘= F(x") + (™) (m = x") + PehT (xR (z - h(x") - vh(x") -

(m-x") . (3.7)

Eq's. (3.7) and (3.4) yield the following nonlinear filter equations

if we choose as the nominal state that of the present best estimate
n

(i.e., X = m):
= f£(m) + Poh" (mR”' (z - h(m)) (3.8)
g% = vf(m)P + Pva(m) + g(m)gT(m) - thT(m)R"]vh(m)P (3.4)
where
m = E{x/Zt}
P = E{x - m)(x - m)T/Zt} = [m;]
m(0) = E{x(0)}
P(0) = EC(x(0) - m(0)) (x(0) - m(0))"} .

Computational experiments conducted during this study (see Chapter IV)
have proven the relinearized Kalman filter to be a remarkably effec-
tive filtering algorithm. Its primary disadvantages are that, first,
the variance equation must be computed on-line during the filtering
operation and, second, that the partial derivatives in 9h(x) and
vf(x) must exist at all points in the finitely probable region of

the state space.
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3.4 Second-Order Optimal Filtering

Bass, Norum, and Schwartz [2] have suggested that the
functions fi(x), h(x), and g(x)g(x)T in the optimal filter
equations (3.1) and (3.2) be approximated by the first three terms
in the Taylor series expansions about the state's present best

estimate; e.q.,

Fix) = )+ 0F(m)(x - m) + p(x - m)ToPE (m)(x - m) .

Under the further assumptions that mijk and mijk] are negligible,

Bass, et. al. showed that the following nonlinear filter equétions

can be derived from the conditional moment equation for p(x/Zt):

O = f(m) + wPCF(mPY + Pon (MR (2 - h(m) - 2°th(m)P)  (3.10)
%% = Pva(m) + vf(m)P - P(th(m)R']Vh(m))P + Q(m)gT(m) ik
Lotgmg" mPy - Jo2thmpyTe 1 (2 - him) -
292 h(m)Py)P (3.17)
here '
*oE [ trEvZf](x)P]
trlr?f, (x)P]
voifpy & :
trlv®f_ (x)P]
2
’ ) 3 f.
tr[vof, (x)P] = g%i M3k 523%2;
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m = E{x/Zt} : P =E{(x -~ m)(x - m)T/Zt}

m(0) = E(x(0)} ,P(0)=E{(x(0)-m(0))(x(0)-m(0))"}

This nonlinear filtering technique possesses the obvious
disadvantages of being more complex than that of the relinearized
filtering technique and requiring the existence of not only the
first partial derivatives of f(x) and h(x), but also the second
partial derivatives in vz{fP}, vz{ggTP}, and vz{hP}o It remains to
be proven whether or not the performance of the second-order filter
is significantly, if at all, greater than that of the less complex
and restrictive relinearized Kalman filter.

A general comment at this point seems appropriate, UWhile
one can if he wishes accept at face value a nonlinear filtering
algorithm (such as that represented by Eq's. (3.10) and (3.11)) and
all its inherent assumptions, it is our preference to vork directly
with the conditional moment equations (e.g., Egq’s. (3.1) and (3.2))
and introduce our own simplifying assumptions to these equations,
Taylor series expansions, higher-order moment assumptions, and other
fundamental assumptions can be utilized in coming up with an
effective nonlinear filtering algorithm for & particular application

problem.

3.5 Wide-Sense Kalman Filtering

Doob's [15] concept of wide-sense properties of stochastic
processes was applied by Bucy to the nonlinear filtering problem which

results from a process having linear dynamics and a non-Gaussian
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initial state probability density. One method of solution for this
particular filtering problem consists of the Kalman filter equations
whose initial values are determined from the mean and variance
parameters of the a'priori probability density. Although the
resulting filter is referred to as a wide-sense Kalman filter, it
should not be misconstrued as being a general wide-sense optimal
nonlinear filter; it isn't.

Lo [34] has considered the use of functional transformations
to convert a general non]inear.filtering problem into an equivalent
wide-sense Kalman. filtering problem (i.e., one with linear dynamics
and measurements and a non-Gaussian a'priori density function). The .
method is best explained by way of an example.

Consider the nonlinear filtering problem specified by the

process and -cbservation relations

& = x, . (3.12)
and
2(t) = x, + x5 + RVA(t) (3.13)
where
p(x;(0)) = N(my4.9,5) (3.14)

This problem may be transformed into a linear problem with a

non-Gaussian initial probability density by letting

RS and Yo = X
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Then from Eq's. (3.12) and (3.13),

iR
(3.15)
He = -3,
2(t) = y; *+ v, + RV%u(E) (3.16)
with
y1(0) = x,(0) and y,(0) = x;(0)

If we assume a Gaussian joint probability density for y](O) and
yZ(O) , the wide-sense Kalman filter for the transformed problem

specified by Eq's. (3.15) and (3.16) would consist of the following

relations:
g%ﬁ =-m (m]] + m]Z)Ri](z -my - m2)
%%2 = -3m, + (m]2 + mzz)R'](z -my - m2)
oy = = (my + m )R - 2my g (3.17)
%%22= - (m]2 + mzz)ZR'] - 6m,,
2= = (myy + m,)(my, + m R - am,
with
m](O) = mg
my(0) = m + 3myg o7
m(0) = o3



B 6 .2 4 4 2
mZZ(O) = 15 90 + 3om10 %10 + 9m]0010
_ ., 4 2 2
m]2(0) = 3;]0 - Bm]Oa 0 -

0f course the task of determining the correct functional
transformations to convert a general nonlinear filter problem into
one with wide-sense properties is not an easy one. Lo [34] has
developed a technique for determining those transformations for a
particular class of nonlinear filtering problems and this technique
is based on the concept of finite-dimensional sensor orbits] v

The gener51 merits of the wide-sense Kalman filter have yet
to be determined. However, computational experiments were conducted
in this study for the example problem specified by Eq‘s. (3.15) and

(3.16) and the results of this study are presented in Chapter IV.

3.6 Assumed-Form Density Filtering

Pernaps the least restrictive method (i.e., that requiring
the least number of preliminary assumptions) of approximately
optimal nonlinear filtering is that which assumes a particular
mathematical form for the conditional density function p(x/Zt) and
then determines the filter's structures from the conditional moment
equations. Kushner [31] first suggested this technique and applied
it to a van der pol oscillator filtering problem, making the assumption
of a Gaussian conditional density function.

One difficulty of this method is that the number of useful

probability density function types is rather limited. The Gaussian

1 The sequence { af[h(x)]}].___O ! is called the sensor orbit.

31l g0ee



density function first comes to mind and is extremely useful for
problems having polynomial state and observation functions (i.e.,
f(x), g(x), and h(x)). Under the Gaussian assumption, however, it is

difficult to evaluate analytically such functional expectations as

mi s f(x)p(x/Z)dx (3.18)

when the function f(x) 1is not of a polynomial form. In these cases
the uniform density function can be very useful since the integrals
such as that in Eq. (3.18) are readily evaluated analytically, even
the troublesome piece-wise linear function case.

A primary advantage to the assumed-form density filtering
method is that it does not require differentiability of the system
functions for its application. ‘hile the forementioned filtering
techniques rgquire the existence of the partial derivatives in
vh(x) and ¥9f(x) , the assumed-form technique does not make this
requirement, being based upon the integration operation ‘rather than
differentiation. As an example, consider the problem specified by

the system equations

%1 = -xp 4 QY 2u(t) (3.19)
and
2(t) = h(x,) + RVZy(t) (3.20)

where
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|v
o,

h(x]) = 0, -d < Xy o< d

p(x,(0)) = Hlmg, 0dy) -

From Eq's. (3.1) and (3.2) we find the conditional moments my

and M4 satisfying the two equations

ah - - my + (’f?ﬁ'- m, ARz - D

dt
" (3.21)
%%a] “iﬁT = m, /R72R~] - 2m]] +Q +
(2 -ARVEN - oy A A+
mf h

2N\

N, AR, and X{h will be

where the functional expectations s Xy

determined by letting
- 1/26 3 my =0 < Xy <m +o0,

p(x/Z;) = p(xq) = B
0 , otherwise
with o = /§ETT to make the variances of p(X]/Zt) and 5(X])

identical. Then the functional expectations

) 5 h(x)p(x)dx ,

1

A S xh(x)p(x)dx ,

e
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and

2N 3 5

X“h 'z £ x“h(x)p(x)dx
may be easily shown by direct integration to be specified by the
relations in Tables 3.1 and 3.2] .

3.7 Miscellaneous Methods

Sunahara [44] has developed an approximate method of nonlinear
state estimation which is based on the method of stochastic lineariza-
tion. Tha procedure is to replace the system nonlinear functions by
linear functions whose coefficients are chosen in such a way as to
minimize the expectation of the squared value of the error between
the nonlinear and linear functicns, conditioned upon the observations
Zt . This particular filtering technique, while intuitively pleasing
in principle, appears to be quite unwieldy in practice and does not
consider disturbance functions g(x,t) which are functjons of X .

Since Stratonovich’s original contributions to the basic
theory of optimal nonlinear filter theory, the Russian efforts in
this field appear to have been limited to those of Dashevskii
[9,10,11,12] who has considered a method of synthesizing nonlinear

filters which is based on the equations for the conditional semi-

invariants2 of p(x/Zt) . Utilizing the conditional version of the

1 The mode of the filter refers to one of a number of possible
regions of the filter's state space and is specified by the relations
in Table 3.1

2 The kiﬂ semi-invariant of a random variable x having the
characteristic function &(y) is

My = (-1)%2%y (y)/ay¥]
. y=0 ,
where y(y) = In e(y) = In {Zexp(iyx)p(x)dx [19] .
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Table 3.1 - Uniform-Density Filter

Mode Numbers; o = /§ﬁ;?
ny + o s <-d |-d < <d 5 d
m - o
< -d 1 ) 5
de-ed 22;;222 ) )

Table 3.2 - Functional Expectations

N

{\

, and “x"h for Each lMode

of the Uniform-Density Filter

Mode

AL
% (%) h(x °h (%)
1 -1 - m - m% - c2/3
(m, -o + d) ((my - 0)° - ¢°) ((my - 9)° + &)
2 2a 4o 60
m, (m% + o2 - d2) (m] + 3027m])
3 - 275 35
4 0 0 0
(my +o - d) ((m + 0)? - &) ((my +0)® - d%)
5 20 4o 6o
7
2 .o
6 1 m, I
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Fokker-Planck equation (Eq. (2.28)), Dashevskii [12] derives the
differential equations for the semi-invariants of p(x/Zt), and in
so doing approximates p(x/Zt) by a truncated version of the
Edgeworth series [8];

1 , 2

— - y() _
PIX/Z) = VERup(ET esple —op pey—H00 + Bl 1)
v ¥y
(X"'u ) (X-u ) (X"'rl )
B4H4 17+ B5H5 1* # BGHS 19 8 )
u2 X UZ Y 1J2
n

where the Hn(y) = (-1)nexp(y2/2) gyn exp(-yz/z) are Hermite

polynomials and the coefficients Bk(k=3,4,g;,) have the form

2
_1 M3 1 Ya 1 ¥ 10 M3
By =B A TR e B g g8 s B 26 o

In as much as the first three semi-invariants of a
probability density correspond to the first three moments of that
density function, Dashevskii's introduction of the semi-invariants
to the nonlinear filtering problem appears to have only theoretical
value. It is doubtful that any practical filter applications would
require the inclusion of any moments of higher than third order to
the filtering algorithms,

For various reasons, certain individuals prefer to work with
difference equation descriptions of dynamical systems. In this
light, we recommend to such persons the work of Sorenson and

Stubberud [39], who considered the problem of estimating the state of
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a system described by nonlinear difference equations from noisy
nonlinear measurement data. A Bayes approach is taken. It is our
personal preference to work with a differential equation description
of the system and discretize, instead, the resulting continuous
filter equations before implementing the filter on a digital
computer. This latter method allows us to apply the conceptually
pleasing results of the very complete theory of continuous optimal
nonlinear filtering--the discrete optimal filtering theory is not

nearly so complete or easily applied.

3.8 Summary

For application purposes the inherently infinite-dimensional
solution to the optimal nonlinear filtering problem forces us to
consider ways of approximating these solutions by those which are of
finite dimension. In this chapter, we considered a number of the
more common approximate filtering methods which have been proposed.
These methods make use of such approximation techniques as truncated
Taylor series expansions, nonlinear functional transformations, and
assumptions regarding the conditional probability density p(x/Zt) ”

In surveying the Titerature dealing with these approximate
filtering methods, one will notice that there exists a total lack of
information regarding the absolute effectiveness of these methods.
While certain investigators [1,7,38] have made somewhat half-hearted
attempts at comparing the performance of their filtering technique
with that of some other approximate technique, no one has made an

effort to compare their filter performance with that of the optimal
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filter. The reason for this situation is clear when one considers
the infinite-dimensional mature of the optimal filter. As a result
no one can say with certainty which approximate filtering method is
most effective or possesses the greatest potential for achieving
near optimal performance with the smallest degree of complexity.

To help remedy this situation, we present and demonstrate in
the following chapter a numerical method for computing upper
performance-bounds of low-dimension optimal nonlinear filtering
problems. It is hoped that the results of experiments conducted
using this method will shed new light on the approximate filtering

problem.



CHAPTER IV

COMPUTATIONAL EXPERIMENTS IN NONLINEAR FILTERING

4.1 Introduction

Although the development of the basic theory of optimal
nonlinear filtering was completed almost five years ago, since that
time almost no practical applications of the theory have appeared
(an exception is the ballistic missile reentry problem discussed by
Athans [1]). One reason for this situation may possibly be that so
few technical people are aware of the existence of this theory,
while many of those who have been introduced to the theory lose
interest quite quickly when confronted with such alien terminology
as infinite-dimensionality, stochastic calculus, semi-invariants,
quasi-moments, and other examples of academic jargon which so
Tiberally dot the landscape of the literature dealing with this
subject. Much of this Titerature which has appeared since the basic
theory was introduced has done much to confuse the picture and little
to clarify it.

Some pressing questions related to the practical aspects of
optimal nonlinear filtering theory remain to be answered;

° How much less than optimal is the performance of
approximately optimal nonlinear filters?

K

How significant are the effects of neglecting the
higher-order moments of the optimal nonlinear filter?

o Do the more complex approximate filtering methods
necessarily yield the more optimal performances?

61
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« lhat filtering techniques show the most promise

for application to the broadest class of practical

problems? -

To assist in answering the above questions, we have conducted
computational experiments with five nonlinear filter problems. For
each problem an upper performance-bound (1.e., the optimal
performance) was computed and the approximate optimal filter which
most nearly achieved optimal performance was determined. The
results of these experiments are presented in this chapter along
with a description of the method used to compute upper performance
bounds. This method was first suggested by Bucy [5] but we believe

this study to be the first actual implementation of the technique.

4.2 Computing Upper Performance-Bounds

The task of computing the optimal performance for a particu-
lar nonlinear filtering problem is by no means a simple one. Since
the optimal estimate is a direct function of the conditional proba-
bility density p(x/Z), a practical method for numerically computing
this density function is required before the optimal performance can
be estimated. Such a method has been developed for this study and
proven to be useful and practical for low-dimension nonlinear
filtering problems,

While one could attempt to compute p(x/Z) by obtaining
the numerical solution to the partial-differential-integral
equation (2.28), the numerical difficulties 1n obtaining such

solutions being what they are, this approach to the problem was
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deemed impractical. Kroy and Stubberud's [32] approach to the
problem was based on the eigenfunction expansion schemes used in the
solution of noise-detection problems and it was demonstrated on a
scalar identification problem. This latter approach was also
considered impractical in that the basic theory involved was both
cumbersome and unclear and the methodology of the approach was not
readily applicable to a general enough class of problems.

Bucy has suggested that the conditional probability density
p(x/Z) be computed by numerically approximating the Bucy representa-
tion, as given by Eq. (2.26). This approach was found to be
intuitively pleasing, based on a straightforward and easily under-
stood theory, and highly amenable to computer implementation. As
such, the Bucy representation was utilized in this study to determine
the conditiéna] probability density p(x/Z), which in turn was used
to determine optimal state estimates and, after multiple Monte Carlo
simulations, optimal performance measures. Two optimality criteria
were investigated; that of, fir;t, minimum variance and, second,
maximum 1ikelihood.

Recalling Bucy's representation theorem (sec, 2,3.1) , we

can write
p(x(t) = x/z.) = Efexp ¢/x(t) = X3 p(x(t) = X) (4.1)
. ¢ E{exp ¢}
where
b <] 1
¢ = i h™(x(s),s)R™ (s)[z(s) - sh(x(s),s)]ds
0

(4.2)
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with

%g = f(x,s) + g(x,s)w(s) 3 x(t) = X (4.3)

and the observations Z, = {z(s): t <s <t} kept fixed in
computing the functional ¢ . In Eq. (4.1) the probability density
function p(x = X) 1is the a’priori probability density for the state
vector at time t and the term Ef{exp ¢} is a normalizing factor
given as

S E{exp ¢/X} p(x) dX .

In computing the functional ¢ by Eq. (4.2) it is necessary to
solve the differential equation (4.3) backward in time since the
final value x(t) = X . The expectations above must be taken over

all possible disturbance functions w(t), while
E{exp &/X} = exp o/X

when no process disturbances, w(t), are acting.

To develop a numerical procedure for computing p(x/Z) it
becomes necessary to discretize the representation functions in
time, t, and state, x . For the sake of discussion, we will
consider the scalar state and measurement problem, the extension to
the multi-dimensional case being obvious. Then the discretized
version of the Bucy representation may be written as (see Figure 4.1)

p(x(t) = x/z ) -Elexp ¢/X} p(X) -
E{exp ¢}

where

p(x(t) = X/2) = p(X/Z) = p(X,/Z) 5 X, < X < X,



FIGURE 4.1 Notational Schematic for Discrete Representation
Procedure



p(x(t) = X) = p(X) = p(X,) 5 X, <X <X,
"
Elexp ¢/X} = & | exp ¢./X (4.5)
=
n2~1 ;
- i -1 ) i )
o5 = jZO h(x (t5)5t50R (t5)[z(ty) - 5h(x (tj),tj)][tjﬂ t;1 (4.6)

Ke) = 0 (eg0) - R )t0) + ol ()t ) -

W(tyyq)I0ty,, - t;] (4.7)
i - :
*{tng) = X 3 X 2 X < Xy
n3-1
E{exp o} = | E{exp $/X,} p(Xk)[Xk+] - X, ] (4.8)
k=0
p(W(tJ)) = N(O’]/(t\]%‘] = tJ)) . : (409)

Eq's. (4.4)-(4.9) were used to numerically compute the
conditional probability density p(x(t)/Zt) in the following manner,
The state space at time t was divided into ny intervals over the
total interval from X, to Xn3 (see Fig. 4.1), while the functions
x(s) and z(s) were divided into n, intervals over the time
interval tO to tn2 . At each of the nj discrete points of X
the numerical value of the term Efexp ¢/X} was determined by
computing ¢; using Eq. (4.6) ny times and averaging the sum of

the n; terms exp ¢./X (note if w(t) = 0 then ny = 1).
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Eq. (4.8) was then used to compute the normalizing factor E{exp o}
and the conditional density at each point x was determined from
Eq. (4.4).

Two optimality criteria were investigated during this study;
that of minimum variance and maximum likelihood. To determine the
minimum variance state estimate at time t the conditional mean m
was computed from the expression

el - .
3 [ X Eexpo/X, b p(X, )X, q-X, ]

m= /X p(x/z)dx = X0 © (4.10)
E{exp ¢}

while the maximum 1ikelihood estimate was taken as the mode of

p(X/Z); i.e., that Xk which gives

max E{exp¢/xk} B(Xk)
Xy

= (4.17)
E{exp ¢}

Upper performance-bounds were computed for a particular filter
problem by conducting a number of Monte Carlo simulations and
computing for each the estimation errors e(t) = x(t) - m(t) , where
m(t) was computed from Eq. (4.10) or (4.11). The average
squared-error statistic for these errors was then computed at a
number of instants of time and used as an upper performance bound,
Approximate filters whose performances were to be compared with the
upper performance-bound were simulated using the identical noise

sequences as those used in computing the upper bound.
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A question wiich naturally arises is how close to the optimal
performance is the upper performance-bound as computed by the dis-
cretized Bucy representation procedure discussed above ? Uhile a
completely definitive answer to this question is impossible; a
partial answer to the question can be arrived at by the following two
arguments] . Firstly, that the values of the discretization para-
meters n, and ny are chosen in such a way that the upper perform-
ance bound is insensitive to these va]ues2 . Secondly, it has been
observed that in five example problems (Sections 4.3 and 4.4) it was
virtually impossible to better the upper performance-bound with that
of any nonlinear filtering algorithm, no matter how complex and
sophisticated the algorithm,

To those considering the use of the forementioned discrete-
representation upper-bound procedure; we address the following
suggestions and comments:

(i) Since the interval [XO,Xn3] must be chosen pr{or to
computing p(x(t)/Zt), a relinearized Kalman filtering
algorithm may be used to predict an appropriate interval
size from the previously computed p(x(s)/Zs)I et .,

One could take, for example, the 99% confidence-interval

as predicted by a relinsarized Kalman filter, the states

of which would be updated at time t by the mean and

variance of the newly computed p(x(t)/Zt) ;

1 The effects of too few Monte Carlo simulations are not considered
here but are discussed in Section 4.3 .

2 This insensitivity suggests convergency to the continuocus solution
of the optimal performance function.

B T
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(i1) The values of the discretization parameters n,
and nj should be chosen large enough so as to
yield filter performance statistics which are
relatively insensitive to the values of n, and
Ny . Yet, the values of n, and ns should be
kept as small as possible to minimize computing
time.

1

(iii) The maximum time interval considered [to, tmax
should be small enough so as to guarantee a
sufficientiy accurate backward numerical integration
of the process state equation (4.3) .

(iv) To minimize the computing time requirements of this
method the two equations (4.6) and (4.7) should be
compu%er programmed most efficiently, even resorting
to machine language coding if possible,

(v) This upper performance-bound computing technique is
limited by practical (not theoretical) considerations
to those problems having one or two state variables,
no process disturbances, and analytically computable
a'priori probability density functions (although these

functions could be computed via Monte Carlo simulations

and orthogonal-function approximations)] .

1 These limitations apply only to our method of computing upper
performance-bounds, and not to the approximately optimal nonlinear
filtering methods of Chapter III. This upper-bound technique is not
proposed here as either a filtering scheme or a general design aid.
It is strictly a research tool and nothing more.
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(vi) The minimum variance optimality criterion is
preferred to the maximum likelihood criterion
since the maximization techniques available
(e.g., steepest-descent, conjugate gradient, etc.)
perform inefficiently and unreliably for the type

of density functions of concern in filter theory,

4.3 Example ET1 and Confidence Intervals

lTo demonstrate the upper performance-bound technique vie
consider in this section the scalar nonlinear filtering problem
considered in Section 3.5 ., le compare the simulated performance of
two nonlinear filtering algorithms (the wide-sense and relinearized
Kalman filters) with upper performance-bounds computed via the Bucy
representation. Since these filter performances are computed from
Monte Carlo simulations, questions arise regarding the confidence
intervals for these computations. Experimentally derived curves are
presented for this particular problem from which an estimate of
confidence can be arrived at. Some numerical examples of the
conditional probability density p(x(t)/Zt) are also presented,

Consider once again the filter problem

El:
dx, _
a__t_‘l - - X] (3.]2)
z(t) = Xy + x? - R]/Zv(t) (3.13)

p(x,(0)) = t(m,, cfo). (3.14)
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Since the state equation (3.12) is linear and the initial state
probability density is Gaussian the a'priori density of the state

variable can be easily shown to satisfy

p(x](t)) & N(m]Oexp(-t), o%oexp(-Zt)) 5 (4.12)

Bucy's representation (eq's. (4.1) - (4.3)) for problem E}
reduces to the following relations for the a'posteriori probability

density, p(x](t)/Zt):

| expls/Xy - (X, = %1)%/0%)
p(x(t) = X{/Z,) = (4.13)
/ exp{'}dx]
where
Q] = mloexp(-t) , of = °§O exp(-2t) ,
and
¢ B s o 1 3
o/Xy = 1 (xq(s) + x7(s))R7'[2(s) - 5{x;(s) + x3(s))]ds
1 t 1 1 271 1
0
with
dxq _ . _
ook =R x](s) ; x](t) =Xy .
From Eq's. (3.1) and (3.2) the conditional moments m, and
m for problem E1 are found to satisfy the equations

dm, _ 2 -1
qt =0 Mt Mgy tomyy # 3mmy g+ 3mgmy RT

3
(z(t) = mp=m - mygy - 3m]m]]) (4.14)



72

and

dm

_ R
iU AL DI L TR LD

2
YR = Zm]] +

2
(Myqqqp * Mgy # 3mmygqq  3mqmy g = mygmyy -

2 -1 3
3m]m ]])R (z(t) = My o=my =My - 3m]m]]) (4.15)

which yield the following nonlinear filter relations if we assume

p(x(t)/Zt) to be Gaussian:

%%J =-m o+ m]](l +3myqy 3m§)R'](z -my - m? - 3m]m]])
(4.16)
gy == w1+ 3my + )R - 2m e
6m]m$]R—](z -my - m? - 3m]m]]) (4.17)
where .
m(0) = Mg 5 my(0) = cfy

Compare the Gaussian filter equations (4.16) and (4.17) with those

of the relinearized Kalman filter; i.e.,

dm, _ 2yo-1 3
Ef] = - my o+ m]](] + 3m]] + 3m])R (z - m - my - 3m]m]])
(4.18)
and
dm., _ 2 2,2,-1
aEJ] = - m]](l + 3m]] + 3m]) R = Zm]] (4.19)

where Eq's. (4.18) and (4.19) are determined by evaluating Eq's.
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(3.8) and (3.9) for problem El}

Monte Carlo simulations were conducted for problem El1 in
conjunction with a relinearized Kalman filter and a wide-sense
Kalman filter (eq's. (3.17)). The error statistics for each filter
were computed for up to 170 Monte Carlo simulations and these were
compared with the corresponding error statistics of the upper
performance-bound estimator. A1l simulations were conducted on the
GE 4060 process control digital computer located in the Eckman
Laboratory of the Systems Research Center. Rectangular integration
was used in solving the filter equations and all arithmetic operations
were performed in single precision.

Figure 4.2 contains the performance curves for the wide-
sense and relinearized Kalman filters as well as the upper-bound
estimator for two values of observation noise variance (R = .01 and
.1) with the parameters Mg = 1.0 and 90 = 1.0 . The number of
Monte Carlo simulations which was used to compute the squared-error
statistics is noted on each figure along with the integration time
step size, a4t .

In Monte Carlo experiments the question of confidence
intervals for the results often arises. The sensitivity of the
outcome of these experiments to the number of Monte Carlo experiments
performed is an importaﬁt factor and one which is not easily

determined by analytical means. 1In Figure 4.2 we are primarily

1 In implementing the solutions to the filter equations (4.14)-
(4.19), one should (theoretically, at least) include the Ito correction
terms discussed in Sec. 2.2.5 to correct for the non-ideal nature of
the actual observation noise process, v(t), In practice those terms
have been found to appear to have no significant influence on filter
performance. '
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concerned with the differences between the performance of the upper-
bound and that of each filter tested, and it is the confidence in
these computed differences which needs to be estimated, not the
confidence in each individual performance curve.

The experimental curves plotted in Figure 4.3 demonstrate
the effect the number of Monte Carlo simulations (N) has on the

error-difference percentage factor

951(”) /eﬁm 100
% = X %
mo)

for the relinearized Kalman filter of problem EI1 (R = .01) at five
instants of time (.002, .003, .004, .005, and .006) . VWhile it is
doubtful that any analytically derived confidence intervals for this
problem can be determined, the curves in Figure 4.3 provide an
estimate of the confidence in our calculations. One ﬁay note from
these figures that at times t =.004, .005,‘and .006 the error-
difference factor becomes relatively insensitive to the number of
Monte Carlo simulations performed for N greater than eighty. At
earlier times (Figure 4.3), while this sensitivity is more sizeable,
the error-difference factor ic small enough (about five percent) so
as to be of lesser importance than that at the later time instants.
In general, the confidence in our Monte Carlo performance comparison
calculations was considered satisfactory for one-hundred or more

simulation runs.
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4.4 Experimental Problems and Results

e consider in this section four nonlinear filtering
problems which were investigated in essentially the same manner as
that of problem E1 . For each problem, an upper performance-bound
was determined via Bucy's representation and the performances
(average squared - errors) were evaluated for a number of Monte
Carlo simulations with the identical noise sequences being used in
the simulations for each filtering technique investigated.

The maximgm time intervals over which the experiments were
conducted vere limited by the following two factors:

(i) The intervals must be small enough to guarantee a
sufficiently accurate backward numerical integration

of the state equation in the upper-bound procedure,

(ii) The upper-bound procedure requires too much computer
time if the maximum time interval is too greaf,
While it would have been desirable to utilize a larger maximum
time interval in these experiments we feel that the sizeable
reductions in average squared-errors which occurred over the

intervals chosen justified our choice.

The four problems considered were the fo]lowing]:

dx; - £(x)

z = xp + R]/zv(t)

1 See Section 4.3 for problem E1 .



1
4 RR FA.
f(x]) =
=Xy s Xy S 0
p(x](O)) = ”(m]O’ O]O)‘
-E-—3-.
"dx] = f(x)
dt
2+ SRS -1
f(x]) = - Xy »-1 < X4 <1
1\-2 Xy 1 <X
1/4 =2 _<_x.|(0) < 2
p(x,(0)) =
0 i 2 = x](O) <=2
-
z = x, + RYA(t)
E4]:
'._ dx, _
atl = %1%
dX, _
e = O

©
—
>
—
—
o
~
-
pas
nN
—
o
~
~
1]

p(x,(0))p(x,(0))

2y . 4 =
p(x;(0)) = MN(mg,0.0) 51 =1,2

1 We are, in effect, estimating the bandwidth parameter of a
system from noisy measurements of its output.

L ———
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E5
dx] _
a - %2
%%2 B o Ry oo 2:5 X5
A R]/zv(t)
p(%,(0),%,(0)) = p(x;(0))p(x,(0))
p(x](o)) = N(m1oso]o) i= ],2 .

Figure 4.4 shows the results of the Monte Carlo experiments
conducted with problem EZ2 for two values of observation noise
variance (R = 1.0, 0.1) . The performance of a relinearized Kalman
filter for this problem was discovered to essentially duplicate that
- of the upper-bound and as such no other filtering techniques were
investigated for problem E2 . For comparison purposes, the
a'priori performance curves for this problem are included in
Figure 4.4 . These curves represent the estimation accuracy one
could achieve by utilizing only a'priori information and ignoring the
information concerning the state provided by the noisy measurements,

A number of nonlinear filters was considered for problem E3 ,
the performance curves for two of which are presented in Figure 4.5
for two values of observation noise variance. A relinearized Kalman
filter and a uniform-density filter (i.e., the conditional moment
equations with p(x/Z) approximated by a uniform probability density

function) were discovered to be both the simplest and most efficient
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of all the filters studied, some of which were quite complex and
included third-order moment equations and approximate density
functions of skewed-form (e.g., an asymmetric triangular density-
function) .

In Figure 4.6 the weighted sum of the squared errors
’/ﬂ\ + 4’gg\ 1 is plotted against time for respectively, fifty and
seventy—five Monte Carlo simulations of problem E4 and two
different values of observation noise variance, R . Only a
relinearized Kalman filter was investigated for problem E4 since its
performance was essentially equal to that of the upper-bound, Note
in Figure 4.6(A) that the relinearized filter actually achieved a
slightly greater performance than that of the upper-bound. This is
not really a contradiction since only fifty Monte Carlo simulations
were performed and the confidence intervals for fifty runs were still
sizeable enough to account for this result. Fifty simulgtions were
considered satisfactory, however, since we were interested in
detecting any significant differences which might exist between the
upper performance-bound and the performance of the nonlinear filter;
the one to two percent differences in performance indicated in
Figure 4.6 were not considered significant.

The sum of the squared-errors 'g?\‘+ eg versus time curves

for fifty Monte Carlo simulations of problem E5 are graphed in

Figure 4.7 for two separate values of observation noise variance.

1 The weighting ratio of 1:4 was chosen since the initial variance
of X4 is four times as great as that of Xo o
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Once again the relinearized Kalman filter yielded near optimal
performance and no alternative filtering techniques were investigated

for this problem.

4,5 Concluding Remarks

A technique was introduced for computing numerical upper
performance-bounds for relatively simple optimal nonlinear filtering
problems. Using these performance bounds one is able to determine
which nonlinear filtering techniques most closely approximate these
optimal performances with the Teast amount of computational effort.
Five contrived, low-dimension (one or two) optimal nonlinear
filtering problems were investigated by computing their upper
performance bounds and the performances of a number of nonlinear
filtering algorithms.

For all five of the problems investigated the relinearized
Kalman filtering method proved to be the most effective, yielding
almost optimal performance with a relatively simple computational
algorithm. More complex filtering methods were considered but in
almost every case resulted in a lesser performance figure than that
of the less complex relinearized method,

After considering the results of these five computational
experiments, one might be tempted to conclude that the relinearized
Kaiman filtering method is the only such method which needs to be
considered. This temptation, though strong, should be repressed and
for a number of good reasons, First, generalizations should not be

drawn from only five simple example problems; more such examples need
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to be studied using similar procedures to those discussed in this
chapter. Secondly, the relinearized filtering technique requires that
the partial derivatives in vh(x) and 9vf(x) exist; what does one

do when they don't exist ? Finaily, a fairly simple nonlinear
filtering problem exists which can not be effectively handled by
applying the relinearized Kalman method.

Consider the linear parameter estimation problem specified by

E6
= xp o+ x Bt
d
F2= 0
p(x;(0),x,(0)) = p(x,(0))p(x,(0))

]

2
p(x;(0)) = N(m,,0.4)
z = x] + R1/2v(t)

Then from Eq's. (2.33) - (2.35) the conditional moments for

p(x(t)/Zt) can be easily shown to satisfy

g%y = - m o+ m]]R-](Z - m])

%%2 = m]ZR-](Z - m])

%%1]= ~ m?IR-] - 2myy + m, + m]]]R“](Z ~ ml)
%%22: > m$2R—] + Moy R—](z - m])

o 5 -1
qE1es = MppPp R =y +myy Rz - my)
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dm _ -1 g o]
gritl = = 3myqq F 3myp = 3mp R my gy  (mgqqq- 3mp R (2 - my)

1 1

dm - -
=2yt My = 2mpgR My, = MR Mg g+

af1]2

]

-1
(Myy757 3mqmp )R (2 - my)

dm 1

) . -
TE122 = = MMy = 2moR™ My qs = my R Mo +

By ]
(My322 = Mymyp = 2m7,)R™ (2 - my)

The relinearized Kaiman filter for problem E6 consists of

the equations (see Eq's. (3.8) and (3.4))

g%l = My m]]R'](z - m])
3?2 = m]ZR'](z - m]) .. (4,20)
g%h] = - mflR”] - 2myy +m,
qEez = -
M2 = - mpm R o, (4.21)
where |

| Wy (0) = my,

Lm0 = ol
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Note from Eq. (4.20) that the estimated value of %o (mz) can only
change if the value of the cross-correlation; mos is nonzero. But
since m]2(0) =0, we seé from Eq. (4.21) that dm]Z/dt is initially
and always of zero value. As a result, the relinearized Kalman
filter provides no useful information regarding the value of Xy 3
rather perplexing observation for such an apparently simple filtering
problem,

An effective filtering algorithm for probiem E6 was constructed
from the eight conditional moment equations given above. The observa-
tion driving terms in the third-order moment equations were neglected
by assuming that the conditional density p(x(t)/Zt) is essentially
Gaussian; i.e.,

2
Myyqq = 3myp = 0

My = 3Myqmyp = 0

Mygp - Mgy - 207, 30

Fifty Monte Carlo simulations of this filter for problem E6 were
conducted and the average squared-error statistics for these
simulations are presented in Fiqure 4.8 as a function of time. The
necessary inclusion of third-order moments in the above filter can
be understood when one considers that it is the correlation between
the powers of the observation signal (i.e., x%) and the disturbance
process x;/zw(t) (i.e., x2) which can be sensed, not the cross-

correlation between the instantaneous values of x](t) and X53

x;/zw(t) being an ideal white-noise process.
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thile the relinearized Kalman filtering a]go;ithm has proven
to be a remarkably effective approximate sclution to the optimal
nonlinear filter problem, it can not be considered a panacean solution
to this problem. It appears from the results of our experiments that
the relinearized Kalman filter either works well or it doesn't work
at all in actual use. From the limited number of filtering problems
considered in this chapter it would be premature of us to conclude,
when or when not the relinearized Kalman filter should be used.
Indications are, however, that this filter may be the best choice for
those problems having these attributes:

© The system functions f(x,t) and h(x,t) are
differentiable in the variable x .

© The disturbance function g(x,t) is independent
of the variable x .

© The measurement sampling rates (assuming a computer
implementation) are high enough in value to be able
to treat the problem as a continuous one .



CHAPTER V

ERROR SOURCES AND PERFORMANCE SENSITIVITY
JN NONLIMEAR FILTERING

5.1 Introduction

The approximations discussed in the previous chapters are but
one source of error in nonlinear filtering, and are the source of
error with which most of the pertinent literature has been concerned.
This apparent preoccupation with mathematical approximations to the
optimal solution to the nonlinear filtering problem might be attributed
partly to the sincere belief held by some researchers that these
approximations were the most significant source of filter error and
partly to academic expediency by other concerned individuals., While
the five particular filter problems investigated in the previous
chapter are admittedly rather simple examples of a generally complex
_class of problems, an intuitive interpretation of the results of these
investigations would lead one to believe that the differences between
the optimal and nonoptimal filter performances are not really signi-
ficant at all. There exist other sources of error in nonlinear
filtering; sources which the filter designer should be aware of (as
well as wary of).

In this chapter we enumerate some of the many error sources
that can and in fact must exist in optimal nonlinear filtering
algorithms, Of course, the critical question is how sensitive are
filter performances to each error source? We consider two ways of
computing these sensitivities for particular nonlinear filtering
problems and present two example problems for discussion.

- 91
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The significance of this chapter should not be overlooked. 1In
attempting to successfully apply the optimal nonlinear filter theory
to a real problem, one mu;t consider more than just the mathematics
of the theory. Accurate process models and statistical data are

necessary ingredients to an effective filtering algorithm.

5.2 Computing Performance Sensitivities

Modelling stochastic physical processes by nonlinear differ-
ential equations with white-noise driving terms and random initial
conditions provides far from ideal models. Still these same models
when used in conjunction with a nonlinear filtering algorithm can
provide quite satisfactory filter performance. Similarly, we can
model the observation process as a nonlinear function of state plus
additive white-noise and while the model may not give an accurate
representatioﬁ of reality it can be sufficiently accurate to allow
a satisfactory filter performance to be achieved. In applying filter
theory we must deal with uncertain process models and it behooves us
to determine which of the inherent uncertainties can produce the
greatest degradation in filter performance, and to minimize these
particular uncertainties as much as possible.

We list here some of the more dominant sources of uncertainty
in the process models used for nonlinear filtering applications, and
while each source will have an effect on filter performance, the
effect will not necessarily be a negative one.

(i) Inaccurate state space representations for process
models (e.g., considering only the dominant dynamic
modes ).
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(ii) Mathematical white-noise descriptions of physical
stochastic processes possessing often significant
auto-correlation coefficients.

(iii) Insufficient and inaccurate a'priori statistical
knowledge about the state vector.

(iv) Inaccurate observation noise representations (Is

it really additive ? Are its statistics constant

or are they actually state dependent ? Vhat are

these statistics ? What about measurement bias ?).
These four items should not be passed over lightly for they do in
fact determine whether or not a particular filtering application
will be a success.- Insufficient knowledge about the process can
cause a far greater deterioration in filter performance than can
mathematical approximations to the optimal filter solution.

In this section we are concerned with ways of computing the
performance sensitivities of a filter to various process description
" uncertainties, such as items (i) - (iv) above. Two techniques
are considered; the first being original and more sophi;ticated than
the second which utilizes Monte Carlio simulations in a rather

brute-force fashion.

5.2.1 A Fokker-Planck Method

Having chosen a particular filter configuration, we may desire
to estimate the performance (e.g., mean squared-error) of that filter
without performing tedious and often times difficult Monte Carlo
simulations (see Sect. 5.2.2). In addition it would be desirable to

include in this estimation the performance degradation effects of
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inaccuracies in noise models, process models, and initial statistics.
The following method is considered.
The combined process and filter dynamics satisfy the following

sets of differential equations:

%% = f(x,t) + g(x,t)w(t) : Process State Space

z(t)= h(x,t) + R]/zv(t) : Observation Process

%% = F(q,t) + G(q,t)z(t) : Filter Space

where
E{x(0)} = M,
EC(x(0) - m )(x(0) - m )73 =62
E{w(t)wT(s)} & T 8(t=8)
Ev(t)v (s)} = T &(t-s)

and the initial conditions of q(t) are determined from our
uncertain estimates of the a'priori statistics of x(0) . If the
filter space is adjoined to the process state space a markov process

results which satisfies the equations

%% = f(x,t) + g(x,t)w(t)
-2—% = F(q.t) + G(q,t)h(x,t) + 6(q,t)R/2v(t)

which we denote by the single multidimensional differential equation

%‘%= Fy,t) + Ay, t)u(t) (5.1)



vwihere
A

A
)T 3 u = (w,v

T
y = (x’q ) >

It may be desirable to replace x 1in Eq. (5.1) by the estimation
error vector e = x - m to make use of the desirable covariance
properties of the e(t) and m(t) processes.

Then the probability density of the y(t) process satisfies

the Fokker-Planck equation (see Sect. 2.2.4)

W) - Frpy(t))] (5.2)

ot

and if ¢(y) 1is any regular scalar function of the y vector, then

dECU)) - Eeelo(y)]s (5.3)
where ; :
" [ F (y,t) <] 2 (I '], . )
Xl-1=-) a;/. +%’.Z 3Y.5y =
1 1 15 1 J
X01= T F(y.t) 2 + ) 7 yTy ~2-——-—
3 Yo 3Y; 73 iy 163 ayiayj v

Equation (5.3) may be utilized to determine the differential equations
satisfied by the statistical moment parameters of p(y(t))

(e.g., E{e(t)eT(t)} = E{(x-m)(x-m)T} ) . Unfortunately, these
equations form an infinite coupled-set and as a result assumptions
must be made regarding the form of the probability density p(y(t)) .
Because of the usually large dimension of the y-vector, there is only

one such assumption which might prove useful and that is assuming

—— ———
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p(y(t)) is Gaussian. Then we need only determine the differential
equations for the mean and variance parameters of p(y(t)) . The

technique is best demonstrated by an example.

E7:
Consider the dynamic system specified by the relations
d 2 1/2
Fo= o xf+ a5 (t) + 1.0 (5.4)
2(t) = x; + r/2(t)v(t) (5.5)
av L by o+ bu (t) (5.6)
dt 2 °
where
p(x,(0),v(0)) = p(x;(0))p(v(0))
. 2 _ 2
D(X](O)) N(m-losg'lo) 5 D(V(O))* N(mvoacvo-)
PoEy = w2 RE)
- 2
dx s e . i -
H?ﬂ = 5 Ky ¥ 150 3 x](O) =My,

and w](t) and wz(t) are independent unit-variance white-noise
processes. We wish to investigate the error sensitivity of the

relinearized Kalman filter for this system. The filter equations are

given as
dm a 2 -1
HEJ = (m]] + m]) + m]]R (t)(z-m]) + 1.0
(5.7)
dm = - e R'](t) - 4m m,, + Q (5.8)
11 W 1" :

dt



G

where
. 2

m(0) = Mg m(0) = Q44
and the R, Q, M]O , and 210 are our estimated values of respectively
¥ G5 m]O , and 90 Note that the observation noise process,

v(t), is not a white-noise process even though we have assumed the
contrary in deriving the filter equations. We also would Tike to
investigate the effects of observation noise correlation on the
filter's performance characteristics.

If in Eq'so_(5.4) - (5.5) we replace the state variable Xy by
the estimation error variable e = Xq =M and adjoin the process
and filter state spaces, the foliowing adjoined state space

equations result:

d 2 -1 -1.1/2 142
AR A A AT AR ©
(7 O -1 <1172
dt2 Y3 = ¥p * y]y3R & y3y4R r + 1.0
d 2,-1
H%B = - yaR - 4y2y3 +Q (5.9)
dy, _
3%4 = - b_y4 + bwz(t)
- T
where y = (e, mys Mg V)
If d

E% o (y) + H(y)w(t) , then Fokker-Planck principles
dictate that

i

des = E¥r)
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and
dc. . i
3%13 = E{L[(y.

vinere

iy J'<y1- - ¢5)y; = ¢5)p(y)dy
X[1= 1&, 5=+ 5 ] el 55—
© 1y, e ij ay. ayJ

By assuming p(y) to be Gaussian we can derive the following set of
differential equations for c. and cij from the relations above

and the adjoined space equations (5.9):

. 2 g
€] == Cyp = €y = 26y = 261, *+ c3 - (Cq3 + Cie)RT -
21172
(c34 + c3c4)R r
. 2 ) -1 21172
Cy = =Cy = Chy = Cy# (c]3 : c]c3)R + (c34 + c3c4)R r + 1.0
Cr = = (Con + cz)R'] - dcys - de,eq + Q
3 33 * C3 23
. -1
Cp = 2(-2cieqy-2(cyqptepcyy) + cq3 = (oqcq5 + c50q )R -
2112
(e30q4 + c4eqg)R7 /%) 4 g
c ) -1 1,172
Cop = = 2Cy3 = AcyChy + 2(C1Cna¥CC1H)RT + (cgCha+eacyy )R r
can = w BCAC R'] - Blesc Cisd)
€33 = = ""g 33 3623 * C5la3
. - 2
c44 = - 2bc44 + b



where

i)

= - becgy

a9

-1
-Gz - Ay t (c1Cq3+C36117C1C37C3C 2R *+ Cp3 *

-1r1/2

(caey4+cqC13-C3C24=CaCo3R - 2cqCqp = 2648

-
(-3c4€13-C1C33)R™ = 6C,Cq3 = dcgCyy = 269Cq3 = 2C1Cp3 +

1,172
ca3 = (C3034 + cpCa3)R7 Y

- be ) + ¢

1a = 2698y - 2(cqCpptcyCyy) * Cyy -

i 1,172
(creqq + C3°14)R - (ceqqteqae g R r

(-2c4c - 4c.cC

3Cpp "~ C33 *

- 6c,C

23% €3 13+C1°33)R 2©23

21 1/2
(cgCaq * C4Ca3)R Y
-1

= bCyy = Cgq = 205Cp + (CqCgy * C3Cqg R +

(c4c34 + c3c44)R']r]/2

-1
- 2c3c34R - 4(c2c34 + c3c24)

r=r_ % (t) 3 R =R, K (t)

the initial conditions may be shown to satisfy
61(0) = myg -ty 5 €q3(0) = oy

c2(0) =M 3 Cg0(0) = b/2

c;(0) = Zi% ; all other c;; =0.
c4(0) = 0

These fourteen ordinary differential equations were integrated
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numerically on the GE 4060 digital computer to determine the

effects of parametric design errors in initial means (M]O Vs, m]o);
initial variance (Z$O Vs, C]S)’ and observation noise variance

(R vs. r). In addition the equations were utilized to determine the
effects of observation noise auto-correlation (b) and variance (r)

on the filter performance. The results of these studies are presented
in Figures 5.1 - 5.3 .

Figure 5.1 demonstrates tne effect of observation noise
variance, r =R, on the performance ( 1??\) versus time curves
for the relinearized Kalman filter of problem E7 . HNote the
apparently asymptotic behavior of those performance curves as the
value of R is increased. The limiting performance is the problem’s
a'priori (or measurement-less) performance.

A somewhat surprising result is obtained from the performance
curves in Figure 5.2 for four different values of the observation
noise correlation parameter, b, with the value of the'equivalent
white-noise variance R identical for each curve (the area under
the v(t) process autocorrelation curve is independent of the value
of b). It appears that as the observation noise process, v(t),
becomes increasingly correlated (i.e., b decreases in value) the
performance of the filter also increases. Hence, the approximation
of a physical observation noise process by an.equivale : ideal white-
noise process will probably yield a conservative esti 2 of filter
performance.

If our estimate, R, of the true observation nu-se variance,

r, 1is in error, then the performance of the relinearized filter
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FIGURE 5.1 Mean Squared-Errors for Problem E7 with Four
Values of Observation floise Variance (r)

24 1
&~—a 5=/00
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FIGURE 5.2 Mean Squared-Errors for Problem E7 with Four
Different Values of Observation Noise Auto-
Correlation (b) and r=0.001
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FIGURE 5.3 Mean Squared-Errors for Problem E7 with R, M,,
and ¥, Parameter Errors (A11 Parameters Nominal
Valued Unless Otherwise Stated)
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for problem E7 will be less than optimal. Figure 5.3(A) illustrates
this effect quite clearly,

A similar behavior is demonstrated in Figure 5.3(B) which
contains performance curves for various errors in our estimate,
Zfo , of the initial state density variance, 0?0 . In the same way
the influence the error in our estimate of the initial mean, Mo »

has on filter performance is indicated in Figure 5.3(C).

5.2.2 A Monte Carlo Method

A superficial acquaintance with the forementioned Fokkef-P1anck
method of computing performance sensitivities for nonlinear filters
can be very misleading. Under scrutiny this technique reveals itself
to be most impractical for applications to significant nonlinear filter
problems. Ve have considered it in this thesis primarily to demon-
strate the inherent difficulties associated with any "so-called"
sophisticated solutions to the nonlinear filter sensitivity problem.

What are the difficulties in applying the Fokker-Planck
sensitivity method to significant nonlinear filtering problems?
Firstly, is the dimensionality problem for even if we can rightly
restrict ourselves to the mean and covariance parameters of p(y),

the number of moment (e.g., ¢, and c..) equations would become

1]
quite prohibitive for even the simplest nonlinear filter problems.
Secondly, is the requirement that the system functions f(x), h(x),
and g(x) be expressed as polynomials in x so that the expectations
of those functions and their functionals can be computed under the

assumption of a Gaussian probability density p(y) . Finally, and

most importantly, the higher than second-order, odd moment
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parameters of p(y) (i.e., Cstpo etc.) can nct always be neglected.

J
This final difficulty was clearly demonstrated while &:nlying the
Fokker-Planck method to the following parameter estimation pre-tem:
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where

1

p(x(0),%,(0),x3(0)) = p(x;(0))p(x,(0))p(x5(0))

1

N(m,00:2) 1= 1,2,3

p(x;(0))
and the statistical parameters of the x3(t) process (i.e., b, q,
M3 and 030) are not known. The relinearized Kalman filter for

problem E8 consists of the relations

dm, _ -1

qT = MMy F iy + zp(t) 4 mygRy T (zy-my )
dm, _ -1

are = MRy (zy-mp)

dm,, _ 2 -1

a0 T Ry T ammyy +oampmy g+ R,

1 Note that the x3(t) process represents a correlated disturbance
process acting on the x](t) process possessing an unknown bandwidth
Xo Noisy measurements of the disturbance, x3(t) , are available.
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din,, _ 2 o~1 . dmy, _ -1 :
JE22 = - Ry 3 gEl2 = MmyyWyoRy o Mgy F Mios
with

= Y
mp(0) = iyp -

The above process and filter equations were adjoined and the
differential equations for the first and second-order moment
parameters of the adjoined state probability density, p(y), were
determined under the Gaussian assumption for p(y). Certain of these
equations were clearly unrealistic in that a number of moments Cij
remained at a zero value for all time even though physical reasoning
required that these same Cij become finite valued with increasing
time. Odd-order moment variables (e.g., Cijk) were unquestionably
necessary in the moment equation for p(y) but their inclusion
increased the dimensionality of the problem to such an extent that
the Fokker-Planck method was ruled out for determining the sensitivi-
ties of the nonlinear filter for problem E8 .

As an alternative to the Fokker-Planck method we chose to
jnvestigate the parameter sensitivities of the nonlinear filter for
problem E8 by means of Monte Carlo simulation. A nominal
performance curve was first established by performing one hundred

Monte Carlo simulations of a filter having the correct parameter

values (i.e., R=r , Mo =mg, J19= 90 etc.). To determine



106

the sensitivity of the filter performance to an errbr in one of the
process parameters a certain percentage error in that parameter was
assumed and the one-hundred simulations were repeated with the
identical noise sequences as those used in the nominal performance
curve calculations. The difference between the nominal and in-error
performance curves provides an estimate of the filter's error
sensitivity. Clearly, those errors to which the filter is most
sensitive should be minimized as much as possible.

The results of the sensitivity study of the nonlinear filter
for problem E8 are presented pictorially in Figures 5.4 - 5,10 .

In each figure the weighted sum of the squared-errors

/oN
ef + 4’22\\ (since G]S/Ozg = 4:1) is plotted against time for

one-hundred Monte Carlo simulations. Each figure deals with a single
source of errbr common to all nonlinear filters, not just that of
problem E8 .

Figure 5.4 demonstrates how measurement-noise variance
uncertainty affects filter performance. The curves in these figures
reveal that twenty-five percent errors in our estimated values of
r and rs have no really significant effect on filter performance
while a 300 percent over estimate of the value of g ({.e.,

Ry/ry = 4:1) yields a filter performance which is still very
tolerable,

A major source of uncertainty in any nonlinear filter exists
in the statistics of the state vector at the time instant the filter
is "turned-on". Two such statistics are the initial means Mo and

"o for problem E8 . The filter's performance sensitivities to
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errors in our estimates (MIO and HZO) of those two parameters are
revealed in Figure 5.5 . One may observe from Figure 5.5(A) that
the performance of the relinearized Kalman filter for this problem
is relatively insensitive to errors in the initial mean-value
estimates of Xy Figure 5.5(B) on the other hand, reveals that
the filter is far more sensitive to errors in the a priori estimated
mean value of the second state variable, Xy Note especially in
Figure 5.5(B) the drastic reduction in performance which resulted
from a one-hundred percent over estimate in the parameter Mo
(i.e., M20/m20 = 2:1). The a'priori estimated value of X5 should
not be taken lightly for this problem.

Uncertainty in our estimates of the variances of p(x](O)) and
p(xZ(O)) proved to have an effect on filter performance which was
similar to that of the mean value estimates of those probability
densities. Figure 5.6(A) shows that the filter performance is
relatively insensitive to error in estimates of %10 while
Figure 5.6(B) reveals 990 to have a more influential effect on
filter performance than that of 910 ° In determining the curves
plotted in Figure 5.6(C) we wrongly assumed that a certain amount
of correlation (012) existed between the random variables x](O)
and x2(0)° The curves in this figure show that a fairly large
amount of initial covariance had to be assumed before a significant
reduction in performance resulted.

So far it was assumed that the observation noise sequences used
in the simulations were uncorrelated from sample to sample. In

physical processes of course there exists a certain and sometimes
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sizeable amount of correlation between separate samples. e
investigated the effects of non-white observation noise on filter
performance for problem E8 by replacing the output observation

equation by the "equivalent" correlated version
] y q

1/2

" ]

# B Sule)

175X

where

dv _
qE =-CV + cv](t) .

Two values of ¢ were considered and the performance curves resulting
with each are plotted in Figure 5.7 . One may note from this figure
that the effects of observation noise correlation are, if anything,
positive effects since the performance appears to increase with
increasingly correlated (i.e., smaller values of c¢) observation
noise, v(t)..

Another major source of error in applications of nonlinear
filter theory is the process model simplifications which are some-
times necessary. For our study of problem E8 such an error source
was created by assuming that the actual process state equations were

given as

aE = KX X

n
1]
(en]

alad
[t Pad
w
]

1/2
- b xy + g w](t)

41L§%

at - d x4 + d x3
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rather than their simplified forms assumed in the derivation of the
nonlinear filter for this problem. The influence of the neglected
process lag, d, on filter performance is indicated in the curves
of Figure 5.8 . For the most part, the effects of this lag were
negligible, a result which was probably due to the relatively small
bandwidth of the input process x3(t) (b =1.0) .

One basic assumption in the theory of nonlinear filtering is
that the observation noise process is Gaussian distributed. What is
the effect of approximating a non-Gaussian observation noise by an
"equivalent" Gaussian process ? To assist in answering this question
200 Monte Carlo simulations of problem E8 were performed with an
observation noise process v](t) which was uniformly distributed
with a variance equal to that of the previously studied Gaussian
distributed -v](t) process. The relinearized Kalman filtering
algorithm used remained the same as that utilized in the Gaussian
noise case. The two simulated performance curves for £he Gaussian
and uniform-density observation noise processes are presented in
Figure 5.9 . One will note from this figure that there appears to
be only an inconsequential difference between the two curves. This
result is encouraging in that the filter designer does not have to
concern himself with the particular type of probability distribution
function the observation noise possesses; assuming it to be Gaussian
appears satisfactory.

The final source of error considered in this abbreviated study

was that of state-dependent observation noise. For most measurement
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instruments their accuracy is specified in terms of percentage of
reading. Thus, the amount of uncertainty in measurements made with
these instruments is proportional to the average value of the
measurements, and is not of constant value as assumed in the general
formulation of the nonlinear filtering problem. To investigate the
effects of approximating a state-dependent observation noise process
by an equivalent state-independent noise process we replaced the
output observation equation in problem E8 ,

zy = Xy * r}/zv](t) sy = 0.1

by the "equivalent " process equation

29 = Xy + 0;5!X]IV](t) .

where the average squared-value of the x](t) process was determined
- to be approximately four-tenths of a squared unit. Two-hundred Monte
Carlo simulations of the relinearized Kalman filter we;e conducted in
conjunction with, first, the state-independent noise process and,
second, the state-dependent noise process. The simulated performance
curves which resulted for both cases are plotted in Figure 5.10 .

The results are somewhat surprising in that the performance of the
filter with a state-dependent observation noise was greater than the
filter performance with a state-independent noise. How general this

particular result is remains in question.

5.3 Concluding Remarks

We considered in this chapter two techniques for computing the

sensitivity of nonlinear filter performance to various errors which
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exist in all nonlinear filtering problems. Mnhile the first

technique is quite sophisticated, it requires the numarical solution
of such a large number of'differential equations as to be virtually
useless for any practical filtering problems which may be of interest.
This problem of large dimensionality is inherent to any analytical
solution of the nonlinear filter sensitivity problem, The second
technique discussed was simply that of "brute-force" Monte Carlo
simulations with purposefully introduced modelling and parameter
errors. MWhile lacking analytical sophistication, this latter
technique is most effective and highly recommended.

While we will not attempt to draw any general conclusions from
the two admittedly simple filter problems investigated in this
chapter, the error sources discussed for each exampie are common to
all nonlinear. filter problems and the significance of each and
others not mentioned must be ascertained by the filter designer if a
truly effective filtering performance is to be achieved. The approxi-
mation problem in optimal nonlinear filtering is not restricted to
just the mathematical approximations discussed in the preceding
chapters of this thesis, but includes all the modelling and
statistical approximations which must be applied to a process in the

interests of practicality.



CHAPTER VI

AN APPLICATION OF MONLIMEAR FILTERING:
TIME-DELAY ESTIMATION

6.1 Introduction

Two major approximation problems associated with most
practical applications of optimal nonlinear filter theory are
concerned with simplifying the process models and simplifying the
optimal solution to the filter problem. The latter problem was
considered in Chapters III and IV of this thesis while the férmer
was discussed in the preceding chapter. An application which
clearly illustrates how these problems may affect the performance of
a nonlinear filter is that of on-line time-delay estimation via
nonlinear fiiteringg He consider this particular application in this

" chapter.

/.
Q" zw(_[_) R UZV(-[-)
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S ]

FIGURE 6.1 Block Diagram of Time-Delay
Estimation Problem

The linear dynamic system specified by the block diagram in

Figure 6.1 could represent a simplified dynamic model of a

117
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distributed parameter system (e.g., a distillation column or a heat
egchanger) acted upon by the measurable disturbance variable wu(t)
and having the output variable y(t). An unknown time-delay. y
exists between the input and cutput variables and for adaptive
control purposes it is desired to develop a nonlinear filter to
improve our estimate of the value of y by processing the input-
output records u(t) and z(t) . The process disturbance noise
Q]/Zw(t) is assumed to represent both the unmeasurable inputs which
may act upon the process and any u(t) measurement-noise which may
exist. For this study we consider only the case in which u(t) is
a unit-step function; the more general random function case while
of greater importance, is also of greater difficulty and could
easily be the sole concern of an entire thesis. Similarly, we
assumed for simplicity (not by necessity) that the effective time
constant of the process is constant and equal to unity.

Then the process state and observation equations %or the

system of Figure 6.1 are given as

%1 = - xp +ult - x,) + Q"2 (t) (6.1)
%%2 = 0 (6.2)
z= Xt R]/Zv(t) (6.3)

where

X = (y,y)T
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gtz
u(r) =
045 7<0
LY,
and
p(x1(0),%,(0)) = plx, (0))p(x,(0))
p(x,(0)) = N(m, ,0.%)
i io’“10
with
m]0 = 0 m20 = 1.0
%0 = 0,25 ; 90 = 0,50 .,

One may inquire as to why a nonlinear filter is required to
estimate thg time-delay, vy . Wouldn't the amount of dead-time
present be apparent from the step response of the process ? If the
noise intensities (i.e., Q and R) were low enough and the step-
input amplitude high enough the answer would be in the affirmative.
Unfortunately, such conditions exist primarily in textbooks since
in most on-line applications the step-input amplitude must be kept
as small as possible so that the process output does not stray
significantly from the desired operating point. For in the control
of physical systems, Tinear models are usually perturbation models
and the accuracy of these models varies inversely with the perturba-
tion size. Low amplitude step-inputs, of course, will produce low
signal-to-noise ratios for which it is the function of the nonlinear

filter to compensate as optimally as possible. Nonlinear filters do



not ignore nor nullify the deleterious effects of noise but instead
recognize and minimize those effects as much as statistically
possible.

Tvio nonlinear filtering techniques for the time~delay estima-
tion problem are considered in this chapter. The first technique
models the time-delay in the process by a Padé approximation and
utilizes a relinearized Kalman filter to estimate the time~delay
parameter, y . In the second technique no approximations were made
to the basic process model and a uniform=density nonlinear filtering
algorithm was developed for the estimator. The results of simulation
studies conducted for both these techniques were somewhat surprising

and also encouraging.

6.2 A Pade Model Filter

Since the function u(t - x2) in Eq. (6.1) 1is nondifferenti-
able at time zero a direct application of the re]ineariged Kalman
filter algorithm to the time-delay estimation problem is impossible.
As an alternative method we chose to approximate the dead-time
transfer function of the problem by a first order Pade
approximation.] lThe block diagram for the approximate process model

is given in Figure 6.2 . Then the process and observation equations

1 Another possibility would have been that of approximating the
step-function u(t) by the exponential function 1 - exp(-ct)
where the value of € would be chosen to maximize performance.
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-

for the approximate model of Figure 6.2 are given as

dx T = 1/2
8%4 = - XXyt x2(1 + x3) -u(t) - Q / w(t)
%%2 = - ;2 +u(t) + Q]/Zw(t)
1/2
QBw R"2v

e
% / o Rz N ER % =
o [+72S

S+ |

FIGURE 6.2 Block Diagram for Pade Model of
Time-Delay Estimation Problem

dx, _
HT3 = 0

1t R]/Zv(t)

N
I

X = (.Ys y*a Z/Y)T
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p(x3(0)) = p(x) | §¢ |

The relinearized Kalman filter for the above approximate

time-delay process model consists of the following equations:

dm, _ ] '
HEJ == MMy =W g+ mz(] + m3) *Myy - u(t) + my ;R (z - m])
dm, _ -1

HEQ =-m,+ u(t) + m]zR (z - m])

dm, _ -1

azs = m]3R (z - m])

dm]] = - m2 R"] = 2mMyg = 2mom. o+ 2my, + 2moms, + 2mamg, + Q
dt 11 1713 3711 12 213 3712

dm,, _ 2 -1

a€22 = - m]ZR - 2m22 +Q

dm,n, _ 2 -1

8—533 S - m]3R

dms, _ -

qT2 T T MR - My s Mymys - mgmy + My momy s+ Moy, - Q

1 To justify the assumption that x](O) and x (0) are independent
note that prior to the application of the unit step

x](t) and x2(t) respond solely to the random disturbances w(t). It
is reasonable to expect that x](t) and xz(t+y) were uncorrelated

for the relatively large values of time-delay (y) and t <0.
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dm, . _ -1 ; :
qE13 = - myymygR o - Mgy - mymag ok Myg kMM + mym g
dm -]

3?23 = - m]2m13R = Myg

where
m(0) = myqy » my(0) = m,
Man ¥ o |
m3(0) % El— In Egg-?—ggg | (6.4)
20 20 ~ °20 |
my,(0) = m,,(0) =0 2
1 22 10
1 2
m,.(0) = - m5(0)(6.5)
33 (nyg + 0y My = ap0) = 73
m]Z(O) = m]3(0) = m23(0) =0
_and
i Vo
E(Y/Z,} = gy [+ 33 (6.6)
"33 ny - Ying,|

The approximate relations (6.4) - (6.6) were obtained by assuming

the appropriate probability density functions (p(y) or p(;3))

to be uniform with the given mean and variance parameters.
One-hundred Monte Carlo simulations of the above filter acting
in conjunction with the process equations (6.1) - (6.3) were
conducted and the average performance of the filter was computed for
these simulations. The results achieved were, to say the least,

disappointing. No additional statistical information about the
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time-delay parameter, vy, was obtained with the relinearized Kalman
filter in that the average squared-error of the estimates remained
essentially constant over.the entire three-unit time interval the
simulations were conducted for. This poor filter performance can
probably be attributed to the sizeable modelling errors introduced

by the Padé approximation, an approximation which becomes Tess and
less accurate with increasing values of time-delay. In effect, any
positive information regarding the value of y which was obtained
from the measurements, z(t), was nullified by the negative informa-
tion introduced by the Padé approximation of the process model.

The performance achieved with this nonlinear filter was not
only disappointing but also somewhat surprising in that it was
thought that since the process model is part of a feedback Toop in
the filter, the filter would not be particularly sensitive to
model1ling inaccuracies. Such was clearly not the case and a further
study was initiated to determine an effective filtering algorithm for

the time-delay estimation problem.

6.3 Uniform-Density Filter

To design a proper filter we consider the conditional
moment equations of p(x(t)/Zt) for the process representation
specified by Eq's. (6.1) - (6.3). These moment equations are given
as

dm, _ —T o =]
HEJ =-m ¥ u(t - x2) + myyR (z - m])
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" dm " -1
e = m; 5R (z—m])

Ay c o 2] T e e il
HEJ] =- m]]R - 2m]] + 2 x]u(t - x2) - Zm]u(t - x2) +
Q+m R'](z -my)

111 1
dm 2,-1

m _ -1
HEZZ 5 m]ZR + m]zzR (z - m])

dm _ _] /\y A
aEJZ I m]]m]zR - Mgy ¥ xzu(t - X5) - mzu(t - XZ) +
m R-1(z - my)
112 )k
vhere

it - XpT = qu(t - x,)p(x/2)dx

.
i;ﬁ?EA:~;;7'= jx]u(t - x2)p(x/Z)dx

x2u(t - X5) = }xzu(t - xz)p(x/Z)dx

If we make the assumption that p(x/Zt) is a symmetric uniform-

density function p(x/Zt), then symmetry requires that

=m = 0 , and the moment equations become

™11 ° M2 T M2z

%%ﬁ =-m, +'Uff,j‘;;7~+ m]]R'](z & m])
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dm, _ -1 3
HTZ = m]ZR (z - m])

dm 3 2 _'I //\_ /\
H?J] = - mR - Zm]] + 2 x]u(t-xz) - 2m] u(t—xz) + 0
dm,, _ 2 -1

gTee = - Mok

dm - '] i
de'2 = - MR - my, *W' ”‘2@

where ) ) )
@= J{u(t-xz)p(x/zt)dx (6.7)

'i{ﬁf;fzgf'; jx]u(t—xé)ﬁ(x/zt)dx (6.8)

m; j'xzu(t-xz)é(x/zt)dx . (6.9)

The analytical evaluation of integrals (6.7) - (6.9) in
terms of the_conditiona] moments Mys Moy Myps Mooy and Mo is a
necessary and somewhat difficult task. To simplify this task we

make the following transformation of variables; let

N
y = = G(x - m)
Y2
where
T T
X = (X'I’XZ) y M = (m‘l ’mz) 3
c0s9 - sins8
G =
sing c0sS
and
2m
g = %-tan-] 12

Mag. = My



Then
x=G']y+m
vhere [ coss sine
¢l =6 - i -sing  cose
Also,

RA(e-%,) = 6 Faltxy) + mW(E-xp)

and, hence,

&;GTETIET'= fV;UTE:;ZTEose +f§;§?€?;;7_sine + m{ﬁfzt;;7~

'YEGTETQET = ]u(t—xz)sina +‘§Eﬁf;?;;7.cosa + méﬂT%tZET‘

The transformed nonlinear filter equations become

9= T(En) R (zemy) (6.10)
o = mp,R™ (z-my) (6.11)
%%41 = -m$1R'] - 2myy +Q ZY;GTET;ZTEOSG +
ZYEUTET;;7~sine (6.12)
%@22 , -msz'] (6.13)
3%52 = -m]]m]ZR"] - M, +'YEETE?;ETEOSS -
Fru(t-x,)sins (6.14)



128

where
m. (0) = Mg .
i=1,
m;;(0) = U?o ’
m]Z(O) = 0 ,
and
Wexg) = fule-x,)p(y/2,) dy (6.15)
Faltxg) = [yule-x,)ply/z,) dy (6.16)
Yoult-x,) = JyZU(t-xz)B(y/Zt) dy (6.17)
with
Xp = -y]sinS + ypcoss +m, .

The {ntegrations in equations (6.15) - (6.17) were carried
out analytically as discussed in Appendix II . The expressions for
TT(’,?\\7] Sﬁﬁi’—Thhjl and'ygﬁfzﬁt\ﬁjxwere determined in terms of the
parameters G1 5 9 5 ¥y 5 Yp 5 Yo o and Ya for each mode and are

presented in Tables 6.1 - 6.4 , where:

2 3 I 5
o7 = phmyy Fmyy - Ay, (myy =g )7

2. _ .3 v, 2 2
dp = glmyy myy + Ay, 4 (myy - myg)7]
y, = (t-m,)/cose - o,/tans
Y = oy = oy + ya)/tana
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y ¥y ¥ 20]tana

c
Yg=Yp * 202/tane 5

and the modes are defined in Table 6,11

Then the uniform-density nonlinear filter consists of the

differential equations (6.10) - (6.14) for the expectation variables

TABLE 6.1 Uniform-Density Time-Delay
Estimator Mode Numbers

Yo s
‘yC ia . f_ s 0‘2 | & 02 <si 02 02 <
-0 1 2 3
o R 4 5 6
gy < 7 8 9

- ), ‘YTUT’~T~‘T , and Jou( - determined from Tables

6.1 - 6.4 as indirect functions of the moment variables. lhile

the resulting filtering algorithm may appear somewhat complex, it is
really quite simple to implement on a digital computer in that it is
totally recursive and requires no iterative solutions of nonlinear
algebraic equations. Simulation studies of this filter have revealed

that the filter operates in only modes 1, 5, and 9 so that the filter

1 The mode of the filter is used here to refer to one of a number
of possible regions of the filter state space in which certain filter
relations hold true.



TABLE 6.2 Analytical Expressions for TT(E?;;T‘

for Modes 1-9 of the Uniform-Density

Nqnlinear Filter.

MODE
NUMBER TT(ETEES‘
1 0
5 (o + yp)lop + v,)
801 gy
o1 Y ¥y t Yy
3 401
(0] 2 _yb)(cz + ‘yC)
4 80] 9y
5 Zc2 * ya i yc
462
; (o7 = yg)loy ~ y.)
80.| 9y
; 29 = Y4 = %
401
; (0 = y Moy +yy)
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. . //\
TABLE 6.3 Analytical Expressions for ylu(t~x2)
for Modes 1-9 of the Uniform-Density
flonlinear Filter.
MODE T
NUMBER ]u(t-xz)
1 0
5 (U2 + ‘ya)(C] * ‘yb)('yb = 261)
2401 9y
2 2
5 ‘331 + (‘yd * ‘yb) = ‘ydyb
120
1
. (‘yC + 0'2)(5'] = yb)(zo" * ‘yb)
240-I )
5 0] (‘YC = .Ya)
]202
6 '(02 - ‘YC)(O] > yd)(zo] + .yd)
2401 P
; 30] - (.‘/d + ,Vb) + ‘ydyb
1201
’ (yy = 0p) oy + yy)lyy - 297)




TABLE 6.4 Analytical Expressions for '?EUTET;;7~

for Modes 1-9 of the Uniform-Density

Honlinear Filter.

Lfiecn Vet
1 0
5 (0] + .Yb)(cz T ya)(.‘/a - 20 2)
2401 P
3 'Oz(yb = .Yd)
120]
4 (0'1 = .‘/b)(}’c + V2)(_yc w 252)
240-I gy
2 Lo
5 o TN yc)é - Ya¥e
]202
. ~(oy = yy)loy - y )20, +y.)
240.l 9y
; -Oz(yd g0 .Yb)
7201
8 (ya ™ 32)(0] + .yd)(.ya * ?32)
2401 Sy
9 0
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relations for the remaining six modes could be nedlected in any
actual application of the filter. A closer examination of the filter
relations would probably reveal other possible simplifications to

the algorithm,

The Monte Carlo simulated performance (1;2\\ vs. time)
curves for the uniform-density nonlinear filter time-delay estimator
are presented in Figure 6.3 for four separate values of observation
noise variance ( R = .001, .01, .1, = ) and 100 simulation
experiments. Note how the performance approaches a non-zero constant
value asymptote with increasing time. To increase the time-delay
estimation accuracy further another step-input would have to be
app]ied to the process and the filter reactivated (i.e., t reset to
zero) after it reaches a steady state. Figure 6.3 also indicates
that the performance curve will approach some 1imiting curve as the
_value of the observation noise variance approaches zero; this agrees
with what one would expect intuitively. Uhen contrasted with that
of the Padé approximation filter, the performance of the uniform-
density filter was almost startling.

Time-response curves for two simulation experiments with
the uniform-density filter are presented in Figure 6.4 . Note from
this figure how the covariance variable Moo approaches a nonzero
steady-state value, as does the time-delay estimation error variable.
The influence of the cross correlation variable m, on the filter
behavior is clear in that the most significant reduction in

estimation error occurs when the value of Mo is the greatest. A



FIGURE 6.3 Average Squared-Errors for 100 Simulations
of Time-Delay Estimation Problem with Four
Values of R
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discontinuity exists in the ylu(-) variable response curve and
is caused by a change in filter rodes (a result of the uniform-density

approximation for p(x/Z)) .

6.4 Concluding Remarks

The dynamics of many industrial processes are such that
sizeable time-delays can exist betveen the input and output variables
of those processes. Sophisticated control strategies can be employed
to compensate for the effects of these time-delays but such strategies
require a knowledge of the amount of dead-time present, an amount
which may be randomly varying with time. Ue*ve considered in this
chapter two possible techniques for obtaining on-line estimates of
time-delay parameter values from step-response measurements. Each of
these techniques was based upon a particular method of approximately
optimal nonlinear filtering but only one technique proved effective.

It was shown that while a Pade approximation of the process
dead-time trensfer function made 1t possible to apply the relinearized
Kalman filter to the time-delay estimation problem, the resulting
filter proved to be totally ineffective as a solution to this problem.
A second nonlinear filtering algorithm was investigated and consisted
of the differential equations for the conditional mean and variance
parameters of p(x/Zt) under thz assumption of a uniform-density for
that function. The performance of this filter was discovered to be
very acceptable.

While the time-delay estimation problem is only one application

of nonlinear filtering, from it; two important general remarks
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regarding nonlinear filtering can be made:

Q

The effects of process model simplifications should
not be ignored, especially when the process dynamics
contain significant amounts of dead-time.

The filter designer should become familiar with the
conditional moment equations for a particular filter
problem and should not become totally reliant upon
any single method of approximately optimal nonlinear
filtering (e.g., the relinearized Kalman filter) as
it usually -places many hidded restrictions on its

application,



CHAPTER VII
SUMMARY AND EXTENSIONS

7.1  Summary

Because the theoretical solution to an optimal nonlinear filter-
ing problem is generally of infinite dimensional form, in practice a
finite-dimensional approximate solution to the problem must be found.
There exist in the literature many approximate methods of optimal non-
linear filtering, the absolute effectiveness of all of which has been
ignored because of the difficulty in computing the optimal filter
performance. Those responsible for some of these methods imply but do
not show that by increasing the complexity (i.e., dimensionality) of
their particular filtering techniques the performance of the filter
can be made arbitrarily close to the performance of the theoretically
optimal nonlinear filter. One could only speculate as to how much
additional filter complexity produced how much additional filter
performance.

By way of examples, we have considered in this thesis the ques-
tion of how much less than optimal is the performance of approximate
methods of optimal nonlinear filtering? To evaluate the effectiveness
of various approximate filters a numerical technique was developed for
computing the optimal performance (a so-called upper performance-bound)
for simple nonlinear filtering problems. This technique was based upon
a representation theorem of Bucy and was applied to the meticuluous
study of five nonlinear filtering problems. Results of these studies

showed that essentially optimal performance could be achieved with a
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fairly simple nonlinear filtering algoritnm; the relinearized Kalman
filter. Other, more complex methods of nonlinear filtering were
investigated and most performed less effectively than the simpler re-
Tinearized filter.

The relinearized Kalman filter, though highly effective, is not
recommended as a universal solution to the general optimal nonlinear
filtering problem. Besides requiring the differentiability of all the
system functions (i.e., f(x), h(x), and g(x)), the relinearized filter
appears to be ineffective when the process disturbance driving functions
(g(x,t)) are functions of the state, x. This weakness of the relinear-
ized Kalman filter was clearly demcnstrated by a rather simple linear
disturbance-parameter estimation problem. A satisfactory solution to
this problem was achieved by consicaring the differential equations
for the moments of the conditional probability density p(x/Zt) » and
- making appropriate simplifications to these equations.

It is our recommendation that increased emphasis.be given in
the literature to the conditional moment equations of nonlinear filter-
ing problems. MWe have found that a very effective method of nonlinear
filtering is to utilize the conditional moment equations under the
assumption of a particular form for the density function p(x/Zt). In
fact, this particular method is the only one which can effectively
handle filter problems in which some of the system functions are
non-differentiable.

Contrary to what the literature might lead you to believe, it
was pointed out in this thesis that the approximation problem of optimal

nonlinear filtering is not just concerned with the deleterious effects
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of replacing the infinite-dimensional optimal filter by a finite-
dimensional approximation. This particular approximation is only one
of many influences on the performance of a nonlinear filter. Improper
modelling assumptions, inaccurate estimates of noise levels, and insuf-
ficient knowledge regarding the initial state-vector statistics also
contribute to the less than optimal performance of a nonlinear filter
énd should be given at least as much consideration by the filter designer
as the mathematical approximations associated with that filter. The
question of filter performance sensitivity to modelling errors was
considered in this thesis and it appears that in practice its answer
can only be determined through lMonte Carlo simulation. Identifying
those model errors to which a filter is most sensitive is a matter of
great importance to a nonlinear filter designer.

The potential applications of optimal nonlinear filtering
theory are many. One such application which was given considerzble
attention in this thesis was that of on-line time-delay barameter
estimation for dynamic processes. However, the importance of this
particular application was not due so much to the usefulness of the
estimator, as it was to the demonstration it gave of the way approxima-
tions can affect the performance of nonlinear filters. Two filtering
methods are considered, one relying on process model simplifications
and the other relying on simplifications to the optimal nonlinear filter
solution. The choice between these two filtering schemes was clear in
that the former scheme yielded no useful information at all about the

time-delay parameter value while the latter scheme performed superbly.
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7.2 Extensions

It is doubtful that the theoretical guestions concerning optimal
nonlinear filtering which remain can be answered by way of some general
analytical procedure. Instead, we feel that answers to these questions
can only be arrived at through carefully conducted studies of an exten-
sive number of relatively simple nonlinear filter problems. From the
results of these studies it is hoped that a valid set of general guide-
1lines for nonlinear filter designers can be established. Uith this in
mind, we recommend that more studies such as those discussed in Chapter
IV of this thesis be carried out.

While the primary concern of this thesis has been with the con-
tinuous optimal nonlinear filter problem, a parallel effort could be
carried out which deals with the discrete optimal filter problem.

Upper performance bounds could be computed with a discrete version of

’ the Bucy representation theorem and the performances of_the many avail-
able discrete filtering methods could be compared with these upper
bdunds. It is felt, however, that a more important class of nonlinear
filtering problems are those which are described by continuous process
equations and discrete observation equations (see Section 2.4). The
means of establishing an upper performance bound for this particular
class of filter problems is not at all clear at this time.

To those whose interests are concerned more with practical ques-
tions than with theoretical questions, we address the following com- |
ments. A real need exists for carefully thought out applications of
nonlinear filtering. A1l too often, practical applications of a theory

have been conceived and carried out by individuals who did not possess
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a sufficient understanding of the basic theory involved. For this rea-
son, we recommend that a person wishing to apply the theory of non-
linear filtering to real problems first acquire a basic understanding
of the theory; the derivation and meaning of the conditional moment
equations should be a minimal requirement.

Some potential areas of application for nonlinear filters are

the following:

@ Chemical reaction kinetic coefficient estimation from input-output
measurements.
<) Time-delay parameter tracking for distributed parameter systems

by signal injection and by naturally occurring disturbance mea-
surements.
e Low frequency, small amplitude frequency response analysis in a

real-tine environment.

e An optimal phase-lock loop.
e An adaptive feed-forward control parameter estimator.
® A temperature and carbon concentration estimator for the basic

oxygen steel making process.
The above problems should be investigated via hybrid simulation with
process and observation dynamics simulated on an analog computer and
+he nonlinear filter implemented in real time on a digital computer,
preferably of the process control type. Simulation studies are a
necessity for these studies in order that the true values of the
variables being estimated be known.

One important practical aspect of nonlinear filtering which needs

investigating is that of determining the statistical information about
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a process which is required for the filtering a]gor}thm. In particular,
how can and should the initial state vector statistics and the observa-
tion noise parameters be determined by off-line analysis for a particu-
lar filter application? Is field measurement data required to estimate
these parameters or should the unknown filter parameters be determined

by "tuning" the filter on a simulated process or even the process itself?



APPENDIX I
CONDITIONAL CENTRAL MOMENT EQUATIONS

A procedure outlined by Kushner [31] is followed in determining
the stochastic differential of the second conditional central moment
parameter M5 where

= j(x. -m)(x; - mJ)p(X/Zt)dx : (101).

The same procedure may be utilized to find the differential
expressions for any of the higher-order conditional central moments.
Let ¢ = mij and P = p(X/Zt) and compute for a differential

increment in time dt the corresponding differential change in ¢ ,

where
an, = dt + (KF - B m) R de(t) - B dt)
. [/f? P AT - R m) R - R at (1.2)
(T - B mdRTRVEda(e) 5 k=40
and
0 = [£00 +ptn -0 D | ex v TR0 Ao

(1.3)

Since a(t) 1is ideal brownian-motion it possesses the two properties

1hi



.

E{da dt}

n
o

and

E{(da)(da)T} = 1dt (1.4)

and as a result the Taylor series differential expansion of ¢ about

t must include second-order terms; i.e.,

2
_ 3% 36 1.4 20 1 37¢ 2
d¢ = "a'r-q'] (dm1) + -B—FTTJ(Gm) + '.J—P(dp) + 'é'-——zami (dm]) +
2 .2 2
%- 39 5 (dm.)? + %;—%(dP)Z + 28 (dn.dn) +
om. J aP am.am.
J 1
a2 @
0 (dm.dp) + —==—(dm.dP) . (1.5)
am, 3P amjaP

From the defining relation (I.1) the partial derivatives in

Eq. (I.5) can be computed to be

. - . 92 . - .
< [oxs = mptoa s . [ox; = mppeaex s
2 2 2

2 =J(x1-m)(xj-m)dx 620 _3¢ .9

aP 3m amj 3P

2 2 , 2
9. = I’P(x)dx 5 B8, wie (xJ - m.)dx ; i [(x.-m.)dx

am. am J am 3P J am.3p Y L
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which when substituted into Eq. (I.5) yields

dé = - I(dmi)(xj~— mj)de - J(dmj)(xi - mi)de +

J(dP)(xi - m ) (x,

Lad . + e USHE o ), -. - g = - -
5 - my)dx J(dm1dﬂJ)de J(dm1dP)(xJ my)dx

f(dmde)(xi = mi)dx (1.6)

the first two integrals of which disappear; dmi and dmj being
independent of x .

From Eq. (1.2) we get

dndn = (@T—’ﬁ?ﬂi)TR—] \]/Z(da)(da)TR]/ZR'](ij\ - i) +
Olat?, dadt)

which, since E{(da)(da)'} = Idt and E{dadt} = 0 , simplifies in

the 1imit and in the mean to the relation

dmidmj = Ci:\'-’ﬁ\mi)TR']Cigﬁ‘-’ﬁﬁnj)dt . (2.7)

Similarly, it can be shown that

(£ ] -/h\mi)TR'](h AP dt (1.8)

dmidP

and

i

dm P ((J.‘h* ~'ﬁ\mj)TR"](h ~ P dt . (1.9)
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Substitution of (1.3), (I.7), (1.8), and (I.9) into Eq. (1.6) yields

m=fu1-mﬂw-mﬁ(fwwt+wh/m%4mcf%wa+

- )RV ER -Mdt - dt [(x, - m) @ )T
J J J 1 1

RV (h - RYPdx - dt j(x].- mi)({J\h /h\m YRV (h - Bpdx . (1.10)

Using the ¢2 operators' adjoint property and identifying expectations

we get from (I.10)

/\
=R Llx5 = m) ey - my)ldt + (dg ~fat) R /j(x ) (xgm ) +

(R -, TR 1”&%@4@*% Tr-1( .

i j
/.//\
. (x5 - m, m.) (h-F) dt-{j\’m ]mdt

which simplifies to the final desired relation

dng; = do = RL0x-mg) (xg-n TTat - (@-%i)TR“@?-ﬁj)dt +

M
(de -Rat) R Th =) (x; = m)x; - mo)



APPENDIX Il
TIME-DELAY FILTER FUNCTIONS

To completely determine the uniform-density time-delay
estimator discussed in Chapter VI it is necessary to evaluate
analytically the conditional expectations of the functions u(t-xz),
y]u(t-xz), and yzu(t—xz) in terms of the conditional moment para-
meters m], Mo m]], Moos and Mo - In particular, we must evaluate

the integrals in the defining relations

m = j u(t-x)p(y)dy
Fralew = [ yulexdpiydey
m . ']ryZU(t-xz)B(y)dy
where 5(y) z B(y],yz) is a zero mean, zero covariance, uniform

density function with variances 012/3 and 022/3; .80,

plyysy,) = -0, <Yy 29

0 , otherwise

Computing the second moments of B(y) in terms of those of p(x/7)

149
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yields the identities

[
°12 . %{mn * My, - 4”‘122 + (my, - '“11)2}
and
2 3 /2 7
op = FAmy Fmy, + 0 Tamp, + (myp - myg)Td

Then the conditional expectation of u(t-xz) can be determined

approximately from the following relations:

Eﬂ?:;;7"= GT?T:T;;;;;E - y,c0s8 - my)

C-I 02
- J j u(t + yqsins - y,cose - m2)

KE

dy,dy
=91 =9 1%2 21

where

t=t+ y]sine - ¥,C089 - m, .

Referring to the sketch in Figure II.1 , we recognize that the

piecewise nature of the function u(t-xz) requires that a separate

set of equations for the terms -, jﬁﬁi—j‘j‘, and

Tl )

you be derived for certain sets of values of the parameters

¥y and Ve (or equivalently Yh and yd) . These sets will be



Asig
(U(’):O 0—5 '/
\ Yl %/;}
2> A<\ L
1 4/./\\\\\\07 5
E\<<\\\ Noc=

FIGURE II.1 u(t + y,siné - ¥,C089 - mz) Versus Y, and v,
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referred to as modes (1 - 9) as defined in Table 6.1 , where

t - m2

Ya = ~coss ~ tane

and

<
i

¥ ¥ 20]tan9 .
In addition, it may be easily shown that

¥y, = —Of - (52 + ya)/tane

and

Yd

To determine the analytical expressions for u( - ), 'yjﬁfﬁf“j‘,

and ’?EU?~T§7§ for each of the ninz modes, we make use of the

i + Zcz/tana .

. following simple area-moment relations:

@

A
M, = J.x f(x) dx
2F(x) s
h
< b, = hb (5 + 9 (11.1)
ol g gip "
Af
A
T e ; uy = hb (§ - %) (11.2)
e
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37
hb
////h M, = 5—(b + 29) (11
Vi =X
g+ b
Consider, for example, mode 2 ; i.e., Yo £ 79, and
=0, < ¥, 20, - From the area of the triangle in Figure II.2
we get
/\ .
u(t - x2) J' j u(t- Xy y],yz)dy]d/2
= (02 + ya)(ol + ‘yb)/&jlcz 5
bt Asé
() A££Z (o8
oz L UCIBy)=0 \ €8]
\z. K bu
< /;%\ L >x: :-S/
¥ 72 59 / 2
V[ D>, /

N /1D

C
UC-IRY) = /45 7

Figure I11.2 - Mode 2

and from moment relation (I1I.2) we find that

©

J yyult-x,)ply, .y, )dydy,

RS,

1
—
Q
no
s
]
Q

1 ¥ yb)(yb - 20])/240102 .

(O3]
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In a similar way it can be shown from moment relation (I11.2) and

Figure I1.2(b) that

o

J j Yoult=x5)p(yy,y,)dy,dy,

=00 w=CO

yzu(t-x2

(07 + yp) (0, + ¥,)(y, - 20,)/245,0, .

The expressions for ’GT‘T\T‘,fy;GIkT\j‘, and SE;IZ§?~7'were

determined in terms of Yo o Yp s Yo s ¥Yq o 97 s and 5 for

each mode and are presented in Tables 6.2 - 6.4 of this thesis,.
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