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Abstract

Expert judgments of probability and expectation play an integral role in many sys-
tems. Financial markets, public policy, medical diagnostics and more rely on the
ability of informed experts (both human and machine) to make educated assessments
of the likelihood of various outcomes. Experts however are not immune to errors in
judgment (due to bias, quantization effects, finite information or many other factors).
One way to compensate for errors in individual judgments is to elicit estimates from
multiple experts and then fuse the estimates together. If the experts act sufficiently
independently to form their assessments, it is reasonable to assume that individual
errors in judgment can be negated by pooling the experts' opinions.

Determining when experts' opinions are in error is not always a simple matter.
However, one common way in which experts' opinions may be seen to be in error is
through inconsistency with the known underlying structure of the space of events.
Not only is structure useful in identifying expert error, it should also be taken into
account when designing algorithms to approximate or fuse conflicting expert assess-
ments. This thesis generalizes previously proposed constrained optimization methods
for fusing expert assessments of uncertain events and quantities. The major develop-
ment consists of a set of information geometric tools for reconciling assessments that
are inconsistent with the assumed structure of the space of events.
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Chapter 1

Introduction

* 1.1 Motivation

A supercomputer called Multivac plays a central role in a series of short stories by
Isaac Asimov. Multivac processes phenomenal amounts of data and outputs proba-
bilities of various events of social significance. As a result of Multivac's accuracy of
prediction, society is largely able to eradicate crime. In the story "All the Troubles
of the World" Asimov presents a scenario in which a certain man is predicted with
high probability to commit a murder. Police, acting to avert the crime, engage in
an escalating series of actions, including detention, investigation, and questioning.
However, each action simply increases Multivac's assessed probability of the crime
occurring. The crime is eventually averted (in the nick of time), by the realization
that the system's representational systems were incapable of discriminating between
the father and his minor son. This fictional story points out real difficulties of large
scale probabilistic inference involving autonomy, bias, and what probability really
means.

A similar theme is evoked, more sinisterly, in Philip K. Dick's "The Minority
Report," in which three mutant humans act as oracles of future crime. Termed
'precogs,' the mutants' predictions of future events help curtail crime. However the
predictions are not absolute, and occasionally one of the three precogs has a different
vision from the others, termed a 'minority report.' The police division charged with
acting on the precogs' visions chooses to ignore the minority reports, resulting in
troubling outcomes where truth is sacrificed in the interest of efficiency.

These themes of eradicating evil through super-human foresight are certainly en-
tertaining (as evidenced by the success of recent Hollywood movies based on each of
the short stories), but reality is not science fiction. However, in an instance of fiction
prefiguring reality, 'predictive policing' was the theme of a 2009 National Institute of
Justice symposium. As data on crime proliferates and as high-dimensional inference
improves, science fiction is moving closer to reality. With this increased predictive
capability comes the same challenges for those decision makers tasked with acting on
expert advice in risky situations that were illuminated by the fictional stories: what
action to take when experts (human or artificial) express uncertainty, when the advice
of one expert contradicts or is inconsistent with that of another, and how to deal with
fundamental representational limits of expert systems.

When we're called to act under uncertainty or risk, a reasonable way of improving



the outcome of our actions is to gather recommendations and evaluations from groups
of experts (sometimes called Subject Matter Experts, or SMEs, in the literature). For
example:

" A military commander, prior to engaging in a strategic action, will request input
from his senior officers

* An individual, diagnosed with a deadly illness, will consult multiple doctors

" A company, wishing to protect its communications network, may employ mul-
tiple commercial Intrusion Detection and Prevention Systems (IDPSs)

" A police detective, investigating a series of thefts, will consult other detectives,
data mining algorithms working on a variety of databases, and profiling spe-
cialists to identify the culprit

As a general model, each expert provides an assessment of some event. Assess-
ments may be qualitative, as in the case of the commander's senior officers, or quan-
titative, as in the case of the IDPSs. Events may be future (forecasting) or past
(forensics). Experts may be human (doctors, officers, etc.) or machine (IDPSs, data
mining algorithms, etc.). They may assess a single event or many. Each may be
asked to assess the same set of events, or each may be asked to assess a different, but
related, set of events.

The central question we address in this thesis is how to reconcile uncertain, incon-
sistent expert assessments. For now, the term 'inconsistent' can be taken loosely to
mean logically irreconcilable, although more technical definitions will follow. When
a decision maker receives conflicting assessments he must employ some method to
reconcile them. He may:

" Reject some assessments out of hand, based on exogenous (reputation, com-
plexity, etc.) or endogenous (internal consistency, neighbor nearness) criteria

" Modify some or all assessments until they become consistent with prior beliefs
and then update his beliefs

* Update his beliefs with the inconsistent assessments, and then perform revision
to create consistency

Recognizing that the right method of reconciliation may be situation dependent,
we will develop some general principles for reconciling inconsistent assessments in a
variety of situations.

* 1.2 Distributed Detection and Estimation

From an engineering perspective, the problem of reconciling diverse assessments is
related to the problem of distributed detection and estimation. The fusion challenge
is to create a rule that incorporates the information from the distributed assessments
while obeying fundamental constraints that may exist in the world.



The sister problems of distributed and decentralized detection have received much
attention in the academic engineering literature, particularly in the context of the
design of sensor networks. An excellent overview of the subject is given in [1]. Early
work by Tenney [2,3], Tsistiklis [4-6], Varshney [7] and others has grown into a robust
community.

One particularly fruitful area of research has been on belief dynamics in networks.
See particularly [8-10]. The challenges of coming to a consensus on a state of the world
under limited and time-varying communication has been applied to cooperative ve-
hicle dynamics [11, 12], distributed function computation [13], leader election [14,15],
clock synchronization [16,17] and more. The consensus literature focuses primarily
on engineered solutions to the problem of convergence on a single value across the
network.

In contrast to previous literature, in this thesis we will focus on the estimation of
a set of consistent values rather than a single consensus value. Also, the engineering
focus on limitations imposed by constrained communications in networks in relation
is left largely to future work.

* 1.2.1 Distributed Filtering and Consensus

A natural outgrowth of the decentralized detection literature has been to consider
estimating the state of a time-varying process. Optimal filtering theory [18], with
early developments by Wiener [19], Kalman [20] and Kalman and Bucy [21] devel-
oped statistical methods for estimating process states given a sequence of uncertain
observations.

Attempts to generalize optimal filtering to the decentralized (indicating geographic
diversity but no communication network constraints) and distributed (both geograph-
ically diverse and communication constrained) settings [22-25] has produced general-
ized algorithms for estimating the time-varying state of a centrally observable process.
Assumed, however, in all these treatments is a single, globally agreed-upon dynamical
model. The problem of how to do optimal distributed filtering when observational
experts dissent on the proper model specifications has not been addressed in the
literature.

N 1.2.2 Of Indian Villagers and Elephants

A classic example used in much of the distributed detection and estimation literature,
is of observationally limited villagers (either blind or in the dark, depending on the
telling) who must ascertain the nature and characteristics of an elephant. I take the
following account from a classic text by the Sufi poet Rumi:

Some Hindoos were exhibiting an elephant in a dark room, and many
people collected to see it. But as the place was too dark to permit them
to see the elephant, they all felt it with their hands, to gain an idea of
what it was like. One felt its trunk, and declared that the beast resembled
a water-pipe; another felt its ear, and said it must be a large fan; another
its leg, and thought it must be a pillar; another felt its back, and declared

17



the beast must be like a great throne. According to the part which each
felt, he gave a different description of the animal.
(The Masnavi, by Rumi, tr. by E.H. Whinfield, [1898])

Many lessons can (and have) been derived from this simple tale, but in the context of
distributed detection and estimation the story is used to illustrate the difficulty of us-
ing multiple observations to construct a complete picture of the observed object. Key
to our conception of distributed assessment is this picture of a single phenomenon that
is being perceived in a limited way by a distributed set of assessors, each attempting
to explicate his local observation as faithfully as possible.

U 1.2.3 Consistency vs. Consensus

Much of the previous engineering literature in distributed detection and estimation
has focused on the consensus question. The two questions most often asked are: given
a distributed set of assessors, each observing the same phenomenon, when and how
can their beliefs about the phenomenon converge to a single, global belief.

Such a model is excellent when the phenomenon under observation is sufficiently
confined that experts can extend their local knowledge to an assessment of the phe-
nomenon as a whole, or when locality conditions on the phenomenon itself result
in separability guarantees among the groups of assessors. However, in an entan-
gled world with phenomena that are 'elephant' sized, a broader criteria needs to be
adopted.

We suggest that the appropriate question in a global environment with "large"
phenomena is consistency. To strain the elephant analogy, suppose we have two ex-
perts trying to classify an unknown animal. One expert, using keen scientific intellect,
takes the animal's temperature under various external conditions. The temperature
remains constant to within a threshold, and the expert proclaims, "this animal is
warm-blooded." The second expert, observing mating and reproduction, states that
"this animal's young are hatched from eggs." Both of these statements represent 'soft'
decisions about the identity of the animal (i.e. they don't uniquely identify the ani-
mal, but narrow the set somewhat). The assessments are consistent with one another
in the sense that there exist animals that are both warm-blooded and whose young
hatch from eggs. In essence, if there exists at least one animal consistent with the
decisions of all the assessors, then the assessments are consistent.

The goal of distributed systems for detection, estimation and assessment should
be to make consistent rather than consensus decisions.

* 1.3 Coherence

The fundamental concept to which this thesis will speak is coherence. With respect
to assessments, coherence is the requirement that assessments be consistent with one
another, that they cohere. In terms of the Indian story of the elephant, the various
statements of the villagers were coherent because an object exists (an elephant) with
all the assessed characteristics. Had no such object existed, the assessments would
have been incoherent.



Coherence can be viewed as a relaxation of the concept of consensus. If the
object or event under assessment is identical across all assessors, then to be internally
coherent, all the assessments must be the same. However, if the assessors are working
locally, as opposed to globally, their assessments may differ (as per the elephant
example). But this does not represent a de facto falsification of the assessments;
rather, such falsification would depend on the (non)existence of an object or event
that exhibited all assessed local behaviors.

Coherence-like concepts, as will be shown, are prevalent in many academic dis-
ciplines where they are often contrasted with foundationalist approaches. Concepts
of coherence are often (but not always) associated with ideas of subjectivism, non-
rationality, and systemic thinking while fundamentalist views are focused on objec-
tivisim, rationality, and axiomatization. The tension between these two viewpoints,
objective/foundational versus subjective/coherent, can be seen in many different aca-
demic fields.

In the following cross-disciplinary development we do not attempt to give a com-
plete view of any one topic. We recognize that many of the covered fields have rich and
deep findings not included in these brief summaries, and that even through the limited
lens of coherence, none of these caricatures constitute a complete picture. Together,
however, they indicate the pervasiveness of the dichotomy between foundationalism
and coherentism.

* 1.3.1 Probabilistic Coherence

In his seminal work on probability theory [26], de Finetti defined a concept of prob-
abilistic coherence. Probabilistic coherence will be the fundamental concept in our
theoretical development, and we leave a lengthy discussion of its principles to Chap-
ter 2. Here we will refer briefly to the theory, its motivations and implications.

Early approaches to probability theory were based on a frequentist notion that a
probability encodes an average long-term outcome of some repeatable trial. In this
approach to probability, the values reflect a fundamental truth about objective re-
ality. However, this theory of probability is insufficient to explicate how probability
may be used to represent non-repeatable events. This shortcoming of the frequen-
tist/objectivist view of probability led to a subjectivist approach, pioneered by Ram-
sey [27], de Finetti [26], and Savage [28]. Generally speaking, the subjectivist view of
probability was that a probability is an encoding of personal uncertainty about the
outcome of an event. The coherence principle, posited by de Finetti but drawing on
earlier work by Ramsey, states that probabilities when viewed as odds must not allow
a risk-free gamble to be made against them. This so-called "Dutch book" argument
views probabilities not as representative of long run averages, but as a system of
consistent beliefs.

* 1.3.2 Coherence in Philosophy

A fundamental objective of philosophy is to explicate the concept of 'truth,' including
what is meant when we claim a proposition is true, and how we justify such belief.
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One class of theories of truth is referred to as "Coherence Theories" [29]. Coherence
theories have been espoused by such philosophers as Leibniz, Spinoza, Hegel, Bradley,
Blanshard, Neurath, Hempel, Dummett, and Putnam. Generally, these theories "ac-
count for the truth of a proposition as arising out of a relationship between that
proposition and other propositions." The core principle of coherentism is that truth
arise not from agreement with 'objective reality' (which a coherentist may dispute is
a meaningful concept), but through internal cohesion within a belief set.

Epistemology

Due to some degree to prominent criticisms of the coherentist view of truth (particu-
larly by Russell [30]), modern coherentists have shifted from coherence as an attempt
to define truth to coherence as a method of justifying epistemic statements. In this
strain of philosophical coherentism, an individual's belief system is justifiable only if
it is internally consistent. A stronger version of justificational coherentism states that
coherence is both necessary and sufficient to justify belief.

Analytic Philosophy

One of the most important innovators in analytic philosophy in the 20th century was
Ludwig Wittgenstein. In his Tractatus Logico-Philosophicus [31], he states "Wovon
man nicht sprechen kann, dariiber muss man schweigen." Translation: whereof man
can not speak, he must keep silent. Wittgenstein argued that man's necessarily finite
descriptive ability was insufficient to describe the infinite variety of experience of
reality. As such, the set of truths that can be communicated (and hence verified by
examination) is a small subset of the total set of truths.

The concept of verifiability was taken up by Wittgenstein's sometime friend and
collaborator, and a founding member of the influential Vienna Circle, Waismann.
In his 1946 paper "Verifiability," [32] Waismann espouses a very Wittegenstein-ian
view of the limits of verifiable truth. He coins the term "open texture" to refer to the
diversity of ways in which the same language can be justifiably applied. In [33], Hilary
Putnam takes up the discussion of open texture as a challenge to the computational
reductionist view of language and truth. The strict rules of logic and computation
are insufficient to span the breadth of infinite experience and meaning

Philosophy of Science

Perhaps the two most currently influential philosophies of scientific progress are those
of Karl Popper [34,35] and Thomas Kuhn [36]. Popper's view, first posited as a
counter to the logical positivism of the Vienna Circle (of which Friedrich Waismann
was a member), is that scientific theories should be treated critically. In Logik der
Forschung [34] he proposed falsifiability as the fundamental invariant of scientific
knowledge. This was in contrast to the positivists, who believed in constructive
empiricism rather than destructive empiricism. However, like the positivists, Popper's
theory of falsifiability is a fundamentalist view of science, that scientific knowledge
exists only through tests and experiments.



In contrast, Kuhn's proposition in The Structure of Scientific Revolutions of
'revolutionary science' in which old modes of thinking are rapidly replaced by new
paradigms is premised on the idea that scientific progress is not solely dependent on
rational comparison, but can be strongly influenced by gestalt shift. Underlying this
premise is the idea that there is something akin to taste in the scientific endeavor,
which is only possible if scientific knowledge exhibits a degree of openness, or porosity.

Philosophy of Law

The concept of porosity, related to the 'open texture' of Waismann, was fundamental
in HLA Hart's formulation of legal positivism [37]. The theory of legal positivism
views legal structures as reflective not of fundamental truths, but as an outgrowth of
social development. Although not explicit in Hart's formulation, a coherentist view
of law would suggest that a law base is justified not by its reflection of reality, nor by
its consequences, but by its internal consistency.

* 1.3.3 Coherence in Political Science

In [38] evidence is given for an objectivist/subjectivist divide within political theory.
Specifically, the author proposes what he refers to as the 'economic' and 'sociological'
schools of thought within political science. By 'economic' he means rational, founda-
tional and axiomatic in nature and by 'sociological' he means irrational (or at least
arational), systems-centric and coherent in nature. The author suggests the modern
sociological approach has its roots in Hegel, Coleridge, and other European theorists
responding to the excesses of the French Revolution, and he points to Talcott Parsons
as its primary modern purveyor.

* 1.3.4 Coherence in Cognitive Linguistics

Perhaps the most influential figure in 20th century linguistics has been Noam Chom-
sky. Among his many contributions is the formulation of the concept of Universal
Grammar [39] as the common structural basis for all spoken language, introduced
in the 1950s and early 1960s. At the time, this theory displaced the then dominant
behaviourist view of language as a learned (rather than innate) set of rules of com-
munication. The heart of Chomsky's development of the universal grammar is the
concept of Deep Structure, an overarching conceptual framework from which multi-
ple grammatical constructs can be derived. In this sense it is an absolutist view of
linguistics, relying on a common structure, or first principle for its motive effect.

In response to dissatisfaction with Chomsky's theory, several influential linguists
(including some of Chomsky's former students) developed a theory of generative se-
mantics, which posited that any universal grammar was insufficiently complex to
account for the variety of linguistic constructs. This led, in turn, to the development
of the concept of cognitive 'frames' [40,41] which are, in the words of Charles Fillmore,
that which "identifies the experience as a type and gives structure and coherence - in
short, meaning - to the points and relationships, the objects and events, within the
experience." Cognitive frames are collections of concepts which form meaning through



interrelation rather than deriving meaning from atomic rules. A key cognitive devel-
opmental step, according to the theory, is the ability to switch frames, which creates
a new structure for understanding and interpreting experience.

1.3.5 Coherence in Economics and Finance

Perhaps nowhere is the concept of coherence and distributed consistency more impor-
tant that in economics. The law of one price [42] and the closely related Efficient Mar-
ket Hypothesis [43] and Arbitrage Pricing Theory [44] are essentially consistency prin-
ciples on the assessment of financial worth of assets, including commodities, stocks,
options, etc. Furthermore, the concepts of distributed equilibrium in games [45-47]
can be seen as strategic coherence.

Despite its centrality (or, likely, because of it), the ability of these coherence prin-
ciples to describe real economic behavior has frequently been brought into question.
The seminal work of Kahneman and Tversky [48,49] introduced the field of Prospect
Theory which demonstrates empirically that coherent pricing frequently fails to hold,
and suggests psychological and behavioral models as alternatives to expected utility
models. Their work started a cascade of results and the establishment of the field of
behavioral economics [50] which explores the various ways in which human economic
assessments violate the principle of coherence.

The psychological and behavioral realities such as loss aversion, bounded ratio-
nality, cognitive biases, herd behavior, and the impact of distributed information,
are exactly why the coherent approximation principles developed in this thesis are
necessary. If assessments were coherently generated then no approximation would
be necessary. But given the wealth of empirical evidence to the contrary, for expert
assessments to be maximally useful to decision makers, systematic techniques for
approximating 'true' values given incoherent assessments must be developed.

N 1.4 Thesis Outline and Major Contributions

This thesis will develop methods for combining or approximating expert assessments
coherently. The major contributions include:

" The formulation and justification of an Information Geometric Coherent Ap-
proximation Principle (IGCAP) and a comparison with other methods of co-
herent approximation (Chapter 3)

* The development of mechanisms for coherently approximating sequences of as-
sessments generated by mismatched likelihood models (Chapter 4)

" An application of IGCAP to perform approximate Bayesian filtering based on
an incoherent sequence of expert assessments (Chapter 4)

" A method for coherently fusing the outputs of a distributed risk assessment
process based on the IGCAP (Chapter 5)
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* An alternative interpretation of incoherence as a structural limitation and two
suggested methods for relaxing the structure accordingly (Chapter 6)

First, in Chapter 2, we summarize the subjective view of probability theory, from
which the concept of probabilistic coherence naturally emerges. We give more firm
mathematical definitions to the concepts of 'probability', 'assessment', and 'coherence'
and provide both a historical perspective on some of the issues and expand on the
philosophy justifying the focus on coherence as a fundamental principle of assessment.

Then, in Chapter 3 we state, critique, and generalize the Coherent Approximation
Principle (CAP), a method previously suggested in the literature for coherently ap-
proximating incoherent assessments. We investigate a single-shot problem, in which a
set of experts generate assessments of some set of events, and analyze the computabil-
ity and cost-behavior of the CAP for the problem. We introduce an alternative formu-
lation, termed the Information Geometric CAP (IGCAP), justify it via a particular
assessor model, and analyze its behavior in various regimes. Finally, we consider the
impact on the set of coherent assessments of additional structural constraints.

Next, in Chapter 4 we switch from a static assessment problem to a dynamic
one. In this case, the problem is to define a method for approximating sequences
of potentially incoherent assessments with coherent ones. We analyze three distinct
sequential problems: the Subjective Likelihood (SL) model, Conditional Assessments
(CA) model, and Markov Chain (MC) model. In SL, two definitions of coherent like-
lihood functions are proposed and one is shown to be strictly weaker than the other.
Then, based on the asymptotic coherence definition, an approximation method is
introduced which preserves the predictive uncertainty of the incoherent assessment.
We verify the efficacy of the approximation method in simulation. In CA we analyze
the problem of coherently approximating mixtures of conditional and unconditional
assessments, and demonstrate how the information geometric formulation of IGCAP
allows conditional and unconditional assessments to be fused. We also demonstrate
an equivalence between applying IGCAP to conditional assessments and applying
conditioning to IGCAP approximations of unconditional assessments. Finally in MC
we develop an approximate method of Bayesian filtering when observations and like-
lihood models are observable only through the distributed assessments of a set of
incoherent assessors.

We then turn our attention to the role of subjectivity and coherence in financial
markets. In Chapter 5 we review the principles of coherent and convex risk mea-
sures and analyze the minimal convex extension of the popular Value-at-Risk (VaR)
risk measure. We then analyze the robustness of several risk measures (coherent,
convex, and non-convex) to small variations in the probability distribution over out-
comes. Finally we employ the IGCAP developed in earlier chapters to the problem
of approximating coherently a distributed risk assessment, and then analyze a similar
problem of fusing risk assessments across a global financial enterprise.

In the penultimate chapter, Chapter 6, we revise the assumption that an incoher-
ent assessment need be coherently approximated. Instead we suggest two mechanisms
by which the assessment is not in error, but the assumed structure is insufficient to
describe the phenomenon under assessment. For each of these mechanisms we develop



an associated method for minimally relaxing the structural constraints such that the
assessment becomes coherent under the relaxed structure.

Finally, in Chapter 7, we will summarize the main developments of the thesis,
particularly the new contributions, provide thoughts on future applications and ex-
tensions, and attempt to place the work in a broader academic context.



Chapter 2

Background

* 2.1 Introduction

In this chapter we set the stage for the technical developments to come. The funda-
mental task we set for ourselves is one of justification.

E 2.2 What is Probability

Probability, as a concept, is both accessible to children in their earliest stages of
mathematical development and simultaneously a source of perpetual disagreement
among the extremely wise and learned.

Fundamentally, probability is a way of expressing uncertainty about the outcome
of some event. While there is a notion of 'qualitative' probability, in general we
restrict probability to mean a quantitative expression of uncertainty. By convention,
a probability is a number between zero and one that expresses something about the
nature of a not-yet-determined event.

Within this framework, there is ample room for disagreement about the precise
nature of probability. Indeed, how to interpret probability has long been a contentious
issue and several schools of thought have arisen over the years. We give here a
summary account here of four major historical schools of interpretation of the term
'probability.' More complete accounts can be found in [28,51,52].

N 2.2.1 Classical

The classical view of probability arose in the work of Fermat, the Bernoullis (Jakob
and Daniel), Pascal and de Moivre. David [53] terms this view "the mathematical
theory of arrangements" and explains the classical view of probability as follows:

The probability of an event happening is, in a general way, then, the ratio
of the number of ways in which the event may happen, divided by the
total number of ways in which the event may or may not happen.

Thus, when asking the probability of a spin of the roulette wheel or the roll of a
die or the flip of a coin, the probability is determined by the cardinality of the set
of possible outcomes and the cardinality of the set of outcomes where the event of
interest occurs, or obtains. The fundamental invariant in the classical view is one
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of symmetry: the set of possible outcomes is defined by repeated division until the
remaining atoms are symmetric.

Significant objections, both practical and philosophical, can be raised to the clas-
sical view. One practical objection has to do with the connection between reality and
theory. For probability to have an operational meaning, it must be translated into
something with physical meaning, but the classical basis of probability in symmetric
outcomes, while based in the physical nature, doesn't have an immediate physical
implication. Another objection, more philosophical, is how to interpret symmetry
consistently. In an example given in [54], when uniformly distributed dice are re-
placed with bones, as in the ancient Mediterranean culture, how to appropriately
understand the set of atomic, or symmetric, outcomes is unclear.

N 2.2.2 Frequentist

The frequentist (sometimes objectivist, mathematical, numerical or statistical) school
of thought supplanted the classical view in the early 1900s. Influential proponents
of the frequentist view include Richard von Mises [55, 56], R.A. Fisher [57], Jerzey
Neyman and Egon Pearson [58]. The fundamental invariant of the frequentist school is
the repeated trial of some experiment. In the frequentist school of thought, probability
is the limit as the number of repeated trials goes to infinity of the frequency of
occurrence of the event of interest.

An obvious limitation of the frequentist view of probability is that it only allows
probabilities to be ascribed to events which are subjectable to repeated trial. This
limitation is at odds with natural language, where it is perfectly natural to assert
that it's somewhat probable the Red Sox will win the World Series this year. The
2011 Major League Baseball season will only be played once and is not amenable
to repeated trial. However, the ascription of probability to such an uncertain event
seems quite natural to most people.

A further technical limitation of the frequentist view is in the definition of a re-
peated trial. What is meant, exactly, when one refers to a repeated trial? Certainly
if a trial is repeated exactly then the outcome will be identical (ignoring quantum ef-
fects). If a coin is tossed from exactly the same point with exactly the same rotational
force and caught in exactly the same position, under exactly the same environmental
conditions, physics would suggest the outcome will be precisely the same. It seems
obvious that by 'repeated trial' what is meant is a sequence of trials which are deemed
'close enough'. But frequentist probability theory gives no guide for how to differen-
tiate between experiments which are sufficiently similar to be considered repetitions
and those that aren't.

* 2.2.3 Necessary

The necessary, or logical, view of probability is perhaps the least understood, and cer-
tainly the least developed. Originally proposed by Keynes [59] and further developed
by Carnap [60], the necessary view of probability holds that probability represents
(in Carnap's phrase) a "degree of confirmation" of a truth value.



The use of the identifier "logical" (used by Keynes in his Treatise on Probability)
suggests a strong connection between this theory and the work in analytic philoso-
phy of Bertrand Russell and Alfred Whitehead. Indeed, one author refers to Keynes'
development of probability as "a lineal descendant of Russell and Whitehead's Prin-
cipia Mathematica" [61]. However the project was never fully realized, and Keynes
recognized himself that the mechanisms derived in the theory would be difficult to
bring into practice. Carnap's attempt at further development met with similar chal-
lenges, and the logical view of probability remains largely of philosophical rather than
practical importance.

U 2.2.4 Subjective

The subjectivist school of probability was set forth partially as an answer to the
problem of ascribing probability to a non-repeatable event. Subjectivism interprets
probabilities not as long-run frequencies of events, but as statements of internal un-
certainty of an event's outcome by individuals. Early proponents of the subjectivist
view of probability included Frank Ramsey [27] and Bruno de Finetti [26]. The
beginning of a widespread acceptance of subjectivist probability theory as a viable
alternative to the frequentist approach can probably be traced to Savage's seminal
development [28,62] and the influential work of Richard Jeffreys [63].

Subjectivism is not without its critics, or its valid critiques. One criticism is
that there is no framework within the subjectivist model to refute probabilities that
are at odds with observed frequencies of repeated events. For example, given a six-
sided die one knows (via physical inspection or repeated observation) to be uniformly
balanced, there is no subjectivist reason to reject an assessment that places unequal
probability on the six possible outcomes of a randomizing throw. As a result of this
perceived short-coming, subsequent authors were at some pains to attempt to unite
subjectivist and objectivist views of probability [64-66]. The kernel of thought that
runs through such attempts seems to be that there exist "true" probabilities of events,
and probability assessments ought to reflect such probabilities in a meaningful way.

One result of this combined view of subjective and objective probability is the
perception of subjective probabilities as "noisy" measurements of the objective prob-
abilities of events. This suggests that in order to determine the objective probabilities,
one could collect a set of subjective probabilities across a population and appropri-
ately fuse them in order to generate an improved estimate of some true world state.

Another possible way to reconcile objectivist and subjectivist views of probability
theory is to view them as, respectively, time-average and ensemble-average interpre-
tations of events. In the frequentist view, an event space is visited repeatedly and a
time average is taken of when an event achieves. In the subjectivist view, when the
event space cannot be revisited, subjects mentally construct an ensemble of the event
and report (hopefully accurately) the ensemble average outcome of the experiment.

Despite the criticisms of the subjectivist view, it seems to offer the best framework
for interpreting probability as it applies to natural usage. The conceptualization which
underlies de Finetti and Ramsey's original development of probabilities as points of
indifference to wagers on uncertain events will be employed throughout this thesis



when it is necessary to fundamentally define probability.

* 2.2.5 Other Representations of Uncertainty

Probability is not the only proposed mathematical representation of uncertainty. Sev-
eral other methods have been proposed, including upper and lower probabilities,
Dempster-Shafer theory, possibility theory, fuzzy sets and fuzzy logic, and many
more. Each of these methods has been introduced in order to address some per-
ceived shortcoming of the probability framework. While the identified shortcomings
of probability are indeed valid, the proposed solutions often suffer from their own
shortcomings. Furthermore, the increased complexity of most of these theories has
limited their practical applicability. They certainly may play a role in certain appli-
cations, but they won't be the primary focus of this thesis. For further discussion
and references, see [67,68].

N 2.3 What is an Assessment

Now that we have settled on an understanding of what is meant by 'probability,' we
next move to a definition of the concept of 'assessment.' Informally, an assessment is
some value that is representative of all the possible outcomes of an uncertain quantity.
This may also be termed a valuation or, in a limited sense, an expectation or (in de
Finetti's terms) a prevision, although the concept of assessment is more general than
that of prevision, as will be explained in Section 2.4.

* 2.3.1 Mathematical Model

To formalize the concept of an assessment, we need to introduce some mathematical
concepts and notation. In this section we introduce mathematical notation that will
be used throughout the thesis.

Outcomes

We denote by Q the set of all possible outcomes, where each outcome (in the case
where Q is countable) is sometimes referred to as an atom. This set is defined by the
problem at hand. So, for instance, if our interest is in the outcome of the 2011 World
Series, we might consider a set of 32 atoms, with one atom representing each of the
MLB teams that might potentially win the World Series. The outcome space Q is
also referred to at times as the sample space, or the event space.

The definition of the outcome space is not unique. To expand on the World Series
example, we could instead define the set of outcomes by the events Team A defeats
Team B. Under this new definition, there would be 32 * 16 possible outcomes corre-
sponding to each of the possible winning teams defeating a team from the opposing
league. We may also want to include an outcome for there being no winner of the
World Series, if the season is unexpectedly cut short as happened in 1993. Further-
more, by taking conjunctions of outcomes of interest with other outcomes (e.g. 'Cubs
win the World Series and I eat Grape Nuts for breakfast next Tuesday') the outcome
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space can be made arbitrarily large. The correct choice of outcome space plays a
significant role in the ascription of probability by demarking the considered outcomes
from the unconsidered (and perhaps inconsiderable) outcomes. We won't have much
to say further about the importance of the proper definition of the outcome space,
but recognize the non-trivial nature of its proper definition for any given problem.

Assumption 2.1. We will generally assume in the sequel that our outcome space is
finite with |J| = N < 00 and will specifically note any instances where we generalize
this assumption.

In general we will associate with Q a sigma-algebra F and thus (Q, F) is a mea-
surable space. Given Assumption 2.1, F is generally understood to be the power set
2Q.

Events

Next, we define an event (denoted by A) as a subset of outcomes (A _ 9). In the
case when Q is infinite the definition of event needs to be handled with more care,
by specifying first a sigma-algebra on Q and then defining an event as a measurable
set. However, since our default is Assumption 2.1, the question of measurability will
largely be moot.

As an example of an event, turning again to the World Series outcome space, we
might identify event A as 'the winning team is from the American League'. This
event A would thus include all w C 9 s.t. the event is satisfied. For instance, all w
corresponding to the Red Sox winning the World Series would belong to event A, as
would all w corresponding to the Yankees winning the World Series.

Random Variables

A random variable X is defined as a mapping from Q to R (again, neglecting questions
of measurability given assumptions of finiteness). When it is clear from context, we
will suppress the argument of the random variable, denoting it as X rather than
X(w). An event A can be identified with its characteristic (or indicator) random
variable

1A 0 OV.w

Simple random variables are those which take on only finitely many values. Equiv-
alently, any simple random variable X can be represented as

M

X = ZxilAt
i=1

for some finite set of events. By Assumption 2.1, we will be dealing only with simple
random variables.

For a set of random variables {Xi}_ 1 , we will denote the random vector created
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by the random variables as
X1

X X2

XM

Thus as a random vector, X is a mapping from Q to RM. For a random vector X we
define the outcome matrix X = [xig] as xip = Xi(w3 ). Thus xig is the realization of
random variable Xi under outcome w,. When X is a characteristic random variable

(meaning for all i, j, xij E {0, 1}), we will refer to X as the characteristic matrix and
sometimes denote it by x.

The set of unique outcomes for a random variable X will be called its 'alphabet'
and denoted X. For random vectors, the alphabet is the set of unique outcome
vectors. As such, for a random vector X, X C X 1 0 X 2 0 -9 0 XM-

U 2.3.2 Assessments

We can now give a mathematical definition of an assessment. Given an outcome
matrix X E X C RMxN, an assessment P is simply a mapping from X to the
real numbers RM. As with random variables, when it is not needed for clarity we will
suppress the random variable argument, denoting assessments merely as P rather than
P(X). Also, when dealing with characteristic random variables, we will sometimes
denote the assessment as P(A), which should be taken to mean P(1A).

Mathematical expectation is an example of an assessment. Given a personal
probability distribution Q over the set of outcomes, the expectation is a mapping
from the set of possible outcomes of a random variable X to the real numbers given
by the equation

EQ[X] = ZQ{wi}X(Wo)

While we leave the mathematical definition deliberately loose, in practical terms
an assessment is an attempt to summarize in some way the set of outcomes of the
random variable. As such, we generally take P(X) E [min xi, maxx] where xi is
a realization of the random variable X. An equivalent way of saying this is that
generally for an assessment P(X), ]A E [0, 1]N s.t. E> Ai = 1 and P(X) = XA.

It is important to note that this general assumption about assessments is stated
for a single random variable. We will generalize and strengthen this assumption when
we introduce the concept of coherence in Section 2.4.

* 2.4 What is Coherence

In Section 2.3 we mathematically defined an assessment as a mapping from a set of
possible outcomes of a random vector of length M to the vector set of real numbers
RM. Here we introduce a fundamental property of assessments, called coherence.
We begin by considering only characteristic random vectors, and then expand the
discussion to all simple random variables.
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E 2.4.1 Probabilistic Coherence

Coherence is perhaps the central tenet of subjectivist probability theory. Denote
a vector of assessments of events A 1,A 2, .. .,AM as P(Ai), i = 1, 2,. . ., M. In de
Finetti's formulation [26], this set of assessments is said to be coherent if and only
if there does not exist a wager at the odds given by the assessments such that a
non-negative outcome is guaranteed and a positive outcome is possible (a so-called
Dutch Book). Savage [28] eschews the gambling narrative, relying on von Neumann-
Morgenstern style utility theory combined with a few foundational axioms about
preference among actions, but arrives at the same conclusions. In both cases, the
subsequent theory (probability theory for de Finetti and decision theory for Sav-
age) relies on this philosophical principle: incoherent assessments are fundamentally
flawed. A more complete development of the similitaries and differences between de
Finetti and Savage's theoretical developments can be found in Appendix A.

We follow de Finetti in identifying coherent assessments of characteristic random
variables as probabilities.

Definition 2.1. A probability is a coherent assessment of a characteristic random
variable.

Returning to our favorite World Series example, suppose I were asked to generate
an assessment of the two events A1 = {A National League team wins the World
Series} and A2 ={An American League team wins the World Series}. We take as
the outcome space = {wi, W2, W3} where wi corresponds to an NL team winning,
W2 corresponds to an AL team winning and w3 corresponds to no team winning (for
whatever reason). We can thus define the outcome matrix of events Ai as

1 0 01

[0 1 0

Suppose we have the following assessment of events Ai

[0.6
0.6

or equivalently 3 : 2 odds for both events. A wise bettor chooses to take the short side
of both sets of odds, at a dollar a piece (meaning he pays $2 if the event does occur
but receives $3 if it does not). We now calculate the payoffs under each possible
outcome, which are summarized in Table 2.1. Under wi (an NL team wins) the bettor

Outcome Gaini Gain 2 Total Gain
W1 -$2 $3 $1
W2 $3 -$2 $1
W3 $2 $3 $5

Table 2.1. Gains under a Dutch Book wager



loses $2 on the first bet but gains $3 under the second bet (since event A1 obtained
but event A2 did not). Thus the total gain under wi is $1. Similarly, under w2 the
bettor gains $3 on the first bet but loses $2 on the second, for a total gain of $1.
Finally, under ws when neither team wins the bettor gains $3 on the first and $2 on
the second for a total gain of $5. Thus there exists a wager with a guaranteed positive
outcome (specifically shorting both positions) and the assessment is incoherent, by
definition.

We can write the mathematical condition of coherence as

Vc C RM, min [ci(1A;(wj)-Pi) -0 < max [ ci(Ai(wj))-Pi) (2.1)

with equality iff >r ci (IAi (wi) - Pi) 0 for all wo. Note that this is somewhat
redundant, as each inequality implies the other by considering -c, but writing it so
builds intuition that for any position taken (c), there must be some possibility of gain
or loss. More formal definitions replace the min and max with inf and sup, but this
definition will suffice for our current development.

Parsing this equation, c is the wager, with ci > 0 meaning a bet that event Ai
occurs and ci < 0 a bet that event A1 does not occur (with ci - 0 refusing the bet).
The expression under minimization is the payoff under event w. Therefore, for any
wager there is some outcome in which the gain of the wager is negative.

A Geometric Interpretation

Section 3.4 of [26] develops a secondary, geometric interpretation of coherence. Specif-
ically de Finetti demonstrates that the philosophical interpretation of coherence is
equivalent to requiring the assessment to lie in the space of all convex combinations
of outcomes. Returning to our previous example, we can treat each column of the
outcome matrix x as a vertex of the 2-dimensional hypercube. To be coherent, in
this geometrical interpretation P must be representable as a convex combination of
the points. So, for example, the assessment P = [0.6 0.6 ]T is again seen to be not
coherent because the assessment does not lie in the convex hull of the set of possible
outcomes (shown in Figure 2-1).

A Measure-Theoretic Interpretation

An additional equivalence between coherence and the existence of a Kolmogorov-
style probability measure was demonstrated in [69]. It was shown that de Finetti's
coherence principle was equivalent to the existence of a finitely additive probability
measure, i.e. a mapping P from the outcome space to the real numbers such that:

1. P(A) > 0

2. P(UA) = 1

3. For disjoint, finite unions, P(UA) = P(Ai)
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Figure 2-1. Coherent hull of outcomes

More generally, Kolmogorov probability measures must satisfy the stricter condition
of countable additivity (i.e. P(UA) = E P(Ai) for all countable unions of disjoint
events). In [69] it was also shown that coherence in conjunction with a certain consis-
tency condition on the events was sufficient to guarantee the existence of a countably
additive probability measure that extended the assessment over the o--algebra of the
sample space. Since our default assumption is finiteness of the outcome space, the
difference between countable and finite probability measure will largely be moot for
our purposes.

* 2.4.2 Coherence and Arbitrage

Several authors (e.g. [42,70-72]) mention the similarity between the concepts of co-
herence and no arbitrage. Conceptually, this is perhaps best suggested through the
example of the 'money pump.' A money pump, as introduced by Ramsey [27], is a
philosophical justification for requiring transitivity among preferences (i.e. if option
A is preferred to option B and option B is preferred to option C then option A must
be preferred to option C). If not, suggests Ramsey, a wily agent could take advan-
tage of your intransitivity to create unlimited wealth. Specifically, suppose that A
is preferred to B is preferred to C is preferred to A (ans so on recursively). Then,
suppose I first give you C, then offer to trade your C, plus some marginal utility, for
my B. Since you prefer B to C, there is some amount of marginal utility such that
a rational actor will engage in the trade. Next I offer to trade your B (again, plus
some marginal utility) for my A. And then trade your A (plus marginal utility) for
the original C. We are now in the original state, except I am richer by the (necessarily
positive) differences of marginal utilities between A and B, B and C, and C and A.
This process could be repeated ad infinitum to generate arbitrarily large amounts of
wealth for the advantaging agent.

Ramsey's description of the money pump is quite similar in nature to the philo-



sophical rationale for coherence given by de Finetti [26]. De Finetti himself recognized
Ramsey's work as influential on his thinking. Thus, the Dutch book argument put
forward by de Finetti to justify requiring coherence among assessments is essentially
a 'money pump' style argument: if assessments are incoherent than a wily bettor can
create a book with arbitrarily large guaranteed payoff.

The same is true of the concept of arbitrage in markets. Arbitrage, following
Ross's influential work [44] is generally defined as the existence of a portfolio, or
mixture over primitive investments, which requires no financing but has almost certain
positive return. Given standard assumptions about frictionless trading, arbitrage can
be considered a money pump, in which an arbitrarily large payoff can be realized
risk-free.

Formal Connections between Arbitrage and Incoherence

In a formal context, the close relationship between arbitrage and incoherence was
noted in [73]. In this paper it is shown that, treating a market of contingent claims
as a vector lattice, the no arbitrage condition is equivalent to the price of contingent
claims being a strictly positive linear functional. It is then demonstrated that, treating
events as unit-value contingent claims, de Finetti's coherence axiom is equivalent to
the probabilities of events under assessment being a positive linear functional. Thus
the no arbitrage condition in a contingent claims market where each claim has unit
value is a slight strengthening of de Finetti's coherence axiom.

Clark's argument is persuasive, but is given in terms of a highly abstracted math-
ematical model. In this section we make an argument similar to Clark's, that proba-
bilistic incoherence is a special case of arbitrage, but do so in terms of the stochastic
calculus model given in [70].

Adapting a simplified version of Kartzas' model, consider a filtered probability
space (Q, .F, {Jt}, P) and an adapted process S(t) representing N asset prices over
time, where So(t) is the "risk-free" asset. We'll assume So(t) = 1 (meaning that
it's just cash, no interest). Define R(t) as the "excess yield (over the interest rate)
process." In our market of interest, with no interest rate, no dividends, etc. this
is simply f' o-(u)dW(u) where W is the Brownian motion process and o-(u) is the
volatility process that together underlie the change in asset prices. Next, let r(t) be
the portfolio process (i.e. the amount invested in each of the N assets at time t).
Assume this is progressively measurable (no trading off future information). Then we
can derive the gains process G(t) as

G(t) jr()dR(u)

An arbitrage opportunity exists if there is some progressively measurable 7r s.t. G(t) >
0 a.s. and G(t) > 0 with positive probability.

Now consider a set of M idealized unitary bets (i.e. that pay unit amount when
the event obtains and nothing otherwise) that are made and instantaneously realized,
like betting on the outcome of a coin-flip immediately before the outcome is revealed.
This matches the market assumptions above of So(t) - 1, no mean rate of return on
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investments, etc. The differential on the excess yield process, dR(t) at the instant
the bet is made and revealed is exactly 'LAi(w) - P(A) where Ai C Q is an event,
1A is the indicator of event A and P(A) is the assessment of event A. So for this
instantaneous, idealized market, the no arbitrage condition becomes that there is no
7r E RNS.t.

N

-ri [l1,, (w) - P(Ai)] > 0 (a.s.)

and
N

>7ri [1A,(W) - P(Ai)] > 0 (w.p.p)

For finite Q with P(w) > 0 this can be stated as

N

v7r, max 7 [1A (W) - P(A)] > 0

which is exactly the definition of coherence given in Equation 2.1.
This argues that coherence could be thought of as the non-existence of instanta-

neous arbitrage in instantaneous opinion markets (i.e. markets whose assets are unity
bets and whose prices are assessments).

* 2.4.3 Coherence of Non-Characteristic Random Variables

Thus far we have developed the concept of coherence as pertains to characteristic
random variables, yielding a definition of probability based on the non-existence of a
Dutch book or, equivalently, an arbitrage-free single-stage opinion market. We will
now expand the concept of coherence to non-characteristic (but simple, keeping in
mind the finiteness assumption) random variables.

We begin by revising Equation 2.1 to reflect a Dutch Book argument for random
variables with non-unitary values.

Vc G RM , min ci (Xi<(o) - P) 0 (2.2)

with equality iff E c2 (Xi(wo) - P) = 0 for all w. Comparing Equation 2.1 to Equa-
tion 2.2 we see that the 'payoff' portion of the wager has changed from 1LA, (w3) - Pi to
Xi(w,) - P, and the rest of the equation has remained the same. The interpretation
of the condition is nearly identical: c now represents the purchase of some number of
contracts at price P whose outcomes are X. An assessment is coherent iff, for any
position taken c, there is non-zero probability of both positive and negative gain.

De Finetti referred to general coherent assessments as previsions, of which prob-
abilities are a special class, i.e. previsions of characteristic random variables. In his
formulation, a prevision "consists in considering, after careful reflection, all the possi-
ble alternatives, in order to distribute among them, in the way which will appear most
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appropriate, one's own expectations, one's own sensations of probability" [26]. One
of de Finetti's purposes in employing the term 'prevision' was to maintain notational
consistency with 'probability' and the assessment denotation P. We believe P could
also accurately be considered a price for reasons that will be shown in Section 2.4.4.
De Finetti also used the term 'price' to refer to this quantity when applied to market
goods, but preferred prevision when applied to non-marketable quantities.

An example of non-characteristic incoherence

Returning to our World Series example, suppose we define two random variables X1

and X 2. X1 is a contract with a Cubs fan to share in his feelings of joy or despair
following the World Series and X 2 is an analogous contract with a Red Sox fan (note:
the Cubs are an NL team and the Red Sox are an AL team). Since Cubs and Red Sox
fans have some affinity for each other, and for the other teams in their own league
(but not teams from the opposing league), suppose the outcome matrix can be given
as

Xrz3 1 1 0 0
1 2 0 1 0

where the outcomes can be interpreted as follows: wi = Cubs win, w2 = Red Sox win,
W3 = NL team other than Cubs wins, w4 =AL team other than Red Sox wins, W5 =
no one wins (obviously given their long history of failure, Cubs fans will derive more
utility from their team winning the World Series than will Red Sox fans).

Suppose one is called on to give an assessment on this outcome space, and the
resulting assessment is

P 2.2
1.5

As in the previous example, a wily investor analyzes the assessment and decides
to short both positions (in this case, since the assessments no longer correspond to
odds, we take the gains directly from Equation 2.2; it is mathematically equivalent
to the previous example). Table 2.2 summarizes the payoffs under each outcome,
demonstrating that the assessment is incoherent (and thus not a prevision).

Outcome Gain1  Gain 2 Total Gain
_ _ -$0.8 $1.5 $0.7
W2 $2.2 -$0.5 $1.7
W3 $1.2 $1.5 $2.7
W4 $2.2 $0.5 $2.7
W5  $2.2 $1.5 $3.7

Table 2.2. Gains under incoherent pricing

Geometric and Measure-Theoretic Equivalences

The geometric equivalence first introduced for characteristic random variables can be
extended analogously to non-characteristic random variables. Thus in Figure 2-2 we
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see that the incoherent assessment from the above example lies outside the convex hull
of the columns of the outcome matrix X. It is interesting to note that in the case of

1 2

aggggpga0[2.21.5]

Figure 2-2. Convex hull of outcomes for non-characteristic random vector

characteristic random vectors each unique outcome necessarily lies on the boundary
of the set of coherent assessments. In the more general case of non-characteristic
random vectors it is possible for one of the outcome points to lie strictly within the
interior of the convex hull. For example, given an outcome matrix

X= 2 1 0
2 1 0

the outcome X(w2) = [1 1 ]T lies strictly in the interior of the convex hull. As
such it is superfluous to determining the coherence of any given assessment.

Since the assessment is no longer a vector of probabilities, the measure-theoretic
interpretation does not directly extend. However, as is evident from the geometric
interpretation, coherent assessments are equivalent to expectations of the random
vector.

Proposition 2.1. An assessment is coherent if and only if 3Q such that (f2, F, Q)
is a probability space and P = EQ [X ].

where this proposition should be understood as only applying on finite outcome
spaces.

This proposition subsumes the measure-theoretic interpretation of coherent assess-
ments of characteristic random variables as probabilities on a finite outcome space
through the identity that, for a probability measure Q and A c F, Q(A) = EQ[III].



* 2.4.4 Arbitrage and Coherence for Non-characteristic Random Variables

Unsurprisingly, the equivalence between incoherence for characteristic random vectors
and arbitrage in a single-shot unit-value payoff market can be carried through anal-
ogously to the case of non-characteristic random variables. As before consider a fil-
tered probability space (Q, F, {Ft}, P) the N-valued price process S(t) with So(t) = 1.
All other stochastic quantities, and the definition of arbitrage, are as given in Sec-
tion 2.4.2.

G(t) = Jr(u)TdR(u)

An arbitrage opportunity exists if there is some progressively measurable r s.t. G(t) >
0 a.s. and G(t) > 0 with positive probability.

Now, rather than unitary bets, consider a set of N contracts with prices Pi that pay
xij when the event w obtains, and assume that they are made and instantaneously
realized. Then differential on the excess yield process, dR(t) at the instant the bet is
made and revealed is exactly Xj(w) - P and the corresponding gains process

G(t) = (u)dR(n) = 7 wi(Xi(w) - Pi)

and therefore the no arbitrage condition becomes that there is no r E RN s.t.

N

7ir [X(w) - > 0 (a.s.)

and
N

7ri [X (w) - ] > 0 (w.p.p)

For finite Q, if we assume as before that P(w) > 0 this can be stated as

N

V7, maxE(wi [X(w) - i > 0
i=1

which matches the definition of coherence given in Equation 2.2.
Thus, as in the case of characteristic random variables, coherence can be thought

of as a no-arbitrage condition in a single-shot market.

* 2.5 Approximation and Approximation Cost

This thesis will develop a method of coherent approximation of incoherent assess-
ments. At the core of this endeavor is a cost minimization problem. In Chapter 3
an existing method of coherent approximation is introduced and analyzed. Certain
deficiencies are noted and an alternative formulation is introduced.

As an example of the centrality of cost to an approximation method, consider the
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following example: given some observations y, and a distribution P(xy) over a set
of possible values x E R, we wish to choose an approximation, or estimate xi(y) that
"best" represents the true value. Depending on how the concept of "best" is defined,
this estimator may take on significantly different forms. For instance, if we adopt the
minimum absolute error (MAE) cost function

C(" X) =|P - X|

it can be shown that the optimal estimate is the median of P(xly). If instead we
adopt the minimum uniform cost

C((W, X) = .W

and let E -+ 0, the optimal estimate is the mode of P(xly) (the so-called Maximum a
Posteriori, or MAP, estimate). Finally, if we take

C((x),x) =| I -x||2

the optimal estimate is the mean value under P(xly), or Bayes' Least Squares (BLS)
estimator.

Which of these cost functions, and hence which estimator should be used, is
situation dependent. If the object under estimation is the position of an enemy force
which we wish to eliminate with a bomb with destruction radius E, the minimum
uniform cost may be the right cost function. Whereas if we are trying to estimate
the amount of time we will have to wait for the next bus, the maximum absolute
error cost function may be more appropriate (unless, as happens for some of us, time
moves increasingly non-linearly as the wait period increases, in which case we might
consider the least squares cost).

In Chapter 3 a new framework for performing coherent approximation is suggested.
While we are at pains to demonstrate many of the advantages of this alternative for-
mulation, it should always be recognized that the best cost function is the one that
most closely models the true costs of the system under analysis. As such, the true
value of this formulation will be in providing an alternative mechanism for coher-
ent approximation that may be "better" than the previous suggestions in certain
circumstances.
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Chapter 3

Coherent Approximation

U 3.1 Introduction

In the previous chapter we developed the concept of assessments, which are properly
viewed as mappings from sets of potential outcomes of random vectors to real num-
bers. We also introduced arbitrage/Dutch Book arguments for why such assessments
should be coherent.

However, the human experience tells us that when such assessments are made in
a distributed fashion they are often incoherent. As a documented example, consider
the challenges that off-track betting created for the horse race industry. In the 1980s
changes to regulations allowed horse tracks to accept bets for races run at other
tracks. In effect, deregulation created a distributed assessment problem. In [74,75]
the impact of this distributed assessment problem is analyzed in depth. It is shown
that, even accounting for racetracks' fees, the distributed assessments of racetracks
were sufficiently incoherent to provide guaranteed positive outcomes for savvy bettors.

While arbitrage among horse-race odds setters is of minor importance in the overall
scope of world affairs, less trivial is the use of 'opinion markets' to provide assess-
ments to decision makers about the outcomes of uncertain events. Somewhat more
will be said about opinion markets in Chapter 4, but here we suffice it to say that
using distributed assessment to estimate probabilities of uncertain events plays an
increasingly important role in the decision making processes of governments, busi-
nesses and individuals. While the calibration of such markets has been investigated
(and, at times, criticized), a critical question is how to identify a priori whether the
assessments are poorly calibrated or not. A further critical question would be if it's
possible to identify miscalibrated assessments, how should they be corrected to better
reflect the true uncertainty about outcomes.

If distributed assessments are incoherent then, by the theory developed in Chap-
ter 2, they are fundamentally flawed as a representation of the true uncertainty about
the events or random variables under assessment. If coherence is the answer to the
question of how to identify mis-calibrated assessments a priori, the question of what
to do when such assessments are identified is less obvious. Previous literature [76-78]
has suggested an optimization framework for approximating incoherent assessments
of characteristic random variables by probabilities.

In this chapter we develop a method of coherent approximation applicable to
all random vectors with finite alphabets. We first report on some results relating



to the computability of coherent approximations in the framework of [76]. We will
then turn our attention to a re-formulation of the Coherent Approximation Principle
relying on information geometry. There are several benefits to this re-formulation,
and we will spend some time justifying it both theoretically and empirically. We
conclude the Section with a brief discussion of the impact of additional structural
information (e.g. Markovianity w.r.t. a graph) on the feasible sets of assessments over
characteristic random variables.

* 3.1.1 Non-optimization Methods of Assessment Fusion

The idea of coherent approximation, or fusion, advanced in this thesis is to mod-
ify assessments minimally until they are coherent. Several non-optimization based
methods of coherent approximation have been previously advanced in the literature.

One well-explored method for fusing assessments is the pari-mutuel betting sys-
tem. Beginning with the work of Eisenberg and Gale [79] there have been a series
of papers exploring the ability of the pari-mutuel system to fuse experts' subjective
judgments of probability [80,81]. This particular fusion method is interesting in that
it both elicits the experts' assessments and simultaneously fuses them into the over-
all group assessment. There are questions, however, as to whether observed biases
within the parimutuel system might be attributable to suboptimality of the "race
track" fusion method. Furthermore, the creation of a simple betting market is not
always a feasible solution to the problem of generating a joint estimate of probability.

A second group of researchers, predominantly in the field of psychology, have
sought to used improved elicitation techniques, such as feedback, in order to remove
assessment biases (and hence miscalibration) [82-84]. Another approach is to put the
experts in contact with each other and allow them to come to a consensus through
discussion and debate, while others have questioned the wisdom of fusing assessments
at all, particularly when the range of opinion is large (c.f. [85] and references therein).

A more mathematical approach is to elicit experts' probability assessments first
and then functionally fuse them in away that agrees with all known contextual
information. Background surveys on such mathematical techniques can be found
in [86-88]. Much work has also been done within the computer science and machine
learning community on the aggregation of expert opinion (in this case, algorithms).
Aggregation algorithms are often referred to under the general rubric of classifier or
generalization combination [89,90]. In this case, the question is how to best judge
the "correctness" of the fused solution.

Perhaps the most popular method for fusing experts' assessments is a simple
or weighted linear average [86, 91, 92]. A similar approach is propounded in [93],
wherein the "experts" evaluations are actually individual attribute percentile scores

(e.g. student GPA, SAT scores, etc.). This is also a common technique used within the
computer science literature on combining classifiers, including popular algorithms for
"bagging" or "boosting" [90] and stacked generalization [94]. One of the challenges
in such an approach is determining what weightings to provide each expert's opinion.
Much work has gone into determining "optimal" weightings.

The linear averaging approach has the benefit of simplicity and intuitiveness, but
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has been shown [77] to result in incoherent fused assessments in the presence of both
abstaining and/or individually incoherent experts. Another common approach to
fusing analysts' subjective probability assessments is by treating each assessment as
an observation, and updating according to Bayes' Rule [95,96]. This is sometimes
referred to as the supra-Bayesian approach [871. One of the disadvantages of this
approach is the need to specify a likelihood for each expert's assessment, as well as a
prior.

U 3.2 Coherent Approximation Principle

In a series of papers [76, 77, 97] the geometric view of coherence demonstrated in
Chapter 2 is used to formulate an optimization-based method for aggregating ex-
perts' assessments of probability. In [76, 97] the suggestion is to select as the fused
probability assessment of a set of experts the point in the coherent hull that lies clos-
est (in terms of the standard Euclidean norm) to the vector of expert assessments.
Mathematically, we represent this as

A* = argminA, |,|01IIP - XA|| 2  (3.1)

with the optimal coherent approximation given by P* XA*. This is termed the
Coherent Approximation Principle (CAP).

In [77] an approximation to the CAP is suggested to deal with the potential
combinatorial growth (in the number of assessed events) of the computation of the
exact CAP solution. The computational question was further developed in [98], in
addition to analyses of the CAP under an alternate cost structure and its combination
with additional constraints on the set of joint probability distributions. Much of the
original work in [98] is reported here in Sections 3.2-3.3 and 3.6-3.7.

Note in Equation 3.1 that the optimization occurs in the space of atomic events Q,
which may grow exponentially in the assessment space size. To mitigate this compu-
tational challenge, previous authors [77] proposed a hybrid approach between linear
averaging and coherent approximation. Unfortunately, this approach will generally
produce a fused estimate that is not coherent.

Example of Coherent Approximation

In Section 2.4.1 an assessment problem was formulated involving the characteristic
matrix and assessment pair

1 0 0 _ 0.6
X= 0 1 0 '0.6 *

It was shown that the assessment was incoherent (and therefore could not represent
the probabilities of the events). The CAP given in Equation 3.1 would suggest an

optimal approximation of this incoherent assessment by the vector 0.5 ] as depicted

in Figure 3-1.



o 1]

00]

Figure 3-1. Coherent Approximation of an Incoherent Assessment

In the following subsections we develop a general fusion rule that operates in the
assessment space and generates a coherent fused assessment.

N 3.2.1 Monadic Structure

Consider the class of characteristic matrices such that

EXj 1

We will refer to matrices in this class as monadic, meaning that each event under
assessment is, at most, a singleton.

In this case, it is simple to show that a closed-form solution exists to the problem
of finding a coherent approximation to an incoherent assessment. Let P* = XA* be
defined by Equation 3.1 and let

Pi = E P (3.2)
ni jEM

where NM {jAj = Ai} and n, = |Ail. Define the probability excess/deficit as

N1

D = 1 - -Pn -j=1 3LE~

and assume wlog that n1 P1 5 n2P 2 < < nNPN and Vi Mi, j < k, j, k E A =>

{jij+ 1,...,Ik} ;Ng.
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Proposition 3.1. If X is monadic, then

P= P+A

where we define A E [0, I]N as

f ({A} -1 ,n} ) D < 0

i ( 3  D > 0 & nk = 0
0 o.w.

with, for a given i E {1, 2, ..., N},{ max(1P Ng =Nli_1
f(- . -) = / - (3.3)

' ' max (P, n'1Ai_1 + gi) o.w.

with gi =y N (D - E_-A- and AO = IO = 0.

When the characteristic matrix is monadic, each assessment event corresponds to
a unique element of the sample space. All events corresponding to the same unique
element of the sample space must have equal assessments to be coherent, leading to
P in the coherent approximation solution. Starting from this point, we must satisfy
the constraint that the assessments (or, equivalently, the corresponding weights on
the unique elements of the sample space) must sum to one. If D > 0 (assessment
deficit) this means we need to add a bit to P; if D < 0 (assessment excess) we must
take something away from the averaged assessments.

When ]nk = 0 it means there is some element of the sample space with no
equivalent event under assessment. Therefore, if D > 0 we can meet the assessment
deficit by weighting this unassessed element, which leaves the assessment unaffected
(A = 0). If no such element exists, then the optimal strategy is to add to each
element of the sample space in proportion to the number of assessors that have it as

their unique element (A = ( ).

In the case that D < 0 we must remove probability. The principle is the same;
probability should be removed proportional to the number of events assessed against
each of the sample elements. However there is a twist in that such a solution could
remove "too much" weight from some element, resulting in a negative A. The recursive
formula given in Equation 3.3 is essentially a thresholding rule that prevents any
element from becoming negatively weighted.

Proposition 3.1 can be extended to a broader class of matrices by using the comple-
mentary completeness of probabilities (i.e. each assessment P of A is also an indirect
assessment (1 - P) of Ac = f2\A). A characteristic matrix is said to be generalized
monadic if

X _< or Zxi N - 1
j i

As before, let P* be defined by Equation 3.1. Let Pi be the mean of all assessments



of event Ai (both directly over Ai and indirectly over A ).

Corollary 3.1. If X is generalized monadic, then

Vi s.t. xi <; 1, Pi*= A+ Ai

Also
Vi s.t. x3 > N- ,P2*=1-Pi+ A

with A defined analogously to Proposition 3.1.
The benefit of Proposition 3.1 and its generalization is that there exist certain

matrices for which the CAP can be solved exactly, with computational complexity
proportional to the number of events under assessment (rather than the potentially
exponentially larger number of atomic events, as in the direct solution to the CAP
problem).

* 3.2.2 Suboptimal Approximation

There is not a simple extension of the result from Section 3.2.1 to generally struc-
tured characteristic matrices. However, it is possible to use the solution for monadic
matrices to approximate the solution for general characteristic matrices.

Consider again the coherence constraint: P = XA. This can be rewritten in the
following way

P =- Z[xi,s]Asj

where {S 3 } forms a partition over {1, 2,..., I|2|}. Essentially, we've decomposed the
original characteristic matrix columnwise. It is simple to show that for any character-
istic matrix there exists a columnwise decomposition such that Vj [Xi,sj] is generalized
monadic.

Also, Proposition 3.1 can be generalized to the constraint E Ai = a, where og
is some given constant, rather than E Aj - 1. Combining these two results gives a
method of suboptimal coherent approximation

1. Decompose characteristic matrix columnwise into a set of monadic matrices

2. Apply Proposition 3.1 to each subproblem, with the constraint that E(As)=

3. Using Lagrangian analysis, determine optimal a3 coupling constants

The resulting solution is guaranteed coherent. Furthermore, the suboptimality of
the result can be bounded by EZ Ey3,i A7 As3.



U 3.3 Divergence-based Coherent Approximation

In the following Section we will make two intuitive arguments for a cost function
in Equation 3.1 based on binary KL divergence rather than quadratic cost. The
first argument, given in Section 3.3.1 is based on a particular mathematical model of
the experts' assessments; the second, given in Section 3.3.2 is based on an intuitive
approach to a specific coherent approximation problem.

* 3.3.1 Opinion Deformation and Sanov's Theorem

Consider the following model for probability assessors: each assessor observes a se-
quence of realizations of her event over several periods of time and maintains an
empirical distribution of event occurrence. When called upon to make an assessment,
the assessor selects a distribution approximately equal to her empirical distribution
from finite set P.

When all assessors have reported it is noted the set of assessments is incoherent
and therefore at least one assessor is in error, either due to approximation or due
to miscalculation of the empirical distribution. Given that at least one reported
assessment is in error, which is the most likely generating distribution to have caused
the error(s)?

First, let's consider the most likely estimate of a true distribution for a single
assessor. Let p* be the true generating distribution for the assessor, and ' be the
reported distribution. From Sanov's theorem, the probability of declaring p, when
the true generating distribution is pi decays exponentially in n and is approximately

P($ =pgdp= pi) exp(-nD(pIjp )) (3.4)

where

Db(pj Ipi) = Pj log + (1 - pg) log (3.5)

and denotes asymptotic equality to within a multiplicative factor with a slower rate
of decay. (More accurately, the asymptotic rate of decay is infpEA(Ps) Db(p 1 pi) where
A(p,) is the set of all distributions mapped to p3 by p. We've made the simplifying
assumption that the acceptance regions A(p 3 ) are uniformly small in a divergence
sense).

Equation 3.4 gives an asymptotic, approximate expression for the posterior of an
observation distribution given a specific generating distribution, but we wish to maxi-
mize the probability of a generating distribution given an observation distribution (i.e.

P(pi = p*| p = f)). We make the assumption that the prior probability that p* = p is
uniform over all pi. Then, by Bayes' rule, the posterior distribution P(p* = p1Pf =pj)

is (asymptotically, approximately) proportional to exp(-nD(pI Ipt)). Conditioning
on the event i # j (i.e. the assessor is in error), the likelihood can be given as

p(p* =1P^I= p~ij A {C exp(-nD(pIjpi)) i-4j

47



Therefore the maximum likelihood estimate of p* given p = p1 and p / p* is
asymptotically

p* = arg min D(p Ipi ) (3.6)
prCP\{pn}

Relating this to the multiple assessor case, given a set of incoherent assessments
PP2, ... , PN we know at least one of the assessments is in error. If we knew which one,
by the preceding development it should be revised following Equation 3.6. Instead,
assume the assessors have independent observation processes. Then, by a development
similar to the singe assessor case, we see that

M

P(p* = PiPjP ,h --. -,Pj) oc exp(Z nkDb(jkIp I)
k=1

This expression has an intuitive interpretation; the weights nk represent reputational
values, dependent on how many observations the assessor has made. Absent repu-
tational information, we make the simplifying assumption that assessors have equal
amounts of information, giving the following expression for the ML estimate of the
generating distribution.

N

A* = arg min _1 Ajl A >Z Db(pi 11 xiA) (3.7)
i=1

where Xi is the ith row of X.

U 3.3.2 Coherent Approximation of Probability Mass Functions

Consider a special case of Equation 3.1 in which the characteristic matrix x is equal
to the identity. In this case, we can rewrite the optimization problem as

Q arg min C(P, Q) (3.8)
{QI E Qi=1, Qi>O}

Solution under Quadratic Cost Function

Consider an identity characteristic matrix. This would suggest an assessment regime
in which each assessor is attempting to provide the probability of an atomic event.
It is simple to see that the identity matrix is monadic and therefore the closed for
solution to the CAP is given by Proposition 3.1. In this case, since each atom is
under assessment by a single assessor, the solution will be increase or decrease each
element of the assessment by an equal amount (respecting positivity requirements, of
course) until the assessment is coherent.

As an example, take N = 3 and an assessment

-. 2
P = .7 .

-.7-
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i Pi IDi R Qi
0 - 0 0.7 -
1 0.2 0.2 0.1 0
2 0.7 0 0 0.5
3 0.7 0 0 0.5

Table 3.1. Optimal coherent approximation to quadratic approximation example

The solution given by Proposition 3.1 as shown in Table 3.1 would be

0
Q = 0.5

[0.5

This demonstrates one of the limitations of using the quadratic cost in formulating
the coherent approximation problem. The change from believing an event is 20%
likely to believing an event has 0% chance of occuring seems more significant than
the change from believing an event is 70% likely to 50% likely. Cognitively, the gap
between moderate uncertainty and absolute certainty is larger than between moderate
uncertainty and high uncertainty. This is more clearly seen in terms of odds: the
odds assessments of A1 and A2 in our example are shifting from 7:3 to 1:1, while
the assessment for A3 is moving from 1:4 to 1:oo. Or in other words, whereas the
third expert states he'd be willing to accept either side of a wager that pays out $4
if event A3 occurs and $1 if it does not, the coherent approximation would change
his opinion that he'd be unwilling to take the long side of the wager regardless of
the potential payout. Such an approximation represents a dramatic revision of the
expert's assessment that the CAP is incapable of capturing because its objective is
to minimize the Euclidean norm between the assessment and its approximation.

A more natural method for transforming a set of assessments into a probability
mass function is simply to scale the assessments until they sum to one. In the following
section it will be seen how the binary KL-divergence cost explains both why this is
natural and why it is not the right thing to do (quite).

Solution under KL Divergence-based Cost Function

Now, instead of the quadratic cost function in Equation 3.8, take

N

C(PQ)= Db(Pi Ji)
i=1

where Db(Pi Qi) is given by Equation 3.5. The rationale for choosing this cost
function is given in Section 3.3.1. The difference between the two objective functions
is depicted graphically in Figure 3-2. Notice particularly that the divergence-based
cost function generates natural barriers around the boundaries of the simplex. This
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1 ....... .

0.5

05.5

(b)

Figure 3-2. Optimal coherent revisions for example under (a)
information divergence cost

quadratic cost and (b) binary

barrier prevents coherent approximations of uncertain assessments taking on the form
of certainties, as happens in the case of the quadratic objective.

Unfortunately, even with X = I, the analysis for this cost function is difficult. We
can, however, derive a simple lower bound on the cost. Let

N

C1 (P, Q) = Plog(Q)s=1i
and

N

C2 (P, Q) = (1 - P)1og
i=1

1-Pi
(-)-1j-QiJ

Then C(P, Q) = C1 (P, Q) + C2(P, Q) and therefore the cost of solving Equation 3.8
under C(P, Q) is no smaller than the cost of solving Equation 3.8 under C1 (P, Q)
plus the cost of solving under C2(P, Q).

Substituting C1(P, Q) = P log (L) into Equation 3.8 we have

N

Q* = arg min Pi log (
{Qji Qi=1, QO} i-i Qi

N

= arg min 1Pi (log Pi - log Qi)
{QI Ei Qi=i, Qi>O} i1

N

= arg max 1Pi log (Qi)
{QIEi Q=1, QiO} i1

C~o0.5,

04
0

IL.0

0.5

(a)

................................

-,-1-



Applying Lagrangian analysis results in the unconstrained optimization

N

Q* =argmaxEPlog(Qi) + A 1- Q)
Q O =1

Taking the derivative with respect to Qi results in Qi = which immediately leads
to the solution Q* = ; i.e. the optimal solution under C1 (P, Q) is to scale the
assessments until they form a probability mass function. This is the "natural" solution
suggested at the end of Section 3.3.2.

To derive the other half of the lower bound, we substitute C2(P, Q) into Equa-
tion 3.8. Neglecting the range constraints on Q would give an answer similar to that
for C1 (P, Q), i.e. 1 - Q = El-, However, unlike for CI(P, Q), the assumption

that Pi E (0, 1) Vi does not in general imply the feasibility of this solution. Since we
are only seeking to establish a lower bound, however, the unconstrained minimiza-
tion is sufficient, and we can state a lower bound on the cost of Equation 3.8 using
C(P, Q) = EN Db(PIQ).

Theorem 3.1. C(P, P*) where P* is the solution to Equation 3.8 is bounded from
below by the relation

P 1-P
C(PP*) 01 , + ±C2 (P1 - _ p

The derivation of the bound above gives insight into why the natural inclination
to normalize the assessments isn't the right thing to do. Each expert's assessment
P specifies not only the subjective probability of event Ai, but also the subjective
probability of event A . Taking Q = j,, neglects the implicit assessed probabilities

of the complementary events. In using C(P, Q) = EN Db(PI IQi) as the cost function
for Equation 3.8, the cost of normalizing the assessments is being balanced against
the cost of normalizing their complements.

Another way of viewing this result is to disregard the implicit assessments of the
complementary events. After all, the whole problem of incoherence occurs because
experts' implicit assessments are incorrect; levying costs associated with implicit as-
sessments seems unfair, given that we already known those implicit assessments are
illogical. This perspective would suggest that the proper cost function wouldn't at-
tempt to balance the costs of deforming explicit and implicit assessments, but that
only C1(P, Q) (costs for explicit assessments) should be considered at all and that
C2 (P, Q) should receive no weight.

Expanding on this perspective, taking C(P, Q) to be the generalized I-Divergence

C(P, Q) = P log (1) - EZ(P - Qi) would result in the intuitive scaling solution

to Equation 3.8. It can also be shown (by a slight generalization of the analysis
in [99]) that when Xy(w) = x1(w)Vi (i.e. when all experts are assessing the same
event) that the generalized I-Divergence cost function again results in the "intuitive"
linear averaging mechanism for fusing probability assessments.



U 3.4 Alternative Formulation of the CAP

In Section 3.3 an argument was made that caution should be used in determining the
proper objective function of the CAP. It was shown that the L 2 norm suggested in [76,
77] results in counter-intuitive results when applied to the estimation of probability
mass functions. An alternative objective, based on the sum of binary divergences,
was suggested and justified using a particular assessor model, as well as an empirical
argument.

In this section we go further than simply considering alternative objective func-
tions and consider the fundamental question of whether the formulation of Equa-
tion 3.1 is well-justified. We suggest an alternative formulation, based in information
geometry, and compare it both to Equation 3.1, to the Divergence-based objective
function formulated in Section 3.3.2 and to maximum entropy methods. We demon-
strate that the alternative formulation is more flexible and more consistent with the
underlying nature of assessment.

U 3.4.1 Criticisms of the CAP

In [78] the question of the proper scoring function for coherent approximation was
considered. In that development the question was what posterior scoring functions
would induce assessors to provide honest assessments. However no distinction was
attempted among the family of proper scoring functions as to which led to the "best"
(in some sense) approximation.

One criticism of the optimization formulation in 3.1 is that it treats assessments
as points in Euclidean space. There's nothing mathematically troubling about doing
so, but pragmatically it leads to results that don't match natural interpretations of
probability. On a philosophical level, it ignores the fundamental formulation of an
assessment as a subjective expectation of a random variable. We will discuss both
the pragmatic and the philosophical objections to the formulation of 3.1 in greater
depth below.

In an attempt to reformulate the CAP to better align both with natural interpre-
tations of assessments as well as the fundamentals of subjective probability theory,
consider the information provided by an assessment when viewed as a subjective
expectation of a random variable. Specifically, this expectation gives us some infor-
mation about the assessor's subjective probability distribution over the atoms of Q.
Thus the question of coherently approximating a distributed assessment becomes a
question of choosing a distribution over the atoms of Q that best agrees with what is
known about the subjective probability distributions of the set of experts. We formal-
ize this information geometric view of coherent approximation in Section 3.4.2 below.
As was alluded to in the introduction to this section, there are obvious deficiencies
to the formulation of the CAP as a Euclidean projection. In this section we highlight
two such criticisms, one based in natural interpretations of probability and one based
in the philosophy of subjective probability.
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N 3.4.2 An Information Geometric Reformulation of the CAP

Given the concerns with the formulation of the CAP in Equation 3.1 we suggest here
a new formulation. The central idea of this reformulation is that an assessment is,
paraphrasing de Finetti, a distribution among all possible options one's own "sen-
sations of probability". Thus each assessment should be treated as a statement of
subjective expectation. The key question in coherent approximation is what personal
probabilities led to the set of assessments, and how to best approximate those by a
single probability distribution over the atoms of Q. The formulation will draw exten-
sively on basic concepts from the theory of information geometry [100,101] such as
the I-divergence and linear and exponential families.

Given that an assessment is a subjective expectation the natural question is what
subjective probability distribution generated the assessment. An assessment alone is
insufficient to define a unique probability distribution, but for each assessment we
can consider the family of distributions which might have led to the assessment.

Definition 3.1. For a given constant a and random variable X, the linear family
is defined as La(X) A {Q : EQ[X] = a}.

Thus each expert's assessment defines a linear family of probability distributions.

Proposition 3.2. If f Lp e(X;) :4 0 then the assessment P is coherent

Let Q be a distribution over the atoms of 9 and let Q c f Lp, (Xi). Thus there
exists A = Q s.t. P = Ex[X] = XA and therefore P is coherent. D

This view of assessments as linear families leads us to formulate the following
Information Geometric Coherent Approximation Principle (IGCAP).

N

A* = arg min min D(7r||Q) (3.9)
QEA 7rELpi (Xi)

with P* = XA*. The IGCAP is depicted graphically in Figure 3-3

* 3.4.3 IGCAP Solution as an MAP estimate

In this section an assessor model is presented to justify the form chosen for the IGCAP.
Suppose there exists a probability distribution y over the atoms of Q, and that

each assessor i has received ni samples drawn i.i.d. from pt. From these samples,
assessor i forms an empirical distribution j3,. In providing an assessment of random
variable Xi, assessor i follows his type, meaning

Pi = Ep [Xi] (3.10)

Let L' = {QIEQ[X;] = P}. Given assessment P, we wish to select a y from some
arbitrary, but finite, set of distributions over P. Let M be the set of such distributions.
One reasonable method for doing so would be to choose the MAP estimate. If we
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W1 W3

Figure 3-3. Graphical view of IGCAP

assume a uniform distribution over M, the MAP estimator is equivalent to the ML
estimator, i.e.

ILMAP - arg max PVvi,3i E L)
,EM

Pv(Vi I p, E L')
= arg max

- EM ZEM P (Vi Pn, E D)

= argmaxP,(Vi,A. E L*) = ML
,EM

We make the following assumption about our assessors:

Assumption 3.1. Each assessor's sequence of observations is independent of every
other assessors observations.

Given this assumption, we can write the maximum likelihood estimate of p as

[LML = arg max P,(Vi, E ) = arg max P, (f, E L) (3.11)
,EM ,EM

We next use a 'method of types' argument to demonstrate that for ni sufficiently
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large the ML estimate AML is given by

M

ML min niD(riI|Q)
QEM

(3.12)

i.e. a weighted form of the IGCAP. For this argument we will need the following fact

Fact 3.1. Let p^ be the empirical distribution, or 'type' of an observation sequence
of length n and let 4n be the set of all such n-types.
vectors F C A(Q2) we have

Then for any set of probability

(n + 1)~Ie-ninfErnCn D(v||p) 1| 1J_ )-n infErncn D(v||pi)

For proof, see Chapter 2 of [102]. Letting

C(n) = (max(n ) + 1)Ml"I
t

we can apply these bounds to the argument of the maximization in Equation 3.12.

Pvp c Lt )

fl P1v(p EL')

1 C - E; n inf ELinC D(7r||v)

C(n)

< C(n)e- Zi ni nfrELinCni D(7r lv)

Since L' is a linear family, the inf in the exponent of the above bounds will be achieved.
We introduce another well-known fact.

Fact 3.2. Given a linear family L and some ,r E L, for any Q L

D(rIIQ) = D(7rI|r*) + D(7r*IIQ)

where ,r* = arg minx LD(,rI|Q) (i.e. the I-projection).

Using this fact we can rewrite the above bounds as

JPv(p. E L') > -ei n m "in D(7rr||7r!)+D(ir llv))
C(n) e rELinC S )

1 - Z n minrE D(7r||7r!) - E niD(7rilv)

C(n)

< C(n)e- wE '"ni D 9r|r + 1rjl)]IJPv(p3n E L')

= C(n)e n mi'WEt D(er7) - EID(r-||v)

As n; -+ oo, minTurfn D(7r| |ri) - 0 at a rate of approximately !. Therefore, for
notational ease, we will assume ni is sufficiently large that the impact of the empirical

(3.13)



distribution quantization factor e " *ELic D(ir|i7r:) is negligible on the above
bounds and drop it from the rest of the analysis.

Let vi = arg minVEM Ei niD(7ri II v) and consider the difference in log-likelihood,
i.e. E log P , (P' E L') - EZ log P,2(p' E L') for some v2 v4 v. Using the above
bounds (sans quantization factor), we have

log P, 1 (. E L') - 5 log P(5' E Ll)

> - log C(n) - niD(7rI||vi) - log C(n) + niD(7rI||v 2)

S-2 log C(n) - nj (D(r|IIvi) - D(7ri Ilv2))
i

By the definition of vi the factor (D(rill vi) - D(rg ||v2)) < 0 and since - log C(n)
is going to -oo logarithmically in maxi(ni), we have that for all ni sufficiently large

-2 log C(n) - ni (D(7ri*|| Ivi) - D(7rill Iv2)) > 0

and therefore p'ML = v1-

3.4.4 Alternative Minimax Cost

Notice in Equation 3.12 above that it depends on the weighting factors ni, which
are essentially the amount of experience of assessor i. In the coherent approximation
problem as formulated we don't have access to such reputational information. In the
absence of it, we make the assumption that ni = n3 = n for all i, j. Under this
assumption we retrieve the formula for the IGCAP in Equation 3.9.

A reasonable alternative assumption in the absence of knowledge of ni is that
we are engaged in an adversarial game with nature. In this case, after choosing an
estimate, nature chooses values for ni to maximize our expected estimation error.
This assumption leads to the related formulation

Qn=x = arg min max D(7ril|Q)
QEM *

This formulation will choose Q to be 'equidistant' (in the divergence sense) from all
the linear families. Possible implications of this alternative cost formulation will be
discussed somewhat further in Section 4.9.2. One limitation of the minimax cost
structure is that it is more sensitive to outlier assessments than is the sum of diver-
gences formulation. If almost all assessors are coherent with respect to each other, but
a single assessor has a highly divergent assessment, the minimax cost structure will
tend to give the outlier assessment outsized weight based on the level of agreement
of all the other assessors.
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* 3.4.5 Application of the Conditional Limit Theorem

In the sequel, we will at times interpret the distributions w; which are the I-projections
of p = Q* onto L, as estimates of the assessors' 'true' subjective distributions. Using
the above assessment model, we demonstrate the reasonableness of that assumption.
What follows is a special case of a conditional limit theorem; significantly more general
treatments can be found in [103-105] and the references therein.

As per the assessor model suggested in Section 3.4.3, suppose the assessors are
formulating types p based on independent streams of observations, generated ac-
cording to distribution pi. We will demonstrate that, for any c > 0, for any i,
PA(D(pn,|ri) > elp E L) can be made arbitrarily small for ni sufficiently large.
Since we will be deriving the result for each i, we will drop the assessor identification
in what follows (i.e. ni will be denoted n, pn, will be pn and so forth).

Define D, A {Q E LID(Q|II*) < E} and let D'= L\D,. Letting C(n) = (n+1)QI,
v* = arg minvEDen 4C D(vJ |r*), and v*c = arg minvEDilf D (vi||r*), we can write

P,1(3~ C D~i T, ~ L) C (f)eninfVD cnn D(LuII1L)

= C(n)e-n(D(v*| |Ir*)+D(7r* 1|p))

and

Pp(pin c DeIlpn E L) > e " " "EeDenCn D(vlp)
Pn - 0(n)

= 1 e-(~ *||7r*)+D(7r*||p)) (.5- 1~) nDv (3.15)
0(n)

using Facts 3.1 and 3.2 from Section 3.4.3.
Since L = De U Dc we can write the conditional probability as

P,(D(pn||r*) < EIpn E L) = P,(p E DJp1  c L)

P,(f c D.)
Pt,(pn E DE) + P (fin E Dc)

1
Py (finEDc)
Py (#n EDe)

1 + C(n)e--n(D(vc*1 17r*)+D(w*llp))
+ e-n(D(vnJ||r*)+D(7r* ll y))

1

1 + 2C(n)e-n(D(vc* I|7r*)+D(,r* I|)-D(v*||7r*)-D(7r*||p))

1

1+ 2C(n)e-n(D(v* I|7r*)-D(v*| |7r*))

where the bound is due to Equation 3.15 and Equation 3.14. By definition, we have
that D(vn*1|7r*) > E (in fact, D(vn*I7r*) - e at rate O(1)). The factor -D(v*||r*) 4
0, again at rate O(1). Therefore, for all n sufficiently large, D(v*I|7r*)- D(v*|7r*)) >



0 and
PI(fi E De IN E L) -+ 1

at an exponential rate of c.
Interpreting this result, we see that the probability mass for pn conditioned on

p, E L is concentrating in an arbitrarily small neighborhood around the point -r*.
This justifies, to some extent, the interpretation of 7r* as an approximation of the
assessor's subjective probability distribution pn.

One must be a bit cautious in interpreting this result, however. The statement
applies to the marginal probability that each assessor's type is "close" to ri; it doesn't
imply that the joint probability that all types lie within an e-ball of their respective

7r*

* 3.5 Properties of the IGCAP

In this section we analyze the IGCAP and demonstrate some of its properties and
benefits, including:

1. The solution P* is (a) unique and (b) equal to P if P is coherent

2. The computation is particularly tractable for characteristic random variables,
with a special case that agrees with the operator model suggested in Sec-
tion 3.3.2

3. The mechanism can extend invariantly to assessments of non-characteristic ran-
dom variables

4. The formulation can be expanded to allow for assessments given as ranges rather
than points

5. Given a sequence of assessments P. such that limm P, = P is coherent, the
sequence of solutions P,* - P.

Each of these benefits will be discussed in greater detail in subsections below. An
additional benefit is the easy extensibility of the theory to the case of conditional
assessments (i.e. assessments of conditional random variables), but a discussion of
that extension will be left until Chapter 4

* 3.5.1 Solution Uniqueness and Coherence

Proposition 3.3. If P is incoherent then there exists a unique solution to Equa-
tion 3.9.

Because each of the divergences under the summation are strictly convex in Q,
the sum is strictly convex and therefore there is a unique solution. Furthermore the
solution will lie in the interior of the probability simplex. L

Proposition 3.4. If P is coherent then P = P* where P* = XA* and A* satisfies
Equation 3.9.



For any Q E nLp,(Xi) will have (a)min,EGL (Xi)D(w|IQ) = 0 for all i since Q E
Lp, (Xi) and (b)EQ [X] = P (by definition). Since divergence (for finite distributions)
is non-negative, the minimum of Equation 3.9 is obtained for any Q E niLp, (Xi) (and,
by strict convexity of the divergence, only for such Q). Thus l Lpi (Xi) is the set of
all minimizers A* of Equation 3.9 and by (b), P* = XA* = E\ [X] = EQ[X] = P.

* 3.5.2 Computation of IGCAP

One concern about moving from the CAP formulation to the IGCAP is computation.
As stated earlier, the CAP has computational challenges, since it is a convex program
with a potentially exponential (in the number of random variables) number of linear
constraints. Some work has been done [78,98] to examine suboptimal approximations
that are more readily computable. On it's face, the IGCAP seems likely to signif-
icantly increase the computational challenge of coherent approximation, as we now
must solve a nested set of optimization problems. However, due to the special struc-
ture of the inner optimization the computational problem is not as great as might at
first be feared.

The inner minimization problem in Equation 3.9 is commonly referred to as the
I-projection. It is known [100] that, for a given Q, the I-projection of Q onto a linear
family defined by the statistic Xi (i.e. Lpi(Xi)) lies on the tilted exponential family
of Q defined by Qi = {Q'IQ' = Qe'} where Z(6) is commonly referred to as the
partition function and 0 as the natural parameter. It can be further shown that there
is a unique point P* = Lp,(X) n Qi that optimally solves the I-projection.

In the case that Xi is a characteristic random variable, we can simplify Equa-
tion 3.9. Letting x; denote the solution to the I-projection for a given Q we can write
the elements of wx' as

[ei [x]b = 1
Sx4~ = 0

Since E[7;]j = 1 and E,?7[Xi] P we have

1-Pi = [rir]- E,;[X 2]=Z([7l]j- 1] [w]j
{jI|Xi1j=1}

{ijxeis=0} {|[2x1b=0} Z

Therefore the partition function for the optimizing distribution is Zi= .

Next, given this representation of Zi as a function of Q and xi, we can solve for
the natural parameter of the optimizing distribution.

Pi = E; [ ,Xi]= } [ =e
{jllzils=1} {3|[2312=1} *i
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and therefore

63 = log P = log ( X = Q3)
{xi= (1 - P) (Z[X Q)

Therefore, we can write the inner minimization factor

D(rilIQ) = E[7r] log 3
QZ

Slog +- lo

Zi Z Q
- P)log + P log
{ijlx4=O} Z Z l1Xi]=1} ilb=1} lo Qi

lo I Q-7 + Pi log SiE Q

(I (-PTi)log 1-Pi ±Pi log P
ZfiI1x,] 3 =O} Qi Z-fj1x j=i} Qi

The IGCAP for characteristic random variables is therefore equivalent to the problem

N 1- + l(
A arg min (1 - P) log * + Pi log (3.16)

QEA i==1 Ullb=0} Ullsb=1 Q

* 3.5.3 Comparisons of IGCAP to Other Coherent Approximation Formulations

In this subsection we compare the suggested method of coherent approximation to
other suggested methods from the literature. We show specific cases in which each al-
ternative formulation is deficient, and include an empirical experiment demonstrating
the superiority of the IGCAP.

The CAP

The CAP, as formulated in [76, 77], is a Euclidean projection onto a convex set.
However, for the purposes of comparing it to the IGCAP we introduce an equivalent
view of the CAP.

Consider two linear families L,, (X) and L 2 (X), and assume they are non-empty
(i.e. c and a2 are valid expectations of X; this comports with the assumption, made
in Section 2.3.2, that P(X) c [mini xi, max xi] where xi is a realization of the random
variable X).

Proposition 3.5. L, 1 (X) and La2 (X) are parallel to each other on the simplex (in
the standard, Euclidean way).



The insight from Proposition 3.5 provides us a method from comparing the CAP
with the IGCAP. Specifically, consider this equivalent formulation of the CAP:

M

minm d(Lpi(X),Lp,(X))
PE[o,1]Mi=

s.t. ni Lp,(X) / 0 (3.17)

where d(A, B) is the minimum Euclidean distance between sets A and B. Viewed in
information space, the CAP formulation in Equation 3.1 is equivalent to a minimal
shift among the set of linear families until there is a non-empty intersection. However,
the shift is performed along level sets of the linear families.

Other limitations of the CAP as formulated in Equation 3.1 will be suggested in
Section 3.5.4.

Divergence-Based CAP

We now compare the IGCAP to the reformulation of the CAP to use a binary
divergence-based metric in Section 3.3, and find that they coincide in a particular
important case.

Suppose that X = I (hence M = N), per the empirical argument in Section 3.3.2.
Since in this case the random variables are characteristic, Equation 3.16 applies in this
scenario. Note that for any given i, _i Q3 = Qi and _fIxJ.o} Q3 = 1 - Qi.
Furthermore P* = xA* = IA* = A*. Therefore we can rewrite Equation 3.16 as

N

P* =arg min (1 - P) log + Pi log
gEAa 1-Qi Qi

This is exactly the sum of binary divergences that was asserted as the proper objective
function for the CAP in Section 3.3 based on an independent justification.

Maximum Entropy methods

Maximum entropy methods have been successfully applied to a diverse set of estima-
tion problems. A general statement of the principle of maximum entropy is that when
faced with a set of probability distributions with no prior information on which to
select a single distribution, the distribution with maximum entropy should be chosen.
This principle goes back to Jaynes [106], but has been employed by a great many
researchers working on a diverse set of problems.

A possible alternative method for forming a coherent approximation, would be to
select the maximum entropy distribution from each linear family Lp1 (Xi) and then
average (either linearly or log-linearly) the resulting distributions over the atoms of
Q. While this method may often generate a good approximation, there are certain
instances in which it may be quite bad.

Consider for example the situation when x = I, as in Section 3.3.2 and P(X) =

[0.8 0.1 0.14 ]f. This is example is shown graphically in Figure 3-4. The three



W1 W 3

Figure 3-4. Failure of maximum entropy approximation
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linear families, generated by three independent assessments, are shown in the figure.
While their intersection is empty, the families seem to be "nearly" coherent (in the
sense that a small perturbation of any one of the families would result in a non-empty
intersection, and thus coherence).

However, the maximum entropy principle, if applied as suggested, would choose
from each linear family its maximum entropy member. In this case, that means the
point in each family that lies closest (in a divergence sense) to the middle of the sim-
plex. Taking a linear average of those points will lead, in this example, to a coherent
approximation that lies quite far away from the point at which the linear families
nearly intersect. Mathematically, we define the maximum entropy approximation as

PME XA*JJ where

AME = S arg max H(Q)
M QGLp(X)

with H(Q) -

results in

PI E

- EZ Qj log Qj. For the simple example above where X = I, this

1
3

1

arg max H(Q) + arg max H(Q) + arg max H(Q)
QELo.s(X1) QELo.1(X 2) QELo.14(X3)

0.8 0.45 0.43
0.1 + 0.1 + 0.43
0.1 0.45 0.14

0.56
0.21
0.23 J

Particularly troubling is that the method would be discontinuous in the limit.
taking the above example, if we consider a sequence of assessments

So,

0.8
Pn(X) 0.1

0.1 +_

we see that the sequence is 'approaching' coherence (in the sense that the limit is
coherent). However, considering the limit of the maximum entropy approximations
is

lim PMtE.
n-oo

1 1.7 - i
= lim - 0.65 -2g

neo3 0.65 + n

0.56
0.26
0.26

[0.8
0.1
0.1

* 3.5.4 Extension to Non-Characteristic Random Variables

The focus thus far has been predominantly on coherent assessments of characteristic
random variables (i.e. probabilities). In de Finetti [26], probabilities are a special case
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of the more general principle of prevision. As shown in Chapter 2, the philosophical
justifications for coherent assessment are very similar between characteristic and non-
characteristic random variables.

Because it is formulated in terms of subjective expectations, the IGCAP general-
izes immediately to assessments of non-characteristic random variables. The notation
of linear families Lpi (Xi) is identical, as is the interpretation. For a given assessment,
the coherent approximation is given by P* = XA* where A* is defined in Equation 3.9.
The only notational change is the replacement of the characteristic matrix X with the
more general outcome matrix X.

One attractive property of the generalized IGCAP is that it is invariant under
linear transforms of the random variables. The algorithm thus returns identical an-
swers (appropriately scaled), regardless of the specific units in which experts choose
to make assessments. Mathematically, let X?2 = aiXi + bi and P = aiPi + bi (a # 0).
Then for P* calculated by the generalized IGCAP for assessment P of random vector
X we have Pi* = aiP,* + bi where P* is the coherent approximation of assessment P
of random vector X. We state this fact in the following Proposition.

Proposition 3.6. The IGCAP is invariant under affine random variable transfor-
mations.

The critical point is that Lp, (X) = Lp, (Xi). To see this, consider that

Lp,(Xi) = {Q : EQ[Xi] Pi}

= {Q : E[a1Xi+bI= P }
= {Q:aiEQ[Xi]+bi=P}

= {Q:aiEQ[Xi]+bi=aiPi+bi}

= {Q : EQ[Xi] = P} Lp,(Xi)

Since the linear families are identical, the point A* will be equal to A* and therefore

P= XA* =iA* = ax XA* +b= ax P* +b

where x is taken component-wise. O
This stands in stark contrast to CAP. Returning to our earlier example of PMF

estimation, assume that instead of an identity characteristic matrix we had the fol-
lowing outcome matrix:

1 0 0
X= 0 1 0

-0 0 100

and the assessment vector P = [ 0.7 0.7 20 ] . By Proposition 3.6, since X is an
affine transformation of the original identity matrix and P is the analogously trans-
formed assessment, the coherent approximation under IGCAP will be the transform
of the original approximation. In this case, that means that P* = [ 0.46 0.46 8 ] .
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By contrast, the solution to the (generalized) CAP is not invariant under affine
transformation. Specifically, if we state the generalized CAP as

A* = arg mingA1E.X..l IoI lP - XAl I2 (3.18)

with P* = XA*, and then apply Lagrangian analysis we get the following solution

(note in the following that A, which is often used as the dual variable, is actually the
primal variable and we use v as the dual variable).

We form the Lagrangian,

L(A, v) = ((P - diag(X)iA\) 2 + v(1 - E Aj)
i

(P1-A1)2 + (P2 -A 2 )2 + (P3 -100A 3 )2 v(1- A)

(0.7 - A1 )2 + (0.7 - A2 ) 2 + (20 - 100A3 )2 + v(1 - Aj)
i

and then minimizing over A leads to

A*(v) =[0.7+ 0.7 + 0.2 + ]o

Enforcing the constraint that E>3 A= 1 we see that v = -0.6 o and therefore

P* ~[0.4001 0.4001 19.98 ] T. Compare this with the result under the identity

characteristic matrix derived in Section 3.3.2, P* = [ 0.5 0.5 0 ]T. Changing the

units of assessment for one assessor, from 'probability' to 'percentage' results in sig-
nificantly different optimization behavior.

* 3.5.5 Market clearing and general utilities

One way of interpreting the IGCAP is that A* represents a compromise solution
among the inconsistent views of the various assessors. Because of the particular
assessor model that we suggested in Section 3.4.3, we viewed the optimal compromise
to the be the one detailed in the IGCAP, but as pointed out briefly in Section 2.5
alternative cost structures could be analyzed.

More generally, we could consider the sequence of actions as follows: each assessor
makes assessment P for i = 1,2,..., M. Then a social planner is responsible for
selecting a distribution A* over the atomic events that maximizes social welfare among
the set of assessors. Each individual assessor's welfare is defined by a utility function
ui(-ri, A*) where iri is the (implicit) distribution assessor i holds over the atomic events.
The social welfare problem is then

min max uj(7r, A).
AE A 7rELpi

It is evident that the IGCAP is a special case of this formulation, where uj(7r, A) =
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-D(rjA) for all i. However, other cost functions could be employed. For example,
as was shown earlier, if the utility for each agent is quadratic, under an identity
output matrix the problem reverts to the original CAP formulation. Another possible
cost function, so far unexplored, is the earth-mover's distance between distributions,
or other forms of the divergence function. We can also represent non-expectation
maximizing agents, allowing us to model risk aversion or risk seeking behavior among
assessors.

The structure of this problem bears a striking resemblance to the formulation of
Arrow-Debreu model of competitive markets, with assessments representing resource
(or endowment) constraints on individuals, A* representing the equilibrium price vec-
tor, and the individual utility functions defining the cost of allocating weight iri(og).
Mathematically, agent i chooses 7ri to maximize ui(ri, A*) subject to the constraint
P = E wr(w)Xj(og). Meanwhile the social planner chooses the price vector A* to
maximize Ei ui(ri, A*) subject to the constraint that E, Aj = 1.

While we don't further develop this connection here, we point the reader to refer-
ences [107,108] for development of pricing policies in Arrow-Debreu models, particu-
larly with regards to incomplete markets.

* 3.6 Exchangeability and Coherence

The final two substantive sections of this chapter analyze the impact of introducing
additional constraints on the set of coherent assessments. Specifically, in this section
we will analyze constraining the random variables under assessment to be exchange-
able and in the next we will analyze what happens to the set of coherent assessments
when the random variables are constrained to be Markov with respect to some graph.
The results in these sections are proven specifically for characteristic random vari-
ables, but the major results extend to non-characteristic random variables through
analogous arguments.

In addition to the concept of coherence, de Finetti also introduced the concept of
exchangeability of random variables. In one sense, exchangeability is a generalization
of the concept of independent and identically distributed. However, more relevant to
the material in this thesis is the constraint that it implies with respect to the joint
distribution of the random variables.

A set of random variable is said to be exchangeable if it is invariant under permuta-
tion. Let r be a one-to-one mapping T : {1, 2,... , N} -+ {1, 2,... , N}. Then, by def-
inition, a set of random variables is exchangeable if P(X1, 2 ,...,N}) = P(Xr({1,2,...,N}))-

If the only structural information about a set of binary random variables is that
they are exchangeable, then the only constraint on the joint probability distribution
is that it is symmetric (in the sense of invariance to permutation). As a consequence
of this symmetry, it is simple to show that the marginal probabilities of a set of ex-
changeable random variables must be equal. Indeed, this is the only constraint levied
on the marginal probabilities by exchangeability. In other words, given a set of bi-
nary random variables X 1, X 2 ,... , X,, exchangeability implies P(Xi) = P(X), Vi, j.
There are no other implications with regards to the marginal probabilities. So, con-
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sistent with the geometric interpretation of coherence one can consider the set of
coherent marginals with respect to exchangeability to be those that lie on the line
connecting the [0]" and [1]" vertices of the hypercube.

N 3.6.1 Characteristic Matrices with Matched Exchangeability Constraints

When multiple forms of structural information are known about a set of random
variables, a consistent estimate of the probabilities must be in agreement with all the
constraints. When a set of random variables are known to be 1) exchangeable and 2)
coherent w.r.t. a characteristic matrix, the set of consistent probabilities is restricted
more than by taking either structural requirement individually. There are situations
in which the characteristic matrix can be "matched" to the exchangeability constraint,
i.e. where coherence levies no constraints above and beyond exchangeability.

Consider a characteristic matrix x with columns X(Wi), i = 1,2,..., ||. Assume
w.l.o.g. that all columns are unique and that || < 2N. For any column x(wi)
let ni = 1A3,W), and consider sets of columns Jk= {X(Wi) In = k}. Note that

IJ 5 k . The following lemma is a direct consequence of the invariance under

permutation property of exchangeable random variables.

Lemma 3.1. If A is an exchangeable set of binary random variables with characteris-

tic matrix X then Vi, j, ni = n, => A = Aj. Furthermore, for all k, |Jk| < k
Ai = 0 Vi s.t. ni = k.

An immediate corollary of Lemma 3.6.1 gives necessary and sufficient conditions
under which a characteristic matrix is matched with exchangeability.

Corollary 3.2. A characteristic matrix x is matched to the exchangeability constraint
iff IJkI= 0 for all k V {0, N}

Another corollary gives the conditions on a characteristic matrix such that the
set of feasible marginals under both exchangeability and a characteristic matrix is
exactly the intersection of the feasible sets under each structural condition alone.

Corollary 3.3. For event set A let P1 be the set of marginals consistent with ex-
changeability, P 2 be the set of marginals consistent with a characteristic matrix and
P be the set of marginals consistent with both exchangeability and a characteristic

N
matrix. Then P =?1 nP2 iff |Jk| e {0, k }for all k G {0,1,..., N}

3.6.2 Non-additivity of Marginal Constraints: A Counterexample

Explaining Figure 3-5, (a) are the feasible marginals based only on characteristic
matrix and (b) are the feasible marginals after including exchangeability constraints

(omitting the equality constraint for expositional clarity).
As stated earlier, if the members of a set of random variables are exchangeable, the

feasible set of marginal probabilities are exactly those which lie on the line segment
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(a) (b)

1 1

1 1 1 1
PP 3 PP 3

Figure 3-5. Feasible marginals under a combination of coherence and exchangeability constraints

between the origin and unity. To demonstrate the non-additivity of the marginal
constraints, consider the following example:

= { , w1, - - W6}

A1 = {i,w s, s}
A2 = {W2,w3}
A3 = {W4, W5}

Its characteristic matrix is

0 1 0 1 0 1 0
x= 0 0 1 1 0 0 0

0 0 0 0 1 1 0

and the set of coherent marginals is shown in Figure 3-5. Note from the assessment
space that

Ac n A2 n A3 = 0 =+ P(Ac n A2 n A3 ) = 0

Now, if we assume additionally that the random variables are exchangeable, we have
the symmetry constraints

P(A n A3 n A1 ) = P(A n A nA 2 ) = 0

This is equivalent to the requirement that A3 = A5 = 0. In addition, as stated
earlier, exchangeability requires that the marginals all be equal. These two constraints
together imply that only marginals of the form P = [a, a, a] where 0 < a < }
are feasible, or consistent with the structural constraints. Note, however, that the
intersection of the feasibility sets for the two types of structural constraints taken
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independently is P = [a, a, a], 0 < a - This demonstrates how the set of
feasible marginals given the combination of two types of structural constraints can
be a strict subset of the intersection of the sets of feasible marginals of each type of
structural constraint taken individually.

U 3.7 Markovianity and Coherence

Just as in Section 3.6 we examined the combination of a characteristic matrix with
exchangeability among the random variables, in this section we will investigate the
combination of a characteristic matrix with Markov relationships among the random
variables. To motivate the problem, consider the following situation

Consider a group of individuals under suspicion of terrorist activities. These
activities include involvement in one or more of a set of previously carried out terrorist
events. Based on a variety of information sources, a group of experts estimate the
probability that each actor in the network is, in fact, involved in terrorist activity.
Now, assume there is a known social network connecting this group of individuals.
Social ties are a central element in fomenting terrorist activity, so much so that it
can be assumed that the probability an individual is involved in terrorist activity
is conditionally independent of the activities of all other individuals in the network,
given his group of immediate social connections (his neighborhood). This is exactly
equivalent to saying the participation of an individual in terrorist activities is Markov
with respect to the graph representing the social network.

Let G (V, E) be a graph such that for every i, node v corresponds to Ai.
Constrain the joint probability over A to be Markov w.r.t. G and let the set of
realizable marginal probabilities be denoted P.

M 3.7.1 Another Example of Non-Additivity of Combining Types of Structural
Constraints

Consider the following example of how constraining the joint probability to be Markov
w.r.t. G can affect the set of realizable marginal probabilities. Consider an assessment
space with the set of coherent marginals shown in Figure 3-6(a). Now, consider the
graph shown in Figure 3-7(a). The interpretation of Figure 3-6 and Figure 3-7 is:
(a)Top left: P, no graph constraints (or, equivalently, a complete graph); (b) Top-
Right: P for graph in Figure 3-7(a); (c) Bottom-Left: P for graph in Figure 3-7(b);
(d) Bottom-Right: P for graph in Figure 3-7(c) The additional constraint implied by
this graph is P(A 1 n A3 |A2 ) =P(A1 |A2)P(A3IA 2). Since there is no w s.t. A1, A2 ,
and A3 all occur, P(A 1 n A3 |A2 )= 0. Rewriting the constraint in terms of A, we see
that

P(A1 n A3 |A2)>0 A3  A6
A2 + A3 ± A6 A2 + A3 + A6

The additional constraints introduced by the graph imply that either A3 = 0 or A6 = 0
(or both). This results P as shown in Figure 3-6(b). Resultant P for the graphs shown
in Figure 3-7(b)-(c) are shown in Figure 3-6(c)-(d), respectively.
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Figure 3-6. Feasible Sets under joint coherence and Markov constraints for four graphical structures

(b)

Figure 3-7. Markov graphs for Figure 3-6
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* 3.7.2 Complete Event Sets

Definition 3.2. The set of events A, and its corresponding characteristic matrix X,
is said to be complete if for every a G {O, 1}N 3j s.t. a x(w).

For any complete A, P is exactly the N-dimensional hypercube.

Theorem 3.2. For any graph G, if A is complete then P = P

Proof: wlog, assume so,... , W2 N._ correspond to the binary sequence ordering for
X(wj) (i.e. X(wj) = dec2bin(j)). For any P G P, let

fj (Hi:wjeiti P) (Hi:wjVAi(l - P0) j -1,2, ... ) 2' - 1 (.9
0 j > 2 N

Lemma 3.2. Equation 3.19 satisfies the constraints 1:1" Ai - 1 and P =A:wjC:AiA 3

Thus, for any point P E P, where P is the N-dimensional hypercube, A as defined
in Equation 3.19 will satisfy P = XA.

Lemma 3.3. Equation 3.19 satisfies the constraints for an independent joint distri-
bution over A

Since the independence graph G = (V, 0). introduces the maximum number of
constraints, and since Lemmas 3.2-3.3 imply P 7 P under the independence graph,
then for any graph G, A defined by Equation 3.19 will satisfy all constraints, and thus
for any graph G, if A is complete then P= P.

Definition 3.3. The set of events A and its corresponding characteristic matrix X,
is said to be degenerately complete if A can be decomposed into two disjoint sets
(Ac, Ad) where Ac is complete and Ad is deterministic (i.e. if Ad G Ad then xas is
uniformly 0 or 1 for all j)

Proposition 3.7. For a general graph G = (V, E), P = P iff, for each possible
decomposition of the graph into (P, C, F), where C is a cut set on G, the characteristic
submatrices corresponding to each realization C of C are degenerately complete

With the insight gained from Proposition 3.7, we can turn our attention to the
central question of what effect constraining the joint probability space by graph G
has on the coherence set P. From de Finetti's theorem, we have P = convhull(X).

Suppose (P, C, F) is a partition of graph G s.t. C is a cut set (and is not a superset
of some other cut set). The set of instantiations of C form a partition on Q. Let the
subset of atomic events in an instantiation C of C be denoted Qc.

Now, suppose that for some instantiation C of cut set C of graph G, the condi-
tions of Proposition 3.7 do not hold. Then, for the joint distribution to support the
constraint implied by the graph, A, = 0 for some set I c {0, 1,... , N}. Specifically,
those atomic events which cause the degenerate completeness condition to be violated
must receive zero weight.



Let Ic = {I : XA\c (Qc\wr) is degenerately complete}
be denoted Ic. Let Ic = {I: I= UccC Ic} and let the
Ic. Let I= {I : I= UcIc} and let P = XA s.t. Ar = 0.

and let the elements of Ic
elements of Ic be denoted
Then

IEI

Returning to the example, consider the graph shown
be decomposed into P =A 1, C = A2 , IF = A3. First,
A2 {Wo, W1, W4 , W5}, we get the characteristic submatrix

in Figure 3-7(a). This can
conditioning on the event

XA\{A 2102) 
11

This submatrix is complete (and hence degenerately complete), and so there are no
conditions on A due to conditioning on the event A2 (i.e. TA 2 =O =0).

Next, conditioning that event A2  {w 2, W3, W} results in the characteristic sub-
matrix

XA\{A 2 }(A2) [ 01

The characteristic submatrix is not degenerately complete.
pare Figure 3-6(a) with Figure 3-6(b)). Since

Therefore P j P (com-

X{A 1,A3 }(A2\W3) 0

and

X{A 1,A3}(A2\W6) [ 0 I
are degenerately complete, IA 2=1 ={3, 6}. The set IA2 is therefore equal to {I : I =

UiEf0,11 IA2 =i ={{3,0}, {6, 0}} {3,6}. Since A2 is the only cut set of G that is not
a superset of another cut set, we have I = IA 2 = {3, 6}. Therefore the set P7 can be
described by

P= U {XAIEA=1; A;>0;Ai=0}
iE{3,6} j

* 3.8 Conclusion

In this Section we have analyzed the problem of approximating an assessment of a
random vector. Incoherent assessments, i.e. those that could not have been generated
by a probability distribution are fundamentally flawed for the reasons outlined in
Chapter 2. Therefore by approximating an incoherent assessment with a coherent
one should improve the quality of assessment for decision making. However, care
needs to be taken in the method of approximation.

One consideration is the computability of a coherent solution. We have developed
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a computable approximation method, based on the Coherent Approximation Principle

(CAP), that provides optimal solutions in closed-form for specially structured random
vectors. It provides a boundedly suboptimal coherent approximation for all other
characteristic random vectors.

We then developed, based on pragmatic and philosophical concerns with the CAP,
an alternative approximation method based in information geometry. The Informa-
tion Geometric CAP (IGCAP) has several attractive properties, including natural
barriers as approximations move toward the edges of the simplex, the ability to han-
dle imprecise assessments, and a unit invariant generalization to non-characteristic
random vectors. We compared the IGCAP to previous suggested solution methodolo-
gies including the CAP, a divergence-based CAP, and a suggested maximum entropy
method.

Finally, we considered the combination of the structural information given by an
outcome matrix X with other types of structural constraints. Specifically, in the case
of X = x we analyzed the impact on the feasible sets of joint distributions under both
exchangeability and Markovianity constraints.

N 3.8.1 Future Work

We have assumed an assessment model based in the Dutch Book/Arbitrage argu-
ments from Chapter 2 that assessments are subjective expectations of random vari-
ables. However, a large body of economic literature has analyzed human behavior
and found that pricing and other assessments are often not made in an expected
value manner. In general, particularly when dealing with randomized variables that
represent monetized gains, human behavior seems to tend toward risk aversion. This
can be mathematically modeled by replacing E[X] with E[u(X)] where u is a con-
cave function. In general, the utility function may differ between assessors. It might
be fruitful to analyze such a case. As a starting point, Dutch Book arguments are
analyzed for non-expected value models in [109]. The personal utility functions of
individual assessors could be learned over time; such information could theoretically
improve the approximation.

Another commonly employed method in expert opinion fusion is the use of in-
dividual reputations. Such reputations could lend more or less weight to individual
assessor's assessments, and could be based on past predictive performance (which
would require the imposition of a scoring rule, as discussed in [78]). In the IGCAP
model, reputation could be added quite naturally by adding a multiplicative factor
ai to each of the inner minimization functions. Thus, if an assessor's reputation is
bad, his a is near zero, and the overall cost is relatively immune to large divergences
from his opinion. Similarly, if an assessor's reputation is good, his a is large and the
overall cost is much more reactive to approximation deviations from his opinion.

The divergence-based cost model we've used in this development has been con-
trasted with a few other suggested methodologies. However, there are many other
potential cost models that have yet to be explored. In particular, it would be interest-
ing to employ the theory of optimal transport which uses the Wasserstein metric as
its distance function. In terms of coherent approximation, one optimal transport-like
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Figure 3-8. An example of outlier identification for coherent approximation

formulation would minimize the Wasserstein metric for moving between each of the
linear families induced by the assessments.

Finally, there is a potentially interesting problem of outlier detection, demon-
strated in Figure 3-8. In the figure a scenario is shown where a large number of
assessors are coherent, or nearly coherent with respect to each other. But a single
assessor has a significantly divergent opinion which, in this case, could 'pull' the co-
herent approximation significantly away from the assessment agreed upon (or nearly
agreed upon) by all other assessors.
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Chapter 4

Dynamic Coherent Approximation

* 4.1 Introduction

In the previous two chapters we developed a theory for using coherence as a mecha-
nism for approximating mutually inconsistent assessments of multiple experts. In the
development thus far the focus has been on static assessments, in which experts make
a one-time assessment of a set of random variables and no further information is con-
sidered. This neglects the important role that sequential information may play and
the manner with experts update their assessments with respect to that information,
or the way in which the decision maker who is coherently approximating the assess-
ments may integrate further information. As an example of the critical importance
this update function may have on coherence, consider the following real life example
of collective incoherence.

Prediction Market Example

An increasingly popular method of obtaining probability assessments is through the
use of so-called "prediction markets," also sometimes termed opinion markets or in-
formation markets [110,111]. In these futures markets contracts are sold on future
events. In general a contract is worth one dollar if the event obtains and zero oth-
erwise. It is fairly simple to see that such markets (if frictionless) would induce a
purchase price equal to the participants' subjective probability of the occurrence of
the event [111, 112] (although see [113] for a critique of this view). These opinion
markets have most popularly been applied to predicting political outcomes [114].

Shown in Figure 4-1 are the prices of two contracts from the popular on-line
prediction market InTradeTM. The lower (red) line in the figure encodes the contract
price of the future contract "Democrats control 50 seats or fewer in the 2010 US
Senate". The middle (blue) line encodes the contract price of the complementary
contract "Democrats control 51 seats or more in the 2010 US Senate". The key
point to notice is that at no point during the month and a half prior to the election
were the assessments coherent. Indeed, more than half the time the contracts were
sufficiently incoherent that, even given the trading costs (frictions), there existed the
potential for guaranteed profit. Specifically, the upper (magenta) line shows the cost
of purchasing both contracts. Since the two are complementary, one or the other will
pay out $1. So purchasing both results in a guaranteed outcome of $1, and therefore
the combined price should always equal $1. However, as is shown in the figure, the
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Figure 4-1. Incoherence in futures prices for two InTrade contracts

combined price is often significantly less that $1; so much so that even accounting
for the $0.05 fee per contract levied by InTrade, there remained frequent arbitrage
opportunities (highlighted by yellow stripes in the figure).

The relationship between arbitrage in prediction markets (such as that shown in
the figure) and probabilistic coherence was previously developed in Chapter 2. We
return to it now in order to reinforce the idea that progressive revelation of information
does not necessarily lead to more coherent assessments.

* 4.1.1 Information Integration

In the opinion market example the information provided to the decision maker is a
sequence of assessments. Presumably some information integration process is driving
the change in opinion within the market, but that information is obscured from the
decision maker. As such, when formulating a dynamic coherent approximation, the
decision maker must depend solely on the observed sequences of assessments.

A different model of information integration would consist of each assessor pro-
viding the decision maker a likelihood function that will govern the "probability kine-
matics" [115,116] of their individual assessment update. Then, assuming the sequence
of observations is visible to the decision maker, the temporal path of each individual
assessment can be determined. In this case the information integration is performed
by the decision maker himself, but according to predefined rules given by the asses-
sors. In this chapter we will formulate a concept of dynamic coherence. The central
question we wish to answer is how the Bayesian belief revision process can introduce
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incoherence into a set of assessments and what can be done about it. We first extend
the mathematical model to include observational data and analyze the convergence
properties of Bayesian belief revision. Then we formulate two classes of coherent likeli-
hood models: step-wise coherent models and weakly, asymptotically coherent models.
We show that step-wise coherent models are a strict subset of weakly, asymptotically
coherent models. We further suggest an algorithm by which the dynamic assess-
ments due to asymptotically coherent models can be made step-wise coherent. And
finally we suggest some possible extensions to the case of non-characteristic random
variables.

In this chapter we will analyze three models of information integration and suggest
methods for dynamic coherent approximation based in the principles of the IGCAP
introduced in Chapter 3.

Subjective Likelihoods

In the first model we analyze we assume a sequence of IID globally observable random
variables. Each assessor has specified a subjective likelihood model over the random
variables conditioned on the occurrence or non-occurrence of his personal event un-
der assessment (the development is in terms of characteristic random variables, but
generalizes in the obvious way to non-characteristic random variables). We assume
that, after making an observation, each assessor updates his assessment using his
subjective likelihood model via Bayes' rule.

We suggest two potential definitions of coherence for the likelihood models of
the group, taken collectively, one provably strictly weaker than the other. We then
employ the weaker concept of coherence to formulate a dynamic approximation mech-
anism, based on a principle of preserving predictive uncertainty and demonstrate the
algorithm's effectiveness relative to other dynamic approximation methods.

Coherent Approximation of Conditional Assessments

A second model involves the coherent approximation of conditional assessments. In
this model, assessments are given sequentially, but no a priori likelihood model is
specified. The fundamental question we wish to ask is how to formulate and then uti-
lize the concept of coherence when assessments are conditioned on different underlying
events.

We show that the linear family framework, developed in Chapter 3 is sufficiently
flexible to be adapted to this problem. Specifically, we show that any conditional
assessment defines a linear family on the simplex of probability distributions over the
atoms of Q. Thus, coherent approximation can proceed just as before, by finding a
distribution with minimum average divergence to a set of linear families.

Coherent Markov Filtering

In this model we assume a finite number of possible states and an ergodic transition
matrix between states. The 'truth' state is dynamically varying, following a Markov
path determined by the transition matrix. At each time step assessors provide as-
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sessments of their individual random variables given their (incomplete) knowledge of
the current 'truth' state.

We analyze this problem in the same framework as the previous ones, with as-
sessments at each time step being coherently approximated, then serving as an ob-
servation for the correction of the current predicted state. The key difficulty to be
overcome is the lack of an equivalent of the observation model. However, we are able
to employ the IGCAP to overcome this challenge in an innovative way.

* 4.1.2 Previous Work

Previous authors have analyzed coherence with respect to contingent (or conditional)
probability assessments [117-119]. These developments attempt to determine con-
ditions characterizing coherent subjective posteriors. While likelihood models are a
form of contingent probability assessment, this paper goes further in analyzing the
impact of these assessments on coherent belief dynamics.

In [120,121] a different form of conditional coherence is suggested which derives
from coherence of a joint probability distribution over observations and states of
nature. It is shown that for this stronger form of conditional coherence, certain
specially structured event sets and likelihood functions will produce coherent posterior
assessments.

The work of Skyrms takes still another, more philosophical, approach to the con-
cept of sequential coherence [71,116,122]. In [116] the concept of probability kine-
matics (following Jeffreys [63] and Diaconis and Zabell [115]) is exploited to demon-
strate a probabilistic epistemological system in which the only coherent update rule
is Bayesian conditionalization (or it's generalization under Jeffreys' belief kinematics
model). In [122] a brief survey is taken of sequential coherence-like epistemological
arguments, and it is concluded that a variety of Dutch Book arguments are invoked.

These treatments of conditional and sequential coherence have focused primarily
on the definitional question of what conditional coherence is, and how it should be
detected and understood. In this section we take a different approach, focusing in-
stead on the practical question of how to revise sequences of incoherent assessments
in an appropriate manner. In purpose, this work is more similar to recent work in
propositional logic, where the question of how to revise databases in the face of con-
tradicting facts is analyzed. Recent work largely derives from a set of axioms proposed
by Alchourron, Gardenfors and Makinson [123]. They're concern is primarily with
revising a corpus of "facts" to be consistent with a new observation. They define
certain minimality conditions with respect to the corpus, and derive a method that
satisfies the conditions.

* 4.2 Subjective Likelihood Functions

In this Section we begin the analysis of the first type of information integration
structure: subjective likelihood functions. In this case the approximator knows, for
each assessor, the likelihood function he will use to update his assessment given an
observation. The assessor also knows the sequence of observations (we assume all
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information is public). We will formulate a method for approximating the sequence

of assessments by another sequence that is 1) coherent at each step and 2) conserves

uncertainty in a specific way.

N 4.2.1 Motivating Example

Concerned with their network security, BigCorps wants to purchase an Intrusion

Detection and Prevention System (IDPS). They have two options, IDPS1 and IDPS 2-
IDPS1 detects both distributed denial of service (DDoS) attacks and port scan (PS)
attacks, while IDPS 2 detects only DDoS attacks. While studying the NIST guide to

IDPSs [124], BigCorps' CTO notes the recommendation that "organizations should

consider using multiple types of IDPS technologies to achieve more comprehensive

and accurate detection and prevention of malicious activity." Following the NIST
recommendation, BigCorps purchases both IDPSs and sets them to work monitoring

network traffic.
One morning while reading the output reports of the two detectors, an intrepid

security analyst witnesses an interesting behavior. IDPS 2 is registering an attack prob-

ability of 0.1 while detector IDPS 1 is reading an attack probability of 0.05. Since the

threats detected by IDPS1 are a superset of those detected by IDPS2, the probability

assigned by IDPS1 should always be larger than that assigned by IDPS 2 . The dilemma

faced by our analyst is how to reconcile the logically incoherent outputs of the two de-

tectors. Particularly, how to ascribe probabilities in a way that is logically consistent,
but still retains as much as possible the expert assessments of the detectors.

N 4.2.2 Mathematical Model

Let - {w1, w2,... } be an event space and (9, F) a measurable space. Let :

Q -+ 0 be a measurable random variable; consider = {61,6O,...,6'} to be the

set of all possible "states of the world." Also, let Yi : Q -+ Y be a sequence of

measurable random variables; consider Y to be the sequence of observations, with

y = {y 1 ,y 2 ,.. ,YK} and K < oo. Generally we can assume Y = RK. Let io

(resp. y) be the pre-image of 0 (resp. Y). Since the random variables are assumed

measurable, Qe and Qy are measurable sets (i.e. elements of F), as are their countable

intersections and unions.
For i = 1, 2, ... , N, let Aq be a subset of 0, let Ai UAGAJO and let A = {A1}.

We call elements of A events under assessment. The characteristic matrix X for

the events under assessment is defined as

0 o.w.

An individual probability assessment P A -+ [0, 1] maps each event under as-

sessment to the unit interval. We write P(-) to denote the function and P to denote

the vector P(Ai)y 1 and refer to P as a (joint) assessment. A coherent assessment

(i.e. one that is logically consistent) can be described geometrically as lying in the

convex hull of the columns of x, meaning ]A E [0, I]IJ s.t. EZ Ai = 1 and P = XA.



While we specialize the development to events A, the development can be generalized
to any set of random variables Xj, with the special case that Xi = 1 A, being the one
here under consideration.

We now consider a sequence of probability assessments P defined as follows: P,
is the result of a belief revision process based on an initial probability assessment Po,
a likelihood model p,(y|A), and a sequence of observations Y1 , Y 2,... , Y.

A likelihood model p,(yjA) is a pair of probability mass functions over the ob-
servations: one conditioned on A and the other conditioned on A (where A denotes
the complement of A). We will make the simplifying assumption that the likelihood
model is static, i.e. p,(y|A) = p(y|A) and pn(yIA) = p(yIA) for all n.

In this section we assume belief revision dynamics governed by Bayes' rule, i.e.

plyn+1|A) * P.Pn+1
p(yn+1IA) * Pn + p(yn+1|A) * (1 - Pn) 1 +p(yiIA) " -p"-,

p(yn+1 A) Pn

To simplify development, denote p(y = y?|A 1) = ci and p(y = y |A1 ) = #ij and
assume Vj, 3i s.t. aig, /3#O (i.e. each event has at least one informative observation)
and aij c (0, 1), #1k c (0, 1) for all i, j (i.e. no observation determines absolutely
whether any event obtains). Then by induction the posterior probability of event A
after n observations is:

1
Pn(Aj)= n. (4.1)

1 + Po 1K (fi=1 3;

when ni is the number of observations y'.

U 4.3 Probability Convergence for Single Assessors

For a single assessor revising his estimate of the likelihood of event A, let the prob-
ability model be given by p(y = yI|A) = as and p(y = y'IA) = 3. It is convenient
to rewrite (4.1) in terms of the ratio pi = and for simplicity assuming Po = 0.5
(although the analysis holds for general Po E (0, 1)). Substituting yields

1Pn = [1+i (,:)pi] (4.2)

Note that 1) p is the empirical distribution over the observations, and so converges
almost surely (a.s.) to the true generating distribution, and 2) the convergence prop-
erties of Pn are determined by the quantity between the square brackets in (4.2).
Specifically, let

LoO = lim ()P

L, is commonly referred to as the likelihood ratio, familiar from classical binary
hypothesis testing. Since p converges a.s. and the function is continuous, Lo, exists
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a.s. If Lo < 1 then P - 1; if L, > 1 then P -+ 0; if L4 = 1 then P" + .

U 4.3.1 Matched Likelihood Functions

Assume that the likelihood model is both infinitely precise and infinitely accurate,
meaning that when A (resp. A) obtains observations are generated i.i.d. according
to a (resp. 3).

Assume that A obtains; then L, = ]] _ a.s. Let 4 = log L which in

this case yields

K 
K 

-D(a||#) < 0

i=1 ~ i=1 e

where all relations hold a.s., D(-||-) is the relative entropy [125], and the last inequality
follows since by assumption a # #P. Since L, <0 <-> L, < 1, this implies that when
the true generating distribution is a, P -+ 1 a.s.

Similarly, when A obtains, we have

K i . K

'o = log (L = 3 log = D(#3I|a) > 0

and P,., -+ 0 a.s.

N 4.3.2 Mismatched Likelihood Functions

Now consider the situation when the expert assessed likelihood model is incorrect.
Assume the observation generating distribution is y = P(Y = y) where y :/ a and
-y # . In this case, ,, ='y log 2. We define

T(y) = - =co 7 log (4.3)

Then the probability simplex over the observation space Y can be partitioned into
two sets: Po = {y|T(y) < 0} and P1 {yT(y) > 0}. By the a.s. convergence of the
empirical distribution, -y C Pi => P - i. (The boundary set {-yT(-y) = 0} represents
an unstable equilibrium in which P, a.s. converges to j

The problem of mismatched likelihood functions is similar to composite hypothesis
testing (c.f. (126] and references therein). Composite hypothesis testing attempts
to design tests to determine the truth or falsity of a hypothesis with some ambiguity
in the underlying parameter space. Because of this ambiguity, each hypothesis Wi
corresponds not to a single distribution, but to a set of possible distributions. In
the mismatched likelihood function problem, composite spaces are formed due to the
properties of Bayes' rule for a specific likelihood model. A corollary of the above
result is that if Hi ; Pi then Bayes' rule (under the specific likelihood model) is an
asymptotically perfect detector.



N 4.4 Multiple Assessors with Structural Constraints

In Section 4.3 we analyzed convergence properties of a single event under assessment.
Considering multiple events introduces the challenge of defining a dynamic concept
of coherence for the assessment revision process. In this section we suggest two
possible definitions of dynamic coherence and consider some of the implications of
these definitions.

N 4.4.1 Step-wise Coherence

We first introduce a step-wise definition of coherence, and derive equivalency condi-
tions for the special class of 2-expert likelihood models.

Definition 4.1. Under the Bayes' rule revision process, a likelihood model p(yIA) is
step-wise coherent (SWC) if Pn E convhull(x) => Pn+1 E convhull(X) for all

yEy.

Essentially this definition says that if the posterior assessment process is coherent
at any time, it will remain coherent perpetually, independent of observation sequence.
We derive necessary and sufficient conditions for SWC for the characteristic matrix
given by

X (4.4)1 1 0

Generalizations of this development are possible for any X E {O, 1}2xle.
Note that under the characteristic matrix given by (4.4) a model is SWC iff

Pn(A 1) > P(A 2) for all n and all coherent PO. Proceeding inductively, assume P
is marginally SWC, i.e. Pn(A1 ) = Pn(A 2) = ir. Due to the continuity of the update
rule, a model will be SWC iff it is coherent at the margins. For coherence, for any i
we must have P+1 (A1 ) > Pn±1 (A2). By substitution into (4.1)

air > "4"2+ or equivalently, " > a"+'a"(1-7r)
asixr+#iij(1-,r) - Qi2-r+#6i2(1--r) 3ai2 - ai27+#i2(1-7)

By monotonicity, 62E min , max Since >ai27r±4 I(f-C42 L li ai,~ L&2 jOg2 Q2

degenerately, for X given by (4.4), the model will be SWC iff g > b' Vi, or

(rearranging)
Vi, > (4.5)

* 4.4.2 Asymptotic Coherence

While it is relatively simple to characterize coherent models in the two assessor case,
in general SWC is difficult to check. As such, we introduce a simpler condition:

Definition 4.2. A likelihood model p(y|A) is weakly asymptotically coherent
(WAC) if for all observation generating distributions -y s.t. limn .n E {o, 1}N
~i s.t. limnax, Pn = Xei a.s., where ej is the ith unit vector.

Lemma 4.1. Step-wise coherence implies weakly asymptotic coherence.
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Assume that a model is SWC but not WAC. Since it's not WAC, there exists a
s.t. Y drawn IID from -y a.s. results in P,, -+ P where P C {0, 1}N is not a column of X
and is therefore not coherent. Since this holds regardless of initial conditions, assume
the process is initialized coherently. Then, by a separating hyperplane argument,
there must exist some n (and therefore some y.) s.t. P c convhull(X) and P+ 1

convhull(X). This contradicts the assumption that the likelihood model is SWC.
Therefore any SWC model is also WAC. We demonstrate that the converse is not
true by counterexample in Section 4.4.2.

WAC for Static Models

Analogous to (4.3), we define

Ty((7) = 7y log . (4.6)

For a given -y, define the logical vector r(y) as

0 T(() < 0
rQY() { 1 T(() > 0 (4.7)

undet Tj(y) = 0

Lemma 4.2. A likelihood model is WAC if V-7 s.t. lim ,,, {0,1}N ]i s.t.

r(Y) - Xe2 .

Define the sets Pi = {ylr(y) = Xe2}. Lemma 4.2 states that for a WAC likelihood
model, {P} partitions the simplex (excluding unstable edge events) into sets of dis-
tributions s.t. -7 E Pi => P -+ yej. It is simple to show that the sets Pi are convex,
and by definition the boundaries between sets are linear.

Motivating Example Revisited

Consider again the motivating example of the two IDPSs from Section 4.2.1. Recall
that IDPS1 detects a superset of the attacks detected by IDPS 2, and so this scenario
conforms to the characteristic matrix analyzed in Section 4.4.1. Therefore (4.5) gives
necessary and sufficient conditions for SWC, while (4.7) gives necessary and sufficient
conditions for WAC.

Suppose that both the IDPSs use the interval between packet arrivals as their
observation and assume the learned likelihood models for the two IDPSs happen to
be geometrically distributed with parameters a1 , a2 (when an attack is occurring)
and bi, b2 (when no attack is occurring), with the index denoting the IDPS. We will
analyze SWC and WAC for this class of models.

Plugging the given likelihood model into (4.5) implies that the model is SWC iff,
for y = 0,1,2, ...

1-a 1  " a 1 - a2  Y a 2  (4.8)
1-bi) b1 - (1-b2) b2



Equation (4.8) will be satisfied iff a > 2 and }-g > ~a, which is therefore ab,- b2 1-b 1 - 1-b 2 'wihiterfea
necessary and sufficient condition for SWC.

Now, we turn to WAC. Forming T as defined in (4.6), we see that

Tjy )- = yylog + log = y l ogo +lo (4.9)

where I = EA{Y]. By the structure of the characteristic matrix, the model will be
WAC iff T2 (7) > 0 => T1 (-y) > 0 for all p > 0. Assume for convenience that a2 > bi.
Then {-y|Tj("y) < 0}= {7p < log bi / b} and therefore the model is WAC iff

log 2 log
lol b2 (4.10)lo 1-a2 - lo 1-b 1

lo 1-b2 09 1-bi

Comparing the conditions for SWC (4.8) to those for WAC (4.10), we see that any
parameters satisfying (4.8) also satisfy (4.10) but not vice versa. For example ai = 0.3,
a2 = 0.5, b1 = 0.2, b2 = 0.25 don't satisfy (4.8), but do satisfy (4.10). Thus WAC is
truly a weaker sense of convergence than SWC.

* 4.5 Coherence with Only Finitely Many Observations

As shown in Sections 4.3 and 4.4, a WAC likelihood model generates a partition {P}
over the observation probability simplex such that -y E Pi => P -+ Xe1 . The question
we now address is, given a WAC likelihood model and finitely many observations
(with empirical distribution in), how to revise an incoherent posterior probability
assessment Pn so that it is both coherent and consistent with the observed data.

Principle of Conserving Predictive Uncertainty: Given ^ , choose A
such that Ai = Pr[limn,* in e Pi] for each i (where -y E Pi iff P -+ Xe2 ).

The principle of conserving predictive uncertainty states that in revising an incoher-
ent assessment P to a coherent one P, the weight vectors over the columns of X
should reflect the uncertainty in whether the observations are being generated by a
distribution in the corresponding element of the partition {Pi} (and therefore whether
Pn is converging to Xe;).

Given a uniform prior over generating distributions y and assuming Lebesgue
measure p over the parameters of the generating distribution, we can write

p(/ P(^InlY)Pg)
P cE Pi|$) = P(y[$)dy = dp

,e p e , P(A j|7')P(7'1)d p'

/ f l d = fi, P(A |7)dy
,f EP P(n|7) pfP P(A I|1')dy p' ,EPi

In the limit of large n P(n'ly) enD($||,) (where denotes equality to the first
degree in the exponent; c.f. [125]). This implies that as n gets large, Pr[limam 75n E



Pi] is dominated by the point 7'y arg min,,,,p D (^I1-y) (i.e. the reverse i-projection,
or Maximum Likelihood estimate). This suggests the following approximation method

for determining a coherent projection of P:

A- (=IY (4.11)
- 1{1 1, P(4ly*)

The relationship between the ML estimates (-Y') and the probability over the columns

of the characteristic matrix is represented graphically in Figure 4-2. As will be shown

in Section 4.6, the principle of conserving predictive uncertainty can even be effectively
applied to non-WAC models.

The observation simplex The outcome simplex
xe1

1

P3 P 4--

Xc3 xe4

Figure 4-2. The relationship between observation and outcome simplices

* 4.5.1 Sparse Coherent Approximation

In general 1i1 (the length of the vector A) can be of order 2 N (where N is the number

of assessors), so solving for A directly using (4.11) may be computationally infeasible.

The following result suggests that to generate the optimal (in the sense of capturing

to most possible weight) O(N) sparse approximation of A we need only calculate the

O(N 2 ) reverse i-projections.
Let A be determined according to (4.11) and let {hi} be as defined in Section 4.4.

Assume wlog that Ai > A3 for all i > j. Define the neighborhood of Pi as K(P) =

{P' : |r(Pi) - r(P3)j= 1} where r(P) is defined as in (4.7). The neighborhood of Pi
is the set of partition elements such that the limit of one (and only one) assessor's

probability assessment has changed. The size of the neighborhood is thus less than

or equal to N.
By the assumed ordering of A and (4.11), it is immediately evident that ' =

i.e. the maximally weighted partition element is the one that contains the empirical

distribution. It can be shown that y c Nf(P 1 ), and thus recursively that ?? c

U< 2A(7'). Therefore the total number of projections in calculating the i = N

largest weights is bounded by

U N( P) <; Z |N(P3)I < E max I(Pj)I < Y N = N2

j<i j<i j<i j<i
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Assume that each Ai is unique (the following argument can be generalized, if
necessary). Consider A2 (the second largest weight) determined by Equation 4.11.
The corresponding set P 2 must be in K(P 1 ). To see why, assume the contrary. Let
6 ={i : r(Pi) #4 r(P 2)}; by assumption lo| > 1. Let -y2 be the reverse i-projection
of 7 onto the linear family Q = {q : E[Tb] = 0} and let Qi = {q : Eq[T,] 0}
be the linear families generated by considering each element of 6 independently, with
associated reverse i-projections 97. By construction, Q C Qi for all i and therefore
D(A Iy) D ( IIA5' ). But this implies for large N that P('Jji*) P( I-y*). And
since ]i s.t. i corresponds to the reverse i-projection of A onto Pi G J(P1), that
implies that some A2 2 A2, which contradicts our assumption. Therefore P2 E N(P1 )
for n sufficiently large.

The foregoing analysis can be applied recursively to demonstrate that, for suf-
ficiently large n, the optimal O(N) sparse approximation of A need only compute
O(N 2) reverse i-projections.

N 4.6 Asymptotic Coherence Simulation

Consider a three-assessor situation with an identity characteristic matrix, i.e. each
of three assessors estimates the probability that his unique outcome has occurred
knowing exactly one has occurred. Suppose each event is a priori equally likely, and
a sequence of iid observations is generated with conditional probability p(yIA) = 0.4
and p(yziAl) = 0.3 (thus observation y' is somewhat weak evidence that event A' has
occurred). Optimal joint estimation results in the posterior distribution convergence
regions shown in Figure 4-3(a). Marginal estimation introduces incoherent conver-
gence regions (4-3(b)); but for well-calibrated models, the empirical distribution is
exponentially unlikely to lie in an incoherent region. However, miscalibrated models
(4-3(c)) may lead to the true distribution lying in an incoherence region. WAC-
approximation can ameliorate such miscalibration. The results of a Monte Carlo

0 0

Z0 -0 0

(a) (b) (c) (d)

Figure 4-3. Equivalent decision boundaries under various likelihood model frameworks

implementation of this miscalibrated estimation is shown in Figure 4-4. The top line
(blue) shows the average error for accepting the posterior assessments generated by
the miscalibrated observation models. The next line (green) corresponds to renormal-
ization at each time step, equivalent to projecting the posterior into the coherent set
with a divergence-based objective function. Next (red) shows the error generated by
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standard (L2) projection of the miscalibrated posterior into the coherent set. Finally,
in cyan is shown the WAC approximation.

Estimate Mean Squared Error
0.8

0.7

&.0.6

0.5 -Straight Bayes
- Rescaling

0.4 -L2 Projection

0.3 -WAC

0.2

0.1

CI
200 400 600 800 112001400 1600 1800 2000

Number of Observations

Figure 4-4. Comparison of mean-square errors as a function of the number of observations under
four different estimation techniques

4.6.1 Conclusions about Asymptotic Coherence

In the previous three Sections we have analyzed the problem of generating sequences
of coherent assessments given subjective likelihood functions. It was shown that any
collection of subjective likelihood functions forms a partition of the observational sim-
plex, and that this partition can be used to approximate the (potentially incoherent)
belief updates with a coherent approximation that preserves the amount of predictive
uncertainty at each point in the sequence. While the development has been entirely in
terms of characteristic random variables, the same principles can be applied directly
to any finite alphabet random variables.

* 4.7 Fusing Conditional and Unconditional Assessments via IGCAP

We turn now to the second model of information integration suggested in the in-
troduction to the chapter: coherent approximation of conditional assessments with
known conditioning events. We demonstrate that such conditional assessments de-
fine linear families, just as in the case of unconditional assessments. Therefore, the
IGCAP formulation can be immediately adapted to this case.

First, we define what is meant by a conditional assessment. If P is a conditional
assessment of random variable X given event A C Q, it means that P is the subjective
conditional expectation of an assessor, i.e. an assessor only chooses to distribute
subjective probability mass over the subset of atoms in set A. Such a conditional
assessment may be cognitively or algorithmically simpler for the assessor, since it
requires forming an opinion about the relative merits of a smaller set of events. Or
it may be that the assessor has additional side information that justifies making a
conditional assessment.
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U 4.7.1 Conditional Assessments Generate Linear Families

Consider an arbitrary random variable X defined on event set Q and an assessment
P of X conditioned on A C Q. By a conditional assessment we mean that P =
EQIA[XIA], i.e. that there exists a subjective conditional distribution over the elements
of A such that the conditional expectation is P.

Consider the set of all unconditional distributions consistent with conditional as-
sessment P, i.e.

Up(XA) = {QIEQjA[XIA] = P}

Define random variable X s.t.

X(w) w E AX(X(P w G A

and consider its linear family Lp(i) {QIEQ[] = P}. Let Q E Lp(X) and define

P - EQ[IX] cEQIA[XIA] + (1 - a)EQA[kIA]
= &EQIA[XIA] + (1 - a)EQIA[PIA
= aEQIA[XIA] +(1 -a)P

Therefore EQI [X |A] = P, Q E Up(X, A) and Lp2 (X) , Up(X, A).
Similarly, for Q E Up (X, A),

EQ[X] = aEQIA[X A] + (1 - a)EQA[X| A]
= aEQIA[XIA] + (1 - a)EQIA[PIA]
= aP+(1 -a)P

Therefore Q E Lp(i), Up(X, A) g Lp(X and therefore Up(X, A) = Lp(X). This
demonstrates that the set of unconditional distributions consistent with a given con-
ditional assessment form a linear family over the (unconditional) simplex. This is
shown graphically in Figure 4-5 for X = 1L, and A {wi, w 2}.

* 4.7.2 IGCAP with Conditional Assessments

Since conditional assessments define linear families the IGCAP formulation can com-
bine conditional assessments of any known conditioning and produce a coherent ap-
proximation. Specifically, for assessments PP of random variables X conditioned
on events A", we define the IGCAP for conditional assessments as

M

Q* =arg min D(riI|Q) (4.12)
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, {w1, W2})

W1' W2

Figure 4-5. Linear family associated with a conditional assessment

where, for a given Q,

7r2 = arg min D(wr|Q) = arg min D(rIIQ).
7rEUpr(Xi) 7rELp~(Xi)

Note that this definition includes the standard IGCAP introduced in Chapter 3 if
Ai = Q for all i. The coherent approximation is then given as P* = EQ. A[XiIAi].

We now state a few facts about the IGCAP for conditional assessments. First, let
L(XIA) be the linear family of conditional distributions generated by assessment
P, which lives on the simplex of A.

Fact 4.1. If flLp (XiIA) $ 0 then flLp (X) f4 0 and thus P* = P.

The intuition is that if the conditional linear families have a non-empty inter-
section, then their extension to the unconditional simplex will of necessity have a
non-empty intersection. Therefore the optimal Q* will be in the non-empty intersec-
tion and P* will equal P.

The converse, however is not true. If f Lp,(XiIA2) = 0 it is possible that

flLp,(Xi) :/ 0. In fact, if Ai = A for all i, flLp,(XiIA) -; {QVw E A,Q(w) = 0}
which is non-empty for A 74 Q. In this case the IGCAP as stated will result in
Q* E {QIVw c A, Q(w) = 0} which is a degenerate solution (if A 9 ). In fact, this
will be the case for any conditional assessments such that A fl A 4 0.

We therefore propose the following slight modification to the IGCAP for condi-
tional assessments

M

Q* =arg min D(7riIIQ) (4.13)
Q\De

where D {QIQ(A) < 1 - e} and e > 0 is a chosen parameter.
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If M assessments are given conditioned on the same event (i.e. for all i, j, Ai =
Aj = A), it is reasonable to question whether the IGCAP operating on the reduced
space of the simplex over A results in the same solution as the IGCAP working on the
unconditional space of the simplex over Q. Let Q* be the solution to (4.13) and Q*
be the solution to IGCAP on the simplex of A, and let P* and P* be the associated
coherent approximations.

Proposition 4.1. Q* = Q*IA and therefore P* = P*.

This states that the solution to the IGCAP on the simplex of A is exactly the
conditional distribution of the solution to Equation 4.13 on the simplex of Q.

Before proving the Proposition, we state and prove the following Lemma. Let L be
a linear family on A(A) (A C Q) and define t = {Q c A(Q) : Q|A E L, Q(A) ;> a},
a > 0. Thus, for every P C C0 there is an associated 7r E L s.t. Pi = a'ri for all
wo E A and some a' E [a, 1]. Let Q E A(A) and let 7r* = arg min,G L D(7r||Q). Define
QQ (a E (0, 1]) to be any distribution in A(Q) s.t.

c, af aQi
(1 - a)pi

i w C A
i w E A (4.14)

where p is any valid distribution over A, and define

7r at = {Q?' i V A
at,* wt c A

Lemma 4.3. If r* = arg min,,C D(PI|Q) then iro = arg minE'. D(rIIQ).

D (-r* IIQ') = ri'* log

= z Tr* log . +
{iwjEA} 2

{
{ilwiVA}

ri* log 7ro

= a7r* log ,+ E Qt log
{ilwi EA} {ilwigA}

= aD(r*IIQ)

Therefore D(r* ||Qa)
gence,

5 aD(r'IQ) for all 7r' C L, and, by the positivity of diver-

D(7r*IQ') a S
{ijwjEA}

7ri log +
aQ {iw;(A}

7r log = D(7r'IQ)
Qz

for anylr' E 44/. 0



Next, note the fact that there must exist Q C A(A) such that the solution to

Equation 4.13 Q* = Qe (Qe defined as in Equation 4.14). This simply says that when

all conditional assessments are conditioned on the same event A, the optimal solution

Q* will place 1 - E weight on the event A. This is due to the convexity of the cost

function and the fact that it is zero for any mixture over the events in A.

Proof of Proposition 4.1
If P is coherent then the Proposition is trivially true. Assume P is incoherent

and there is therefore a unique Q*. Let ri*c denote its I-projections onto the linear

families Lp,(XiIA). Consider Q*, (defined as in Equation 4.14). By Lemma 4.3 its

I-projections are r* and the cost associated with it is

D(r*c'||Q**) = e D(7r*.||Q*) < E D(IrillQ)

for any Q E A(A) with associated I-projections ri. Therefore, Q* has minimum cost

among all parameterized distributions Q'. The proof of the Proposition follows from

the fact that Q* = Q' for some Q c A(A). E

U 4.8 Coherent Approximation on Markov-varying States

In this Section we address a third and final information integration structure. In

previous structures we assumed that the approximator knew either 1) the likelihood

functions of the individual assessors and the global sequence of observations or 2)

the events on which the assessors are conditioning. We also assumed that, while

the information state was dynamic, the state about which information was accruing

was static. In this Section we remove these assumptions. We wish to analyze the

case when an underlying state is dynamically varying, and assessors are providing

assessments of unknown (to the approximator) conditioning.

Of the three dynamic models we have considered so far, this model is the most

similar to the opinion market example with which we began the section. In that

case, one could say the true state at any given time was whether Democrats or

Republicans would eventually win the majority. The assessments, which took the

form of prices in the opinion market, were conditioned on observations unavailable to

the approximator. As was seen, the assessments were seldom coherent, and often were

wildly incoherent, so the job of the approximator would be to take the sequences of

assessments with unknown conditioning and derive an approximation that captured,
to the greatest possible degree, the current wisdom of the market.

N 4.8.1 Mathematical Notation

Because of the several distinct aspects of this model versus those that have gone

before, we will need to introduce several new mathematical notations. Most notably,
we denote by e a set of possible "world" states. At each discrete time t, a random

variable Ot : Q -+ 6 represents the current state of the world.



We assume the sequence of world states forms a Markov Chain, governed by the
transition matrix T. Thus, if the probability mass over the states of the world at
time t is P(t) then P(Ot+1 ) = TP(0t). We assume that T is ergodic and thus it has
a stationary distribution.

At each time t, assessor i provides an assessment of a random variable Xt condi-
tioned on a private signal received at time t, denoted yt, with

yi
yt2

As before, we assume the assessment is a subjective expectation, due to Dutch book
arguments. In this case, the subjective distribution underlying the assessment is
a distribution over the states given the assessors private signal. We assume that
X : 8 -+ X, i.e. that Xt is just a function of Ot. Furthermore, we assume it is a
time-invariant function, and thus will drop the time index and refer to it simply as
X i (Ot) or simply Xi (although the value will vary with time due to the underlying
random state Ot).

We assume now that observations are not public knowledge, but viewed privately
by each assessor. We denote the observation at time t by assessor i as yt, and the set
of observations by all assessors at time t as yt. The set of all observations by a single
assessor from time to up to and including time ti is denoted [yt']' and the set of all
such ranges of observations is denoted ytt.t

In this case, the atoms Q should be considered to be trajectories of O6 over time,
along with the random observations yt. We assume, however, that any observation
occurs with non-zero probability from any state. This assumption means that all
coherence conditions of the probability space Q are encoded in the functions Xi and
in the transition matrix T.

* 4.8.2 Bayesian Filtering

Bayesian filtering is a recursive algorithm for probabilistically tracking randomly vary-
ing values over time. The fundamental structure underlying Bayesian filtering is the
Hidden Markov Model (HMM) depicted in Figure 4-6. Standard assumptions for

1 02 000 tt-1 0t Oi..

Y1 Y2 Yt- y yt+1

Figure 4-6. Graphical depiction of a Hidden Markov Model
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Bayesian filtering are that the observations are independent of each other and all states

future and past conditioned on the current state, and that the states evolve according
to a Markov process. It is generally assumed that there exists a time-homogeneous
transition matrix T that governs the state dynamics, and a time-homogeneous obser-

vation model P(y6) that governs the observations.

The goal of Bayesian filtering is to calculate, at any given time step t, the probabil-

ity density of Ot given all past observations. This can be accomplished via a recursive

algorithm in the following way. First, assume an initial density of the states, P(0).
The unconditional state at time 1 can then be calculated as

P(0 1) = E P(011|0I)P(0) = TP(00)
00

This is generally called the 'prediction' step.

Next, we wish to integrate the observational information, forming the posterior
distribution P(01 |yi). This is done using Bayes' rule. Specifically,

P(y1|1i)P(01 )
1:1P(yi1|1)P(61)

This is called the 'update' step.
We can repeat these two steps indefinitely, calculating at each time step t the dis-

tribution over the states at the current time, conditioned on all previous information.

Note that the two critical elements to the Bayesian filter as developed here are the

transition matrix T and the observation model P(y6).

* 4.9 Filtering Without an Observation Model

We wish to adapt the Bayesian filtering perspective to the assessment framework we

have developed thus far. We have assumed knowledge of the state transition model T,
but we do not have access, except indirectly, to any observations or even observation
models. In the assessment model, what is provided at each time step is not an

observation which can then be optimally combined with prior information through an
observation model to form a posterior distribution. Instead, each individual assessor

integrates his personal observation into his personal probability distribution, and then

announces a statistic based on this personal conditional probability distribution of

his personal random variable Xi. The information integration step is wholly hidden

from the approximator.
As was demonstrated in Chapter 3, due to the subjective expectation assumption

these assessments define a linear family on the simplex over the atomic states. In

this case, since Xi is a function of Ot, the assessment P will define a set of distribu-

tions over O6. Specifically, the linear family is a set of posterior distributions given

assessor i's private information y over the elements of . Thus each element of the

linear family is a candidate distribution pi(OIy). We will denote this linear family

as Lpi(Xi|Yit) (where the conditioning notation is used simply to denote that the
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underlying distribution is conditioned on some unobserved, to the approximator, set
of information).

Suppose we had a method to select a single distribution from each linear family
to use as the 'true' posterior distribution of each assessor. A method for estimating
such a distribution will be discussed shortly, but for now assume that a satisfactory
method exists. We wish to use this distribution to perform the update step of the
Bayesian filtering algorithm.

The posterior distribution p(Ot I [yf]') can be rewritten using Bayes' rule as

p~y!|6e~p(ty-1]ip( t[y]) P(Y IOP(OtIy (4.15)p(Otplyll"y! ] )

where we've assumed that, given the current state, the current observation is inde-
pendent of all past observations. We have assumed knowledge of p(OtI[yf]'), and we
further assume that the assessors are aware of the Markov dynamics underlying the
state evolution. Therefore we can rewrite Equation 4.15 as

p(Ot|[yl]i) = p(yjl1t)Tp(t_ 1[yl- ]- (4.16)

We wish to isolate p(y'j1t). Doing so results in the equation

p(yll6t) = a P(OtI [y]i) (4.17)Ayt, 100 Tp(6t_1|[yl-1]')

where we've denoted ai p(tl [ytOl]i). Note that if there exists Ot s.t. p(6t|[yl]i) = 0
then so must p(OtI [y]') = 0, and the likelihood model p(y'|6t) would be undefined for
such a Ot. This would complicate, but not significantly alter, the following analysis.
As such we assume Tp(6t_1 |[yl-i)= p(O6|[yl- ]") # 0 for all values of 6t.

We now make an assumption about the private information available to each
assessor at time t.

Assumption 4.1. For each assessor i, yt is conditionally independent given the
underlying state, i.e. p(yt, ytI|t) = p(yIO)p(y|,10).

This is a fairly standard assumption in distributed estimation problems. Es-
sentially it says that private observations are corrupted independently. Given this
assumption, we can formulate the joint probability of all private information given
the underlying state. Let yt [Yt y -- yV I].

P(ytIOt) = J pi(yl |t) - f( a. pOi)

- AI Al Tp(6|[yt 1]i)

where A = ]a;. Note that a are still, as yet, undetermined. The vector a lies in
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some constrained set (linear constrained set if we assume the set of possible observa-

tions is finite), but to determine it would require knowledge of the observation model,
which is exactly what we don't have. However, we will see that exact knowledge of a

is unnecessary for computing the update step of the Bayesian filter.

We now have an expression for the conditional likelihood of the set of observa-

tions at time t, despite the fact that we don't know what those observations or the

probabilistic model that generated them were. Plugging this expression into Bayes'
rule, we get the following:

tP(yt)P(6dt li1)
P(6 lyi) =

Pot yt|6t)P(6tlyi-)

(A NA ) T P(0t,1|yt-')

pi (Ot Iy')TP(Ot1| y*-1)

So, given our assumptions that we have access to the 'true' posterior distribution

pi(Otlyt) and assessors' observations are conditionally independent, we now have a

complete method for performing Bayesian filtering in the absence of a likelihood

model. Specifically, the update step consists of taking the product over all the per-

sonal posterior distributions with the prior distribution, and then appropriately nor-

malizing.

* 4.9.1 Distributed Posterior State Estimate

One assumption made in the above development was that the approximator had

access to a posterior assessment, p(Otlyt) for each assessor i. But for pragmatic

reasons previously outlined, expecting assessors to generate a full subjective belief

distribution is unreasonable. Instead, we assume that assessors offer a subjective

expectation Pi = IE (9yt). The question then arises of how to go from such

assessments to posterior probability distributions.

As was seen in our development in Chapter 3, each subjective assessment defines

a linear family over the atomic space (in this case, 6). The IGCAP chooses as the

optimal approximation the point that lies closest to those linear families in terms of

summed I-divergence. A critical element of this algorithm is the calculation of the

I-projection onto the linear families, which point was denoted 7ri. The suggestion

was that these points reflected the most reasonable assumption of the distribution

underlying each assessor's subjective expectation because they were the 'closest' (in

one sense) points that agreed with each assessor's assessment. A limited justification,
in the case of characteristic random variables, was offered in terms of ML estimates

from a specific assessor model, using large deviation approximations.

In this case, given a set of posterior assessments with unknown conditioning Pi,
we can employ the IGCAP to approximate the subjective posterior probabilities
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Figure 4-7. Graphical depiction of Bayesian filtering with assessments of unknown conditioning

ply|i(OtlyI) by the points 7rl. The rest of the algorithm proceeds according to the
process outlined above and depicted graphically in Figure 4-7. In prediction step
(a) the current state estimate is transitioned to a new state estimate. Then in (b)
assessments are received and made coherent via IGCAP. In (c) the projection points
7ri are used to approximate the subjective posterior probability distributions, and are
then used via Equation 4.18 to update the state estimate, as shown in (d).

U 4.9.2 Max of Divergences Cost Structure

As we pointed out in Chapter 2 the specific cost structure used in the approximation
problem is not unique. We have argued that divergence-based cost functions better
encode intuition about how to approximate probabilities, and have advanced an as-
sessor model in support of the sum of divergences cost function. Specifically, it was
shown that, given a set of assessors, each with ni conditionally independent obser-
vations, for n sufficiently large the maximum likelihood estimate of the observation
generating distribution was

Q= argmin niD(ri|Q)
Q

where ri is the I-projection of Q onto the linear family generated by assessor i's
assessment Pi.

Since the amount of experience of each assessor (ni) is unknown, we assumed all as-
sessors had equal experience, leading to the cost function we've employed throughout
the past two chapters. As mentioned in Section 3.4.3 however, if assessor experience is
treated adversarially (meaning an adversarial nature chooses each assessor's relative
experience ni in order to maximize the approximation error), then a slightly different
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cost function is induced, specifically

arg min max D(wriIQ) (4.19)
QEQ 

/r

which will be optimized for the Q that is equidistant (in terms of minimum divergence)
from all the linear families. In the current context, this minimax cost structure has
an interesting interpretation in terms of channel capacity.

Channel capacity is generally defined as

max I(Pxy)
Px

where Px is an input distribution to be chosen, Pxy is the joint distribution between
inputs and outputs to the channel and I is the mutual information (c.f. [125]). It
can be shown that, for a given (discrete, memoryless) channel Pyx (ylx), the channel
capacity problem is equivalent to inducting an output distribution Py such that

D(Py1x(-|x)||Py(-)) = K

for some constant K. Thus the channel capacity optimization is an attempt to choose
a distribution equidistant from a set of distributions parameterized by input param-
eter x. Reasoning by analogy, we hypothesize but leave for future work to analyze,
that the solution to the IGCAP as formulated in (4.19) would maximize the mutual
information between local, private observations and the distribution over the states
at time t.

* 4.10 Bayesian Filtering Simulation

To verify the efficacy of the IGCAP method for filtering without (known) likeli-
hoods, we implemented a simple simulation. As in Section 4.6 a three-state model
was assumed, with three assessors, each 'responsible' for one of the three states.
Also as before, the assessors have access to observations generated according to a
state-dependent probability distribution. However, unlike before there is no public
observation; each assessor receives a single, private observation at each time step.
Also, unlike before, the state varies Markovianly according to transition matrix T.

Assessor i performs local Bayesian filtering, generating a sequence of assessments
Pi(n). We assume that the assessors' local observation models are well-calibrated. If
the state were not varying, this assumption would mean that the collective assessment
process almost surely converges to a coherent point. However, given both the state
dynamics and the independent, private observations, the sequence of assessments will
generally be incoherent.

For the results reported below, observations were generated according to the fol-
lowing observation model. Observations were drawn from 0 according to the condi-
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tional distribution, parameterized by a E (0, 1), given by

P(y|O)= { a y=O
1-a Y::

(4.20)

In like fashion, the set of transition probabilities parameterized by b E (0,1) were
given as

b S - on
On+1 #On

(4.21)

It is easy to see that the associated Markov process is ergodic with uniform stationary
distribution.

Each Monte Carlo sample of the experiment consisted of 200 time steps of the

Markov chain with a given set of observation and transition probabilities. New ob-

servation and transition models were generated for each Monte Carlo sample, with

a drawn uniformly from [0.4,0.8] and b drawn uniformly from [0.5,0.7]. In general,
a larger a means more informative observations and a larger b means slower state

dynamics, which favors filter accuracy.
Shown in Figure 4-8 are the combined results of 100 Monte Carlo trials. The

graph represents the empirical distribution of the estimation error, i.e. 1 - Pdg(Ot),
where Pg is the reported probability of state Ot under each of several algorithms.

Each line represents the aggregation of the 20,000 samples generated over the 100
Monte Carlo trials. A perfect algorithm would be uniformly equal to 1 on the plot,
meaning the estimation error was zero for every sample in every trial. The blue line

Distribution of Approximation Errors for Four Filtering Methods

'0 0.2 0.4 0.6 0.8 1
Approximation Error

Figure 4-8. Performance of IGCAP for Bayesian filtering

indicates the performance of standard, centralized Bayesian filtering. In this case,
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Table 4.1. Estimation error statistics for four algorithms

three independent observations are incorporated at each time step, according to a
known likelihood model. A full state probability vector is maintained and propagated
according to Bayes' rule.

The red line corresponds to the performance of the local assessors. Each assessor
receives only one observation per time step, and the local Bayesian filters are of a
reduced form, with assessor i tracking only the probability the state is O6 or not O6
(rather than the full state vector). Similarly, observations are of the reduced form
y == O or y 7 O.

The green line corresponds to the approximate Bayesian filtering algorithm for-

mulated in Section 4.9, which relies on the fusion of the local assessments through

IGCAP to provide an approximate likelihood model. In this case the observations
are never visible to the approximator, only through the associated assessments of the

local assessors.
The black line, offered as a reference, is the result of choosing Pand(Ot) uniformly

at random from the interval [0, 1]. As can be seen from the figure, and from the statis-

tics summarized in Table 4.1, the IGCAP filter performed quite well relative to the

optimal Bayesian filter with full state and observational information. Interestingly,
the IGCAP filter 'outperforms' the optimal Bayesian filter in the low estimation-error

regime, although this is compensated by correspondingly poor performance in the high

estimation-error regime. This indicates the algorithm is systematically overconfident,
and thus that its performance could potentially be improved by introducing a correc-

tion factor into the update step of the algorithm. This result seems to be robust to

Monte Carlo approximation error; it persists regardless of initial seed and number of

samples.

* 4.11 Conclusions

In this chapter we have analyzed the implications of coherent approximation for

sequences of assessments. We considered several different information integration
architectures, each varied according to what information was private and what was

public, and what distributions were subjectively determined.
First we analyzed the situation where the underlying state is static but assess-

ments are varying due to the introduction of a globally-observable random sequence

of observations. While the observation process was globally observable, the interpre-

tation of the data was subjective in the form of subjective likelihood functions. Two

classifications of coherent likelihood models, step-wise coherence (SWC) and weak,
asymptotic coherence (WAC) were suggested, and WAC was shown to be provably



weaker than SWC. Based on the structure of WAC likelihood models, a method was
introduced for approximating incoherent sequences of assessments with coherent se-
quences that preserve the inherent uncertainty in the assessments, and this method
was shown to outperform ad-hoc methods for inducing sequential coherence in a sim-
ulated example.

Next, we turned our attention to the question of coherent approximation based on
both conditional assessments and unconditional assessments. It was shown that, just
as with unconditional assessments, conditional assessments induce a linear family of
potential unconditional probability distributions on the simplex. This means that the
same principles of coherent approximation that were developed in Chapter 3 can be
directly applied to the problem of coherent approximation of conditional assessments.

Finally, we introduced a model of sequential assessment with states varying over
time according to a Markov process and sequences of wholly private observations. The
IGCAP introduced in Chapter 3 was used to approximate the unknown likelihoods of
the unknown observations. A simulation was developed in which it was shown that
the IGCAP-based approximation significantly improved filtering performance over
the raw local assessments.
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Chapter 5

Distributed Coherent Risk
Assessment

N 5.1 Introduction

In this chapter we turn from developing a framework for coherent approximation of

distributed assessments to a particular application area. Specifically, we will employ
the coherence framework developed in the foregoing chapters to analyze the problem

of distributed risk assessment.
Risk assessment, as the name implies, is the process of quantifying the amount

of risk in taking a particular financial position. For instance, if my financial planner

suggests that I should invest my retirement savings in lottery tickets, I might like

to have a quantification of how likely it is that I'll lose all my money. Individual

investors are not the only parties interested in risk assessments; banks, investment

firms, market regulators and governments are all impacted by risks incurred by their

own and others' choices of financial positions.
Several methods of risk assessment have been suggested in the literature; we will

give an incomplete overview in section 5.1.1. The critical point is that there is no

standard method for assessing the risk of a financial position. As such, the risk

estimates of various market participants may be inconsistent with one another, or at

least provide an inconsistent picture of the understood risks of a position. We suggest

methods based on the developments in Chapters 3 and 4 for coherently approximating
these distributed, heterogeneous risk assessments.

* 5.1.1 Background

Risky activities were arguably the basis for the development of probability theory.
The early work of Bernoulli, Pascal, de Moivre and Fermat was often motivated

by gambling behavior. An entertaining account of the development of probability in

terms of risk measurement and mitigation is given in [54]; a more academic treatment

can be found in [42].
In terms of financial risk, the earliest modern suggested risk measure was ar-

guably the standard deviation of the return, as per Markowitz [127]'. Building on

'It has recently come to light [128] that the mean-variance portfolio selection model suggested by

Markowitz in 1952 [127] had been previously published by de Finetti [1291, but was not translated

into English until recently. While the models are not identical [130], it is interesting to note de
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Markowitz's pricing model, Treynor [131], Sharpe [132], and Lintner [133] indepen-
dently developed the Capital Asset Pricing Model (CAPM). The CAPM includes
a risk parameter (#) that is meant to model the non-diversifiable risk of the asset;
essentially the # parameter is the ratio of the covariance between the asset and the
market and the variance of the market as a whole.

The variance-based notions of risk are intuitively appealing, but fail to adequately
model realistic asset risks within a market. As such, several other risk measures
have been suggested. One particularly influential risk measure is the Value at Risk
(VaR) [134,135]. VaR is defined mathematically in the following section, but speaking
informally the VaR measures the risk of an asset as the minimum amount of risk-free
investment (i.e. 'cash') that would be needed such that the probability of combined
loss between the risky and risk-free asset is less than some parameter -y. Essentially,
it reports the 7-quantile of the probability distribution of the risky asset.

VaR has been an influential risk measure over the past fifteen years, but it also
has significant shortcomings. This has led to the development of several suggested
variants of VaR, such as the TailVaR [136], conditional VaR [137, 138], expected
shortfall [139], and others. These variations are largely based on an axiomatization
of risk measurement, which led to the definition of coherent risk measures [136,140]
and their generalization to convex risk measures [141-143]. More will be said about
these classes of risk measures in the following sections.

* 5.1.2 Coherent Approximation of Risk Measures

As was pointed out in Section 5.1.1, there is no standard risk measure; different reg-
ulatory entities depend on different measures of risk. One question that arises in
such a situation is when do independent regulators, applying heterogeneous risk mea-
sures, behave consistently. Another is whether the multiple risk measures employed
by a group of regulators can be coherently approximated and/or fused into a single,
governing risk measure.

In this chapter we investigate several aspects of these questions. We focus pri-
marily on coherent risk measures, as introduced in [136,140] and their generalization
to convex risk measures [141]. The two questions we wish to ask with regards to
heterogeneous risk measures are 1) when do risk measures behave 'well' (or, com-
plementarily, when do they behave 'badly') under diversity of opinion among risk
assessors and 2) how should multiple risk measures on different but related positions
be aggregated into a global risk measure.

First in Section 5.2, we introduce our mathematical model and review some of
the previous literature both on opinion divergence in financial markets and in risk
measurement. Then, in Section 5.3 we use the equivalence between risk measures
and acceptance sets to define a minimal convex extension of the VaR risk measure.
Next, in Section 5.4 we define a robustness principle for risk measures and analyze
its implications. In Section 5.5 we formulate a mechanism for fusing coherent risk as-
sessments of individual positions into an aggregate risk assessment, and in Section 5.6

Finetti's early contribution to the field of financial risk management
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we formulate the sister problem of fusing incoherent risk assessments into a coherent

aggregate assessment. Finally, in Section 5.7 we review the main results and suggest
future research directions.

* 5.2 Coherence and Risk Measures

Risk measures are mappings from the space of investment outcomes to the real num-
bers. As the name implies, risk measures are used to quantify how much uncertainty
there is in the outcome of the investment. They are particularly useful for regulators,
both internal and external, in determining whether a particular position or investment
should be made.

N 5.2.1 Mathematical Model

A financial position X is a random variable on the space Q with X : -a X. As per

our general assumption, 10| < oo. A risk measure p is a mapping from some set X
of (absolutely bounded) random variables into the real numbers, i.e. p: X -+ R.

In [136] risk measures are classified as 'model-dependent' if p(X) depends on the

distribution of X and 'model-free' if it does not. The concept of model-dependent
risk measures will be important in the development in Section 5.4.

5.2.2 Coherent Risk Measures

In [136,140] an axiomatization is presented for risk measures. Specifically, the authors
suggest four axioms relating to risk measures:

(Al) Monotonicity: If Vw, X(w) Y(o), then p(X) p(Y).

(A2) Translation Invariance: If m E R, then p(X + m) = p(X) - m

(A3) Subadditivity: p(X + Y) p(X) + p(Y)

(A4) Positive Homogeneity: If A > 0, then p(AX) = Ap(X).

(Al) says that if position X is uniformly worse than position Y it's risk measure can

be no greater than that of Y. (A2) says that holding an amount m of risk-free asset

decreases the risk of position X by exactly the amount of risk-free asset held. (A3)

says that diversifying positions doesn't increase the risk. And (A4) states that the

risk scales linearly with the amount invested in the position.

Any risk measure that obeys these four axioms is called coherent. As we will see,
there is a correspondence between coherent risk measures and coherent assessments

as we have defined them throughout this thesis.
Any risk measure has an associated 'acceptance set.' The acceptance set A, of

risk measure p is the set of all positions such that their risk is non-positive.

A,,={X E XIp(X) < 0}.
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Alternatively, a risk measure can be defined in terms of an arbitrary acceptance set A
as pA = inf{mIX + m E A}. In [136] it was shown that the acceptance set associated
with a coherent risk measure is closed and satisfies the following set of properties

(P1) A, ;2 {X E XVw, X(W) > 0).

(P2) A, n {X c X|Vw, X(w) < 0) 0.

(P3) A, is convex.

(P4) A, is a positively homogeneous cone.

In fact, the authors show a basic equivalence between the two sets (A1)-(A4) and
(P1)-(P4) which, while interesting, is extraneous to our current development.

One of the central results in [136] is a representation theorem for coherent risk
measures, which we reproduce here. For details on the proof, see [136].

Proposition 5.1. A risk measure p is coherent if an only if there exists a family of
probability measures P such that

p(X) = sup Ep[-X] (5.1)
PEP

In the words of Artzner et al.,

Any coherent risk measure appears therefore as given by a "worst case
method" in a framework of generalized scenarios.

The authors immediately follow this observation with the assertion that the set of
generalized scenarios should be broadly announced in order to maintain consistency
within a firm or between firms on the level of cash reserves necessary to hedge against
potential losses. In this chapter we suggest a different approach, in which individuals
employ whichever coherent risk measure (or, equivalently, set of scenarios) they prefer,
and then a decision maker interested in capturing a consistent picture of the sets of
risks employs the coherent approximation techniques developed in Chapters 3 and 4
to find an equivalent joint risk measurement.

* 5.2.3 Convex Risk Measures

In [142,143] the axiomatic treatment of risk measures is significantly expanded upon
and generalized. A class of risk measures, termed convex risk measures, is developed
as a relaxation of coherent risk measures. Specifically, the authors replace Artzner et
al.'s (A3) and (A4) with a single convexity axiom:

(A3') Convexity: p(AX + (1 - A)Y) 5 Ap(X) + (1 - A)p(Y), for 0 < A < 1.

Risk measures that obey axioms (Al), (A2), and (A3') are defined as convex risk
measures. It is easy to see that convexity is equivalent to subadditivity if positive
homogeneity is assumed, and so any coherent risk measure is convex, but not vice
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versa. In Section 5.4 we will analyze the entropic risk measure which is convex but
not coherent.

As with coherent risk measures, an equivalence can be shown between the axioms
of convex risk measures and properties of their acceptance sets.

(P1') A, is convex and non-empty.

(P2') If X E A and Y E X are such that Y(w) > X(w) for all w, then Y E A.

(P3') If X E A and Y E X, then {A E [0, 1]1AX + (1 - A)Y c A} is closed in [0,1].

The authors also derive a representation theorem for convex risk measures, pre-
sented here without proof. Details can be found in [143].

Define M1,f to be the class of all finitely additive and non-negative set functions
Q on F which are normalized to Q[Q] = 1. For |Q| < o this is equivalent to the set
of probability distributions over the atoms of n.

Proposition 5.2. Any convex measure of risk p on X is of the form

p(X) = max (EQ[-X] - amin (Q)) (5.2)
QEMl,f

where the penalty functional amin is given by

amin(Q) sup EQ[-X]

5.3 Minimum Convex Extensions of VaR

In [136] two coherent, VaR-like risk measures are introduced and analyzed: tail con-
ditional expectation (TCE) and worst conditional expectation (WCE). In this section
we seek to answer the question of what is the coherent (or, more generally, convex)
risk measure that is 'closest' (in a meaningful way) to VaR.

We begin by defining the VaR risk measure.

VaRy(X) = inf{m E RIP(X + m < 0) : } (5.3)

Read directly, for a given -y VaR measures how much extra risk-free capital is necessary
to bring the total probability of loss down (or up) to level 7. Perhaps the easiest way
to understand it is as the negative of the value of X at the -- quantile.

We first suggest a general method to define the closest convex risk measure for
any risk measure. As set out earlier, there is a relationship between risk measures
and acceptance sets:

A,= {X E X Ip(X) 5 0}. (5.4)

and
p(X) = inf {m c RI m + X E A}. (5.5)

Proposition 2 in [141] shows that if p is a convex risk measure, then PA, = p. We will
call any acceptance set which induces a convex risk measure under Equation 5.5 a
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convex acceptance set. As was shown in [141], this is equivalent to an acceptance
set with properties (P1')-(P3').

The equivalence between convex risk measures and convex acceptance sets pro-
vides a definition for the minimal convex extension of a given risk measure.

Definition 5.1. For a given risk measure p and it's acceptance region A,, the mini-
mal convex extension of p is PA. defined by Equation 5.5 where A* is the smallest
convex acceptance set that contains Ap.

This definition assumes that a smallest convex acceptance set exists that contains
A,. We briefly justify this assumption.

Since |f| - N < oo, X C RN and there exists a convex acceptance set containing
A, for all p (specifically, RN). Analyzing properties (P1')-(P3') it is evident that
the intersection of any finite number of convex acceptance sets is itself a convex
acceptance set. Some care needs to be taken with an infinite number of intersections
and the closedness property, but aside that technical detail it is possible to identify
the smallest convex acceptance set containing A, as the intersection of all the convex
acceptance sets containing A,. Specifically, let A be the set of all convex acceptance
sets. Then

A* A A. (5.6)
{AjAEA,AAp}

In the remainder of this section we assume that p = VaRy and we seek to define
PAZ for p = ValR). Recall the definition of VaRy given in Equation 5.3. Since
|1|= N < oo, X C RN. Denote the 2 N orthants of RN as Oi for i E [1 : 2 N], ordered
according to binary expansion (i.e. 01 is the positive orthant, 02 is the orthant with
negative first component and positive components 2 to N, etc). We say random
variable X is 'in' orthant O if the vector

X(wi)

X(w2)

[X(WN) J
is in Oi.

We begin by stating the following Lemma.

Lemma 5.1. If X,Y O then X E A, Y E Ap.

Define the set Qx- = {w E QIX(w) 0}. If X,Y E Oi then X(w) < 0 e
Y(w) 0. Therefore P(X < 0) = E P(w) = P(Y < 0). By definition,
A, = {XjP(X < 0) < 7)}. Therefore, X E A, iff Y G A,. 0

A direct result of Lemma 5.1 is that the acceptance set for p = VaR., can be rep-
resented as a finite union of orthants, intersected with the set of positions. Formally,
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for all -y, there exists I(-y) C [1 : 2N] s.t.

A,= (u o) x. (5.7)

Note that such a set need not be convex, as the following modification of the first

example in Section 3.3 of [136] demonstrates.

Non-convex Acceptance Set Example

Given Q {w1 , W2 , w3} and P(wi) = P(w3 ) = 0.008, consider the following pair of

positions (where the ith vector component corresponds to X(wo)):

-1 0.5
X1 = 0.5 X 2 = 0.5

0.5 -1

For y = 0.01,
p(Xi) = inf{m|P(X + m < 0) < 0.01} = -0.5

since P(XI(wi)) = 0.008 < 0.01. Similarly p(X 2 )= -0.5 since P(X 2 (Ws)) = 0.008 <

0.01 and therefore both risks are deemed acceptable under p. However, for

1 1 -0.25
_X1+ X2= 0.5

2 2-0.25

we see that p(jX1 + IX 2 ) =0.25 since P(W1 ) + P(W3 ) = 0.016 > 0.01, meaning the

risk of the combined position is unacceptable.
In this case it can be seen that, A,= (01 U 02 U 05), which is a non-convex set.

Specifically for A E [1/3,2/3], the set of points AX1 + (1 - A)X2 E O and therefore

do not belong to A,.

* 5.3.1 Minimal Convex Extension of VaR

To determine the minimal convex extension of VaR, we first categorize the convex

risk measures associated with convex sets representable by Equation 5.7.

Lemma 5.2. If A, is a convex acceptance set and can be represented as in Equa-

tion 5.7, then 17-y E [0, 1] s.t. pp = VaRy.

Lemma 5.2 essentially says that any convex acceptance set that is equal to the

union of a finite number of orthants has VaR, as its associated risk measure with

some parameter -y.
Next, note the fact that the smallest convex set containing a union of orthants

is also a union of orthants. This, combined with Lemmas 5.1 and 5.2 gives us the

following theorem.
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Theorem 5.1. For p = VaR,, for any given y c [0, 1] 1-y* such that PA; = VaR,..

By Lemma 5.1, the acceptance set associated with pA; is representable by Equa-
tion 5.7. The smallest convex acceptance set containing such a set is itself a union of
orthants and therefore, by Lemma 5.2, has associated risk measure VaR,* for some
* [0, 1]. L

The import of Theorem 5.1 is that if VaR is deemed an insufficient risk measure
due to its lack of convexity, and if the desire is to replace it with a minimally different
risk measure that is convex, then the chosen risk measure (for a particular definition
of minimal) is itself a VaR risk measure. On the one hand, this implies that VaR may
not be deserving of the amount of criticism it has received. Or, viewed another way,
it suggests that VaR, depending as it does on quantiles to define acceptable risk, is
so rough an estimate of risk that it can't reasonably be approximated convexly with
a more elegant measure. Personally, I feel that VaR may be useful in appropriate
situations, but care should be taken in selecting y so that the resulting measure is
convex.

* 5.4 Risk Measures under Divergence of Opinion

In the axiomatic developments of coherent and convex risk measures, one aspect that
is not considered is the impact of opinion divergence on risk measure. In a multiple
assessor environment it is natural to suppose that there may be a divergence of opinion
among risk assessors as to the probability distribution over a set of outcomes. This
opinion divergence can have significant effect, as the following example demonstrates.

Example: Divergence of opinion in VaR

Given X = [ 1 ] and risk measure p(X) - VaRy, suppose two assessors (A1, A2)
independently evaluate the risk of position X. A1 has private probability parameter-
ized by P(X = -1) = p - 6 and A 2 has private probability P(X = -1) = p + J. For
- = p and any 6 > 0, p1(X) = -1 and p2 (X) = 1. Thus, although the two opinions
diverge by an arbitrarily small amount (in terms of total variation), the subjective
risk measures for the position remain far apart.

N 5.4.1 Risk Measure Continuity

As was noted in Section 5.2.1, risk measures can be divided into two types: model-
free, in which the risk measure is only a function of the support of the outcomes of a
position, and model dependent, in which the risk measure is a function of the value of
the probability distribution over the outcomes of the position. By their nature, model
free risk measures will be immune to divergent opinions among regulators (up to the
assumption that probability distributions are absolutely continuous with respect to
each other). But model dependent risk measures can generally exhibit a significant
effect, as the VaR example above demonstrates.
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In this section (and this section only) we will break with convention and write a risk
measure as a function of both the random variable X and an associated probability
distribution P, e.g. p(X, P). Given the focus on divergence of opinion, this will
simplify the exposition significantly.

Suppose we have a model dependent risk measure p and a set of positions X. How
robust is p to small changes in the assumed probability distribution P? First we will

quantify what constitutes a 'small change' in P, and then we will define a robustness
property.

For two probability distributions P and Q (Q << P), we reiterate the definition
of I-divergence, previously covered in both Chapters 3 and 4, written here in its more

general form.

D(PQ) = log ddP (5.8)
dP

where d- is the Radon-Nikodym derivative. Recall that the information divergence
is non-negative and equal to zero if and only if P = Q.

The information divergence is not a metric; it is not symmetric, nor does it sat-

isfy the triangle inequality. However, when P ~ Q the divergence behaves roughly
quadratically. For more details on the use of information divergence, see refer-
ences [100, 101,125]. We will define the distance from distribution Q to distribution
P as D(PIIQ). We thus consider a small change from distribution P to be

Dc A {Q: D(P||Q) < e} (5.9)

Given this understanding of what constitutes a 'small-change' to a distribution P,
we now define a robustness property for risk measures.

Definition 5.2. A risk measure is robust if

D(PIIQ) < Ip(X, P) - p(X, Q)I < CS (5.10)

for some C > 0.

Essentially, this definition of robustness enforces a uniform bound on how rapidly
the risk measure can vary with small changes in subjective probability.

Returning to the VaR example above, we see that VaR is not a robust risk measure.

Specifically, letting P be the distribution parameterized by P(X = -1) = p - 6 and

Q be the distribution parameterized by Q(X = -1) = p+ 5, we see that

D(Pi |Q) = (p - 6) log + (1 - p + 6) log P+J
(P+6 J 1-p- )

Notice that in the above equation, lim6..o D(PIIQ) = 0. Since VaR)(X, P) = -1 and

VaR,,(X, Q) = 1 for all 6 > 0 and therefore IVaR.,(X, P) - VaRy(X, Q)I = 2, given

any C it is possible to choose 6 sufficiently small such that

|VaR,(X, P) - VaR,(X, Q)I > C6.
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U 5.4.2 Robustness of some VaR-like Risk Measures

Other VaR,-like risk measures are suggested in the literature, such as TailVaR and
WCE. The same example can be used to demonstrate that these risk measures
are similarly fragile to small changes in assessed probability. Recall the following
definitions:

TCEY(X) -Ep [XIX < -VaRy(X)]

WCE7 (X) = - inf {Ep [XIA] I P[A] > 7}

(5.11)

(5.12)
The TCE (also TailVaR) computes the expectation of the -/-quantile tail event while
the WCE computes the smallest expected return given a non-tail event has occurred.

Using the above definitions, we can consider the robustness of TCE and WCE to
small changes in probability using the same example as above. In the case of TCE-,
we see that

ITCE,(X, P) - TCEy(X, Q)|

So, for general -y, we see that as 6 -4 0,
and therefore TCE7 is not robust.

Similarly, for WCE, (assuming -y <

|WCEt(X, P) - WCE,(XQ)j = I

= |Ep[X|X < 1] - EQ[X|X < -1]|

= |Ep[X] - (-1)|
=-1 (7 - J) + (-(7-))+1

=2(1 - 7 + J)

the difference in measure does not go to zero

0.5), we have

in (Ep[X], Ep[X|X = 1]) -

min(EQ[X],EQ[X|X = 1],EQ[X|X =-1])|

ain (1 - 2y + 2J, 1) - min (EQ[X], 1, -1)1

- 2-y + 26- (-1) =2(1 - -7 + )

Since this is identical to the result under TCE, by the same reasoning WCE, is not
a robust risk measure.

U 5.4.3 Robustness of other Convex Risk Measures

In addition to TCE7 and WCE7 we here investigate the robustness of two other convex
risk measures suggested in the literature: expected shortfall (or CVaR or Average
VaR) [138] and entropic risk measure (which is convex but not coherent) [141].

Expected Shortfall

Given an a E (0, 1), the expected shortfall is defined as

ES,,(X, P) = - VaR,(X, P)dy
a0
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Employing the same example as before, and letting a = P(X = -1) + = Q(X =

-1) - 6 we see that for all -y 5 a, VaRy(X) = -1. Therefore ESQ(X, Q) = -1 while

ES,(X, P) = -
a 0

-dy+ jd-)

1 26
= -(( -J)+6)= -1+ -

Therefore IES, (X, P) - ES, (X, Q) , so unlike the other VaR,-like risk measures,
expected shortfall does not exhibit fragility in this simple example. In fact, given the
assumption of a finite sample space, the expected shortfall can be shown to be robust
to small model variations.

Proposition 5.3. The expected shortfall risk measure is robust in the sense of Equa-
tion 5.10

Proof:

IESa (X, P) - ESc(XQ)| = -jVaR,(X, P)dY- j VaRY(X, Q)dy
0 00

f (Val)(X, P) - VaR, (X, Q)) d
a0

< - c IValy (X, P) - VAR.,(X, Q)|I d-1
a0

N

= 1 x - jjAi

N

where {x 1}f 1 is the ordered alphabet of X, )i is the Lebesgue measure of the interval

y|IVaRk(X, P) = xi, VaRk(X, Q) = x,} and c = maxij jx1 - x) 1. The key insight is

that X IPQIi Nthat1 Ej 4 5 ||1P - Q1l 1 1 .

Entropic Risk Measure

Given a 'risk aversion' parameter 0, the entropic risk measure is defined as

ERMO(X, P) - log Ep [e-OX]

Proposition 5.4. The entropic risk measure is robust in the sense of Equation 5.10
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IERMo(X, P) - ERMo(X,Q) I logEp [e-"X] 1

1 log Pie-xi - logs

1 l Pie-xi

0 SQieeOxi

if 1 then we have the following:

IERMo(X, P) - ERMo(XQ) I = log 5 ~ PieOxi
E 5 Qje-Oxi 0

lgj PieOxilo 5 Qie-Oxi

- e log 1+

g log 1+

E6 Je- X

Ei Qie-

Sj QieOxiJ

< Ilog (1 + cio)

0

5' and ci e-0minxi
N(minj Q e )

< 1 then we have the following:

|ERMo(X, P) - ERMo(XQ)|
1 P e-"

EiQie-Ox

1 EiQie-Ox
l og

ogE p Pe-Oxi

1 E P e-exi
= Qelog6 Ei Qie-Oxi

1 log 1 + Si -ieoxi
1 EjPe-Ox

1 log 1 +

1 1og (1 + c26)

0

where c2 = eNmin e .N(minj piJ c~
Therefore |ERMO(X, P) - ERMo(X, Q)I _ ( ) J where
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if f
EZ Qie -e

where J. = P - Qj, Ej lo|= ||JP - Q1,



c = max(ci, c2). El
In this section we have examined the robustness properties of several convex (and

one non-convex) risk measures. We find that while some convex risk measures (Ex-
pected Shortfall, Entropic Risk) are robust to small divergences of opinion, other

popular risk measures (VaR, TailVaR, WCE) are not. In a distributed environment
where subjective probabilities are likely play a role, caution should be exercised in
choosing risk measures that are robust to variations in the assumed probability dis-
tribution underlying a financial position.

* 5.5 Fusing Risk Assessments

In the next two sections we will address the problem of fusing the risk assessments of

several independent assessors. By a risk assessment we mean a specific instance of a
risk measure.

The problem of fusing risk assessments occurs in several situations. For instance,
a risk manager at an investment firm must take the individual risk measures of the
several analysts and generate a single assessment of the overall risk held by the firm.

Alternatively, a market or exchange regulator may receive risk assessments from in-

dividual firms and need to generate an overall measure of the comprehensive risk in

the market. The challenge of the fusion problem is to generate an overall assessment
that captures as much as possible the expert opinion of the individual assessors.

We analyze two related problems with regards to the fusion of risk assessments.
The first assumes that all individual assessments are the result of a single coherent

risk measure, operating on a set of different positions, but that the approximator
does not know which specific coherent risk measure is being used. This may arise,
for instance, in the case of an external entity who is regulating the activities of an

investment firm. Perhaps the specific risk measure used within the firm is proprietary,
but the assessments of individual positions are not. In this case, it may be reasonable

for a regulator to attempt to approximate the underlying risk measure for the purpose
of generating an estimate of the overall risk held by the firm.

In Section 5.6 we address the related problem of generating a fused risk measure

based on the output of several independent, coherent risk measures. Specifically,
assuming each assessor uses an arbitrary, coherent risk measure, how should the

approximator generate a joint measure based on the individual measures. In this case

we employ the principles of the IGCAP developed in Chapter 3 to approximate the

(potentially) contradictory individual risk measures with a single fused measure.

* 5.5.1 Mathematical Notation

By Proposition 5.1, any coherent risk measure can be represented as the supremum

over a family of distributions of the negative expectation of the position. The repre-
sentation theorem suggests that, in effect, any coherent risk measure is a 'worst-case'

analysis of a set of exemplar scenarios.
We assume throughout the following two sections that any risk measure p is co-

herent, and has an associated 'scenario' set under the representation theorem of P.
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We assume that each of M assessors is using risk measure pi to assess the risk in
position Xi. The value pi(Xi) will be denoted ri.

Definition 5.3. We say a set of assessments {ri} is generated coherently if pi = p
for all i.

While we would like assessments to be generated coherently, it is usually not
possible to determine whether a set of assessments was generated coherently without
further information. Therefore we define the following weaker condition of coherent-
equivalent assessments.

Definition 5.4. A set of assessments {ri} is coherent-equivalent if 1P s.t. ri =
supQcIp EQ[-Xi] for all i. A set of assessments {ri} that are not coherent-equivalent
are termed incoherent.

A coherent-equivalent set of assessments may have been coherently generated,
or they may have been generated by a divergent set of risk measures. The impor-
tant point is that there exists some coherent risk measure that agrees with every
assessment.

For any risk assessment ri such that ri = pi(Xi) we can define a linear family of
possible worst case scenarios. We denote as

Lr(-Xi) = {Q|EQ[-X] = ri}

the linear family of distributions which are candidates as the 'worst-case' scenario for
a given risk assessment ri (with the negative in the argument reminding us that risk
is an expectation over the negative of a position).

Fact 5.1. Lrj(-Xi) is a supporting hyperplane of Pi

This view of Lr, (-Xi) as supporting hyperplanes will be used extensively through-
out the following two sections.

* 5.5.2 Coherent Risk Assessments

We assume in this section that the set of risk assessments were generated coherently;
thus there is a single scenario set P used by all assessors. We show in Figure 5-1
a set of scenarios and two linear families generated by risk assessments made using
the associated coherent risk measure. The arrow indicates the direction of increasing
risk; it points normal to the set P at the point where P is supported by Lrj(-Xi).

For each L,,(-Xi) define Ki to be

Ki f= Q|EQ[-Xi] < ri} (5.13)

and let K = nK. For each i, Ki is the set of points on the simplex supported by
the hyperplane L, (-Xi). As such, P C Ki for all Ki and therefore P C K.

We now repeat the representational form of any coherent risk measure:

p(X) = sup EQ[-X]
QEP
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Figure 5-1. Linear families generated by risk assessments

Note from this definition that the aggregate risk of positions X1, X2,... , XM is

= sup EQ [- Xi] ; Zsup EQ[-
QCJ' = >p(Xi)

Thus we could naively fuse the individual risk assessments into an aggregate risk

simply by summing them up. Such a fusion method would be extremely conservative,
however, as the following example demonstrates.

Risk Measure Aggregation Example

Consider an extremely simple system with = {wi, W2 } and two financial positions,

Suppose that P = {PIP(wi) E [0.25, 0.75]}. Then the individual risk of each position
is

p(Xi) sup EQ[-Xi] = 2.5
QEP

115

Xi)

X -5
X1= 6

X 2 6 5



where the supremum is obtained for p(Xi) at P* = 0.75 * J[wi]+0.25 * 6[w;]. If we
wanted to approximate the joint risk measure by the upper bound of the sum of the
individual risk measures, we would get that p(X 1 + X 2 ) = 2.5 + 2.5 = 5.

However, considering the combined position X 1 + X 2 we see that

X1 + X2 = 5 +[I]_[1
6 -5 1

and therefore the coherent risk measure of X 1 + X 2 is

p(X 1 + X 2) = sup EQ[-X 1 - X 2] = -1
QEP

Given the positive homogeneity of coherent risk measures, by appropriately scaling
the above example we can show that the sum of individual risk assessments, even
when derived coherently, can be an arbitrarily bad bound of the risk of the joint
position.

U 5.5.3 Improved Fusion using Assessment Bounds
As suggested above, the naive aggregation method produces overly conservative as-
sessments of the aggregate risk of a set of financial positions. An alternative method
for estimating the aggregate risk would be to use K as a surrogate for P, i.e.

r=maxIEQ -(Xi (5.14)

We state a few facts about Equation 5.14:

Fact 5.2. I' - p (E Xi) I_< E p(Xi) - p Xi)

This states that the estimate obtained by using K as a surrogate for P is uniformly
closer to the true risk under p than the sum of the individual risk measures is. To
see this, simply note that any distribution P such that

Ep -(X i =ZEp[-Xi]>(ri
. i

must have some i' such that Ep[-Xgf] > rgt and therefore P V Ki and therefore
P V K.

Fact 5.3. If (f Lr(-Xi) = J then p (X Xi) z Z p(Xi).

This says that if there is no point in the intersection of all the linear families
generated by the individual risk assessments, then the aggregate risk assessment is
stictly less than the sum of the individual risk assessments. This is shown similarly
to the previous fact; if the intersection is empty then there can be no distribution
P E cl(P) that has Ep [-Xi] = ri for all i and therefore the inequality is strict.
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Fact 5.4. If l L(-Xi) # 0 and if Xi | X3 for all i, j, and |J| = N < M then

p(Ei Xi) - Ei p(Xi).
Letting P =fl Li (-Xi), this fact is a consequence of the fact that if N intersect-

ing hyperplanes support an N-1 dimensional set, then at least one supports the set at

(and only at) P. Let Lri (-Xit) be the hyperplane. Then, since rg = supQEP EQ[-Xgi]
and the only point from Lrj, (-Xgt) C K is P. And since P C K therefore P E cl (1).

Then

E p -( Xi =( E p[-Xi] = (ri.

which, combined with the fact that p (Ei Xi) < E p(Xi), gives the result.

Fact 5.5. Since K is a polyhedron, the optimization in Equation 5.14 is a linear
program.

We have thus suggested a mechanism for estimating the joint risk of a set of
positions, given a coherent-equivalent set of distributed risk assessments. We have
identified the set K as a superset of P and therefore the risk measure associated with

the set of scenarios K is an upperbound on the true coherent risk measure. This
bound can only improve the estimation accuracy over the naive summation bound,
and it is easily computable via linear programming.

* 5.6 Coherent Fusion of Mutually Incoherent Risk Assessments

In this section we abandon the idea that the set of risk assessments were generated by
a single coherent risk measure. Instead, we assume that each assessor's assessment
was the result of an individual risk measure pi with associated set of scenarios Pi.
We first suggest, based on the development in Section 5.5.2, a method for detecting
when a group of assessments were not generated coherently. We then suggest possible
fusion methods, including a mechanism based in the IGCAP developed in Chapter 3.

* 5.6.1 Detecting Incoherence

In Section 5.5.2 it was shown that a set of assessments from a coherent risk measure
define a polyhedron that bounds the set P of scenarios considered by the coherent risk

measure. Specifically, for each risk assessment ri, Equation 5.13 defines a closed set

Ki of distributions that must contain P. Defining K = f 2Ki provides a closed and

bounded polytope which contains P (presuming all risk assessments were generated
coherently). This leads to the following fact.

Fact 5.6. If K = 0 than the set of risk assessments {ri} could not have been generated

coherently.

Figure 5-2 graphically depicts a set of incoherent risk measures. Risk assessment
r1 generates set K1 that lies below the line Lr, (-X 1 ) while r2 generates the set K 2

that lies 'below' (in terms of increasing level sets of risk) the line Lr,(-X 2 ). Since

K 1 n K 2 = 0 it is evident that the scenario sets of the two assessors are disjoint.
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Figure 5-2. Incoherent risk assessments

Note that the condition K 0 is a necessary, but not a sufficient condition for
the set of risk assessments to be generated coherently. Referring back to Figure 5-1,
the linear families are shown as having been generated by a single set P. But they
could equivalently have been generated by any two coherent risk measures, pi and P2
such that Pi C K and Pi n L (-Xi) f 0.

As another example, suppose X1 = X 2 and r1 < r 2. In this case K = K 1 n K 2 =
K1 f 0, but it is obvious that r1 and r2 could not have been generated coherently.
More generally, we state the following definition and fact:

Definition 5.5. A linear family L dominates Lj(-Xi) if for all P c L, Ep[-Xi] >
r2.-

Fact 5.7. For any i, j, if L,,(-Xi) dominates L,,(-Xj) then ri, r, were not generated
coherently.

The reasoning is as follows: because some point in L,. (-Xi) is in the closure of P
and because every point P E Lr,(-Xi) results in Ep[-Xj] > rj, there must be some
point P' in the closure of P s.t. Ep, [-Xj] > rj. Therefore rj f supQCp EQ[-Xj] and
the assessment could not have been coherently generated.

In Figure 5-2, Lr, (-Xi) and L,2 (-X2) dominate each other. Any time the linear
families generated by two risk assessments are mutually dominant, the set K gener-
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ated by the risk assessments is empty. However it is possible to have K = 0 without
having any linear family dominate any other, as the following example demonstrates.

Example of mutually incoherent assessments

Suppose we have the following three positions:

XI X2=[1] X3= -1

with associated risk measures ri = 0.2, for all i. The fact that r1 = 0.2 implies

VP c cl(P), P[w1 ] 2 0.4 and similarly for r 2 and r3. Since every distribution P E P
must have P(wi) > 0.4 for all i, P = 0. This is shown graphically in Figure 5-3.
Notice that K1 n K 2 n K 3 = 0 but no linear family dominates any other. We now

Figure 5-3. Non-dominated incoherent assessments

state a necessary and sufficient condition for a set of risk assessments to be coherent-
equivalent (see Definition 5.4).

Proposition 5.5. A set of risk assessments {rj} is coherent-equivalent if and only if

K # 0 and, for all i, j, L,(-Xi) does not dominate Lrj(-X).
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The only if portion is obvious. To show show the if portion we will construct a
set P s.t. {ri} are the risk assessments generated by the associated p.

Let bd(K) be the boundary of K (note: K is closed by construction, so bd(K) C K
and bd(K) $ 0). For each i, define

Pi = L, (-xi) n bd(K).

Since there does not exist Lj(-Xj) such that Lrj(-Xi) dominates Lrj(-Xj) and
since bd(K) z 0, therefore Pi / 0. Let

Pui
Then, letting p be the coherent risk measure associated with P, ri = p(Xi) for all i
and {ri} is coherent-equivalent. El

An equivalent statement of Proposition 5.5 would be that a set of assessments is
incoherent if and only if at least one assessor can be shown to have underestimated
the risk of his position, due to choosing a 'worst-case' scenario that is insufficiently
'bad,' relative to the set of all scenarios considered by the group of assessors.

U 5.6.2 Fusion of Incoherent Risk Assessments

Proposition 5.5 gives us a tool to detect when there does not exist a coherent risk
measure that could have led to a set of assessments. However a risk manager may still
need to take the incoherent assessments and generate a fused risk assessment from
them, preferably one that reflects the underlying assessments to the greatest degree
possible while being coherent itself. To do this, we suggest applying the IGCAP
developed in Chapter 3. The benefits of the IGCAP for coherent approximation of
incoherent assessments were outlined extensively in Chapter 3 and 4.

More formally, let P* denote the scenario set constructed to form p* which is the
coherent risk measure we will use to assess the risk of the aggregate position. The
IGCAP would suggest choosing P* to minimize the average (or, under alternative
assumptions, the maximum) divergence between the individual 'worst-case scenarios'
under the coherent approximation and those under the original assessment.

We now state an adaptation of the IGCAP to the problem of coherently assessing
aggregate risk based on a set of incoherent risk assessments.

Q= arg min D(L,,(-Xi)IQ) (5.15)

where D(LIIQ) A minpELD(PIIQ). Define P* {Q*} and therefore

r = p*(Z -Xi) = EQ*Z -Xi] Z EQ*[-Xi] = p*(Xi)

We state the following fact about the solution mechanism suggested in Equation 5.15
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Fact 5.8. For any i such that Li(-Xi) does not dominate any Lr(-Xi), r%*
p*(Xi) ri.

Recall that a set of assessments is incoherent if and only if the 'worst-case' scenario
chosen by at least one assessor is insufficiently 'bad' relative to the union of the sce-
narios of all individual assessors. Fact 5.8 states that the coherent fusion mechanism
adopted can only increase the assessed risk for each position.

Equation 5.15 chooses as the ensemble of scenarios the single distribution that
has minimum average divergence to the linear families defined by the individual risk

assessments. To justify taking the set as a singleton, assume we let P be some non-

singleton set such that Q* E P. For any given i, i, > r!, i.e. the 'worst-case' scenario
under P can only increase the assessment of the marginal risk of position Xi.

We thus have developed a complete mechanism for performing fusion of risk assess-
ments in a coherent way. If the assessments are coherent-equivalent, Equation 5.14
provides an aggregate risk assessment based on a coherent risk measure that agrees
perfectly with each of the individual risk assessments and makes no further assump-
tions on the underlying scenario set P. If the assessments are incoherent, Equa-

tion 5.15 provides an aggregate risk assessment based on the IGCAP that minimizes
the distance from the worst-case scenarios under the coherent risk measure to the
families of the worst-case scenarios for each individual assessment.

N 5.6.3 Potential Criticisms of Applying IGCAP to Coherent Risk Assessment

One may question why the coherent approximation should focus on minimizing the
distance between scenarios rather than the assessments themselves. A more intuitive

mathematical construction might choose P such that the individual risk measures

under the associated p were as close as possible to ri. Such a formulation, however,
suffers from non-linear scaling problems, as was pointed out in the discussion of

generalizing the CAP in Chapter 3. As such, a coherent risk measure constructed to

minimize the distance between r = p(Xi) and ri would incentivize each individual
risk assessor to increase the size of his position, leading to an unstable distributed
assessment architecture.

Another criticism may be that the IGCAP was justified in Chapter 3 through an

assessor model based on repeated observation of the random variable under assess-

ment. Such an assessor model cannot justify the use of the IGCAP for coherent risk
assessment, since the assessment is inherently not the result of a subjective expecta-

tion, but rather the outcome of a set of hypothetical scenarios. Critically, the IGCAP

formulation assumed that the I-projection from Q* onto the linear families associated

with each assessment was a good approximation of the subjective probability un-

derlying each individual's assessment; this was formalized using a Conditional Limit

Theorem. In this case, no such principle applies. It is not immediately clear why any

point in the linear family Li (-Xi) should be favored as more likely to have been the

source of the assessment than any other point.
We can partially address this concern by noting that a reasonable group of asses-

sors would choose scenario ensembles "close" to each other, and also as limited a set of
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points as possible to avoid cognitive or computational overload. As such, a reasonable
estimate of the 'worst-case' scenarios are the single points from each Lri(-X) that
are 'closest' to each other. The IGCAP provides one idea of what closest might be,
but unlike in the case of subjective expectation assessments, it shouldn't be treated
as more reasonable than other, alternative distance definitions of close.

* 5.7 Conclusion

In this chapter we have analyzed the coherence properties of a specific example of dis-
tributed assessment, specifically the case of financial risk measurement. We presented
several results related to the axiomatic classes of coherent and convex risk measures.
First we showed that the minimal convex extension of the popular VaRy risk measure
is, itself, a VaR risk measure (usually with a different parameter, 7*). Then we intro-
duced a concept of risk measure robustness to divergence of opinion among assessors
and analyzed the robustness properties of several popular risk measures. We next
applied the principles of coherent approximation to the problem of distributed coher-
ent risk measurement when risk assessments could have been generated coherently.
Finally, we employed IGCAP to generate a combined risk assessment based on a set
of distributed risk assessments which could not have been generated coherently.

There are several avenues of future work suggested by the foregoing analysis. The
definition of robustness offered in the chapter as a uniform linear bound on the change
in risk measurement under opinion divergence is not unique. Several other types of
robustness could be considered. Furthermore, even under the current definition a
rate analysis could be undertaken to determine which risk measures' differences de-
cay fastest to zero with the opinion divergence. In the case of coherent approximation
of risk measurements, we have offered a method for defining an approximation vector
that is jointly coherent, but we have not suggested a method for mapping the approx-
imation vector into a single-valued risk measure over the entire set of positions. It
is our hypothesis that an appropriately designed fusion rule will exhibit a separation
principle, such that the fused risk measure can be computed via a two-stage process of
first coherently approximating the risk measurements and then applying a transform
on the resulting vector to map it into the real numbers.
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Chapter 6

Knightian risk and outcome
indeterminacy

* 6.1 Introduction

In a seminal work, Frank Knight [144] distinguished between risk and uncertainty.

Uncertainty must be taken in a sense radically distinct from the familiar
notion of Risk, from which it has never been properly separated.... The
essential fact is that 'risk' means in some cases a quantity susceptible
of measurement, while at other times it is something distinctly not of

this character; and there are far-reaching and crucial differences in the

bearings of the phenomena depending on which of the two is really present
and operating.... It will appear that a measurable uncertainty, or 'risk'

proper, as we shall use the term, is so far different from an unmeasurable
one that it is not in effect an uncertainty at all.

In essence, Knight suggests that there are two qualitatively different types of uncer-

tainty: risk, which relates to foreseeable but unpredictable events, and uncertainty,
which relates to unforeseeable events. Knight's view on the subject were so influential

that in economics literature the phenomenon of 'unmeasurable' uncertainty has come
to be known as 'Knightian uncertainty' (c.f. [145-147]).

Knight isn't alone in formulating this difference. Working independently but

at the same time, Keynes [59] based his theory of probability on a similar differ-

entiation between predictable and unpredictable uncertainty. The previously cited

work of Anscombe and Aumann [64] made a similar distinction. More recently, the

Dempster-Shafer theory of evidence [148-150] can be seen as an attempt to capture

mathematically the difference between risk and uncertainty.

One provocative way of conceptualizing the concept of Knightian uncertainty is

as a fundamental limitation on the knowability of a probability. This concept will

be developed somewhat in Section 6.4.2, but the basic idea is that a useful way of

viewing inconsistency among experts is not as some subset of the experts behaving

irrationally, but rather as indicating in a very specific way the limits of the knowability

of the outcomes in question.
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U 6.2 Structural Uncertainty

Thus far in the thesis we have investigated the idea of coherent approximation from
the perspective of 'correcting' experts' assessments. Alternatively, we could consider
the assessments as correct, but the structure as being insufficiently expressive to
capture the assessed behavior. This could come either from an inexperienced approx-
imator, who assumes a structure insufficiently complex to cover the contingencies
considered by the assessors, or it could come from a fundamental inability to model
a priori observations as deterministic mappings from atomic events to an alphabet.

Example of an inexperienced approximator

Suppose a political neophyte wished to use expert assessments to determine the prob-
abilities of Democratic or Republican victory in the 2012 U.S. Presidential election.
He considers as atomic events the possibility that each of several contenders 1) be-
comes their party's nominee and 2) wins the general election. For example, event
wi corresponds to Barack Obama being the nominated (D), Mitt Romney being the
nominated (R) and Barack Obama winning; event w2 corresponds to Obama and
Romney being nominees, but Romney winning; and so forth. For the events '(D)
wins the election' and '(R) wins the election', the outcome matrix looks like:

X- 1 0 1 ... 0
[0 1 0 ... 1

The only unique columns in the matrix are [ ]and [7.
0 1

Our approximator now seeks expert input in the form of aggregate survey infor-
mation. The result, event A1 is deemed to have probability 0.55 and event A2 is
deemed to have probability 0.42. Given his assumed structure, these assessments are
incoherent, so the approximator uses his favorite coherent approximation algorithm
to 'correct' the assessments. However, unknown to the approximator, in the aggregate
surveys the event 'Neither (R) nor (D)' received weight of 0.03. This atomic event,
while considered by the assessors, was not considered by the approximator. In this
case the incoherence was not fundamentally a property of the assessors, but rather of
the insufficient structure assumed by the approximator.

Example of non-deterministic mappings

Suppose the phenomenon under observation and assessment is an electron of a hy-
drogen atom. In this case, the atomic events are the various quantum states of the
electron, and the observables are its position and its momentum. There does not exist
a deterministic mapping from quantum states to observables. Instead, each quantum
state corresponds to a density of possible observations, all of which may occur no
matter how precisely controlled the experiment is.

In this case, the relationship between observables (against which assessments are
made) and pure states of the system is necessarily stochastic, meaning that the out-
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come matrix X needs to be generalized to include ranges of outcomes for single atomic
states.

* 6.2.1 Uncertainty and Indeterminacy

The two examples above represent two distinct ways in which an assumed structure

may be deficient: it may fail to include possibilities considered by the assessors,
and it may consider relationships between atomic states and assessed variables to be
deterministic when they are not. I will refer to these circumstances as uncertainty
and indeterminacy respectively.

In both cases, if assessments are incoherent w.r.t. an assumed structure, the prob-

lem remains of how to make the assessment coherent. In Chapters 3 and 4 we devel-

oped a framework in which the assessment was revised. In this Chapter we discuss
possible methods to revise the structure.

The cases of uncertainty and indeterminacy represent two related, but distinctly

different, ways in which the assumed structure requires revision. In the case of uncer-
tainty, the challenge is to introduce new columns into the outcome matrix representing
the additional outcomes considered by the expert assessors. In the absence of actual

knowledge of which outcomes were considered, we adopt a maximum sparsity ap-

proach, in which we wish to minimize the number of additional columns introduced,
subject to the constraint that the given assessment be coherent w.r.t. the final matrix.

In the case of indeterminacy we also adopt a sparsity approach, but in this case it

is on the ranges of outcomes mapped from each input state to each observable. This

range corresponds to the support of the density of the observable in each given state.

N 6.2.2 Background

Much has been written about Knightian uncertainty, although the association of such

uncertainty with structural insufficiency is, to the best of my knowledge, unique to the

current development. The concept of Knightian uncertainty has been applied to prin-

ciples of asset pricing [145,146], labor markets [147], stock volatility [151] and many

more. A closely related concept of 'ambiguity' has a similarly extensive development
history in economics, largely stemming from the influential work of Ellsberg [152].

Indeterminacy has been investigated at length in the philosophical literature, in-

cluding epistemology [153], linguistics [154,155], legalism [156,157], and philosophy of

science [158,159]. The impact of indeterminacy as relates to the foundations of deci-

sion theory was explored in a fascinating paper by Churchman [160] where he argues

that indeterminacy in value measurements, or more generally preference rankings,
shakes the foundations of statistical decision theory laid out by Savage and others.

The problem of indeterminacy did not escape de Finetti, who included a lengthy

discussion of it in an appendix to his Theory of Probability [26]. In Section 4 of

the appendix he discusses situations in which the differentiation between possible

and impossible are unclear, similar to the understanding of Knightian uncertainty we

proposed above. Then, in Section 9, he discourses on the interaction of indeterminacy

and verifiability, and then (in subsequent sections) suggests ways of reconciling his
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development of probability theory with the indeterminacy inherent in the field of
quantum mechanics, particularly the Heisenberg model.

* 6.3 Minimal Structural Revision to Induce Coherence

We first analyze the case when assessment incoherence is induced by an incomplete
output matrix, identified in the introduction with 'uncertainty.' We first analyze the
specific example of characteristic matrices, and then turn our attention to minimal
revision of non-characteristic output matrices. We measure the amount of structural
revision by the number of additional columns introduced in the output matrix, and
analyze the viability of various algorithms for choosing the minimal structural revision
such that the assessment becomes coherent.

* 6.3.1 Minimal Revision of Characteristic Matrices

In the example of the inexperienced approximator, the structure was seen to be in-
sufficient to describe the set of experiences represented by the expert assessors due to
the exclusion of certain outcomes from the considered set. The solution would be to
alter the structure by inserting additional outcomes until the assessment can be rep-
resented as a convex combination of the set of considered outcomes. In the example,
introducing the output 'neither Democrat nor Republican wins' would immediately
induce coherence.

In the context of characteristic random variables, for any assessment vector of
length M there are at most 2 M possible output vectors that could be considered. The
simplest solution would be to introduce all 2 ' possible outcomes as columns of the
characteristic matrix. In this way any assessment would be coherent. However, by
introducing all possible outcomes, all situational structure is eliminated, resulting in
a description of the assessment situation that is unnecessarily vague.

One might question the use of the term 'unnecessarily' in the above statement;
could it not be that it is necessary to introduce all possible output vectors in order
to introduce coherence? The substance of the Carathdodory Theorem states that if
a point in RM lies in the convex hull of some set of points, there exists a subset of
size at most M + 1 such that the point is representable as a convex combination of
the subset. In this sense, simply eradicating all structure by introducing all possible
output vectors is an unnecessary step.

Instead we suggest the following formulation. Consider X to be the matrix of all
2 M possible output vectors (i.e. all binary sequences of length M). Let A be some
vector of convex weights of length 2 M and let S be some subset of the indices of A
(i.e. S c {1, 2, ... , 2 M}) with 5 = {1, 2,... , 2M}\S. The structural approximation
problem under uncertainty can be equivalently stated as:

A* =arg mina ||Ag||o(61
s.t. P = XA

where lAg| o denotes the number of non-zero elements in Ag.
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This problem formulation bears a striking resemblance to the problems of match-

ing pursuit, basis pursuit and compressive sensing. In general, estimating sparse
vectors from underdetermined systems of equations has proven hard without addi-

tional structure, such as the restricted isometry property (RIP). A general approach
has been to employ the L1 norm as a surrogate for the Lo norm, with special problem
structure determining when the L1 relaxation provides an optimal solution to the

sparse estimation problem. Another highly relevant problem formulation is that of

Jagabathula and Shah [161,162], with the primary difference being the nature of the
'observation' matrix.

U 6.3.2 Minimal Bases for Probabilistic Assessments

We turn our attention to a relaxed version of Equation 6.1. After a brief develop-
ment, we will return to the original problem with a suggested suboptimal solution
mechanism.

Consider the simpler problem of selecting the smallest possible set of vectors from

X to represent P. Mathematically,

A* = arg minA |1Allo (6.2)
s.t. P = XA

This is equivalent to the formulation in Equation 6.1 for the case where S = 0. Let

N* = ||A*|io.
While we do not undertake a complexity analysis of the problem here, it is not

unreasonable to assume that, given the general challenges of sparse basis estimation,
an optimal solution to Equation 6.2 is not easily computable. We therefore suggest
an iterative algorithm to suboptimally approximate the solution to Equation 6.2. It

should be noted that while this algorithm was independently derived, it bears a strong

resemblance to that of [161], and the development was likely influenced by exposure
to the techniques used therein.

In the algorithm definition, let the function min : [0, 1]' -+ [0, 1] be understood
to be the minimum of all non-zero entries of the vector, and the functional supp :
[0, 1]m -+ {0, 1}M be the 'support' of the vector (i.e. if s supp(P), si 1 iff P > 0).

pre Po = P

1. Xt = supp(Pt)

2. At = min(Pt)

3. Pt+1 = Pt - XAt

post If / A - 1, XT+1 0 and AT+1 = 1 - A2

Let N -Allo. Note, to avoid notational complexity, we have written the above

algorithm in such a way that A is a dense vector of length T or T + 1 associated
with a specific set of vectors {X 2}' 1 , rather than a sparse vector of length 2 M. An
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equivalent, though more cumbersome, statement could be made in terms of generating
a sparse vector to right multiply X.

This algorithm has several attractive properties. Let N be the number of unique
elements of P.

Fact 6.1. N NN+1 <M+1.

Thus, the algorithm never exceeds the minimum upper bound given by the Cara-
th6odory Theorem. Furthermore, the sparsity determined by the algorithm can be
ascertained a priori.

One might question how close to optimal the given algorithm is. For most P E
[0, 1]M the algorithm is optimal.

Fact 6.2. Taking p as the Lebesgue measure, p({P : N* : N}) = 0.

The only points that are representable in fewer than M+ 1 points are, by definition,
those which lie on lower dimensional hyperplanes. Let

Q A {Q E [0, 1]M : 3A s.t. Q = XA, l-Aio M}.

Then, letting P c Q be the set of points for which N = N*, we have

K K

jp(Q\PQ) AM pZ(Qi) = 0 =0
i=1 i=1

where Qi is the set of points representable by a particular subset of basis vectors
with cardinality less than M + 1, and K is the total number of all such subsets (i.e.

K = 2( )). The measure of each set Qi is zero because it is contained on a

lower-dimensional manifold.
Taken together, these facts seem to indicate that the algorithm performs reason-

ably well. However, it is also possible to show that in certain highly structured cases,
the algorithm can generate a A with exponentially less sparsity than the optimal
solution, as the following example demonstrates.

Example of algorithm failure

Consider the assessment vector P with optimal (in terms of Equation 6.2) decompo-
sition

0 0 0
0 0 1
0 1 0

P- 0 1 1 A
1 0 0
1 0 1
1 1 0

000
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where A* is a vector of convex weights of length 3.
Assuming A* > A* > A* but A* + A* > A*, it is not hard to see that the given

algorithm will decompose P into the matrix

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 1 0 0 0

P 1 1 1 0 0 0 0 A.

1 111 0 0
1 111 1 0

Generalizing this example, for certain highly-structured assessments with sparse rep-
resentations the decomposition determined by the algorithm can have N = 2N

Two further possible questions to be answered about the suggested algorithm
include analyzing the performance when P is constrained to be an element of a dis-
cretized lattice, rather than any point within the hypercube, and determining whether
handling highly structured cases such as in the example above could improve the the-
oretical algorithm performance (i.e. could the worst-case performance be moved from
exponential to polynomial by handling a few degenerate cases).

In terms of the original problem, it's important to remember that the current
algorithm is a suboptimal solution to a special case of the problem of interest.

06.4 Structural Revision in Cases of Indeterminacy

In this section we analyze the case when incoherence is due to non-deterministic
mapping between atomic states and realizations of random variables. A minimality
principle is formulated and related to the dual formulation of the CAP and the IGCAP
defined in Chapter 3.

6.4.1 Defining Non- deterministic Output Matrices

We begin by formulating a concept of non-deterministic output 'matrices.' By a
non-deterministic output matrix, we mean that each element of the matrix X is an
interval of values, each being a possible output of the system under the given atomic
state. For example, whereas before Xjj was equal to Xi(og), now Xjj is a set-valued
mapping from Q to the Borel sigma-algebra over the interval [min Xj, max Xj]. Al-
ternatively, one can view these intervals as sets of values which could possibly be
observed as Xi(og). Conceptually, non-deterministic output matrices can be viewed
as a relaxation of a deterministic output matrix in which the mappings are indetermi-
nant, for instance due to problems of representational precision or fundamental limits
of observation.

One might question the utility of introducing non-deterministic output matrices.
Defining random variables whose outcomes aren't deterministic mappings from Q
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would indicate to some that Q is improperly defined. Taking the quantum mechanical
example from above, the critique would be that the quantum states of the hydrogen
electron should not be taken as equivalent to the 'atomic' states of the system, exactly
because they don't lead to a deterministic mapping from atomic events to observable
outcomes. This critique is certainly valid, however we suggest that in some cases, such
as the quantum mechanical example, no meaningful deterministic definition of atomic
states can occur prior to observation. Because of the inherent uncertainty created by
the impact of observation on the system itself, defining deterministic mappings from
atomic events to random variables requires a posterior definition of atomic states in
terms of observations. Such circularity seems problematic.

* 6.4.2 Dual Program for the CAP

In the next two subsections we will develop the dual programs for both the CAP
and IGCAP introduced in Chapter 3. We will first analyze the CAP under both
Lagrangian and Fenchel duality in order to get a sense of the geometry, and then we
will analyze a specific instance of the IGCAP under Fenchel duality. The purpose of
these sections is to suggest a method for relaxing a given characteristic matrix into a
non-deterministic matrix such that an assessment P is coherent with respect to the
relaxed structure.

Recall the original formulation of the CAP from Chapter 3. For a given assessment
vector P E [0, 1]M we have:

Q argminQ>o Zg(Qi - (6.3)
s.t. Q E convhul()

Since convhull(x) is a polyhedral set contained in the unit hypercube, we can find
an (A, b) pair such that the optimization problem can be equivalently written as

Q arg minQ, 0  (Q - P) 2  (6.4)
s.t. AQ = b

This is simply a quadratic optimization problem, albeit with a potentially exponential
number of linear constraints (although in certain special cases, as in the example
below, the number of constraints can be quite small). Let P* representing the solution
to Equation 6.3 (identically, Equation 6.4).

Example of defining A to cast CAP as a standard quadratic program

Consider the simple system 0 = {i, W 2, W3, w4 } with Ai = wi for i = 1, 2, 3. For this
system we have

1 0 0 0
X= 0 1 0 0 (6.5)

0 0 1 0

yielding the coherent set upper bounded by the simplex and lower bounded by the
origin. Thus convhuil(X) is the intersection of the halfplane defined by the pair
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A - [ 1 1 1 ], b= 1 and the positive orthant. The optimization problem can thus
be recast into the standard quadratic optimization framework, in this case with a
single linear constraint.

N 6.4.3 Lagrangian Dual

It is informative to consider the dual formulation of this problem. A simple La-
grangian analysis gives

|Q*-P|| minmaxIQ- P||2 + AT (AQ - b)

= max min IIQ - P||2 + AT (AQ - b)
'\>O QO2

max|| ATA+ P- P|| + AT A(--ATA + P) - b
A>O 2 22

11
= max AT AATA - -AT AATA + AT(AP - b)

A>o 4 2

= max AT(AP - b) - -AT AAT A
A> 4

where the first equality is due to Lagrange multipliers, the second is due to the
saddlepoint theorem, the third is due to the convexity in p and the fourth and fifth

are just algebra.
A few observations about the dual problem

" The dual objective is ellipsoidal in the dual space

" The first term (which we want to make large) corresponds to an inner product
between A and the error vector AP - b

* The second term (which we want to make small) is a measure of the size of AT A

* 6.4.4 Fenchel Dual

The basic equivalence of Lagrange and Fenchel duality means we will get similar
results by considering the Fenchel dual. However, the geometric meaning of the dual

which will factor significantly in our development, is potentially more obvious in using

Fenchel duality. As such, we replicate the dual program, this time using Fenchel

duality theory. This development is derived from [163], although other excellent

treatments can be found in [164] or [165].
Using the vector notation, we define the objective function of the CAP as f(P) =

(Q - p)T(Q - P). We can write the conjugate dual function as

f*(#) = sup {# T Q - (P - Q) T (P - Q)}
Q

Optimizing, we have

2
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which leads to

f*($)= +$OO 0P_ - =$TP+ T
2 4 4

Applying this to Corollary 3.3.11 from [163] we get a functional form of the dual
problem of

sup {A Tb - f*(AT A)} sup ATb - A TAP - ATAATA
A>O A>O 4

= sup { AT(b - AP) AT AAT A
>o 4

which is equivalent to the Lagrangian dual formulation.

U 6.4.5 A Geometric Interpretation of the Dual

Under the dual formulation, we solved for the optimal P for a given A. Specifically
we found that

1
P*(A) = P - AT A (6.6)

2

This generates a geodesic in the primal space, originating at P and parameterized by
A.

Example Cont.

Returning to the system in the example above, for any P the geodesic defined by
Equation (6.6) will have form

P*(A) = - 1 A = P -
2 

-
which represents a line segment originating at P with slope equal to the negative
normal of the constraint surface.

Geometry, Inside Out

As seen in Equation (6.6), one way of viewing the dual problem is as a movement
from P along a subspace defined by AT and parameterized by, A. Equivalently, we
could consider the problem of expanding the constraint set until the point at which
it includes P. Given that AP* < b by definition, we have

A P- IATA*) =bi

or

AP=bi+ AAA*=bi(A*)
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Thus we can define a new set of constraints b such that the original point P is coherent
w.r.t. the updated constraints.

In terms of the original formulation of the problem as a projection into the co-
herent hull of the characteristic matrix, this inside-out interpretation would do the
following: rather than events E being absolutely deterministic w.r.t. the atomic events

, the events become indeterminant, meaning that there is some range of possible
'membership' values of each atomic event in the events under assessment. This range
represents the set of possible interpretations of the assessment events w.r.t. the atomic
events.

* 6.4.6 Dual Program for the IGCAP

In the previous section we suggested a method for generating a non-deterministic
output matrix based on the duality formulation of the original CAP. In this section
we provide a similar analysis based on the IGCAP from Chapter 3.

Recall the mathematical definition of the IGCAP:

N

Q arg min min D(wrIIQ) (6.7)

with P* = XQ* and Lpi (Xi) denoting the linear family generated by assessment P of

random variable Xi. Equivalently, we can write the IGCAP as a linearly constrained
convex optimization problem:

Q arg minQ: Ei 1 min,teL (x,) D(7r|IQ) (6.8)
s.t. AQ = 1

where A = 1 M (a row vector of length M, uniformly equal to 1).

Let f(Q) = E__1 minrEL,(Xi) D(ir|IQ). Recall that if Xi is a characteristic ran-
dom variable for all i, then

N

f(Q) = D(PiIxiQ)

where Xi is the 4th row of the characteristic matrix and Db(-I|-) is the binary I-
divergence. Assuming our random variables are characteristic, we compute the con-

jugate function as

f*(4)= sup{4oQ - f(Q)}
Q O r P_ 1 -Pi
sup 'TQ - Pi log + (1 - Pi) logi
Q O xiQ 1 - xiQ
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Using dual variable A we can write the dual program as

sup {A - f*(AT A)} (6.9)
A>0

For = ATA we have

f*(A TA) = sup AZ Qi - Z Pi log P + (1 - P) log I - )
Q >0 xiQ 1-xiQ )

Taking the derivative w.r.t. Qi we have

Of*(A T A) - Db(PiIJxiQ)

(i:Xij=l1}

--Pi 1-Pi
XiQ 1-XiQ

A- z-Pi + xiQ
XiQ(1 - XiQ)

where Xi is the ith row of the characteristic matrix x. We wish to set this system
of equations equal to zero in order to solve for the optimal Q* in terms of A, but
the coupling due to X makes the problem algebraically intractable. Instead, assume
x = I; then, simplifying the above equations and setting equal to zero yields:

Pi - Q*A + It=0
Q (1 - Q&)

and solving using the quadratic equation gives

P - A (P - A)2 + 4AP
2A 2A

We can't have Q* < 0, so the lower solution is spurious, resulting in (after some
simplification)

, Pi - A V(P_-A)2 +4P(
i A + A(6.10)

We could use Equation 6.10 to complete the calculation of the conjugate, and use
that to finish formulating the dual, but for our current purposes Equation 6.10 is
sufficient. We interpret Q* as a parameterized function of the dual variable A, just as
we did P* in Equation 6.6. In this case, for A = 1, Q* = P. Thus the optimizing Q*
starts at P and moves a uniform amount along the geodesics defined by equation 6.10.

In terms of the question of structural revision, the structure of the output matrix
should be relaxed along the geodesics defined in Equation 6.10. Given that to get an
algebraic expression we had to assume that X = I, the suggested non-deterministic
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output 'matrix' is thus

X = [Xij]([# (A\*) 0]
[xi]= 0 O.w.

where the functions Pi are determined by Equation 6.10.

U 6.4.7 Dual Program for Reversed-Divergence Cost Function

In the previous subsection we derived a parameterized expression for Q* when X = I

under the IGCAP, which amounts to the optimization problem

M

Q* arg min [Db(Pil|JQi) (6.11)
QEZAi=

The structure of the IGCAP was driven by a particular operator model, and discussed

at some length in Chapter 3. However, for illustrative purposes, we here consider the

sister program to the above equation, reversing the order of P and Q under the binary

divergence.
M

Q= arg min D(Qi Pi) (6.12)
QEA i=1

Equation 6.12 is identical to Equation 6.11 except the variable order under the diver-

gence has been reversed. As with the IGCAP derived cost function, we can write the

dual program as
sup {A - f*(ATA)}
A>O

where, as before A = 1 M and f*(-) is now the conjugate of the cost function under

the reversed ordering. Writing this out we have

f*AT(-U Q - 1:Q - Qi

f*(T A = u A Qi Qlog 9i+ (1 - Qi) log
Q :O i i i-

Taking the derivative w.r.t. Q3 we get

Of*(ATA) Pl 1-Q - 1P - 1
( A- log-+Qj-1 -log -+(1Q)

S~~~g Pj 'Qj Pj-s1Q1P
- . 1-Q-

A-log +lo 1  p

Q(1 - Pj)
= A - log( 1  )

(1 - Qi)Pi
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Setting this equal to zero and solving for Q* we get

Qt(1 - P)A - log (1-Q

(1 - Q)Pi

(1- P)J

( 1 )P
-1+ 1e>

=0

eA

(1 - P) + Pe

Note that the geodesics defined by the cost function with reversed order under diver-
gence are the binary tilted exponential families with bases P. We thus have, just as
in the case of the CAP and the IGCAP, the interpretation of Q* as moving a uniform
distance A along the geodesics (in this case defined by the exponential families) from
P.

Before we finish the computation of the conjugate function, we consider the simi-
larities between Equation 6.13, Equation 6.10 and Equation 6.6. In all three, a family
of binary distribution parameters are defined, with one element of the family being
the assessed value P. The families defined in Equations 6.6 and 6.13 are both well
known, but the form of Equation 6.10 is not familiar from the literature. The de-
velopment suggests it is an analog, in some limited sense, to the exponential family.
Where the exponential family naturally occurs under optimization of the first vari-
able in the divergence, the family defined in Equation 6.10 occurs under optimization
of the second variable. The relationship here is merely suggestive, but might have
interesting implications.

Returning to the development of the dual program for the reversed-divergence
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cost function, we can use Equation 6.13 to finish writing the conjugate function.

f*(A T A) A EQ -EQ* log + (1 - Q*) log Q
+Pi ) Pi

PPA

- 1 - E Pleog (1 P)+Pje

i~ ~ ~~4( Pj)±+F 1-pj jeA lg-p

E ( j)P A log 1 Jp)P
S(1 - Pj ) + P e 1 - Pj

AJeA I: Pe A log
(1 - P) + Pie 1 -P3 ) + PeA (1- P) + PjeA

S 1 - P. 12 je ) (1 l+P.eA

E Pj eA Alog 1
d(1 - P) + pe (1 -Pj) + P e

-:( I-p logI

S(1 - P) + Pe) (1 - P) + PeA
- log(1P)±~A(1-ji) + pjeA] 1-P )+Pe

log [(1 - p)+Pe]

This gives a dual program of

sup A - log H ((1 - Pj) + Pe-)
A>o I

* 6.4.8 Import of Relaxed Structure in Cases of Indeterminacy

Viewing the problem of coherent approximation as a minimal expansion (relaxation)
of the constraint set rather than a projection of an incoherent point provides a very
different situational interpretation. The projection perspective suggests that assessors
are in some sense illogical; they're unable to come up with the 'right' assessments (i.e.
ones that are probabilities).

The alternative geometry of constraint relaxation has a different implication.
Rather than the experts being incompetent, it is the space itself which is indeter-
minant. In this view, the characteristic matrix representation is insufficient to de-
scribe the relation between assessed events and atomic events. If we view atomic
events as 'observables' and assessment events as 'assertions,' the relaxation would
correspond to allowing that while we all may see the same thing, our interpretation
of our observations my differ.

Philosophically, the situation is akin to that described by John Wisdom in his
metaphor of the garden:
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Two people return to their long neglected garden and find among the
weeds a few of the old plants surprisingly vigorous. One says to the other,
'It must be that a gardener has been coming and doing something about
these plants'. Upon inquiry they find that no neighbour has ever seen
anyone at work in their garden. The first man says to the other, 'He must
have worked while people slept'. The other says, 'No, someone would
have heard him and besides, anybody who cared about the plants would
have kept down these weeds'. The first man says, 'Look at the way these
are arranged. There is purpose and a feeling for beauty here. I believe
that someone comes, someone invisible to mortal eyes. I believe that the
more carefully we look the more we shall find confirmation of this'. They
examine the garden ever so carefully and sometimes they come on new
things suggesting that a gardener comes and sometimes they come on new
things suggesting the contrary and even that a malicious person has been
at work.

In the metaphor, both observers see exactly the same thing, and there is no logical
justification for preferring one explanation over the other. It is, paraphrasing Savage,
a sentiment in logic similar to de gustibus non est disputandem.

U 6.5 Conclusion

In this brief chapter we have analyzed the issue of coherent approximation from an
alternative perspective. Rather than assuming the assessments are incoherent because
they are in error, the problem is analyzed from the perspective that incoherence is an
issue of the assumed coupling structure between atomic events and assessed random
variables. Two ways in which the assumed structure may be deficient were introduced
and methods for correcting the structural deficiencies were proposed and analyzed.
Finally, a connection was made to the broader question of subjectivity of experience
and whether ambiguity of experience is an essential element of life.

In the future, further analysis should be done on the connection to basis pursuit
and matching pursuit with regards to the problem of minimal structural revision un-
der conditions of uncertainty. Also, the comparison between the optimal structural
revision under uncertainty and compressed sensing should be analyzed. In terms of
structural revision under indeterminacy, the connection between various dual formu-
lations and optimal structural deformations should be further analyzed.
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Chapter 7

Conclusion

N 7.1 Coherent Approximation

Taking action in our complicated, interconnected world requires the best possible sit-
uational awareness. Gathering information in the form of expert opinion and assess-
ments, whether those experts are human or machine, can improve a decision maker's
understanding of the consequences of his actions. However, when expert assessments
fail to be coherent, the decision maker's awareness is impeded. What is needed is
a method for approximating the inconsistent views with consistent ones that still
reflect, as much as possible, the expert opinion that underlies the assessments.

In this thesis we have proposed and developed a framework for performing coherent
approximation, based on principles of information geometry. We have shown that it
is robustly applicable to various types of quantitative assessment, and verified the
effectiveness of the framework in simulations of dynamically varying environments.
We have compared it to previous attempts at coherent approximation and shown
specific limitations of previous approaches that are overcome under the proposed
algorithm.

N 7.1.1 Contributions

This thesis has developed several methods and applications of coherent approximation
or combination of expert assessments.

" In Chapter 3 a coherent approximation principle based on information geometry
(the IGCAP) was motivated, formulated, justified, and analyzed.

* In Chapter 4 a mechanism for coherently approximating sequences of assess-
ments generated by mismatched likelihood models was developed and demon-
strated in simulation.

" Also in Chapter 4 an application of IGCAP to perform approximate Bayesian

filtering based on an incoherent sequence of expert assessments was derived and
verified in simulation.

" In Chapter 5 a method for measuring aggregate financial risk coherently was
developed, based in part on the IGCAP.
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9 In Chapter 6 an alternative interpretation of incoherence as a structural limita-
tion was put forth and two suggested methods for relaxing the structure were
suggested.

We cover each of these contributions in greater depth below.

Information Geometric Coherent Approximation Principle

Previous work [76,77] had formulated the problem of coherently approximating a set
of assessments as a Euclidean projection. While intuitive and relatively simple to
compute, this approach had significant limitations. It treats probability as a fungible
commodity rather than a representation of internalized uncertainty; it fails to extend
invariantly to assessments of non-characteristic random variables; and the principle
lacks justification in terms of a fundamental model of assessor error.

To overcome some of these limitations, in Chapter 3 we introduced a new coherent
approximation principle based in information geometry, which we refer to as the In-
formation Geometric Coherent Approximation Principle (IGCAP). The key principle
underlying the IGCAP is that assessments define linear families on the probability
simplex, and that the coherent solution A* is the point that lies 'closest' (on average
or, in an alternate formulation, in minimax) to those linear families. We showed that
the IGCAP can be viewed as an ML estimate of an observation generating distribu-
tion, with incoherence among assessors explained through the independence of the
distributed observation process. We used a large deviations principle to demonstrate
a conditional limit theorem which allowed us to interpret the projection of Q* onto
the assessment-generated linear families as a good approximation of each assessor's
private type.

Several benefits of the IGCAP were demonstrated, including:

1. The solution P* = XA* is (a) unique and (b) equal to P if P is coherent

2. The computation is particularly tractable for characteristic random variables,
with a special case that agrees with the operator model suggested in Sec-
tion 3.3.2

3. The mechanism can extend invariantly to assessments of non-characteristic ran-
dom variables

4. The formulation can be expanded to allow for assessments given as ranges rather
than points, or to account for potential risk aversion (or risk seeking) among
assessors

5. Given a sequence of assessments P, such that li P, P is coherent, the
sequence of solutions P,* - P.

Coherent Approximation of Sequential Assessments

In Chapter 4 we developed three distinct sequential assessment regimes and demon-
strated mechanisms, based in the IGCAP, by which incoherent sequences of assess-
ments could be coherently approximated.
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The Subjective Likelihood (SL) model consisted of a set of assessors, each respon-
sible for generating assessments of a particular characteristic random variable based
on a sequence of globally-observable random variables (assumed i.i.d.). Each assessor
has a subjective likelihood function that encodes the relation between the observa-
tional sequence and the value of their particular random variable. We introduced the
concepts of Step-Wise Coherence (SWC) and Weak, Asymptotic Coherence (WAC)
as classifications of the set of subjective likelihood models, and showed that WAC
is a strictly weaker sense of likelihood coherence. Using large deviations techniques
and the asymptotic coherence structure of a set of likelihood models, we formulated

a principle of conserving predictive uncertainty which provided a coherent approxi-
mation for a sequence of incoherent assessments generated by subjective likelihood
functions.

In the Conditional Assessment (CA) model, each assessment may be conditioned
on some subset of the atomic events. This conditioning may be based on side infor-
mation known to the assessor, or it may be easier for the assessor to only consider a

subset of the possibilities. It was shown that, just as with unconditional assessments,
conditional assessments generate a linear family on the simplex over the atoms of Q.
It was further shown that under IGCAP, given two assessments conditioned on the

same event their coherent approximation could be derived in two equivalent ways:
1) as the optimal solution to the IGCAP in the subset of the simplex spanned by
the conditioning event or 2) as the conditional revision of the optimal solution to the

IGCAP on the simplex over the whole of i.
In the Markov Chain (MC) model, the individual random variables of the asses-

sors were assumed to be random sequences that varied over time according to some

underlying Markov process. Furthermore, each assessor was assumed to have access

to private observations which were integrated into his assessment using a likelihood

model that was unknown to the other assessors or to the approximator. A method
for approximate Bayesian filtering based on the sequence of distributed, incoherent
assessments was derived and demonstrated in simulation to perform comparably to
the optimal, centralized Bayesian filter with full information.

Coherent Approximation of Risk Assessments

In Chapter 5 we analyzed several aspects of financial risk assessment, particular in the

context of the axiomatic class of coherent and convex risk measures. After defining

the concept of minimal convex extension of a risk measure as the one with minimal

acceptance set that 1) includes the acceptance set of the original risk measure and 2)

adheres to the necessary axioms, we demonstrated that the minimal convex extension

of the Value-at-Risk (VaR) risk measure for any parameter 7 is still a VaR risk measure

with parameter -y*.
We then defined a robustness principle for risk measures and analyzed the robust-

ness of several suggested risk measures to small variations in the subjective probabil-

ity distribution. It was shown that several risk measures, including 'nicely behaved'

coherent risk measures, may be fragile under minor divergences of opinion.

Next, we developed a mechanism for generating a coherent risk measure of an
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aggregate financial position given a distributed set of risk assessments of the indi-
vidual financial positions. When the risk assessments were generated coherently (or
were coherent-equivalent in the sense defined in the chapter) a method was derived
to approximate the scenario set of the coherent risk measure that gave rise to the
assessments. When the risk assessments were incoherent, the IGCAP was employed
to generate a coherent approximation of the aggregate risk.

Knightian Uncertainty and Indeterminacy

Chapter 6 challenged the fundamental assumption of the thesis that incoherent as-
sessments were 'wrong.' Instead, it was posited that the assessments themselves were
accurate but that the structure of the problem was at fault. Two mechanisms in
which the structure could be insufficient were suggested: 1) a failure to foresee possi-
ble outcomes leading to an incomplete output matrix and 2) a fundamental inability
to deterministically map atomic states into assessors' observables. These two mech-
anisms were identified with 'uncertainty' and 'indeterminacy' respectively and two
methods for revising the structure accordingly were suggested.

In the case of uncertainty, it was suggested that a minimal number of additional
columns should be inserted in the output matrix. It was shown that, considering
the columns of the initial output matrix as a subset of all potential columns (drawn
from a finite field), the problem could equivalently be viewed as determining a sparse
augmentation to the current set of bases. The special case, in which the initial set of
columns is empty, was analyzed and a greedy algorithm was proposed. It was shown
that for [t-almost all assessments P the greedy algorithm performs optimally, but that
in certain highly-structured examples it can perform exponentially badly.

In the case of indeterminacy, the concept of a non-deterministic output matrix,
in which the matrix elements are intervals of values rather than point values, was
proposed. It was suggested that the geometry of the coherent approximation problem
could be adapted to determine intervals that would optimally approximate the original
structure while sufficiently relaxing the structure to incorporate the assessment. For
three different coherent formulations, the CAP, the IGCAP and a variant of the
IGCAP with the divergence order reversed, the conjugate function was utilized to
determine geodesics along which to optimally relax the structure of the output matrix.

* 7.1.2 Future Work

The IGCAP developed in Chapter 3 has many attractive properties, including guar-
anteed existence and uniqueness, affine invariance, and many others. The current
development does not suppose to be an exhaustive development of the principles,
benefits, and limitations of IGCAP. Further attention should be given to developing
the principle, particularly as regards its application to actual problems of distributed
assessment.

The connection between the subjective likelihood model in Chapter 4 and the IG-
CAP is mainly conceptual. Further investigation to determine if a more fundamental
connection exists between the two could be undertaken. Also, the Markov Chain
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(MC) model from Chapter 4 could be generalized to more general Markov structures
such as trees and graphs.

In the theoretical development of coherent approximation of distributed risk as-
sessment in Chapter 5, the choice of aggregate coherent risk measure was chosen based
on the IGCAP. However, in the final analysis only a relatively weak justification was
offered, relating to the increase of assessed marginal risk under alternative measures
that decrease the sum of divergences between 'worst case' scenarios. Essentially, the
IGCAP is a Pareto efficient balance between marginal risk and maximum divergence
between worst-case scenarios. However, it is a single point on a Pareto frontier. A
more significant result would justify choosing it over alternative Pareto efficient risk
measures.

The development in Chapter 6 of methods for structural relaxation in cases of
uncertainty could be significantly developed. The current analysis applies directly
only to the case when S 0, with a suggestion that it could be adapted to the more
general case. The algorithm itself could be further analyzed, for instance determin-

ing performance when assessments are constrained to live on a lattice rather than in

[0, 1]", and developed. Determining the relation to previously proposed greedy algo-
rithms for matching pursuit, and comparing to the relaxed case of using Li norm as a

surrogate for Lo which has worked well in problems of basis pursuit and compressive
sensing are additional areas of possible further development.

Also, in Chapter 6 the development of structural relaxation in cases of indeter-

minacy leaves open the question of the precise mapping between optimal distances
along geodesics (parameterized by the optimal dual variable) and definition of a non-

deterministic output matrix. Determining in what sense each of the suggested re-
laxations (based on duals of the CAP, the IGCAP, and the order-reversed IGCAP)
results in an 'optimal' relaxation of the characteristic matrix would be fruitful. Par-

ticularly interesting would be an investigation of whether the parameterized family
arising in the definition of the conjugate of the IGCAP objective has further appli-
cation. It's analogs, the least-squares Euclidean geodesic and the exponential family,
both have significant application, suggesting that perhaps it is of more fundamental
interest.

Finally, the proof (as they say) is in the pudding. Applying the IGCAP or the

related dynamic approximation methods developed in Chapters 3 and 4 to real world
data sets is a very important avenue of future development. First steps in this direc-
tion may be suggested by the application of IGCAP to financial risk assessment in

Chapter 5. More should be done to verify that the coherent approximation framework
developed here can improve situational understanding for actual decision makers.

* 7.2 Concluding Remarks

One of the most important endeavors we undertake as humans, both individually and
as countries, communities and societies, is to reconcile individually divergent values

and beliefs. I hope this thesis has helped in some small way to further that goal of

reconciliation. Although the development has been highly mathematical and tied to
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a very specific model of valuation, my desire throughout has been to say something
about the larger problem of reconciling contradictions generally while maintaining as
much as possible the rights, prerogatives, and values of the individual. I'm personally
skeptical of man's ability to improve society through simply thinking hard. However,
I feel that when animated by a worthy cause, driven by a 'moral outrage' (in the
words of West Churchman [166]), we are not only capable of helping make society
better, but obligated to do so.

It would be a good thing if the systems planner's germination was moral
outrage and not just a mild felt need. In other words, I do not think we
should view the major problems of the world today with calm objectivity.
We shouldn't first ask ourselves for a precise and operational definition of
malnutrition. We should begin with 'kids are starving in great numbers,
damn it all!'

While it may not have come through in the words of this thesis, I feel strongly the
moral need to address the growing problem of egocentrism and lack of perspective
within individuals and societies. The challenge of coherence, in the end, is the chal-
lenge of finding a way to live together, despite our sometimes contradictory values
and beliefs. I hope we can increasingly meet that challenge head on.
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Appendix A

Ramsey, de Finetti, and Savage

* A.1 Introduction

In this appendix I will attempt to briefly trace the concept of probabilistic coherence.
I will devote a section each to the developments of Ramsey [27], de Finetti [26] and
Savage [28]. I will then briefly analyze the similarities and differences between the
various developments.

* A.2 Ramsey

Ramsey's life was cut tragically short due to illness in 1930. Before his death he
made several contributions to the modern theories of economics and probability. In
this section we will analyze the contributions of his paper "Truth and Probability"
to the theory developed in this thesis, with a particular focus on his views about how
probability is quantified and the importance of coherence, or (in Ramsey's terms)
consistency of degree of belief.

Ramsey's development begins with a critique of Keynesian probability theory.
Particularly troubling to Ramsey is Keynes' view that in probability, as in logic, no
room can be given to personal belief. To Ramsey, the idea that specific probabilities
flow necessarily from certain fixed beliefs is contradicted by the fact that there seems
to be little consensus about particular probabilities. Ramsey compares it to geometry,
saying "it is as if everyone knew the laws of geometry but no one could tell whether
any given object were round or square."

Ramsey's own view of probability is highly personalistic and based in the logic of
choice under uncertainty. In his words, "[t]he difference [between believing something
more or less firmly] seems to me to lie in how far we should act on these beliefs."
He terms this view beliefs qua bases of action, and relates the quantification of prob-
ability to the lowest possible odds an individual is willing to accept on a wager,
or, equivalently, a point of indifference between betting for or against a proposition.
Ramsey recognizes the reality that humans experience, to varying degrees, attraction
or aversion to risk; however, as an idealization he accepts the idea of a risk-neutral
agent.

Ramsey then proposes a set of "axioms of consistency" which are sufficient to
imply the fundamental laws of probability. In addition to consistency (e.g. transi-
tivity) of action and belief, Ramsey requires the existence of a maximally uncertain
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proposition (i.e. one "believed to degree 1"). There are also two axioms relating to
continuity of beliefs. However, it is in the axioms of consistency that the concept of
coherence is found.

These are the laws of probability, which we have proved to be necessarily
true of any consistent set of degrees of belief. Any definite set of degrees
of belief which broke them would be inconsistent in the sense that it
violated the laws of preference between options, such as that preferability
is a transitive asymmetrical relation, and that if a is preferable to 3, #
for certain cannot be preferable to a if p, # if not-p. If anyone's mental
condition violated these laws, his choice would depend on the precise form
in which the options were offered him, which would be absurd. He could
have a book made against him by a cunning better and would then stand
to lose in any event.

U A.3 de Finetti

The following summary of de Finetti's development is taken primarily from Chapter
3 of [26].

In his Theory of Probability [26], De Finetti independently derived a view of
probability similar to Ramsey's based on very similar principles. After spending
two chapters introducing the principles and developing a view of possible/impossible,
in Chapter 3 de Finetti proceeds to the 'logic of uncertainty.' He here begins the
technical development of a theory of subjective probability based on a rational bettor's
willingness to accept certain odds as 'fair' (meaning the bettor is indifferent to either
side of a wager at the given odds). In this sense he follows Ramsey in viewing
probability theory as being based on the theory of decision-making, albeit assuming
an idealized (in terms of risk aversion) decision maker.

For de Finetti, as with Ramsey, the critical decision-making requirement is one of
consistency among decisions, which de Finetti calls coherence.

It turns out, in fact, that there exist simple (and, in the last analysis,
obvious) conditions, which we term conditions of coherence: any trans-
gression of these results in decisions whose consequences are manifestly
undesirable (leading to certain loss). The 'one must'...is not to be taken as
an obligation that someone means to impose from the outside, nor as an
assertion that our evaluations are always automatically coherent. On the
contrary, it is precisely because this is an area where it is particularly easy
to slip into incoherence that it is important to learn the art of prevision.

The development begins with the positing of uncertain quantities (denoted X and Y)
and a 'price' function P which maps uncertain quantities to the real numbers. The
interpretation of the price function P is that P(X) is the certain amount deemed
equivalently valuable to the decision-maker as the uncertain quantity X. De Finetti
then states the following two consistency axioms:

(a) the price P is an additive function: P(X + Y) =P(X)+P(Y).
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(b) the price P must satisfy the inequality inf X P(X) sup X.

In de Finetti's words, "the two extremely simple conditions.. .are not only necessary
but also sufficient for coherence - i.e. for avoiding undesirable decisions. This is all
that is needed for the foundation of the whole theory of probability."

De Finetti concludes his basic development by noting two criteria, each consisting
of a decision framework and a consistency principle, which are equivalent in terms of
eliciting probabilities (or, more generally, previsions). The first decision framework is

the betting proposition familiar from Ramsey's work, with the associated consistency
requirement being the non-existence of a book with guaranteed positive payoff. The
second decision framework posits a penalty function equal to the squared difference
of a prevision and the random quantity's realized value, with an associated coherence

principle that the chosen prevision is not dominated (in the sense of there existing
one with a guaranteed lower value) by another prevision.

N A.4 Savage

In The Foundations of Statistics [28], Savage develops a theory of probability very

similar to those developed by de Finetti and Ramsey. After concisely introducing the
concepts of actions, states, and consequences, Savage proposes a set of seven axioms
that are sufficient to define probability.

One of the framing contributions Savage makes is in considering rationality not as

an open-loop property, but explicitly calling out it's closed-loop nature. "When cer-

tain maxims are presented for your consideration, you must ask yourself whether you

try to behave in accordance with them, or, to put it differently, how you would react

if you noticed yourself violating them." This seems a valuable conceptual deviation
from the deductive approach taken by both Ramsey and de Finetti.

The first axiom Savage proposes, which he views as fundamental, is that actions

can be simply ordered with respect to preferences. Specifically, for all actions x, y, z,
Savage assumes 1) either x is not preferred to y or y is not preferred to x (or both)

and 2) if x is preferred to y and y to z then x is preferred to z. Thus, de Finetti

style coherence is again presented here as fundamental to the process of developing a

probability theory based in decision theory.
The second Savage axiom is related to what he calls 'the sure-thing principle', by

which he means that that if an action is preferred in every possible state, then it must

be globally preferred. The third axiom deals with acts with constant (across all pos-

sible states) consequences, and states that such an action is not preferred to another

such action if and only if the consequence of the first is less than or equal to that of

the second. This is the first move to connecting preferred actions to preferred payoffs

(consequences), which Savage continues with axioms 4-6, specifically: scale invariance
in preferences over consequences, non-universal indifference over consequences, and

fineness and tightness in the preferences over consequences (essentially meaning there

exists some partition of the space such that any strict preference over consequences
can't be rendered weak or overturned by varying the consequence on each element of

the partition individually).
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The final step toward quantification of probability is made by applying utility to
consequences, and considering (a la von Neumann-Morgenstern) 'gambles' between
consequences. The final axiom (number seven) is a variant of the sure-thing principle
presented as axiom two, but extending to utility of consequences over states

A.5 Discussion

There are several remarkable similarities and a few differences between the develop-
ments of Ramsey, de Finetti, and Savage.

All three treat as fundamental the concept of coherence. Ramsey and de Finetti
found this in the argument of Dutch Books, although de Finetti adds the secondary
criteria based on dominated scoring functions. In Savage's development, the axiom of
simple ordering over acts doesn't attempt to justify itself philosophically, but is seen
as a fundamental expression of human decision making. In this sense, the coherence
in Savage's development is more primitive than the coherence from Ramsey and de
Finetti.

Another commonality among the three developments is the view of decision the-
ory as being foundational to the theory of probability. This personalistic approach is
in stark contrast to the objectivist approach that was ascendant at the time. How-
ever, all three recognize the challenge in treating humans as 'rational' (in the sense of
expectation maximizing) decision makers when there is evidence (even before Kahne-
man and Tversky's landmark studies) that such an idealization was poorly justified in
practice. Ramsey refers to this principle is stating that pursuing his line of develop-
ment further would be akin to seeking the seventh decimal of a number that can't be
precisely determined beyond the second decimal. The inherent reality of non-rational
human decision making obviously weighs heavily on all their minds.

For Savage, the role of gambling plays a fairly minor part of the overall devel-
opment, relative to de Finetti. Indeed, much of Savage's theory of probability is
developed prior to introducing gambling and utility as a method of mixing across
consequences, whereas the idea of gambling is the origin of de Finetti's development.
For Ramsey, the role of gambling (in terms of viewing probability as fair odds for a
gamble) is similarly fundamental, although it is largely implied in his development.
Savage chooses to focus first on general actions under uncertainty, and arguably views
the final introduction of the specific action of setting odds as a relatively minor aspect
of the overall process.

All three developments, to varying degrees, point to the idea of probability as
being an outgrowth of logic. This is partially seen through the reliance on coherence
and consistency axioms or principles, as already outlined. In the case of both Ramsey
and de Finetti it goes significantly beyond this as they explicitly call out the relation-
ship between logical consistency and probability. This is more explicit in Ramsey's
treatment, which adopts much of its notation from the field of analytical logic and
dwells at some length on the interrelation between the two fields.

In the end, each of these three seminal developments adds something to our picture
of subjective probability. To grossly oversimplify the unique contributions of each
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development, from Ramsey we get the strong connection to the field of logic, from
de Finetti we get an extremely concise development in terms of wagering, and from
Savage we get a broader connection to decision theory as well as a strikingly elegant
mathematical construction of states, acts, consequences and utilities.
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Appendix B

Simulation Code

* B.1 Subjective Likelihood Simulation

clear all;

T = 3*ones(3)+diag(ones(1,3));
T = T/sum(sum(T));

nB = sum(T(:,[2 3]),2)*3/2;
nB = nB([1 2 3;2 1 3;3 2 1]);
x = 1;
for idx=1:1000

rand('seed',idx);

B = T*3+(diag(1.5*ones(1,3))-.5).*(ones(3,1)*rand(1,3)/3);
z = rand(1,2000);

z = sum(cumsum(T(:,x)*3)*ones(1,length(z))<ones(3,1)*z)+1;

P = ones (3,1)/3;
for a=1:length(z)

P(:,a+1) = P(:,a).*B(z(a),:)'./...

(P(:,a) .*B(z(a),:)'+(1-P(:,a)).*nB(z(a),:)');

end

Phati = P./(ones(3,1)*sum(P));

Phat2 = P;
[mns,idcs] = min(Phat2);

Phat2 = Phat2-ones(3,1)*min([mns; (sum(Phat2)-1)/3]);
tfs = find(min(Phat2)==0);

Phat2(:,tfs) = max(Phat2(:,tfs)-...
ones(3,1)*(sum(Phat2(:,tfs))-1)/2, zeros(size(Phat2(:,tfs))));

11 = log(diag(B)./diag(nB));
12 = log(diag([O 0 1;1 0 0;0 1 0]*B)/.35);
C = 12./(12-11);
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rhohat = cumsum([z==1;z==2;z==3] ,2)./(ones(3,1)*[1:length(z)]);

wt = rhohat(2,:)./(rhohat(2,:)+rho-hat(3,:));
rhostar = [C(1)*ones(1,length(z));(1-C(1))*wt;(1-C(1))*(1-wt)];
wt = rhohat(1,:)./(rhohat(1,:)+rho-hat(3,:));
rhostar(:,:,2) = [(1-C(2))*wt;...

C(2)*ones(1,length(z));(1-C(2))*(1-wt)];

wt = rhohat(1,:)./(rhohat(1,:)+rho-hat(2,:));
rhostar(:,:,3) = [(1-C(3))*wt;...

(1-C(3))*(1-wt);C(3)*ones(1,length(z))];
thresholdbreakers = rhohat>(C*ones(1,length(z)));
for a=1:length(z)

brkrs = find(thresholdbreakers(:,a));
if length(brkrs)==1

rho_star(:,a,brkrs) = rhohat(:,a);
elseif length(brkrs)==2

tmp = rho_star(:,a,brkrs(1));
rhostar(:,a,brkrs(1)) = rho-star(:,a,brkrs(2));
rhostar(:,a,brkrs(2)) = tmp;

end
end

%calculate weights based on e~-nD(rho-hat||rhostar)
wts = [];

for a=1:3
wts(a,:) = exp(-[1:length(z)].*sum(rho-hat.*...

log(rho-hat./rho-star(:,:,a))));
end

%keyboard;
wts = wts./(ones(3,1)*sum(wts));
Phat3(:,1) = ones(3,1)/3;
Phat3(:,2:length(z)+1) = diag(ones(1,3))*wts;

D = (1:3==x)'*ones(1,length(z)+I1)-P;

Dhatl = (1:3==x)'*ones(1,length(z)+1)-Phatl;
Dhat2 = (1:3==x)'*ones(1,length(z)+1)-Phat2;
Dhat3 = (1:3==x)'*ones(1,length(z)+1)-Phat3;

M(:,:,idx) = [sum(D.*D);sum(Dhatl.*Dhatl);...

sum(Dhat2.*Dhat2) ; sum(Dhat3.*Dhat3)];
end

152



M B.2 Bayesian Filtering Simulation

%NOTE: Uses the cvx convex optimization solver
for idx = 1:100

%clear all; close all;
clear s

%rand('seed',1);
cvx-quiet(1);
N = 3;

K = 200;

Theta = 1:N;

%pt = .5+.5*rand;

pt = .5+.2*rand;

pnt = (1-pt)/(N-1);

T = (pt-pnt)*diag(ones(1,N))+pnt;

cT = cumsum(T);

%py = .4+.6*rand;

py = .4+.4*rand;

pny = (1-py)/(N-1);
XPy = diag(ones(1,3));

Py = (py-pny)*diag(ones(1,N))+pny;

cPy = cumsum(Py);

X = diag(ones(1,N));

%I'm going to interleave the following Probability matrices,
%so each odd column is a 'prediction'

Xand each even column is an 'update'

Pl = (1/N)*ones(N,1);

XPl is the local estimate of the marginal probability;
%unlike the other probability matrices, it's not a
$probability mass function (i.e. each column is an

$assessment, and the assessments are generally incoherent)

Pg = (1/N)*ones(N,1);
Y.Pg is the estimate using IGCAP to approximate likelihoods

Po = Pg;
XPo is the optimal centralized estimate, using all information

s(1) = ceil(rand*N);

pi.starold = (T*1/N*ones(N,1))*ones(1,N);

for a=1:K
if ~mod(a,round(K/10))
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fprintf('.');

end
for b=1:N

y(b) = find(rand<cPy(:,s(a)),1,'first');
Xlocal update step
tPl = Pl(b,2*a-1);

if y(b)==b
Pl(b,2*a) = py*tPl/(py*tPl+pny*(1-tPl));

else
Pl(b,2*a) = pny*tPl/(pny*tPl+py*(1-tPl));

end

end

%global update step
P = Pl(:,2*a);
cvx-begin

variable Q(N)
maximize sum(P.*log(Q)+(1-P).*log(1-Q))
subject to

ones(1,3)*Q==1
Q>=0
cvx end

for b=1:N
Z(b) = (1-Q(b))/(1-Pl(b,2*a));

pi-star(:,b) = Q/Z(b);
Xpi.star(b ,b) = Q(b)/Z(b)*exp(th(b));
pistar(b,b) = Pl(b,2*a);

end
Pg(:,2*a) = prod([Pg(:,2*a-1) pi-star./pistarold],2);
Pg(:,2*a) = Pg(:,2*a)/sum(Pg(:,2*a));
pistarold = T*pi-star;

%optimal update step
Po(:,2*a) = prod(Py(y,:))'.*Po(:,2*a-1)/...

(prod(Py(y,:))*Po(:,2*a-1));

%update state
s(a+1) = find(rand<cumsum(T(:,s(a))),1,'first');

%local prediction step

for b=1:N
Pl(b,2*a+1) = pt*Pl(b,2*a)+pnt*(1-Pl(b,2*a));

end

%global prediction step
Pg(:,2*a+1) = T*Pg(:,2*a);
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%centralized prediction step
% Pc(:,2*a+1) = T*Pc(:,2*a);

Xoptimal prediction step
Po(:,2*a+1) = T*Po(:,2*a);

end

fprintf('\n');
Po-perf(idx,:) = 1-Po([3:6:3*(size(Po,2)-2)]+s(1:end-1));
Pg-perf(idx,:) = 1-Pg([3:6:3*(size(Po,2)-2)1+s(1:end-1));
Pl-perf(idx,:) = 1-Pl([3:6:3*(size(Po,2)-2)1+s(1:end-1));
pthist(idx) = pt;
py-hist(idx) = py;

end

155



156



Bibliography

[1] P. K. Varshney, Distributed Detection and Data Fusion. Springer, 1996. 17

[2] R. R. Tenney and N. R. Sandell, "Detection with distributed sensors,"
Aerospace and Electronic Systems, IEEE Transactions on, vol. AES-17, no. 4,
pp. 501 -510, Jul. 1981. doi: 10.1109/TAES.1981.309178 17

[3] , "Structures for distributed decision making," Systems, Man and
Cybernetics, IEEE Transactions on, vol. 11, no. 8, pp. 517 -527, Aug. 1981.
doi: 10.1109/TSMC.1981.4308739 17

[4] J. Tsitsiklis, "Problems in decentralized decision making and computation,"
PhD Thesis, Massachusetts Institute of Technology, 1984. 17

[5] , "Decentralized detection by a large number of sensors," in Mathematics
of Control, Signals and Systems, vol. 1, 1988, pp. 167-182. 17

[6] , "Decentralized detection," in Advances in Statistical Signal Processing,
1993, vol. 2, pp. 297 -344. 17

[7] Z. Chair and P. Varshney, "Optimal data fusion in multiple sensor detection
systems," Aerospace and Electronic Systems, IEEE Transactions on, vol.
AES-22, no. 1, pp. 98 -101, Jan. 1986. doi: 10.1109/TAES.1986.310699 17

[8] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, "Convergence in
multiagent coordination, consensus, and flocking," in Decision and Control,
IEEE Conference on, 2006. 17

[9] W. Ren, R. Beard, and E. Atkins, "A survey of consensus problems in multi-
agent coordination," in American Control Conference, 2005. 17

[10] R. Olfati-Saber and R. Murray, "Consensus problems in networks of agents with
switching topology and time-delays," Automatic Control, IEEE Transactions
on, vol. 49, no. 9, Sep. 2004. 17

[11] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, "Flocking in fixed and switching
networks," Automatic Control, IEEE Transactions on, vol. 52, no. 5, pp. 863
-868, May 2007. 17

157



[12] R. Olfati-Saber, "Flocking for multi-agent dynamic systems: Algorithms and
theory," Automatic Control, IEEE Transactions on, vol. 51, no. 3, pp. 401-420,
Mar. 2006. 17

[13] D. Mosk-Aoyama and D. Shah, "Fast distributed algorithms for computing
separable functions," Information Theory, IEEE Transactions on, vol. 54, no. 7,
pp. 2997 -3007, Jul. 2008. 17

[14] G. N. Frederickson and N. A. Lynch, "Electing a leader in a synchronous ring,"
Journal of the ACM, vol. 34, pp. 98-115, January 1987. 17

[15] N. Malpani, J. L. Welch, and N. Vaidya, "Leader election algorithms for mobile
ad hoc networks," in Proceedings of the 4th international workshop on Discrete
algorithms and methods for mobile computing and communications, 2000, pp.
96-103. 17

[16] H. Kopetz and W. Ochsenreiter, "Clock synchronization in distributed real-time
systems," Computers, IEEE Transactions on, vol. C-36, no. 8, pp. 933 -940,
Aug. 1987. 17

[17] Q. Li and D. Rus, "Global clock synchronization in sensor networks," IEEE
Transactions on Computers, vol. 55, pp. 214-226, 2006. 17

[18] B. D. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, NJ:
Prentice-Hall, 1979. 17

[19] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time
Series. New York: Wiley, 1949. 17

[20] R. E. Kalman, "A new approach to linear filtering and prediction problems,"
Transactions of the ASME-Journal of Basic Engineering (Series D), vol. 82,
pp. 35-45, 1960. 17

[21] R. Kalman and R. S. Bucy, "New results in linear filtering and prediction
theory," Transactions of the ASME-Journal of Basic Engineering (Series D),
vol. 83, pp. 95-108, Mar. 1961. 17

[22] J. Speyer, "Computation and transmission requirements for a decentralized
linear-quadratic-gaussian control problem," Automaic Control, IEEE Transac-
tions on, vol. 24, no. 2, pp. 266-269, Feb. 1979. 17

[23] B. Rao, H. Durrant-Whyte, and J. Sheen, "A fully decentralized multi-sensor
system for tracking and surveillance," Int'l Journal of Robotics Research, vol. 12,
no. 1, pp. 20-44, Feb. 1993. 17

[24] R. Olfati-Saber, "Distributed Kalman filtering with embedded consensus fil-
ters," in IEEE Conference on Decision and Control, 2005. 17

158



[25] , "Distributed Kalman filtering for sensor networks," in IEEE Conference
on Decision and Control, 2007. 17

[26] B. de Finetti, Theory of Probability. Wiley New York, 1974, vol. 1-2. 19, 27,
31, 32, 34, 36, 63, 125, 145, 146

[27] F. P. Ramsey, "Truth and probability," in The Foundations of Mathematics and
other Logical Essays, R. Braithwaite, Ed. New York: Harcourt, Brace and Co.,
1931, ch. VII, pp. 156-198. 19, 27, 33, 145

[28] L. J. Savage, The Foundations of Statistics. New York: Wiley, 1954. 19, 25,
27, 31, 145, 147

[29] B. Dowden and N. Swartz. (2004, Sep.) The internet encyclopedia of
philosophy: Truth. [Online]. Available: http://www.iep.utm.edu/truth/ 20

[30] B. Russell, "On the nature of truth," Proceedings of the Aristotelian Society,
vol. 7, pp. 228-249, 1907. 20

[31] L. Wittgenstein, Tractatus Logico-Philosophicus. London, UK: Kegan Paul,
Trench, Trubner & Co., LTD., 1922, transl. by C.K. Ogden, with introduction
by B. Russell. 20

[32] F. Waismann, "Verifiability," in Logic and Language, A. G. N. Flew, Ed. Lon-
don: Blackwell, 1951, pp. 117-144. 20

[33] H. Putnam, Representation and Reality. Cambridge, MA: MIT Press, 1988.
20

[34] K. Popper, Logik der Forschung. Springer-Verlag, 1935. 20

[35] , The Logic of Scientific Discovery. Hutchinson & Co., 1959. 20

[36] T. Kuhn, The Structure of Scientific Revolutions. University of Chicago Press,
1962. 20

[37] H. Hart, The Concept of Law. Oxford,UK: Oxford University Press, 1961. 21

[38] B. Barry, Sociologists, Economists and Democracy. The University of Chicago
Press, 1978. 21

[39] N. Chomsky, Aspects of the Theory of Syntax. Cambridge, MA: The MIT
Press, 1965. 21

[40] C. J. Fillmore, "Frame semantic and the nature of language," Annals of the
New York Academy of Sciences, vol. 280, p. 2032, 1976. 21

[41] G. Lakoff and M. Johnson, "The metaphorical structure of the human concep-
tual system," Cognitive Science: A Multidisciplinary Journal, vol. 4, no. 2, p.
195208, Apr. 1980. 21

159



[42] G. Shafer and V. Vovk, Probability and Finance: It's Only a Game!, ser. Wiley
series in probability and statistics. John Wiley & Sons, Inc., 2001. 22, 33, 101

[43] E. Fama, "The behavior of stock market prices," Journal of Business, vol. 38,
p. 34105, 1965. 22

[44] S. A. Ross, "The arbitrage theory of capital asset pricing," Journal of Economic
Theory, vol. 13, pp. 341-360, 1976. 22, 34

[45] J. Nash, "Non-cooperative games," The Annals of Mathematics, vol. 54, no. 2,
pp. 286-295, 1951. 22

[46] R. Aumann, "Subjectivity and correlation in randomized strategies," Journal
of Mathematical Economics, vol. 1, pp. 67-95, 1974. 22

[47] J. Harsanyi, Rational Behavior and Bargaining Equilibrium in Games and So-
cial Situations. Cambridge, UK: Cambridge University Press, 1977. 22

[48] D. Kahneman and A. Tversky, "Prospect theory: an analysis of decision under
risk," Econometrica, vol. 47, no. 2, pp. 263-292, Mar. 1979. 22

[49] D. Kahneman and A. Tversky, Eds., Judgment under uncertainty: Heuristics
and biases. Cambridge, UK: Cambridge University Press, 1982. 22

[50] S. Mullainathan and R. H. Thaler, "Behavioral economics," in International
Encyclopedia of the Social and Behavioral Sciences, N. J. Smelser and P. B.
Baltes, Eds. Oxford, UK: Oxford University Press, 2001, vol. 20, p. 10941100.
22

[51] D. M. Kreps, Notes on the Theory of Choice (Underground Classics in Eco-
nomics). Boulder, CO: Westview Press, 1988. 25

[52] K. Binmore, Rational Decisions. Princeton, NJ: Princeton University Press,
2008. 25

[53] F. N. David, Probability Theory for Statistical Methods. Cambridge: University
Press, 1951. 25

[54] P. L. Bernstein, Against the Gods: The remarkable story of risk. John Wiley
& Sons, Inc., 1996. 26, 101

[55] R. von Mises, "On the foundations of probability and statistics," The Annals
of Mathematical Statistics, vol. 12, no. 2, pp. 191-205, Jun. 1941. 26

[56] , Probability, Statistics, and Truth, 2nd ed. George Allen & Unwin Ltd.,
1957. 26

[57] R. Fisher, "On the mathematical foundations of theoretical statistics," Philo-
sophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, vol. 222, pp. 309-368, 1922.
26

160



[58] J. Neyman and E. S. Pearson, "On the use and interpretation of certain test
criteria for purposes of statistical inference: Part i," Biometrika, vol. 20A, no.
1/2, pp. 175-240, Jul. 1928. 26

[59] A. M. Keynes, A Treatise on Probability. London, UK: Macmillan and Co.,
Ltd, 1921. 26, 123

[60] R. Carnap, Logical Foundations of Probability. University of Chicago Press,
1950. 26

[61] B. Ventelou, Millenial Keynes: An Introduction to the Origin, Development,
and Later Currents of Keynesian Thought. New York, NY: M.E. Shaw, 2005,
translated and edited, with an introduction by Gregory P. Nowell. 27

[62] L. Savage, "The theory of statistical decision," Journal of the American Statis-
tical Association, vol. 46, pp. 55-67, 1951. 27

[63] H. Jeffreys, Theory of Probability, 3rd ed. Oxford University Press, 1961. 27,
78

[64] F. Anscombe and R. J. Aumann, "A definition of subjective probability," The
Annals of Mathematical Statistics, vol. 34, no. 1, pp. 199-205, Mar. 1963. 27,
123

[65] C. Smith, "Consistency in statistical inference and decision," Statisical Society.
Series B(Methodological), vol. 23, no. 1, pp. 1-37, 1961. 27

[66] D. Schmeidler, "Subjective probability and expected utility without additivity,"
Econometrica, vol. 57, no. 3, pp. 571-587, May 1989. 27

[67] J. Y. Halpern, Reasoning about Uncertainty. Cambridge, MA: The MIT Press,
2003. 28

[68] L. Zadeh, "Toward a generalized theory of uncertainty (gtu)an outline," Infor-
mation Sciences, vol. 172, p. 140, 2005. 28

[69] V. Borkar, V. Konda, and S. Mitter, "On de Finetti coherence and Kolmogorov
probability," Statistics and Probability Letters, vol. 66, no. 4, pp. 417-421, Mar.
2004. 32, 33

[70] I. Karatzas, Methods of Mathematical Finance. New York, NY, USA: Springer-
Verlag, 1998. 33, 34

[71] B. Skyrms, "Diachronic coherence and radical probabilism," in Degrees of Be-
lief, ser. Synthese Library, F. Huber and C. Schmidt-Petri, Eds. Springer
Netherlands, 2009, vol. 342, pp. 253-261. 33, 78

[72] H. Shin, "Review of The Dynamics of Rational Deliberation," Economics and
Philosophy, vol. 8, pp. 109-138, 1992. 33

161



[73] S. A. Clark, "The valuation problem in arbitrage price theory," Journal of
Mathematical Economics, vol. 22, no. 5, pp. 463 - 478, 1993. 34

[74] D. B. Hausch and W. T. Ziemba, "Arbitrage strategies for cross-track betting
on major horse races," The Journal of Business, vol. 63, no. 1, pp. 61-78, 1990.
41

[75] , "Locks at the racetrack," Interfaces, vol. 20, no. 3, pp. 41-48, 1990. 41

[76] D. Osherson and M. Vardi, "Aggregating disparate estimates of chance," Games
and Economic Behavior, vol. 56, no. 1, pp. 148-173, Jul. 2006. 41, 42, 43, 52,
60, 140

[77] J. Predd, D. Osherson, S. Kulkarni, and H. Poor, "Aggregating forecasts of
chance from incoherent and abstaining experts," Decision Analysis, vol. 5, pp.
177-189, 2008. 41, 43, 52, 60, 140

[78] J. Predd, R. Seiringer, E. Lieb, D. Osherson, S. Kulkarni, and H. Poor, "Proba-
bilistic coherence and proper scoring rules," IEEE Transactions on Information
Theory, vol. 55, no. 10, pp. 4786-4792, Oct. 2009. 41, 52, 59, 73

[79] E. Eisenberg and D. Gale, "Consensus of subjective probabilities: The pari-
mutuel system," The Annals of Mathematical Statistics, vol. 30, no. 1, pp.
165-168, Mar. 1952. 42

[80] L. Brown and Y. Lin, "Racetrack betting and consensus of subjective probabil-
ities," Statistics & Probability Letters, vol. 62, pp. 175-187, 2003. 42

[81] C. R. Plott, J. Wit, and W. Yang, "Parimutuel betting markets as information
aggregation devices: experimental results," Economic Theory, vol. 22, no. 2,
pp. 311-351, Sep. 2003. 42

[82] B. Fischhoff, "Debiasing," in Judgment under uncertainty: Heuristics and bi-
ases, 1st ed., D. Kahneman, P. Slovic, and A. Tversky, Eds. Cambridge, UK:
Cambridge University Press, 1982, pp. 422-444. 42

[83] M. Berhold, "Procedures to increase the validity of subjective probability esti-
mates," Decision Science, vol. 6, no. 4, pp. 721-730, 1975. 42

[84] R. Nisbett, D. Krantz, C. Jepson, and G. Fong, "Improving inductive inference,"
in Judgment under uncertainty: Heuristics and biases, 1st ed., D. Kahneman,
P. Slovic, and A. Tversky, Eds. Cambridge, UK: Cambridge University Press,
1982, pp. 445-459. 42

[85] M. G. Morgan and M. Henrion, Uncertainty: A guide to dealing with uncertainty
in quantitative risk and policy analysis. Cambridge University Press, 1990, ch.
7.7. 42

162



[86] R. Clemen and R. Winkler, "Combining probability distributions from experts
in risk analysis," Risk Analysis, vol. 19, pp. 187-203, 1999. 42

[87] R. Jacobs, "Methods for combining experts' probability assessments," Neural
Computation, vol. 7, pp. 867-888, 1995. 42, 43

[88] C. Genest and J. Zidek, "Combining probability distributions: A critique and
annotated bibliography," Statistical Science, vol. 1, pp. 114-148, 1986. 42

[89] J. Kittler, "Combining classifiers: A theoretical framework," Pattern Analysis
and Applications, vol. 1, no. 1, pp. 18-27, Mar. 1998. 42

[90] E. Bauer and R. Kohavi, "An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants," Machine Learning, vol. 36, no.
1-2, pp. 105-139, 1999. 42

[91] R. Clemen, "Combining forecasts: A review and annotated bibliography," In-
ternational Journal of Forecasting, vol. 5, pp. 559-583, 1989. 42

[92] T. Dietterich, "Ensemble methods in machine learning," in 1st Int'l Conference
on Multiple Classifier Systems. Spinger Berlin/Heidelberg, Jun. 2000, pp. 1-15.
42

[93] R. M. Dawes, "The robust beauty of improper linear models in decision mak-
ing," in Judgment under uncertainty: Heuristics and biases, 1st ed., D. Kahne-
man, P. Slovic, and A. Tversky, Eds. Cambridge, UK: Cambridge University
Press, 1982, pp. 391-407. 42

[94] D. Wolpert, "Stacked generalization," Neural Networks, vol. 5, pp. 241-259,
1992. 42

[95] R. Winkler, "The consensus of subjective probability distributions," Manage-
ment Science, vol. 15, no. 2, pp. B61-B75, Oct. 1968. 43

[96] D. Lindley, "Reconciliation of discrete probability distributions," Operations
Research, vol. 31, no. 5, pp. 866-880, Sep. 1983. 43

[97] R. Batsell, L. Brenner, D. Osherson, S. Tsavachidis, and M. Vardi, "Eliminating
incoherence from subjective estimates of chance," in Proceedings of the 8th
International Conference on the Principles of Knowledge Representation and
Reasoning (KR 2002), Toulouse, France, 2002, pp. 353-364. 43

[98] P. Jones, S. Mitter, and V. Saligrama, "Revision of marginal probability assess-
ments," in 13th International Conference on Information Fusion, Edinburgh,
UK, 2010. 43, 59

[99] A. Abbas, "A Kullback-Leibler view of linear and log-linear pools," Decision
Analysis, vol. 6, no. 1, pp. 25-37, Mar. 2009. 51

163



[100] I. Csiszair, "I-divergence geometry of probability distributions and minimization
problems," The Annals of Probability, vol. 3, no. 1, pp. 146-158, 1975. 53, 59,
109

[101] I. Csiszir and F. Matus, "Information projections revisited," Information The-
ory, IEEE Transactions on, vol. 49, no. 6, pp. 1474 - 1490, Jun. 2003. 53,
109

[102] A. Dembo and 0. Zeitouni, Large Deviations Techniques and Applications,
2nd ed. Springer-Verlag, 1998. 55

[103] S. L. Zabell, "Rates of convergence for conditional expectations," The Annals
of Probability, vol. 8, no. 5, pp. 928-941, Oct. 1980. 57

[104] I. Csiszir, "Sanov property, generalized i-projection and a conditional limit
theorem," The Annals of Probability, vol. 12, no. 3, pp. 768-793, Aug. 1984. 57

[105] I. Csiszir, T. Cover, and B.-S. Choi, "Conditional limit theorems under markov
conditioning," IEEE Transactions on Information Theory, vol. IT-33, no. 6, pp.
788-801, Nov. 1987. 57

[106] E. Jaynes, Probability Theory: The Logic of Science. Cambridge University
Press, 2003. 61

[107] D. Becherer and M. H. Davis, ArrowDebreu Prices. John Wiley & Sons, Ltd,
2010. 66

[108] K. Back, T. R. Bielecki, C. Hipp, S. Peng, W. Schachermayer, and W. Schacher-
mayer, "Utility maximisation in incomplete markets," in Stochastic Methods in
Finance, ser. Lecture Notes in Mathematics. Springer Berlin / Heidelberg,
2004, vol. 1856, pp. 3-14. 66

[109] D. Kelsey and F. Milne, "The arbitrage pricing theorem with non-expected
utility preferences," Journal of Economic Theory, vol. 65, no. 2, pp. 557 - 574,
1995. 73

[110] J. Wolfers and E. Zitzewitz, "Prediction markets," The Journal of Economic
Perspectives, vol. 18, no. 2, pp. pp. 107-126, 2004. 75

[111] J. E. Berg and T. A. Rietz, "Prediction markets as decision support systems,"
Information Systems Frontiers, vol. 5, pp. 79-93, 2003. 75

[112] J. Wolfers and E. Zitzewitz, "Interpreting prediction market prices as probabil-
ities," NBER Working Paper No. 12200, Tech. Rep., 2007. 75

[113] C. F. Manski, "Interpreting the predictions of prediction markets," Economics
Letters, vol. 91, no. 3, pp. 425 - 429, 2006. 75

164



[114] R. Forsythe, F. Nelson, G. R. Neumann, and J. Wright, "Anatomy of an ex-
perimental political stock market," The American Economic Review, vol. 82,
no. 5, pp. 1142-1161, Dec. 1992. 75

[115] P. Diaconis and S. Zabell, "Updating subjective probability," Journal of the
American Statistical Association, vol. 77, no. 380, pp. 822-830, Dec. 1982. 76,
78

[116] B. Skyrms, "Dynamic coherence and probability kinematics," Philosophy of
Science, vol. 54, no. 1, pp. 1-20, 1987. 76, 78

[117] D. Freedman and R. Purves, "Bayes' method for bookies," The Annals of Math-
ematical Statistics, vol. 40, no. 4, pp. 1177-1186, Aug. 1969. 78

[118] D. Heath and W. Sudderth, "On finitely additive priors, coherence, and ex-
tended admissibility," The Annals of Statistics, vol. 6, no. 2, pp. 333-345, Mar.
1978. 78

[119] D. Lane and W. Sudderth, "Coherent and continuous inference," The Annals
of Statistics, vol. 11, no. 1, pp. 114-120, Mar. 1983. 78

[120] E. Regazzini, "De Finetti's coherence and statistical inference," The Annals of
Statistics, vol. 15, no. 2, pp. 845-864, Jun. 1987. 78

[121] , "Coherent statistical inference and Bayes theorem," The Annals of Statis-
tics, vol. 19, no. 1, pp. 366-381, Mar. 1991. 78

[122] B. Skyrms, "Coherence, probability and induction," Philosophical Issues, vol. 2,
pp. 215-226, 1992. 78

[123] C. E. Alchourrn, P. Girdenfors, and D. Makinson, "On the logic of theory
change: Partial meet contraction and revision functions," The Journal of Sym-
bolic Logic, vol. 50, no. 2, pp. 510-530, 1985. 78

[124] K. Scarfone and P. Mell, "Guide to intrusion detection and prevention systems
(IDPS)," National Institute of Standards and Technology, Technology Admin-
istration, US Dept. of Commerce, Tech. Rep. 800-94, Feb. 2007. 79

[125] T. M. Cover and J. A. Thomas, Elements of information theory. New York,
NY, USA: Wiley-Interscience, 1991. 81, 84, 97, 109

[126] M. Feder and N. Merhav, "Universal composite hypothesis testing: A compet-
itive minimax approach," IEEE Transactions on Information Theory, vol. 48,
no. 6, pp. 1504-1517, Jun. 2002. 81

[127] H. M. Markowitz, Portfolio Selection. New York: Wiley, 1959. 101

[128] M. Rubinstein, "Bruno de Finetti and mean-variance portfolio selection," Jour-
nal of Investment Management, vol. 4, no. 3, 2006. 101

165



[129] B. de Finetti, "Il problema dei "pieni"," Giorn. Ist. Ital. Attuari, vol. 11, pp.
1-88, 1940. 101

[130] H. Markowitz, "de Finetti scoops Markowitz," Journal of Investment Manage-
ment, vol. 4, no. 3, 2006. 101

[131] C. French, "The Treynor capital asset pricing model," Journal of Investment
Management, vol. 1, no. 2, pp. 60-72, 2003. 102

[132] W. Sharpe, "Capital asset prices: A theory of market equilibrium under condi-
tions of risk," The Journal of Finance, vol. 19, no. 3, pp. 425-442, Sep. 1964.
102

[133] J. Lintner, "The valuation of risk assets and the selection of risky investments
in stock portfolios and capital budgets," Review of Economics and Statistics,
vol. 47, no. 1, pp. 13-37, 1965. 102

[134] P. Jorion, Value at Risk. New York: McGraw-Hill, 1997. 102

[135] D. Duffie and J. Pan, "An overview of value at risk," The Journal of Derivatives,
vol. 4, no. 3, pp. 7-49, 1997. 102

[136] P. Artzner, F. Delbean, J. Eber, and D. Heath, "Coherent measures of risk,"
Mathematical Finance, vol. 9, no. 3, pp. 203-228, Jul. 1999. 102, 103, 104, 105,
107

[137] R. Rockafellar and S. Uryasev, "Optimization of conditional value at risk,"
Journal of Risk, vol. 2, pp. 21-41, 2000. 102

[138] , "Conditional value-at-risk for general loss distributions," Journal of Bank-
ing & Finance, vol. 26, pp. 1443-1471, 2002. 102, 110

[139] D. Bertsimas, G. L. Lauprete, and A. Samaraov, "Shortfall as a risk measure:
properties, optimization and applications," Journal of Economic Dynamics &
Control, vol. 28, pp. 1353-1381, 2004. 102

[140] F. Delbean, "Coherent measures of risk on general probability spaces," in Ad-
vances in Finance and Stochastics: Essays in Honour of Dieter Sondermann,
K. Sandmann and P. Sch6nbucher, Eds. Springer-Verlag, 2002, ch. 1, pp. 1-38.
102, 103

[141] H. F6llmer and A. Schied, "Robust preferences and convex measures of risk," in
Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann,
K. Sandmann and P. Sch6nbucher, Eds. Springer-Verlag, 2002, ch. 1, pp. 1-38.
102, 105, 106, 110

[142] , "Convex measures of risk and trading constraints," Finance and Stochas-
tics, vol. 6, pp. 429-447, 2002. 102, 104

166



[143] , Stochastic finance: An introduction in discrete time, 2nd ed., ser. de
Gruyter Studies in Mathematics 27. Berlin NewYork: de Gruyter, 2004. 102,
104, 105

[144] F. H. Knight, Risk, Uncertainty, and Profit. Boston, MA, USA: Hart, Schaffner
& Marx; Houghton Mifflin Company, 1921. 123

[145] L. G. Epstein and T. Wang, "Intertemporal asset pricing under Knightian un-
certainty," Econometrica, vol. 62, no. 2, pp. 283-322, Mar. 1994. 123, 125

[146] M. Basili, "Knightian uncertainty in financial markets: An assessment," Eco-
nomic Notes, vol. 30, no. 1, p. 126, Feb. 2001. 123, 125

[147] K. G. Nishimura and H. Ozaki, "Search and Knightian uncertainty," Journal
of Economic Theory, vol. 119, no. 2, pp. 299 - 333, 2004. 123, 125

[148] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA: Princeton
University Press, 1976. 123

[149] A. Dempster, "Upper and lower probabilities induced by a multivalued map-
ping," The annals of Mathematical Statistics, vol. 38, no. 2, pp. 325-339, 1967.
123

[150] , "A generalization of Bayesian inference," Journal of the Royal Statistical
Society, Series B, vol. 30, pp. 205-247, 1968. 123

[151] J. Dow and S. R. da Costa Werlang, "Excess volatility of stock prices and
Knightian uncertainty," European Economic Review, vol. 36, no. 2-3, pp. 631-
638, April 1992. 125

[152] D. Ellsberg, "Risk, ambiguity, and the Savage axioms," The Quarterly Journal
of Economics, vol. 75, no. 4, pp. 643-669, Nov. 1961. 125

[153] W. Quine, Ontological Relativity and Other Essays. New York: Columbia
University Press, 1969. 125

[154] T. A. 0. Endicott, "Linguistic indeterminacy," Oxford Journal of Legal Studies,
vol. 16, no. 4, pp. 667-697, 1996. 125

[155] J. Dore and R. P. McDermott, "Linguistic indeterminacy and social context in
utterance interpretation," Language, vol. 58, no. 2, pp. 374-398, 1982. 125

[156] K. J. Kress, "Legal indeterminacy," 77 California Law Review, vol. 283, pp.
320-331, 1989. 125

[157] C. L. Kutz, "Just disagreement: Indeterminacy and rationality in the rule of
law," The Yale Law Journal, vol. 103, no. 4, pp. 997-1030, 1994. 125

167



[158] D. Freundlieb, "Epistemological realism and the indeterminacy of meaning. is
systematic interpretation possible?" Journal for General Philosophy of Science
/ Zeitschrift fdr allgemeine Wissenschaftstheorie, vol. 22, no. 2, pp. 245-261,
1991. 125

[159] P. L. Peterson, "Semantic indeterminacy and scientific underdetermination,"
Philosophy of Science, vol. 51, no. 3, pp. 464-487, 1984. 125

[160] C. Churchman, "Problems of value measurement for a theory of induction and
decisions," in Proceedings of the 3rd Berkeley Symp. on Mathematical Statistics
and Probability, 1956, pp. 53-59. 125

[161] S. Jagabathula and D. Shah, "Inferring rankings under constrained sensing," in
Proceedings of Neural Information Processing Systems, Vancouver, B.C., Dec.
2008. 127

[162] S. Jagabathula, V. Farias, and D. Shah, "A nonparametric approach to model-
ing choice with limited data," Management Science, submitted. 127

[163] J. Borwein and A. Lewis, Convex Analysis and Nonliear Optimization: Theory
and Examples, 2nd ed. Springer, 2006. 131, 132

[164] D. Bertsekas, Nonlinear Programming, 2nd ed. Athena, 1999. 131

[165] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004. 131

[166] C. Churchman, Thought and Wisdom. Seaside, CA: Intersystems Publications,
1982. 144

168


